3-phase to 2-phase Transformation

Matrix

Day 3
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 Derive the transformation matrix (a, b, ¢ to o, 3, 0)

* Derive the inverse transformation matrix (a, 3, 0 to a, b, c)
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Transformation Matrix

* a,b, c to a, B transformation

® The transformation equations are:
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e
Transformation Matrix

* a,b, c to a, B transformation

® |n matrix form:
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Transformation Matrix

a, b, c to a, B transformation

® |n matrix form:
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® The transformation matrix is a singular one (No determinant since it is

not a square matrix)

® Thus, i, i,, i_ can not be obtained from i, i psince inverse of a singular

matrix doe not exist

® This situation can be overcome by making the matrix a square one

® i.e. we need a third equation containing i , i,, and i_
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Transformation Matrix

® a,b,cto OL,Btransformation L g_l +Ib( Ej i(_iﬂ
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® The third equation required to make the transformation matrix a
square one should not disturb the MMF
® One obvious choice is the zero sequence current:
iO — [ia +ib +ic]
® Note that in a balanced system (i +i,+i )= 0, and thus the main

operation is not disturbed if we introduce the zero sequence current i,

in the equation

-




e
Transformation Matrix

* a,b, c to a, B transformation

® |n matrix form:
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® The zero sequence current does not produce any RMF; and hence

simply to suit the transformations we choose an arbitrary multiplying

factor i:
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® The 3-phase currents i, i,, i_ are now replaced by 2-phase currents i, i B

and the zero sequence current i,
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Transformation Matrix

* a,b, cto q, 3, 0 transformation

® |n matrix form:
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® The zero sequence current does not produce any RMF; and hence

simply to suit the transformations we choose an arbitrary multiplying

factor i:
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® The 3-phase currents i, i,, i_ are now replaced by 2-phase currents i, i B

and the zero sequence current i, is expressed as :
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Transformation Matrix

* a,b, cto q, 3, 0 transformation

® |n matrix form:
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® The transformation matrix is now non—singular and its inverse can be
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Transformation Matrix

* a,b, cto a, B, 0 transformation and vice versa

® Transformation equation
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® |n alternate form
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Inverse Transformation Matrix

° o, 3,0 to a, b, c transformation

® [nverse transformation matrix ® |n alternate form
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® If the zero sequence current is not present, then i, i,, i_ can be obtained

in terms of i ,, i B only simply by omitting the third column (marked 0)

of the inverse transformation matrix
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