
Recompression : An Approximate
Algorithm For Grammar-Based

Compression

Thesis submitted to
The Faculty of Engineering & Technology, Jadavpur University

In partial fulfillment of the requirements for the Degree Of

Master of Computer Science & Engineering

In the Department of Computer Science & Engineering
By

Sourav Mitra

Exam Roll No. – M4CSE1624R
Class Roll No. – 200910502008

Registration No. – 91224 of 2004-2005

Under the esteemed Guidance of
Professor Shovonlal Kundu

Department of Computer Science & Engineering
Jadavpur University, Kolkata-700032

May, 2016

Recompression :

An Approximate Algorithm For

Grammar-Based Compression

Thesis submitted to the
Faculty of Engineering & Technology, Jadavpur University

In partial fulfillment of the requirements for the Degree Of

Master of Computer Science & Engineering

In the Department of Computer Science & Engineering
By

Sourav Mitra

Exam Roll No. – M4CSE1624R
Class Roll No. – 200910502008

 Registration No. – 91224 of 2004 - 2005

Under the esteemed Guidance of
Professor Shovonlal Kundu

Department of Computer Science &Engineering ,
Jadavpur University ,Kolkata-700032

May, 2016

FACULTY OF ENGINEERING AND TECHNOLOGY

JADAVPUR UNIVERSITY

Certificate of Recommendation

This is to certify that the dissertation entitled “Recompression : An Approximate
Algorithm For Grammar-Based Compression” has been carried out bySourav Mitra
(Examination Roll No.M4CSE1624R,Class Roll No. 200910502008 and University
Registration No.91224 of 2004-2005) under my guidance and supervision and be
accepted in partial fulfillment of the requirement for the Degree of Master of
Computer Science and Engineeringfrom the Department of Computer Science
&Engineeringin the Faculty of Engineering and Technology, Jadavpur University.
The research results presented in the thesis have not been included in any other paper
submitted for the award of any degree in any other University or Institute.

………………………………
(ProfessorShovonlalKundu)

Thesis Supervisor,
Department of Computer Science and Engineering,

Jadavpur University, Kolkata-700032 .

Countersigned:

………………………………..
(ProfessorDebesh Kumar Das)
Headof the Department,
Department of Computer Science and Engineering,
Jadavpur University, Kolkata-700032.

…………………………………………………….
(ProfessorSivajiBandyopadhyay)
Dean,
Faculty of Engineering and Technology,
Jadavpur University, Kolkata-32.

FACULTY OF ENGINEERING AND TECHNOLOGY

JADAVPUR UNIVERSITY

Certificate of Approval

This is to certify that the thesis entitled “Recompression : An Approximate
Algorithm For Grammar-Based Compression” is a bona-fide record of work carried out
by Sourav Mitra (Examination Roll No.M4CSE1624R,Class Roll No. 200910502008
and University Registration No.91224 of 2004-2005) in partial fulfillment of the
requirements for the award of the degree of Master of Computer Science and
Engineering in the Department of Computer Science and Engineering, Jadavpur
University, Kolkata. It is understood that by this approval the undersigned do not
necessarily endorse or approve any statement made, opinion expressed or conclusion
drawn therein but approve the thesis only for the purpose for which it has been
submitted.

……………………………

(Signature of Examiner 1)

Date:

……………………………

(Signature of Examiner 2)

Date:

FACULTY OF ENGINEERING AND TECHNOLOGY

JADAVPUR UNIVERSITY

Declaration of Originality and Compliance of Academic Ethics

I hereby declare that this thesis entitled “Recompression : An Approximate
Algorithm For Grammar-Based Compression” contains literature survey and
original research work by the undersigned candidate, as part of his Degree of
Master of Computer Science & Engineering.

All information have been obtained and presented in accordance with academic
rules and ethical conduct.

I also declare that, as required by these rules and conduct, I have fully cited
and referenced all materials and results that are not original to this work.

Name : Sourav Mitra

Exam Roll No : M4CSE1624R
Class Roll No : 200910502008

Registration No : 91224 of 2004-2005

Thesis Title:Recompression : An Approximate Algorithm

For Grammar-Based Compression

…..………………………………………

(Signature with Date)

Acknowledgement

I would like to start by thanking the holy trinity for helping me deploy all the right
resources and for shaping me into a better human being.

I would like toexpress my deepest gratitude to my advisor, Prof.ShovonlalKundu,
Department of Computer Science and Engineering, Jadavpur University for his
admirable guidance, care, patience and for providing me with an excellent
atmosphere for doing research.Our numerous scientific discussions and his many
constructive comments have greatly improved this work.

I would like to thank Prof. Debesh Kumar Das, Head of the Department, Department
of Computer Science and Engineering, Jadavpur University, for providing me with
moral support at times of need.

Most importantly none of this would have been possible without the love and support
of my family. I extend my thanks to my parents, especially to my mother whose
forbearance and whole hearted support helped this endeavor succeed.

This thesis would not have been completed without the inspiration and support of a
number of wonderful individuals — my thanks and appreciation to all of them for
being part of this journey and making this thesis possible.

……………………………………………..

Name : Sourav Mitra

Exam Roll No : M4CSE1624R
Class Roll No : 200910502008

Registration No : 91224 of 2004-2005

Department of Computer Science & Engineering

Jadavpur University

Contents

Abstract : 1

Chapter :1: INTRODUCTION: 2
1.1 Application of grammar-based compression: 3
1.2 Proposed Approach : 4
1.3 Recompression 4

Chapter : 2 : SURVEY OF RELATED WORKS : 5
2.1 Compression Algorithms : 5
2.2 The Journey of Lossless Compression Algorithms : 6
2.3 Compression Techniques : 7
2.3.1 Run-Length Encoding : 7
2.3.2 Burrows-Wheeler Transform : 7
2.3.3 Entropy Encoding : 9
2.3.3.1 Shannon-Fano Coding : 9
2.3.3.2 Huffman Coding : 10
2.3.3.3 Arithmetic Coding : 11
2.3.3.4 Adaptive vs. Static encodings : 12
2.3.4 Compression Algorithms: 13
2.3.4.1 The Lempel-Ziv Algorithms: 13
2.3.4.2 Sliding Window Algorithms : LZ77: 14
2.3.4.3 Dictionary Algorithms : LZ78: 15
2.3.4.4 LZW: 15
2.4 Chomsky classification : 16
2.4.1 Type-0 : Recursively enumerable grammar: 16
2.4.2 Type-1 : Context-sensitive grammars: 16
2.4.3 Type- 2 : Context-free grammars: 17
2.4.4 Type-3 : Regular grammars: 17
2.5 Grammar-based compression: 18
2.5.1 The smallest grammar problem: 18
2.5.2 Approximation Algorithms : 20
2.5.3 Approximation Algorithms for Grammar-Based Compression: 22
2.5.3.1 LZ78 : 23
2.5.3.2 LZW: 23
2.5.3.3 SEQUITUR Algorithm : 24
2.5.3.4 Bisection Algorithm: 26
2.5.3.5 Sequential Algorithm : 26
2.5.3.6 Global Algorithms: 27
2.5.3.7 Greedy: 28
2.5.3.8 Recursive Pairing (re-pair) : 28
2.5.4 Chomsky normal form : 29
2.5.5 Straight-Line Program (SLP) : 30

Chapter : 3 : METHODOLOGY OF PROPOSED WORK : 32
3.1 Algorithm : 32
3.1.1 Notation conventions : 32
3.1.2 Grammar : 32

3.1.3 The algorithm: 33
3.1.4 Blocks compression : 34
3.1.5 Pair compression : 35
3.1.6 Size and running time : 35
3.2 Size of the grammar: SLPs and recompression : 36
3.2.1 Definitions : 36
3.2.2 Intuition and road map: 37
3.3 Improved Analysis: 46
3.3.2 Outline: 46
3.3.3 Linear bound: 47
3.3.4 Credit and pair compression when text is long : 48
3.3.5 Cost of representing blocks when text is long: 49
3.3.6 Intermediate phase: 49
3.3.7 Markings’ modification: 50

CHAPTER : 4 : COMPARATIVE STUDY OF DIFFERENT DEVELOPED MODEL : 52
4.1 Rytter’s Algorithm in details : 53
4.1.1 Construction of small grammar-based compression : 53
4.2 Charikar’s Algorithm in details : 55
4.2.1 An O(log 3 N) Approximation Algorithm: 55
4.2.2 Charikar’s Appoximate Algorithm: 55
4.3 Sakamoto’s Algorithm in details : 58
4.3.1 Sakamoto’s Approximation algorithm: 58
4.3.2 Comparison with Sakamoto’s algorithm : 59

CHAPTER : 5 : CONCLUSION : 60
5.1 Advantages and disadvantages of the proposed technique : 60
5.2 Note on computational model : 61

REFERENCES : 62

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

1

ABSTRACT

In this Thesis work, a simple linear-time algorithm constructing a context-free
grammar of size O(glog(N/g)) for the input string, whereNis the size of the input string
andgthe size of the optimal grammar generating this string is presented. The algorithm
works for arbitrary size alphabets, but the running time is linear assuming that the
alphabetƩof the input string can be identified with numbers from {1, ...,Nc} for some
constant c. Otherwise, additional cost ofO(Nlog|Ʃ|)is needed.

Algorithms with such an approximation guarantee and running time are the particular
simplicity of the algorithm as well as the analysis of the algorithm, which uses a
general technique of recompression recently introduced by Artur Jez, Institute of
Computer Science, University of Wrocław, Poland. Furthermore, contrary to the
previous results, this work does not use the L Z representation of the input string in the
construction or in the analysis.

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

2

CHAPTER : 1
INTRODUCTION

Data compression is the art of reducing the number of bits needed to store or
transmit data. Compression can be either lossless or lossy. Losslessly compressed data
can be decompressed to exactly its original value.

All data compression algorithms consist of at least a model and a coder (with
optional preprocessing transforms). A model estimates the probability distribution. The
coder assigns shorter codes to the more likely symbols. There are efficient and optimal
solutions to the coding problem. However, optimal modeling has been proven not
computable. Modeling (or equivalently, prediction) is both an artificial intelligence (AI)
problem and an art.

There are two major categories of compression algorithms: lossy and lossless.
Lossy compression algorithms involve the reduction of a file’s size usually by
removing small details that require a large amount of data to store at full fidelity. In
lossy compression, it is impossible to restore the original file due to the removal of
essential data. Lossy compression is most commonly used to store image and audio
data, and while it can achieve very high compression ratios through data removal, it is
not covered in this article. Lossless data compression is the size reduction of a file, such
that a decompression function can restore the original file exactly with no loss of data.
Lossless data compression is used ubiquitously in computing, from saving space on
your personal computer to sending data over the web, communicating over a secure
shell, or viewing a PNG or GIF image.

In the grammar-based compression text is represented by a context-free
grammar (CFG) generating exactly one string. The idea behind this approach is that a
CFG can compactly represent the structure of the text, even if this structure is not
apparent. Furthermore, the natural hierarchical definition of the CFGs makessuch
arepresentation suitable for algorithms, in which case the string operations can be
performed on the compressed representation, without the need of the explicit de-
compression[2,8,10,17,3,1]. Lastly, there is a close connection between block-based
compression methods and the grammar compression: it is fairly easy to rewrite the
LZW definition as anO(1)larger CFG, LZ77 can also be presented in this way,
introducing a polynomial blow-up in size (reducing the blow up to log(N/l), where l is
the size of the LZ77 representation, is non-trivial).

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

3

1.1 Application of grammar-based compression:

The goal of algorithms on compressed strings is to check properties of compressed
strings and thereby beat a straight forward “decompress-and-check”strategy. There are
three main applications for algorithms of this kind [13].

 In many areas, large string data have to be not only stored in compressed
form, but the initialdata has to be processed and analyzed as well. Here, it
makes sense to design algorithms thatdirectly operate on the compressed string
representation in order to save the time and spacefor (de)compression. Such a
scenario can be found for instance in large genom databases orXML processing.

 Large and often highly compressible strings may appear as intermediate
data structures inalgorithms. Here, one may try to store a compressed
representation of these intermediatedata structures and to process this
representation. This may lead to more efficient algorithms.Examples for this
strategy can be found for instance in combinatorial group theory[57, 58, 95, 97,
125], computational topology [37, 122, 124], interprocedural analysis [52],and
bisimulation checking [61, 79].

 In some situations it makes sense to compute in a first phase a
compressed representationof an input string, which makes regularities in the
string explicit. These regularities maybe exploited in a second phase for
speeding up an algorithm. This principle is knownas acceleration by
compression. It was recently applied in order to speed up the Viterbialgorithm
for analyzing hidden Markov models [83] as well as speeding up edit
distancecomputation [31, 59].

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

4

1.2 Proposed Approach :

While grammar-based compression was introduced with practical purposes in
mind and the paradigm was used in several implementations [12,11,16], it also turned
out to be very useful in more theoretical considerations. Intuitively, in many cases large
data have relatively simple inductive definition, which results in a grammar
representation of a small size. On the other hand, it was already mentioned that the
hierarchical structure of the CFGs allows operations directly on the compressed
representation. A recent survey by Lohrey[13]gives a comprehensive description of
several areas of theoretical computer science in which grammar-based compression was
successfully applied.

The main drawback of the grammar-based compression is that producing the
smallest CFG for a text is intractable: given a string w and number k it is NP-hard to
decide whether there exists a CFG of size k that generates w [20]. Furthermore, the size
of the grammar cannot be approximated with an approximation factor better than 8569/
8568 , unless P=NP [1].

