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Preface 
 

The purpose of this document is to be treated as the master’s thesis by the author for the partial 

fulfilment of the Masters in Computer Science and Engineering curriculum in Jadavpur 

University. In this document, the author has presented an overview of his original contribution 

and the background knowledge necessary to understand its significance.  

In the present work, a multi-scale deep quad-tree based CNN feature extraction technique has 

been described. The proposed method has been tested on isolated handwritten character 

images. Styles of handwriting vary from writer to writer. It may also vary for a single individual 

based on various different factors. Therein lies the challenge of designing a powerful and 

efficient feature set for handwritten character recognition. Although there has been significant 

improvement in the development of Optical Character Recognition (OCR) systems for many 

European languages including English, German, French, Spanish etc. and Asian languages 

such as Chinese, Japanese etc., surprisingly there has not been much focus on Indian languages 

until recently. In this work, the author has focused on the recognition of handwritten characters 

of Indian languages.  The document is divided in several chapters for better readability. The 

chapters provide an overview of the necessary background knowledge before introducing the 

author’s contribution.  

Before it all begins, the author would again like to thank his family for their constant and 

unconditional support, without whom none of this would have been possible. The author is also 
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immensely grateful to his research guide Dr. Nibaran Das, whose kind words and judicious 

insight has always been an inspiration to him. 

 

Introduction 
 

 

The main objective of optical character recognition (OCR) applications is to automate the 

recognition of digitally scanned page of printed or handwritten texts. OCR applications have 

been one of the most successful applications of intelligent pattern recognition task since the 

1950’s. Due to its high quality performance for printed or handwritten characters, OCR systems 

have also become a major commercial success. This success of OCR applications to recognize 

printed texts however, is still to be translated to unconstrained handwritten texts. One of the 

most challenging facets in recognition of handwritten characters, no matter what language it 

belongs to, is to train the system in a way so that it can adjust for the largely varying 

handwriting style from one individual to another.  

Since the focus of research on optical character recognition shifted from printed text to 

handwritten character recognition, there has been a lot of activity in this field. However, until 

the last decade, most of the works seemed to focus on languages which mainly use Roman 

scripts. There has been surprisingly little work done for the recognition of unconstrained 

handwritten character recognition of Indian languages. Huge alphabet and complex character 

shapes make the job of recognizing handwritten Indian characters and numerals much more 

challenging. Although several important works[1][2][3] have emerged from this new found 

focus on Indian languages, the proposed approaches seem to focus on only one or two specific 

languages at a time. Although some of the researchers have tried to propose features which are 

generic in terms of being tailored to only a specific script, number of works focusing on this 
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approach is still relatively few. From feature selection to selection of the classifier models, the 

focus has mainly been on proposing script specific or language specific approaches.  

The dearth of a ubiquitous, script independent approach for the number of Indian languages is 

what motivated us to propose such a system. Instead of taking an explicit feature based 

approach and toiling to propose a one-size-fits-all feature of the hugely varying, complex 

Indian languages, we have explored a different approach in the present work. We hypothesize 

that non-explicit features can be extracted from a wide variety of Indic languages using a 

singular approach, which will lead us to their successful recognition. A multi-scale, multi-

column deep architecture has been proposed in the present work for this purpose. The deep 

neural network based non-explicit feature extraction method and the proposed multi-scale 

multi-column convolutional neural network (MMCNN) based architecture marks the 

contribution of the present work.  

The proposed Convolutional Neural Network based architecture has been tested for six publicly 

available benchmark datasets of isolated handwritten characters and numerals of Indian 

languages. It has been proved from the experimental results that the proposed approach 

provides state-of-the-art results for all of these datasets. Subsequently, the superiority of this 

singular, ubiquitous approach towards the recognition of handwritten characters of Indic 

languages has been statistically proved.  

 

 

 

 

 



 

16 
 

 

 

Chapter 1 

An evolution of OCR systems 
 

 

Handwriting is a skill which stylistically varies from person to person, even for a single 

individual from time to time depending on various factors. Handwritten texts consist of 

artificial markings on a surface and they attempt to communicate something in relation to a 

specific language[4]. These markings, representing characters of a particular language combine 

to form words and sentences pertaining to a language, according to the rules of that 

language[5]. Handwritten texts were first introduced to expand human memory and facilitate 

communication. Even in today’s world, a pen and paper outwits the need to use digital 

computers, PDAs, fax machines and printers in many cases. With every technology push, the 

role of handwriting and handwritten messages have become more well-defined and the niche 

of handwriting has become more popularized. The latest example of this is the introduction of 

digital pens to PDAs and tablets. As a thumb rule it seems that as the length of handwritten 

messages decrease, the number of people using handwriting increases[6].  

Several types of recognition, interpretation and identification tasks can be associated to 

handwritten texts. In this section, we provide definitions of some of these tasks associated with 

the analysis of handwritten texts. Handwriting Recognition[4] is the task of transforming a 

language represented in its spatial form i.e. the graphical markings to the symbols they 

represent. The symbolic representation for most of the languages are represented by 8-bit 

ASCII characters or 16-bit Unicode[7] representations. Handwriting Interpretation[4] is the 
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task of understanding the meaning of the symbol represented by the graphical markings. The 

process of handwritten address interpretation in automated postal sorting machines is an 

example of Handwriting Interpretation. Handwriting Identification[4] is the process of 

identifying writers from handwritten texts, provided that different writers have different 

handwriting styles. Handwriting Recognition and Handwriting Interpretation have 

applications in forensic analysis. It can be used to detect individual writers based on their 

individualistic writing styles. It can also be used as an aid for the blinds, automatic text entry 

from handwritten forms in library catalogue processing, ledgering, desktop publication, 

document processing, language processing, automatic postal document sorting etc.  

1.1. Handwriting Input 

Handwriting data can be converted to a digitized form by either scanning a paper with 

handwritten texts written on a paper or directly from a digital pen on an electronic display such 

as PDAs or digitizers etc. with a liquid crystal display. These approaches can be classified into 

two major categories: on-line and off-line handwriting recognition. In case of on-line 

handwriting recognition, in addition with the image of the text, the sequence of two-

dimensional points comprising the text is also stored in increasing order. The supplemental 

spatio-temporal information provided by the stroke sequences prove to be very helpful in 

recognizing the texts successfully. On the other hand, in case of off-line handwriting 

recognition, only digital images of the handwritten texts are taken as the input. Where the on-

line case deals with the spatio-temporal information of the handwritten texts, the off-line case 

handles only the spatio-luminance information available with the digitized image. The 

difference between the inputs of on-line and off-line handwritten texts is shown in Fig. 1.1. 

It should however be noted that the recognition rates reported for on-line handwritten texts are 

higher than their off-line counterpart.  
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Input for off-line handwritten recognition  Input for on-line handwritten recognition 

 

 
 

Fig. 1.1: A comparison between on-line and off-line handwritten texts 

1.2. The evolution of Optical Character Recognition (OCR) 

systems 

Optical Character Recognition (OCR) system is a process of automatic recognition of 

characters from an optically scanned or digitized page of texts. OCR is one of the most 

fascinating and challenging areas of pattern recognition. It can contribute immensely to the 

advancement of an automation process and can improve the interface between man and 

machine in many applications. The origin of OCR systems can be found in 1870, when Carey 

invented a retina scanner, an image transmission system based on the mosaic of 

photocells[2][8]. The next big breakthrough came in 1890, when Nipkow[2] invented the 

sequential scanner which proved to be very useful for modern television and reading machines. 

However, OCR systems were initially considered as an aid to the blind and successful attempts 

to this were made by Tyurin[2] in 1900.  Based on effectiveness, robustness and versatility the 

development of OCR systems can be broadly classified into four[2] major generations.  

The first generation OCR systems are characterized by the constrained character shapes it 

reads. One of the examples of such first generation OCR systems is IBM 1418, which was 
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developed only to read only a special font, IBM 407[9]. These OCR systems function solely 

based on template matching by utilizing positional relationships in the character shapes.    

The second generation systems are characterized by their ability to recognize a set of machine 

printed characters and handwritten characters. Functioning based on structural analysis 

method, these systems came into appearance from the middle of 1960s to early 1970s[9]. Some 

of the popular systems of this era were the famous IBM 1287 system[9] and the first ever 

automatic postal sorting machine developed by Toshiba.  

Third generation OCR systems can be characterized by their ability to recognize larger set of 

poor quality machine printed characters and larger set of handwritten characters. Marked from 

1965 to 1975, commercially successful OCR systems were one of the major contributions[10] 

of this era.   

The fourth generation OCR systems are capable to process complex documents containing 

texts along with graphical representations, tables, unconstrained handwritten texts, poor quality 

or noisy documents like fax, coloured documents etc. Several commercially successful large 

scale deployment of OCR systems are made possible during this era. About 60%[10] postal 

sorting of handwritten letters are made via OCR systems in the United States. Several 

successful OCR systems working as an aid to blinds have also come to surface during this 

period of time. One such example is the integrated OCR system, developed by Xerox- 

Kurzweil, which transforms printed of handwritten text written in English to composite speech 

in the same language. Successful commercial deployment of OCR systems has been possible 

for several different languages as well such as Arabic, German, Chinese, Roman, Japanese 

scripts[11][12][13][14][15]. 

 

1.2.1. A brief overview on the topography of OCR systems 

Traditionally pattern recognition tasks can be classified into two major categories: template 

based and feature based. Earlier attempts of OCR systems were mainly dependent on template 
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based techniques where character recognitions were done based on the degree of correlation 

between the character image and the template. However, modern OCR systems[1] also 

incorporate feature based approaches with traditional template matching techniques to produce 

better results.  

Feature based approaches can be classified into two[2] major categories: spatial domain feature 

based techniques and transform domain techniques. Whereas spatial domain 

features[16][17][3][18] are extracted directly from the raw pixel data of the digitized image, 

transform domain features[19][20][21][22] are extracted from the transformed pattern image. 

In case of transform domain features, digitized images are first transformed to another space 

using Cosine, Slant, Fourier, Wavelet etc. transformation techniques and subsequently features 

are extracted. After features are extracted, sophisticated classification models are utilized for 

recognition of printed or handwritten character images.  Researchers working on OCR systems 

have proposed a wide array of features for automatically recognizing printed or handwritten 

characters. While most of these features are generic, some[23][3] of them utilize script specific 

properties to improve the performance of the underlying classifier.   Syntactic or formal 

grammar based features[24][23], moment based features[25], graph-theoretic approaches[26], 

shadow based features[27][18], gradient based features[28][16] etc. are some of such 

examples. Contrary to the above mentioned genre of OCR systems, where features are 

handcrafted and need to be explicitly extracted from digitized pattern images, some researchers 

have proposed OCR systems where features do not have to be explicitly extracted. As raw 

pattern image or normalized images are fed into the system, it adjusts itself accordingly to 

minimize the misclassification error. Artificial neural network[12][29][30][31][32] based 

approaches and HMM or Markov-model based approaches[33][34][35] to automatically 

extract statistically significant features are examples of such non-explicit feature based[2] OCR 

systems. As described above, a topography of OCR systems is shown in Fig. 1.2. 
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1.3. OCR of Indian languages   

Despite of huge commercial success of modern era OCR systems, until recently the focus of 

OCR research has been mainly circling around languages based on Roman scripts. In the 

present work, we have focused on the development of handwritten character recognition of 

Indian languages. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.2: A schematic diagram of the topography of OCR systems 

1.3.1. Properties of Indian languages 

There are eighteen official languages in India. Among these Hindi and Bangla are the first and 

second[2] most popular language in India and fourth and fifth[2] most popular languages in the 

world. Although stylistically varied from each other, most of the Indian languages have 

originated from the Brahmi scripture[36]. Some of these scripts are used in more than one 

language. For example, the Devanagari script is used for Sanskrit, Hindi, Marathi, Nepali and 

Rajasthani languages. Similarly Bangla script is used for Bangla and Assamese languages. Fig. 

1.3 shows example of some of the official Indian languages.  
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The concept of upper and lower case characters is not present in Indian language alphabets. 

The writing direction for most of the languages are from left to right except Urdu and some 

other scripts belonging to the Perso-Arabic[2] group of scripts. Apart from the familiar vowels 

and consonants i.e. the basic characters, Indian language alphabets also have compound 

characters. Compound characters are generally comprised of two or more basic characters. 

Ten Rupees 
(a) 

दस रुपये 
(b) 

(c) 

દસ રૂપિયા 
(d) 

दहा रुपयाांची 
(e) 

பத்து ரூபாய் 
(f) 

పది రూపాయల 
(g) 

പത്ത് രൂപയാണ് 
(h) 

 

Fig. 1.3: (a) - (h) Respective representations of English, Hindi, Bangla, Gujarati, Marathi, Tamil, 

Telugu and Malayalam scriptures denoting the same word 

For example, in Bangla alphabet, there are 50 basic characters and 334 compound 

characters[16]. Shapes of these compound characters are usually more complex compared to 

their basic counterparts. Some samples of basic and compound characters of the Bangla 

alphabet is shown in Fig. 1.4.  

(a)
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(b) 

Fig. 1.4: Samples of Bangla (a) basic and (b) compound characters  

 

1.3.2. Related works on OCR of Indian languages 

Due to its huge popularity, most of the works focusing on developing of an OCR for Indian 

languages have worked on the recognition of handwritten characters or digits of Bangla and 

Hindi scripts. However, as the present work tries to encompass more than just two of the most 

popular Indian languages, a brief overview on related previous works focusing on a wide array 

of Indian languages is presented in this section. In the present work, we have covered isolated 

handwritten characters and numerals of Bangla, Hindi, Tamil and Telugu languages.   

As mentioned before, Hindi is written using Devnagari script. The works on OCR of Devnagari 

scripts started from around 1970s. The first significant contribution to this field was made by 

R M K Sinha[37]. A syntactic pattern analysis system was proposed and applied to Devnagari 

script in this work. Mahabala and Sinha[23] proposed a syntactic pattern analysis method 

which uses an embedded picture language to describe the primitive structural components of a 

character. Sethi et al.[38] proposed a Devnagari handwritten numeral recognition system using 

decision tree classifier. They also advocated using the presence or absence of certain primitive 

shapes or structures like horizontal line, vertical line, C curve, Slant curve etc. The OCR system 

proposed by Bajaj et al.[39] for the recognition of Devnagari numerals use two types of features 

in the recognition process. The first kind provides a coarse shape classification whereas the 

second type of features provide more intrinsic details of the character shapes. Recently, Kekre 

et al.[40] have proposed an OCR for Devnagari numerals recognition using LBG quantization 

with gradient masks which shows promising results. A concise overview on the development 

of OCR systems for recognition of Devnagari texts can be found in [41]. 
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Although works[42][43] on a comprehensive Bangla OCR system started from the early 

1990’s, significant performance on Bangla script has not been reported till the middle[2] of 

nineties. The first work on the complete Bangla OCR of printed texts is due to Chaudhuri et 

al.[1]. The method proposed in [1] takes a hybrid approach for recognition of Bangla 

characters. While Bangla Basic characters are recognized by a feature based decision tree 

classifier, Bangla Compound characters are classified using a template matching technique on 

a pre-computed cluster. Garain et al.[44] have proposed a scale and style invariant feature and 

run number based template matching technique for recognition of Bangla Compound 

characters. More recently, Das et al.[45] have put forth a Genetic Algorithm based approach to 

select the most informative set of local regions from the handwritten Bangla characters. 

