
i

JADAVPUR UNIVERSITY

MASTER DEGREE THESIS

A Fault-tolerant Approach to alleviate Faults in
Offloading System

A thesis submitted in partial fulfillment of the requirements

for the degree of Master of Computer Science and Engineering

of

Jadavpur University

 By

Sayanti Mondal
Class Roll No.: 001410502008

Examination Roll No.: M4CSE1607

University Registration No.: 128994 of 2014-15

Under the Guidance of

Dr. Chandreyee Chowdhury

Prof. Sarmistha Neogy

Department of Computer Science and Engineering

Faculty of Engineering and Technology

Jadavpur University, Kolkata
May 2016

ii

Department of Computer Science and Engineering

Faculty of Engineering and Technology

Jadavpur University

Kolkata - 700032, India

C E R T I F I C A T E

This is to certify that the P.G Thesis Work Report entitled “A Fault-tolerant
Approach to alleviate Faults in Offloading System” submitted by Sayanti
Mondal(Registration Number: 128994 of 2014-15) as the record of the work
carried out by her, is accepted as the P.G Thesis Work Report submitted in
partial fulfillment of the requirements for the award of degree of Master of
Engineering in Computer Science and Engineering(MCSE) under Department
of Computer Science and Engineering, Faculty of Engineering and Technology,
Jadavpur University, Kolkata-700032.

 Dr. Chandreyee Chowdhury Prof. Sarmistha Neogy

 Assistant Professor, Professor,

 Department of Computer Science Department of Computer

 And Engineering, Science and Engineering,

 Jadavpur University, Jadavpur University,

 Kolkata Kolkata

 Forwarded By:

Prof. Debesh Kumar Das Prof. Sivaji Bandyopadhyay

Head, Department of Computer Science Dean, Faculty of Engineering

And Engineering and Technology

Jadavpur University,

 Kolkata-32

iii

Department of Computer Science and Engineering

 Faculty of Engineering and Technology

Jadavpur University

Kolkata - 700032, India

C E R T I F I C A T E O F A P P R O V A L

The foregoing Thesis is hereby approved as a creditable study of an engineering

subject carried out and presented in a manner satisfactory to warrant its

acceptance as pre-requisite to the degree for which it has been submitted. It is

understood that by this approval the undersigned do not endorse or approve any

statement made, opinion expressed or conclusion therein but approve this thesis

only for the purpose for which it is submitted.

Committee of final Examination

for Evaluation of Thesis

1.____________________________ 2.___________________________

3.____________________________

iv

DECLARATION OF ORIGINALITY AND COMPLIANCE OF

ACADEMIC ETHICS

I hereby declare that this thesis contains literature survey and original research

work by the undersigned candidate, as part of her Master of Engineering in

Computer Technology studies.

All information in this document have been obtained and presented in

accordance with academic rules and ethical conduct.

I also declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

Name: Sayanti Mondal

Roll Number : 001410502008

Registration Number : 128994 of 2014-15

Thesis Title: A Fault-tolerant Approach to alleviate Faults in Offloading

System

Signature with Date: ________________________________

v

ACKNOWLEDGEMENT

I take this opportunity to express my deepest gratitude and appreciation to all

those who have helped me directly or indirectly towards the successful

completion of this thesis.

Foremost, I would like to express my sincere gratitude to my respected guide

and teacher Dr. Chandreyee Chowdhury (Assistant Professor, Department of

Computer Science & Engineering, J.U.) for her exemplary guidance,

monitoring and constant encouragement throughout the course of this Project. I

gratitude to Dr. Sarmistha Neogy(Associate Professor, Department of Computer

Science & Engineering, J.U) and Dr. Sarbani Roy(Associate Professor,

Department of Computer Science & Engineering, J.U) for their continuous

encouragement, support and guidance. I feel deeply honored that I got the

opportunity to work under their guidance.

I would also wish to thank Prof. Sivaji Bandyopadhyay(Dean, FET) and Prof.

Debesh Das (Head of the Department of Computer Science & Engineering,

J.U) for providing me all the facilities and for their support to the activities of

this project.

During the last one year I had the pleasure to work in our department lab. I am

grateful to all the members of this lab for their kind co-operation and help.

I would like to express my gratitude and indebtedness to my parents and all my

family members for their unbreakable belief, constant encouragement, moral

support and guidance.

Last, but not the least, I would like to thank all my classmates of Master of

computer science and Engineering(MCSE) batch of 2014-2016, for their co-

operation and support. Their wealth of experience has been a source of strength

for me throughout the duration of my work.

vi

Abstract

Resources in mobile devices such as battery life, network bandwidth, storage

capacity, processor performance are limited. But people are likely to use mobile

devices for heavy computations in spite of their resource limitations. To

alleviate this problem offloading can be used. Offloading or cyber foraging is

an advanced technique to improve the performance of mobile devices by

migrating heavy computation to remote powerful servers (such as PDAs,

desktop PCs). Many research works have been done so far on the structure of

the offloading system, but work on fault tolerance are very few. So this paper

mainly concentrates on different faults that occur in offloading system and

proposes a fault-tolerance approach to alleviate those faults. First, we have

classified all faults in offloading system in four categories- Crash, Omission,

Transient and Security. After analyzing the existing fault tolerance approaches,

we propose a redundancy based fault-tolerance approach to handle these

failures altogether. But our approach is an improved one because it will try to

handle all kinds of faults whereas existing approaches, each focus on a specific

issue. We have evaluated our fault-tolerance model based on different fault

tolerance capability and resource utilization, comparison to other systems such

as offloading without fault-tolerance and general execution without offloading.

vii

TABLE OF CONTENTS

TABLE OF CONTENTS ……………………………………………… vii

LIST OF FIGURES ………………………………………………… viii

CHAPTERS

1. INTRODUCTION

 1.1 OFFLOADING CONCEPT .

 1.2 ISSUES NEED TO BE DISCUSSED .

 1.3 OBJECTIVE AND CONTRIBUTION

 1.5 THESIS ARRANGEMENT / STRUCTURE

1

3

3

5

2. DIFFERENT MECHANISMS TO BUILD OFFLOADING

SYSTEM .

3. FAULT DETECTION AND CLASSIFICATION IN

OFFLOADING SYSTEM

 3.1 CONCEPT OF FAULT .

 3.2 CLASSIFICATION OF FAULTS .

 3.3 FAULTS IN OFFLOADING SYSTEM

4. EXISTING FAULT-TOLERANT MACHANISMS FOR

OFFLOADING SYSTEM

 4.1 CONCEPT OF FAULT-TOLERANCE

 4.2 FAULT-TOLERANT SYSTEMS .

 4.3 FAULT-TOLERANT MECHANISMS FOR OFFLOADING

5. REDUNDANCY BASED FAULT-TOLERANCE APPROACH

FOR OFFLOADING

 5.1 INTRODUCTION .

6

16

16

18

21

21

22

27

viii

 5.2 OUR PROPOSAL .

 5.3 FAULT DETECTION AND TOLERANCE BY THIS

APPROACH .

6. DESIGN AND EVALUATION

 6.1 SYSTEM SETUP .

 6.2 DESIGN .

 6.3 OUR WORK SO FAR

 6.3.1 Π CALCULATOR .

 6.3.2 SNAPSHOTS OF Π CALCULATOR OFFLOADING

 EXECUTION .

27

32

36

36

39

41

 6.3.3 RESOURCE UTILIZATION .

 6.3.4 EFFECT OF CRASH FAILURE AND IT’S

TOLERANCE .

7. CONCLUSION

 7.1 SUMMARY .

 7.2 FUTURE WORK .

44

46

48

48

ix

LIST OF FIGURES

FIGURE 1: A GENERAL OFFLOADING SCENARIO . 2

FIGURE 2-11: ARCHITECTURE OF DIFFERENT OFFLOADING SYSTEMS 6

FIGURE 12: OCCURRENCE OF CRASH FAILURE IN OFFLOADEE 32

FIGURE 13: TOLERANCE OF CRASH FAILURE . 33

FIGURE 14: DETECTION OF OMISSION FAILURE . 34

FIGURE 15: DETECTION OF TRANSIENT FAILURE . 34

FIGURE 16: MAJORITY VOTING SCHEME TO TOLERATE FAULTS 35

FIGURE 17: CONNECT WITH SURROGATE . 37

FIGURE 18: FINDING AVAILABLE SURROGATES . 37

FIGURE 19: FAULT-TOLERANT OFFLOADING SCENARIO 39

FIGURE 20: CALCULATION OF 200 & 1000 DIGITS OF Π IN OFFLOADEE

ONLY . 42

FIGURE 21: Π CALCULATION OFFLOADING FOR 200 DIGITS 43

FIGURE 22: Π CALCULATION OFFLOADING FOR 100 DIGITS 44

FIGURE 23: MEMORY CONSUMPTION CURVES . 45

FIGURE 24: CPU UTILIZATION CURVES . 45

FIGURE 25: EFFECT OF CRASH FAILURE IN OFFLOADING SYSTEM . . . 47

FIGURE 26: TOLERANCE OF CRASH FAILURE . 47

1

Chapter 1: INTORDUCTION

1.1 Offloading Concept

In the last decade people have seen, a wide adoption of advanced mobile devices, called

smartphones. These smartphones typically have a rich set of sensors and radios, a

relatively powerful mobile processor as well as a substantial amount of internal and

external memory. A wide variety of operating systems have been developed to manage

these resources, allowing programmers to build custom applications. Centralized market

places, like the Apple App Store[1] and the Android Market[2], have eased the

publishing of applications. Hence, the number of applications has exploded over the last

several years much like the number of webpages did during the early days of the World

Wide Web and has resulted in a wide variety of applications, ranging from advanced 3D

games [3], to social networking integration applications[4], navigation applications[5],

health applications[6] and many more.

