Voltage equations in Kron's machine

Day 4

ILOs - Day4

- Derive expressions for voltages in stator and armature coils in Kron's primitive machine
- Build impedance matrix of Kron's primitive machine

Voltage in stator field coil DS

Voltage in stator field coil DS

- Stator coil DS will have voltage drops due to:

- Its own resistance $r_{d s}$
- Its own leakage inductance $l_{d s}$
- Its mutual inductance M_{d} with other d-axis coils (transformer EMF)
- Q axis coils can not have any transformer coupling effect on DS since they are mutually perpendicular
- Since coil DS is in stator, there will be no rotational EMF

Voltage in stator field coil DS

- Stator coil DS will have voltage drops due to:

Thus applied voltage $v_{d s}$ is balanced by:

Voltage in stator field coil QS

Voltage in stator field coil QS

- Stator coil QS:

- Similar to stator coil DS, $v_{d s}=i_{d s} r_{d s}+L_{d s} p i_{d s}+M_{d} p i_{d r}$

Applied voltage $v_{q S}$ in stator coil QS is balanced by:

Voltage in rotor armature coil DR

Voltage in armature coil DR

- Rotor armature coil DR:

- Since the armature coil is a pseudo-stationary coil placed in the rotating element (rotor), there will be rotational EMF (back EMF) induced in it
- This rotational EMF in DR due to flux along the q-axis is: (remember that rotational EMF is maximum when the coil and flux are orthogonal)

$$
e_{d r}=\omega_{r} \psi_{q} \sin \theta=\omega_{r} \psi_{q} \sin 90^{\circ}=\omega_{r} \psi_{q}
$$

Thus applied voltage $v_{d r}$ is balanced by:

The negative sign before the induced rotational EMF indicates that this back EMF opposes the supply voltage

Voltage in armature coil DR

- Rotor armature coil DR:

$$
e_{d r}=\omega_{r} \psi_{q}
$$

$$
v_{d r}=i_{d r} r_{d r}+L_{d r} p i_{d r}+M_{d} p i_{d s}-e_{d r}
$$

Rotor inductance, rotor current

Voltage in armature coil DR

- Rotor armature coil DR:

$$
e_{d r}=\omega_{r} \psi_{q} \quad v_{d r}=i_{d r} r_{d r}+L_{d r} p i_{d r}+M_{d} p i_{d s}-e_{d r}
$$

The total flux linkage ψ_{q} with the armature (rotor) in q-axis is given by:

Thus: $v_{d r}=i_{d r} r_{d r}+L_{d r} p i_{d r}+M_{d} p i_{d s}-\omega_{r} M_{q}\left(i_{q s}+i_{q r}\right)-\omega_{r} l_{q r} i_{q r}$

$$
\begin{gathered}
v_{d r}=i_{d r} r_{d r}+L_{d r} p i_{d r}+M_{d} p i_{d s}-\omega_{r}\left[\left(M_{q}+l_{q r}\right) i_{q r}\right\rfloor-\omega_{r} M_{q} i_{q s} \\
v_{d r}=i_{d r} r_{d r}+L_{d r} p i_{d r}+M_{d} p i_{d s}-\omega_{r} L_{q r} i_{q r}-\omega_{r} M_{q} i_{q s}
\end{gathered}
$$

Voltage in rotor armature coil QR

Voltage in armature coil QR

- Rotor armature coil DR: $v_{d r}=i_{d r} r_{d r}+L_{d r} p i_{d r}+M_{d} p i_{d s}-\omega_{r} L_{q r} i_{q r}-\omega_{r} M_{q} i_{q s}$
- Rotor armature coil QR: $v_{q r}=i_{q r} r_{q r}+L_{q r} p i_{q r}+M_{q} p i_{q s}+\omega_{r} L_{d r} i_{d r}+\omega_{r} M_{d} i_{d s}$
- Since this armature coil QR is also a pseudo-stationary coil placed in the rotating element (rotor), there will be rotational EMF (back EMF) induced in it
- This rotational EMF in QR due to flux along the d-axis is: $e_{q r}=\omega_{r} \psi_{d} \sin \theta=\omega_{r} \psi_{d} \sin 270^{\circ}=-\omega_{r} \psi_{d} \quad$ Where, $\psi_{d}=M_{d}\left(i_{d s}+i_{d r}\right)+l_{d r} i_{d r}$

Thus applied voltage $v_{q r}$ is balanced by:

$$
v_{q r}=i_{q r} r_{q r}+L_{q r} p i_{q r}+M_{q} p i_{q s}-e_{q r}
$$

$$
\text { Thus, } v_{q r}=i_{q r} r_{q r}+L_{q r} p i_{q r}+M_{q} p i_{q s}+\omega_{r} M_{d}\left(i_{d s}+i_{d r}\right)+\omega_{r} l_{d r} i_{d r}
$$

$$
\begin{gathered}
v_{q r}=i_{q r} r_{q r}+L_{q r} p i_{q r}+M_{q} p i_{q s}+\omega_{r}\left[\left(M_{d}+l_{d r}\right) i_{d r}\right]+\omega_{r} M_{d} i_{d s} \\
v_{q r}=i_{q r} r_{q r}+L_{q r} p i_{q r}+M_{q} p i_{q s}+\omega_{r} L_{d r} i_{d r}+\omega_{r} M_{d} i_{d s}
\end{gathered}
$$

