Effects of saturation, harmonics& solid iron rotor/pole shoe in SM

Day 14

ILOs - Day14

- Understand the effects of magnetic saturation on generalized analysis of electric machines
- Outline the methods for analysis of machines considering saturation:
 - Linearized equivalent circuit
 - Piece-wise linearized more
 - FEM
 - FDM

Effects of saturation

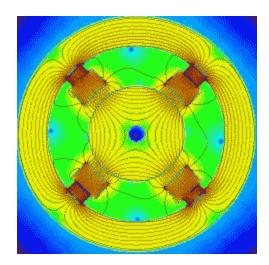
• The generalized theories developed in Chapter 1 depend on the assumptions

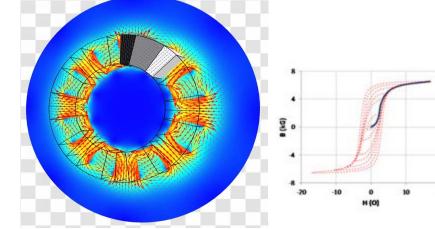
- The magnetic material is unsaturated
- All fluxes are proportional to the currents producing them

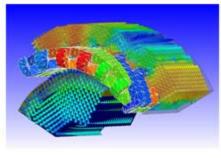
$$\phi = \frac{MMF}{\text{Reluctance}} = \frac{Ni}{S}$$

Effects of saturation

- In reality, however, all magnetic materials get saturated if the exciting current is too high
 - A complete determination of the effect of saturation would require:
 - Mapping of flux over the whole region in the machine at every instant due to any set of currents
 - This requires the help of computer based simulations
 - ANSYS
 - Simcenter MAGNET Siemens
 - MagNet
 - COMSOL







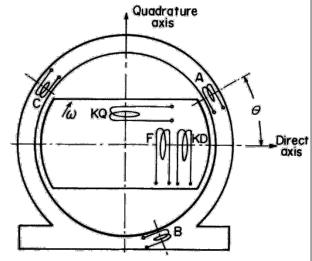
Mapping of flux over the whole region

In 3-phase synchronous machine, mapping of flux:

- 3 stator currents and 3 rotor currents
- 6×6 matrix
- 19 independent inductances
 - Each function of 6 currents and rotor position

• Detailed calculation is very complicated

	а	b	с	f	kd	kq
Z = a	$R_a + p(A_0 + A_2 \cos 2\theta)$	$p\left[-B_0 + B_2 \cos\left(2\theta - \frac{2\pi}{3}\right)\right]$	$p\left[-B_{0}+B\cos\left(2\theta-\frac{4\pi}{3}\right)\right]$	$pC_1 \cos \theta$	$pD_1\cos\theta$	$pD_1\sin heta$
Ь	$p\left[-B_0 + B_2 \cos\left(2\theta - \frac{2\pi}{3}\right)\right]$	$R_{a} + p \left[A_{0} + A_{2} \cos \left(2\theta - \frac{4\pi}{3} \right) \right]$	$p(-B_0 + B_2 \cos 2\theta)$	$pC_1\cos\left(\theta-\frac{2\pi}{3}\right)$	$pD_1\cos\left(\theta-\frac{2\pi}{3}\right)$	$pD_1\sin\left(\theta-\frac{2\pi}{3}\right)$
с	$p\left[-B_0 + B_2 \cos\left(2\theta - \frac{4\pi}{3}\right)\right]$	$p(-B_0 + B_2 \cos 2\theta)$	$R_{a} + p \left[A_{0} + A_{2} \cos \left(2\theta - \frac{2\pi}{3} \right) \right]$	$pC_1\cos\left(\theta-\frac{4\pi}{3}\right)$	$pD_1\cos\left(\theta-\frac{4\pi}{3}\right)$	$pD_1\sin\left(\theta-\frac{4\pi}{3}\right)$
f	$pC_1\cos\theta$	$pC_1\cos\left(\theta-\frac{2\pi}{3}\right)$	$pC_1\cos\left(\theta-\frac{4\pi}{3}\right)$	$R_{\rm f} + L_{\rm ff} p$	L _{fkd} p	
kd	$pD_1 \cos \theta$	$pD_1\cos\left(\theta-\frac{2\pi}{3}\right)$	$pD_1\cos\left(\theta-\frac{4\pi}{3}\right)$	L _{fkd} p	$R_{kd} + L_{kkd}p$	
kq	$pD_1 \sin \theta$	$pD_1\sin\left(\theta-\frac{2\pi}{3}\right)$	$pD_1\sin\left(\theta-\frac{4\pi}{3}\right)$			$R_{kq} + L_{kkq}p$