Gradient, shadow and convex hull based features are extracted and the images are classified 

using a SVM based classifier. A two-pass approach for recognition of handwritten Bangla 

characters have been proposed by Das et al. in [3]. The first pass is used to coarsely cluster the 

characters and the subsequent second pass is used to assign class membership to the characters 

from each cluster. A cost effective OCR system for isolated handwritten Bangla characters has 

been proposed by Sarkhel et al[17]. The proposed method uses axiomatic fuzzy set theory for 

combining the pareto-optimal fronts achieved by NSGA-II and NSHA algorithms, therefore 

finding the most optimized configuration for the OCR, both performance wise and associated 

recognition cost wise. There has been significant improvement in developing an OCR for 

recognition of Bangla numerals as well. Khan et al.[46] have obtained promising results by 

proposing a feature based approach for handwritten isolated Bangla digit recognition using a 

Sparse Representation Classifier (SRC). Eight directional quad tree based features have been 

proposed by Roy et al.[28] which shows exciting results. Basu et al.[18] have proposed a 

feature-based hierarchical approach for segmentation and recognition of Bangla numerals from 

Bangla texts.       
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Development of an OCR for the recognition of printed or handwritten Tamil characters started 

in the 1970s. Siromoney et al.[47] proposed a encoded string dictionary for the representation 

of Tamil characters. The scheme employs row wise and column wise scanning of the feature 

matrix for the recognition of characters. Chandrasekaran et al.[48] took a similar approach of 

encoding characters to a binary array. The feature matrix is composed by scanning the array 

both row wise and column wise. Features depend on the nature and number of runs of ones in 

the array. Sutha et al.[49] proposed a Fourier descriptor based feature extraction technique after 

tracing the boundary of the character. The characters are classified using a feed forward multi-

layer perceptron. After thresholding, skeletonizing and line segmentation, a feature based 

approach is taken for character recognition. A SVM based classifier is used for the 

classification tasks. Chinnuswamy et al.[50] have proposed a graph-based approach from 

recognition of handwritten Tamil characters. Every character is transformed into a labelled 

graph which essentially represents the relationship between the primitive components 

comprising of the character shapes. Recognition tasks are carried out by performing topological 

matching on the test characters and calculating the degree of correlation. 

The first reported work on OCR of Telugu script is due to Rajasekaran et al.[51]. They proposed 

a two pass approach where the primitive shapes are recognized at the first stage. After the 

primitive shapes are recognized based on a knowledge based search and removed, rest of the 

pattern images are thresholded, skeletonized and the boundary is encoded by tracing points 

along. The encoded boundary shapes are classified using a decision tree classifier. Sukhaswami 

et al.[52] proposed a neural network based approach for printed Tamil character recognition. 

They proposed a multiple neural network with associative memory (MNNAM) for parallel 

processing of the train set. A two stage OCR system for the recognition of printed Telugu 

characters is proposed by Srinivas et al.[53]. After preprocessing, binarization and skew 

correction, a feature based approach is taken to group the test images into clusters during the 
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first stage while class membership is assigned to the pattern images in each cluster. Negi et 

al.[54] have proposed a composite, connected component and fringe distance based template 

matching approach for the recognition of printed Tamil characters. There has been significant 

number of works on the development of OCR for Tamil digits too. Singh et al.[55] have taken 

a feature based approach where they have extracted features such as the bounding box co-

ordinates, area of the bounding box, centroid, major and minor axis, equiv-distance etc. and 

used this feature set for the classification on handwritten numerals, using an MLP as the 

classifier. Rajashekararadhya et al.[56] have proposed a feature based approach where zone 

based distance metrics are computed for each character image and the classification is done 

using a feed forward neural network. Promising results have also been achieved by using eight 

directional gradient based features in [57].   

Based on our literature survey, template based approach (shown in Fig. 1.2) towards OCR is 

not only difficult to implement as the task of proposing generic character templates factoring 

in all possible deformations is extremely hard, performance of such systems is also not 

satisfactory which can be ultimately extended to commercial success[58][2]. That is why in the 

present work, we have explored the avenue of feature based approach towards OCR for the 

recognition of handwritten Indian characters and numerals. Before going into the schemes 

undertaken in our work, a brief overview on the approaches of feature based OCR taken by 

contemporary researchers is presented in Chapter 2. Self-adaptive, non-explicit feature 

extraction from pattern images is described in details in Chapter 3. 
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Chapter 2 

An overview of feature based OCR 

systems 
 

 

What makes the task of handwritten character recognition exceptionally hard is the stylistic 

variability of handwritten texts from person to person. Shape, size even orientation of 

handwritten characters may vary from one individual to another. Considering the complex 

shape of the characters and numerals of many Indian languages, if a multilingual OCR for 

recognition of Indian characters and numerals is to be designed, the challenge increases many 

folds[2][4]. As the system not only has to deal with the stylistic variability of handwritten 

characters, it also has to cope with the specificities of large variety of alphabets from multiple 

languages. Several different approaches have been taken by researchers in the pattern 

recognition community to address this problem. Thousands of different features[58] have been 

proposed for the development of feature based OCRs. These features are designed in such a 

way that they can be used to identify the invariant local patterns within the image which will 

in turn help to identify the image itself. The success of handwritten character recognition 

system depends on how well these features are designed i.e. to what extent they can extract and 

incorporate information about invariant local patterns from the images of isolated characters or 

numerals.  The following section contains a brief overview of various features used for the 

recognition of handwritten characters and/or numerals. 
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2.1. A brief overview on feature based approaches of 

handwritten character and numeral recognition  

Feature selection is a very important step in any pattern recognition task. Selecting the best 

feature-set for a pattern image often proves to be a major factor in identifying that image 

subsequently. Upon reviewing contemporary literature, we have discovered that there are 

hundreds of different feature extraction techniques in OCR research community. Some features 

are generic i.e. they can be used for any script along with any classifier whereas some of the 

features depend on the specificities of a particular script and/or can be used with only a 

particular classifier. Given the huge number of OCR related research works[58][59][2] being 

published every year, a comprehensive comparison of every method along with their 

corresponding performance evaluation is not within the scope of this document. Instead, a 

representative selection is made from the plethora of possible approaches to illustrate the 

different principles that can be used. A topography[58] of feature extraction methods for OCR 

related tasks is shown in Fig. 2.1.  

    

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.1: A topology of offline feature extraction techniques for handwritten characters and/or 

numerals 
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2.1.1. Gray-scale sub-image based feature extraction 

One of the most prominent sub-image based feature extraction techniques is template matching 

technique. In template matching, the character image itself is used as the feature vector. In 

recognition stage, a similarity measure between each candidate template 𝑇𝑖 where i = 1 to n 

and the character image 𝐼 is computed. The character is assigned the class label 𝑘, if the 

template 𝑇𝑘  has the highest similarity measure and if this similarity is above a pre-defined 

threshold. Else, the character remains unclassified. Generally distance metrics such as mean-

square distance (𝐷)[60] etc. are used as similarity metric for evaluating the quality of the feature 

vector in template matching techniques. Using character skeletons as templates, Bimbo et 

al.[61] have proposed a deformable template matching technique for recognition of numerals 

from low quality credit card slips. All of the approaches above are performed in a spatial 

domain[2]. Andrews et al.[62] have proposed a unitary transform approach where the feature 

vector is reduced in size significantly. They have proposed a unitary KL space transform where 

pixels are sorted based on variance and only the pixels with highest variance is used as feature 

vector. Other unitary transforms such as cosine transform, slant transform etc. can also be 

used[63] for space transformation and the compressed image can be used subsequently for 

classification purposes. The same technique can be applied in a transformed space using Haar 

or Hadamard transforms[63] also.  

The OCR system proposed by Calera[64] introduced a zoning technique for character 

recognition. In this approach, a n × m grid is superimposed on the character image and each 

cell of the grid is taken as a separate feature. As the feature vector comes together, a similarity 

or dissimilarity metric can be used to assign class labels to the pattern image. An example of 

static zoning grids superimposed on handwritten character images is shown in Fig. 2.2. 
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Fig 2.2: A demonstration of zoning techniques. (a) Input handwritten character image (b) CG based 

zoning gridlines (c) equal partitioning based zoning gridlines 

[Image Source: Sarkhel et al.[16]] 

Hu’s geometric moment invariants[65] have been extensively[66][67] used in different pattern 

recognition tasks. Rotation invariant Zernlike moments[68] have also been used for recognition 

of binary solid symbols[66][69]. Khotanzad et al.[69] have proposed using the amplitudes of 

Zernlike moments as features. These moment based features can be made scale and translation 

invariant also[66]. While the first-order regular moments can be used to find the image centre, 

the zeroth order central moment gives a size estimate of the pattern image. Examples of images 

derived from Zernlike moments is shown in Fig. 2.3. 

 

 

Fig. 2.3: Images derived from Zernike moments[58][68].  
Rows 1-2: Input image of the digit "5" and contributions from the Zernike moments of order 1 to 13. 

The images are equalized histograms for highlighting the details.  

Rows 3-4: Input image of digit "5" and images reconstructed from the Zernike moments of order up to 
1 to 13 respectively. 

[Image source: Trier et al. [58] ] 
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2.1.2. Solid symbol based feature extraction from binary images 

In binary template matching, several different similarity metrics, besides mean square distance 

(𝐷) has been proposed. Tubbs[70] has suggested using Jaccard distance or Yule distance for 

measuring the similarity between the character template and pattern image.  

The template matching procedure can also be repeated using vertical and horizontal projection 

histograms[71] of the character image. Using a fixed number of bins on each axis and 

normalizing them by the total number of print pixels in the character image, this feature can be 

made scale independent. As discussed before, projection histograms can be used in a similar 

fashion to match templates, using a similarity metric. Examples of vertical and horizontal 

projection histograms of the input image “5” is shown in Fig. 2.4. 

Das et al.[27] have proposed a shadow based feature set where the features are computed by 

computing lengths of the projections on each octant of the tight enclosing box of the character 

image. Performance of this feature set has been evaluated[29][18][72] on some databases of 

handwritten characters and it is very promising. Basu et al.[73] have proposed a powerful 

convex hull based feature set for recognition of multilingual, multi-oriented handwritten 

characters. A graphical representation of the proposed feature extraction technique is shown in 

Fig. 2.5. 

 

Fig. 2.4: Vertical and horizontal projection of the input image of handwritten digit ‘5’[58] 

[Image source: Trier et al. [58] ] 
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As binary images are special cases of gray-scale images discussed above, Hu’s geometric 

moment invariants[65] and Zernlike moments[68] can be used for binary images also. 

However, in the binary case the contrast invariants are not needed.  

 

  

(a) (b) 

Fig 2.5: Extraction of convex hull based features from handwritten characters (a) the features are 
extracted from left to right, based on dcp, along with lake features, (b) the coordinates of centre of 

gravity (rx , ry) of a hypothetical region created by joining the bay pixels up to the nearest character 

pixels along left to right direction dcp  

[Image Source: Basu et al.[73]] 

 

2.1.3. Contour based feature extraction 

As defined by Trier et al.[58], the closed outer contour curve of a character is “a closed 

piecewise linear curve that passes through the centres of all the pixels which are four-

connected to the outside background and no other pixels”. The pixels are visited in clockwise 

or counter-clockwise order and the edge pixel may be visited twice at locations where the object 

is only one-pixel wide. Each line segment comprising of the contour is a straight line between 

two eight-connected neighbouring pixels. If the contour curve is approximated by a parametric 

expression, coefficients of that expression can be used as features. 

Kimura et al.[74] have suggested using contour profiles for feature extraction from handwritten 

characters. The motivation behind using contour profiles is approximating each half of the 
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contour using the spatial variables x or y. Although Kimura et al.[74] have used outer vertical 

profiles, any one between vertical or horizontal profiles or outer or inner profiles may be used 

for subsequent feature extraction. Das et al.[27] have suggested using a quad-tree based 

hierarchical longest run based feature for this purpose. The longest run of black pixels are 

computed across four axes. Sarkhel et al.[17] have shown significantly improved result by 

applying zoning techniques with longest run based features on a dataset of handwritten 

characters. Fig. 2.6 shows an example of the longest run based features extracted from the 

handwritten characters. 

 

Fig. 2.6: An example of longest run based feature extracted from horizontal axis 

[Image source: Sarkhel et al.[16] ] 

Kimura et al.[74] have used zoning techniques on contour curves. For each zone, the contour 

curve between two neighbouring pixels has been clustered into four groups based on their 

orientations. A graphical overview of zoning techniques applied over contour curves is shown 

in Fig. 2.7. Takahashi[75] has also used slice zones for extracting orientation histograms. He 

has used both inner and outer contour profiles for feature extraction. The curvature value, 

contour tangent and the point's zonal position are extracted as feature values. 
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Fig. 2.7: Zoning of contour curves(a) 4 × 4 grid superimposed on character; (b) close-up of  the 

upper right corner zone; (c) histogram of orientations for this zone. 
[Image source: Trier et al. [58] ] 

 

Sekita et al.[76] have proposed detecting the high curvature points on a character image and 

approximate the curve between them using a spline curve approximation. Coordinates of both 

of the breakpoints and the parameters of the spline curve are used as features. Taxt et al.[77] 

have also proposed a smoothed spline curve approximation for outer contour of handwritten 

character images. The smoothed spline curve is divided into M equal parts. For each part, 

average curvature distance and mean distance of contour curve points from N equally spaced 

points are used as features. This feature is already rotation and translation invariant. If 

normalized[58], it can be size invariant also. 

 

Kuhl et al.[78] have proposed using Elliptic Fourier Curve to approximate the closed contour  

of handwritten character image. Coefficients of the curve can be used as features. After 

normalization[58] it can be made size invariant also. Lin et al.[79] have extended this work and 

derived features which are also rotation invariant.  
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Fig. 2.8: ‘5’ reconstructed by elliptic Fourier descriptors of orders up to 1, 2, .. 10; 15, 20, 30, 40, 50 
and 100, respectively. 

[Image source: Trier et al.[58] ] 

 
 

2.1.4. Vector based feature extraction 

Character skeletons can be obtained by thinning the raster representation of the character 

image. Once the character skeleton is obtained, a character graph can be formed by 

approximating the line segments as edges and junction points as nodes of the graph. The curved 

parts of the skeleton can be approximated as arcs. Wang et al.[80][81] have proposed a method 

to derive character graphs from gray scale images of characters. Each character image is 

conceived as a 3D surface, where the gray-level of each pixel is mapped to the z coordinate. 