So, nowadays mobile devices are not only used for connecting people through phone

calls but also for watching videos, playing games, surfing net, biometric authentication,

object recognition and so many. With the advancement of technologies, the demand for

mobile devices to run heavier applications, increasing every day. Mobile applications are

becoming more elaborate in order to support complex applications, such as apps that

incorporate augmented reality and high-level mathematical computations. Along with the

complicated and rich graphic-intensive characteristic, these applications are still restricted

to the hardware resources in the mobile computing environment. Todays' smartphones

offer users more applications, more communication bandwidth and more processing,

which together put an increasingly heavier burden on its energy usage, while advances in

battery capacity do not keep up with the requirements of the modern user. Mobile phones

are constrained in their size and weight, their resources like battery life, cpu speed,

storage capacity, processor performance are limited.

A very useful technique to alleviate this problem is remote execution: applications can

take advantage of the resource-rich infrastructure by migrating the execution to remote

servers. As we know that desktop pcs‟ in offices or cafes remain idle for hours, during

this time mobile devices can transfer part of their tasks or the whole task to the resource-

rich pc in their vicinity. The pc will then execute the task on behalf of the mobile device.

This concept of remote execution through migrating the task to a resourceful device is

referred to as offloading or cyber foraging and the server to which remote execution is

2

done known as surrogate. In an offloading system, a surrogate machine makes its

resources available to client devices to perform tasks on their behalf. Resource-

constrained devices run applications and services that cannot be run on the small devices

themselves due to lack of some resource(s). Offloading enables resource-constrained

devices to run interesting resource-intensive applications that are beyond their own

capabilities. For example, suppose a person wanted to use speech or gesture recognition

as inputs to a PDA. But, speech and gesture recognition are compute and power-intensive

operations, running far slower than real time on low-power devices [7]. Using cyber

foraging, a PDA could capture the voice or gesture data and send it to a powerful

surrogate computer to do the recognition. Alternatively, in a future smart home

environment, where tiny special-purpose embedded devices can utilize the resources of

powerful desktop computers can perform interesting tasks that the devices themselves are

incapable of performing. In addition to enabling new applications, cyber foraging can

decrease the storage, battery, and computation requirements of embedded or mobile

devices, thereby decreasing their size, complexity, and cost. Such devices would need

only enough local resources to perform their common tasks, and could use surrogate

resources to perform more complex or less common tasks. Fig. 1 shows an offloading

scenario.

Figure 1: A General Offloading Scenario

3

1.2 Issues need to be discussed

 Offloading is a very popular concept to solve the problem of resource constrained

mobile devices. But the drawback is, there are numerous possibilities that will lead to

failures in offloading system. If the mobile device and the surrogate are connected via

Wi-fi, in that case either connection failure or weak link strength can affect the system.

While offloading the surrogate may become unavailable, it may face sudden crash

resulting an unsuccessful offloading attempt. All these failures may also lead to data loss.

So, fault detection and failure handling schemes are indispensable for offloading system.

Huge research works[8-18] have been done so far on the architectural part of this system,

some papers[4,5] have also analysed the performance of the offloading system in terms of

time, energy consumption. But very few works have been done on analysing different

faults in offloading system & how to remove those faults. Most of the papers have

considered the offloading system to be fault free, which is unrealistic. The papers which

have discussed faults & fault-tolerance techniques have either focused on a single fault or

a fault-tolerance method to alleviate specific faults or a single fault. So, we need a system

which will analyse all the possible faults that can occur in an offloading system and an

overall fault-tolerance mechanism that will tolerate all kind of faults instead of handling

some specific faults. So the issues of offloading system that need to be discussed are:

 1) Reasons for which offloading may fail.

2) According to their nature classifying them so that all kind of faults can be covered.

3) Finding the existing methods that can handle different faults.

4) Designing a fault-tolerance approach which will tolerate different faults altogether

instead of a specific one.

1.3 Objective and Contribution

 In our approach, we have tried to find out the reasons for which offloading may fail,

like surrogate unreachability, system crash, network failure, mobile nature of the mobile

device, security problems etc. After finding out reasons of the failures, according to their

nature we have classified them in four failures named- Crash failure, Omission failure,

Transient failure and Security failure.

4

 A system undergoes crash failure when it permanently ceases to execute its actions.
This is an irreversible change.

 When a sender sends a sequence of requests to the receiver but the receiver cannot
receive one or more requests sent by the sender, or vice-versa then omission failure
occurs. In real life, this can be either caused by device malfunction or due to the
properties of the medium.

 A transient failure can affect the global state in an arbitrary way. The agent inducing
this failure may be momentarily active (like a power surge or a mechanical shock or
lightning), but it can make a lasting effect on the global state.

 Virus and other kinds of malicious software creeping into a computer system can lead
to unexpected behaviours that lead to security failure. The effects range from allowing
an intruder to eavesdrop or steal passwords to granting a complete takeover of the
computer system. Such compromised systems can exhibit arbitrary behaviour.

After analysing and classifying the faults, a fault-tolerance approach for offloading

system is proposed that will be able to handle different kind of faults altogether. We have

used the concept of redundancy to implement fault-tolerance (Details of different fault-

tolerance methods are discussed in chapter 3). In this fault-tolerance approach two

situations have been considered: Offloading at any location & Offloading at a location

where a person visits almost regularly.

 When a person visits a location for the first time, her mobile device may either take help

of other offloadee(if available) which have visited the location earlier or simply use the

redundancy based approach if no offloadee is available nearby and store informations of

suitable surrogates of that location. In second step, when the person will visit the place

again, offloading decisions will be taken based on those saved information. Redundancy

along with prior knowledge has been used here to reduce the occurrence of faults in

offloading system. Both the approaches are illustrated in chapter 5. However it is not

possible to design a 100% fault-tolerant system, our system will be able to achieve a good

percentage towards fault-tolerance.

5

1.4 Organization of the Thesis

Offloading is an emerging technology; we use exploratory research to make this system

more reliable. Thus, our research goal is to identify the factors that affect offloading

execution and find a suitable way to alleviate those factors. The structure of this thesis is

as follows:

In the next chapter, we discuss about different mechanisms to build offloading system.

Chapter 3 focuses on the reasons for which offloading may fail and categorizing them.

Chapter 4 discusses on the concept of fault-tolerance, and several mechanisms that can be

used as fault-tolerant methods for offloading.

In Chapter 5 we present a suitable fault-tolerance mechanism for mobile computation

offloading for smartphones.

Next, Chapter 6 describes elaborately about the experimental environment and the

benchmark code we have used in our experiment to find the performance of the fault-

tolerant offloading system, and finally Chapter 7 concludes this thesis with future work.

6

Chapter 2: Different mechanisms to build Offloading

System

This chapter presents an overview of different offloading systems found in literature.

2.1 MAUI

 MAUI[8] decides at runtime which methods should be remotely executed, driven by

an optimization engine that achieves the best energy savings possible under the mobile

device‟s current connectivity constrains. It consists of three major components: proxy,

profiler and solver. A profiler instruments the program and collects measurements of the

program‟s energy and data transfer requirements. The solver decides, based on input from

the MAUI profiler, whether the method in question should be executed locally or

remotely. At compile time, MAUI generates two proxies, one that runs on the smartphone

and one that runs on the MAUI server, they handle both control and data transfer based

on the decision of MAUI solver. Fig. 2 provides an overview of the MAUI architecture.

Figure 2: Architecture of MAUI[8]

2.2 Cuckoo

 The Cuckoo framework[9], simplifies the development of smartphone applications that

benefit from computation offloading and provides a dynamic runtime system, that can, at

runtime, decide whether a part of an application will be executed locally or remotely.

7

Developer creates the project, writes the source code and defines the interface for

computer intensive service. Cuckoo system generates a stub/proxy pair for the interface

and a remote service with dummy implementation. Developer writes local service

implementation, overwrites remote service dummy implementation. System compiles the

code and generates an apk file. Then user installs the apk file on its smartphone. In fig. 3

the area within the dashed line shows the extensions by Cuckoo for computation

offloading.

Figure 3: Cuckoo for computation offloading[9]

2.3 Secure cyber foraging

 In secure cyber foraging[10], they build their surrogate framework using machine

virtualization technology(VServer[19] and Xen [20]).Virtual machine technology allows

a single surrogate machine to run a configurable number of independent virtual servers. A

PDA user who wants to move a subtask on the surrogate, clicks on the icon associated

with an application configured to run, at least partially, on a surrogate machine. If the OS

has not already obtained access to a surrogate, it invokes a lightweight surrogate

discovery protocol which locates an appropriate surrogate, establishes a service contract

with the surrogate for a particular amount of resources, and establishes a security context

so that only the client can access the surrogate. The client is given root access to a virtual

machine instance. To invoke an application on the surrogate, the client ships a small

program to a daemon listening at a known port on the surrogate, which runs the program

on behalf of the client. Typically, this program is a shell script that downloads the real

application over the Internet, installs it, and runs it. Once the surrogate portion of the

application is installed on the surrogate, the application launches the client interface on

8

the device (if any), transparently ships input data to the surrogate portion of the

application, collects responses, and outputs them through the client user interface. They

use publicly available encryption technologies, both public and private key, as the

foundation of security and authentication infrastructure. Fig. 4 shows a simple cyber

foraging scenario where a PDA client moves some subtask to a local surrogate machine.