1.3 Recompression :

In this Thesis an algorithm is proposed, it is constructed using the general approach of
recompression, developed by the A. Jez. In essence, we iteratively apply two
replacement schemes to the text T :

pair compression of ab For two different symbols (i.e. letters or nonterminals) a, b
such that substring ab occurs in Treplace each of ab in T by a fresh nonterminal c.

a’s block compression For each maximal block al, where a is a letter or a nonterminal
and l > 1, that occurs in T , replace all als in T by a fresh nonterminal al.

Then the returned grammar is obtained by backtracking the compression operations
performed by the algorithm: observe that replacing abwith c corresponds to a grammar
production

c→ab (1a)
and similarly replacing a_ with a_ corresponds to a grammar production

al →al (1b)
The algorithm is divided into phases: in the beginning of a phase, all pairs occurring in
the current text are listed and stored in a list P , similarly, L contains all letters
occurring in the current text. Then pair compression is applied to an appropriately
chosen subset of P and all blocks of symbols from L are compressed, then the phase
ends. If everything works perfectly, each symbol of T is replaced and so T ’s length
drops by half ; in reality the text length drops by some smaller, but constant, factor per
phase. For the sake of simplicity, we treat all nonterminals introduced by the algorithm
as letters.

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

5

CHAPTER : 2
SURVEY OF RELATED WORKS

2.1 Compression Algorithms :

There are two major categories of compression algorithms: lossy and lossless.
Lossy compression algorithms involve the reduction of a file’s size usually by
removing small details that require a large amount of data to store at full fidelity.
Lossless data compression is the size reduction of a file, such that a decompression
function can restore the original file exactly with no loss of data.

The basic principle that lossless compression algorithms work on is that any
non-random file will contain duplicated information that can be condensed using
statistical modeling techniques that determine the probability of a character or phrase
appearing. These statistical models can then be used to generate codes for specific
characters or phrases based on their probability of occurring, and assigning the shortest
codes to the most common data. Such techniques include entropy encoding, run-length
encoding, and compression using a dictionary. Using these techniques and others, an 8-
bit character or a string of such characters could be represented with just a few bits
resulting in a large amount of redundant data being removed.

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

6

2.2 The Journey of Lossless Compression Algorithms :

Data compression has only played a significant role in computing since the
1970s, when the Internet was becoming more popular and the Lempel-Ziv algorithms
were invented, but it has a much longer history outside of computing. Morse code,
invented in 1838, is the earliest instance of data compression in that the most common
letters in the English language such as “e” and “t” are given shorter Morse codes. Later,
as mainframe computers were starting to take hold in 1949, Claude Shannon and
Robert Fano invented Shannon-Fano coding. Their algorithm assigns codes to symbols
in a given block of data based on the probability of the symbol occurring. The
probability is of a symbol occurring is inversely proportional to the length of the code,
resulting in a shorter way to represent the data.

Two years later, David Huffman was studying information theory at MIT and
had a class with Robert Fano. Fano gave the class the choice of writing a term paper or
taking a final exam. Huffman chose the term paper, which was to be on finding the
most efficient method of binary coding. After working for months and failing to come
up with anything, Huffman was about to throw away all his work and start studying for
the final exam in lieu of the paper. It was at that point that he had an epiphany, figuring
out a very similar yet more efficient technique to Shannon-Fano coding. The key
difference between Shannon-Fano coding and Huffman coding is that in the former the
probability tree is built bottom-up, creating a suboptimal result, and in the latter it is
built top-down.

Early implementations of Shannon-Fano and Huffman coding were done using
hardware and hardcoded codes. It was not until the 1970s and the advent of the Internet
and online storage that software compression was implemented that Huffman codes
were dynamically generated based on the input data. Later, in 1977, Abraham Lempel
and Jacob Ziv published their groundbreaking LZ77 algorithm, the first algorithm to
use a dictionary to compress data. More specifically, LZ77 used a dynamic dictionary
oftentimes called a sliding window. In 1978, the same duo published their LZ78
algorithm which also uses a dictionary; unlike LZ77, this algorithm parses the input
data and generates a static dictionary rather than generating it dynamically.

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

7

2.3 Compression Techniques :

Many different techniques are used to compress data. Most of the compression
techniques cannot stand on their own, but must be combined together to form a
compression algorithm. Those that can stand alone are often more effective when
joined together with other compression techniques. Most of these techniques fall under
the category of entropy coders, but there are others such as Run-Length Encoding and
the Burrows-Wheeler Transform that are also commonly used.

2.3.1 Run-Length Encoding :

Run-Length Encoding is a very simple compression technique that replaces runs
of two or more of the same character with a number which represents the length of the
run, followed by the original character; single characters are coded as runs of 1. RLE is
useful for highly-redundant data, indexed images with many pixels of the same color in
a row, or in combination with other compression techniques like the Burrows-Wheeler
Transform.

Here is a quick example of RLE:

Input: AAABBCCCCDEEEEEEAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAA

Output: 3A2B4C1D6E38A

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

8

2.3.2 Burrows-Wheeler Transform :

The Burrows-Wheeler Transform is a compression technique invented in 1994
that aims to reversibly transform a block of input data such that the amount of runs of
identical characters is maximized. The BWT itself does not perform any compression
operations, it simply transforms the input such that it can be more efficiently coded by a
Run-Length Encoder or other secondary compression technique.

The algorithm for a BWT is simple:

1. Create a string array.
2. Generate all possible rotations of the input string, storing each in the array.
3. Sort the array alphabetically.
4. Return the last column of the array.

BWT usually works best on long inputs with many alternating identical
characters. Here is an example of the algorithm being run on an ideal input. Note that
& is an End of File character:

Input Rotations
Alpha-Sorted
Rotations

Output

HAHAHA&

HAHAHA& AHAHA&H

HHH&AAA

&HAHAHA AHA&HAH

A&HAHAH A&HAHAH

HA&HAHA HAHAHA&

AHA&HAH HAHA&HA

HAHA&HA HA&HAHA

AHAHA&H &HAHAHA

Because of its alternating identical characters, performing the BWT on this
input generates an optimal result that another algorithm could further compress, such as
RLE which would yield "3H&3A". While this example generated an optimal result, it
does not generate optimal results on most real-world data.

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

9

2.3.3 Entropy Encoding :

Entropy in data compression means the smallest number of bits needed, on
average, to represent a symbol or literal. A basic entropy coder combines a statistical
model and a coder. The input file is parsed and used to generate a statistical model that
consists of the probabilities of a given symbol appearing. Then, the coder will use the
statistical model to determine what bit-or-bytecodes to assign to each symbol such that
the most common symbols have the shortest codes and the least common symbols have
the longest codes. It is also known as Statistical Encoding.

2.3.3.1 Shannon-Fano Coding :

This is one of the earliest compression techniques, invented in 1949 by Claude
Shannon and Robert Fano. This technique involves generating a binary tree to represent
the probabilities of each symbol occurring. The symbols are ordered such that the most
frequent symbols appear at the top of the tree and the least likely symbols appear at the
bottom.

The code for a given symbol is obtained by searching for it in the Shannon-Fano
tree, and appending to the code a value of 0 or 1 for each left or right branch taken,
respectively. For example, if “A” is two branches to the left and one to the right its code
would be “0012”. Shannon-Fano coding does not always produce optimal codes due to
the way it builds the binary tree from the bottom up. For this reason, Huffman coding is
used instead as it generates an optimal code for any given input.

The algorithm to generate Shannon-Fano codes is fairly simple :

1. Parse the input, counting the occurrence of each symbol.
2. Determine the probability of each symbol using the symbol count.
3. Sort the symbols by probability, with the most probable first.
4. Generate leaf nodes for each symbol.
5. Divide the list in two while keeping the probability of the left branch roughly

equal to those on the right branch.
6. Prepend 0 and 1 to the left and right nodes' codes, respectively.
7. Recursively apply steps 5 and 6 to the left and right sub-trees until each node is

a leaf in the tree.

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

10

2.3.3.2 Huffman Coding :

Huffman Coding is another variant of entropy coding that works in a very similar
manner to Shannon-Fano Coding, but the binary tree is built from the top down to
generate an optimal result.

The algorithm to generate Huffman codes shares its first steps with Shannon-Fano:

1. Parse the input, counting the occurrence of each symbol.
2. Determine the probability of each symbol using the symbol count.
3. Sort the symbols by probability, with the most probable first.
4. Generate leaf nodes for each symbol, including P, and add them to a queue.
5. While (Nodes in Queue > 1)

i. Remove the two lowest probability nodes from the queue.
ii. Prepend 0 and 1 to the left and right nodes' codes, respectively.

iii. Create a new node with value equal to the sum of the nodes’ probability.
iv. Assign the first node to the left branch and the second node to the right

branch.
v. Add the node to the queue

6. The last node remaining in the queue is the root of the Huffman tree

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

11

2.3.3.3 Arithmetic Coding :

This method was developed in 1979 at IBM, which was investigating data
compression techniques for use in their mainframes. Arithmetic coding is arguably the
most optimal entropy coding technique if the objective is the best compression ratio
since it usually achieves better results than Huffman Coding. It is, however, quite
complicated compared to the other coding techniques.

Rather than splitting the probabilities of symbols into a tree, arithmetic coding
transforms the input data into a single rational number between 0 and 1 by changing the
base and assigning a single value to each unique symbol from 0 up to the base. Then, it
is further transformed into a fixed-point binary number which is the encoded result. The
value can be decoded into the original output by changing the base from binary back to
the original base and replacing the values with the symbols they correspond to.

A general algorithm to compute the arithmetic code is:

1. Calculate the number of unique symbols in the input. This number represents
the base b (e.g. base 2 is binary) of the arithmetic code.

2. Assign values from 0 to b to each unique symbol in the order they appear.
3. Using the values from step 2, replace the symbols in the input with their codes
4. Convert the result from step 3 from base b to a sufficiently long fixed-point

binary number to preserve precision.
5. Record the length of the input string somewhere in the result as it is needed for

decoding.

Here is an example of an encode operation, given the input “ABCDAABD”:

1. Found 4 unique symbols in input, therefore base = 4. Length = 8
2. Assigned values to symbols: A=0, B=1, C=2, D=3
3. Replaced input with codes: “0.012300134” where the leading 0 is not a symbol.
4. Convert “0.012311234” from base 4 to base 2: “0.011011000001112”
5. Result found. Note in result that input length is 8.

Assuming 8-bit characters, the input is 64 bits long, while its arithmetic coding is
just 15 bits long resulting in an excellent compression ratio of 24%. This example
demonstrates how arithmetic coding compresses well when given a limited character
set.

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

12

2.3.3.4 Adaptive vs. Static encodings :

One problem with the previous three encodings is that the decoder needs to
know the probability distribution before it starts the decoding process. It's also a
problem from the encoder's point of view: if it doesn't a priori know the probability
distribution, it needs to scan through the entire input stream and compute the
probabilities before rewinding to the beginning and encoding the stream. If you're
encoding a real-time stream, and you don't know the probability distribution, this is less
than ideal.

One way to solve this is to compress in chunks. You read in a whole chunk,
calculate the statistics, dump the probability distribution, dump the compressed chunk,
and repeat, each time resetting the statistics to zero.

Another solution is to use an adaptive scheme. In an adaptive scheme, you
assume at the beginning that the probability distribution is uniform. That is, every
character has an equal chance of occurring. Each time you encode a symbol, you update
the probability of that symbol, and readjust whatever coding mechanism you're using.
This sort of scheme has the advantage that you don't even have to know how much data
you're going to compress: you just take it as it comes in. It also deals well with input
streams that change characteristics over time (especially if you do something clever like
only keep track of the last n bytes when calculating the probability distribution).

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

13

2.3.4 Compression Algorithms:

2.3.4.1 The Lempel-Ziv Algorithms:

The Lempel-Ziv algorithms compress by building a dictionary of previously
seen strings. Unlike PPM which uses the dictionary to predict the probability of each
character, and codes eachcharacter separately based on the context, the Lempel-Ziv
algorithms code groups of characters ofvarying lengths. The original algorithms also
did not use probabilities—strings were either in thedictionary or not and all strings in
the dictionary were give equal probability. Some of the newervariants, such as gzip, do
take some advantage of probabilities.

At the highest level the algorithms can be described as follows. Given a position
in a file,look through the preceding part of the file to find the longest match to the
string starting at thecurrent position, and output some code that refers to that match.
Now move the finger past thematch.

The two main variants of the algorithm were described by Ziv and Lempel in
two separatepapers in 1977 and 1978, and are often referred to as LZ77 and LZ78. The
algorithms differ in howfar back they search and how they find matches. The LZ77
algorithm is based on the idea of asliding window. The algorithm only looks for
matches in a window a fixed distance back from thecurrent position. Gzip, ZIP, and
V.42bis (a standard modem protocol) are all based on LZ77. TheLZ78 algorithm is
based on a more conservative approach to adding strings to the dictionary.
Unixcompress, and the Gif format are both based on LZ78.In the following discussion
of the algorithms we will use the term cursor to mean the positionan algorithm is
currently trying to encode from.

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

14

2.3.4.2 Sliding Window Algorithms : LZ77

Published in 1977, LZ77 is the algorithm that started it all. It introduced the
concept of a 'sliding window' for the first time which brought about significant
improvements in compression ratio over more primitive algorithms. LZ77 maintains a
dictionary using triples representing offset, run length, and a deviating character. The
offset is how far from the start of the file a given phrase starts at, and the run length is
how many characters past the offset are part of the phrase. The deviating character is
just an indication that a new phrase was found, and that phrase is equal to the phrase
from offset to offset+length plus the deviating character. The dictionary used changes
dynamically based on the sliding window as the file is parsed. For example, the sliding
window could be 64MB which means that the dictionary will contain entries for the
past 64MB of the input data.