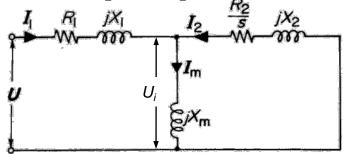


- 3-phase armature winding on stator
- Field winding F on rotor
- Damper winding denoted by KD & KQ in rotor

Effects of Saturation: Simplified method

Simplified methods for considering saturation:

- Assume that only one parameter is variable and that it varies with only one current
- Example: Equivalent circuit of induction motor:



$$U = U_{i} + (R_{1} + jX_{1})I_{1}$$

$$0 = sU_{i} + (R_{2} + jsX_{2})I_{2}$$

$$I_{m} = I_{1} + I_{2}$$

$$U_{i} = jX_{m}I_{m}$$

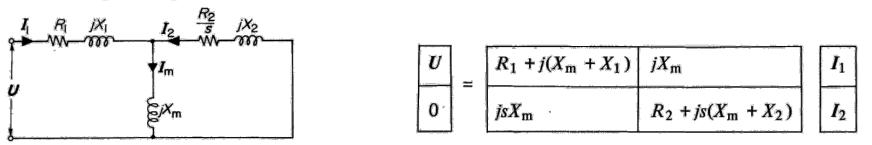
Eliminating U_i and I_m we get the two voltage equations:

U =	$R_1 + j(X_m + X_1)$	jX _m	I 1
0	jsX _m	$R_2 + js(X_m + X_2)$	<i>I</i> ₂

Effects of Saturation: Simplified method

• Simplified methods for considering saturation:

- Assume that only one parameter is variable and that it varies with only one current
- Example: Equivalent circuit of induction motor:



- The total flux is separated into a magnetizing flux and two leakage fluxes
- It can be assumed that the magnetizing reactance \mathbf{X}_{m} is a function only of the magnetizing current
- While the leakage reactances (X_1, X_2) are constants
- Such a method has been applied successfully to the calculation of characteristics of an induction motor
- Similar assumptions are used for the method of 'saturated reactance' for synchronous machines

Effects of Saturation: Simplified method

• Simplified methods for considering saturation:

 I_{m}

• This method works well till the currents rise to high values

• It is inaccurate when the currents are high enough to saturate the leakage flux paths

 $R_1 + j(X_m + X_1) \quad jX_m$ $jsX_m \quad R_2 + js(X_m + X_2)$

 I_1

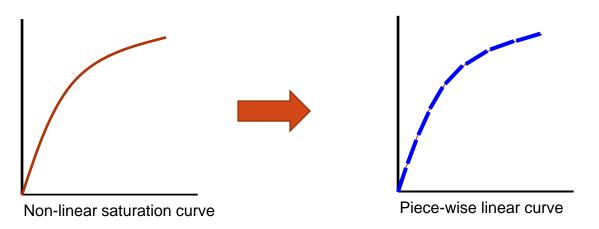
 I_2

- For example, leakage reactance of an induction motor during starting at full voltage (high starting current) is different from than during normal running (low current)
- Any variation in the values of leakage reactance also affect the magnetizing reactance value since they pass through the same iron path

Effects of Saturation: Piece-wise linearization

Simplified methods for considering saturation:

- Thus saturation effect can not be fully analyzed using the circuit equations
- Generalized theory can be used in such cases by assuming *piece-wise linear models* (curve represented by linear segments)



- Incremental values of flux can be obtained from such piece-wise linearlized saturation curves
- Solution to saturation effect can be better represented by such a linear generalized theory than that obtained from the linear equations

Effects of Saturation: Numerical techniques

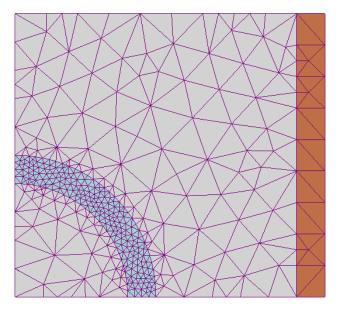
• Detailed methods for considering saturation:

- Using computer based simulation packages it is possible to obtain a more accurate solution by computing the flux distribution in detail
 - Finite Element Method (FEM)
 - Finite Difference Method (FDM)

