Transformation Matrix Models of Machines

Day 13

ILOs - Day13

- Draw and explain the linear transformation matrix model for
- 3-phase induction machine
- Explain operating characteristics there from

Linear transformation matrix model for 3-ph IM

- 3-phase induction machine
- 3-phase winding in stator that produces rotating magnetic field (RMF) in the air gap

Linear transformation matrix model for 3-ph IM

- 3-phase induction machine
- 3-phase winding in stator that produces rotating magnetic field (RMF) in the air gap
- Whether it is squirrel cage type or wound rotor type, the rotor also has a 3-phase winding

Linear transformation matrix model for 3-ph IM

- 3-phase induction machine
- Both the stator and rotor windings carry alternating currents
- Stator MMF rotates at synchronous speed w.r.t. stator
- Currents induced in rotor also produces MMF that rotates at synchronous speed w.r.t. stator

Linear transformation matrix model for 3-ph IM

- 3-phase induction machine
- Stator and rotor MMF waves rotate at same speed and at the same direction
- Under steady state condition, the relative speed between stator and rotor RMF is thus zero, i.e. they appear stationary to each other

Linear transformation matrix model for 3-ph IM

- 3-phase induction machine
- 3-phase winding in stator that produces rotating magnetic field (RMF) in the air gap
- Represented by three stator coils A, B, C placed 120° apart in space
- Phase A coil can be taken along d-axis for convenience

Linear transformation matrix model for 3-ph IM

- 3-phase induction machine
- Whether it is squirrel cage type or wound rotor type, the rotor also has a 3-phase winding
- Represented by three coils a, b, c placed 120° apart in space
- Orientation of rotor coils (a, b, c) w.r.t the stator coils (A, B, C) is arbitrary

Linear transformation matrix model for 3-ph IM

- 3-phase induction machine
- The 3-phase windings in stator and rotor both can be represented by their generalized equivalent 2-coil configuration
- The $d-q$ stationary coil axes are fixed along the stator structure
- The rotor α - β rotating coils are assumed to make angle θ with $d-q$ axes
- The 2 -phase coils in stator and rotor produce RMF that are identical with those produced by the original 3-phase windings A, B, C and a, b, c respectively

Linear transformation matrix model for 3-ph IM

- 3-phase induction machine
- Note that stator coils have been represented along the stationary d - q axes
- Whereas the rotor coils have been represented along the rotating axes $\alpha-\beta$
- The 3-phase stator A-phase coincides with α-phase or d-phase in stator
- Thus, for stator, 3-phase to 2-phase transformations from (A, B, C) to $(\alpha-\beta)$ and (A, B, C) to $(d-q)$ will be same

Transformation in stator

$(\mathrm{A}, \mathrm{B}, \mathrm{C}) \rightarrow(\alpha \mathrm{s}, \beta \mathrm{s}, 0 \mathrm{~s}) \rightarrow(\mathrm{ds}, \mathrm{q}, 0 \mathrm{~s})$

Linear transformation matrix model for 3-ph IM

- 3-phase to 2-phase transformation in stator
- Transformations from (A, B, C) to $(\alpha-\beta-0)$ or $(d-q-0)$ assuming angular displacement of θ between (A, B, C) and $(\alpha-\beta)$ or (d-q) axes
- The generalized matrix form is:

Linear transformation matrix model for 3-ph IM

- 3-phase to 2-phase transformation in stator
- However, since stator phase A is assumed to be along α-axis, or d-axis, the angle θ in this case is $\theta=0^{\circ}$
- The transformation matrix from (A, B, C) to $(d-q-O)$ is derived as:

$$
\begin{array}{|c|}
\hline i_{d s} \\
\hline i_{q s} \\
\hline i_{0 s} \\
\hline
\end{array}=\sqrt{ } \begin{array}{ll|c|c|c|}
\hline \frac{2}{3} & d & q & \cos 0^{0} & \cos \left(-120^{0}\right) \\
\hline & \cos \left(-240^{0}\right) \\
\hline & -\sin 0^{0} & -\sin \left(-120^{\circ}\right) & -\sin \left(-240^{\circ}\right) \\
\hline \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\hline
\end{array}
$$

Linear transformation matrix model for 3-ph IM

- 3-phase to 2-phase transformation in stator
- (A, B, C) to $(d-q-0)$ transformation matrix:

Linear transformation matrix model for 3-ph IM

- 3-phase to 2-phase transformation in stator
- Physical concepts of stator transformation:
- Here I_{m} is the maximum value of stator current and α is the time phase angle of i_{A} w.r.t the time origin at $t=0$
$i_{A}=I_{m} \cos (\omega t+\alpha)$
$i_{B}=I_{m} \cos \left(\omega t+\alpha-240^{\circ}\right)$
$i_{C}=I_{m} \cos \left(\omega t+\alpha-120^{\circ}\right)$
- Neglect zero sequence current for the time being
- Park's transformation matrix:

$$
\begin{array}{|c|}
\hline i_{d s} \\
\hline i_{q s} \\
\hline
\end{array}=\sqrt{\frac{2}{3}} d \begin{gathered}
\\
d
\end{gathered} \quad \begin{array}{c|c|c|}
\hline & A & C \\
\hline \cos 0^{0} & \cos \left(-120^{\circ}\right) & \cos \left(-240^{\circ}\right) \\
\hline-\sin 0^{0} & -\sin \left(-120^{\circ}\right) & -\sin \left(-240^{\circ}\right) \\
\hline
\end{array}
$$

