3-phase to 2-phase Transformation

ILOs - Day7

- Transform 3-phase machine quantities to equivalent 2-phase machine quantities
- By changing current
- By changing number of turns
- By changing both number of turns and current

a, b, c to α, β transformation

- Symmetrical 3-phase, 2-pole winding
- Rotor has 3 identical windings A, B, C 120° apart
- Each coil has N number of turns

a, b, c to α, β transformation

- Symmetrical 3-phase, 2-pole winding

- Coils carry currents i_{a}, i_{b}, and i_{c}
- Maximum values of the MMFs F_{a}, F_{b}, F_{c} are along the respective coil axes
- Combined effect of these three sinusoidally time-varying MMFs produce a rotating magnetic field in rotor that varies in space but is of constant magnitude (constant RMS value)
- Speed of the RMF depends on supply frequency and number of poles

$$
N_{s}=\frac{120 f}{P}
$$

a, b, c to α, β transformation

- Symmetrical 3-phase, 2-pole winding

- Coils carry currents i_{a}, i_{b}, and i_{c}
- Maximum values of the MMFs F_{a}, F_{b}, F_{c} are along the respective coil axes
- Combined effect of these three sinusoidally time-varying MMFs produce a rotating magnetic field in rotor that varies in space but is of constant magnitude (constant RMS value)
- Speed of the RMF depends on supply frequency and number of poles

$$
N_{s}=\frac{120 f}{P}
$$

a, b, c to α, β transformation

- Symmetrical 3-phase, 2-pole winding
- Coils carry currents i_{a}, i_{b}, and i_{c}

$$
\begin{aligned}
& i_{a}=I_{m} \cos \omega t \\
& i_{b}=I_{m}\left(\cos \omega t-\frac{2 \pi}{3}\right) \\
& i_{c}=I_{m}\left(\cos \omega t-\frac{4 \pi}{3}\right)
\end{aligned}
$$

- The resultant rotating MMF moves at a speed $N_{s} \mathrm{rpm}$
- It has constant magnitude (RMS) of $\quad \frac{3 N I_{m}}{2}=1.5 N I_{m}$

a, b, c to α, β transformation

- Transformation from 3-phase to 2-phase

- 3-phase winding is equivalently represented by a balanced 2-phase winding
- The two coils α and β are at 90°
- The coil α is taken along the same axis as coil A for convenience

a, b, c to α, β transformation

- Transformation from 3-phase to 2-phase
- The balanced 2 -phase currents i_{α} and i_{β} are given by:

$$
\begin{aligned}
& i_{\alpha}=I_{m} \cos \omega t \\
& i_{\beta}=I_{m}\left(\cos \omega t-\frac{\pi}{2}\right)=I_{m} \sin \omega t
\end{aligned}
$$

a, b, c to α, β transformation

- Transformation from 3-phase to 2-phase
- The balanced 2 -phase currents i_{α} and i_{β} are given by:

$$
\begin{aligned}
& i_{\alpha}=I_{m} \cos \omega t \\
& i_{\beta}=I_{m}\left(\cos \omega t-\frac{\pi}{2}\right)=I_{m} \sin \omega t
\end{aligned}
$$

- These two balanced 2-phase currents will produce MMFs F_{α} and F_{β}

$\mathrm{a}, \mathrm{b}, \mathrm{c}$ to α, β transformation

- Transformation from 3-phase to 2-phase
- These two orthogonal (space) and sinusoidally (time) varying MMFs will give rise to a magnetic field that rotates at a constant speed N_{s} and has a constant magnitude (RMS) of $\mathbf{N i}_{\boldsymbol{m}}$

a, b, c to α, β transformation

- Transformation from 3-phase to 2-phase
- Thus, both the 3-phase system, as well as the 2-phase system can produce MMFs that rotate at a constant speed of $N_{s} \mathrm{rpm}$
- But, magnitude (RMS) of the 3-phase RMF is $1.5 \mathrm{Ni}_{\mathrm{m}}$
- Magnitude of the 2-phase RMF is Ni_{m}
- These two systems can be equivalent if their RMF magnitudes can be made equal

a, b, c to α, β transformation

- Transformation from 3-phase to 2-phase
- RMF magnitudes of the 3 -phase system and the 2 -phase system can be made equal by:
- Changing magnitude of the 2-phase currents
- Changing number of turns in the 2-phase windings
- Changing both current and number of turns in the 2-phase windings