Figure 4: Cyber Foraging scenario[10]

2.4 Offloading Middleware

 When a person wants to do offloading using nearby surrogates from a remote server,

offloading middleware[11] is required in that situation. Applications running on mobile

devices can interact with this middleware directly to invoke its offloading function. Fig. 5

describes an offloading middleware whose main components are:

 Instrumenting module: Used to modify the Java classes (which are in bytecode

format) to make them suitable for offloading.

 Partitioning module: Used to partition applications into one local execution

partition for running on the mobile device and one or more remote execution

partitions for running on surrogates.

 Resource Monitoring module: Monitors the resource usages of the running

environment including the mobile device and the underlying network.

 Offloading Decision Engine: Makes partitioning and offloading decisions

according to changes in the runtime environment, mainly, the changing in

resource utilization.

9

 Offloading module: Used to execute the partition offloading. Remote execution

partitions along with their runtime execution statuses are serialized and migrated

to surrogate(s) for remote execution.

 Secure Communication channel: For secure communication between the mobile

device and surrogate(s).

Figure 5: Offloading Middleware[11]

2.5 Scavenger

Scavenger[12] is a cyber foraging system with a new approach towards task distribution

and scheduling. Scavenger consists of two independent software components: the

daemon running on surrogates enable them to receive and perform tasks, and the library

used by client applications. A surrogate installs and run the Scavenger daemon. The

daemon consists of a small front-end offering remote access to the mobile code execution

environment through some RPC entry points. This front-end is also responsible for

device discovery, which it does by using a service discovery framework. Surrogates also

collect information about other surrogates, so that this information can be used in future

for re-scheduling and task migration, enabling the surrogates to hand over tasks to other

surrogates. All client applications use the scavenger library to discover available

surrogates. This library offers two ways of working with cyber foraging: 1) a manual

mode, where the application may itself ask for a list of available surrogates, install code

onto these surrogates, and invoke this code.; and 2) a fully automated mode, where the

10

application programmer only needs to annotate his remote executable functions, and then

Scavenger will take care of the scheduling. This paper is developed using the automatic

mode. Fig. 6 shows the development of scavenger.

Figure 6: Scavenger[12]

2.6 A runtime offloading approach

 This paper[13] proposes a runtime offloading system for pervasive services that

considers multiple types of system resources and carries out service partitioning and

partition offloading in a more adaptive and efficient manner. The Offloading Toolkit runs

on Java Virtual Machine(JVM) consisting of several modules shown in Fig. 7. The

offloading toolkit works on java bytecode instead of source code, increasing it‟s

feasibility.

11

Figure 7: An Offloading toolkit[13]

2.7 Offloading for web-centric devices

 This paper[14] proposes a platform-independent mobile offloading system, which is a

delegated system for a web centric devices environment. This offloading architecture

uses a built-in proxy system that splits the original JavaScript-based application codes

into the following two parts: a lightweight code for the mobile client and a

computationally heavy code that runs on the server system. This web based offloading

architecture requires a built-in proxy, called Contents Adaptor (CA), which basically acts

as an intermediary for requests from mobile clients seeking web resources from the

outbound servers. A mobile client connects only to the proxy server. The CA analyzes the

web resources from the outbound server and determines whether or not the web page

needs offloading. If the CA does not find any annotation for the offloading on the code,

the web page is transferred to the client with regular proxy server functions, including

compression and caching. In contrast, if it detects the offloading annotations in the header

of a web page, the CA notifies the generator, which creates a skeleton process for the

mobile client on the server side. Concurrently, the CA sends a lightweight modified web

page to the client. This offloading method reduces the response time of JavaScript-based

web applications and minimizes CPU utilization of mobile devices. Fig. 8. shows the

architecture of web-based offloading system.

12

Figure 8: A mobile offloading architecture[14]

2.8 Cloud offloading method for web applications

Concept of cloud offloading has been proposed in paper[16]. They designed the

framework for Cloud Offloading for the web applications based on the standard interface

named Web Worker in HTML5. With Web Worker[4] web applications can execute the

parallelized workload in thread-style. Because of the properties of the Web Worker, the

application can do the Cloud Offloading with very little system overhead. The clients

such as mobile phones can migrate the web application workload to the servers with the

various situations out-of-battery, good network connection. A Web workload balancing

Framework(WWF) is shown in Fig. 9.1.

Figure 9.1: Web workload balancing framework for cloud offloading[16]

13

In the device side, WWF provides the wrapping interface the same as Web Worker to

provide the same interface to the web applications. The device-side WWF will connect

the server-side WWF via Web Socket interface to delivery messages between the Web

Worker and the original web application. In the server-side WWF, the JavaScript

executable server component will execute the web worker code in the server and it will

communicate the device-side WWF via Web Socket. When the web application opens

and set to use Cloud Offloading, one Web Socket opens between the device-side WWF

and the server-side WWF and all commands from device-side and all events in server-

side will be delivered via WWF. Node.js has been used as the server here because node.js

is the scripting engine for JavaScript language.

2.9 Distributed dynamic offloading system

 A fine-grained runtime offloading system, called adaptive infrastructure for distributed

execution (AIDE), has been proposed in paper[17]. The key idea is to dynamically

partition the application during runtime, and migrate part of the application execution to a

powerful nearby surrogate device. In this paper, an offloading inference engine (OLIE) is

presented, which makes intelligent offloading decisions to enable AIDE to deliver

applications on resource-constrained mobile devices with minimum overhead. Two

important decision-making problems solved by OLIE: (1)timely triggering of adaptive

offloading, and (2) intelligent selection of an application partitioning policy. To solve the

first problem, OLIE decides when to trigger the offloading action. If an offloading action

is triggered, OLIE decides the new level of memory utilization to employ on the mobile

device given the current resource conditions (e.g., wireless network bandwidth) in the

pervasive computing environment. To solve the second problem, OLIE selects a proper

application partitioning policy that decides which program objects should be offloaded to

the surrogate and which program objects should be pulled back to the mobile device

during an offloading action. To achieve both flexibility and stability, OLIE employs the

Fuzzy Control model for making offloading decisions. Architecture of runtime offloading

system shown in fig. 10.

14

Figure 10: Distributed dynamic offloading system architecture[17]

2.10 Clonecloud

 Paper[18] presents the design and implementation of CloneCloud, a system that

automatically transforms mobile applications to benefit from the cloud. The system is a

flexible application partitioner and execution runtime that enables unmodified mobile

applications running in an application-level virtual machine to seamlessly offload part of

their execution from mobile devices onto device clones operating in a computational

cloud. CloneCloud(Fig. 11) uses a combination of static analysis and dynamic profiling

to partition applications automatically at a fine granularity while optimizing execution

time and energy use for a target computation and communication environment. At

runtime, the application partitioning is effected by migrating a thread from the mobile

device at a chosen point to the clone in the cloud, executing there for the remainder of the

partition, and re-integrating the migrated thread back to the mobile device. Their

evaluation shows that CloneCloud can adapt application partitioning to different

environments, and can help some applications achieve as much as a 20x execution speed-

up and a 20-fold decrease of energy spent on the mobile device. Since application-layer

VMs are widely used in mobile platforms, work in this paper applies primarily to

application layer virtual machines (VMs), such as the Java VM, Dalvik VM from the

Android Platform, and Microsoft‟s .NET.

15

Figure 11: CloneCloud prototype architecture[18]

Summary

 Offloading system can be built in different ways for different purposes. In some systems

offloading decision is predefined whreas in others the decision is taken during runtime.

Sometimes offloading systems are built for web-centric application, some are built for

resorce intensive computations. So, different applications implement different approaches

of offloading framework. But every sysem is vulnerable to faults. Next chapter discusses

different faults in offloading system.

16

Chapter 3: Fault Detection and Classification in

Offloading System

This chapter first describes general faults that occur in a distributed system, then dicusses

the faults in offloading system and classifies them in general faults.

3.1 Concept of Fault

Fault is the manifestation of an unexpected behavior of a system[22]. When a system

behaves erroneously/differently deviating from its normal execution we can say that

ststem is facing a fault. Since distributed systems consist of large number of

geographically seperated components to perform critical as well as noncritical tasks, they

are very prone to failures. Bad system designs and behavioral patterns like mobility

contribute to failures.

 Fault, error and faillure- these terms are closely interrelated. The widely accepted

definition, given by Avizienis and Laprie[26] is as follows. A fault is a violation of a

system‟s underlying assumptions. An error is an internal state that reflects a fault. A

failure is an externally visible deviation from specifications. A fault need not result in an

error, nor an error in a failure. An alpha particle corrupting a memory location is a fault.

If that memory location contains data, that corrupted data is an error. If a program crashes

because of using that data, it is a failure. So, basically fault is the root cause, error is the

result of fault and failure is the final outcome.