Given an input "abbadabba" the output would look something like
"abb(0,1,'d')(0,3,'a')" as in the example below:

Position Symbol Output

0 a a

1 b b

2 b b

3 a
(0, 1, 'd')

4 d

5 a

(0, 3, 'a')
6 b

7 b

8 a

While this substitution is slightly larger than the input, it generally achieves a
considerably smaller result given longer input data.

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

15

2.3.4.3 Dictionary Algorithms : LZ78

LZ78 was created by Lempel and Ziv in 1978, hence the abbreviation. Rather
than using a sliding window to generate the dictionary, the input data is either
preprocessed to generate a dictionary with infinite scope of the input, or the dictionary
is formed as the file is parsed. LZ78 employs the latter tactic. The dictionary size is
usually limited to a few megabytes, or all codes up to a certain numbers of bytes such
as 8; this is done to reduce memory requirements. How the algorithm handles the
dictionary being full is what sets most LZ78 type algorithms apart.

While parsing the file, the LZ78 algorithm adds each newly encountered
character or string of characters to the dictionary. For each symbol in the input, a
dictionary entry in the form (dictionary index, unknown symbol) is generated; if a
symbol is already in the dictionary then the dictionary will be searched for substrings of
the current symbol and the symbols following it. The index of the longest substring
match is used for the dictionary index. The data pointed to by the dictionary index is
added to the last character of the unknown substring. If the current symbol is unknown,
then the dictionary index is set to 0 to indicate that it is a single character entry. The
entries form a linked-list type data structure.

An input such as "abbadabbaabaad" would generate the output
"(0,a)(0,b)(2,a)(0,d)(1,b)(3,a)(6,d)". You can see how this was derived in the following
example:

Input: a b ba d ab baa baad

Dictionary Index 0 1 2 3 4 5 6 7

Output NULL (0,a) (0,b) (2,a) (0,d) (1,b) (3,a) (6,d)

2.3.4.4 LZW

LZW is the Lempel-Ziv-Welch algorithm created in 1984 by Terry Welch. It is
the most commonly used derivative of the LZ78 family, despite being heavily patent-
encumbered. LZW improves on LZ78 in a similar way to LZSS; it removes redundant
characters in the output and makes the output entirely out of pointers. It also includes
every character in the dictionary before starting compression, and employs other tricks
to improve compression such as encoding the last character of every new phrase as the
first character of the next phrase. LZW is commonly found in the Graphics Interchange
Format, as well as in the early specifications of the ZIP format and other specialized
applications. LZW is very fast, but achieves poor compression compared to most newer
algorithms and some algorithms are both faster and achieve better compression.

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

16

2.4 Chomsky classification :

Most famous classification of grammars and languages introduced by Noam Chomsky
is divided into four classes:

 Recursively enumerable grammars –recognizable by a Turing machine
 Context-sensitive grammars –recognizable by the linear bounded automaton
 Context-free grammars - recognizable by the pushdown automaton
 Regular grammars –recognizable by the finite state automaton

2.4.1 Type-0 : Recursively enumerable grammar

Type-0 grammars (unrestricted grammars) include all formal grammars. They generate
exactly all languages that can be recognized by a Turing machine. These languages are
also known as the recursively enumerable languages. Note that this is different from the
recursive languages which can be decided by an always-halting Turing machine.
Class 0 grammars are too general to describe the syntax of programming languages and
natural languages.

2.4.2 Type-1 : Context-sensitive grammars

Type-1 grammars generate the context-sensitive languages. These grammars have rules
of the form α A β → α γ β with A a nonterminal and α,β and γ strings of terminals and
nonterminals. The strings α and β may be empty,but γ must be nonempty. The
languages described by these grammars are exactly all languages that can be recognized
by a linear bounded automaton.

Example:
AB → CDB
AB → CdEB
ABcd → abCDBcd
B → b

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

17

2.4.3 Type- 2 : Context-free grammars

Type-2 grammars generate the context-free languages. These are defined by rules of the
form A → γ with A a nonterminal and γ a string of terminals and nonterminals. These
languages are exactly all languages that can be recognized by a non-deterministic
pushdown automaton. Context-free languages are the theoretical basis for the syntax of
most programming languages.

Example:
A → aBc

2.4.4 Type-3 : Regular grammars

Type-3 grammars generate the regular languages. Such a grammar restricts its rules to a
single nonterminal on the left-hand side and a right-hand side consisting of a single
terminal,possibly followed (or preceded,but not both in the same grammar) by a single
nonterminal. The rule S → ε is also allowed here if S does not appear on the right side
of any rule. These languages are exactly all languages that can be decided by a finite
state automaton. Additionally,this family of formal languages can be obtained by
regular expressions. Regular languages are commonly used to define search patterns
and the lexical structure of programming languages.

Example:
A → ε
A → a
A → abc
A → B
A → abcB

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

18

2.5 Grammar-based compression:

Grammar-based compressions (or Grammar-based codes) are compression
algorithms based on the idea of constructing a context-free grammar (CFG) for the
string to be compressed. To compress a data sequence x = x1… xn , a grammar-based
code transformsxinto a context-free grammar G . The problem to find a smallest
grammar for an input sequence is known to be NP-hard , so many grammar-transform
algorithms are proposed from theoretical and practical viewpoints. The produced
grammar G can be further compressed by statistical encoders.

2.5.1 The smallest grammar problem:

In data compression and the theory of formal languages, the smallest grammar
problem is the problem of finding the smallest context-free grammar that generates a
given string of characters. The size of a grammar is defined by some authors as the
number of symbols on the right side of the production rules. Others also add the
number of rules to that. The (decision version of the) problem is NP-complete.

“ What is the smallest context-free grammar that generates exactly one given stringσ ? ”

This is a natural question about a fundamental object connectedto many fields
such as data compression, Kolmogorov complexity,pattern identification, and addition
chains.

Due to the problem’s inherent complexity, our objective is to find an
approximation algorithm which finds a small grammar for the input string. We focus
attention on the approximation ratio of the algorithm (and implicitly, the worst case
behavior).

The smallest grammar problem was articulated explicitly bytwo groups of
authors at about the same time. Nevill-ManningandWitten stated the problem and
proposed the SEQUITUR algorithm as a solution [31], [16]. Their main focus was on
extractingpatterns from DNA sequences, musical scores, and even theChurch of Latter-
Day Saints genealogical database, althoughthey evaluated SEQUITUR as a
compression algorithm as well.

The other group, consisting of Kieffer, Yang, Nelson, andCosman, approached
the smallest grammar problem from atraditional data compression perspective [33],
[32], [27]. First,they presented same deep theoretical results on the impossibilityof

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

19

having a “best” compressor under a certain type ofgrammar compression model for
infinite length strings [11].Then, they presented a host of practical algorithms
includingBISECTION, multilevel pattern matching (MPM), and LONGESTMATCH.
Furthermore, they gave an algorithm, which we referto as SEQUENTIAL, in the same
spirit as SEQUITUR, but withsignificant defects removed. All of these algorithms are
described later on. Interestingly, on inputswith power-of-two lengths, the BISECTION
algorithm of Nelson, Kieffer, and Cosman [34] gives essentially the same
representation as a binary decision diagram [35]. Binary decisiondiagrams have been
used widely in digital circuit analysissince the 1980s and also recently exploited for
more general compression tasks [36], [37].

2.5.1.1 Theorem : 1

There is no polynomial-time algorithm for thesmallest grammar problem with
approximation ratio less than8569/8568unlessP = NP [1].

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

20

2.5.2 Approximation Algorithms :

For many important optimization problems, there is no known polynomial-time
algorithm tocompute the exact optimum. In fact, when we discuss the topic of NP-
completeness later in thesemester, we'll see that a great many such problems are all
equivalently hard to solve, in thesense that the existence of a polynomial-time
algorithm for solving any one of them would implypolynomial-time algorithms for all
the rest.

The study of approximation algorithms arose as a way to circumvent the
apparent hardness ofthese problems by relaxing the algorithm designer's goal: instead
of trying to compute an exactlyoptimal solution, we aim to compute a solution whose
value is as close as possible to that of theoptimal solution. However, in some situations
it is desirable to run an approximation algorithmeven when there exists a polynomial-
time algorithm for computing an exactly optimal solution.

For example, the approximation algorithm may have the benefit of faster
running time, a lowerspace requirement, or it may lend itself more easily to a parallel or
distributed implementation.These considerations become especially important when
computing on “big data," where theinput size is so astronomical that a running time
which is a high-degree polynomial of the inputsize (or even quadratic, for that matter)
cannot really be considered an efficient algorithm, atleast on present-day hardware.

In light of the apparent intractability of the problems we believe not to lie in P, it
makes sense to pursue ideas other than complete solutions to these problems. Three
standard approaches include:

 Exploiting special problem structure: perhaps we do not need to solve the
general case of the problem but rather a tractable special version;

 Heuristics: procedures that tend to give reasonable estimates but for which no
proven guarantees exist;

 Approximation algorithms: procedures which are proven to give solutions
within a factor of optimum.

Of these approaches, approximation algorithms are arguably the most
mathematically satisfying, and will be the subject of discussion for this section.
An algorithm is a factor α approximation (α -approximation algorithm) for a problem
iff for every instance of the problem it can find a solution within a factor α of the
optimum solution.

If the problem at hand is a minimization then α > 1 and this definition implies
that the solution found by the algorithm is at most α times the optimum solution. If the
problem is maximization, α < 1 and this definition guarantees that the approximate
solution is at least α times the optimum.

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

21

It has been determined that a large class of common optimization problemsis
classified as NP-hard. It is widely believed—though not yet proven (ClayMathematics
Institute, 2003)—that NP-hard problems are intractable, whichmeans that there does
not exist an efficient algorithm (i.e. one that scales polynomially)that is guaranteed to
find an optimal solution for such problems.

Examples of NP-hard optimization tasks are the minimum traveling
salesmanproblem, the minimum graph coloring problem, and the minimum bin
packingproblem. As a result of the nature of NP-hard problems, progress that leads toa
better understanding of the structure, computational properties, and ways ofsolving one
of them, exactly or approximately, also leads to better algorithmsfor solving hundreds
of other different but related NP-hard problems. Severalthousand computational
problems, in areas as diverse as economics, biology,operations research, computer-
aided design and finance, have been shown tobe NP-hard.

A natural question to ask is whether approximate (i.e. near-optimal)
solutionscan possibly be found efficiently for such hard optimization
problems.Heuristic local search methods, such as tabu search and simulated annealing,
are often quite effective at finding near-optimal solutions.However, these methods do
not come with rigorous guarantees concerningthe quality of the final solution or the
required maximum runtime. The design of good approximation algorithms is a very
active area of researchwhere one continues to find new methods and techniques. It is
quitelikely that these techniques will become of increasing importance in tacklinglarge
real-world optimization problems.

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

22

2.5.3 Approximation Algorithms for Grammar-Based Compression:

Grammar-based data compression was first proposed explicitly by Kieffer and
Yang [11] and Nevill- Manning [16], but is closely related to some earlier “macro-
based" schemes proposed by Storer [20].

Several grammar-based compression algorithms have been proposed. Nevill-
Manning [16] devised the Sequitur algorithm which incrementally builds a grammar in
a single pass through the input string. This procedure was subsequently improved by
Kieffer and Yang [11] to what we refer to here as the Sequentialalgorithm. The same
authors employed a completely different approach to generating a compact grammarfor
a given string in their Bisection algorithm. Thisprocedure partitions the input into
halves, then quarters,then eighths, etc. and creates a nonterminal inthe grammar for
each distinct substring generated inthis way. Bisection was subsequently generalized to
Multilevel Pattern Matching (MPM) [27] in order to exploit multi-way and
incompletepartitioning. De Marcken [26] presented a complex multi-pass algorithm
that emphasizes avoiding local minima. Apostolico and Lonardi [28] proposed a greedy
algorithm(hereafter called Greedy) in which rules are added in a steepest-descent
fashion. Finally, even though it predates the idea of grammar-based compression, the
output of the well-known LZ78 algorithm [30] can also be interpreted as a grammar. (In
contrast, the output ofLZ77 [29] has no natural interpretation as a grammar.)

Here six previously proposed algorithms for the smallest grammar problem:
LZ78, BISECTION, SEQUENTIAL, LONGEST MATCH, GREEDY, and RE-PAIR
are being discussed. In addition, I discuss some closely related algorithms: LZW,
MPM, and SEQUITUR also.

Although most of the algorithms here were originally designed as compression
algorithms, those are viewed as approximation algorithms for the smallest grammar
problem. A good grammar-based compression algorithm should attempt to find the
smallest possible grammar generating the input string. Nonetheless, there do exist
disconnects between the theoretical study of the smallest grammar problemand
practical data compression.

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

23

2.5.3.1 LZ78 :

The well-known LZ78 [30] algorithm can be regardedas a grammar-based
compressor. The procedureworks as follows :

1. Begin with an empty grammar.
2. Makea single left-to-right pass through the input string.
3. At each step, find the shortest prefix of the unprocessedportion that is not the

expansion of a secondary nonterminal.
4. This prefix is either a single terminal a or elseexpressible asXawhereXis an

existing nonterminaland a is a terminal.
5. Define a new nonterminal, eitherY→ a or Y → Xa, and append this new

nonterminalto the end of the start rule.

2.5.3.2 LZW:

Some practical improvements on LZ78 are embodiedin a later algorithm, LZW
[38]. The grammars implicitlygenerated by the two procedures are not substantively
different,but LZW is more widely used in practice.

