3-phase to 2-phase Transformation

Day 7

ILOs – Day7

- Transform 3-phase machine quantities to equivalent 2-phase machine quantities
 - By changing current
 - By changing number of turns
 - By changing both number of turns and current

Symmetrical 3-phase, 2-pole winding

- Rotor has 3 identical windings A, B, C 120⁰ apart
- Each coil has *N* number of turns

Symmetrical 3-phase, 2-pole winding

- Coils carry currents i_a , i_b , and i_c
- Maximum values of the MMFs F_a , F_b , F_c are along the respective coil axes
- Combined effect of these three sinusoidally time-varying MMFs produce a rotating magnetic field in rotor that varies in space but is of constant magnitude (constant RMS value)
- Speed of the RMF depends on supply frequency and number of poles

• Symmetrical 3-phase, 2-pole winding

- Coils carry currents i_a , i_b , and i_c
- Maximum values of the MMFs F_a , F_b , F_c are along the respective coil axes
- Combined effect of these three sinusoidally time-varying MMFs produce a rotating magnetic field in rotor that varies in space but is of constant magnitude (constant RMS value)
- Speed of the RMF depends on supply frequency and number of poles

• Symmetrical 3-phase, 2-pole winding

• Coils carry currents i_a , i_b , and i_c

$$i_{a} = I_{m} \cos \omega t$$
$$i_{b} = I_{m} \left(\cos \omega t - \frac{2\pi}{3} \right)$$
$$i_{c} = I_{m} \left(\cos \omega t - \frac{4\pi}{3} \right)$$

- The resultant rotating MMF moves at a speed *N_s* rpm
- It has constant magnitude (RMS) of $\frac{3NI_m}{2} = 1.5NI_m$

Transformation from 3-phase to 2-phase

- 3-phase winding is equivalently represented by a balanced 2-phase winding
- The two coils α and β are at 90⁰
- The coil α is taken along the same axis as coil *A* for convenience

Transformation from 3-phase to 2-phase

• The balanced 2-phase currents i_{α} and i_{β} are given by:

$$i_{\alpha} = I_{m} \cos \omega t$$
$$i_{\beta} = I_{m} \left(\cos \omega t - \frac{\pi}{2} \right) = I_{m} \sin \omega t$$

Transformation from 3-phase to 2-phase

• The balanced 2-phase currents i_{α} and i_{β} are given by:

$$i_{\alpha} = I_{m} \cos \omega t$$
$$i_{\beta} = I_{m} \left(\cos \omega t - \frac{\pi}{2} \right) = I_{m} \sin \omega t$$

• These two balanced 2-phase currents will produce MMFs F_{α} and F_{β}

• Transformation from 3-phase to 2-phase

• These two orthogonal (space) and sinusoidally (time) varying MMFs will give rise to a magnetic field that rotates at a constant speed N_s and has a constant magnitude (RMS) of Ni_m

• Transformation from 3-phase to 2-phase

- Thus, both the 3-phase system, as well as the 2-phase system can produce MMFs that rotate at a constant speed of N_s rpm
- But, magnitude (RMS) of the 3-phase RMF is $1.5Ni_m$
- Magnitude of the 2-phase RMF is Ni_m
- These two systems can be equivalent if their RMF magnitudes can be made equal

• Transformation from 3-phase to 2-phase

- RMF magnitudes of the 3-phase system and the 2-phase system can be made equal by:
 - Changing magnitude of the 2-phase currents
 - Changing number of turns in the 2-phase windings
 - Changing both current and number of turns in the 2-phase windings

3-phase to 2-phase transformation

By changing the 2-phase currents

Transformation from 3-phase to 2-phase

- Magnitude of the 3-phase RMF is $1.5Ni_m$
- Magnitude of the 2-phase RMF is Ni_m
- Thus, if the 3-phase and 2-phase system coils have same number of turns,
- Then to make their MMFs equal, current in the 2-phase system must be 1.5 times higher than those in the equivalent 3-phase system

- Transformation from 3-phase to 2-phase
 - Resolving the instantaneous values of 3-phase MMFs along α -axis:

$$Ni_{\alpha} = N \left[i_{a} \cos 0^{0} + i_{b} \cos 120^{0} + i_{c} \cos 240^{0} \right]$$

or,
$$Ni_{\alpha} = N \left[i_{a} + i_{b} \left(-\frac{1}{2} \right) + i_{c} \left(-\frac{1}{2} \right) \right]$$

or,
$$i_{\alpha} = \left[i_{a} - \frac{1}{2} \left(i_{b} + i_{c} \right) \right]$$

Transformation from 3-phase to 2-phase

• Similarly, along β -axis:

$$Ni_{\beta} = N \left[i_{a} \cos 270^{\circ} + i_{b} \cos 30^{\circ} + i_{c} \cos 150^{\circ} \right]$$

or,
$$Ni_{\beta} = N \left[0 + i_{b} \left(\frac{\sqrt{3}}{2} \right) + i_{c} \left(-\frac{\sqrt{3}}{2} \right) \right]$$

or,
$$i_{\beta} = \left[\frac{\sqrt{3}}{2} \left(i_{b} - i_{c} \right) \right]$$

- Transformation from 3-phase to 2-phase
 - For a balanced 3-phase system:

