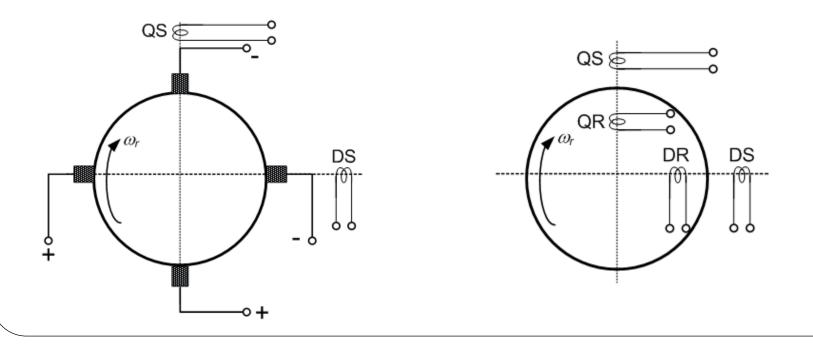
Transformation from Rotating to Stationary Axes

Day 9

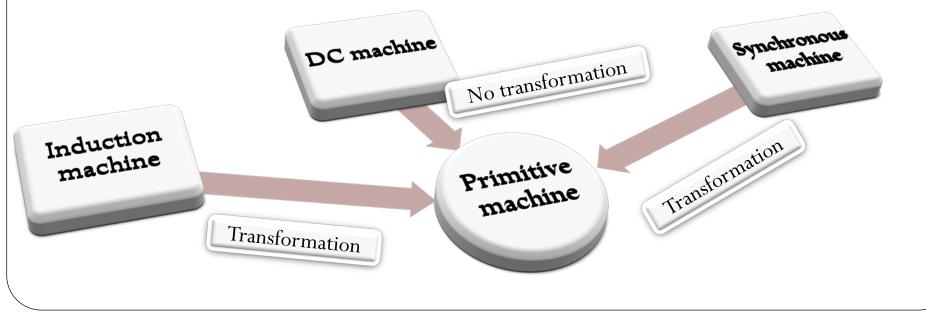
Why Transformation?

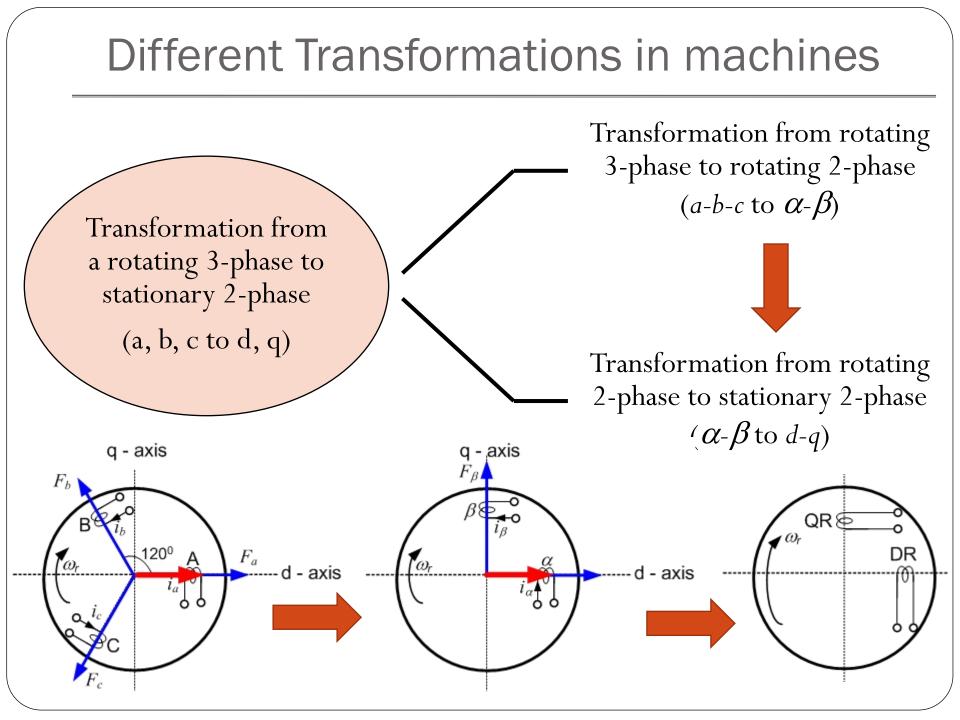
- Kron's Primitive (basic) 2-pole machine
 - Two static coils in stator
 - Two pseudo-stationary coils in rotor
- We want to represent all rotating machines by this primitive machine structure for ease & uniformity of analysis



What is Transformation?