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

24

2.5.3.3 SEQUITUR Algorithm :

SEQUITUR forms a grammar from a sequence based on repeated phrases in that
sequence. Each repetition gives rise to a rule in the grammar, and the repeated
subsequence is replaced by a nonterminal symbol, producing a more concise
representation of the overall sequence. It is this pursuit of brevity that drives the
algorithm to form and maintain the grammar, and, as a by-product, provide a
hierarchical structure for the sequence [16].

At the left of Figure-1a is a sequence that contains the repeating string bc . Note
that the sequence is already a grammar—a trivial one with a single rule. To compress it,
SEQUITUR forms a new rule Abc , and A replaces both occurrences of bc . The new
grammar appears at the right of Figure-1a.

The sequence in Figure-1b shows how rules can be reused in longer rules. The
longer sequence consists of two copies of the sequence in Figure-1a. Since it represents
an exact repetition, compression can be achieved by forming the rule Aabcdbc to
replace both halves of the sequence. Further gains can be made by forming rule
B bc to compress rule A. This demonstrates the advantage of treating the sequence,
rule S, as part of the grammar—rules maybe formed from rule A in an analogous way to
rules formed from rule S. These rules within rules constitute the grammar’s hierarchical
structure.

The grammars in Figures 1a and 1b share two properties:

p1: no pair of adjacent symbols appears more than once in the grammar;
p2: every rule is used more than once.

Property p1 requires that every diagram in the grammar be unique, and will be
referred to as diagram uniqueness. Property p2 ensures that each rule is useful, and will
be called rule utility. These two constraints exactly characterize the grammars that
SEQUITUR generates.

Figure-1c shows what happens when these properties are violated. The first
grammar contains two occurrences of bc, so p1 does not hold. This introduces
redundancy because bcappears twice. In the second grammar, ruleB is used only once,
so p2 does not hold. If it were removed, the grammar would become more concise. The
grammars in Figures 1a and 1b are the only ones for which both properties hold for
each sequence. However, there is not always a unique grammar with these properties.

For example, the sequence in Figure-1d can be represented by both of the
grammars on its right, and they both obey p1 and p2. We deem either grammar to be
acceptable. Repetitions cannot overlap, so the string aaadoes not give rise to any rule,
despite containing two diagrams aa.

SEQUITUR’s operation consists of ensuring that both properties hold. When
describing the algorithm, the properties act as constraints. The algorithm operates by
enforcing the constraints on a grammar: when the diagram uniqueness constraint is

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

25

violated, a new rule is formed, and when the rule utility constraint is violated, the
useless rule is deleted. The next two subsections describe how this occurs.

Sequence Grammar

a S abcdbc S aAdA
A bc

b S abcdbcabcdbc S AA
A aBdB
B bc

c S abcdbcabcdbc S AA
A abcdbc

S CC
A bc
B aA
C BdA

d S aabaaab S AaA
A aab

S AbAab
A aa

Figure 1 : Example sequences and grammars that reproduce them: (a) a sequence with
one repetition; (b) a sequence with a nested repetition; (c) two grammars that violate
the two constraints; (d) two different grammars for the same sequence that obey the
constraints.

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

26

2.5.3.4 Bisection Algorithm:

Kieffer and Yang introduced the Bisection algorithmin [27]. This procedure
works on an input stringσ as follows :

1. Select the largest integerk such that2k <|σ| .
2. Partition σ into two substrings with lengths2kand |σ| - 2k.
3. Repeat this partitioning process recursivelyon each substring of length greater

than one.
4. Create a nonterminal for every distinct string of lengthgreater than one

generated during this process.
5. Each such nonterminal can then be defined by a rule withexactly two symbols

on the right.

2.5.3.5 Sequential Algorithm :

Nevill-Manning and Witten introduced the Sequiturgrammar compression
algorithm in [31]. Kieffer and Yang [27] subsequently offered an improved
algorithm,which we refer to here as Sequential. Sequentialworks as follows :

1. Begin with an empty grammar,and make a single left-to-right pass through the
inputstring.

2. At each step, find the longest prefix of the unprocessedportion of the input that
matches the expansionof a secondary nonterminal, and append that
nonterminalto the start rule.

3. Otherwise, if no prefix matchesthe expansion of a secondary nonterminal,
append the first terminal in the unprocessed portion to the startrule.

4. In either case, if the last pair of symbols in thestart rule already occurs at some
non-overlapping positionin the grammar, then replace both occurrences by
anew nonterminal whose definition is that pair.

5. Finally,if some nonterminal is used only once after this substitution,then
replace it by its definition, and delete thecorresponding rule.

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

27

2.5.3.6 Global Algorithms:

The remaining algorithms analyzed here all belongto a single class, which is
being referred to as global algorithms. The upper-bound of the approximation ratio of
every global algorithm stands byO((n/log n)2/3)with a single theorem [1]. However,
ourlower bounds are all different, complex, and weak. Moreover,the lower bounds rely
on strings over unbounded alphabets.Thus, it may be that every global algorithm has an
excellent approximationratio. Because they are so natural and our understandingis so
incomplete, global algorithms are one of the mostinteresting topics related to the
smallest grammar problem thatdeserve further investigation.

1) The Procedure: A global algorithm begins with the grammar S →σ . The remaining
work is divided into rounds. During each round, one selects a maximal string γ.
(Global algorithms differ only in the way they select a maximal string in each round.)

A maximal string has three properties.

(M1) It has length at least two.
(M2) It appears at least twice on the right side of thegrammar without overlap.
(M3) No strictly longer string appears at least as many timeson the right side without

overlap.

1. After a maximal string is selected, a new rule T→ γ is added to the grammar.
2. This rule is then applied by working left-to-right through the right side of every

other rule, replacing each occurrence of γ by the symbol T .
3. The algorithm terminates when no more maximal strings exist.

2) Upper Bound: The approximation ratio of every globalalgorithm is O((n/log n)2/3).
This follows from the fact thatgrammars produced by global algorithms are particularly
wellconditioned; not only are they irreducible, but they also possessan additional
property described by Lemma’s [1].

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

28

2.5.3.7 Greedy:

Apostolico and Lonardi [28] considered Greedy algorithmsfor grammar-based
data compression. The procedureworks as follows [22]:

1. Their idea is to begin with a grammar where the definition of thestart symbol is
the entire input string.

2. Then one repeatedlyadds the rule that decreases the size of thegrammar as much
as possible.

3. Each rule is added bymaking a pass through the string from left to right
andreplacing each occurrence of the definition of the rule byits nonterminal.

4. Greedy terminates when no rule canbe added without enlarging the grammar.

2.5.3.8 Recursive Pairing (re-pair) :

The phrase derivation algorithm used in re-pairconsists of replacing the most
frequent pair of symbols in the source message bya new symbol, re-evaluating the
frequencies of all of the symbol pairs with respectto the extended alphabet, and then
repeating the process until there is no pairof adjacent symbols that occurs twice [12]:

1. Identify symbolsa and bsuch that abis the most frequent pair of adjacentsymbols
in the message. If no pair appears more than once, stop.

2. Introduce a new symbol A and replace all occurrences of ab with A .
3. Repeat from step 1.

The message is reduced to a new sequence of symbols, each of which
representseither a unit symbol or a pair of recursively defined symbols. A zero-order
entropycode for the reduced message is the final step in the compression process; and
thepenultimate step is, of course, transmission of the dictionary of phrases.

We have not specified in which order pairs should be replaced when there
areseveral pairs of equal maximum frequency. While this does influence the outcome
ofthe algorithm, it appears to be of minor importance. The current
implementationresolves ties by choosing the least recently accessed pair, which avoids
skewness inthe hierarchy by discriminating against recently created pairs.

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

29

2.5.4 Chomsky normal form :

In formal language theory, a context-free grammarGis said to be in Chomsky
normal form (CNF) (first described by Noam Chomsky) if all of its production rules are
of the form:

A → BC, or
A → a, or
S → ε,

Where A, B andC are nonterminal symbols,
a is a terminal symbol (a symbol that represents a constant value),
S is the start symbol,
and ε denotes the empty string.

Also, neither B nor C may be the start symbol, and the third production rule can
only appear if ε is in Language of G(L(G)) , namely, the language produced by the
context-free grammar G.

Every grammar in Chomsky normal form is context-free, and conversely, every
context-free grammar can be transformed into an equivalent one which is in Chomsky
normal form and has a size no larger than the square of the original grammar's size.

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

30

2.5.5 Straight-Line Program (SLP) :

Definition :

A straight-line program (SLP) [13] over the terminalalphabetΓis a context-free
grammar A = (V, Γ, S, P)

(Where, V is the set of nonterminals,
Γ is the setof terminals,
S ∈ V is the initial nonterminal,

and P ⊆ V × (V ∪Γ)∗ is the set of productions)
such that the following two conditions hold:

(1) For every A ∈ V there exists exactly one production of the form (A, α) ∈ P for

α∈ (V ∪Γ)∗.
(2) The relation {(A,B) | (A, α) ∈ P,B ∈alph(α)} is acyclic.

A production (A, α) is also written as A →α. Clearly, the language generated
by the SLP Aconsists of exactly one word that is denoted by eval(A). More generally,
from every nonterminalA∈ V we can generate exactly one word that is denoted by
evalA(A) (thus eval(A) = evalA(S)).We omit the index Aif the underlying SLP is clear
from the context.

The derivation tree of the SLP A = (V, Γ, S, P) is a finite rooted ordered tree,
where everynode is labeled with a symbol from V ∪Γ. The root is labeled with the
initial nontermial S andevery node that is labeled with a symbol fromΓ is a leaf of the
derivation tree. A node that islabeled with a nonterminal Asuch that (A →α1 … αn) ∈ P (where α1, . . . , αn ∈ V ∪Γ) hasn children that are labeled from left to right with
α1, . . . , αn.

The size of the SLP A = (V, Γ, S, P) is |A| =∑ (A,α)∈P|α|. Every SLP can be
transformed inlinear time into an equivalent SLP in Chomsky normal form, where
every production has the form(A, a) with a ∈Γor (A,BC) with B,C ∈ V .

Example :

Consider the SLP A over the terminal alphabet {a, b} that consists of the
followingproductions: A1→b, A2→a, and Ai→ Ai － 1Ai －2for 3 ≤ i ≤ 7. The start
nonterminal isA7. Then eval(A) = abaababaabaab, which is the 7th Fibonacci word.
The SLP A is in Chomsky Normal Form and |A| = 12.

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

31

A simple induction shows that for every SLP A of size m one has |eval(A)| ≤
O(3m/3). On the other hand, it is straightforward to define an SLP B in Chomsky normal
formof size 2n such that |eval(B)| ≥ 2n. Hence, an SLP can be seen as a compressed
representation ofthe string it generates, and exponential compression rates can be
achieved in this way.

One may also allow exponential expressions of the form Ai for A ∈ V and i ∈ N
in right-handsides of productions. Here the number i is coded binary. Such an
expression can be replaced by a sequence of ordinary productions, where the length of
that sequence is bounded polynomiallyinthe length of the binary coding ofi .

For some applications, an extension of SLPs called composition systems in are
useful.A composition system A is defined as an SLP but may also contain productions
of the formX→ Y [i, j] for i, j ∈ N with 1 ≤ i ≤ j. Assume that the string w = evalA(Y) is
already defined.Then we let evalA(X) = w[i,max{|w|, j}]. A composition system is in
Chomsky normal form ifall productions have the form X → a, X → Y Z or X → Y [i, j]
for nonterminals X, Y , and Zand a terminal symbol a. The following result was shown
by Hagenah in his PhD thesis.

2.5.5.1 Theorem : 2

From a given composition system A in Chomsky normal form with n
nonterminalsone can compute in time O(n2) an SLP B of size O(n2) such that eval(B) =
eval(A) [13] .

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

32

CHAPTER : 3
METHODOLOGY OF PROPOSED WORK

3.1 Algorithm :

3.1.1 Notation conventions :

The input sequence to be represented by a context-free grammar is T ∈ Ʃ∗ ,
I have used the same letter also for the text currently kept by the algorithm .
By N we denote the initial length of T ,
By |T| the current one.
The smallest grammar generating the input sequence is denoted by G and its size |G| ,
measured as the length of the productions, is g .

The algorithm TtoG introduces new symbols to the instance, those symbols are
the nonterminals of the constructed grammar. However, these are later treated exactly
as the original letters, so we insist on calling them letters as well and use common set Ʃ
for both letters and nonterminals. I assumed that T is represented as a doubly-linked
list, so that removal and replacement of its elements can be performed in constant time
(assuming that we have a link to such an occurrence). Note though that if we were to
store Tin a table, the running time would be the same.

3.1.2 Grammar :

The crucial part of the analysis is the modification of Gaccording to the
compression performed on T. Still, when a new ‘letter’ a is introduced to Twe need to
estimate the length of the ‘productions’ in the constructed grammar that are needed for
a(note that we can of course use all letters previously used in T). The ‘productions’
introduced for ais called a representation of a lettera, the sum of lengths of those
‘productions’ is a cost of rep-resentation of a letter a (or simply: representation cost).

For example, in production (1a) then the representation cost is 2 (as we have
only one rule c→ab) and in a rule (1b) we have a cost l; the latter cost can be
significantly reduced, for instance for a12we can have a representation cost of 8instead
of 12, when we use a subgrammar a2→aa, a3→a2a, a6→a3a3 and a12→a6a6. Note that
when creplaces a pair (as in (1a)), its representation cost is always 2, but when
areplaces a block of letters, say al, the cost might be larger than constant.