Clearly, the value of z ranges from 0 to 255. Topographic analysis is performed on the character 

image to find ridges and saddles, which is in turn used to find the character graph with line 

segments, arcs and junction points. This method is used when even the best possible 

binarization method fails to preserve the shape details of the character.    

Deformable template matching for character skeletons has also been proposed by 

researchers[82][83][84]. Wakahara[83][84] proposed to introduce deformation to each 

template a number of small steps, called local affine transforms (LAT) for matching the 

candidate input pattern with the template.  

 

Discrete features can also be extracted from thinned character images. Researchers like Kundu 

et al.[85], Ramesh[86], Basu et al.[73] have proposed using features like the number of loops, 

the number of T-joints, the number of X-joints, the number of bend points, convex-hull based 

features, centroid based features, width-to-height ratio of the bounding box, presence of an 
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isolated dot, total number of endpoints and number of endpoints in each of the four directions, 

the number of semi-circles in each of these four directions, number of crossings with vertical 

and horizontal axes etc. Samples of a few such discrete features extracted from character 

skeletons is shown in Fig. 2.9. 

 

Fig. 2.9: Thinned letters "c" and "d". Vertical and horizontal axes are placed at the centre of gravity. 

"c" and "d" both have one semicircle in the West direction, but none in the other directions. "c" has 

one horizontal crossing and two vertical crossings. 
[Image source: Kundu et al.[85] ] 

 

 

Holbaek-Hanssen et al.[87] proposed a zoning technique where they divided the character 

skeleton into zones. The normalized length of line segments, presence or absence of junction 

points in each zone etc. are used as features. The final feature vector comprises of the vectors 

from each zone. Although these features are size invariant, they are not rotation invariant. As 

character graphs can be traversed a closed curve, Taxt et al.[77] have extended Elliptic Fourier 

Descriptors[78] for representing the character skeleton. They have found out that for character 

graphs with two line endings, no junctions and no loops, some of the descriptors will be zero, 

while for graphs with junctions or loops, all descriptors will be nonzero. Characteristics for 

size and rotation invariance have also been found.     

 

From the brief overview of the feature based approaches of handwritten character and/or 

numeral recognition, it is clear that there are a plethora of approaches to extract meaningful 

features from character images. Most of the times, the success of the OCR system depends on 
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these handcrafted features and the classifier model being employed. However, arriving at the 

most informative feature with least computational burden can be a challenging task. If the 

proposed OCR is tasked with the recognition of multilingual scripts, each with its own 

complexities and peculiarities, the job gets even harder. This was one of the motivations behind 

exploring the non-explicit feature based avenue of OCR research in our present work. An 

overview of similar approaches taken by contemporary OCR researchers is described in 

Chapter 3.  
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Chapter 3 

An Artificial Neural Network based 

approach towards OCR systems 
  

 

The performance of an OCR system depends on the power of the prediction model, working 

behind the scenes. Prowess of the prediction model however, depends not only on the classifier 

used but on how the pattern images are being described while training the model also. In feature 

based approaches (see Fig. 1.2), explicit features are used to describe pattern images. As 

discussed in Chapter 2, there are a plethora of ways to extract features from isolated images of 

handwritten characters and/or numerals. Deciding on the feature set ultimately depends on the 

particularities of the script and the experience of the researcher. Evidently, if the task at hand 

is to propose a universal OCR for recognizing handwritten characters and/or numerals of 

multilingual Indian scripts, the challenge of proposing a suitable feature set increases many 

folds. This motivated us to explore the avenue of non-explicit feature based approach (see Fig. 

1.2) in our present work. Non-explicit feature based approach includes a set of methods in 

which instead of deriving explicit features from the pattern images, raw image or pixel data is 

directly fed into the classifier which trains itself to minimize a squared error against a set of 

given image labels. The trained system can thus be used for classifying unknown patterns.  

One of the most popular approaches towards non-explicit feature based OCRs (see Fig. 1.2) is 

due to using Hidden Markov Models or Markov Models of first or second order. Researchers 

like Kundu et al.[85], Hull et al.[88], Britto et al.[33] etc. have proposed HMM or Markov 

model based approaches towards recognition of handwritten or printed texts. Statistically 

derived parameters play a vital role in this approach. However, Markov networks need a large 
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number of training samples for estimating the probabilistic parameters up to a reliable degree 

of certainty. Similar approaches have been taken by researchers like Bhowmik et al.[89], Al-

Muhtaseb et al.[90], Bhattacharya et al.[35], Parui et al.[35] etc. for recognition of handwritten 

Oriya, Arabic, Devnagari and Bangla characters and numerals respectively. Although 

promising, one of the main disadvantages of this approach is the long training time and huge 

number of training samples required for setting up the parameters of the model to a certain 

degree of confidence. 

Another popular example of non-explicit feature based approach is artificial neural networks. 

Several works[31][32][91][92] on artificial neural network based OCR system have been 

published in recent years. Some of the significant works using this approach was done by Lecun 

et al.[93][31], Cao et al.[94] and Takahashi et al.[75]. Artificial neural networks based 

approach for the recognition of handwritten and/or printed Indian characters and/or numerals 

have been demonstrated by researchers like Bhattacharya et al.[30], Dutta et al.[95], Ul-Hassan 

et al.[12] etc. Artificial neural networks can take as input explicit features[96][94] extracted 

from the input images or a scaled or subsampled input image[93] itself. In the first case, the 

neural network can be viewed as a pure classifier, constructing some complicated decision 

boundaries, whereas in the second case it can be viewed as a combined feature extractor and 

classifier.  

The objective of our present work is to propose a fast, universal OCR system for the recognition 

of handwritten, multi-lingual, complex Indian characters and numerals. Being motivated by the 

simplicity and elegance of multi-layer feed forward neural networks to both extract and classify 

unknown pattern images with noticeable superiority[93][31][97][98] over many of its 

contemporaries, requiring lesser amount of training samples and its ability to provide superior 

performance even on augmented datasets[31], we have decided to take an artificial neural 

network based approach in our experimental setup. A multi-layer convolutional neural network 
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based architecture is proposed in our present work for both extraction and classification of 

handwritten, multilingual, complex Indian characters and numerals. The motivation behind 

using a deep architecture is described in the following section. In the following section a brief 

overview on the workings of a multi-layer neural network is provided. Once the basic workings 

of a multi-layer perceptron is established, we move on to describing deeper networks and 

convolutional neural networks in general in the next chapter. 

3.1. A brief overview on Artificial Neural Networks 

The long course of evolution has provided human brain with several desirable properties[99] 

such as large-scale parallelism, adaptability, generalization ability, learning ability, inherent 

coherent information processing, ability to infer from contextual information, fault tolerance 

etc. The inability of centralized von-Neumann architecture[100] or even modern general 

purpose parallel computers to achieve these properties is what led to the development of 

Artificial Neural Networks (ANN). Inspired by biological neural networks, ANNs are 

essentially a network of parallel computing systems consisting of a large number of general or 

special purpose processors with dense interconnections. It attempts to use some organizational 

principles believed to be used in the human brain for reaching the superior performance it was 

set out to achieve.   

3.1.1. A brief timeline of research in Artificial Neural Networks 

The timeline of ANN research can be categorized into three broad periods. The first period of 

research activity which started in the 1940s was due to McCulloch and Pitts'[101] pioneering 

work. The second period can be marked by Rosenblatt's perceptron convergence theorem and 

the notable work by Minsky and Papert[102]. Discouraged by the findings of Minsky and 

Papert[102] regarding the limitation of a simple perceptron, a lull ensued in neural network 

research which lasted almost 20 years. Since the early 1980s, ANNs have received considerable 

renewed interest. The major developments behind this resurgence include Hopfield's energy 
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approach[103] and the introduction of back-propagation learning algorithm for multilayer 

perceptrons, proposed by Werbos[104] and popularized by Rumelhart et al.[105]. Since then 

ANNs have been extensively used for wide array of challenging tasks[99], such as 

classification, approximation, clustering, prediction, optimization, content retrieval etc.  

3.1.2. How does an ANN work? 

In general, ANNs try to minimize a cost function (e.g. least-squared error) by adjusting the 

connection weights over multiple iterations i.e. they try to learn the weights over multiple 

epochs. The learning algorithm can be supervised, unsupervised or hybrid, depending on the 

task at hand. A taxonomy of ANNs based on its architecture and the learning algorithm used is 

shown in Fig. 3.3.  

Although the first ever perceptron proposed by McCulloch and Pitts was single layer (shown 

in Fig. 3.1), as the complexity of the tasks increased, researchers felt the need of increasing the 

depth of these networks. Hence multi-layer neural networks came into the picture. 

 

Fig. 3.1: McCulloch-Pitts model of single layer perceptron 

[ Image Source: [106] ] 

Typically, a standard N-layer feed-forward network consists of an input layer, (N-1) hidden 

layers, and an output layer of units successively connected, either fully or locally, in a feed-

forward fashion with no connections between units in the same layer and no feedback 

connections between layers. The most popular class of multi-layer feed-forward networks is 
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multi-layer perceptrons in which each computational unit implements an activation function 

which typically is either a thresholding function or the sigmoid function. According to the 

universal approximation theory by Hornik et al.[107], multi-layer perceptrons can form 

arbitrarily complex decision boundaries and represent any boolean function. The development 

of the backpropagation[104][105] learning algorithm for a multi-layer perceptron has made 

the task of training these networks much easier.  

An example of a three-layer feed-forward neural network is shown in Fig. 3.2. Each unit in the 

first hidden layer helps form a hyperplane[99] in the input space. Hyperplanes can be used to 

approximate decision boundaries between pattern classes. Subsequently, each unit in the 

second hidden layer forms a hyperregion[99] from the outputs of the previous layer units. A 

decision region can be obtained by performing an AND operation on the hyperplanes obtained 

from the previous layer. Finally, the output layer combines the decision regions made by the 

units in the second hidden layer by performing logical OR operations and assigns the class 

labels to unknown pattern images. This whole process is completed by the predefined learning 

algorithm over multiple epochs until some termination criteria is met.  

 

Fig. 3.2: A three-layer feed-forward neural network 
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However, although the power of the ANN increase with increasing number of layers and 

number of neuron per layers, as the number of neurons increase and networks become deeper, 

some road blocks have come into appearance. A brief account of such difficulties in using deep 

learning models in is discussed in the following section. 

 

 

 

 

 

 

 

Fig. 3.3: A topology of Artificial Neural networks 

3.2. Problems in training a multi-layer neural network 

The concept of multilayer neural networks as well as the general idea of deep architectures 

have existed since the backpropagation algorithm[104] was proposed in the late 1980s. As the 

tasks got more complex, ANN researchers felt the necessity of increasing the depth of the 

artificial neural networks for better performance more than ever. However, as the number of 

layers and number of neurons per layer increased, several unforeseen problems came along. 

Some of the various impediments in using DNNs are discussed briefly in this section. 

3.2.1. The vanishing gradient problem 

For understanding the vanishing gradient problem, a little background on the backpropagation 

algorithm is needed. The idea of backpropagation is explained on a simplified network in 
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shown in Fig. 3.4 which introduces the concept of backpropagation between 2 layers. The same 

idea, however, can be generalized and extended for larger networks.  

Let’s suppose that the error measure used by the simplified network shown in Fig. 3.4 is least-

squared-error, which essentially is the sum of the square of the difference between the true 

label and the label assigned by the ANN for all pattern images. Therefore, after adjusting for 

the sign and denominator we have the error term,  

𝐸 = −
1

2
∑ (𝑦𝑗 − 𝑡𝑗)

2

𝑗∈𝑜𝑢𝑡𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟 

                                     (3.1) 

 

Fig. 3.4: A simplified Neural Network alike structure for illustrating backpropagation 

Let, 𝑦𝑖 and 𝑧𝑖 refer to the input and output of the node 𝑖 respectively. Then the error gradient is 

calculated as: 

𝜕𝐸

𝜕𝑦𝑖
= ∑

𝜕𝐸

𝜕𝑧𝑗

𝜕𝑧𝑗

𝜕𝑦𝑗
𝑗

                                                              (3.2) 

Since 𝑧𝑗  =  𝑤𝑇𝑦 and if we consider 𝑤𝑖𝑗  as the weight between unit 𝑖 and 𝑗, it can be written as 

the following: 
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𝜕𝐸

𝜕𝑦𝑖
= ∑ 𝑤𝑖𝑗

𝜕𝐸

𝜕𝑧𝑗
𝑗

                                                              (3.3) 

 

The equation 3.3 provides us with the error derivative with respect to the node 𝑖. This can be 

backpropagated to the preceding layer in a similar fashion. The weight term 𝑤𝑖𝑗  between 𝑖 and 

𝑗 is updated following the direction of the steepest gradient ascent, as follows: 

𝑤𝑖𝑗 = 𝑤𝑖𝑗 + 𝜂
𝜕𝐸

𝜕𝑤𝑖𝑗
                                                          (3.4) 

Where 
𝜕𝐸

𝜕𝑤𝑖𝑗
 denotes the amount of change needed to be done to the term 𝑤𝑖𝑗  and it can easily 

computed as following: 

𝜕𝐸

𝜕𝑤𝑖𝑗
=

𝜕𝑧𝑗

𝜕𝑤𝑖𝑗

𝜕𝐸

𝜕𝑧𝑗
= 𝑦𝑖

𝜕𝐸

𝜕𝑧𝑗
                                              (3.5) 

The equation 3.4 can therefore be rewritten as: 

𝑤𝑖𝑗 = 𝑤𝑖𝑗 + 𝜂 × 𝑦𝑖

𝜕𝐸

𝜕𝑧𝑗
                                                   (3.6) 

Now, as the basic workings of backpropagation algorithm is established, let us turn our focus 

to the main topic of this section i.e. the vanishing gradient problem.   

The vanishing gradient problem refers to the phenomenon of diminishing the error gradient as 

it propagates down the network when using logistic activation functions. This results in the 

updates to the weights of the lower layers of the neural network to be extremely small. 

Although this problem was initially discovered in recurrent neural networks[108], it has since 

been generalized to feed forward models as well.  

To demonstrate the vanishing gradient problem, a simplistic example as described in the 

following section. Let’s consider a simplified multilayer feed forward neural network (shown 
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in Fig. 3.5) structure with 4 hidden layers with 1 hidden unit each with a logistic activation 

function.  