3.2 Classification of Failures

3.2.1 Crash failure

When a system undergoes crash failure it stops execution. This may be permanent or

temporary. When the effect of crash failure is temporary i.e. a system recovers from the

failure after a finite period of time, then such a crash failure is known as napping failure.

Operating system failure is one example of crash failure.

In an asynchronous model, crash failures cannot be detected with total certainty, since

there is no lower bound of the speed at which a process can execute. But in a

synchronous system processor speed and channel delays are bounded, so a crash failure

can be detected using timeout.

17

3.2.2 Fail-stop failure

In this type of failure, the server only exhibits crash failures, but at the same time, we can

assume that any correct server in the system can detect that this particular server has

failed.

A fail-stop processor has two properties- (1) it halts program execution when a failure

occurs and (2) the internal state of the volatile storage is irreversibly lost. A k-fail-stop

processor satisfies fail-stop properties with high probability when k or fewer faults occur,

and the system can detect when another fail-stop processor halts. If a system cannot

tolerate fail-stop failures then there is no way it can tolerate crash failure.

3.2.3 Omission failure

Suppose a transmitter process sending a sequence of messages to a receiver process. If

the receiver does not receive one or more of the messages sent by the transmitter, then an

omission failure occurs. In real life, this can be either caused by transmitter malfunction

or due to the properties of the medium. For example, limited buffer capacity in the

routers can cause some communication systems to drop packets. In wireless

communication, messages are lost when collisions occur in the MAC layer or the

receiving nodes moves out of range.

3.2.4 Transient failure

 A transient failure can perturb the global state in an arbitrary way. The agent inducing

this failure may be momentarily active(Like a power surge, or a mechanical shock, or

lightning), but it can make a lasting effect on the global state. Transient failures are also

caused by an overloaded power supply or due to week batteries.

 3.2.5 Byzantine failure

Byzantine failure allow every conceivable form of erroneous behaviour. Byzantine

failures are known as arbitrary failures and these failures are caused across the distributed

systems. These failures cause the system to behave arbitrary in nature. Output from the

system would be inappropriate and there could be chances of the malicious events and

duplicate messages from the server side and the clients get arbitrary and unwanted

duplicate updates from the server due to these failures.

Possible causes of byzantine failure are:

1) Total or partial breakdown of the link connecting the client and server

2) Software problems in a process

3) Due to malicious action in any part of the system

18

3.2.6 Software failure

There are several reasons that lead to software failure:

1) Coding errors or human errors- Due to erroneous coding, the system may enter into

an infinite loop or may result other internal errors.

2) Software design errors

3) Memory leaks- The execution of programs suffer from the degeneration of the

running system due to memory leaks, leading to system crash. Memory leak is a

phenomenon by which processes fail to free up the entire physical memory that has

been allocated to them.

4) Problem with inadequacy of specification- If a system suddenly fails to produce the

intended results even if there is no hardware failure or memory leak, then there may

be a problem with specifications.

3.2.7 Temporal failure

Real-time systems require actions to be completed within a specific amount of time.

When this deadline is not met, a temporal failure occurs. Like software failures, temporal

failures also can lead to other types of faulty behaviors.

3.2.8 Security failure

Virus and other kinds of malicious software creeping into a computer system can lead to

unexpected behaviors that conform to the definition of a fault. The effects range from

allowing an intruder to eavesdrop or steal passwords to granting a complete takeover of

the computer system. Such compromised system can exhibit arbitrary behavior.

3.3 Faults in Offloading System

Since offloading system is based on client-server model, it is susceptible to several faults.

The mobile nature of mobile devices, the unstable connectivity of wireless links all

render a less predictability of the performance of an application running under the control

of offloading systems. Several faults that occur in offloading system are classified into

four categories: Crash, Omission, Transient and Security[22].

 Crash failure: During offloading sometimes it happens that, either the surrogate or the

mobile device stops working. The surrogate stops working due to sudden crash, or

automatically shuts down due to power cut. Whereas the mobile device stops working

19

when it hangs for multitasking overloads or switches off automatically due to running out

of battery. These situations lead to crash failure in offloading system resulting an

unexpected halt.

 One reason behind crash failure in offloading system is Software aging[23]. Software

aging is a common phenomenon in computer systems which cause frequent software

faults, resulting in system outage. Software aging refers, accumulation of errors during

continuous operation of the software for a long period of time. In software aging,

performance start degrading gradually and finally results in hang/crash failure. Some

typical causes of aging are exhaustion of operating system resources, data corruption,

storage space unavailability and accumulation of numerical round-off errors.

Omission failure: During offloading, the request sent by the mobile device may not

reach the surrogate or the result sent by the surrogate may not reach the mobile. Either

the request or the result may be lost during transmission. These kind of failures in

offloading system can be classified as omission failures.

 Omission failure in offloading system generally occurs for unreliable network[23,24].

Low bandwidth, long delays are possible causes incurring network unreliability. While

migrating the computation to the surrogate, the execution of the offloading task may

suffer from delays or even failures by unreliable network.

 Another reason for omission failure is unavailability of the surrogates[25]. The mobile

nature of the mobile device in the offloading system affects the availability of the

surrogates. Naturally, if the surrogate is not available within the range of the mobile

device then omission failure occurs.

Transient failure: Sometimes offloading system is affected by unknown, hidden agents.

These agents affect the system in an arbitrary way and perturb the system functionality

temporarily. These kind of faults occur for a very short duration of time making them

very hard to detect. For example, an offloading request sent by the mobile device not

reached the surrogate even if there is no network failure.

 Software bugs or failures lead to transient failure[27] in offloading system. There are

faults in a software that have escaped all possible analysis & testing. They are likely to

manifest in protracted executions of applications, eventually interfering with their

longevity. These transient failures are unpredictable & lead to costly after effects. They

might corrupt a database far beyond repair without leaving a trail, they might cause

20

memory leakage which will eventually crash the process or they might induce slow

chocking of other operating system resources, eventually paralyzing an entire

application.

Security failure: Along with the benefits of high performance, offloading system

witnesses potential security threats including compromised data due to the increased

number of devices, parties & applications involved, which increases the number of point

of access. Offloading system is susceptible to security threats like snooping, spoofing

and 'man in the middle attack'. When the mobile device & the surrogate is

communicating with each other, a person or a device sitting in between can eavesdrop

and gain access to all the information flowing between them, which is known as

snooping. But when the person use those information for hacking or deception then it is

known as spoofing. 'Man in the middle attack' occurs when the attacker secretly

intercepts and relays messages between the mobile device and the surrogate but both of

them believe they are communicating directly with each other.

 Timing attack[28,29] causes specific security failures in offloading system. It enables

an attacker to extract secrets maintained in a system by observing the time it takes to

respond to various queries.

1. Mobile offloading requires access to resourceful servers for short duration through

wireless networks. The servers may use virtualization techniques to provide services so

that they can isolate & protect different programs & their data. In timing attack the

attacker can bypass the isolated environment provided by virtualization characteristics,

where sensitive code is executed in isolation from untrustworthy applications.

2. In the offloading system, we consider a server master key is used for encryption &

decryption operations of user data. In timing attack to offloading system, an attacker will

continue to send requests to the server & the obtained service will be properly performed

by the server. The attacker records each response time for a certain service & tries to find

clues to the master secret of the server by comparing time differences from several

request queues. If the attacker successfully breaks the secret information from the timing

results, he can read & even modify other users‟ information without authorization.

21

Chapter 4: Existing Fault-tolerance Approaches For

Offloading

This chapter discusses on the concept of fault-tolerance, different fault-tolerant systems

and focuses on some existing mechanisms that can be used to tolerate faults in offloading

system.

4.1 Concept of fault-tolerance

Fault tolerance is the property that enables a system to continue operating properly in the

event of the failure of (or one or more faults within) some of its components. A fault-

tolerant design enables a system to continue its intended operation, possibly at a reduced

level, rather than failing completely, when some part of the system fails. That is, the

system as a whole is not stopped due to problems either in the hardware or the software.

Fault-tolerance is needed in order to provide three main features: Reliability, Availability

and Security. Reliability focuses on a continuous service without any interruptions,

Availability is concerned with readiness of the system and Security prevents any

unauthorized access.

Examples- Patient monitoring systems, flight control systems, Banking services.

4.2 Fault-Tolerant Systems

A system is called fault-tolerant when the system maintains or returns to its original

configuration after all faulty actions stop executing. There are four major types of fault-

tolerance:

4.2.1 Masking Tolerance

A fault is masked if its occurrence has no impact on the application. Masking tolerance is

very important in many safety-critical applications where failure can endanger human life

or cause massive loss of property. For example- A patient monitoring system in a hospital

must not record patient data incorrectly even if some of the sensors or instruments

malfunction, since this can potentially cause an improper dose of medicine to be

administered to the patient and endanger his/her life.

22

4.2.2 Nonmasking Tolerance

In nonmasking fault-tolerance, faults may temporarily affect the application but

eventually normal behavior is restored. For example-While watching movies even if the

server crashed, but the system automatically restored the service by switching to a

standby server.

4.2.3 Fail-Safe Tolerance

Certain faulty configurations do not affect the application in an adverse way and

therefore considered harmless. A fail-safe system relaxes the tolerance requirement by

only avoiding those faulty configurations that may have catastrophic consequences, even

when failures occur. For example- if at a four way traffic crossing, the lights are green in

both directions, then a collision is possible. But if the lights are red in both directions then

at best traffic will stall but will not have any catastrophic side effect.