- The process of replacing one set of variables by another set of variables for equivalent representation electrical machines is called *winding transformation* or simply *transformation*.
 - Since DC machines resemble the primitive machine structure directly, no transformation is necessary
 - Polyphase machines, however, need such transformations so that they can be fit into the primitive machine model and analyzed

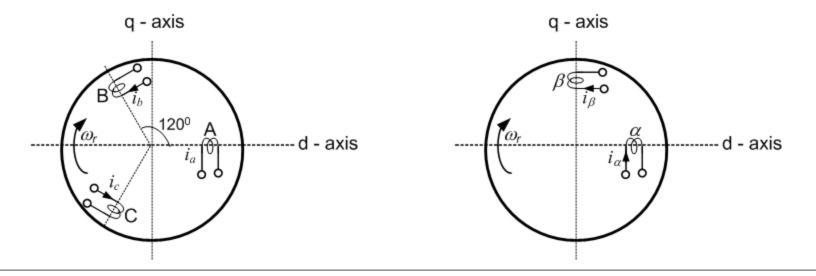




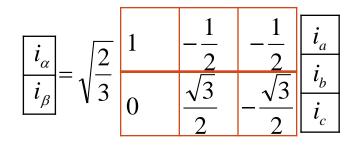
ILOs – Day9

- Transform from 2-phase rotating axes to 2-phase stationary axes
 - Derive the transformation matrix $(\alpha, \beta, 0 \text{ to } d, q, 0)$
 - Derive the inverse transformation matrix $(\mathbf{d}, \mathbf{q}, \mathbf{0} \text{ to } \boldsymbol{\alpha}, \boldsymbol{\beta}, \mathbf{0})$
- Transform from 3-phase rotating axes to 2-phase stationary axes
 - Derive the transformation matrix (**a**, **b**, **c** to **d**, **q**, **0**)
 - Derive the inverse transformation matrix (**d**, **q**, **0** to **a**, **b**, **c**)

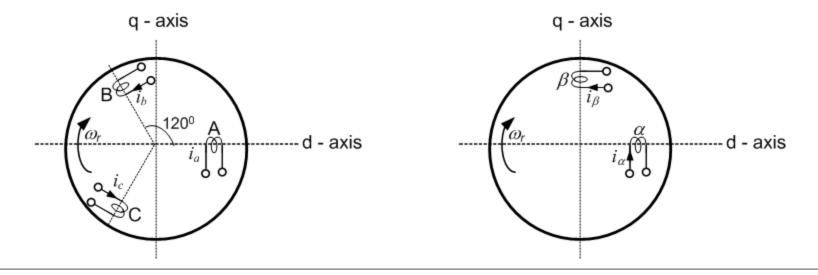
- The axis of phase 'α' in 2-phase machine is assumed to coincide with the axis of phase 'A' in 3-phase machine
- Since the two rotors rotate at same speed and in the same direction, the two axes in question continue to coincide as the rotors rotate
- Thus, the 2-phase axes (α, β) and 3-phase axes (a, b, c) are always at rest w.r.t. each other
- Coefficients of the transformation matrix are thus constant quantities



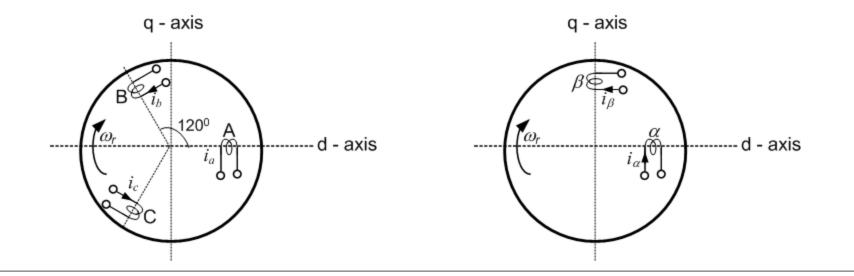
 $(\alpha,\beta,0)$ to (d, q, 0) transformation



