Voltage equations in Kron's machine

Day 4

ILOs – Day4

- Derive expressions for voltages in stator and armature coils in Kron's primitive machine
- Build impedance matrix of Kron's primitive machine

Voltage in stator field coil DS

Voltage in stator field coil DS

• Stator coil DS will have voltage drops due to:

- Its own resistance r_{ds}
- Its own leakage inductance I_{ds}
- Its mutual inductance M_d with other d-axis coils (transformer EMF)
- Q axis coils can not have any transformer coupling effect on DS since they are mutually perpendicular
- Since coil DS is in stator, there will be no rotational EMF

Voltage in stator field coil DS

• Stator coil DS will have voltage drops due to:

Voltage in stator field coil QS

Voltage in stator field coil QS

Stator coil QS:

• Similar to stator coil DS, $v_{ds} = i_{ds}r_{ds} + L_{ds}pi_{ds} + M_dpi_{dr}$

Voltage in rotor armature coil DR

Voltage in armature coil DR

• Rotor armature coil DR:

- Since the armature coil is a pseudo-stationary coil placed in the rotating element (rotor), there will be rotational EMF (back EMF) induced in it
- This rotational EMF in DR due to flux along the q-axis is: (remember that rotational EMF is maximum when the coil and flux are orthogonal)

$$e_{dr} = \omega_r \psi_q \sin \theta = \omega_r \psi_q \sin 90^0 = \omega_r \psi_q$$

Thus applied voltage v_{dr} is balanced by:

The negative sign before the induced rotational EMF indicates that this **back EMF** opposes the supply voltage

Voltage in armature coil DR

Rotor armature coil DR:

$$e_{dr} = \omega_r \psi_q \qquad \qquad v_{dr} = i_{dr} r_{dr} + L_{dr} p i_{dr} + M_d p i_{ds} - e_{dr}$$

The total flux linkage Ψ_q with the armature (rotor) in q-axis is given by:

Voltage in rotor armature coil QR

Voltage in armature coil QR

- **Rotor armature coil DR:** $v_{dr} = i_{dr}r_{dr} + L_{dr}pi_{dr} + M_{d}pi_{ds} \omega_r L_{qr}i_{qr} \omega_r M_{q}i_{qs}$
- **Rotor armature coil QR:** $v_{qr} = i_{qr}r_{qr} + L_{qr}pi_{qr} + M_{q}pi_{qs} + \omega_r L_{dr}i_{dr} + \omega_r M_{d}i_{ds}$
 - Since this armature coil QR is also a pseudo-stationary coil placed in the rotating element (rotor), there will be rotational EMF (back EMF) induced in it
 - This rotational EMF in OR due to flux along the d-axis is:

 $e_{ar} = \omega_r \psi_d \sin \theta = \omega_r \psi_d \sin \theta$

$$270^{0} = -\omega_{r}\psi_{d} \quad \text{Where, } \psi_{d} = M_{d}(i_{ds} + i_{dr}) + l_{dr}i_{dr}$$
Thus applied voltage v_{qr} is balanced by:
 $v_{qr} = i_{qr}r_{qr} + L_{qr}pi_{qr} + M_{q}pi_{qs} - e_{qr}$
Thus, $v_{qr} = i_{qr}r_{qr} + L_{qr}pi_{qr} + M_{q}pi_{qs} + \omega_{r}M_{d}(i_{ds} + i_{dr}) + \omega_{r}l_{dr}i_{dr}$
 $v_{qr} = i_{qr}r_{qr} + L_{qr}pi_{qr} + M_{q}pi_{qs} + \omega_{r}[(M_{d} + l_{dr})i_{dr}] + \omega_{r}M_{d}i_{ds}$

$$v_{qr} = i_{qr}r_{qr} + L_{qr}pi_{qr} + M_{q}pi_{qs} + \omega_{r}L_{dr}i_{dr} + \omega_{r}M_{d}i_{ds}$$

Voltage equations in matrix form

Voltage equations in matrix form

- Stator coil DS:
- Stator coil QS:

$$v_{ds} = i_{ds}r_{ds} + L_{ds}pi_{ds} + M_{d}pi_{dr}$$
$$v_{qs} = i_{qs}r_{qs} + L_{qs}pi_{qs} + M_{q}pi_{qr}$$

- **Rotor armature coil DR:** $v_{dr} = i_{dr}r_{dr} + L_{dr}pi_{dr} + M_{d}pi_{ds} \omega_r L_{qr}i_{qr} \omega_r M_{q}i_{qs}$
- **Rotor armature coil QR:** $v_{qr} = i_{qr}r_{qr} + L_{qr}pi_{qr} + M_{q}pi_{qs} + \omega_{r}L_{dr}i_{dr} + \omega_{r}M_{d}i_{ds}$

The above four equations can be conveniently written in matrix form:

- Main diagonal boxes of the impedance matrix contain only self-impedances (resistance & self-inductance)
- The remaining boxes contain either mutual impedances (terms with M), or rotational EMFs (terms with ω), if they exist

- Main diagonal boxes of the impedance matrix contain only self-impedances (resistance & self-inductance)
- The remaining boxes contain either mutual impedances (terms with M), or rotational EMFs (terms with ω), if they exist
- The rotational EMF terms appear only in the last two rows of the impedance matrix

- Main diagonal boxes of the impedance matrix contain only self-impedances (resistance & self-inductance)
- The remaining boxes contain either mutual impedances (terms with M), or rotational EMFs (terms with ω), if they exist
- The rotational EMF terms appear only in the last two rows of the impedance matrix
- *p* and ω_r (or - ω_r) are interchanged between column elements in last two rows

- M_d in the term $M_d p$ is the mutual inductance between coils DS and DR
- These two coils are on the same magnetic axis
- Since this mutual coupling is due to transformer action, *M_d* may be called *transformer mutual inductance*

- Similarly, M_q in the term $M_q p$ is the mutual inductance between coils QS and QR
- These two coils are on the same magnetic axis
- Since this mutual coupling is due to transformer action, M_q may also be called *transformer mutual inductance*

- M_d in the term $M_d \omega_r$ is the mutual inductance between coils DS and QR
- These two coils magnetically in quadrature (90⁰)
- Since this mutual coupling is due to rotational action, *M_d* in this case may be called *rotational mutual inductance* or *motional inductance*

- Similarly, M_q in the term $M_q \omega_r$ is the mutual inductance between coils QS and DR
- These two coils magnetically in quadrature (90⁰)
- Since this mutual coupling is due to rotational action, M_q in this case may be called *rotational mutual inductance* or *motional inductance*

Abbreviated forms

[Voltage column matrix] = [Impedance matrix] Current column matrix]

$$[v] = [Z][i]$$
$$[v] = [[R] + [L]p + [G]\omega_r][i]$$