Hence, $|i_{\alpha}| = 1.5 |i_{\alpha}|$

 l_a

 i_b

$$(i_a + i_b + i_c) = 0$$

Thus, $i_\alpha = \left[i_a - \frac{1}{2}(i_b + i_c)\right] = \left[i_a - \frac{1}{2}(-i_a)\right] = \frac{3}{2}i_a = 1.5i_a$

$$i_{\alpha} = \left[i_{a} - \frac{1}{2}(i_{b} + i_{c})\right]$$
$$i_{\beta} = \left[\frac{\sqrt{3}}{2}(i_{b} - i_{c})\right]$$

 $i_{\alpha} = \left| i_{a} - \frac{1}{2} \left(i_{b} + i_{c} \right) \right|$ **Transformation from 3-phase to 2-phase** $i_{\beta} = \left| \frac{\sqrt{3}}{2} (i_b - i_c) \right| \quad \text{Thus, } \left| i_{\beta} \right| = \left| \frac{\sqrt{3}}{2} \left| (i_b - i_c) \right| \right|$ $i_{\beta} = \left| \frac{\sqrt{3}}{2} \left(i_b - i_c \right) \right|$ Drawing the phasor $-i_c$ and finding the phasor sum of $(i_b - i_c)$:, $\left|i_{\beta}\right| = \frac{\sqrt{3}}{2} \sqrt{\left(i_{b}^{2} + i_{c}^{2} + 2i_{b}i_{c}\cos 60^{0}\right)}$ Remember that: $|i_a| = |i_b| = |i_c|$ $\left|i_{\beta}\right| = \frac{\sqrt{3}}{2} \sqrt{\left(i_{a}^{2} + i_{a}^{2} + 2i_{a}i_{a}\frac{1}{2}\right)}$ 60 $=\frac{\sqrt{3}}{2}\sqrt{3i_a^2}=\frac{3}{2}i_a$ Hence, $|i_{\beta}| = 1.5 |i_{a}|$ $|i_{\alpha}| = 1.5 |i_{a}|$ Thus, magnitude of the 2-phase currents are 1.5 times higher than those in the equivalent 3-phase system

Transformation from 3-phase to 2-phase

• Under this condition, the MMFs are equal in both 2-phase and 3-phase systems

$$\begin{vmatrix} i_{\alpha} \end{vmatrix} = 1.5 |i_{a}|$$
$$\begin{vmatrix} i_{\beta} \end{vmatrix} = 1.5 |i_{a}|$$

- With same MMF, the flux must also be equal in both 2-phase and 3-phase systems
- With same of turns, the per phase induced EMF must also be equal in both 2-phase and 3-phase systems $E \approx V = 4.44 f \phi_m N K_w$

• Under this condition: $|i_{\alpha}| = 1.5 |i_{a}|$ $|i_{\beta}| = 1.5 |i_{a}|$

Parameter	3-phase system	2-phase system
Current per phase	$ I_a $	$1.5 I_a $
MMF (Equal)	1.5 NI _m	
Flux (Equal)	MMF/Reluctance	
EMF (V) per phase (Equal)	$E \approx V = 4.44 f \phi_m N K_w$	
Power per phase	$P_3 = V \times I = VI$	$P_2 = V \times 1.5I = 1.5VI$
Total power	$P = 3P_3 = 3VI$	$P = 2P_2 = 2 \times 1.5VI = 3VI$

Thus, the phenomena of **power invariance** is hence proved

3-phase to 2-phase transformation

By changing the number of turns in the 2-phase system

Transformation from 3-phase to 2-phase

- Magnitude of the 3-phase RMF is $1.5Ni_m$
- Magnitude of the 2-phase RMF is Ni_m
- Thus, if the 3-phase and 2-phase system have same per phase current, $|i_{\alpha}| = |i_{\beta}| = |i_{a}|$
- Then to make their MMFs equal, number of turns in the 2-phase system must be 1.5 times higher than those in the equivalent 3-phase system

• Under this condition: $|i_{\alpha}| = |i_{\beta}| = |i_{\alpha}|$ $N_{\alpha}(=N_{\beta}) = 1.5N$

Parameter	3-phase system	2-phase system
Current (Equal)	$ I_a $	$ I_{\alpha} = I_{a} $
Number of turns	N	1.5 <i>N</i>
MMF (Equal)	$1.5NI_m$	
Flux (Equal)	MMF/Reluctance	
EMF (V) per phase	$E_3 = 4.44 f \phi_m N K_w = V$	$E_2 = 4.44 f \phi_m (1.5N) K_w = 1.5V$
Power per phase	$P_3 = V \times I = VI$	$P_2 = 1.5V \times I = 1.5VI$
Total power	$P = 3P_3 = 3VI$	$P = 2P_2 = 2 \times 1.5VI = 3VI$