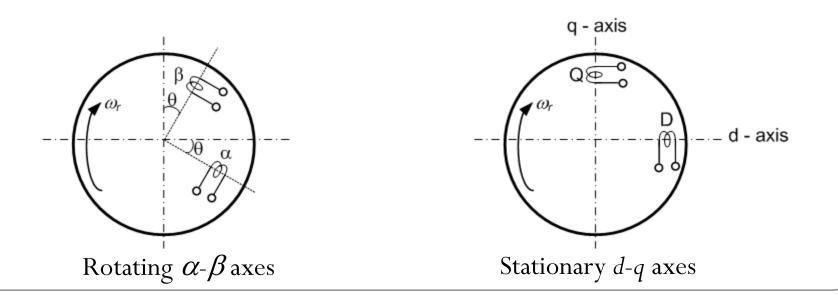
- Thus, the 2-phase axes (α, β) and 3-phase axes (a, b, c) are always at rest w.r.t. each other
- Coefficients of the transformation matrix are thus constant quantities



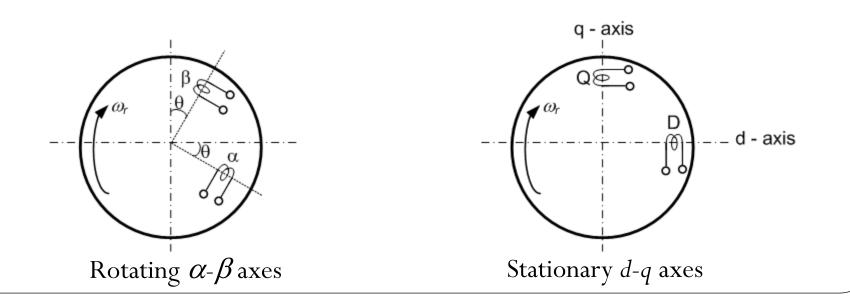
- The 2-phase axes (α, β) and 3-phase axes (a, b, c) are both rotating axes
- When transformation is to be done from such a rotating axis to a stationary (fixed) axis:
 - The relative position of the rotating axis varies with respect to the stationary (fixed) axis as the rotor rotates
 - The transformation matrices in such a case will contain coefficients that are function of relative positions between the rotating (α, β) and fixed (d, q) axes



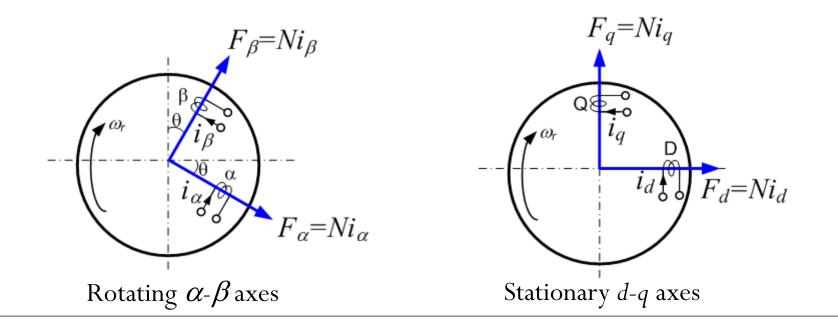
- The transformation process
 - The rotating coils are to be replaced by *pseudo-stationary* coils
 - Zero sequence quantities are not transformed, thus the required transformation is only from α - β to d-q axes
 - Revolving axes on the rotor implies that they are rotating w.r.t. the stator
 - Stationary axes on the rotor implies that they are fixed w.r.t. the stator (i.e. pseudo-stationary coil in rotor)



- The transformation process
 - Coils α and β of the rotating winding are shown to make an angle θ with the stationary d-q axes windings
 - The angle θ is such that at time t=0, $\theta=0$, i.e. the rotating axes α - β coincide with the stationary axes d-q at t=0
 - At any time *t*, the angular displacement is $\theta = \omega_r t$, where ω_r is the angular velocity



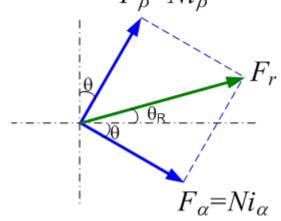
- The transformation process
 - At this instant 't', the MMF space phasors F_{α} , F_{β} of the α - β winding and F_{d} , F_{q} of the d-q winding are shown
 - Assume that all the windings have same number of turns "N'