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

33

3.1.3 The algorithm:

The algorithm “TtoG”is divided into phases: in each phase :

 we first list all letters
 and for each of them we perform the block compression
 and then again list all letters, choose appropriate partition
 and perform the pair compression for each pair from this partition that occurs in

the text.

Algorithm 1:
TtoG: outline

1: while|T|>1do
2: L ←list of letters in T
3: for each a ∈ L do >Blocks compression
4: compress maximal blocks of a >O(|T|)
5: P←list of pairs
6: find partition ofƩ into Ʃl and Ʃr >Covering at least 1/2of

occurrences of letters in T
7: >O(|T|), see Lemma5
8: for ab ∈ P∩ƩlƩr do >These pairs do not overlap
9: compress pair ab >Pair compression
10: returnthe constructed grammar

Before we make any analysis, we note that at the beginning of each phase we
can make a linear-time preprocessing that guarantees that the letters in Tform an
interval of numbers (which makes them more suitable for sorting using RadixSort).

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

34

3.1.4 Blocks compression :

The blocks compression is very simple to implement: We read T, for a maximal
block of a’s of length greater than 1. We create a record (a, l, p), where lis a length of the
block, and pis the pointer to the first letter in this block. We then sort these records
lexicographically using RadixSort (ignoring the last component). There are only O(¦T¦)
records and we assume that _can be identified with an interval , this is all done in O(¦T¦)
. Now, for a fixed letter a, the consecutive tuples with the first coordinate acorrespond
to all blocks of a, ordered by the size. It is easy to replace them in O(¦T¦) time with new
letters. Clearly, the space consumption is linear as well.

In the following we shall also use a simple property of the block compression:
since no two maximal blocks of the same letter can be next to each other, after the
block compression there are no blocks of length greater than 1in T.

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

35

3.1.5 Pair compression :

The pair compression is performed similarly as the block compression.
However, since the pairs can overlap, compressing all pairs at the same time is not
possible. Still, we can find a subset of non-overlapping pairs in Tsuch that a constant
fraction (1/4) of letters Tis covered by occurrences of these pairs. This subset is defined
by a partition of Ʃ into Ʃland Ʃrand choosing the pairs with the first letter in Ʃl and the
second in Ʃr; for a choice of ƩlƩrwe say that occurrences of ab ∈ P ∩ ƩlƩr are covered
by ƩlƩr. The existence of a partition covers at least one fourth of the occurrences.

In order to make the selection effective, the algorithm “GreedyPairs” keeps an
up to date counters countl[a]and countr[a], denoting, respectively, the number of
occurrences of pairs from aƩl∪Ʃlaand aƩr∪Ʃrain T(for the current assignment of letters
to Ʃland Ʃr). Those counters are updated as soon as a letter is assigned to ƩlorƩr.

Algorithm 2:
GreedyPairs

1: L←set of letters used in P
2: Ʃl←Ʃr←∅ >Organised as a bit vector
3: for a∈Ldo
4: countl[a] ←countr[a] ←0 >Initialisation
5: for a∈Ldo
6: if countr[a] ≥countl[a]then >Choose the one that guarantees

larger cover
7: choice←l
8: else
9: choice←r
10: Ʃchoice ←Ʃchoice∪{a}
11: foreach abor baoccurrence in Tdo
12: countchoice[b] ←countchoice[b] +1
13: if # occurrences of pairs from ƩrƩl in T > # occurrences of pairs from ƩlƩrin T then
14: switch Ʃr and Ʃl

15: return(Ʃl, Ʃr)

By the argument given above, when Ʃ is partitioned into Ʃland Ʃrby
GreedyPairs, at least half of the occurrences of pairs from Tare covered by ƩlƩr∪ ƩrƩl.
Then one of the choices ƩlƩr or ƩrƩl covers at least one fourth of the occurrences.

3.1.6 Size and running time :

It remains to estimate the total running time, summed over all phases. Clearly each
subprocedure in a phase has arun-ning time O(|T|)so it is enough to show that |T|is
reduced by a constant factor per phase.

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

36

3.2 Size of the grammar: SLPs and recompression :

To bound the cost of representation of letters introduced during the construction of the
grammar, we start with the smallest grammar G generating (the input) T and then
modify the grammar so that it generates T (i.e. the current string kept by TtoG) after
each of the compression steps. Then the cost of representing the introduced letters is
paid by various credits assigned to G. Hence, instead of the actual representation cost,
which is difficult to estimate, we calculate the total value of issued credit. Note that this
is entirely a mental experiment for the purpose of the analysis, as G is not stored or
even known to the algorithm. We just perform some changes on it depending on the
TtoG actions.

3.2.1 Definitions :

We assume that grammar G is a Straight Line Programme (SLP), however, we relax the
notion a bit (and call it an SLP with explicit letters, when an explicit reference is
needed):

• then onterminals are X1, . . . , Xm;

• each nonterminal has exactly one rule, which has at most two nonterminals in its body
(i.e. there are two, one or none nonterminals and an arbitrary number of letters in the
rule’s body);

• if Xi→αi is a rule and X j occurs in αithen j < i.

Note that every CFG generating a unique string can be transformed into an SLP with
explicit letters, with the size increased only by a constant factor:

• The renaming of nonterminals is obvious, we also remove the useless nonterminals.

• If a nonterminal X with a rule X →α has more than two nonterminals in α, we can

replace a substringYwZin α by a new nonterminal X´with a rule X´→YwZ. In this way
the number of nonterminals in α drops by 1 and the size of the grammar increases by 1.

• As only one string is generated, we can reorder the nonterminals.

We call the letters (strings) occurring in the productions the explicit letters
(strings, respectively). The unique string derived by Xiis denoted by val(Xi); the
grammar G shall satisfy the condition val(Xm) = T , where m = |T| . We do not assume
that val(Xi) ≠ ,߳ however, if val(Xi) = t߳hen Xiis not used in the productions of G (as
this is a mental experiment, such Xican be removed from the rules and in fact from the
SLP).

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

37

3.2.2 Intuition and road map:

3.2.2.1 Paying the representation cost: credit

With each explicit letter we associate two units of credit and pay most of the
cost of representing the letters introduced during TtoG with these credits. More
formally: when the algorithm modifies G and in the process it creates an occurrence of
a letter, we issue (or pay) 2 new credits. On the other hand, if we do a compression step
in G, then we remove some occurrences of letters. The credit associated with these
occurrences is then released and can be used to pay for the represen-tation cost of the
new letters introduced by the compression step as well as for the credit for the newly
introduced letters (so that the algorithm does not issue new credit). For pair
compression the released credit indeed suffices to pay both the credit of the new letters
occurrences and their representation cost, but for chain compression the released credit
does not suffice, as it is not enough to pay the representation cost. Here we need some
extra amount that is estimated separately later on. In the end, the total cost is the sum of
credit that was issued during the modifications of G plus the value that we estimate
separately later on.

3.2.2.2 Additional cost :

The additional cost of representing letters during the block compression is
estimated separately. In most cases, the cost of creating blocks can be cover by released
credit, the only exception is when two long blocks of a are joined together. This can
happen only between nonterminals in some rule of G and then the additional cost is
charged towards this rule. Then we show that one rule has only O(log N) cost charged
to it: if we charge ∑ilogli cost to a rule, then it originally derived a word of length at
least ∏ili. This is described in detail later on.

3.2.2.3 Modifying the grammar :

Recall that whenever we say nonterminal, rule, production etc., we mean one of
G. When we replace each occurrence of the pair ab in T , we should also do this in G.
However, this may not be possible, as some abs generated by G do not come from
explicit pairs in G but rather are ‘between’ a nonterminal and a letter, for instance in a
simple grammar X1→a, X2→ X1b the pair ab has such a problematic occurrence. If
there are no such occurrences, it is enough to replace each explicit ab in G and we are
done. To deal with the problematic ones, we need to somehow change the grammar, in
the example above we replace X1with a, leaving only X2→ab, for which the
previous procedure can be applied. It turns out that this ad-hoc approach can be turned
into a systematic procedure that deals with all such problems at once, by removing
appropriate letters from rules and introducing them to other rules. This procedure is the
main ingredient of this section and it is given in Section 3.4. Similar problems occur
also when we want to replace maximal blocks of a and the solution to this problem is
similar and it is given in Section 3.5.

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

38

Note that in the example above, when X1is replaced with a, 2 credit for the occurrence
of a in X1→a is released and wasted. Then we issue 2 credit for the new occurrence of a
in the rule X2. When ab is replaced with c, 4 credit is released when ab is removed
from the rule, 2 of this credit is used for the credit of c and the remaining 2 can be used
to pay the representation cost for c→ab.

3.2.2.4 Pair compression :

A pair of letters ab has a crossing occurrence in a nonterminal Xi(with a rule
Xi→ αi) if ab is in val(Xi) but this occurrence does not come from an explicit
occurrence of ab in αinor it is generated by any of the nonterminals in αi. A pair is non-
crossing if it has no crossing occurrence. Unless explicitly written, we use this notion
only to pairs of different letters.

By PCab→c(w)we denote the text obtained from w by replacing each ab by a
letter c (we assume that a ≠b). We say that a procedure (that changes a grammar G with

nonterminals X1, . . . ,Xm to G´with nonterminals X1´, . . . , Xm´) properly implements

the pair compression of ab to c, if val(Xm´) = PCab→c(val(Xm)) and G´is an SLP with
explicit letters. When a pair ab is noncrossing the procedure that implements the pair
compression is easy to give: it is enough to replace each explicit ab with c.

Algorithm 3:
PairCompNCr(ab, c):
compressing a non-crossing pair ab.

1: replace each explicit ab in G by c

In order to distinguish between the nonterminals, grammar, etc. before and after
the application of compression of ab (or, in general, any procedure) we use ‘primed’

letters, i.e. Xi´, G´, T´for the nonterminals, grammar and text after this compression
and ‘unprimed’, i.e. Xi, G, T for the ones before.

If all pairs in ƩlƩrare non-crossing, iteration of PairCompNCr(ab,c)for each pair
abin ƩlƩrproperly implements the pair compression for all pairs in ƩlƩr(note that as
Ʃland Ʃrare disjoint, occurrences of different pairs from ƩlƩrcannot overlap and so the
order of replacement does not matter). So it is left to assure that indeed the pairs from
ƩlƩrare all noncrossing. It is easy to see that ab∈ƩlƩris a crossing pair if and only if one
of the following three ‘bad’ situations occurs:

CP1 : there is a nonterminal Xi, where i <m, such that val(Xi)begins with band
aXioccurs in one of the rules;
CP2 : there is a nonterminal Xi, where i <m, such that val(Xi)ends with aandXiboccurs
in one of the rules;

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

39

CP3 : there are nonterminals Xi, Xj, where i, j <m, such that val(Xi)ends with
aandval(Xj)begins with band XiXjoccurs in one of the rules.

Consider (CP1), let bw =val(Xi). Then it is enough to modify the rule for Xiso that
val(Xi) =wand replace each Xiin the rules by bXi, we call this action the left-
poppingbfrom Xi. Similar operation of right-popping a letter afromXiis symmetrically
defined. It is shown in Lemma [4] that they indeed take care of all crossing occurrences
of ab.

Furthermore, left-popping and right-popping can be performed for many letters
in parallel: the below procedure Pop(Ʃl , Ʃr)‘uncrosses’ all pairs from the set Ʃl Ʃr ,
assuming that Ʃl and Ʃr are disjoint subsets of Ʃ(and we apply Pop(Ʃl , Ʃr)only in the
cases in which they are).

Algorithm 4 :
Pop(Ʃl , Ʃr):
Popping letters from Ʃl and Ʃr.

1: for i ←1 … (m −1) do
2: let the production for Xibe Xi→αi

3: ifthe first symbol of αiis b∈Ʃr then >Left-popping b
4: remove this bfrom αi
5: replaceXiin G’s productions by bXi

6: ifval(Xi) = ε then
7: removeXifrom G’s productions
8: for i ←1 … (m −1) do
9: let the production of Xibe Xi→αi

10: ifthe last symbol of αiis a∈Ʃlthen >Right-popping a
11: remove this afrom αi
12: replaceXiin G’s productions by Xia
13: if val(Xi) = ε then
14: removeXifrom G’s productions

In order to compress pairs from Ʃl Ʃr it is enough to first uncross them all
using Pop(Ʃl , Ʃr)and then compress them all by PairCompNCr(ab, c) for each ab ∈ Ʃl

Ʃr .

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

40

Algorithm 5 :
PairComp(Ʃl , Ʃr):
compresses pairs from Ʃl Ʃr .

1: run Pop(Ʃl , Ʃr)
2: forab∈Ʃl Ʃrdo
3: runPairCompNCr(ab, c) >cis a fresh letter

Lemma :

PairCompimplements pair compression for each ab∈Ʃl Ʃr. It issues O(m)new
credit to G, where mis the number of nonterminals of G. The credit of the new letters
introduced to Gand their representation costs are covered by the credit issued or
released by PairComp.

Using this Lemma [4] we can estimate the total credit issued during the pair
compression.

Corollary 1:

The compression of pairs issues in total O(m logN)credit during the run of
TtoG; the credit of the new letters introduced to Gand their representation costs are
covered by the credit issued or released during PairComp [4].

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

41

3.2.2.5 Blocks compression:

Similar notions and analysis as the ones for pairs are applied for blocks.
Consider occurrences of maximal a-blocks in Tand their derivation by G. Then a block
alhas a crossing occurrenceinXiwith a rule Xi→αi, if it is contained in val(Xi)but this
occurrence is not generated by the explicit as in the rule nor in the substrings generated
by the nonterminals inαi. If a-blocks have no crossing occurrences, then ahas no
crossing blocks. As for noncrossing pairs, the compression of ablocks, when it has no
crossing blocks, is easy: it is enough to replace each explicit maximal a-block in the
rules of G. We use similar terminology as in the case of pairs: we say that a
subprocedure properly implements a block compression for a.