3-phase to 2-phase transformation

By changing the 2-phase currents

$\mathrm{a}, \mathrm{b}, \mathrm{c}$ to α, β transformation

- Transformation from 3-phase to 2-phase
- Magnitude of the 3-phase RMF is $1.5 \mathrm{Ni}_{\mathrm{m}}$
- Magnitude of the 2-phase RMF is Ni_{m}
- Thus, if the 3-phase and 2-phase system coils have same number of turns,
- Then to make their MMFs equal, current in the 2-phase system must be 1.5 times higher than those in the equivalent 3-phase system

$\mathrm{a}, \mathrm{b}, \mathrm{c}$ to α, β transformation

- Transformation from 3-phase to 2-phase
- Resolving the instantaneous values of 3-phase MMFs along α-axis:

$$
\begin{aligned}
N i_{\alpha} & =N\left[i_{a} \cos 0^{0}+i_{b} \cos 120^{\circ}+i_{c} \cos 240^{\circ}\right] \\
\text { or, } \quad N i_{\alpha} & =N\left[i_{a}+i_{b}\left(-\frac{1}{2}\right)+i_{c}\left(-\frac{1}{2}\right)\right] \\
\text { or, } \quad i_{\alpha} & =\left[i_{a}-\frac{1}{2}\left(i_{b}+i_{c}\right)\right]
\end{aligned}
$$

a, b, c to α, β transformation

- Transformation from 3-phase to 2-phase
- Similarly, along β-axis:

$$
\left.\begin{array}{rl}
& N i_{\beta}
\end{array}=N\left[i_{a} \cos 270^{\circ}+i_{b} \cos 30^{\circ}+i_{c} \cos 150^{\circ}\right]\right] \text { or, } \quad N i_{\beta}=N\left[0+i_{b}\left(\frac{\sqrt{3}}{2}\right)+i_{c}\left(-\frac{\sqrt{3}}{2}\right)\right] \quad \text { or, } \quad i_{\beta}=\left[\frac{\sqrt{3}}{2}\left(i_{b}-i_{c}\right)\right] .
$$

$\mathrm{a}, \mathrm{b}, \mathrm{c}$ to α, β transformation

- Transformation from 3-phase to 2-phase
- For a balanced 3-phase system:

$$
\left(i_{a}+i_{b}+i_{c}\right)=0
$$

$$
i_{\beta}=\left[\frac{\sqrt{3}}{2}\left(i_{b}-i_{c}\right)\right]
$$

Thus, $i_{\alpha}=\left[i_{a}-\frac{1}{2}\left(i_{b}+i_{c}\right)\right]=\left[i_{a}-\frac{1}{2}\left(-i_{a}\right)\right]=\frac{3}{2} i_{a}=1.5 i_{a}$
Hence, $\left|i_{\alpha}\right|=1.5\left|i_{a}\right|$

$$
i_{\alpha}=\left[i_{a}-\frac{1}{2}\left(i_{b}+i_{c}\right)\right]
$$

a, b, c to α, β transformation

- Transformation from 3-phase to 2-phase
$i_{\beta}=\left[\frac{\sqrt{3}}{2}\left(i_{b}-i_{c}\right)\right] \quad$ Thus, $\left|i_{\beta}\right|=\left[\frac{\sqrt{3}}{2}\left|\left(i_{b}-i_{c}\right)\right|\right]$

$$
\begin{aligned}
& i_{\alpha}=\left[i_{a}-\frac{1}{2}\left(i_{b}+i_{c}\right)\right] \\
& i_{\beta}=\left[\frac{\sqrt{3}}{2}\left(i_{b}-i_{c}\right)\right]
\end{aligned}
$$