4.2.4 Graceful Degradation

There are systems that neither mask nor fully recover from the effect of failures, such

systems exhibit a degraded behavior that falls short of the normal behavior, but are still

considered acceptable. For example- While routing a message between two points in a

network, a program computes the shortest path. In the presence of failure, if this program

returns another path that is not the shortest but one that is marginally longer than the

shortest one, then this may considered acceptable.

4.3 Fault-tolerance mechanisms for offloading

4.3.1 Checkpointing

Paper[9] considers checkpointing to achieve fault-tolerance in offloading system. The

system periodically makes checkpoints by taking snapshots of the application execution

in both MH and Surrogate side at a particular interval. During failure recovery operation,

the offloading system loads the latest checkpoint data and recovers the application

execution to the point of the latest checkpointing. This approach may handle failures that

23

occur in the mobile device due to running out of battery, abnormal shutdown and also in

the surrogate side owing to surrogate failures such as shutdown or wireless link failures

or the surrogate becoming unreachable due to MH‟s movement.

4.3.2 Timeout Mechanism

 MAUI[8] detects failures using a simple timeout mechanism: when the smartphone

loses contact with the server and the server executing a remote method, MAUI returns the

control back to the local proxy. At this point, the proxy can either re-invoke the method

locally, or it can attempt to find an alternate MAUI server to reinvoke the method on that

new server. This approach can handle the omission failure.

4.3.3 Software Rejuvenation

Software Rejuvenation[30,31] is proposed to counteract aging in paper[23]. In software

rejuvenation, running software is occasionally stopped, then the accured errors are

removed & the software is restarted. Software rejuvenation is the concept of periodically

& preemptively restarting an application at a clean internal state after every rejuvenation

interval. During rejuvenation the system performance temporarily degrades but the server

stability is guaranteed by avoiding software aging.

4.3.4 Restart Mechanism

 Paper[23] indicates that the poor network quality is the primary cause of performance

deterioration in offloading system and theoretically proved restart[24] can improve this

situation. Paper[33] has also considered restart as a simple recovery scheme to mitigate

network failures. Markov chain models and Laplace transforms have been developed to

analyze the performance of restart for improving the expected task completion time

[34,35]. These analyses strongly support the efficiency of restart if the best restart

timeouts known. For a given random variable T describing task completion time, restart

after a timeout τ is promising if the following condition holds:

 (1)

The condition interprets that for restart to be beneficial the expected completion time

when restarting from scratch must be less than the expected time still needed to wait for

completion. It can be shown [33] that condition (1) holds if the task completion time

follows a distribution with sufficiently high variance or heavy-tail.

24

 4.3.5 Homomorphic Encryption

 Paper [36] uses homomorphic encryption to implement security in computation

offloading. Homomorphic encryption allows computation to be performed on encrypted

data without decryption, preserving security and privacy to the offloaded data at server

side. This paper adopts homomorphic encryption to protect data in image retrieval

technique. In this technique, images are first encrypted then sent to server. The server

never decrypts the data, it can only access the encrypted data. Thus the attacker can only

launch ciphertext-only attacks and they are the weakest form of attacks. This attacks can

be further weakened by changing the keys during encryption.

4.3.6 Steganography

 In paper [37] steganography is used to retrieve similar images. Image retrieval finds

images similar to a query by extracting images' features and comparing the features. It is

computation intensive and thus a good candidate for computation offloading. To protect

privacy from unauthorized use by the server in image retrieval technique, the concept of

steganography is used here. In this technique, a cover image is used to disguise the data

image so that the data image is hard to recognize. The combined image is called a stego

image which is sent to the server. Server cannot easily detect hidden data if the server

does not know what steganographic technique is adopted.

4.3.7 Protocol based method

 In paper[14] several mechanisms have been implemented to handle the situation when

the network between the mobile device and the offloading server is not available or

overloaded. If the client does not get response from the offloading server in a timely

manner, then it sends duplicate request to the server. In this offloading system each

request has its own sequence number, so that a duplicate request can be detected. If a

proxy server detects a duplicate page request within a certain time period, it understands

the failure in the communication channel. The system immediately switches to non-

offloading method, since it assumes that the offloading system may have encountered a

critical problem. But if the network failure happens while the application is running then

the application need to be reloaded.

4.3.8 Using Surrogate discovery mechanisms

 Due to mobile nature in mobile host surrogate reachability becomes a problem in

offloading system. One way of handling mobility is tracking surrogate reachability

25

employing surrogate discovery mechanisms. In a mobile wireless environment, the

location of the surrogates can be obtained by employing surrogate discovery mechanisms,

such as CROSS[38]. CROSS is a combined routing & surrogate selection algorithm for

pervasive service offloading in mobile ad hoc environment. In this algorithm, a surrogate

requirement message (SREQ) is used to specify minimum requirement of available

resources in the surrogate. During surrogate discovery, procedures need to find out all the

surrogates in the mobile ad hoc environment who satisfy SREQ. Now, surrogate

discovery can be incorporated into the existing distributed routing protocols. For the

proactive protocols, such as OLSR[39] the capability information of a surrogate can be

piggybacked in the link state advertisements(LSAs). Along with the dissemination of the

LSAs, the mobile host knows the resource availability of all the surrogates in the

environment. For reactive routing protocols, such as DSR[40], the SREQ can be

piggybacked in the route request(RREQ)message. Only the surrogates fulfilling the

SREQ can send back a route reply(RREP) message. Therefore, no matters which kind of

routing protocol utilized in the mobile ad hoc environment, the mobile host obtains a

partial view of the network which includes a list of surrogates satisfying SREQ & the

paths to these surrogates. Now, given surrogates‟ locations the surrogate unreachability α

can be obtained. If pr{SR} represents surrogate reachability then

4.3.9 Local re-execution

 Connection failure occurs due to two reasons-unreliable network and cloud servers

experiencing a long downtime. These situations cannot be avoided completely during the

execution of offloading, so failure schemes are indispensable. In paper[33], local re-

execution has been considered as a failure handling scheme in offloading system.

Usually, there are two major schemes to solve the problem of connection failure. The first

one is halting the current execution state and waiting for the network recovery. After the

connection quality satisfies the offloading condition again, the execution of offloading is

resumed. If the wireless network recovers quickly back to the required level, this scheme

performs well. But when the network is failure prone this scheme is not suitable, long

time will be wasted accompanied with large energy consumption. In this case, local re-

execution may lead to better option. But local re-execution is most effective when it is

launched after an optimal time waiting for network recovery. Because, if the wireless

network recovers within a moderate time, resuming the execution of offloading may still

require less time and energy than the local re-execution. Therefore, it is worth to wait

26

such a period for the connection recovery. This paper analyzes the performance of locally

re-executing the offloaded tasks for handling connection failure in mobile offloading, and

proposes a method to find the appropriate moment for launching the local re-execution.

4.3.10 Rekeying Mechanism

 Timing attack is one of the security issues in offloading system which cannot be

prevented by traditional cryptographic security mechanisms. Paper[24] has discussed on

this issue which can be solved by rekeying i.e. frequently changing the key[40]. In the

offloading systems they consider, a server master key is used for the encryption and

decryption operations of user data. To improve security, server should regularly change

the master key. But for that the mobile host need to use both new & old master key to

access the server(surrogate). When user data is very large this process will take long.

Therefore, it is required to recommend a minimum time for the master key replacement

cycle & select a suitable time, when there is low amount of user access (e.g. at night).

Summary

Above discussed mechanisms can tolerate specific faults in offloading system, so we

need a mechanism that is capable of handling all kind of faults. Chapter 5 proposes a

redundancy based fault-tolerance approach that can tolerate different type of faults in

offloading system altogether.

27

Chapter 5: Redundancy based Fault-tolerance Approach

for Offloading

This chapter proposes a redundancy based fault-tolerance approach to alleviate faults in

offloading system. This approach also uses the concept of timeout mechanism and

location based dependency.

5.1 Introduction

In general, two commonly used fault-tolerant techniques are- Checkpointing and

Redundancy. Every system has some information associated with it which defines its

state at a particular moment. This information includes process state, environment, value

of active registers and variable. All this information are collected and stored and each

such instance is called a checkpoint. In the event of a failure, system is restored to a

previously stored checkpoint rather than starting it from beginning whereas, redundancy

is creating multiple copies or replicas of data items and storing them at different

locations. This will increase the availability, so that if one node fails still data can be

accessed from other node.

5.2 Our Proposal

Proposed fault-tolerance approach is based on the concept of N-modular redundancy,

Timeout mechanism and Location based dependency. N-modular redundancy means,

offloading request is sent to more than one surrogate in each iteration. Surrogate will wait

for the result upto the timeout period and location based dependency will help the

offloadee to choose the suitable surrogate for offloading. The algorithm is executed in

two steps: First, suitable Surrogates selection; Second, sending the offloading requests to

the selected surrogates.

 According to location based dependency our offloading technique has two variations:

Location Based random Offloading- When a location is visited by the offloadee for the

first time and Location Based selective Offloading- When a location is visited almost

regularly.