Algorithm 6 :
BlockCompNCr(a),
which compresses ablocks when ahas no crossing blocks.

1:foreacha
lmdo

2:replace every explicit maximal blocka
lminGbyalm

Note that we do not yet discuss the issued credit, nor the cost of the
representation of letters representing blocks. It is left to ensure that no letter has a
crossing block. The solution is similar to Pop, this time though we need to remove the
whole prefix and suffix from val(Xi)instead of a single letter. The idea is as follows:
suppose that ahas a crossing block because aXioccurs in the rule and val(Xi)begins with
a. Left-popping adoes not solve the problem, as it might be that val(Xi)still begins with
a. Thus, we keep on left-popping until the first letter of val(Xi)is not a, i.e. we remove
the a-prefix of val(Xi). The same works for suffixes.

Algorithm 7 :
RemCrBlocks:
removing crossing blocks.

1: for i ←1 … (m −1) do
2: let a, b be the first and last letter of val(Xi)
3: let li , ri be the length of the a-prefix and b-suffix of val(Xi)

4: If val(Xi) ∈a∗ then
5 : ri=0andli=| val(Xi)|

6: remove a
li from the beginning and b

ri from the end of αi

7: replace Xi by a
liXib

r i in the rules
8: if val(Xi) = ε then
9: remove Xi from the rules

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

42

The compression of all blocks of letters is done by first running
RemCrBlocksand then compressing each of the block by BlockCompNCr. Note that
we do not compress blocks of letters that are introduced in this way. Concerning the
number of credit, the arbitrary long blocks popped by RemCrBlocksare compressed
(each into a single letter) and so at most 8credit per rule is issued.

Algorithm 8 :
BlockComp:
compresses blocks of letters.

1: run RemCrBlocks
2: L ←list of letters in T
3: for each a ∈ L do
4: run BlockCompNCr(a)

Corollary 2.

During the whole TtoGtheBlockCompissues in total O(m logN)credit. The credit of the
new letters introduced to Gis covered by the issued credit.

Note that the cost of representation of letters replacing blocks is not covered by the
credit, this cost is separately estimated in the next subsection 3.2.2.6.

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

43

3.2.2.6 Calculating the cost of representing letters in block compression :

The issued credit is enough to pay the 2 credit for occurrences of letters
introduced during TtoGand the released credit is enough to pay the credit of the letters
introduced during the pair compression and their representation cost. However, credit
alone cannot cover the representation cost of letters replacing blocks. The appropriate
analysis is presented in this section. The overall plan is as follows: firstly, we define a
scheme of representing the letters based on the grammar Gand the way Gis changed by
BlockComp(the G-based representation). Then for such a representation schema, we
show that the cost of representation is O(glogN). Lastly, it is proved that the actual cost
of representing the letters by TtoG (the TtoG-based representation) is smaller than the
G-based one, hence it is also O(glogN).

3.2.2.6.1 G-based representation :

The intuition is as follows: while the ablocks can have exponential length, most
of them do not differ much, as in most cases the new blocks are obtained by
concatenating letters athat occur explicitly in the grammar and in such a case the
released credit can be used to pay for the representation cost. This does not apply when
the new block is obtained by concatenating two different blocks of a(popped from
nonterminals) inside a rule. However, this cannot happen too often: when blocks of
lengthp1, p2, ...,plare compressed (at the cost of
O(∑l

i=1(1+logpi)) = O(log(∏l
i=1pi)), as eachpi≥2) , the length of the corresponding text

in the input text is ∏l
i=1pi, which is at most N. Thus O(∑l

i=1(1+logpi))=O(log(
∏l

i=1pi))=O(logN)cost per nonterminal is scored.

Getting back to the representation of letters: we create a new letter for each ablock in
the rule Xi→αiafterRemCrBlockspopped prefixes and suffixes from X1, ..., Xi−1but
before it popped letters from Xi. (We add the artificial empty block ε to streamline the
later description and analysis.) Such a block is a powerif it is obtained by concatenation
of two a-blocks popped from nonterminals inside a rule (and perhaps some other
explicit letters a), note that this power may be then popped from a rule (as it may be a
prefix or suffix in this rule). This implies that in the rule Xi→uXjvXkwthe popped
suffix of Xjand popped prefix of Xkare blocks of the same letter, say a, and furthermore

v ∈a∗. Note that it might be that one (or both) of XjandXkwere removed in the process
(in this case the power can be popped from a rule as well). For each block althat is not a
power we may uniquely identify another block ak(perhaps ε , not necessarily a power)
such that alwas obtained by concatenatingl−kexplicit letters to akin some rule.

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

44

Lemma :

For each block alrepresented in the G-based representation that is not a power
there is block ak(perhaps k =0) such that akis also represented in G-based representation
and alwas obtained in a rule by concatenating l–kexplicit letters that existed in the rule
to ak.

Note that the block ak is not necessarily unique: it might be that there are several
alblocks in Gwhich are obtained as different concatenations of akand l−kexplicit letters.

We represent the blocks as follows:

1. for a block al that is a power we represent alusing the binary expansion, which costs
 O (1 + log l);

2.for a block althat is obtained by concatenating l−kexplicit letters to a block ak (see
above Lemma [4]) we represent al as aka

l-k, which has a representation cost of l −k +1,
this cost is covered by the 2(l −k) ≥ l −k +1credit released by thel −k explicit letters a.
Note that the credit released by those letters was not used for any other purpose. (The
2units of credit per occurrence of alin the rules of grammar are already covered by the
credit issued by BlockComp.)

We refer to cost in 1 as the cost of representing powersand redirect this cost to
the nonterminal in whose rule this power is created. The cost in 2, as marked there, is
covered by released credit.

3.2.2.6.2 Cost of G-based representation:

We now estimate the cost of representing powers. The idea is that if nonterminal Xiis
charged the cost of representing powers of length p1, p2, ..., pl, which have
representation cost O (∑l

i=1(1+logpi))=O(log(∏l
i=1pi)), then in the input this

nonterminal generated a text of length at leastp1, p2, ..., pl≤Nand so the total cost of
representing powers is O(logN)(per nonterminal). This is formalised in the lemma
below.

Corollary 3.

The cost of G-based representation isO(g+glogN).

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

45

3.2.2.6.3 Comparing the G-based representation cost and TtoG-based representation
cost :

We now show that the cost of TtoG-based representation is at most as high as
G-based one. We first represent G-based representation cost using a weighted graph GG,
such that the G-based representation is (up to a constant factor) w(GG), i.e. the sum of
weights of edges of GG.

Similarly, the cost of TtoG-based representation has a graph representation
GTtoG.

We now show that GGcan be transformed to GTtoGwithout increasing the sum of
weights of the edges. This is done by simple redirection of edges and changing their
cost.

Corollary 4.

The total cost of TtoG-representation is O(g logN).

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

46

3.3 Improved Analysis:

Intuitively, each “reasonable” grammar should have size O(|T|): application of a
rule X→αmakes the current text longer by at least |α| −1, so the sum of all lengths of
right-hand sides (so |α|s) cannot be shorter than the input text. In some extreme cases
this estimation might be better than O(glogN)guaranteed by TtoG, thus TtoG should
have an approximation guarantee O(min(N, glogN)). This approach can be further
improved: the trivial upper bound applies to any intermediate string obtained during
TtoGand we can choose any of those estimations. We choose a specific point, where |T|
≈g. As a result, we divide the analysis of a computation of TtoGinto two stages: the
first one lasts while |T| ≥gand then the second one begins. We separately estimate the
cost of representation in the first stage, by O(glog(N/g)), and in the second, by O(g). In
total this yields O(g+glog(N/g)); this matches the best known results for the smallest
grammar problem[18,1,19]and is not worse than both O(glogN)and O(g).

3.3.1 Theorem : 3

The TtoGruns in linear time and returns a grammar of size O(g+glog (N/g)),
where gis the size of the optimal grammar for the input text.

Note that the time analysis was done already in Theorem1, in the rest of this section we
focus on the improved size analysis.

3.3.2 Outline:

Firstly, we show that indeed any reasonable grammar for a text Thas size O(T). This
follows by simple calculation and shows that it is enough to calculate the cost of
representation for the grammar when |T| ≥g. From Corol-lary1and Lemma13we know
that those costs are covered by the issued credit and the additional representation cost
for a-blocks. The analysis for credit is easy: since in each phase we introduce O(m) ≤
O(g)credit, it is enough to bound the number of phases and this follows from the fact
that we shorten the text in each phase.

On the other hand, the analysis of the representation cost for blocks is much
more involved. The general outline remain as it was as in Section3.6: we again use the
G-based representation as a middle step, estimate its cost and compare it with the TtoG-
based one. The difference is in the estimation of the G-based representation cost. We no
longer can simply charge O(logN)cost to a rule, we need a more subtle analysis. Instead
of direct charging to a rule Xi→αi, we associate the cost with some of the letters (of the
original text) generated by Xi. To this end we ‘mark’ those letters and distinguish
between different such markings. We ensure that such markings are disjoint, there are
at most 2of them per non-terminal and that the cost of representation is related to the
total size of the markings, to be more precise, when we have markings of lengths p1, p2,
..., pkthen the G-representation cost is O(∑k

i=11+logpi). Then the estimation of the size
of the whole grammar is just a matter of calculation. The markings and the analysis of

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

47

representation cost using them is performed in Section4.4. For technical reasons we
also consider the cost of representation in the phase in which |T|is reduced from more
thangto smaller than gseparately, the analysis is a simple combination of the case when
|T| >gand when |T| <gand is done in Section4.5. Wrapping up all estimations and giving
the proof of Theorem2is done in Section4.6. What is left is to describe the way we
modify the markings to ensure their properties. This technical construction is presented
separately.

3.3.3 Linear bound:

We begin with formalizing the argument that any “reasonable” grammar has size
O(|T|).

Lemma:

Let SLP Gcontain no production X→αwith |α| ≤1and assume that every production is
used in the derivation defined by G. Then |G| ≤2|T| −1 [4].

In particular, if at any point the letters created so-far by TtoGhave
representation cost kand the remaining text is Tthen the final grammar for the input tree
has size at most k +2|T| −1.

Note that the grammar produced by TtoGclearly has the properties assumed by
Lemma19: we introduce new letters in place of substrings of length at least 2and each
of them is used in the derivation of the input text.

In the following analysis we focus on the phase such that the text before it has
length greater or equal to gand after it is smaller than g. Such phase exists: clearly
N≥g(as we can take the grammar with Ton the right-hand side) and so initially |T|
≥gand in the end Tis reduced to a single letter.

Lemma :

There is a phase in computation of TtoGsuch that at the beginning of the phase
|T| ≥gand at the end of the phase |T| <g [4].

We separately estimate the cost of representation (i.e. issued credit and the cost
of TtoG-based representation) up to the phase from Lemma20, in this phase and after it.
For the first two we show an upper bound of O(g+glog(N/g)), for the latter we use
Lemma19to get an estimation O(g)on the representation cost.

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

48

3.3.4 Credit and pair compression when text is long :

Lemma :

If at the beginning of the phase |T| ≥g then O(g+glog(N/g)) credit was issued.

From the above Lemma we know that the representation cost of letters
introduced by pair compression is covered by the credit. Thus

Corollary 5:

Suppose that at the beginning of the phase |T| ≥g. Then the representation cost
of letters introduced by pair compression till this phase is O(g+glog(N/g)).

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

49

3.3.5 Cost of representing blocks when text is long:

For the cost of representing blocks, we define the G-based and TtoG-based
representations in the same way as previously. However, we slightly extend the notion:
we consider those representations at any point of TtoG, not only at the end; this does
not affect those notions in any way.

For both the G-based representation and the TtoG-based representation we
again define graphs GGandGTtoGand by Lemma16the cost of G-based representation is
Θ(w(GG))and by Lemma17the cost of TtoG-based representation is Θ(w(GTtoG)). Then
Lemma18shows that we can transformGGtoGTtoGwithout increasing the sum of weights.
Hence it is enough to show that the G-based representation cost is at most
O(g+log(N/g)).

The G-based representation cost consists of some released credit and the cost of
representing powers, see Lemma16. The former was already addressed in
Lemma21(the whole issued credit is O(g+glog(N/g))) and so it is enough to estimate
the latter, i.e. the cost of representing powers.

The outline of the analysis is as follows: when a new power a_is represented,
we mark some letters of the input text (and perhaps modify some other markings) those
markings are associated with nonterminals and are named Xi-pre-power marking and
Xi-in marking. The markings satisfy the following conditions:

M1 : each marking marks at least 2letters, no two markings mark the same letter;
M2 : for each Xithere is most one Xi-pre-power marking and at most one Xi-in

marking;
M3 : when the substrings of length p1, p2, ..., pkare marked, then the so-far cost of
representing the powers by G-based representation is c∑k

i=1 (1+logpi) (for some fixed
constant c).

We show that when we have a marking satisfying (M1)–(M3) then indeed the
cost of representing blocks is O(g+glog(N/g)). The construction of the markings and the
analysis of it, is technical and does not affect further estimations of the grammar size.

3.3.6 Intermediate phase:

We bounded the representation cost before the phase from Lemma20and after it, so it is
left to estimate the cost within this phase.

Lemma :

The cost of representing letters in the phase from Lemma20is O(g+glog(N/g)).