Drawing the phasor $-i_{c}$ and finding the phasor sum of $\left(i_{b}-i_{c}\right)$:,

$$
\left|i_{\beta}\right|=\frac{\sqrt{3}}{2} \sqrt{\left(i_{b}{ }^{2}+i_{c}{ }^{2}+2 i_{b} i_{c} \cos 60^{0}\right)}
$$

Remember that: $\left|i_{a}\right|=\left|i_{b}\right|=\left|i_{c}\right|$

$$
\begin{aligned}
\left|i_{\beta}\right| & =\frac{\sqrt{3}}{2} \sqrt{\left(i_{a}{ }^{2}+i_{a}{ }^{2}+2 i_{a} i_{a} \frac{1}{2}\right)} \\
& =\frac{\sqrt{3}}{2} \sqrt{3 i_{a}{ }^{2}}=\frac{3}{2} i_{a}
\end{aligned}
$$

Hence, $\left|i_{\beta}\right|=1.5\left|i_{a}\right|\left|i_{\alpha}\right|=1.5\left|i_{a}\right|$
Thus, magnitude of the 2-phase currents are 1.5 times higher than those in the equivalent 3-phase system

a, b, c to α, β transformation

- Transformation from 3-phase to 2-phase

$$
\left|i_{\alpha}\right|=1.5\left|i_{a}\right|
$$

- Under this condition, the MMFs are equal in both 2-phase and 3-phase systems

$$
\left|i_{\beta}\right|=1.5\left|i_{a}\right|
$$

- With same MMF, the flux must also be equal in both 2-phase and 3-phase systems
- With same of turns, the per phase induced EMF must also be equal in both 2-phase and 3-phase systems $E \approx V=4.44 f \phi_{m} N K_{w}$

$\mathrm{a}, \mathrm{b}, \mathrm{c}$ to α, β transformation

- Under this condition: $\quad\left|i_{\alpha}\right|=1.5\left|i_{a}\right| \quad\left|i_{\beta}\right|=1.5\left|i_{a}\right|$

Parameter	3-phase system	2-phase system
Current per phase	$\left\|I_{a}\right\|$	$1.5\left\|I_{a}\right\|$
MMF (Equal)	$1.5 N I_{m}$	
Flux (Equal)	MMF/Reluctance	
EMF (V) per phase (Equal)	$E \approx V=4.44 f \phi_{m} N K_{w}$	
Power per phase	$P_{3}=V \times I=V I$	$P_{2}=V \times 1.5 I=1.5 V I$
Total power	$P=3 P_{3}=3 V I$	$P=2 P_{2}=2 \times 1.5 V I=3 V I$

Thus, the phenomena of power invariance is hence proved

3-phase to 2-phase transformation

By changing the number of turns in the 2-phase system

a, b, c to α, β transformation

- Transformation from 3-phase to 2-phase

- Magnitude of the 3-phase RMF is $1.5 \mathrm{Ni}_{\mathrm{m}}$
- Magnitude of the 2-phase RMF is $N i_{m}$
- Thus, if the 3-phase and 2-phase system have same per phase current,

$$
\left|i_{\alpha}\right|=\left|i_{\beta}\right|=\left|i_{a}\right|
$$

- Then to make their MMFs equal, number of turns in the 2 -phase system must be 1.5 times higher than those in the equivalent 3-phase system

$\mathrm{a}, \mathrm{b}, \mathrm{c}$ to α, β transformation

- Under this condition: $\left|i_{\alpha}\right|=\left|i_{\beta}\right|=\left|i_{a}\right| \quad N_{\alpha}\left(=N_{\beta}\right)=1.5 \mathrm{~N}$