 

Fig. 3.5: A simplified Multi-layer Feed-forward Neural Network structure for illustrating the 

Vanishing Gradient problem 
 

Using the least-squared-error term, the error E can be computed as following: 

𝐸 = −
1

2
∑ (𝑦𝑗 − 𝑡𝑗)

2

𝑗∈𝑜𝑢𝑡𝑝𝑢𝑡 𝑙𝑎𝑦𝑒𝑟 

 

Clearly, following the equation 3.2, 

𝜕𝐸

𝜕𝑧4
=

𝜕𝐸

𝜕𝑦4

𝜕𝑦4

𝜕𝑧4
= ((𝑦4 − 𝑡4)

𝜕𝑦4

𝜕𝑧4

)                                  (3.7) 

Propagating the error gradient back to layer 3, we get: 

𝜕𝐸

𝜕𝑧3
=

𝜕𝐸

𝜕𝑧4

𝜕𝑧4

𝜕𝑦3
= 𝑤34

𝜕𝐸

𝜕𝑧4
                                                 (3.8) 

Extending the error gradient to layer 1 as equation 3.3, we get the following: 

𝜕𝐸

𝜕𝑦1
= 𝑤12

𝜕𝑦1

𝜕𝑧1
𝑤23

𝜕𝑦2

𝜕𝑧2
𝑤34

𝜕𝑦3

𝜕𝑧3

𝜕𝑦4

𝜕𝑧4

𝜕𝐸

𝜕𝑦4
                    (3.9) 
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The logistic or sigmoid activation function was introduced due to the inability of threshold 

neurons, used in initial simple perceptrons[101] to perform complex tasks. During the 90s, it 

was alongside the hyperbolic tangent, one of the most popular activation functions for neural 

networks. A graphical representation of the logistic activation function is shown in Fig. 3.6. 

The function itself is defined as following: 

𝑓(𝑧) =
1

1 + 𝑒−𝑧
                                   (3.10) 

 

Fig. 3.6: A graphical representation of logical activation function (f(z)) 

The value of 
𝜕𝑦𝑖

𝜕𝑧𝑖
 in the equation 3.9 is basically the derivative of the activation function used 

in each node of the neural network and varies when we use different activation functions.  One 

of the most popular activation function during the 90’s was the logistic function (defined by 

equation 3.10). A graphical representation of the derivative (𝑓′(𝑥)) of the logistic function is 

given in Fig. 3.7. It is clear from Fig. 3.7 that the max value of derivative function 𝑓′(𝑥) is at 

0, where its value is 0.25. However, the standard technique for initializing weights in a neural 

network is to randomly initialize them with a mean of 0 and a standard deviation of 1. 

Therefore, generally |𝑤𝑖𝑗| < 1. Henceforth, the value of the terms of form |𝑤𝑖𝑗
𝜕𝑦𝑖

𝜕𝑧𝑖
| < 0.25 in 

equation 3.9. Evidently, the further back we go through the network, the smaller the error 
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gradient gets in value due to the product of many such terms. This results in the weight updates 

being smaller or closer to zero for the nodes near the input layer. This is known as the vanishing 

gradient problem. This problem can be alleviated by using activation functions like Rectified 

Linear Units in deeper neural networks. 

 

Fig. 3.7: Derivative (𝑓′(𝑧)) of the logistic activation function (𝑓(𝑧)) 

3.2.2. Lack of the necessary hardware support for running Deep Neural 

Networks 

Another notable bottleneck for deploying large neural network models is the lack of proper 

hardware support. In the 90s, it was impossible for large neural networks to be deployed due 

to the inability to provide the necessary computation power required.  

Traditional CPU based computing is inadequate for processing the huge amount of network 

parameters, performing bookkeeping jobs and performing huge number of computations 

required during training. Following the seminal work done by Alex Krizhevsky[109] using 

GPU based libraries for processing enormous amounts of data with vectorised versions of the 

learning algorithms has become quite norm. The parallel processing ability of GPU cores has 

made the learning process much faster than before.  

Another major component of a successful deep learning model is a large training dataset. 

Current deep learning architectures use datasets of the order of tens of gigabytes. Enough RAM 
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to hold this amount of data was not available until very recently. The quantum leap in the size 

of RAM memory has definitely helped modern computing systems in this regard.  

Hence, harnessing the computing power of deep neural networks has become possible only 

recently. 

3.3. Theoretical advantages of deep architectures 

In this section, a motivating argument for exploring the avenue of learning algorithms for deep 

architectures in our present work is presented. This part of the thesis describes the motivation 

behind using the deep architectures and learning algorithms described in the later sections. The 

main objective of this section is to establish that some functions cannot be efficiently 

represented by architectures that are too shallow. The results suggest that it would be 

worthwhile to explore learning algorithms for deep architectures, which might be able to 

represent some functions otherwise not efficiently representable. Where simpler and shallower 

architectures fail to efficiently represent and hence to learn a task of interest, we can hope for 

learning algorithms that could set the parameters of a deep architecture for this task. 

A function is said to be compact when it has few computational elements, i.e. few degrees of 

freedom that need to be tuned by learning over iterations. So for a fixed number of training 

examples, and short of other sources of knowledge injected in the learning algorithm, we would 

expect that compact representations of the target function i.e. the function we are trying to learn 

or approximate, would yield better generalization. More precisely, target functions which could 

have been compactly represented by a depth N architecture might require an exponential 

number of computational elements to be represented by a depth N − 1 architecture. Since the 

number of computational elements that can be afforded ultimately depends on the number of 

training examples available to tune them, the consequences are not just computational but also 
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statistically quite significant i.e. when using an insufficiently deep architecture for representing 

a target function, poor generalization may happen. 

Let us first consider the case of fixed-dimension inputs, where the computation performed by 

the machine can be represented by a directed acyclic graph. Each node of the computes a 

function on its inputs, each of which is the output of another node in the graph or one of the 

external inputs to the graph. For better understanding, the whole graph can be viewed as a 

circuit that computes a function applied to the external inputs. When the set of functions 

allowed for the computation nodes is limited to logic gates, such as { 𝐴𝑁𝐷, 𝑂𝑅, 𝑁𝑂𝑇 }, this 

becomes a boolean circuit, or a logic circuit. 

To formalize the notion of depth of architecture, the notion of a set of computational elements 

must be introduced first. One example is the set of computations that can be performed logic 

gates. Another is the set of computations that can be performed by an artificial neuron, based 

on the values of its connection weights. It is quite clear that a function can be expressed by the 

composition of computational elements from a given set. It is defined by a graph which 

formalizes this composition, with one node per computational element. Depth of the 

architecture refers to the depth of the graph, i.e. the length of the longest path from an input 

node to an output node. Now, when the set of computational elements is actually the set of 

computations an artificial neuron can perform, depth of the architecture corresponds to the 

number of layers in a neural network.  

Let us explore the notion of depth with examples of architectures of different depths. Consider 

the function 𝑓(𝑥) =  𝑥 ∗ 𝑠𝑖𝑛(𝑎 ∗ 𝑥 +  𝑏). It can be expressed as the composition of simple 

operations such as addition, subtraction, multiplication, and the 𝑠𝑖𝑛 operation, as illustrated in 

Figure 3.8. In the example, there would be a different node for the multiplication 𝑎 ∗ 𝑥 and for 

the final multiplication by 𝑥. Therefore, each node in the equivalent graph is associated with 
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an output value obtained by applying some function on the input values some of which maybe 

the outputs of other nodes of the graph themselves. For example, in a logic circuit each node 

can compute a Boolean function taken from a small set of Boolean functions. The graph as a 

whole has input nodes and output nodes and computes a function from input to output. The 

depth of an architecture is the maximum length of a path from any input of the graph to any 

output of the graph, i.e. 4 in the case of the function 𝑓(𝑥) in Fig. 3.8.  

  
(a) (b) 

 

Fig. 3.8: Examples of functions represented by a graph of computations, where each node is taken 

from some set of allowed computations. (a) The elements are {∗, +, −, 𝑠𝑖𝑛} ∪ 𝑅. The architecture 

computes 𝑥 ∗ 𝑠𝑖𝑛(𝑎 ∗ 𝑥 + 𝑏) and has depth 4. (b) The elements are artificial neurons 

computing 𝑓(𝑥)  =  𝑡𝑎𝑛ℎ(𝑏 + 𝑤′𝑥); each element in the set has a different-valued (𝑤, 𝑏) parameter 

pair. The architecture is a multi-layer neural network of depth 3. 
[Image source: Bengio[110]] 

Although depth depends on the choice of the set of allowed computations for each element, 

graphs associated with one set can often be converted to a graph associated with another using 

any transformation technique which multiplies depth. Theoretical results[111] suggest that it 

is not the absolute number of levels which matters, but the relative number of levels which are 

required to represent efficiently the target function. 

3.3.1. Formal argument: better computational complexity 

One of the most formal arguments about the power of deep architectures can be made by 

investigating the computational complexity of circuits. The basic conclusion that these results 
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suggest is that when a function can be compactly represented by a deep architecture, it might 

need a very large architecture to be represented by an insufficiently deep one. 

A two-layer circuit of logic gates can be used to represent any boolean function[111][112]. To 

understand the limitations of shallow architectures, we first need to consider that with two-

layer logical circuits, most boolean functions require an exponential (with respect to input size) 

number of logic gates[113] to be represented. More interestingly, there are functions 

computable with a polynomial-size logic gates circuit of depth N which will require an 

exponential number of logic gates when restricted to a depth of N − 1[114]. This can be proved 

based on earlier results[115] which show that d-bit parity circuits of depth 2 have exponential 

size. The d-bit parity function is defined as usual: 

(𝑏1, 𝑏2, … , 𝑏𝑑 ) ∈ {0,1}𝑑 → {1      𝑖𝑓 ∑ 𝑏𝑖

𝑑

𝑖=1

0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                             (3.11) 

Many of the results for boolean circuits can be generalized to architectures whose 

computational elements are linear threshold units (also known as artificial neurons[101]), 

which compute: 

𝑓(𝑥) = {
1   𝑖𝑓 𝑤𝑥 + 𝑏 ≥ 0
0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                         (3.12) 

with parameters w and b. The fan-in of a circuit is the maximum number of inputs of a 

particular element. Circuits are often organized in layers, like multi-layer neural networks, 

where elements in a layer only take their input from elements in the previous layers. The size 

of a circuit is the number of its computational elements (excluding input elements, which do 

not perform any computation). The following theorem proposed by Hastad et al.[114] 

regarding monotone weighted threshold circuits which are essentially multi-layer neural 
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networks with linear threshold units and positive weights should be mentioned when trying to 

represent a function compactly representable with a depth k circuit: 

Theorem 3.1. A monotone weighted threshold circuit of depth k − 1 computing a function 𝑓𝑘  ∈

 𝐹𝑘,𝑁 has size at least 2cN for some constant 𝑐 >  0 and 𝑁 >  𝑁0.  

The class of functions 𝐹𝑘,𝑁 contains functions with 𝑁2𝑘−2 inputs, defined by a depth k circuit 

that is a tree. At the root of the tree there are function values whereas at the leaves there are 

unnegated input variables. The ith level from the bottom consists of AND gates when i is even 

and OR gates when i is odd. The fan-in at the top and bottom level is N and at all other levels 

it is N2. 

The above results however, do not prove that other classes of functions like those which needs 

to be learnt for performing many intelligent tasks require deep architectures, nor that these 

demonstrated limitations apply to other types of circuits.  

However, these theoretical results beg the question whether the 1, 2 and 3 layer architectures 

or the so called shallow architectures which are typically found in most learning algorithms 

inadequate for the representation of more complicated functions required for more intelligent 

tasks. Relevant results such as the above theorem also suggest that there might be no 

universally right depth: each function might require a particular minimum depth given a set of 

computational elements. Therefore we should strive to develop learning algorithms that use the 

data to determine the depth of the final architecture.  
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Fig. 3.9: Example of a polynomial circuit illustrating the factorization enjoyed by a deep architecture  
[Image source: Bengio[110]] 

 

 

3.3.2. Informal arguments 

Depth of the architecture is generally connected to the notion of highly-varying functions. It 

can be argued that, deep architectures can compactly represent highly-varying functions which 

could have otherwise be represented by a very large, shallow architecture. A function is said to 

be highly-varying when a piecewise approximation of that function would require a large 

number of computational elements. A deep architecture is a composition of many operations, 

and it could in any case be represented by a possibly very large 2 layer architecture; whereas, 

the composition of computational units in a small but deep circuit can actually be seen as an 

efficient factorization of a large but shallow circuit. Reorganizing the way in which 

computational units are composed can have a drastic effect on the efficiency of representation 

size.  

For example, imagine a depth 2k representation of polynomials where odd layers implement 

products and even layers implement sums. This architecture can be seen as a particularly 

efficient factorization, which when expanded into a depth 2 architecture such as a sum of 

products, might require a huge number of terms in the sum: consider a level 1 product (like 

𝑥2𝑥3 in Fig. 3.9) from the depth 2k architecture. It could occur many times as a factor in many 

terms of the depth 2 architecture. It can be seen in this example that deep architectures can be 
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advantageous if some computations can be shared, in that case, the overall expression to be 

represented can be factored out, i.e., represented more compactly with a deep architecture. 

To conclude, a number of computational complexity results strongly suggest that functions that 

can be compactly represented with a depth k architecture could require a very large number of 

elements in order to be represented by a shallower architecture. Since each element of the 

architecture might have to be selected, i.e., learned, using examples, these results suggest that 

depth of architecture can be very important from the point of view of statistical efficiency.  

3.4. An overview of the development of Deep Learning based OCR 

systems 

The explosive interest in Deep Learning is new but the foundations of the research dates back 

decades. The inspiration for deep learning or even deep architectures is drawn from the human 

brain itself which presumably works through multiple layers of abstraction. Human mind takes 

a hierarchical approach towards information processing. Realization of a similar idea in the 

area of machine learning has demonstrated a high degree of promise for researchers to achieve 

human like performance in important problems such as handwritten character recognition, 

speech recognition, objection recognition, natural image understanding and so on. 

The first steps in realizing the importance of deep architectures was taken by Hubel et 

al.[116][117] when they tried to model the visual cortex of a cat. After discovering the presence 

of simple and complex cells, and that these cells were sensitive to certain areas of the visual 

field, they proposed an idea that a series of abstractions occur in a hierarchy to give rise to the 

idea of visual perception.  

Within the next decade or so, the basic structure of the neural network was formed slowly. 

Although the findings by Minsky et al.[102] on the limitations of a single perceptron 

contributed to the slow growth to some extent, by the 1980s important contributions in neural 
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networks began to emerge. The first computational models exploiting the local connectivities 

between neurons and on hierarchically organized transformations of the image was 

Fukushima’s Neocognitron[118] as he recognized that when neurons with the same parameters 

are applied on patches of the previous layer at different locations, a form of translational 

invariance is obtained, coming very close to human like visual perception.  

It was a deep architecture which shared many characteristics with the Convolutional Neural 

Networks proposed later put forth by Lecun et al.[93]. The idea of weight sharing was first 

introduced by the Neocognitron model. It was used for several applications including 

handwritten text recognition to prove its effectiveness. Another major contribution to training 

multilayer neural networks around this time was the formal introduction of the 

backpropagation algorithm[104][105] which although saw a temporary reduction in popularity 

during the 2000s, it is till this day is an integral part of training deep neural network systems. 