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

50

3.3.7 Markings’ modification:

The idea of preserving (M1) – (M3) is as follows: if a new power of length l is
represented, this yields a cost O(1 +logl) =O(log l), we can choose c in (M3) so that
this is at most clogl (as l ≥2). Then either we mark newl letters or we remove some
marking of length lˊ and mark l · lˊ letters, it is easy to see that in this way (M1)–
(M3) is preserved.

Whenever we are to represent powers a
l1 ,a

l2, ..., for each power a
l

, where l>1,

we find the right-most maximal block a
l
inT. Let Xibe the smallest nonterminal that

derives (before RemCrBlocks) this right-most occurrence of maximal a
l
(clearly there

is such a non-terminal, as Xmderives it). It is possible that this particular a
l
in Xis’ rule

was obtained as a concatenation ofl–kexplicit letters to a
k
(so, not as a power). In such a

case we are lucky, as the representation of this alis paid by the credit and we do not

need to separately consider the cost of representing power a
l
. Otherwise the a_in this

rule is obtained as a power and we mark some of the letters in the input that are

‘derived’ by this a
l
. The type of marking depends on the way this particular a

l
is

‘derived’: If one of the nonterminals in Xis’production was removed during
RemCrBlocks, this marking is an Xi-pre-power marking. Otherwise, this marking is
an Xi-in marking.

Consider the a
l
and the ‘derived’ substring w

l
of the input text. We show that if there are

markings inside w
l
, they are all inside the last among those w’s.

Lemma :

Let a
l
be an occurrence of a maximal block to be replaced with alwhich

‘generates’ w
l
in the input text. If there is any marking within thisw

l
then it is within the

last among those w’s. [4]

We now demonstrate how to mark letters in the input text. Suppose that we

replace a power a
l
, let us consider the right-most occurrence of this a

l
inTand the

smallest Xithat generates this occurrence. This a
l
generates some w

l
in the input text. If

there are no markings inside w
l
 then we simply mark any lletters within w

l
. In the

other case, by Lemma25we know that all those markings are in fact in the last w. If any
of them is the (unique) Xi-in marking, let us choose it. Otherwise choose any other

marking. Let lˊdenote the length of the chosen marking. Consider, whether this
marking in wis unique or not

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

51

uniquemarking :Then we remove it and mark arbitrary l · lˊletters inw
l
; this is

possible, as |w| ≥ lˊand so |w
l
| ≥l · lˊ. Since log(l · lˊ) =logl +loglˊ, the(M3) is

preserved, as it is enough to account for the 1 +logl≤cloglrepresentation cost of a
l
as

well as the c loglˊcost associated with the previous marking of length lˊ.

notunique :Then |w| ≥ lˊ+2(the 2for the other markings, see(M1)). We remove the

marking of length lˊ, let us calculate how many unmarked letters are in w
l
afterwards:

inw
l - 1

there are at least (l −1)·(lˊ+2)letters (by the Lemma25: none of them marked)

and in the last wthere are at least lˊunmarked letters (from the marking that we
removed):

(l −1)·(lˊ +2) + lˊ = (l lˊ + 2l - lˊ - 2) + lˊ
 = l lˊ + 2l - 2

> llˊ

We mark those l.lˊletters, as in the previous case, the associated clog(l lˊ)is
enough to pay for the cost.

There is one issue: it might be that we created an Xi-in marking while there
already was one, violating (M2). However, we show that if there were such a marking,

it was within w
l
(and so within the last w [4]) and so we could choose it as the marking

that was deleted when the new one was created. Consider the previous Xi-in marking. It
was introduced for some powerbk, replaced by bkthat was a unique letter between the
nonterminals in the rule for Xi, by Lemma24. Consider the rightmost substring of the
input text that is generated by the explicit letters between nonterminals in the rule for
Xi. The operations performed on Gcannot shorten this substring, in fact they often
expand it. When bkis created, this substring is generated by bk, by Lemma24. When al is

created, it is generated by al, [4] i.e. this is exactly w
l
. So in particular w

l
includes the

marking for bk. This shows that (M1)–(M3) are preserved.

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

52

CHAPTER : 4
Comparative Study of Different Developed Model

The hardness of the smallest grammar problem naturally leads to two directions
of research: on the one hand, several heuristics are considered [12,11,16], on the other,
approximation algorithms, with a guaranteed approximation ratio, are proposed; in this
paper we consider only the latter approach. Note that the heuristical algorithms can
work differently depending on the distribution of letters in the input (and often the
principle behind them assumes that the data has some sort of regularity). On the other
hand, the approximation guarantees shown for the latter algorithms are universal, in the
sense that they do not depend on the distribution of letters or any other properties of the
provided text.

The first two algorithms with an approximation ratio O(log(N/g))were
developed independently (and simultaneously) by Rytter [18] and Charikar et al. [1].
They followed a more or less the similar approach. At first Rytter’s Algorithm is
presented.

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

53

4.1 Rytter’s Algorithm in details :

Rytter’s algorithm [18] applies the LZ77 compression to the input string and
then transforms the obtained LZ77 represeNtation to an O(l log(N/l)) size grammar,
where l is the size of the LZ77 representation. It is easy to show that l ≤ g and as f (x) =
x log(N/x) is increasing, the bound O(g log(N/g)) on the size of the grammar follows
(and so a bound O(log(N/g)) on approximation ratio). The crucial part of the
construction is the requirement that the intermediate constructed grammar defines a
derivation tree satisfying the AVL condition. The bound on the running time and the
approximation guarantee are all consequences of the balanced form of the derivation
tree and of the known algorithms for merging, splitting, etc. of AVL trees (in fact these
procedures are much simpler in this case, as we do not store any information in the
internal nodes [18]). Note that also the final grammar for the input text is balanced,
which makes it suitable for later processing. Since the construction of LZ77
representation can be performed in linear time (assuming that the letters of the input
word can be sorted in linear time), also the running time of the whole algorithm can be
easily bounded by a linear function.

4.1.1 Construction of small grammar-based compression: [18]

Assume we have an LZ-factorization f1f2… fkof w.We convert it into a
grammarwhose size increases by a logarithmic factor. Assume we have LZ-
factorizationw=f1f2… fkand we have already constructed good (AVL-balanced and of
sizeO(i log n))grammar Gfor the prefixf1f2… fi-1 . If fiis a terminal symbol generatedby
a nonterminal A then we set G := Cancat(G, A) [18] . Otherwise we locate thesegment
corresponding to fiin the prefixf1f2… fi-1 .

Due to the fact that G is balanced we can Jnd a logarithmic number of
nonterminalsS1 , S2 ,… , St(i)of G such that fi=val(S1).val(S2). … val(St(i)). The
sequenceS1 , S2 ,… , St(i)is called the grammar decomposition of the factor fi .

We concatenate the parts of the grammar corresponding to this nonterminals
with G,using the operation Concat. Assume the first |Ʃ| nonterminalscorresponds to
letters of the alphabet, so they exist at the beginning. We initialize Gto the grammar
generating the Jrst symbol of w and containing all nonterminals forterminal symbols,
they do not need to be initially connected to the string symbol. Thealgorithm starts with
the computation of LZ-factorization, this can be done using suffix trees inO(n log
|Ʃ|)time, see [39].

If LZ-factorization is too large (exceedsn/log n) then we neglect it and write
atrivial grammar of size n generating a given string. Otherwise we have onlyk ≤ n log n
factors, they are processed from left to right.

We havet(i) = O(log n) [18] , so the number of two-arguments
concatenationsneeded to implement single step (2) isO(log n), each of them adding
O(log n) nonterminals. Steps (1) and (3) can be done in O(log n)time, since the height

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

54

of thegrammar is logarithmic. Hence the algorithm gives O(log2(n)) -ratio
approximation.

At the cost of slightly more complicated implementation of step (2) log2n -ratio
canbe improved to a log n-ratio approximation. The key observation is that the
sequence ofheights of subtrees corresponding to segments Siof next LZ-factor is bitonic
[18].We can split this sequence into two subsequences: height-nondecreasing
sequenceR1 , R2 ,…, Rk, called right-sided, and height-nonincreasing sequence L1; L2

,…, Lr, called left-sided.

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

55

4.2 Charikar’s Algorithm in details :

Charikar et al. [1] followed more or less the same path, with a different
condition imposed on the grammar: it was required that its derivation tree is length-
balanced, i.e. for a rule X →Y Z the lengths of words generated by Y and Z
are within a certain multiplicative constant factor from each other. For such trees
efficient implementation of merging, splitting etc. operations were given (i.e.
constructed from scratch) by the authors and so the same running time as in the case of
the AVL trees was obtained.

4.2.1 An O(log 3 N) Approximation Algorithm: [1]

To begin, we describe a useful grammar construction, proveone lemma, and cite
an old result that we shall use later.

The substring construction generates a set of grammar rulesenabling each
substring of a string η = x1 . . . xp to be expressedwith at most two symbols.

The construction works as follows. First, create a nonterminalfor each suffix of

the string x1. . . xkand each prefix of xk+1. . . xp, where k = ⌈(p/2)⌉. Note that each
such nonterminalcan be defined using only two symbols: the nonterminalfor the next
shorter suffix or prefix together with one symbolxi. Repeat this construction recursively
on the two halves of theoriginal string x1. . . xk and xk+1. . .xp.The recursion
terminateswhen a string of length one is obtained. This recursion haslog plevels, and
nonterminals are defined at each level. Sinceeach definition contains at most two
symbols, the total cost ofthe construction is at most2p log p .

Now we show that every substring α = xi . . . xj of η is equalto < AB >, where
Aand Bare nonterminals defined in the construction.There are two cases to consider. If
αappears entirelywithin the left-half of or entirely within the right-half, then wecan
obtain Aand B from the recursive construction on x1. . . xk and xk+1. . . xp .

Otherwise, let k = ⌈(p/2)⌉as before, and letAbe the nonterminal for xi. . . xk, and let
Bbe the nonterminalfor xk+1. . . xj.

4.2.2 Charikar’s Appoximate Algorithm:

In this algorithm [1] , the focus is on certain sequences ofsubstrings of α . In
particular, we construct log n sequencesCn , Cn/2 , Cn/4 , C2, where the sequence
Ckconsists ofsome substrings of σ that have length at most k . These sequencesare
defined as follows. The sequence Cnis initializedto consist of only the string σ itself.
In general, the sequenceCkgenerates the sequence Ck/2via the following
operations,which are illustrated in Fig. 1.

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

56

1) Use the greedy -approximation algorithm of Blum et al.to form a superstring
ρkcontaining all the distinct strings in Ck .

2) Cut the super string ρk into small pieces. First, determinewhere each string in Ck

nded up inside ρk , and then cut ρkat the left endpoints of those strings.
3) Cut each piece of ρk that has length greater than k/2 atthe midpoint. During the

analysis, we shall refer to thecuts made during this step as extra cuts.

The sequence Ck/2 is defined to be the sequence of pieces of ρkgenerated by
this three-step process. By the nature of Blum’salgorithm, no piece of ρkcan have
length greater than k afterstep 2), and so no piece can have length greater than k/2
afterstep 3). Thus, Ck/2is a sequence of substrings of that havelength at most k/2 as
desired.

Now we translate these sequences of strings into a grammar.To begin, associate
a nonterminal with each string in each sequenceCk. In particular, the nonterminal
associated with thesingle string in Cn(which is σ itself) is the start symbol of
thegrammar.

Figure : 2

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

57

All that remains is to define these nonterminals. In doing so,the following
observation is key: each string in Ckis the concatenationof several consecutive strings
in Ck/2together with aprefix of the next string in Ck/2. This is illustrated in the
figureabove, where the fate of one string in Ck(shaded and marked T) is traced
through the construction of Ck/2 . In this case, T isthe concatenation of V, W, X ,
and a prefix of Y . Similarly, theprefix of Y is itself the concatenation of consecutive
strings in Ck/4 together with a prefix of the next string in Ck/4 . This prefixis, in turn,
the concatenation of consecutive strings in Ck/8 togetherwith a prefix of the next string
in Ck/8 , etc. As a result,we can define the nonterminal corresponding to a string in
Ckas a sequence of consecutive nonterminals from Ck/2, followedby consecutive
nonterminals from Ck/4 , followed by consecutivenonterminals from Ck/8 , etc. For
example, the definitionof Twould begin T → V W X …and then contain sequencesof
consecutive nonterminals from Ck/4 , Ck/8 , etc. As a specialcase, the nonterminals
corresponding to strings in Ckcan be definedin terms of terminals.

We can use the substring construction to make these definitionsshorter and
hence the overall size of the grammar smaller.In particular, for each sequence of strings
Ck , we apply the substringconstruction on the corresponding sequence of
nonterminals.This enables us to express any sequence of consecutivenonterminals using
just two symbols. As a result, we can defineeach nonterminal corresponding to a string
in Ck using only twosymbols that represent a sequence of consecutive
nonterminalsfrom Ck/2 , two more that represent a sequence of
consecutivenonterminals from Ck/4 , etc. Thus, every nonterminal can nowbe defined
with O(log n)symbols on the right.

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

58

4.3 Sakamoto’s Algorithm in details :

Lastly, Sakamoto [19] proposed a different algorithm, based on RePair [12],
which is one of the practically implemented and used algorithms for grammar-based
compression. His algorithm iteratively replaced pairs of different letters and maxi-mal
blocks of letters (al is a maximal block if it cannot be extended bya to either side). A
special pairing of the letters was devised, so that it is ‘synchronizing’: if w has 2
disjoint occurrences in the text, then those two occurrences can be represented as w1
wˊw2, where w1, w2 = O(1), such that both occurrences of wˊin text are paired and
compressed in the same way. The analysis was based on considering the LZ77
representation of the text and proving that due to ‘synchronization’ the factors of LZ77
are compressed very similarly as the text to which they refer.