Parameter	3-phase system	2-phase system
Current (Equal)	$\left\|I_{a}\right\|$	$\left\|I_{\alpha}\right\|=\left\|I_{a}\right\|$
Number of turns	N	1.5 N
MMF (Equal)	$1.5 \mathrm{NI}_{m}$	
Flux (Equal)	$\mathrm{MMF} /$ Reluctance	
EMF (V) per phase	$E_{3}=4.44 f \phi_{m} N K_{w}=V$	$E_{2}=4.44 f \phi_{m}(1.5 \mathrm{~N}) K_{w}=1.5 \mathrm{~V}$
Power per phase	$P_{3}=V \times I=V I$	$P_{2}=1.5 \mathrm{~V} \times I=1.5 \mathrm{VI}$
Total power	$P=3 P_{3}=3 V I$	$P=2 P_{2}=2 \times 1.5 \mathrm{VI}=3 \mathrm{VI}$

Thus, the phenomena of power invariance is once again proved

3-phase to 2-phase transformation

By changing the both the current and number of turns in the 2-phase system

$\mathrm{a}, \mathrm{b}, \mathrm{c}$ to α, β transformation

- Transformation from 3-phase to 2-phase
- Magnitude of the 3-phase RMF is $1.5 \mathrm{Ni}_{\mathrm{m}}$
- Magnitude of the 2-phase RMF is $N i_{m}$
- Then to make their MMFs equal, both the current and number of turns in the 2-phase system can be suitably modified w.r.t those in the equivalent 3-phase system
- This can give us identical transformations for voltage \& current

a, b, c to α, β transformation

- Transformation from 3-phase to 2-phase

- Let the number of turns per phase in the equivalent 2-phase winding be made $\sqrt{\frac{3}{2}}$ times the per phase number of turns in 3 -phase winding
- Then, for equal MMFs in 3-phase and 2-phase systems, resolving the instantaneous values of 3-phase MMFs along α-axis:

$$
\sqrt{\frac{3}{2}} N i_{\alpha}=N\left[i_{a} \cos 0^{0}+i_{b} \cos 120^{\circ}+i_{c} \cos 240^{\circ}\right]
$$

a, b, c to α, β transformation

- Transformation from 3-phase to 2-phase

$$
\sqrt{\frac{3}{2}} N i_{\alpha}=N\left[i_{a} \cos 0^{0}+i_{b} \cos 120^{\circ}+i_{c} \cos 240^{\circ}\right]
$$

or, $\quad i_{\alpha}=\sqrt{\frac{2}{3}}\left[i_{a}+i_{b}\left(-\frac{1}{2}\right)+i_{c}\left(-\frac{1}{2}\right)\right]$
or, $\quad i_{\alpha}=\sqrt{\frac{2}{3}}\left[i_{a}-\frac{1}{2}\left(i_{b}+i_{c}\right)\right]$
or, $\quad i_{\alpha}=\sqrt{\frac{2}{3}}\left[i_{a}-\frac{1}{2}\left(-i_{a}\right)\right]$
or, $\quad i_{\alpha}=\sqrt{\frac{2}{3}}\left[i_{a}+\frac{1}{2} i_{a}\right]$
or, $\quad i_{\alpha}=\sqrt{\frac{2}{3}}\left[\frac{3}{2} i_{a}\right]$

$$
i_{\alpha}=\sqrt{\frac{3}{2}} i_{a} \quad \quad\left|i_{\alpha}\right|=\sqrt{\frac{3}{2}}\left|i_{a}\right|
$$

a, b, c to α, β transformation

- Transformation from 3-phase to 2-phase

$$
\left|i_{\alpha}\right|=\sqrt{\frac{3}{2}}\left|i_{a}\right|
$$

- Similarly, for equal MMFs in 3-phase and 2-phase systems, resolving the instantaneous values of 3 -phase MMFs along β-axis:

$$
\begin{aligned}
\sqrt{\frac{3}{2}} N i_{\beta} & =N\left[i_{a} \cos 270^{\circ}+i_{b} \cos 30^{\circ}+i_{c} \cos 150^{\circ}\right] \\
\text { or, } \quad i_{\beta} & =\sqrt{\frac{2}{3}}\left[0+i_{b}\left(\frac{\sqrt{3}}{2}\right)+i_{c}\left(-\frac{\sqrt{3}}{2}\right)\right] \\
\text { or, } \quad i_{\beta} & =\left[\frac{1}{\sqrt{2}}\left(i_{b}-i_{c}\right)\right]
\end{aligned}
$$