28

Assumptions taken in this approach:

1. The application is need to be offloaded

2. N surrogates are available for offloading at a location

3. a person visits some places almost regularly

 Terms that are used in this Fault-tolerance approach:

 Sc = Surrogate count

 Ti = Waiting time after sending an offloading request to surrogate(s) in each

iteration

 Tmax = Maximum waiting time for offloading

(Both Ti and Tmax are predetermined based on the nature of the offloading request)

 Srs = No of successful offloading responses by the surrogate

 Srf = No of times surrogate failed

 MTTF = Mean Time To Failure

 SA = Surrogate availability

(Srs , Srf , MTTF, SA can be termed as “Surrogate Parameters” or “Environmental datas”)

 Reqn
(s)

= Number of offloading requests sent to a particular surrogate

 Resn
(s)

 = Number of successful offloading results from that surrogate

 Ls = Link-strength(Ls) between the surrogate & the client

5.2.1 Location Based Random Offloading

Surrogate Selection- Before offloading surrogate selection is a very important step. We

assume that the surrogates have already taken part in offloading and they have related

datas accordingly. From the past offloading datas each surrogate keep track of three

parameters: No of successful offloading responses (Srs), No of times it failed(Srf) and it‟s

own MTTF(Mean Time To failure) value. From these parameters surrogate will calculate

it‟s availability (SA) = f(Srs, Srf, SMTTF) and this availability value of each surrogate will be

29

shown as an offloading indicator. When a location is visited for the first time, offloadee

will select the surrogates based on their availability value.

 Offloading: Based on the nature of the application, offloadee will fix two timeout

values- Waiting time after each iteration(Ti) and Maximum waiting time(Tmax=

Ti1+Ti2+Ti3+...) for offloading. Initially offloadee chooses two suitable surrogates and

sends offloading request to Sc(Surrogate Count) surrogates and waits for Ti time for the

result. If result does not arrive within Ti time and Ti<Tmax then offloading requests are

sent to Sc+1 surrogates, but if Tmax exceeds then offloadee will start local re-execution.

This implements the concept of N-modular redundancy and Timeout mechanism.

During this approach offloadee keep track of certain parameters which can be termed as

“Offloadee Parameters” for each surrogate. Those are-

 Surrogates to which offloading requests were sent

 Link-strength(Ls) between the surrogate and the client

 Number of offloading requests sent to a particular surrogate(Reqn
(s)

)

 Number of successful offloading results from that surrogate(Resn
(s)

)

 From these offloadee parameters surrogate calculate the success ratio then success

rate(SR) for each surrogate using the following formulas for corresponding surrogate „s‟

& request „n‟:

 (2)

 (3)

Now, at a particular location according to this success rate, priority(P) of every surrogate

will be calculated. We will take „1‟ as highest priority, then „2‟ as a priority lower than 1,

so on. The surrogate having highest success rate(SR), will be assigned priority „1‟. The

surrogate having 2
nd

 highest SR, priority „2‟ will be assigned. In this way, at a particular

location all the surrogates which are available for offloading will be assigned priority

according to their success rate. After calculating the success ratio, success rate and

priority for all the surrogates at that location, these values are stored by the offloadee.

30

When a person has visited the location earlier, then offloadee will choose the surrogate

using it‟s previously saved data of that location. So, both the historical data of the

offloadee and surrogate will be utilized to select the suitable surrogate for selective

offloading. This concept is shown in algorithmic form below.

Algo1:

Location Based Random Offloading(Offloadee Side)

 RequestingOffloading(Ti,Sc,SA)

1.1 Select suitable surrogates based on their availability value(SA).

1.2 Send Offloading request to Sc(initially=2) surrogates

1.3 Wait Ti time for the result.

1.4 If result found

1.4.1 Save necessary information regarding offloadee parameters

 1.5 else if Ti<Tmax

1.5.1 RequestingOffloading(Ti,Sc+1,SA)

1.6 else

1.6.1 start local re-execution

5.2.2 Location Based Selective Offloading

It always happens that a person visits some places very frequently as well as almost every

day. Suppose a person regularly goes to office, visits airport to take flights, attend

meetings-conferences at particular auditoriums; Professors regularly visits colleges & so

many. In all these scenarios the approach of „selective offloading‟ is very effective.

Surrogate Selection: When a location is visited regularly , surrogate selection is done

31

based on surrogate availability(SA) and priority(P) of the surrogate. Surrogate

availability(SA) is indicated at the surrogate side and Priority of different surrogates at

that location is already stored in the client side.

Offloading: In Selective offloading, initially the client will choose the surrogates having

best SA values & success ratio and send offloading request to such surrogates whose

priorities are either „1‟ and „2‟. Offloadee waits Ti time for the result. If result does not

arrive within Ti time and Ti<Tmax then offloadee will increment the priority values by „1‟

and send requests to the surrogates having corresponding priorities. But if Tmax exceeds

then offloadee will start local re-execution. After every successful offloading offloadee

will make the required changes in surrogate‟s priority if necessary. In this approach,

probability of successful offloading is very high in each attempt, which was not there in

previous approach. Here in each attempt, the client will send the offloading request to

the most suitable surrogate. When a person visits a particular location regularly, this is

not only a very good approach towards fault-tolerance in offloading system but also

reduces the offloading execution time, thus enhancing the system performance. An

algorithm of this concept is shown below:

Algo2:

Location Based Selective Offloading(Offloadee side)

RequestingOffloading(Ti,P,SA)

2.1 Select suitable surrogate based on surrogate availability value(SA) and priority of the

surrogate(P).

2.2 Send Offloading request to surrogates having best availability and priority value.

2.3 Wait Ti time for the result

2.4 If result found

 2.4.1 update the priority values of the surrogate

2.5 else if Ti<Tmax

 2.5.1 RequestingOffloading(Ti,P+1,SA)

2.6 else start local re-execution

32

5.2.3 Algorithm for Surrogate side(For both Random and Selective offloading)-

 Algo3:

3.1 Periodically calculate Surrogate availability(SA) based on surrogate parameters- Srs,

Srf, SMTTF .

3.2 Always show the availability value

3.3 Receive offloading request

3.4 If required resources are available

 3.4.1 execute the request and send back the result to the client

3.5 else offloading fails.

3.6 Record total no of offloading requests received, successful offloading results sent, no.

of times it failed and MTTF value

5.3 Fault Detection and tolerance by this approach

Crash Failure:

 Detection- If crash failure occurs then offloadee will get no result. In the above

approach if the surrogate crashes then the offloadee will not be able to get the result

within Ti time shown in Fig. 12.

Figure 12: Occurrence of crash failure

33

Tolerance- If offloadee does not get the result within Ti time, then it will send the

offloading request to other surrogates within the Tmax time. It is less probable that

different surrogates crash simultaneously. The probability of Offloadee getting the result

from atleast one surrogate within Tmax time is very high if redundancy concept is used.

Fig.13 shows an approach to tolerate crash failure.

Figure 13: Tolerance of crash failure

Omission failure:

 Detection- Omission failure in offloading systems, occur due to either lossy network

between offloadee and the surrogate or due to surrogate unreachability. If omission

failure occurs due to lossy network then offloadee may receive the result but some part of

the result may be erroneous. But if the reason is surrogate unreachability then offloadee

will not receive any result at all.

34

Figure 14: Omission failure detection

 Tolerance- If result arrives and that is erroneous then offloadee can get the correct result

from other surrogates those who have also received the offloading request according to

redundancy approach. When result comes back from more than one surrogate, offloadee

can also detect the error in result by majority voting. But if omission failure occurs due to

surrogate unreachability, in that case failure will be handled similar to crash failure.

Transient failure:

 Detection- Due to transient failure the system will be affected temporarily but after

some time it will again start working properly. For this failure offloadee may receive an

erroneous result where some of the part may be missing.

Figure 15: Transient failure detection

35

 Tolerance- Transient failure can also be tolerated by majority voting. In this scheme,

even if one surrogate crashes or gives erroneous result, offloadee will able to choose the

correct result by observing the result sent by majority of surrogates.

Figure 16: Tolerance of omission and transient failure using majority voting

Summary

Initially offloading system detect the faults, then fault-tolerance mechanism is employed .

As this mechanism utilizes the concept of location based dependency, this helps people to

choose the most suitable surrogate in a regularly visited location which reduces the

occurrence of faults. Next chapter discusses the implementation details of constructing

the offloading system and employing the fault-tolerance mechanism to tolerate faults.

36

Chapter 6: Design & Evaluation

6.1 System Setup

In this thesis, we have used a client-server based offloading model to detect different

faults in offloading system and to simulate the fault-tolerant approach. Clients are

typically resource-constrained devices with limited networking capability, e.g., a PDA,

tablet, or cell phone. Surrogates are resource-rich devices that are willing to run programs

and/or provide storage on behalf of clients. Surrogates might be a desktop PC, laptops

available via the local wireless LAN(e.g., in a smart home, office, or commercial hotspot

environment)or might be home PC or a commercial surrogate connected via the Internet.

 For this experiment, our surrogate platform is HP Probook 4550 Series Laptops with

2.10-GHz i3 processor and 1GB of RAM. The client is a Samsung Galaxy GT-P5100 Tab

running android version 4.1.2. For all experiments, mobile device and the surrogates are

connected through 802.11 wireless LAN. Client programs are in android studio[41] and

Surrogate programs are written in java. Experiment is executed in several locations. The

link speed of the LAN connections in different locations varies between 65-75Mbps.