4.3.1 Sakamoto’s Approximation algorithm: [19]

The approximation algorithm LEVELWISE-REPAIRfor the grammar-based
Compression is presented. This algorithm calls two procedures repetition(,) and
arrangement(,) .

Outline of the algorithm

The algorithm contains two procedures repetition and arrangement. They are
calledby the algorithm for each execution of the outer-loop.

The task of repetition is to replaceany repetition w[i, j] = a+ in the input string
by an appropriate nonterminal. More precisely,if an input string contains a repetition
w[i, j] = ak, then w[i, j] is replaced bya nonterminal A(a,k)and the production A(a,k)→
B(a,k)C(a,k)is defined. The nonterminalsB(a,k),C(a,k) and their productions are also defined
recursively depending on k;B(a,k)= C(a,k)= A(a,k/2)if k is even and B(a,k)A(a,k－1)and C(a,k)= a
otherwise.

On the other hand, the task of arrangement is to decide whether the algorithm
replacea segment w[i, i + 1] = ab by a nonterminal for each pair ab ∈ Σ2, where a ≠ b.
Thisprocess is executed in the frequent order of all pairs stored in a priority queue
indicated bylist in line 3 of Fig. 3. This order is fixed until all elements are popped
according to the
following process.

We next briefly explain the task of arrangement. The complete description and
an exampleare shown in the next subsection. Taking a most frequent pair ab from the
priorityqueue and a unique index idab= {d1

ab, d2
ab} is set for ab, where the index is

simply denotedby id = {d1, d2} if it is not necessary to indicate the pair. Let S be the set
of segmentsw[i, i + 1] such that w[i, i + 1] = ab. The task is to assign eitherd1or d2to
each s ∈ S.Such an index is used to decide the replacement of the adjoining segment of

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

59

s . Similarly,the replacement of s itself is decided by the index of its adjoining segment,

which is alreadyassigned. After the set S´⊆S of segments to be replaced is decided,
arrangementcreates an appropriate nonterminal A and the production A→ab.

After all pairs are popped from the priority queue, the algorithm actually
replaces all thesegments by their corresponding nonterminals. The obtained string wis
given to the algo rithm as a next input and the two procedures are executed for w.The
algorithm continuesthis process until there is no more pair ab such that #(ab,w) ≥ 2
[19].

However Autur Jez found that the presented analysis [19] is incomplete, as
the cost of nonterminals introduced when maximal blocks are replaced is not bounded
at; the bound that Jez was able to obtain using the approach of Sakamoto is O(
log(N/g)2) , so worse than claimed [4].

4.3.2 Comparison with Sakamoto’s algorithm :

The general approach is similar to Sakamoto’s method but there are separate analyses
and estimations for (variants of) pair compression and block compression. However,
the pairing of letters seems more natural here and the analysis is simpler. Also, the
construction of nonterminals for blocks of letters is different. Note, that the analysis for
block compression mentioned here is much more involved than the one for pair
compression. On the other hand, the connection to the addition chains suggests that the
compression of blocks is the difficult part of the smallest grammarproblem.

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

60

CHAPTER : 5
CONCLUSION

5.1 Advantages and disadvantages of the proposed technique :

The proposed algorithm is interesting, as it is very simple and its analysis for the
first time does not rely on LZ77 representation of the string. Potentially this can help in
both design of an algorithm with a better approximation ratio and in showing a
logarithmic lower bound: Observe that LZ77 representation is known to be at most as
large as the smallest grammar, so it might be that some algorithm produces a grammar
of size o(glog(N/g)), even though this is of sizeΩ (l log(N/l)), wherelis the size of the
LZ77 representation of the string. Secondly, as the analysis ‘considers’ the optimal
grammar, it may be much easier to observe, where every approximation algorithm
performs badly, and so try to approach a logarithmic lower bound. This is much harder
to imagine, when the approximation analysis is done in terms of the LZ77.

Unfortunately, the obtained grammar is not balanced in any sense, in fact it is
easy to give examples on which it returns grammar of height Ω(√N)(note though that
the same applies also to grammar returned by Sakamoto’s algorithm). This makes the
obtained grammar less suitable for later processing; on the other hand, the practically
used grammar-based compressors [12,11,16]also do not produce a balanced grammar,
nor do they give a guarantee on its height.

On the good side, there is no reason why the optimal grammar should be
balanced, neither can we expect that for an unbalanced grammar a small balanced one
exists. Thus it is possible that while o(log(N/g)) approximation algorithm exists, there
is no such an algorithm that always returns a balanced grammar.

We note that the reason why the grammar returned by the proposed algorithm can have
large height is only due to block compression: if we assume that the nonterminal
generating a_has height one, the whole grammar has height O(log N). It looks
reasonable to assume that many data structures for grammar representation of text as
well as later processing of it can indeed process a production al→a l in constant time.

Lastly, the proposed method seems to be much easier to generalize then the LZ77-
based ones: generalizations of SLPs to grammars generating other objects (mostly:
trees) are known but it seems that LZ77-based approach does not generalize to such
settings, as LZ77 ignores any additional structure (like: tree-structure) of the data. In
recent work of Lohrey and the author the algorithm presented in this paper is
generalized to the case of tree-grammars, yielding a first provable approximation for
the smallest tree grammar problem [9].

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

61

5.2 Note on computational model :

The presented algorithm runs in linear time, assuming that the Ʃ can be
identified with a continuous subset of natural numbers of size O(NC)for some constant c
and the RadixSort can be performed on it. Should this not be the case for the input, we
can replace the original letters with such a subset, in O(n log | Ʃ |)time (by creating a
balanced tree for letters occurring in the input string).

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

62

REFERENCES

[1]M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, A. Shelat,
The smallest grammar problem, IEEE Trans. Inform. Theory 51(7) (2005) 2554–
2576.

[2]P. Gawrychowski, Pattern matching in Lempel–Ziv compressed strings: fast, simple,
and deterministic, in: C. Demetrescu, M.M. Halldórsson (Eds.), ESA, in: LNCS,
vol.6942, Springer, 2011.

[3] L. Gasieniec, M. Karpinski, W. Plandowski, W. Rytter, Efficient algorithms for
Lempel–Ziv encoding, in: R.G. Karlsson, A. Lingas (Eds.), SWAT, in: LNCS,
vol.1097, Springer, 1996.

[4] A. Jez, Approximation of grammar-based compression via recompression, in: J.
Fischer, P. Sanders (Eds.), CPM, in: LNCS, vol.7922, Springer, 2013, full version
available at http://arxiv.org/abs/1301.5842.

[5]A. Jez, Recompression: a simple and powerful technique for word equations, in: N.
Portier, T. Wilke (Eds.), STACS, in: LIPIcs, vol.20, SchlossDagstuhl–Leibniz
ZentrumfuerInformatik, Dagstuhl, Germany, 2013, full version available at
http://arxiv.org/abs/1203.3705, accepted to J. ACM,
http://drops.dagstuhl.de/opus/volltexte/2013/3937.

[6] A. Jez, The complexity of compressed membership problems for finite automata,
Theory Comput. Syst. 55 (2014) 685–718, http://dx.doi.org/10.1007/s00224-013-
9443-6.

[7] A. Jez, One-variable word equations in linear time, Algorithmica (2015),
http://dx.doi.org/10.1007/s00453-014-9931-3, in press.

[8]A. Jez, Faster fully compressed pattern matching by recompression, ACM Trans.
Algorithms 11(3) (2015) 20:1–20:43, http://doi.acm.org/10.1145/2631920.

[9] A. Jez, M. Lohrey, Approximation of smallest linear tree grammar, in: E.W. Mayr,
N. Portier (Eds.), STACS, in: LIPIcs, vol.25, SchlossDagstuhl–Leibniz-
ZentrumfuerInformatik, 2014.

[10] M. Karpinski, W. Rytter, A. Shinohara, Pattern-matching for strings with short
descriptions, in: CPM, 1995.

[11]J.C. Kieffer, E.-H. Yang, Sequential codes, lossless compression of individual
sequences, and Kolmogorov complexity, IEEE Trans. Inform. Theory 42(1)
(1996) 29–39.

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

63

[12]N.J. Larsson, A. Moffat, Offline dictionary-based compression, in: Data
Compression Conference, IEEE Computer Society, 1999.

[13]M. Lohrey, Algorithmics on SLP-compressed strings: a survey, Groups Complex.
Cryptol. 4(2) (2012) 241–299.

[14]K. Mehlhorn, R. Sundar, C. Uhrig, Maintaining dynamic sequences under equality
tests in polylogarithmic time, Algorithmica 17(2) (1997) 183–198.

[15]M. Mitzenmacher, E. Upfal, Probability and Computing: Randomized Algorithms
and Probabilistic Analysis, Cambridge University Press, 2005.

[16]C.G. Nevill-Manning, I.H. Witten, Identifying hierarchical structurein sequences: a
linear-time algorithm, J. Artificial Intelligence Res. 7 (1997) 67–82.

[17]W. Plandowski, Testing equivalence of morphisms on context-free languages, in: J.
van Leeuwen (Ed.), ESA, in: LNCS, vol.855, Springer, 1994.

[18]W. Rytter, Application of Lempel–Ziv factorization to the approximation of
grammar-based compression, Theoret. Comput. Sci. 302(1–3) (2003) 211–222.

[19]H. Sakamoto, A fully linear-time approximation algorithm for grammar-based
compression, J. Discrete Algorithms 3(2–4) (2005) 416–430.

[20]J.A. Storer, T.G. Szymanski, The macro model for data compression, in: R.J.
Lipton, W.A. Burkhard, W.J. Savitch, E.P. Friedman, A.V. Aho (Eds.), STOC,
ACM, 1978.

[21]A.C.-C. Yao, On the evaluation of powers, SIAM J. Comput. 5(1) (1976) 100–103.

[22] Eric Lehman, AbhiShelat, Approximation Algorithms for Grammar-Based
Compression, SODA '02 Proceedings of the thirteenth annual ACM-SIAM
symposium on Discrete algorithms , Pages 205-212

[23] Guy E. Blelloch, Computer Science Department, Carnegie Mellon University,
Introduction to Data Compression, Algorithms in the real world, 2000

[24] Hiroshi Sakamoto, Grammar Compression: Grammatical Inference by
Compression and Its Application to Real Data, Proceedings of the 12th ICGI,
JMLR: Workshop and Conference Proceedings 34: 3-20, 2014

[25] Shmuel T. Klein, Efficient recompression techniques for dynamic full-text
retrieval systems, SIGIR '95 Proceedings of the 18th annual international ACM
SIGIR conference on Research and development in information retrieval, Pages
39-47

[26] C. de Marcken. The Unsupervised Acquisition of aLexicon from Continuous
Speech.MIT AI Memo 1558.November 1995.

__
Recompression : An Approximate Algorithm For Grammar-Based Compression

64

[27] J. C. Kieffer, E. Yang, G. J. Nelson, P. Cosman.Universal Lossless Compression
via Multilevel PatternMatching. IEEE Transactions on Information Theory,vol.
46 (2000), pp. 1227-1245.

[28] A. Apostolico and S. Lonardi. Some Theory and Practice of Greedy O_-Line
Textual Substitution. DCC 1998, pp 119-128.

[29] J. Ziv and A. Lempel.A Universal Algorithm for Sequential Data Compression.
IEEE Transactions onInformation Theory, vol. 23 (1977), pp. 337-343.

[30] J. Ziv and A. Lempel.Compression of Individual Sequences via Variable-Rate
Coding. IEEE Transactions on Information Theory, vol. 24 (1978), pp. 530-536.

[31] C. Nevill-Manning.Inferring Sequential Structure.PhD thesis, University of
Waikato, 1996.

[32] E. H. Yang and J. C. Kieffer, “Efficient universal lossless data
compressionalgorithms based on a greedy sequential grammar transform—
Partone: Without context models,” IEEE Trans. Inf. Theory, vol. 46, no. 3,pp.
755–777, May 2000.

[33]J. C. Kieffer and E. H. Yang, “Grammar based codes: A new class ofuniversal
lossless source codes,” IEEE Trans. Inf. Theory, vol. 46, no. 3,pp. 737–754, May
2000.

[34] G. Nelson, J. C. Kieffer, and P. C. Cosman, “An interesting hierarchicallossless
data compression algorithm,” in Proc. IEEE Information TheorySociety
Workshop, Rydzyna, Poland, Jun. 1995. Invited Presentation.

[35] R. E. Bryant, “Graph-based algorithms for Boolean function manipulation,”IEEE
Trans. Comput., vol. C-35, no. 8, pp. 677–691, Aug. 1986.

[36] J. C. Kieffer, P. Flajolet, and E.-H. Yang, “Data compression via binarydecision
diagrams,” in IEEE Int. Symp. Information Theory, vol. 46, Jun.2000, p. 296.

[37] C.-H. Lai and T.-F. Chen, “Compressing inverted files in scalable
informationsystems by binary decision diagram encoding,” in Proc. 2001Conf.
Supercomputing, Denver, CO, Nov. 2001, p. 60.

[38] T. A. Welch, “A technique for high-performance data compression,”Computer
Mag. Computer Group News of the IEEE Computer GroupSoc., vol. 17, no. 6,
pp. 8–19, 1984.

[39] M. Crochemore, W. Rytter, Text Algorithms, Oxford University Press, New York,
1994.

[40] http://brasil.cel.agh.edu.pl/~11sustrojny/en/formal-grammar/index.html

	1 Front_Cover
	2 Front
	3 Body