Thus, the phenomena of **power invariance** is once again proved

3-phase to 2-phase transformation

By changing the both the current and number of turns in the 2-phase system

Transformation from 3-phase to 2-phase

- Magnitude of the 3-phase RMF is $1.5Ni_m$
- Magnitude of the 2-phase RMF is Ni_m
- Then to make their MMFs equal, both the current and number of turns in the 2-phase system can be suitably modified w.r.t those in the equivalent 3-phase system
- This can give us identical transformations for voltage & current

Transformation from 3-phase to 2-phase

- Let the number of turns per phase in the equivalent 2-phase winding be made $\sqrt{\frac{3}{2}}$ times the per phase number of turns in 3-phase winding
- Then, for equal MMFs in 3-phase and 2-phase systems, resolving the instantaneous values of 3-phase MMFs along α -axis:

$$\sqrt{\frac{3}{2}Ni_{\alpha}} = N\left[i_{a}\cos 0^{0} + i_{b}\cos 120^{0} + i_{c}\cos 240^{0}\right]$$

Transformation from 3-phase to 2-phase $\sqrt{\frac{3}{2}Ni_{\alpha}} = N\left[i_{\alpha}\cos^{0}0 + i_{b}\cos^{1}20^{0} + i_{c}\cos^{2}40^{0}\right]$ $i_{\alpha} = \sqrt{\frac{2}{3}} i_{a} + i_{b} \left(-\frac{1}{2}\right) + i_{c} \left(-\frac{1}{2}\right)$ or, $i_{\alpha} = \sqrt{\frac{2}{3}} \left[i_a - \frac{1}{2} \left(i_b + i_c \right) \right]$ or, $i_{\alpha} = \sqrt{\frac{2}{3}} \left[i_a - \frac{1}{2} \left(-i_a \right) \right]$ or, $i_{\alpha} = \sqrt{\frac{2}{3}} \left[i_{a} + \frac{1}{2} i_{a} \right]$ or, $|i_{\alpha}| = \sqrt{\frac{3}{2}}|i_{\alpha}|$ or,

Transformation from 3-phase to 2-phase

• Similarly, for equal MMFs in 3-phase and 2-phase systems, resolving the instantaneous values of 3-phase MMFs along β -axis:

$$\sqrt{\frac{5}{2}}Ni_{\beta} = N\left[i_{a}\cos 270^{\circ} + i_{b}\cos 30^{\circ} + i_{c}\cos 150^{\circ}\right]$$

or,
$$i_{\beta} = \sqrt{\frac{2}{3}}\left[0 + i_{b}\left(\frac{\sqrt{3}}{2}\right) + i_{c}\left(-\frac{\sqrt{3}}{2}\right)\right]$$

or,
$$i_{\beta} = \left[\frac{1}{\sqrt{2}}\left(i_{b} - i_{c}\right)\right]$$

Using vector algebra we get: $\left|i_{\beta}\right| = \frac{1}{\sqrt{2}}\sqrt{\left(i_{b}^{2} + i_{c}^{2} + 2i_{b}i_{c}\cos 60^{\circ}\right)}$ i_{b}

• Under these conditions: $N_{\alpha} (= N_{\beta}) = \sqrt{\frac{3}{2}}N$

$$I_{\alpha} \left(= \left| I_{\beta} \right| \right) = \sqrt{\frac{3}{2}} \left| I_{a} \right|$$

Parameter	3-phase system	2-phase system
Current	$ I_a $	$\sqrt{\frac{3}{2}} I_a $
Number of turns	N	$\sqrt{\frac{3}{2}}N$
MMF (Equal)	$1.5NI_m$	
Flux (Equal)	MMF/Reluctance	
EMF (V) per phase	$E_3 = 4.44 f \phi_m N K_w = V$	$E_2 = 4.44 f \phi_m \left(\sqrt{\frac{3}{2}}N\right) K_w = \sqrt{\frac{3}{2}}V$

•Thus, both voltage and current are identically transformed, both are $\sqrt{\frac{3}{2}}$ times in the 2-phase system as compared to the 3-phase system

• Since *V* and *I* transformations are identical, impedance per phase are same for the 2- and 3-phase systems

• Under these conditions: $N_{\alpha} (= N_{\beta}) = \sqrt{\frac{3}{2}}N$ $|I_{\alpha}|$

$$\left|I_{\alpha}\right| \left(=\left|I_{\beta}\right|\right) = \sqrt{\frac{3}{2}} \left|I_{\alpha}\right|$$

Parameter	3-phase system	2-phase system
Current	$ I_a $	$\sqrt{\frac{3}{2}} I_a $
EMF (V) per phase	$E_3 = 4.44 f \phi_m N K_w = V$	$E_2 = 4.44 f \phi_m \left(\sqrt{\frac{3}{2}} N \right) K_w = \sqrt{\frac{3}{2}} V$
Power per phase	$P_3 = V \times I = VI$	$P_{2} = \sqrt{\frac{3}{2}}V \times \sqrt{\frac{3}{2}}I = \frac{3}{2}VI = 1.5VI$
Total power	$P = 3P_3 = 3VI$	$P = 2P_2 = 2 \times 1.5VI = 3VI$

Thus, the phenomena of **power invariance** is once again proved