The first concepts of Convolutional Neural Network was formally introduced in 1989 when 

Lecun et al. applied[93] embedded the backpropagation algorithm[104] with the Neocognitron 

model. The daunting success achieved by this model led to numerous successful applications 

of the CNN model, from areas like handwritten character recognition[93], object detection in 

natural scenes[109] to image, speech recognition and time series modelling[119].  

The idea of Long Short Term Memory (LSTM) Recurrent Neural Networks were introduced in 

1997 by Hochreiter et al.[120] which were effective in dealing with many problems that 

traditional RNNs could not deal with as well as leading to introduction of Deep RNNs[121] in 

later decades. Researchers like Ray et al.[122], Ul-Hassan et al.[12] later adopted this idea and 

proposed a Bi-directional LSTM network for offline handwritten text recognition successfully. 

In the 2000s, the major innovation in the area of deep learning research were the introduction 

of greedy unsupervised layerwise training[123] of deep neural networks and stacked denoising 
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autoencoders[124][125]. Autoencoder based unsupervised approach towards handwritten 

character and digit recognition has been taken by researchers like Hinton et al.[126], Schwenk 

et al.[127][128]. More recently Pal et al.[129][130], Wang et al.[131] etc. have used a denoising 

stacked autoencoder for recognizing handwritten Bangla characters, digits and Chinese 

handwritten legal texts respectively.  

Reinvigorated by new findings, enriched by overzealous researchers, propelled by the 

advantages of GPU based vectorized libraries, the area of deep learning has started to see some 

real progress in the recent years, flooding with publications of innovative architectures, training 

methods and applications of the deep architectures.  
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Chapter 4 

An Overview of Convolutional Neural 

Networks 
 

 

Deep supervised neural networks are generally considered to be too difficult to train before 

the use of unsupervised pre-training. There is, however, one notable exception: convolutional 

neural networks or convolutional nets in short. Convolutional nets are inspired by the structure 

of the visual cortex, and in particular by the models of it proposed by Hubel and 

Wiesel[116][117]. They discovered that there are cells in the visual cortex which are sensitive 

to various small sub regions of the visual field. These sub regions which form a tiled 

arrangement encompassing the entire visual field, can be thought as local filters exploiting the 

spatially local correlation in an image.  

The first computational models relying on these local connectivities between neurons and 

hierarchically organized transformations of the image are found in Fukushima’s 

Neocognitron[118]. He realized that a form of translational invariance is obtained when 

neurons with the same parameters are applied on patches of the previous layer at different 

locations. Later, following up on this idea, LeCun designed and trained convolutional networks 

using the error gradient, obtaining state-of-the-art performance[132][93] on several pattern 

recognition tasks. Modern understanding of the physiology of the visual system[133] has been 

found to be consistent with the hierarchical information processing style found in convolutional 

networks which helps explain why even to this day, pattern recognition systems based on 

convolutional neural networks are among the best performing systems.  
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The convolution net, based on which the seminal handwritten character recognition 

system[132] was proposed, has served as a machine learning benchmark for many years. 

LeCun’s convolutional neural networks are organized in layers of two types: convolutional 

layers and subsampling layers. Each layer has a topographic structure, i.e., each neuron is 

associated with a fixed two-dimensional position that corresponds to a location in the input 

image, along with a receptive field which is the region of the input image that influences the 

response of the neuron. At each location of each layer, there are a number of different neurons, 

each with its set of input weights, associated with neurons in a rectangular patch in the previous 

layer. The same set of weights, but a different input rectangular patch, are associated with 

neurons at different locations. These networks can be viewed as a combined feature extractor 

and classifier. The graphical abstract of LeNet 5, a convolutional net proposed by Lecun et 

al.[132] is shown in Fig. 4.1. 

 

Fig. 4.1: Graphical abstract of LeNet 5 
[ Image source: Lecun et al.[132] ] 

As discussed earlier, Convolutional Neural Networks take a hierarchical approach towards 

feature extraction from a pattern image. The local kernels convolve on the pattern image 

extracting lower level features, whereas the subsampling layer performs an aggregation 

operation on these features and gives it a more compact form. A hierarchy of abstraction is thus 

formed which comes very close to visual perception of human brain. In the following section, 
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an overview of the architecture of Convolutional Neural Network and some of its basic 

components are presented. 

4.1. Architecture overview 

As discussed in the previous chapter, Artificial Neural Networks (ANN) receive a single input 

vector and transform it through a series of hidden layers. Each hidden layer is made up of a set 

of neurons, where each neuron is fully connected to all of the neurons in the previous layer. 

The neurons in a single layer are completely independent and do not share any connections 

between each other. The last fully-connected layer is the output layer. It assigns class prediction 

scores in classification tasks. 

Despite of its popularity, the problem with classical ANN is that they don’t scale well to full 

images. For example, in the CMATERdb 3.1.1[134][135] dataset, images are only of size 32 ×

32 × 3 i.e. height of 32 pixels, width of 32 pixels and 3 colour channels. Hence, a single fully-

connected neuron in a first hidden layer of a classical ANN, operating on this dataset would 

have to maintain and update a massive 32*32*3 = 3072 weights. This amount still seems 

manageable, but clearly this fully-connected structure does not scale to larger images. For 

example, an image of more respectable resolution, e.g. 100 × 100 × 3, would lead to neurons 

that have 100*100*3 = 30,000 weights. Moreover, the architecture almost certainly will have 

several such neurons, so the number of parameters for the whole network would add up quickly. 

Clearly, this full connectivity is wasteful and the huge number of parameters would quickly 

lead to overfitting. 

Convolutional Neural Networks (CNN) take advantage of the fact that the input consists of 

images and they constrain the architecture more intelligently. In particular, unlike a regular 

ANN, the layers of a Convolutional Net have neurons arranged in 3 dimensions, i.e. width, 

height and depth. It should be noted that the word depth here refers to the third dimension of 
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an activation volume, not to the depth of a full Neural Network, which essentially refers to the 

number of layers in a network. For example, the input images in CMATERdb 3.1.1[134][135] 

are an input volume of activations, and the volume has dimensions 32 × 32 × 3 i.e. width, 

height and depth respectively. In case of Convolutional Nets, the neurons in a layer will only 

be connected to a small subregion of the layer before it, as opposed to all of the neurons in a 

fully-connected manner. Moreover, the final output layer for this dataset would have 

dimensions of 1 × 1 × 10, as by the end of the network architecture full image would be 

reduced to a single vector of prediction scores, one score for each class 0 to 9, arranged along 

the depth dimension. The conceptual difference between a classical ANN and a CNN is shown 

in a graphical representation in Fig. 4.2. 

  
(a) (b) 

Fig. 4.2: (a) A classical 3-layer ANN. (b) Neurons of a CNN arranged in three dimensions (width, 

height and depth), as visualized in one of the layers; the red input layer holds the image, so its 

dimensions are equal to the dimensions of the image, and the depth is 3 which signifies the red, green 

and blue colour channels 
[ Image source: Karpathy[136] ] 

A brief discussion on each layer of a typical CNN architecture is presented in the following 

section. 

4.2. Convolution layer 

The convolution layer or CONV layer is the core building block of a CNN architecture that 

does most of the computational heavy lifting. 

4.2.1. Overview and intuition 

 In this section, an overview of the CONV layer is introduced, without the complicated neuron 

analogies. Its parameters consist of a set of learnable filters. Each filter is spatially small, but 
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extends through the full depth of the input volume. For example, a typical filter on a first layer 

of a CNN, tasked with the classification of the CMATERdb 3.1.1[134][135] of Cifar-10 

images, might have the dimension of 5 × 5 × 3 i.e. 5 pixels width and height, and as images 

have 3 colour channels, depth equals to 3). During the forward pass, each filter slides or 

convolves across the width and height of the input volume and compute dot products between 

the entries of the filter and the input at that position. As the filter slides over the width and 

height of the input volume, a 2-dimensional activation map that gives the responses of that 

filter at every spatial position, will be produced. Intuitively, the network will learn filters that 

activate when they see some type of visual feature such as an edge of some orientation or a 

blotch of some colour on the first layer, or eventually entire C-shape, X-junction, T-junction 

like patterns on higher layers of the network. Now, we will have an entire set of filters in each 

CONV layer, and each of them will produce a separate 2-dimensional activation map. These 

activation maps are stacked along the depth dimension and the output volume at the end of the 

CONV layer is produced. 

4.2.2. A neurological analogy  

Looking at the function of CONV layer from a neurological perspective, every entry in the 

output volume can also be interpreted as an output of a neuron which deals with only a small 

region in the input and shares parameters with all neurons to the left and right spatially, since 

these numbers all result from applying the same filter.  

4.2.3. Local connectivity 

As discussed above, when dealing with high-dimensional inputs such as images, it is 

impractical to densely connect each neuron to all other neurons in the previous volume. Instead, 

in CONV layer each neuron is connected to only a local region of the input volume. The spatial 

extent of this connectivity is a hyperparameter called the receptive field of the neuron which is 

essentially equivalent to the filter size. The extent of the connectivity along the depth axis is 
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always equal to the depth of the input volume. It is important to emphasize that this asymmetry 

in how the spatial dimensions i.e. height and width and the depth dimension are treated: the 

connections are local in space (along width and height), but always full along the entire depth 

of the input volume. 

For example, suppose that the input volume has size [32 × 32 × 3], (e.g. a CIFAR-10 image 

or a CMATERdb 3.1.1 image). If the receptive field i.e. the filter size is 5 × 5, then each neuron 

in the CONV layer will have weights to a [5 × 5 × 3] region in the input volume, which comes 

to a total of 5*5*3 = 75 weights (and +1 bias parameter). It should be noted that the extent of 

the connectivity along the depth axis should be 3, since this is the depth of the input volume. 

A graphical representation of CONV layer neurons is presented in Fig. 4.3. 

  
(a) (b) 

Fig. 4.3: (a) An example input volume in red (e.g. an 32 × 32 × 3 image), and an example volume of 
neurons in the first CONV layer in blue. (b) The neurons are same as classical ANNs but their 

connectivity is now restricted to be local spatially. 
[ Image source: Karpathy[136] ] 

 

 

4.2.4. Spatial arrangement of neurons 

In this section, the spatial arrangement of neurons in the CONV layer is discussed. Three 

hyperparameters control the size of the output volume: depth, stride and zero-padding. We 

discuss about these hyperparameters in the following section. 

The depth of the output volume is a hyperparameter which corresponds to the number of filters 

that would be used for a particular task, each learning to look for something different in the 

input. For example, if the first Convolutional Layer takes as input the raw image, then different 
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neurons along the depth dimension may activate in presence of various oriented edged, or blobs 

of colour. A set of neurons that are all looking at the same region of the input are generally 

referred to as a depth column or fibre. Second, the hyperparameter stride signifies the distance 

we slide the filter once an output volume is produced. If the stride is set to S then the filters are 

moved S pixels at a time. Larger stride values produce smaller output volumes spatially. 

Sometimes it is convenient to pad the input volume with zeros around the border. The size of 

this zero-padding is a hyperparameter. The nice feature of zero padding is that it will allow us 

to control the spatial size of the output volumes.  

We can compute the spatial size (O) of the output volume as a function of the input volume 

size (I), the receptive field size of the Convolution Layer neurons (F), the stride with which 

they are applied (S), and the amount of zero padding used (Z) on the border. The formula for 

calculating how many neurons fit in the output volume is given by the following equation: 

𝑂 =
𝐼 − 𝐹 + 2𝑍

𝑆
+ 1                             (4.1) 

For example, for an 7 × 7 input and a 3 × 3 filter with stride 1 and pad 0 we would get an 5 ×

5 output, whereas with stride 2 we would get an 3 × 3 output.  

4.2.5. Parameter sharing 

One of advantages of CNN models compared to classical ANNs is the parameter sharing 

scheme. Inspired by the structure of visual cortex, parameter sharing scheme is used in 

Convolutional Layers to control the number of parameters. For example, the CNN model 

proposed by Krizhevsky et al.[109], also known as AlexNet, which won the ImageNet 2012 

challenge, used 55*55*96 = 290,400 neurons in the first CONV layer, each of which has 

11*11*3 = 363 weights and 1 bias parameter. Together, this adds up to 290400 * 364 = 

105,705,600 parameters on the first layer of the Convolutional Net alone. Clearly, this number 

is very high. 
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Following the parameter sharing scheme, however, the number of parameters can be drastically 

reduced by making one reasonable assumption: if one feature is useful to compute at some 

spatial position (𝑥, 𝑦), then it should also be useful to compute at a different position (𝑥2, 𝑦2). 

In other words, denoting a single 2-dimensional slice of depth as a depth slice (e.g. a volume 

of size [55 × 55 × 96] has 96 depth slices, each of size [55 × 55]), we are going to constrain 

the neurons in each depth slice to use the same weights and bias. With this parameter sharing 

scheme, the first CONV layer in our example would now have only 96 unique set of weights, 

one for each depth slice, for a total of 96*11*11*3 = 34,848 unique weights, or 34,944 

parameters (adding 96 bias parameters). Consequently, all 55*55 neurons in each depth slice 

will now be using the same parameters. In practice, during backpropagation every neuron in 

the volume computes its weight gradient, but these gradients are added up across each depth 

slice and only a single set of weights per slice is updated at the end. 

If all neurons in a single depth slice use the same weight vector, then the forward pass of the 

CONV layer in each depth slice can essentially be computed as a convolution of the neuron’s 

weights with the input volume (hence it gets its name). This is why it is common to refer to the 

sets of weights as a filter or a kernel which convolves with the input. 

 

Fig. 4.4: Graphical representation of all 96 filters, each of dimension [11 × 11 × 3], shared by 

55*55 neurons of each depth slice in AlexNet 

[Image source: Krizhevsky et al.[109]] 
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4.3. Pooling layer 

A Pooling layer or subsampling layer performs an aggregation operation (typically max or 

average operation) on the values of neurons over a small region (also called pooling window) 

in a feature map. Pooling can also be overlapping in nature. It usually introduces an amount of 

local translational invariance since an activation is propagated forward ignoring minor 

positional variances, if it falls within the pooling window.  

It is common to periodically insert a Pooling layer in-between successive CONV layers in a 

CNN architecture. It progressively reduces the spatial size of the vector representation and also 

the amount of parameters and computation in the network, which in turn helps avoid 

overfitting. Pooling also reduces computational complexity and allows for CONV layers in 

feature discovery of higher abstraction over lower granularity.  

The Pooling layer operates independently on every depth slice of the input and resizes it 

spatially, using an aggregation operation. The most common form is a pooling layer with max 

operation, having filters or pooling windows of size 2 × 2 applied with a stride of 2. It 

essentially downsamples every depth slice in the input by 2 along both dimensions of spatial 

extent i.e. width and height, therefore discarding 75% of the activations. A graphical 

demonstration of a max pooling operation over a depth slice is shown in Fig. 4.5. 