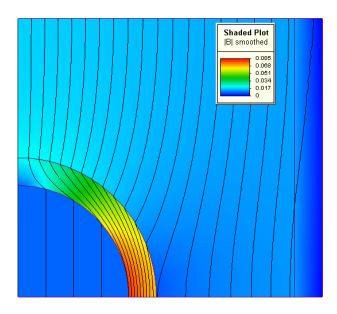
FEM:

- The finite element method is a numerical method that is used to solve boundary-value problems characterized by partial differential equations and a set of boundary conditions
- The FEM subdivides a large system into smaller, simpler parts that are called finite elements
- This is implemented by the construction of a mesh of the object
- The differential equation is applied to each of the single element domains
- Set of linear equations is obtained for each element in the discretized domain
- Algebraic equation sets in steady-state problems are solved using numerical linear algebra methods
- Differential equation sets in transient problems are solved by numerical integration using standard techniques such as *Euler's method* or the *Runge-Kutta method*.

• **FEM:**



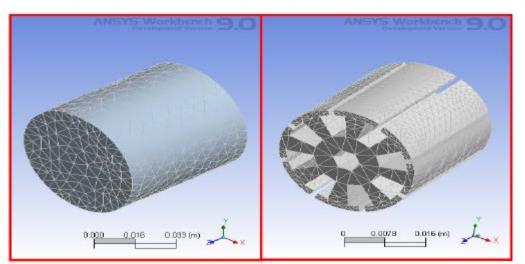
FEM mesh created for finding a solution to a magnetic problem using FEM software

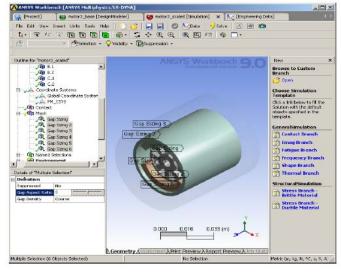


FEM solution to the problem The color represents the amplitude of the magnetic flux density

FEM:

- The ANSYS program is based on the finite element method (FEM) for solving Maxwell's equations
- ANSYS can be used for investigation of the magnetic field distribution
 - magnetic flux density, the magnetic field intensity and the magnetic vector potential etc.
 - Input data include defining the geometry, material properties, currents, boundary conditions, and the field system equations
 - The computer performs numerical solution of the field equation and output the desired parameters



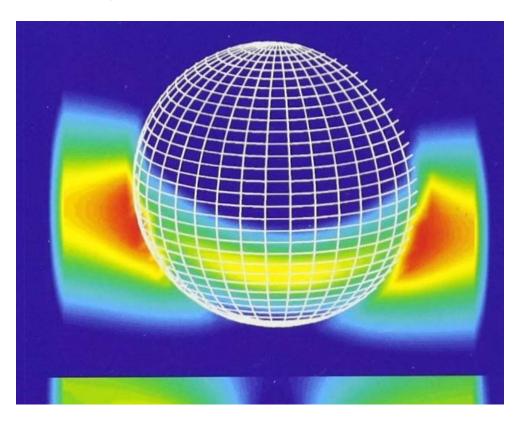


FDM:

- The finite difference method is a powerful numerical method for solving partial differential equations
- In applying the method of finite differences a problem is defined by:
 - A partial differential equation such as Poisson's equation
 - A solution region
 - Boundary and/or initial conditions

FDM:

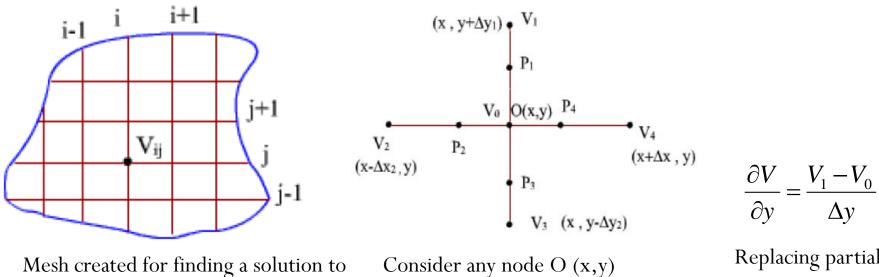
- An FDM method divides the solution domain into finite discrete points
- Boundaries of the machine structure (solution space) is fit with small square, trapezoidal, or triangular elements



FDM:

a magnetic problem using FDM

- The partial differential equations are replaced with a set of difference equations
- If the discretization is made very fine, the error in the solution is minimized



Replacing partial differential equations by difference equation (linearized)

• FDM:

• MATLAB can be used to execute FDM for magnetic field computations

