Tutorial 2

Day 21

ILOs - Day21

- Solve numerical problems related to heating \& cooling of electrical machines

Recapitulation

Steady state temperature rise after heating

- $Q=$ Power loss or heat developed, W
- $G=$ Mass of the machine, kg
- $h=$ specific heat, $\mathrm{J} / \mathrm{kg}-{ }^{0} \mathrm{C}$
- $S=$ cooling surface area, m^{2}
- $\lambda=$ specific heat dissipation, $\mathrm{W} / \mathrm{m}^{2}-{ }^{0} \mathrm{C}$
$c=1 / \lambda=$ cooling coefficient
- $\theta=$ temperature rise at any time $t,{ }^{0} \mathrm{C}$
- $\theta_{m}=$ final steady temperature rise while heating, ${ }^{0} \mathrm{C}$
- $\theta_{n}=$ final steady temperature rise while cooling, ${ }^{0} \mathrm{C}$
- $\theta_{i}=$ initial temperature rise over ambient medium, ${ }^{0} \mathrm{C}$
- $\tau_{h}=$ heating time constant, s
- $\tau_{c}=$ cooling time constant, s

Recapitulation

Steady state temperature rise after cooling
Cooling curve $\quad \theta=\theta_{n}\left(1-e^{-\frac{t}{\tau_{c}}}\right)+\theta_{i} e^{-\frac{t}{\tau_{c}}}$
$\theta_{n}=\frac{Q}{\lambda S}$
Temperature rise when cooled to ambient temperature

- $Q=$ Power loss or heat developed, W
- $G=$ Mass of the machine, kg
- $h=$ specific heat, $\mathrm{J} / \mathrm{kg}-{ }^{0} \mathrm{C}$
- $S=$ cooling surface area, m^{2}
- $\lambda=$ specific heat dissipation, $\mathrm{W} / \mathrm{m}^{2}-{ }^{0} \mathrm{C}$
$c=1 / \lambda=$ cooling coefficient
- $\theta=$ temperature rise at any time $t,{ }^{0} \mathrm{C}$
- $\theta_{m}=$ final steady temperature rise while heating, ${ }^{0} \mathrm{C}$
- $\theta_{n}=$ final steady temperature rise while cooling, ${ }^{0} \mathrm{C}$
- $\theta_{i}=$ initial temperature rise over ambient medium, ${ }^{0} \mathrm{C}$
- $\tau_{h}=$ heating time constant, s
- $\tau_{c}=$ cooling time constant, s
\#1) The initial temperature of a machine is $40^{\circ} \mathrm{C}$. Calculate the temperature of the machine after 1 hour if its final steady state temperature rise is $80^{\circ} \mathrm{C}$ and the heating time constant is 2 hours. The ambient temperature is $30^{\circ} \mathrm{C}$.

Given,

- $\theta_{m}=$ final steady temperature rise while heating $=80^{\circ} \mathrm{C}$
- $\tau_{h}=$ heating time constant $=2 \mathrm{hr}$
- $t=$ time $=1 \mathrm{hr}$

Initial temperature rise: $\theta_{i}=40^{\circ} \mathrm{C}-30^{\circ} \mathrm{C}=10^{\circ} \mathrm{C}$
Heating equation: $\theta=\theta_{m}\left(1-e^{-\frac{t}{\tau_{h}}}\right)+\theta_{i} e^{-\frac{t}{\tau_{h}}}$
\therefore Temperature rise after $1 \mathrm{hr}: \theta=80\left(1-e^{-\frac{1}{2}}\right)+10 e^{-\frac{1}{2}}=37.54^{0} \mathrm{C}$
\therefore Temperature of the machine after $1 \mathrm{hr}=37.54^{\circ}+30^{\circ}=67.54^{\circ} \mathrm{C}$
\#2) A field coil has a heat dissipating surface of $0.15 \mathrm{~m}^{2}$ and a length of mean turn of 1 m. It dissipates loss of 150 W , the emissivity being $34 \mathrm{~W} / \mathrm{m}^{2}-{ }^{0} \mathrm{C}$. Estimate the final steady state temperature rise of the coil and its time constant if the cross section of the coil is $100 \times 50 \mathrm{~mm}^{2}$. Specific heat of copper is $390 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}$. The space factor is 0.56 . Copper weighs $8900 \mathrm{~kg} / \mathrm{m}^{3}$.