  
(a) (b) 

Fig. 4.5: Graphical demonstration of max pooling operation with a 2× 2 pooling window and pool 

stride of 2 in AlexNet 
[Image source: Karpathy[136] ] 
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4.4. Fully connected layer 

Neurons in a fully connected layer have full connections to all activations in the previous layer, 

as it normally can be seen in regular ANNs. Hence their activations can be computed in a 

traditional way i.e. a matrix multiplication followed by a bias offset.  

4.5. Rectified linear unit  

Rectified Linear Units[137] (RELU) are used as activation functions and generally used for 

enhancing the most interesting features in each CONV layer activation map. Each RELU unit 

is essentially a hidden node with activation function described as following:  

𝑓(𝑥)  =  𝑚𝑎𝑥(0, 𝑥 + 𝑁(0, 𝜎(𝑥)))                                                     (4.2) 

Where 𝑁(0, 𝜎(𝑥)) denotes a Gaussian noise with a mean equal to 0 and variance of 𝜎(𝑥). 

RELU layers ensure element-wise non-linearity, thresholding at zero. Rectified non-linearity 

has also been shown to converge faster[109] than non-saturating non-linearities such as 

hyperbolic tangent.  

One of the major contributions of the Rectified Linear Unit is that it does not suffer from the 

vanishing gradient problem (discussed in Chapter 2). The reason for this is obvious from the 

derivative of the Rectified activation function as the value of its derivative does not gradually 

decrease, propagating towards higher layers. 

4.6. Minibatch gradient descent based learning 

In terms of training a Multilayer Neural Network with backprogagation learning algorithm, 

stochastic or online learning refers to updating the connection weights using a random example 

at every iteration of learning. Another approach is to update the weight on an average of the 

error after running through the entire training set. Although there are advantages to stochastic 

learning as it is faster compared to batch learning, but stochastic learning algorithms converge 

slowly or get stuck in local minima due to weight fluctuations caused by noisy samples. On the 
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other hand, batch learning usually converges to a global minima but is obviously slower since 

the entire training set is required before updating the weights which makes vectorization even 

harder. 

Minibatch gradient descent based learning can be thought to be a compromise between 

stochastic learning and batch learning as following this scheme, weights are updated more 

frequently than batch learning. It has a better representation of the error gradient since it uses 

an average error calculation, based on more than one sample, unlike stochastic gradient 

descent. It can typically average out noise while being vectorizable at the same time. The 

vectorizability of this learning method has made it hugely popular among researchers for its 

superior performance over large datasets.  

A brief overview of Convolutional Neural Network, its basic components and an understanding 

of how it works has been presented in this chapter. As all the required knowledge necessary 

for understanding the motivation and significance of the present work has been laid out in the 

previous chapters, motivations and significance of our present work can now be described. An 

overview of the present work and the methodology adopted is discussed in the next chapter. 
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Chapter 5 

Present work 
 

 

The main objectives of the present work is two-fold: (a) propose a fast feature extraction 

technique which can be ubiquitously applied for multilingual and complex Indian scripts and 

(b) prove the superiority of the proposed method over its contemporaries. As mentioned earlier 

in Chapter 3, Neural Networks can be used as both feature extractor and classifier. Researches 

like Das et al.[138], Basu et al.[29] etc. have used multi-layer perceptrons for classifying 

pattern images, represented by explicitly extracted discrete feature vectors. On the other hand, 

researchers like LeCun et al.[93][132], Ciresan et al.[98] etc. have used deep neural network 

architectures as both feature extractor and classifier. From our discussion in Chapter 2, it is 

clear that identifying the right features for the representation of handwritten characters and/or 

numerals pertaining to a specific language is a challenging task. Clearly, if we were to propose 

an efficient OCR system which works with handwritten characters and/or numerals sprawling 

across multiple scripts, the challenge increases many folds. The system proposed in our present 

work has to overcome all of these difficulties and complications. 

Inspired by the apparent ease[58][85][31] evident in non-explicit feature based approaches and 

the overwhelming success[132][109] of  deep neural networks in wide array of applications, a 

similar approach towards recognition of multilingual handwritten characters and/or numerals 

is taken in our present work. A novel multi-scale deep quad tree based feature extraction 

technique is proposed in our present work. The proposed method has been tested on 6 publicly 

available benchmark datasets of isolated handwritten characters and numerals. The system has 
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been able to achieve state of the art performance in all of them. The proposed deep architecture 

and the subsequent feature extraction technique mark the contributions of this work.  

The proposed CNN based architecture and the feature extraction schemes proposed under our 

current experimental setup is described in the following sections. 

5.1. Datasets used for the experiments 

A set of publicly available benchmark datasets of isolated handwritten characters and numerals 

is used for experimental purposes in our current experimental setup. As discussed earlier, one 

of the objectives of the present work is to propose a character recognition system which sprawls 

across a number of Indian languages instead of focusing too much on a specific script. Hence, 

datasets of isolated, handwritten characters and numerals, belonging to several different Indian 

languages are chosen in our experimental setup. Details of each dataset is given in Table 5.1 

below. More details regarding the number of writers, profile of the writers, data collection and 

processing methodologies etc. can be found in the references cited in the right most column of 

the table.  

Index 
Name of the 

dataset 
Database type Language 

Number of 

training 

samples 

Number of 

test samples 
Reference 

D1 CMATERdb 3.1.3 
Bangla Compound 

character  
Bangla 34229 8468 [139] 

D2 CMATERdb 3.1.2 
Bangla Basic 

character  
Bangla 12000 3000 [134] 

D3 
HPL Offline 
Tamil ISO 

Character DB 

Tamil character Tamil 70000 12000 [140] 

D4 CMATERdb 3.1.1 Bangla digit Bangla 4000 2000 [139] 

D5 CMATERdb 3.2.1 Hindi digit Hindi 2000 1000 [141] 

D6 CMATERdb 3.4.1 Telugu digit Telugu 4000 2000 [141] 

 

Table 5.1: Databases used in current experimental setup 
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5.2. Preprocessing steps 

The images of each dataset are passed through a number of preprocessing steps. Each image of 

the isolated handwritten character or numeral is binarized using Otsu’s method[63], blurred 

using a median filter[63], smoothed using a Gaussian distribution[63], resized to 64 × 64 

pixels and centred by the tightest bounding box. A flowchart representing the sequence of these 

pre-processing steps is shown Fig. 5.1.  

As discussed earlier (see Chapter 4), there are several schemes adopted by CNN architecture, 

which help reduce the number of parameters in a CNN model. For a kernel of spatial 

dimension 𝑤 × ℎ, convolving on a RGB image, the number of parameters shared by the 

neurons in each depth slice is equal to 𝑤 ∗ ℎ ∗ 3. Although already significantly reduced from 

the number of parameters in a classical ANN model, it still may lead to overfitting. Binarizing 

the images at the start during the pre-processing steps help reduce the number of parameters 

shared by neurons by a significant 66% which in turn helps increase the convergence speed of 

the network. Binarizing the images also help subsequent processing of the images. 

 

Fig. 5.1: A flowchart of pre-processing steps taken in our current experimental setup 
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Upon closer inspection of some of the datasets used in our experiment, it was found that some 

of the images in the dataset contained salt and pepper noise, which was adversely affecting the 

recognition performance of the prediction model. Hence, median filter based blurring was 

applied to the images to reduce the amount of noise from the isolated character and/or numeral 

images. Subsequently, smoothing was applied to the images to address some of the broken 

characters present in the datasets. A tight bounding box was taken and the images were centre-

cropped to help improve[59][142] the recognition performance of the classifier models in 

subsequent steps. Finally, the images are scaled to 64 × 64 pixels to allow for various elastic 

deformations during the training process. 

5.3. Overview of the proposed deep architecture 

As discussed earlier, we have taken a non-explicit feature based approach towards handwritten 

character recognition in our present work. One of the greatest challenges in feature selection 

for handwritten character recognition task is that the feature should be expressive enough to 

detect invariant local properties from highly varying handwritten characters, authored by 

different writers. Evidently, if the task at hand is to propose such a feature which is also script 

independent, feature selection becomes more challenging than ever. Hence, a multi-scale multi-

column convolutional neural network (MMCNN) based architecture is proposed in the present 

work for feature extraction from raw input images. Once the weights are learnt and the network 

converges, connection weights between the last fully connected (FC) layer and the softmax 

layer for each column of the network architecture can be considered[58] as implicit features. 

A graphical abstract of the deep architecture proposed in the present work is shown in Fig. 5.2. 

Inspired by the microcolumns of neurons in the cerebral cortex area of human brain and 

encouraged by the superior performance of multi-column deep neural network (MCDNN) 

architecture by Ciresan et al.[98] which won the ICDAR 2012 challenge, a multi column CNN 

based architecture is proposed in the present work. The architecture consists of three columns, 
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where each column is itself a CNN based multilayer network. As mentioned before, 

handwritten characters stylistically vary from one individual to another. Although 

convolutional neural networks (CNN) have shown their promise as a universal representation 

for recognition, global CNN activations still lack some geometric invariance, which limits their 

robustness for classification and matching of highly variable pattern images. To improve the 

invariance of CNN activations without degrading their discriminative power, a multi-scale 

orderless pooling[143] technique has been applied to the CNN based models comprising each 

column. This scheme essentially forms a spatial pyramid of CNN activations, where each level 

of the pyramid is associated with a specific convolutional filter or kernel (see Chapter 4). 

Following this scheme, the final convolutional feature set is obtained by concatenating the 

feature vectors obtained from each level of the spatial pyramid.  
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Fig. 5.2: A complete overview of the proposed MMCNN based architecture 

An overview of the multi-scale pooling employed in the present work is shown in Fig. 5.3. 

Each column of the proposed deep network has 3 layers. Each layer 𝑖, 𝑖 = 1 to 3 contains 4𝑖−1 

stacked Convolutional Neural Networks. As we go down the layers, lower layers of each 

column focuses on the local activations i.e. local characteristics of the pattern image, more than 

its previous layer. This is achieved by applying a static zoning technique[59] on each input 

image of the previous layer. For each input image 𝐼 in the previous layer, a 2 × 2 grid is 

superimposed on 𝐼. The sub-images at each grid cell i.e. 𝐼1, 𝐼2, 𝐼3, 𝐼4 are treated as independent 
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input images at the next layer. The immediate lower layer tasks a separate CNN for each sub-

image 𝐼𝑗 , 𝑗 = 1 to 4. Static zoning techniques are used to divide the image into sub-images as 

opposed to dynamic zoning techniques, as they are relatively faster. Although researchers like 

Das et al.[45], Sarkhel et al.[16] etc. have advocated the use of CG based quad tree 

partitioning[27][28] of a handwritten character, in our experiments we have found that equal 

partitioning based quad tree approach works better than CG based quad tree partitioning in case 

of convolutional feature-vector based representation of a pattern image. It is also relatively 

faster. A comparative analysis of the proposed architecture working on both CG based quad 

tree partitioning and equal partitioning quad tree based approach, on some of datasets used in 

our experimental setup is shown in Fig. 5.4.  Tasked with recognizing a sub-image, each 

smaller Convolutional network in the lower layer, carries on with its own recognition task. 

Once each smaller net in the stack has finished with the recognition task on a sub-image, 

aggregate result on the entire image is obtained by performing a majority voting based on class 

labels assigned to each sub-image.  Tie cases are resolved based on the class scores assigned 

by the prediction model for each column. A mapping of the smaller CNN based networks 

(shown in Fig. 5.2) with the sub-image (shown in Fig. 5.5) it is assigned for recognition for 

both second and third layer of each column in described in Table 5.2 and Table 5.3 respectively. 

The indexes are same as shown in Fig. 5.2 and Fig. 5.5 respectively.  

In the current experimental setup, a percolated or staggered prediction model is taken up for 

each column of the proposed architecture. Control reaches to the lower layer of stacked CNNs 

only for the misclassified class labels based on a 5 fold cross-validation performed on the 

dataset. After obtaining prediction scores from each column, the final class prediction for the 

test pattern image is obtained by performing an aggregation operation. More details regarding 

how the prediction model works for our proposed architecture will be discussed later in the 

following sections. 
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Fig. 5.3: A demonstration of multi-scale pooling on a sample handwritten character image 

5.4. Column architecture 

The propsoed approach is inspired by Hubel and Wiesel’s seminal work[116] which identified 

orientation-selective simple cells with overlapping local receptive fields and complex cells 

performing down-sampling-like operations on cat’s primary visual cortex. They were the 

among the first researchers to successfully propose a computational model which was able to 

mimic the visual perception of an intelligent animal.  

As mentioned earlier, the proposed architecture contains three independent columns working 

in parallel. Each column has a layered architecture. In our experimental setup, there are three 

layers in each column. The first layer contains a multi-scale CNN based model. The second 

and third layer contains stacked Convolutional networks. There are respectively 4 and 16 

smaller networks in the second and third layer of each column. While the convolutional net at 

the first layer of a column processes an entire input image, each network at the second and third 

layer, processes only 1
4⁄  th and 1

16⁄ th of the input image. A graphical representation of the 

task assignment in the stacked CNN models at lower layers of each column is shown in Fig. 

5.2.  
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Fig. 5.4: Comparison between equal partitioning and CG based partitioning on two separate datasets 

(database indexes are same as shown in Table 5.1) 

Let 𝐼𝑤×ℎ denotes an input image. In the percolated prediction model (discussed in Section 6) 

adopted in our proposed architecture, the misclassified character classes based on a 5-fold 

cross-validation are percolated to the lower layer of stacked CNNs at each column. Suppose, 

the smaller CNN based models at the second and third layer are denoted as 𝑁𝑖, i = 1 to 4 and 

𝑀𝑖, i = 1 to 16 respectively. If the control comes to the second layer of the column, the input 

image 𝐼𝑤×ℎ is divided into 4 sub-images, 𝐼𝑗 , 𝑗 = 1 to 4 where each sub-image has the dimension 

of 𝑤 2⁄ × ℎ
2⁄  (shown in Fig. 5.5(a)). One of the smaller networks 𝑁𝑗, 𝑗 = 1 to 4 from the 

stacked CNNs at the second layer is assigned for the recognition of the sub-image 𝐼𝑗. Same 

steps are repeated for each sub-image 𝐼𝑗 , 𝑗 = 1 to 4 if the control comes to the third layer of the 

column. Each sub-image 𝐼𝑖𝑗 , 𝑗 = 1 to 4, for each 𝑖 = 1 to 4 (shown in Fig. 5.5(b)) is assigned 

to one of the smaller convolutional networks 𝑀𝑗, 𝑗 = 1 to 16. Each of these smaller networks 

in the stacked second and third layers perform separate recognition tasks. Character class is 

assigned to the pattern image after performing a majority voting based on the sub-image class 

labels.   
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Parameters of the architectures of each column has been finalized empirically. Each column 

has 3 layers. While the first layer of each column is itself a CNN, second and third layers of 

the column are stacked CNNs, each having 4 and 16 CNNs respectively. 