Voltage equations in matrix form

Voltage equations in matrix form

- Stator coil DS:
- Stator coil QS:

$$
v_{d s}=i_{d s} r_{d s}+L_{d s} p i_{d s}+M_{d} p i_{d r}
$$

$$
v_{q s}=i_{q s} r_{q s}+L_{q s} p i_{q s}+M_{q} p i_{q r}
$$

- Rotor armature coil DR: $v_{d r}=i_{d r} r_{d r}+L_{d r} p i_{d r}+M_{d} p i_{d s}-\omega_{r} L_{q r} i_{q r}-\omega_{r} M_{q} i_{q s}$
- Rotor armature coil QR: $v_{q r}=i_{q r} r_{q r}+L_{q r} p i_{q r}+M_{q} p i_{q s}+\omega_{r} L_{q r} i_{d r}+\omega_{r} M_{d} i_{d s}$

The above four equations can be conveniently written in matrix form:

		ds	qs	${ }^{\text {dr }}$	$q r$	
$v_{d s}$	ds	$r_{\text {ds }}+L_{\text {ds }} P$		$M_{d} p$		$i_{\text {ds }}$
$v_{q s}$			$r_{\text {qs }}+L_{\text {qs }} p$		$M_{q} p$	$i_{q s}$
$v_{d r}$	dr	$M_{d} p$	$-M_{q} \omega_{r}$	$r_{d r}+L_{d r} p$	$-\omega_{r} L_{q r}$	$i_{d r}$
$V_{q r}$	$q r$	$M_{d} \omega_{r}$	$M_{q} p$	$\omega_{r} L_{d r}$	$r_{q r}+L_{q r} p$	
Voltage matrix			edance matrix			rrent

Observations

- Main diagonal boxes of the impedance matrix contain only self-impedances (resistance \& self-inductance)
- The remaining boxes contain either mutual impedances (terms with M), or rotational EMFs (terms with ω), if they exist

Observations

- Main diagonal boxes of the impedance matrix contain only self-impedances (resistance \& self-inductance)
- The remaining boxes contain either mutual impedances (terms with M), or rotational EMFs (terms with ω), if they exist
- The rotational EMF terms appear only in the last two rows of the impedance matrix

Observations

- Main diagonal boxes of the impedance matrix contain only self-impedances (resistance \& self-inductance)
- The remaining boxes contain either mutual impedances (terms with M), or rotational EMFs (terms with ω), if they exist
- The rotational EMF terms appear only in the last two rows of the impedance matrix
- p and $\omega_{r}\left(\right.$ or $\left.-\omega_{r}\right)$ are interchanged between column elements in last two rows

Observations

- M_{d} in the term $M_{d} p$ is the mutual inductance between coils DS and DR
- These two coils are on the same magnetic axis
- Since this mutual coupling is due to transformer action, M_{d} may be called transformer mutual inductance

Observations

- Similarly, M_{q} in the term $M_{q} p$ is the mutual inductance between coils QS and QR
- These two coils are on the same magnetic axis
- Since this mutual coupling is due to transformer action, M_{q} may also be called transformer mutual inductance

Observations

- M_{d} in the term $M_{d} \omega_{r}$ is the mutual inductance between coils DS and QR
- These two coils magnetically in quadrature $\left(90^{\circ}\right)$
- Since this mutual coupling is due to rotational action, M_{d} in this case may be called rotational mutual inductance or motional inductance

Observations

- Similarly, M_{q} in the term $M_{q} \omega_{r}$ is the mutual inductance between coils QS and DR
- These two coils magnetically in quadrature $\left(90^{\circ}\right)$
- Since this mutual coupling is due to rotational action, M_{q} in this case may be called rotational mutual inductance or motional inductance

Abbreviated forms

$[$ Voltage column matrix $]=$ [Impedance matrix $]$ Current column matrix $]$

$$
\begin{aligned}
& {[v]=[Z][i]} \\
& {[v]=\left[[R]+[L] p+[G] \omega_{r}[I]\right.}
\end{aligned}
$$

Abbreviated forms

$$
[v]=\left[[R]+[L] p+[G] \omega_{r}\right][i]
$$

$[R]=$

$r_{d s}$			
	$r_{q s}$		
		$r_{d r}$	
			$r_{q r}$

$[L]=$| $L_{d s}$ | | M_{d} | |
| :---: | :---: | :---: | :---: |
| | $L_{q s}$ | | M_{q} |
| M_{d} | | $L_{d r}$ | |
| | M_{q} | | $L_{q r}$ |

Static Inductance matrix (terms

Motional Inductance matrix or without ω_{r})

Abbreviated forms