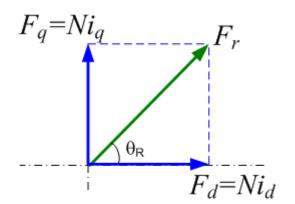


- The transformation process
 - The two MMFs and can be resolved along *d* and *q* axes:

$$F_{d} = F_{\alpha} \cos \theta + F_{\beta} \sin \theta$$

or, $Ni_{d} = Ni_{\alpha} \cos \theta + Ni_{\beta} \sin \theta$
Thus, $i_{d} = i_{\alpha} \cos \theta + i_{\beta} \sin \theta$
Similarly, $i_{q} = -i_{\alpha} \sin \theta + i_{\beta} \cos \theta$
 $F_{\beta} = Ni_{\beta}$





 $i_d = i_\alpha \cos \theta + i_\beta \sin \theta$

 $i_q = -i_\alpha \sin \theta + i_\beta \cos \theta$

- Rotating to stationary axes transformation
 - In matrix form:

$$\frac{\alpha}{q} = \frac{d}{q} \frac{\cos\theta}{\sin\theta} \frac{\sin\theta}{i_{\alpha}}$$
Let us define, $C = \frac{\cos\theta}{-\sin\theta} \frac{\sin\theta}{\cos\theta}$

$$\therefore \quad C_t = \frac{\cos\theta - \sin\theta}{\sin\theta \cos\theta} \qquad \therefore |C| = \cos^2\theta + \sin^2\theta = 1 \qquad \text{Hence, } C^{-1} = \frac{C_t}{|C|} = \frac{\cos\theta - \sin\theta}{\sin\theta \cos\theta}$$

 i_{α}

d

 $\alpha \cos \theta$

 $\beta \sin \overline{\theta}$

q

 $-\sin\theta$

 $\cos\theta$

 i_d

Thus, the inverse transformation is:

n

- The MMF, flux and number of turns are same in both configurations
- Thus, induced EMF (voltage) per phase will also be same
- Hence, current and voltage will have identical transformations

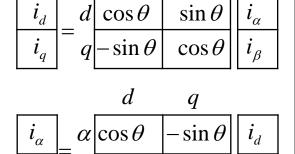
Rotating to stationary axes transformation

• Let the currents in coils d-q axes are time-varying: (remember that they are at 90⁰ in time & space)

$$i_{d} = I_{m} \sin(\omega t + \phi)$$

$$i_{q} = I_{m} \cos(\omega t + \phi)$$

Here ϕ is any arbitrary constant phase angle



 $\cos\theta$

 $\beta \sin \theta$

 l_{β}

α

The equivalent currents i_{α} and i_{β} can now be obtained using the inverse transform matrix as (note that $\omega t = \theta$):

$$i_{\alpha} = i_{d} \cos \theta - i_{q} \sin \theta = I_{m} \sin(\omega t + \phi) \cos \theta - I_{m} \cos(\omega t + \phi) \sin \theta$$
$$= I_{m} [\sin(\omega t + \phi - \theta)] = I_{m} [\sin(\omega t + \phi - \omega t)]$$
$$= I_{m} \sin \phi$$

$$i_{\beta} = i_{d} \sin \theta + i_{q} \cos \theta = I_{m} \sin(\omega t + \phi) \sin \theta + I_{m} \cos(\omega t + \phi) \cos \theta$$
$$= I_{m} [\cos(\omega t + \phi - \theta)] = I_{m} [\sin(\omega t + \phi - \omega t)]$$
$$= I_{m} \cos \phi$$

Rotating to stationary axes transformation

- Currents in *d-q* axes coils are time varying with 90⁰ phase shift and are also at space quadrature
 - They produce a rotating MMF (RMF)
- Currents in α - β axes are constant (DC currents), but the coils are at space quadrature
 - The DC currents i_{α} , i_{β} can only produce a resultant stationary MMF
 - But since the coils along α - β axes physically rotate at ω_r , the resultant MMF also rotate physically along with the rotor at the same speed ω_r
- Thus, time varying currents $i_d i_q$ in stationary coils d q produce exactly similar RMF, rotating at same speed and in the same direction as the DC currents $i_{\alpha} i_{\beta}$ in the rotating coils $\alpha \beta$ produce