6.2 Design

This section comprises of two sub-sections: Designing the offloading system and then

simulating the fault-tolerance approach. To design the system, first a suitable application

needs to be chosen in which three options will be available for execution-

a. Local execution: The application will be executed in the mobile device only.

b. Offloading without fault-tolerance: The application will be executed in one

surrogate. Here, offloadee will provide the “ip-address” and “port no” during

runtime to connect with the surrogate and send the offloading request(Fig. 17).

37

Figure 17: Connect with the surrogate

c. Offloading with fault-tolerance: The application will be executed using above

fault-tolerance approach. First, “Network Discovery” will be run to find the

available surrogates(Fig. 18). When the surrogates are available, offloadee will

choose suitable surrogates and send them offloading requests.

Figure 18: Finding available surrogates

38

Fault-tolerance approach can be executed in three steps- First surrogate selection, then

Fault-insertion and finally either location based random offloading or selective

offloading.

At a location, several servers need to run the surrogate program for the offloading

session. After the end of the offloading session, these surrogates will create a database to

store the parameters such as- total no of offloading requests received, successful

offloading results sent, MTTF value and Surrogate Availability(SA) . Surrogate

availability(SA) will be calculated based on the first three parameters and stored in the

database. When the next offloading session will start, every surrogate at that location will

show their SA value, so that offloadee can choose a suitable surrogate.

Crash failure can be injected in the surrogate by stopping it, within the offloading session.

In that case, offloadee will not get the result from the surrogate within the timeout and

detect the crash failure(Described in section 7.3). Omission failure can be injected by

either moving the mobile device out of reach of the surrogate or disconnecting the wi-fi

network. So far, in our work we have simulated crash failure and yet to observe the effect

of omission and transient failure.

From random offloading execution at a location offloadee will save no. of requests sent

to each surrogate(Reqn
(s)

), No. of successful offloading result from each

surrogate(Resn
(s)

), Link strength(Ls) and distance between the surrogate and the client.

From these parameters offloadee will calculate the success ratio(SR) and priority(P) of

all the surrogates at a location which will be stored in the database of offloadee. When

the location is visited again, offloadee will select the surrogate with best

priority(Offloadee database) and availability(Surrogate database) value.

Waiting time Ti, Tmax are decided according to the offloading request. The fault-tolerant

offloading scenario is shown in Fig. 19.

39

Figure 19: fault-tolerant Offloading scenario

6.3 Implementation Details

 6.3.1 Π calculator

 A simple Java application, Π calculator is used to evaluate the model primarily. The

application is developed for calculating Π which firstly gets user‟s input i.e. upto which

decimal places the value will be calculated and then invokes class Π for the calculation.

Some code snippets that have been used for offloading this application are mentioned

below:

Android Client

1. Sender asynchronous class that sends the decimal places upto which the value of Π

will be calculated

 private class Sender extends AsyncTask<Void, Void, Void>{

 private String message;

40

 @Override

 protected Void doInBackground(Void... params){

 message = textField.getText().toString();

 printwriter.write(message + "\n");

 printwriter.flush();

 return null;

 }

}

2. Receiver asynchronous class that receives the value of Π from the java server

 private class Receiver extends AsyncTask<Void, Void, Void>{

 private String message;

 @Override

 protected Void doInBackground(Void... params) {

 while (true) {

 if (bufferedReader.ready())

 message = bufferedReader.readLine();

 publishProgress(null);

 }

 }

}

Java Server

1. making connection between the offloadee and the surrogate:

 ServerSocket server = new ServerSocket(4444);

 System.out.println("Server started successfully");

 Socket client = server.accept();

2. Receiving the decimal place upto which the value will be calculated

 InputStreamReader j = new InputStreamReader (client.getInputStream());

 BufferedReader r = new BufferedReader(j);

 PrintStream w = new PrintStream(client.getOutputStream());

 String data = r.readLine();

41

 int digits = Integer.parseInt(data);

3. Calculating the value of Π

 int max = 1000;

 BigDecimal num2power6 = new BigDecimal(64);

 BigDecimal sum = new BigDecimal(0);

 for(int i = 0; i < max; i++) {

 .

 }

 sum = sum.divide(num2power6,digits, BigDecimal.ROUND_FLOOR);

 System.out.println("value is: " +sum);

4. Sending the value back to the offloadee

 BigDecimal k= sum;

 System.out.println("value of picalculator upto 100 decimal places:\n\n " +sum);

 w.println(k);

 System.out.println("\nResult sent back to client");

6.3.2 Snapshots of Π calculator offloading execution

 Execution in Offloadee only: Calculation of Π for 200 and 1000 decimal places in

the mobile device, shown in Fig.20.1 and Fig.20.2 respectively.

42

Figure 10.1: Calculation of 200 digits of Π in the mobile device only

Figure 20.2: Calculation of 1000 digits of Π in the mobile device only

 Execution in offloading: In this case, offloadee will send the decimal place value

to the surrogate, surrogate receives the value, calculate the result and send it back

to offloadee. Fig. 21.1 and Fig. 21.2 shows Π calculation offloading for 200 digits

and Fig. 22.1 and Fig. 22.2 shows it for 100 digits calculation.

43

Figure 21.1: Calculation of 200 digits of Π in the surrogate and simultaneously it sends back the

result to offloadee shown in Figure 21.2

Figure 21.2: Offloadee, after getting the result from surrogate(for 200 digits)

44

Figure 22.1: Calculation of 100 digits of Π in the surrogate which is send back to the offloadee

shown in Figure 22.2

Figure 22.2: Offloadee, after getting the result from surrogate(for 100 digits)

6.3.3 Resource Utilization

By using an app named “System Monitor Lite[42]”, we have measured the cpu and

memory consumption of the application in offloading and non-offloading method. Since,

45

the fault-tolerance approach is not yet completed, we are unable to give it‟s

measurements regarding resource utilization in the following figures.

Fig.23 shows the memory usage and Fig.24 shows CPU utilization for the calculation of

Π calculator, respectively. The Y-axes represent the resource usage and the X-axes

represent the accuracy of Π (i.e. decimal places).

Figure 23: Memory consumption

Figure 24: CPU utilization

46

6.3.4 Effect of Crash Failure and it’s tolerance

To observe the effect of failure, faults need to be injected in the system manually; only

then the performance of fault-tolerance mechanism can be evaluated properly. As

discussed earlier, offloading system is susceptible of Crash, Omission, transient and

security failure. Till now the effect of Crash failure has been observed in our work,

effects of other failures are yet to be observed. Crash failure in offloading system

generally occurs if the surrogate stops responding to the offloadee. So, this failure is

injected in the system by stopping the surrogate using server. stop() command during

offloading phase.

In Fig. 25, surrogate is being stopped during the calculation of 800 decimal places of Π.

While offloading if crash failure occurs, system will stop working further but if fault-

tolerance mechanism is implemented then failure can be tolerated after it‟s detection and

the system will continue working. Fig. 25 shows the system performance in presence of

crash failure whereas tolerance of crash failure is shown in fig. 26. For fig.26 we have

assumed that crash failure is detected during the calculation of 100 decimal places and

after the detection, failure is tolerated using the redundancy concept. In the following

figures, X-axes represents the decimal places and y-axes represents the system

performance with respect to success or failure. Success indicates „1‟ and failure indicates

„0‟ performance.

47

Figure 25: Occurrence of Crash Failure

Figure 26: Tolerance of crash failure

Summary

An application of our proposed approach Π calculator is discussed in this chapter. The

simulation result shows the effectiveness of offloading and crash failure tolerance

capability. In the next chapter the thesis is concluded following the future scope of work.

48

Chapter 7: Conclusion

7.1 Summary

 With the growing demand in offloading, fault detection and fault-tolerance have become

an indispensable part for designing a reliable offloading system.

In this thesis, first we have detected the reasons for which offloading may fail and

classified them into crash, omission, transient and security failure. After detecting the

occurrence of different faults, a redundancy based fault-tolerance approach is proposed

which is executed in two steps: when a person visits a location for the first time only

random offloading is applicable. In that case, offloadee selects the surrogate based on

surrogate availability value only and saves necessary information (e.g. available

surrogates, performance of the surrogates, link strength) of that location for further

processing. Now, when the person visits that same location next time his/her mobile

device will utilize the previously saved informations of that location along with surrogate

availability to choose the most suitable surrogate for offloading. Basically we have

inserted the concept of location based dependency in offloading.

The offloading system is designed using Π calculator and evaluated in terms of resource

utilization. Crash failure is simulated in the system so far to observe the performance of

fault-tolerance approach.

7.2 Future Work

 We plan to insert omission and transient failure in offloading system and observe the

effect of fault-tolerance approach under those faults. One useful way to detect

omission and transient failure is using the concept of hash code. Before sending the

request to surrogate, offloadee can generate a hash code and attach it with the

requesting message. When result comes back to offloadee, it will check the hash code

sent during the request. If there is any change then it is quite obvious that system has

faced either an omission failure or transient failure.

In this thesis we have considered the network connections, the surrogates in the

offloading system to be secure and trusted. But this does not always happen in real. As

described earlier, “timing attack” is one of the security issue in offloading system. So,

tolerance of security failure is indispensable. In our next work, we try to incorporate

mechanisms to tolerate different type of security failure in offloading system by using

the concept of cryptography and trusted system.