Using vector algebra we get: $\left.\left|i_{\beta}\right|=\frac{1}{\sqrt{2}} \sqrt{\left(i_{b}{ }^{2}+i_{c}{ }^{2}+2 i_{b} i_{c} \cos 60^{\circ}\right.}\right)$ Remember that: $\left|i_{a}\right|=\left|i_{b}\right|=\left|i_{c}\right|$

$$
\left|i_{\beta}\right|=\frac{1}{\sqrt{2}} \sqrt{\left(i_{a}{ }^{2}+i_{a}{ }^{2}+2 i_{a} i_{a} \frac{1}{2}\right)}=\frac{1}{\sqrt{2}} \sqrt{3 i_{a}{ }^{2}}=\sqrt{\frac{3}{2}} i_{a} \longrightarrow\left|i_{\beta}\right|=\sqrt{\frac{3}{2}}\left|i_{a}\right|
$$

$\mathrm{a}, \mathrm{b}, \mathrm{c}$ to α, β transformation

- Under these conditions: $N_{\alpha}\left(=N_{\beta}\right)=\sqrt{\frac{3}{2}} N \quad\left|I_{\alpha}\right|\left(=\left|I_{\beta}\right|\right)=\sqrt{\frac{3}{2}}\left|I_{a}\right|$

Parameter	3-phase system	2-phase system
Current	$\left\|I_{a}\right\|$	$\sqrt{\frac{3}{2}}\left\|I_{a}\right\|$
Number of turns	N	$\sqrt{\frac{3}{2}} N$
MMF (Equal)	$1.5 N I_{m}$	
Flux (Equal)	$\mathrm{MMF} /$ Reluctance	
EMF (V) per phase	$E_{3}=4.44 f \phi_{m} N K_{w}=V$	$E_{2}=4.44 f \phi_{m}\left(\sqrt{\frac{3}{2}} N\right) K_{w}=\sqrt{\frac{3}{2}} V$

-Thus, both voltage and current are identically transformed, both are $\sqrt{\frac{3}{2}}$ times in the 2-phase system as compared to the 3-phase system

- Since V and I transformations are identical, impedance per phase are same for the 2 - and 3 -phase systems

$\mathrm{a}, \mathrm{b}, \mathrm{c}$ to α, β transformation

Under these conditions: $N_{\alpha}\left(=N_{\beta}\right)=\sqrt{\frac{3}{2}} N \quad\left|I_{\alpha}\right|\left(=\left|I_{\beta}\right|\right)=\sqrt{\frac{3}{2}}\left|I_{a}\right|$

Parameter	3-phase system	2-phase system
Current	$\left\|I_{a}\right\|$	$\sqrt{\frac{3}{2}}\left\|I_{a}\right\|$
EMF (V) per phase	$E_{3}=4.44 f \phi_{m} N K_{w}=V$	$E_{2}=4.44 f \phi_{m}\left(\sqrt{\frac{3}{2}} N\right) K_{w}=\sqrt{\frac{3}{2}} V$
Power per phase	$P_{3}=V \times I=V I$	$P_{2}=\sqrt{\frac{3}{2}} V \times \sqrt{\frac{3}{2}} I=\frac{3}{2} V I=1.5 V I$
Total power	$P=3 P_{3}=3 V I$	$P=2 P_{2}=2 \times 1.5 V I=3 V I$

Thus, the phenomena of power invariance is once again proved