 $i_{d} = I_{m} \sin(\omega t + \phi)$ $i_{q} = I_{m} \cos(\omega t + \phi)$

 $i_{\alpha} = I_{m} \sin \phi$ $i_{\beta} = I_{m} \cos \phi$

- Rotating to stationary axes transformation
 - If zero sequence currents exist:

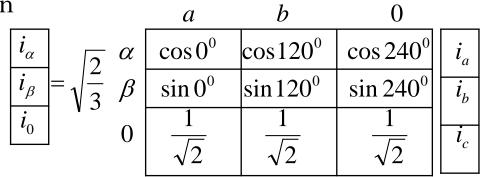
		α	β	0	
i_d	d	$\cos \theta$	$\sin heta$		i_{α}
i_q	= q	$-\sin\theta$	$\cos heta$		i_{β}
i_0	0			1	i_0

Transformation from 3-phase to 2-phase Stationary Axes

$$(a, b, c) \rightarrow (\alpha, \beta, 0) \rightarrow (d, q, 0)$$

$(a, b, c) \rightarrow (\alpha, \beta, 0) \rightarrow (d, q, 0)$ Transformation

- 3-phase to 2-phase rotating axes transformation
 - (a, b, c) to $(\alpha, \beta, 0)$ transformation



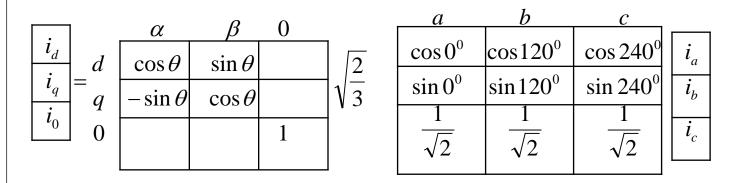
• 2-phase rotating to 2-phase stationary axes transformation

• $(\alpha, \beta, 0)$ to (d, q, 0) transformation

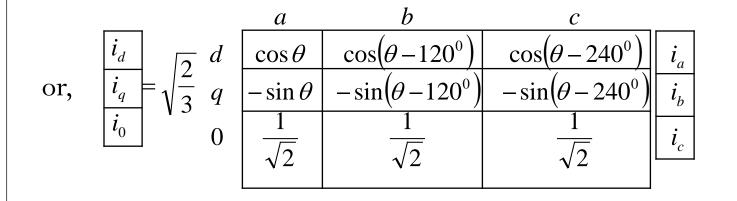
• These two transformation matrices can be combined to obtain 3-phase to 2-phase stationary axis transformation (a, b, c) to (α , β ,0) to (d, q,0)

 $(a, b, c) \rightarrow (\alpha, \beta, 0) \rightarrow (d, q, 0)$ Transformation

• (a, b, c) to $(\alpha, \beta, 0)$ to (d, q, 0) axes transformation



Refer appendix for 3x3 matrix multiplication



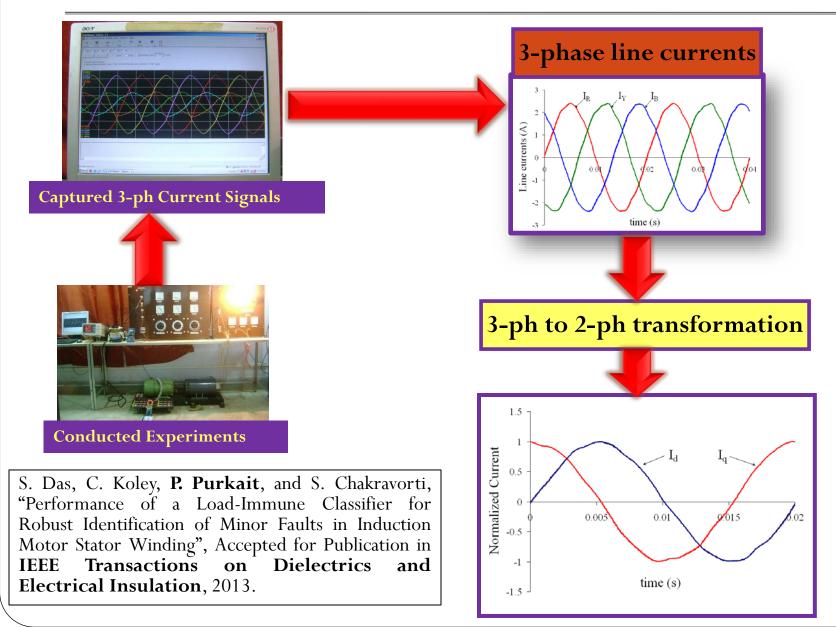
Thus, the new current (i_d, i_q, i_0) in stationary axes can be expressed in terms of actual 3-phase currents (i_a, i_b, i_c)