Given

- $Q=$ Power loss $=150 \mathrm{~W}$
- $h=$ specific heat $=390 \mathrm{~J} / \mathrm{kg}-{ }^{0} \mathrm{C}$
- $S=$ cooling surface area $=0.15 \mathrm{~m}^{2}$
- $\lambda=$ specific heat dissipation $=34 \mathrm{~W} / \mathrm{m}^{2}-{ }^{0} \mathrm{C}$

Volume of copper $=$ cross section \times length of coil \times space factor

$$
\begin{aligned}
& =100 \times 50 \times 10^{-6} \times 1 \times 0.56 \\
& =2.8 \times 10^{-3} \mathrm{~m}^{3}
\end{aligned}
$$

Weight of copper $G=$ volume \times density $=2.8 \times 10^{-3} \times 8900=24.92 \mathrm{~kg}$
\therefore Final steady state temperature rise:

$$
\theta_{m}=\frac{Q}{\lambda S}=\frac{150}{34 \times 0.15}=29.4^{0} \mathrm{C}
$$

Heating time constant:

$$
\tau_{h}=\frac{G h}{\lambda S}=\frac{24.92 \times 390}{34 \times 0.15}=1906 \mathrm{~s}
$$

\#3) The initial temperature rise of a transformer is $25^{\circ} \mathrm{C}$ after one hour and $37.5^{\circ} \mathrm{C}$ after two hours of starting from cold condition. Calculate its final steady state temperature rise and the heating time constant. If its temperature falls from the final steady state value to $40^{\circ} \mathrm{C}$ in 2.5 hours when disconnected, calculate its cooling time constant. The ambient temperature is $30^{\circ} \mathrm{C}$.

When heating:

The transformer starts from cold condition, so heating equation is:

$$
\theta=\theta_{m}\left(1-e^{-\frac{t}{\tau_{h}}}\right)
$$

Given: $\theta=25^{\circ} \mathrm{C}$ at $t=1 \mathrm{hr}$ and $\theta=37.5^{\circ} \mathrm{C}$ at $t=2 \mathrm{hr}$

$$
\begin{aligned}
& \therefore 25=\theta_{m}\left(1-e^{-\frac{1}{\tau_{h}}}\right) \text { and } 37.5=\theta_{m}\left(1-e^{-\frac{2}{\tau_{h}}}\right) \\
& \quad \Rightarrow \frac{\left(1-e^{-\frac{2}{\tau_{h}}}\right)}{\left(1-e^{-\frac{1}{\tau_{h}}}\right)}=\frac{37.5}{25}=1.5 \Rightarrow\left(1+e^{-\frac{1}{\tau_{h}}}\right)=1.5 \Rightarrow e^{-\frac{1}{\tau_{h}}}=0.5 \quad \Rightarrow \tau_{h}=1.44 \mathrm{hr}
\end{aligned}
$$

Final steady state temperature rise: $25=\theta_{m}\left(1-e^{-\frac{t}{\tau_{h}}}\right) \Rightarrow 25=\theta_{m}(1-0.5) \Rightarrow \theta_{m}=50^{\circ} \mathrm{C}$
\#3) The initial temperature rise of a transformer is $25^{\circ} \mathrm{C}$ after one hour and $37.5^{\circ} \mathrm{C}$ after two hours of starting from cold condition. Calculate its final steady state temperature rise and the heating time constant. If its temperature falls from the final steady state value to $40^{\circ} \mathrm{C}$ in 2.5 hours when disconnected, calculate its cooling time constant. The ambient temperature is $30^{\circ} \mathrm{C}$.

When cooling:

After 2.5 hours, the temperature is $40^{\circ} \mathrm{C}$. Thus, temperature rise after 2.5 hr :

$$
\theta=40^{\circ} \mathrm{C}-30^{\circ} \mathrm{C}=10^{\circ} \mathrm{C}
$$

Since the transformer was disconnected, its final steady state temperature while cooling is equal to the ambient temperature. Thus $\theta_{n}=0^{\circ} \mathrm{C}$

Initial temperature rise during cooling $=$ Final steady state temperature rise during heating

$$
\Rightarrow \theta_{i}=\theta_{m}=50^{\circ} \mathrm{C}
$$

\therefore From cooling equation: $\theta=\theta_{i} e^{-\frac{t}{\tau_{c}}}$

$$
\Rightarrow \theta=\theta_{i} e^{-\frac{t}{\tau_{c}}} \Rightarrow 10=50 e^{-\frac{2.5}{\tau_{c}}}
$$

\therefore Cooling time constant $\tau_{c}=1.55 \mathrm{hr}$

- $\theta=$ temperature rise at any time $t,{ }^{0} \mathrm{C}$
- $\theta_{n}=$ final steady temperature rise while cooling, ${ }^{0} \mathrm{C}$
- $\theta_{i}=$ initial temperature rise over ambient medium, ${ }^{0} \mathrm{C}$
- $\tau_{c}=$ cooling time constant s
- $t=$ time, s