  
(a) (b) 

Fig. 5.5: Equal partitioning of the input image for (a) 2nd layer and (b) 3rd layer of each column 

 

Sub-image index Second layer stacked CNN index 

𝐼1 𝑁1 

𝐼2 𝑁2 

𝐼3 𝑁3 

𝐼4 𝑁4 
 

Table 5.2: Mapping of image quadrants with stacked convolutuional neural nets in second layer of 

each column 

 

Sub-image index Third layer stacked CNN index 

𝐼11 𝑀1 

𝐼12 𝑀2 

𝐼13 𝑀3 

𝐼14 𝑀4 

𝐼21 𝑀5 

𝐼22 𝑀6 

𝐼23 𝑀7 

𝐼24 𝑀8 

𝐼31 𝑀9 

𝐼32 𝑀10 



 

79 
 

𝐼33 𝑀11 

𝐼34 𝑀12 

𝐼41 𝑀13 

𝐼42 𝑀14 

𝐼43 𝑀15 

𝐼44 𝑀16 
 

Table 5.3: Mapping of image deca-hexadrants with stacked convolutuional neural nets in third layer 

of each column 

Architecture of the first layer of the first column can be described as 32C2-2P2-RELU-64C3-

RELU-256C3-4P4-RELU-512C3-RELU-2048FC-RELU-1024FC-RELU-RBF_SVM, where 

XCy denotes a convolution layer with X number of kernels and a stride of y pixels, MPn 

denotes a max pooling layer with a M × M poling window and stride of n pixels, RELU denotes 

a RELU activation layer, nFC denotes a fully connected layer with n neurons and finally 

RBF_SVM denotes the SVM classifier with RBF kernel, used as a softmax classifier. 

Parameters of the SVM are tuned by performing 𝛽/𝛾 variations. To introduce geometric 

invariance in the global activations extratced from the input image, multi-scale convolution is 

employed at the first convolutional layer of each column. In the proposed architecture, we have 

used three different kernel diemnsions which are 3 × 3, 5 × 5 and 7× 7 repectively. Following 

the same notations, architecture of each CNN of the stacked CNNs in second and third layer 

can be described as: 12C2-2P2-RELU-20C2-2P2-RELU-400C2-2P2-RELU-1024FC-RELU-

512FC-RELU-RBF_SVM.  

The first layer of the second column has the following architecture: 24C4-4P4-RELU-64C2-

RELU-150C2-2P2-RELU-240C2-RELU-1024FC-RELU-512FC-RELU-RBF_SVM. The 

notations are same as mentioned above. Architecture of the stacked CNNs in the second and 

third layer are same as it was in the first column. Similar to first column, a SVM with RBF 

kernel is used as a softmax classifier for all the layers of the network. 



 

80 
 

The third column is constructed in a similar fashion as the first and second column. First layer 

of the column has the following architecture: 12C2-2P2-RELU-32C2-2P2-RELU-120C2-2P2-

RELU-240C1-RELU-256FC-RELU-RBF_SVM. The notations are same as mentioned above. 

The stacked CNNs in the second and third layer are same as it was in the first ans second 

column. Similar to the previous two columns, a SVM with RBF kernel is used as a softmax 

classifier for all the layers of the network. 

A graphical representation of how an input image propagates through the network is shown in 

Fig. 5.6. Due to space limitation, given the size of the proposed network, the representation is 

provided with respect to only the first column of the network. 

Designing a network starts with the input size. For this problem we observed that 64 × 64 

pixels are sufficient to properly represent details of a handwritten character and/or numeral. 

Our previous experiments with deep neural networks on many other data sets have led us to 

the decision that deep and wide networks learn best to generalize. Every convolutional and 

maxpooling layer decreases the map size from its previous layer. Evidently, maxpooling layers 

are the worst offenders. Therefore it is imperative to use smaller kernels for them. 

Convolutional layers are comparatively less problematic which allows convolutional filters to 

be larger in size. However, too large filters are not required because at least one of the even or 

odd sized filters will generate maps of even size, necessary for the next maxpooling layer with 

a 2 × 2 pooling window. The convolution and maxpooling layers extract features with 

increasing complexity at every layer, forming a hierarchy of feature abstraction. The 

convolution layers share weights, consequently the feature extractor contains only about 20% 

of the net's weights. 
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Fig. 5.6.1: Forward propagation of an input image of Bangla handwritten chaarcter through the first 

layer of first column of the proposed MMCNN based architecture after learning is done 
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Fig. 5.6.2: Forward propagation of an input image quadrant throught the second layer of the first 

column of the proposed MMCNN based architecture after learning is done 

Fig. 5.6: Demonstartion of features extracted from the proposed MMCNN based architecture 

The network should also be wide enough, i.e., extract suffucient details from the pattern images 

by computing sufficiently expressive features to extract details required for high-quality 

recognition. We started with 32 maps on the first convolutional layer, then increased the 

number for every successive convolutional layer. In the present work, a RBF kernel based SVM 

is used as a softmax layer for each column. SVM is used instead of a MLP based classifier in 

our architecture as we have found in our experiments that the average performance of SVM is 

better than that of MLP. In our literature review, we have found that several contemporary 

researchers[72][3][57] have also came to the same conclusion. 

5.5. Training the deep network 

For faster learning of the large network, a mini-batch gradient descent based learning technique 

is used. Each column of the network is trained separately. The smaller networks in the second 
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and third layers of each column are trained on the sub-images of the training images i.e. the 

quadrants and deca-hexadrants assigned to them, as shown in Table 5.2 and Table 5.3.  

As suggested by LeCun et al.[144], before each epoch of mini-batch gradient descent based 

training, the dataset is randomly shuffled. They have shown in [144] that the data shuffling 

before each epoch of the learning algorithm, introduces heterogeneity in the dataset with which 

each weight update is calculated. According to them, this increases the convergence rate of the 

learning algorithm, as a deep network learns “the fastest when it sees the most unexpected 

sample”. Besides global learning of connection weights, an adaptive local learning process 

RMSProp[145] is also used in our current experimental setup to increase the convergence rate 

of the parameter learning process. The method works by keeping a moving average of the 

squared gradient for each weight and dividing the gradient by the square root of this value. It 

has been shown that despite its limitations, RMSProp improves the learning process by help 

improving the convergence rate. The weight update at each iteration is done by following the 

below equation: 

𝑤𝑡+1 = 𝑤𝑡 −
𝛼

√𝑟𝑡

𝑓′(𝜃𝑡)                                                   (5.1) 

Where,  𝑟𝑡 = (1 − 𝛾)𝑓′(𝜃𝑡)2 + 𝛾𝑟𝑡−1                            (5.2) 

In equation 5.1, 𝑟𝑡 denotes the modified learning rate at tth epoch of the learning algorithm,  𝛼 

denotes the global learning rate and 𝑓′(𝜃𝑡) denotes the error-gradient. In equation 5.2, 𝛾 

denotes a decay rate and 𝑟𝑡−1 denotes the learning rate at the previous iteration of the algorithm.  

The learning algorithm is not terminated until the cross-validation error rate converges or the 

number of epochs reaches the predefined maximum. A regularization method is also used in 

our current experimental setup to prevent the model from overfitting. Although the weight 

sharing scheme reduces the number of parameters by a significant 80%, compared to classical 
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ANNs, it still uses a huge number of parameters. Dropout regularization method is used in the 

present work to help reduce the chances of overfitting the network while training. The 

parameters of the learning algorithm used to train each layer of the three columns is given in 

Table 5.4. 

Parameter name Parameter value 

Global learning algorithm Mini-batch gradient descent algorithm 

Local learning  RMSProp 

Learning rate (𝛼) 0.001 

Decay rate (𝛾) 0.01 

Dropout 0.5 

Batch size 5 

Maximum number of epochs 1000 
 

Table 5.4: Parameters of the learning algorithm used for all of the CNN based models used in 

proposed MMCNN architecture 

5.6. Extraction of feature set 

A non-explicit feature based approach towards OCR system is taken in the present work. After 

the network is trained and weights are learned, a pattern image is propagated forward through 

the network. The extracted features are essentially connection weights between the last fully-

connected layer and the softmax layer. All of the 512 kernels used by the first layer CNN based 

model of the first column for extracting feature from an input pattern image is shown in Fig. 

5.7. For visual representation of how the extracted features emerge upon multiple epochs of 

the learning algorithm, we have shown the evolution of the convolution maps of a input test 

image over multiple epochs, when propagated forward through the first layer CNN based 

model of the first column in the proposed MMCNN architecture, in Fig. 5.8. 
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Fig. 5.7: All 512 kernels used by the first layer CNN of the first column of the proposed MMCNN 

architecture 

It is evident that the dimension of the featurevectors extracted from each layer of the three 

columns depend on the number of neurons in the last fully-connected layer and the batch size. 

Following the scheme adopted in the present work, the featurevector dimension (𝐷) can be 

computed according to the following equation: 

𝐷 = 𝑁𝐹𝐶 × 𝑏                            (5.3) 

Where 𝑁𝐹𝐶  denotes the number of neurons in the last fully connected layer and 𝑏 denotes the 

mini-batch size used in our experimental setup. Following the equation 5.3, dimension of the 

featurevectors extracted from each layer of the three columns in our architecture is shown in 

Table 5.5. 

Column index Layer index Dimension of featurevector 

1 

1 5120 

2 2560 

3 2560 

2 

1 2560 

2 2560 

3 2560 

3 

1 1280 

2 2560 

3 2560 
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Table 5.5: Dimensions of extracted featurevectors from different layers of the proposed MMCNN 

architecture  

 

Fig. 5.8: Evolution of feature maps of an input image when propagated through the first layer of the 

first column of the proposed MMCNN architecture 

 

5.7. The percolated prediction model 

One of the objectives of the present work is to propose a fast feature extraction technique which 

can be ubiquitously applied for multilingual and complex Indian scripts. Due to the complexity 

of the task at hand, it was necessary to take a non-explicit feature based approach towards OCR 

system in the present work. A deep architecture is proposed in the scope of our current work 

for this purpose. After the network is trained, implicit connection weight based feature set is 

extracted from it. These features are subsequently used to represent the training dataset. 

Features from the test dataset is extracted in a similar fashion. Once the network converges i.e. 

the weights are learnt, the pattern image of which convolutional features need to be extracted 

is propagated forward through the learned network and consequently, the feature set is 

extracted from the connection weight between the last fully connected layer and the softmax 

layer. Considering that there is a total of 21 CNN based network models in each of the three 



 

87 
 

columns of the proposed architecture, if all of the layers were to be used simultaneously for 

each and every test image, it will a take a long time for feature extraction as the pattern image 

needs to be propagated through all of them. Needless to say, the length of the feature vector to 

represent each pattern image would also be huge (shown in Table 5.5), which will increase the 

dimension of the feature space and consequently make the job of the classifier to find a decision 

boundary quite challenging. These difficulties motivated us to use a staggered or percolated 

prediction technique instead. A flowchart of the prediction model is shown in Fig. 5.9.  The 

prediction algorithm is described in details as Algorithm 1 in the following section. 

  

Algorithm 1: A percolated prediction algorithm for MMCNN architecture  

Input: Test image I. 

Output: Class label of I. 

 

1   Let, the set of all possible character classes is denoted as Λ; 

2   𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠_𝑙𝑎𝑏𝑒𝑙𝑠 = Φ;  

3   for each column of the architecture 

4    { 

5        Perform 5-fold cross-validation of the train dataset using the first layer CNN based model;  

6         for each misclassified character/numeral 𝐶 of the train dataset  

7        { 

8             if 𝐶 is incorrectly classified as 𝐷, 

9            { 

10                  𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠_𝑙𝑎𝑏𝑒𝑙𝑠 =  𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠_𝑙𝑎𝑏𝑒𝑙𝑠 ⋃ 𝐷; 

11           } 

12           𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠_𝑙𝑎𝑏𝑒𝑙𝑠_𝑠𝑒𝑐𝑜𝑛𝑑_𝑙𝑒𝑣𝑒𝑙 = Φ; 

13           Perform 5-fold cross validation of the each of the four quadrants of the train dataset using           

the second layer of stacked CNN based models; 

14             if 𝐶1 is incorrectly classified as 𝐷1, 

15             { 
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16                   𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠_𝑙𝑎𝑏𝑒𝑙𝑠_𝑠𝑒𝑐𝑜𝑛𝑑_𝑙𝑒𝑣𝑒𝑙 =  𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠_𝑙𝑎𝑏𝑒𝑙𝑠_𝑠𝑒𝑐𝑜𝑛𝑑_𝑙𝑒𝑣𝑒𝑙 ⋃ 𝐷1; 

17              } 

18              𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠_𝑙𝑎𝑏𝑒𝑙𝑠_𝑠𝑒𝑐𝑜𝑛𝑑_𝑙𝑒𝑣𝑒𝑙 = 𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠_𝑙𝑎𝑏𝑒𝑙𝑠 − 𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠_𝑙𝑎𝑏𝑒𝑙𝑠_𝑠𝑒𝑐𝑜𝑛𝑑_𝑙𝑒𝑣𝑒𝑙; 

19          }  

20   } 

21   𝑢𝑛𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠_𝑙𝑎𝑏𝑒𝑙𝑠 =  Λ − 𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠_𝑙𝑎𝑏𝑒𝑙𝑠;  

22   Perform classification task on the input image I using the first layer CNN based model.  

23   Let, the cardinality of the set Λ is N i.e. |Λ| = N and 𝑃𝑖 denotes the prediction score for class 

label 𝑖, 𝑖 = 1 to N. 

24   𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒_𝑙𝑎𝑏𝑒𝑙 = argmax
𝑖 =1 𝑡𝑜 𝑁

𝑃𝑖; 

25   if  (𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒_𝑙𝑎𝑏𝑒𝑙 𝜖 𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠_𝑙𝑎𝑏𝑒𝑙𝑠) 

26   { 

27        for j = 1 to 4  

28        { 

29             Perform classification task on the quadrants 𝐼𝑗 , 𝑗 = 1 𝑡𝑜 4 of the input image I using the 

stacked CNN based models at the second layer. Each smaller network 𝑀𝑗 , 𝑗 = 1 𝑡𝑜 4 is assigned the 

task of classifying the quadrant 𝐼𝑗  (shown in Table 5.2).Let, 𝑄𝑖 denotes the prediction score for class 

label 𝑖, 𝑖 = 1 to N. 

30              𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒_𝑙𝑎𝑏𝑒𝑙𝑗 = argmax
𝑖 =1 𝑡𝑜 𝑁

𝑄𝑖 

31         } 

32      Perform majority voting on the class labels 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒_𝑙𝑎𝑏𝑒𝑙𝑗, 𝑗 = 1 to 4. Let, the majority 

assigned label for 𝐼 is denoted as 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒_𝑙𝑎𝑏𝑒𝑙_𝑠𝑒𝑐𝑜𝑛𝑑_𝑙𝑒𝑣𝑒𝑙. 