$(a, b, c) \rightarrow (\alpha, \beta, 0) \rightarrow (d, q, 0)$ Transformation

• In case the 3-phase motor is star connected without any neutral wire (as is most commonly the case in induction motors), the zero sequence current i_0 is absent, and the 3rd row will disappear from the transformation matrix:

or,
$$\boxed{\begin{matrix}i_d\\i_q\end{matrix}} = \sqrt{\frac{2}{3}} \begin{array}{c} d\\q\end{array} \left[\frac{\cos\theta}{\cos(\theta - 120^{\circ})} \\ -\sin\theta \\ -\sin(\theta - 120^{\circ}) \\ -\sin(\theta - 240^{\circ}) \\ -\sin(\theta - 240^{\circ}) \\ \hline i_b\\ i_c \\ \hline \end{array} \right]$$

- This gives us a transformation from ROTATING 3-phase (i_a, i_b, i_c) to STATIONARY 2-phase (i_d, i_q) transformation in stationary axes
- This technique is often used by researchers for MCSA (Motor Current Signature Analysis) for condition monitoring and fault diagnosis of induction motors



Inverse Transformation

(d, q,0) to (a, b, c) axes transformation

• Expressing 3-phase currents (i_a, i_b, i_c) in terms of the equivalent stationary axes currents (i_d, i_q, i_0)

		d	q	0	
i_a 7	а	$\cos heta$	$-\sin\theta$	$\frac{1}{\sqrt{2}}$	i_d
$\frac{i_b}{i_c} = \sqrt{\frac{2}{3}}$	b	$\cos(\theta - 120^{\circ})$	$-\sin(\theta-120^{\circ})$	$\frac{1}{\sqrt{2}}$	i_q
	С	$\cos(\theta - 240^{\circ})$	$-\sin(\theta - 240^{\circ})$	$\frac{1}{\sqrt{2}}$	i_0

- Similar transformation could be achieved for phase **voltages** as well
- Like i_a , i_b , i_c are related to i_d , i_q
- Similarly, v_a , v_b , v_c are related to v_d , v_q
- These relationships between the 3-phase variables (*a*, *b*, *c*) and 2-phase variables (*d*, *q*) are called **Park's Transformation**
- The 3-phase coils (*a*, *b*, *c*) and the 2-phase coils (*α*, *β*) are phase windings on the rotor that actually rotate along with the armature
 - Rotating w.r.t stator, but static w.r.t rotor
- On the other hand, the (d, q) coils are stationary w.r.t the stator
 - These are pseudo-stationary coils and hence involve the variable angular position term θ in the transformation matrix

- Physical concept of Park's Transformation (rotating 3-phase to stationary 2-phase)
 - Assume that the 3-phase currents i_a , i_b , i_c are given by:

$$i_{a} = I_{m} \cos(\omega t + \alpha)$$
$$i_{b} = I_{m} \cos(\omega t + \alpha - 120^{0})$$
$$i_{c} = I_{m} \cos(\omega t + \alpha - 240^{0})$$

• Here I_m is the maximum value of armature current and α is the time phase angle of i_a w.r.t the time origin at t=0

Park's transformation matrices

$$\begin{bmatrix} i_d \\ i_q \end{bmatrix} = \sqrt{\frac{2}{3}} \begin{array}{c} d \\ q \end{bmatrix} \begin{bmatrix} \cos\theta \\ \cos(\theta - 120^{\circ}) \\ -\sin\theta \\ -\sin(\theta - 120^{\circ}) \\ -\sin(\theta - 240^{\circ}) \\ \hline i_c \end{bmatrix} \begin{array}{c} i_a \\ i_b \\ \hline i_c \\ \hline \end{array}$$