49

Reference

[1] iPhone App Store. http://www.apple.com/iphone/appstore

 [2] Android Market. http://www.android.com/market

[3] Raging Thunder. http://www.polarbit.com/our-games/raging-thunder-2

[4] Motorola MOTOBLUR. http://www.motorola.com/Consumers/US-EN/Consumer-

Product-and-Services/MOTOBLUR/Meet-MOTOBLUR

[5] Google Maps Navigation. http://www.google.com/mobile/navigation/

[6] Health to Go. http://www.healthymagination.com/

[7] Mathew, B., Davis, A., & Fang, Z. (2003, October). A low-power accelerator for the

SPHINX 3 speech recognition system. In Proceedings of the 2003 international

conference on Compilers, architecture and synthesis for embedded systems (pp. 210-

219). ACM.

[8] Cuervo, E., Balasubramanian, A., Cho, D. K., Wolman, A., Saroiu, S., Chandra, R., &

Bahl, P. (2010, June). MAUI: making smartphones last longer with code offload.

In Proceedings of the 8th international conference on Mobile systems, applications, and

services (pp. 49-62). ACM.

[9] Kemp, R., Palmer, N., Kielmann, T., & Bal, H. (2010). Cuckoo: a computation

offloading framework for smartphones. In Mobile Computing, Applications, and

Services (pp. 59-79). Springer Berlin Heidelberg.

[10] Goyal, S., & Carter, J. (2004, December). A lightweight secure cyber foraging

infrastructure for resource-constrained devices. In Mobile Computing Systems and

Applications, 2004. WMCSA 2004. Sixth IEEE Workshop on(pp. 186-195). IEEE.

[11] Ou, S., Yang, K., & Zhang, J. (2007). An effective offloading middleware for

pervasive services on mobile devices. Pervasive and Mobile Computing,3(4), 362-385.

http://www.apple.com/iphone/appstore
http://www.android.com/market
http://www.polarbit.com/our-games/raging-thunder-2
http://www.motorola.com/Consumers/US-EN/Consumer-Product-and-Services/MOTOBLUR/Meet-MOTOBLUR
http://www.motorola.com/Consumers/US-EN/Consumer-Product-and-Services/MOTOBLUR/Meet-MOTOBLUR
http://www.google.com/mobile/navigation/
http://www.healthymagination.com/

50

[12] Kristensen, M. D. (2010, March). Scavenger: Transparent development of efficient

cyber foraging applications. In Pervasive Computing and Communications (PerCom),

2010 IEEE International Conference on (pp. 217-226). IEEE.

[13] Ou, S., Yang, K., & Zhang, Q. (2006, April). An efficient runtime offloading

approach for pervasive services. In Wireless Communications and Networking

Conference, 2006. WCNC 2006. IEEE (Vol. 4, pp. 2229-2234). IEEE.

[14] Park, S., Chen, Q., Han, H., & Yeom, H. Y. (2014). Design and evaluation of mobile

offloading system for web-centric devices. Journal of Network and Computer

Applications, 40, 105-115.

[15] Chen, G., Kang, B. T., Kandemir, M., Vijaykrishnan, N., Irwin, M. J., &

Chandramouli, R. (2004). Studying energy trade offs in offloading

computation/compilation in java-enabled mobile devices. Parallel and Distributed

Systems, IEEE Transactions on, 15(9), 795-809.

[16] Hwang, I., & Ham, J. (2014, April). Cloud offloading method for web applications.

In Mobile Cloud Computing, Services, and Engineering (MobileCloud), 2014 2nd IEEE

International Conference on (pp. 246-247). IEEE.

[17] Gu, X., Nahrstedt, K., Messer, A., Greenberg, I., & Milojicic, D. (2003, March).

Adaptive offloading inference for delivering applications in pervasive computing

environments. In Pervasive Computing and Communications, 2003.(PerCom 2003).

Proceedings of the First IEEE International Conference on (pp. 107-114). IEEE.

[18] Chun, B. G., Ihm, S., Maniatis, P., Naik, M., & Patti, A. (2011, April). Clonecloud:

elastic execution between mobile device and cloud. InProceedings of the sixth conference
on Computer systems (pp. 301-314). ACM.

[19] Linux vserver project, available at http://www.linuxvserver.org/.

[20] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I.

Pratt, and A. Warfield. Xen and the art of virtualization. In Proc. of the 19th ACM

Symposium on Operating Systems Principles, October, 2003.

[21] Web Worker Specification, http://www.w3.org/TR/workers/

[22] Ghosh, Sukumar. Distributed systems: an algorithmic approach. CRC press, 2014.

http://www.linuxvserver.org/
http://www.w3.org/TR/workers/

51

[23] Wang, Q., & Wolter, K. (2014, November). Detection and Analysis of Performance

Deterioration in Mobile Offloading System. In Software Reliability Engineering

Workshops (ISSREW), 2014 IEEE International Symposium on (pp. 420-425). IEEE.

[24] Meng, T., Wang, Q., & Wolter, K. (2015). Model-based quantitative security

analysis of mobile offloading systems under timing attacks. In Analytical and Stochastic

Modelling Techniques and Applications (pp. 143-157). Springer International Publishing.

[25] Ou, S., Wu, Y., Yang, K., & Zhou, B. (2008, May). Performance analysis of fault-

tolerant offloading systems for pervasive services in mobile wireless environments.

In Communications, 2008. ICC'08. IEEE International Conference on (pp. 1856-1860).

IEEE.

[26] Avižienis, A., Laprie, J. C., Randell, B., & Landwehr, C. (2004). Basic concepts and

taxonomy of dependable and secure computing. Dependable and Secure Computing,

IEEE Transactions on, 1(1), 11-33.

[27] Yang, K., Ou, S., & Chen, H. H. (2008). On effective offloading services for

resource-constrained mobile devices running heavier mobile internet

applications. Communications Magazine, IEEE, 46(1), 56-63.

[28] Brumley, D., & Boneh, D. (2005). Remote timing attacks are practical.Computer

Networks, 48(5), 701-716.

[29] Huang, Y., Kintala, C., Kolettis, N., & Fulton, N. D. (1995, June). Software

rejuvenation: Analysis, module and applications. In Fault-Tolerant Computing, 1995.

FTCS-25. Digest of Papers., Twenty-Fifth International Symposium on (pp. 381-390).

IEEE.

[30] Cotroneo, D., Natella, R., Pietrantuono, R., & Russo, S. (2011, November). Software

aging and rejuvenation: Where we are and where we are going. InSoftware Aging and

Rejuvenation (WoSAR), 2011 IEEE Third International Workshop on (pp. 1-6). IEEE.

[31] Gordon, M. S., Jamshidi, D. A., Mahlke, S., Mao, Z. M., & Chen, X. (2012). Comet:

Code offload by migrating execution transparently. In Presented as part of the 10th

USENIX Symposium on Operating Systems Design and Implementation (OSDI 12) (pp.

93-106).

52

[32] Van Moorsel, A., & Wolter, K. (2006). Analysis of restart mechanisms in software

systems. Software Engineering, IEEE Transactions on, 32(8), 547-558.

[33] Sheahan, R., Lipsky, L., Fiorini, P. M., & Asmussen, S. (2006). On the completion

time distribution for tasks that must restart from the beginning if a failure occurs. ACM

SIGMETRICS Performance Evaluation Review, 34(3), 24-26.

[34] Asmussen, S., Fiorini, P., Lipsky, L., Rolski, T., & Sheahan, R. (2008). Asymptotic

behavior of total times for jobs that must start over if a failure occurs. Mathematics of

Operations Research, 33(4), 932-944.

[35] Liu, J., & Lu, Y. H. (2010, October). Energy savings in privacy-preserving

computation offloading with protection by homomorphic encryption. InProceedings of

the 2010 international conference on Power aware computing and systems,

HotPower (Vol. 10, pp. 1-7).

[36] Liu, J., Kumar, K., & Lu, Y. H. (2010, August). Tradeoff between energy savings

and privacy protection in computation offloading. In Proceedings of the 16th ACM/IEEE

international symposium on Low power electronics and design (pp. 213-218). ACM.

[37] Ou, S., Yang, K., & Hu, L. (2007, November). Cross: a combined routing and

surrogate selection algorithm for pervasive service offloading in mobile ad hoc

environments. In Global Telecommunications Conference, 2007. GLOBECOM'07.

IEEE (pp. 720-725). IEEE.(20)

[38] Clausen, Thomas, and Philippe Jacquet. Optimized link state routing protocol

(OLSR). No. RFC 3626. 2003.

[39] Johnson, David B. "The dynamic source routing protocol for mobile ad hoc

networks." draft-ietf-manet-dsr-09. txt (2003).

[40] Rebeiro, C., Mukhopadhyay, D., & Bhattacharya, S. (2015). An introduction to

timing attacks. In Timing Channels in Cryptography (pp. 1-11). Springer International

Publishing.

[41] Android Studio. http://developer.android.com/sdk/index.html

[42] System Monitor Lite.

https://play.google.com/store/apps/details?id=com.cgollner.systemmonitor.lite&hl=en/

http://developer.android.com/sdk/index.html
https://play.google.com/store/apps/details?id=com.cgollner.systemmonitor.lite&hl=en/