33           if  (𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒_𝑙𝑎𝑏𝑒𝑙_𝑠𝑒𝑐𝑜𝑛𝑑_𝑙𝑒𝑣𝑒𝑙 𝜖 𝑠𝑢𝑠𝑝𝑖𝑐𝑖𝑜𝑢𝑠_𝑙𝑎𝑏𝑒𝑙𝑠_𝑠𝑒𝑐𝑜𝑛𝑑_𝑙𝑒𝑣𝑒𝑙) 

34           { 

35                for 𝑖 = 1 𝑡𝑜 4  

36                { 

37                    for 𝑗 = 1 𝑡𝑜 4 

38                   { 

39                         Perform classification task on the deca-hexadrant 𝐼𝑖𝑗 , 𝑗 = 1 𝑡𝑜 4, 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖 =

1 𝑡𝑜 4 of the input image I using the stacked CNN based models at the third layer. Each smaller 

network 𝑁𝑗, 𝑗 = 1 𝑡𝑜 16 is assigned the task of classifying the quadrant 𝐼𝑖𝑗  (shown in Table 5.3).Let, 

𝑅𝑖 denotes the prediction score for class label 𝑖, 𝑖 = 1 to N. 

40                          𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒_𝑙𝑎𝑏𝑒𝑙𝑖𝑗 = argmax
𝑖 =1 𝑡𝑜 𝑁

𝑅𝑖 
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41                    } 

42                 } 

43           Perform majority voting on the class labels 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒_𝑙𝑎𝑏𝑒𝑙𝑖𝑗, 𝑗 = 1 to 4, 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑖 = 1 𝑡𝑜 4. 

Let, the majority assigned label for 𝐼 is denoted as 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒_𝑙𝑎𝑏𝑒𝑙_𝑡ℎ𝑖𝑟𝑑_𝑙𝑒𝑣𝑒𝑙.  

44    Perform majority voting between the class labels 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒_𝑙𝑎𝑏𝑒𝑙, 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒_𝑙𝑎𝑏𝑒𝑙_𝑠𝑒𝑐𝑜𝑛𝑑_𝑙𝑒𝑣𝑒𝑙 

and 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒_𝑙𝑎𝑏𝑒𝑙_𝑡ℎ𝑖𝑟𝑑_𝑙𝑒𝑣𝑒𝑙.; Tie cases are handled by assigning that class label which has the 

greatest prediction score. Let, the majority label assigned to the input image 𝐼 is 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑_𝑙𝑎𝑏𝑒𝑙. 

45        return 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑_𝑙𝑎𝑏𝑒𝑙; 

46            } else { 

47   Perform majority voting between the class labels 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒_𝑙𝑎𝑏𝑒𝑙 

and 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒_𝑙𝑎𝑏𝑒𝑙_𝑠𝑒𝑐𝑜𝑛𝑑_𝑙𝑒𝑣𝑒𝑙; Tie cases are handled by assigning that class label which has the 

greater prediction score. Let, the majority label assigned to the input image 𝐼 is 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑_𝑙𝑎𝑏𝑒𝑙. 

48                  return 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑_𝑙𝑎𝑏𝑒𝑙; 

49           } 

50       } else { 

51    return 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑒_𝑙𝑎𝑏𝑒𝑙;  

52    } 

 

The methodology described in Algorithm 1proposes a staggered or percolated prediction model 

which is adopted by each column in the proposed architecture. As mentioned earlier, each of 

the three columns work parallel towards the recognition of a pattern image. Instead of involving 

all of the layers of a column, the algorithm essentially tries to come up with a set of character 

labels which can be potentially misclassified by the first layer CNN based on 5-fold cross-

validation performed on the train dataset. The misclassified character labels due to the cross-

validation by the first layer CNNs form the potentially vulnerable set of character labels with 

respect to the first layer of that column. If an input test image is assigned a character label 

which belongs to these vulnerable set of character classes, the input image is percolated through 

to the second layer of the column. Here, the image is divided equally into four quadrants and 

the smaller CNNs belonging to the stacked CNNs of the second layer are tasked to recognize 

the input image based on the quadrant which is assigned to it. The steps of finding the 
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vulnerable character classes is repeated here again, but instead of processing the entire input 

image, each of the smaller nets in the stacked CNN perform cross-validations on their assigned 

quadrants. If the input image is assigned a character class belonging to one of these vulnerable 

character classes, determined by the stacked CNNs at the second layer of the column, the test 

image is percolated through to the third and final layer of the column. A stack of 16 smaller 

convolutional nets get assigned one of the dechexadrants of the original input image and 

perform their own classification task separately. The class labels are decided upon by 

performing a majority voting between the assigned labels proposed by each candidate layer. 

Tie cases are resolved based on the highest confidence score assigned by a prediction model. 

As mentioned earlier, each of the columns work independent of each other in this architecture. 

Once a candidate label is put forth by all of the three columns, an aggregation operation is 

performed on the test dataset and a final class label is retuned by the deep architecture. In our 

present work, we have experimented with average, weighted average and majority voting 

techniques as aggregation operations.  

 

Fig. 5.9: A schematic diagram of the percolated prediction model adopted in the present work 
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Clearly, an input image 𝐼 which is percolated to the second layer of the architecture is 

represented not only by the featurevector extracted by the first layer CNN, but the 

featurevectors extracted by the four smaller nets in the second layer as well. Each of the four 

smaller convolutional nets in the second layer, extracts a featurevector from a quadrant of the 

input image (as shown in Table 5.2), assigned to it. The final label assignment is done based 

on a majority voting of the proposed candidate labels. If the class label assigned by the second 

layer stacked CNNs belong to a potentially vulnerable class, the input image gets percolated 

through to the third and final layer of the network, where each of the 16 smaller nets, each are 

independently tasked with a deca-hexadrant of the original image 𝐼. Each of the 16 smaller nets 

belonging to the third layer, extracts a featurevector from a deca-hexadrant of the input image 

𝐼 (as shown in Table 5.3), assigned to it. The final label assignment is done based on a majority 

voting between all of the proposed candidate class labels. 

This hierarchical structure of feature extraction discussed above, can be visualized as a quad-

tree[27][28] structure of depths one or two respectively, as shown in Fig. 5.10. This multi-scale 

deep quad tree based feature extraction technique has shown promising results on the six 

publicly available datasets of isolated, handwritten character and numerals of Indian languages, 

used in our current experimental setup. More details about the experimental results are 

discussed in the next chapter.   
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Fig. 5.10.1: A first level quad-tree representation of extracted multi-scale convolutional features 

 

 

Fig. 5.10.1: A second level quad-tree representation of extracted multi-scale convolutional features 

Fig. 5.10: A multi-scale quad tree representation of the proposed feature extraction scheme 
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Chapter 6 

Results and discussion 
 

 

In the present work, a multi-scale deep quad tree based ubiquitous feature extraction technique 

is proposed. A multi-scale multi-column convolutional neural network (MMCNN) based deep 

architecture is proposed for this purpose. A schematic diagram of the proposed architecture is 

shown in Fig. 5.2. A mini-batch gradient descent based learning algorithm with globally 

decaying learning rate is used for global learning and RMSProp is used for adaptive local 

learning of network parameters. Parameters of the learning algorithm is shown in Table 5.4. 

Although several schemes has been taken to increase the convergence rate of the learning 

algorithm, it still takes a long time to train such a huge network. Besides training each column 

of the network in parallel, we have also utilized several GPU based apis which use vectorized 

libraries for faster matrix operations. The Python based Pylearn2 library is used to perform all 

of the deep learning based training and testing jobs in our current experimental setup. All of 

the dependencies of Pylearn2 including NumPy, SciPy and Theano which were all used 

throughout the implementation moderately. Basic image processing operations were done 

using MATLAB and large datasets handling were performed using HDF5 file format through 

the use of the h5py library. All of the experiments were performed using systems with Intel 

core i5 processor, 4GB RAM and a NVIDIA GeForce 750 Ti graphics card with 2GB internal 

memory, having 640 CUDA cores. The resultant speedup in convergence rate of the algorithm 

using this configuration, as opposed to using a CPU driven system is shown in Fig. 6.1.  

In the following section the recognition rate achieved by the proposed system on 3 publicly 

available datasets of isolated handwritten characters and 3 publicly available datasets of 

isolated handwritten numerals of Indian languages are reported. Experiments on each dataset 
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have been repeated 25 times and averaged. The average success-rate is reported in this 

document. Although there are several other works[122][130][129] in the literature which have 

proposed deep neural networks for the recognition of handwritten characters and/or numerals 

of Indian languages, to the best of our knowledge, none of those approaches have experimented 

with such a large number of datasets belonging to different Indian languages. Also the 

approaches proposed by the researchers in the previous works have generally focused on a 

specific language. In these two regards, this is the first work which proposes a generic, 

ubiquitous feature set for handwritten characters and/or numerals belonging to different scripts. 

The average per character/numeral prediction time taken by the proposed system is also given. 

Finally, a comparison with several other contemporary methods are provided to prove the 

superiority of the proposed MMCNN architecture.  

 

Fig. 6.1: Comparison between learning rates of CPU and GPU driven learning algorithms 
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As mentioned earlier in Section 5.7, each column of the proposed architecture work in parallel, 

each acting as a separate classifier model. Once all three columns have finished their respective 

classification, an aggregation operation is done on the results of the columns and a final class 

label is assigned to the test image. In the present work, we have taken a majority voting based 

approach towards aggregating the results from each column. From our previous experience 

with other datasets we have found that the voting based approach provides the best performance 

compared to other aggregation approaches. A comparison of the proposed approach with two 

other aggregation methods i.e. average and weighted average, suggested by researchers like 

Ciresan et al.[98][97] has also been provided. The database indexes are same as shown in  

Database index 
Average aggregation 

scheme (%) 

Weighted average 

aggregation scheme (%) 

Majority voting 

aggregation scheme (%) 

D1 95.39 95.61 98.12 

D2 99.35 99.39 100.00 

D3 96.32 96.07 98.52 

D4 99.73 99.73 100.00 

D5 98.56 98.609 99.50 

D6 98.83 98.861 99.50 
 

Table 6.1: Successrate achieved by the proposed MMCNN based architecture on different datasets 

From the results shown in Table 6.1, it is clear that the proposed majority voting scheme to 

combine the results from the columns performs much better than other contemporary 

aggregation schemes. As it can be seen from the results that the proposed method provides 

promising results across all of the datasets used in our experimental setup. In fact, the 

recognition accuracy achieved by the proposed method are state-of-the-art for all of the datasets 

used in the present work. Such promising results proves the efficiency of the method and hence 

helps prove our hypothesis that the proposed MMCNN architecture provides script 

independent, ubiquitous feature set.   
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A comprehensive table of average recognition times taken for each character/numeral by the 

proposed system is given in Table 6.2.  

Database index Average per character recognition time (milliseconds) 

D1 19.82 

D2 18.66 

D3 19.09 

D4 18.21 

D5 18.48 

D6 18.57 
 

Table 6.2: Average per character/numeral recognition time for the proposed system 

To prove the superiority of the proposed method, performance of the proposed system is 

compared with some of the popular, contemporary works. The comparative analysis is given 

in Table 6.3 as below. 

Database type Work reference Recognition rate (%) 

Bangla Compound 

Characters  

Das et al.[138] 75.05 

Das et al.[3] 87.50 

Sarkhel et al.[16] 78.38 

Sarkhel et al.[17] 86.64 

Pal et al.[129] 93.12 

The present work 98.12 
 

Table 6.3.1 

Database index Work reference Recognition rate (%) 

Bangla Basic Characters 

Roy et al.[57] 86.40 

Das et al.[138] 80.50 

Basu et al.[18] 80.58 

Sarkhel et al.[16]  86.53 

Bhattacharya et al.[146] 92.15 

The present work 100.00 
 

Table 6.3.2 

Database index Work reference Recognition rate (%) 

Tamil Characters Sigappi et al.[147] 89.74 
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Database index Work reference Recognition rate (%) 

Raj et al.[148]  89.00 

Abirami et al.[149] 85.00 

Subashini et al.[150] 87.00 

Bhattachraya et al.[151] 89.66 

Ramakrishnan et al.[152] 95.86 

The present work 98.52 
 

Table 6.3.3 

Database index Work reference Recognition rate (%) 

Bangla digit 

Das et al.[45] 97.80 

Sarkhel et al.[17] 98.23 

Basu et al.[29] 96.67 

Roy et al.[28] 95.08 

Roy et al.[153] 97.45 

Singh et al.[25] 99.30 

The present work 100.00 
 

Table 6.3.4 

Database index Work reference Recognition rate (%) 

Hindi digit 

Acharya et al.[154] 98.47 

Sarkar et al.[155]  98.20 

Das et al.[138] 90.44 

Singh et al.[25] 99.50 

Roy et al.[153] 96.50 

The present work 99.50 
 

Table 6.3.5 

Database index Work reference Recognition rate (%) 

Telugu digit 

Rajasheraradhya et al.[56] 96.0 

Rajasheraradhya et al.[156]  99.0 

Singh et al.[25] 98.8 

Roy et al.[153] 87.2 

Sarkhel et al.[16] 97.5 

The present work 99.5 

Table 6.3.6 

 

Table 6.3: A comparative analysis of the proposed system against some of the contemporary OCR 

methods 
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Conclusion 
 

 

A non-explicit, script independent, ubiquitous feature extraction technique for the recognition 

of handwritten Indic characters and numerals has been proposed in the present work. A multi-

scale, multi-column convolutional neural network (MMCNN) based architecture has been 

proposed for this purpose. A mini-batch gradient descent based global learning algorithm with 

RMSProp for local learning of the parameters is adopted to train the proposed deep 

architecture. GPU based apis which utilize vectorized libraries is used for training the network. 

The proposed method leads to faster convergence, better generalization and allows for effective 

usage of labelled data. A staggered or percolated prediction model has been taken up to assign 

class labels to a test image. The experimental results performed on six publicly available 

benchmark datasets of isolated, handwritten Indian characters and numerals show that the 

proposed method provides state-of-the-art results for all of the datasets. Superiority of the 

proposed method against some of the other competitive contemporary methods has also been 

statistically proved.  

The proposed deep architecture based non-explicit, script independent approach towards 

largely varying, complex, handwritten Indian characters and numerals detection technique 

marks the contribution of the present work. The proposed script independent generic approach 

towards the recognition of handwritten, multi-lingual Indian characters opens up a new avenue 

in research. Significantly low error rate and better performance than its contemporaries marks 

it as an important contribution towards the OCR research community. It get rids of proposing 

pesky features, tailored to particularities of a specific language and provides an all-

encompassing method for the recognition of a wide array of handwritten characters and 

numerals belonging to different Indian languages. In future, the proposed architecture can be 

tested for more datasets. This avenue can also be explored further as deeper and wider networks 
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can be employed to further increase the performance of the OCR system. However, it should 

be remembered that extracting features from larger networks take a long time. Hence, a perfect 

balance should be maintained between the increase in average per character prediction time 

and the gain in recognition performance in result.  
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