• Physical concept of Park's Transformation (rotating 3-phase to stationary 2-phase) $i_a = I_m \cos(\omega t + \alpha)$

• Using Park's transformation:

$$i_{b} = I_{m} \cos(\omega t + \alpha - 120^{0})$$

$$i_{c} = I_{m} \cos(\omega t + \alpha - 240^{0})$$
Substituting $\theta = \omega t$:

$$i_{d} = \sqrt{\frac{2}{3}} I_{m} \left[\cos \omega t \cos(\omega t + \alpha) + \cos(\omega t - 120^{0}) \cos(\omega t + \alpha - 120^{0}) + \cos(\omega t - 240^{0}) \cos(\omega t + \alpha - 240^{0}) \right]$$

$$= \sqrt{\frac{2}{3}} I_{m} \frac{1}{2} \left[\cos(2\omega t + \alpha) + \cos\alpha + \cos(2\omega t + \alpha - 240^{0}) + \cos\alpha + \cos(2\omega t + \alpha - 480^{0}) + \cos\alpha \right]$$

$$= \sqrt{\frac{2}{3}} I_{m} \frac{1}{2} \left[\cos(2\omega t + \alpha) + \cos(2\omega t + \alpha - 240^{0}) + \cos(2\omega t + \alpha - 120^{0}) + 3\cos\alpha \right]$$

Park's transformation matrices

$$\begin{bmatrix} i_d \\ i_q \end{bmatrix} = \sqrt{\frac{2}{3}} \begin{array}{c} d \\ q \end{bmatrix} \begin{bmatrix} \cos\theta \\ \cos(\theta - 120^\circ) \\ -\sin\theta \\ -\sin(\theta - 120^\circ) \\ -\sin(\theta - 240^\circ) \\ \hline i_b \\ \hline i_c \end{bmatrix}$$

- Physical concept of Park's Transformation (rotating 3-phase to stationary 2-phase) $i_a = I_m \cos(\omega t + \alpha)$ $\frac{\sqrt{2}}{2} I_a \int [\log(2\omega t + \alpha) + \log(2\omega t + \alpha - 240^0) + \log(2\omega t + \alpha - 120^0) + 2\log \alpha] = I_m \cos(\omega t + \alpha - 120^0)$
- $i_{d} = \sqrt{\frac{2}{3}I_{m}\frac{1}{2}\left[\cos(2\omega t + \alpha) + \cos(2\omega t + \alpha 240^{\circ}) + \cos(2\omega t + \alpha 120^{\circ}) + 3\cos\alpha\right]} \quad \frac{i_{b} = I_{m}\cos(\omega t + \alpha 120^{\circ})}{i_{c} = I_{m}\cos(\omega t + \alpha 240^{\circ})}$

For a balanced 3-phase system:

$$\cos(2\omega t + \alpha) + \cos(2\omega t + \alpha - 240^\circ) + \cos(2\omega t + \alpha - 120^\circ) = 0$$

Thus:
$$i_d = \sqrt{\frac{2}{3}} I_m \frac{1}{2} [3\cos\alpha] = \sqrt{\frac{2}{3}} I_m \frac{3}{2} \cos\alpha = \sqrt{\frac{3}{2}} I_m \cos\alpha$$

Similarly, it can be shown that:

$$i_q = \sqrt{\frac{3}{2}}I_m \sin \alpha$$

• The two currents i_d and i_q are thus not time-varying, i.e. they are DC currents

- But still they produce RMF due to physical rotation of the rotor
- This RMF has the same speed and direction as that produced by the three time varying currents i_a, i_b, and i_c

Stator winding Transformation

- In addition to rotor, the stator may also have 1-phase, 2-phase, or 3-phase winding
 - If the stator has a 1-phase winding, it is taken along *d*-axis
 - If the stator has 2-phase windings, they are taken along *d*-*q* axes
 - If the stator has 3-phase windings, transformations need to be done to convert from 3-phase axes (a, b, c) to (α, β) or (d, q) axes
- Since the stator coil axes are always stationary w.r.t. the stator and its winding, coefficients of the transformation matrix are always constant