# Heating & Cooling of Transformers

Day 22

# ILOs – Day22

- Understand the heating and cooling processes in a transformer
- Design plain walled tank for a transformer to restrict temperature rise
- Realize how cooling tubes can enhance cooling of transformers
- List and explain the different cooling methods in transformers

#### Temperature rise of transformers

- Power losses occurring in a transformer core and winding are converted to thermal energy and cause heating of the corresponding transformer parts
- The heat is directed from its source to the outer surfaces so that it can be transferred to the cooling medium
- Temperature rise of transformer need to be limited within the maximum design limit otherwise life of the insulation will be severely affected
- Every 10<sup>0</sup> C rise in temperature beyond the designed limit reduces life expectancy of insulation by half
- It is thus important to not only design the transformer to operate with minimum losses, but also to design proper and effective cooling systems

#### **Cooling of transformers**

- Small transformers (< 50 VA) are natural air cooled, where coil and core are simply exposed to atmospheric air for cooling
- Distribution transformers (< 30 kVA) have plain walled tanks filled with oil that acts as coolant
- Bigger transformers need special cooling arrangements as ill be discussed in following slides

#### **Transformer Tank**

Transformer tank is made generally from tin, or sometimes cast ironThe tank encloses winding and core & is filled with oil



#### **Transformer Tank**

Out of the six surfaces of the metal tank, only four side surfaces can dissipate out the heat.

- Since bottom surface is placed on ground and
- top surface contains bushings, conservator, connection points, explosion vent etc.,
- these two surfaces are not efficient for dissipating away the heat.

Thus, heat dissipating surface area of tank is:

$$S_t = 2 \times H \times W + 2 \times H \times L$$
  
$$\Rightarrow S_t = 2H \times (W + L)$$



#### **Transformer Tank**

Plain wall transformer tank



### Path of heat flow



#### **Temperature Rise**

- Heat dissipation **coefficient due to radiation** for plain tank surface to atmosphere is around  $6.0 \text{ W/m}^2$ - $^0$ C.
- Heat dissipation **coefficient due to convection** from tank surface to atmosphere is around  $6.5 \text{ W/m}^2\text{-}^0\text{C}$ .
- Thus, total heat dissipated through the tank surface area is given by:

 $Q_T = (6.0 + 6.5) \times S_t \times \theta$  $\Rightarrow Q_T = 12.5 \times S_t \times \theta$ 

Where θ = Temperature **rise** over ambient
= (Final temperature – ambient temperature)

According to **Newton's law of cooling**, at final steady state condition of temperature,

Heat dissipated = Heat generated

i.e. 
$$Q_T = 12.5 \times S_t \times \theta = P$$

Where P is the total power loss = Total copper loss + total core loss

 $\therefore \text{ Steady state temperature rise} \qquad \theta = \frac{P}{12.5 \times S_t}$ 

#### **Temperature Rise**

$$\theta = \frac{P}{12.5 \times S_t}$$

If this final temperature rise of transformer as calculated is **more than the specified temperature rise value**, then the **entire design procedure need to be repeated** to restrict the temperature rise otherwise insulations will get damaged.

- Temperature rise can be restricted by either reducing the losses or
- by increasing the effective tank surface area for heat dissipation
- by adding radiator/cooling tubes or cooling fins outside the tank
- by fitting fans outside the tank to enhance heat dissipation

## Design of cooling tubes

- Cooling tubes or radiator tubes are used to increase the effective surface area of the tank for heat dissipation.
- Thus, by using cooling tubes, temperature rise of transformer can be reduced.
- Vertical cooling tubes connected outside the tank surface increase the cooling efficiency by helping the convection of heat through natural circulation of oil by thermo-siphon effect.

## Thermo-siphon effect



## Cooling tubes



## Cooling tubes



## Design of cooling tubes

- Out of the four side surfaces of the tank, **two surfaces** are used for tap changers and indicators such as ammeters, voltmeters, temperature indicators etc.
- So, only two surfaces of the tank can effectively be used to place the cooling tubes.



### Design of cooling tubes

- Using large number of tubes however, will reduce the spacing between two successive tubes thus restricting free flow of air around the tubes, and in such a case cooling efficiency goes down.
- If it is found that even after adding cooling tubes, the temperature rise **still exceeds the specified limit**, then it is necessary to adopt some special **external methods of cooling**.

# Transformer cooling methods

#### Methods of cooling in transformers

Based on the coolant used, the cooling methods can be classified as:

- Air cooling
- Oil and Air cooling
- Oil and Water cooling

#### Methods of cooling of transformer

- AN Air Natural
- AB or AF Air Blast or Air Forced
- ONAN Oil Natural Air Natural
- ONAF Oil Natural Air Forced
- OFAF Oil Forced Air Forced
- ONWF Oil Natural Water Forced
- OFWF Oil Forced Water Forced

## AN – Air Natural



# Air Blast (AB) or Air Forced (AF)



# **Oil Natural Air natural (ONAN)**



# **Oil Natural Air Forced (ONAF)**



# **Oil Forced Air Forced (OFAF)**



Oil Forced Air Forced or OFAF Cooling of Transformer

# **Oil Natural Water Forced (ONWF)**





# Oil Forced Water Forced (OFWF)