Linear transformation matrix model for 3-ph IM

- 3-phase to 2-phase transformation in stator
- Physical concepts of stator transformation:
$i_{d s}=\sqrt{\frac{2}{3}}\left[i_{A} \cos 0^{\circ}+i_{B} \cos \left(-120^{\circ}\right)+i_{C} \cos \left(-240^{\circ}\right)\right]$

$$
\begin{aligned}
& i_{A}=I_{m} \cos (\omega t+\alpha) \\
& i_{B}=I_{m} \cos \left(\omega t+\alpha-240^{0}\right) \\
& i_{C}=I_{m} \cos \left(\omega t+\alpha-120^{\circ}\right)
\end{aligned}
$$

Putting values of i_{A}, i_{B}, i_{C} :
$\cos A \cos B=\frac{1}{2} \cos (A-B)+\frac{1}{2} \cos (A+B)$

$$
\begin{aligned}
i_{d s} & =\sqrt{\frac{2}{3}} I_{m}\left[\cos 0^{\circ} \cos (\omega t+\alpha)+\cos \left(-120^{\circ}\right) \cos \left(\omega t+\alpha-240^{\circ}\right)+\cos \left(-240^{\circ}\right) \cos \left(\omega t+\alpha-120^{\circ}\right)\right] \\
& =\sqrt{\frac{2}{3}} I_{m} \frac{1}{2}\left[2 \cos (\omega t+\alpha)+\cos \left(\omega t+\alpha-360^{\circ}\right)+\cos \left(\omega t+\alpha-120^{\circ}\right)+\cos \left(\omega t+\alpha-360^{\circ}\right)+\cos \left(\omega t+\alpha+120^{\circ}\right)\right] \\
& =\sqrt{\frac{2}{3}} I_{m} \frac{1}{2}\left[2 \cos (\omega t+\alpha)+\cos (\omega t+\alpha)+\cos \left(\omega t+\alpha-120^{\circ}\right)+\cos (\omega t+\alpha)+\cos \left(\omega t+\alpha+120^{\circ}\right)\right]
\end{aligned}
$$

$$
\begin{array}{|c|c|c|c|}
\hline i_{d s} \\
\hline i_{q s} \\
\hline
\end{array}=\sqrt{\frac{2}{3}} d \begin{gathered}
d \\
\\
\cline { 3 - 4 } \\
\cline { 3 - 4 } \\
\hline \cos 0^{0} \\
\hline-\sin 0^{0} \\
\hline
\end{gathered}
$$

Linear transformation matrix model for 3-ph IM

- 3-phase to 2-phase transformation in stator
- Physical concepts of stator transformation:
$i_{d s}=\sqrt{\frac{2}{3}} I_{m} \frac{1}{2}\left[2 \cos (\omega t+\alpha)+\cos (\omega t+\alpha)+\cos \left(\omega t+\alpha-120^{\circ}\right)+\cos (\omega t+\alpha)+\cos \left(\omega t+\alpha+120^{\circ}\right)\right]$
For a balanced 3-phase system:

$$
\cos (\omega t+\alpha)+\cos \left(\omega t+\alpha-120^{\circ}\right)+\cos \left(\omega t+\alpha+120^{\circ}\right)=0
$$

Thus: $i_{d s}=\sqrt{\frac{2}{3}} I_{m} \frac{1}{2}[3 \cos (\omega t+\alpha)]=\sqrt{\frac{2}{3}} I_{m} \frac{3}{2} \cos (\omega t+\alpha)=\sqrt{\frac{3}{2}} I_{m} \cos (\omega t+\alpha)$
Similarly, it can be shown that: $i_{q S}=\sqrt{\frac{3}{2}} I_{m} \sin (\omega t+\alpha)$

- The two d - q axes currents $i_{d s}$ and $i_{q s}$ are functions of time and are displaced from each other by 90° in time as well as space
- The two phase system will thus produce exactly similar RMF in stator as the original 3 -phase system of currents $\left(i_{A}, i_{B}, i_{C}\right)$ that rotates in the same direction and with the same speed

Transformation in rotor

$$
(\mathrm{a}, \mathrm{~b}, \mathrm{c}) \rightarrow(\alpha \mathrm{r}, \beta \mathrm{r}, 0 \mathrm{r}) \rightarrow(\mathrm{dr}, \mathrm{qr}, 0 \mathrm{r})
$$

Linear transformation matrix model for 3-ph IM

- 3-phase to 2-phase transformation in rotor
- Transformations from 3-phase rotor coils (a, b, c) to rotating axes $(\alpha-\beta-0)$ requires no change of space frame, since both are on the rotating member
- The generalized matrix form is:

Linear transformation matrix model for 3-ph IM

- 3-phase to 2-phase transformation in rotor
- Transformations from rotating axes $(\alpha-\beta-0)$ to stationary axes $(d-q-0)$ to represent in primitive generalized model:

$i_{\alpha r}$	$=\sqrt{\frac{2}{3}}$		b		
		1	$-\frac{1}{2}$	- $\frac{1}{2}$	${ }^{i}{ }_{a}$
		0	$\frac{\sqrt{3}}{2}$	- $\frac{\sqrt{3}}{2}$	i_{b}
$i_{0 r}$		$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	i_{c}

Linear transformation matrix model for 3-ph IM

- (a, b, c) to $(\alpha, \beta, 0)$ to $(d, q, 0)$ axes transformation

a	b		
$\cos 0^{0}$	$\cos 120^{\circ}$	$\cos 240^{\circ}$	i_{a}
$\sin 0^{0}$	$\sin 120^{\circ}$	$\sin 240^{\circ}$	i_{b}
$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	i_{c}

Analysis of IM: Performance equations

Using primitive generalized model

Linear transformation matrix model for 3-ph IM

- Performance equations
- The voltage equations for generalized representation is:

- Stator and rotor both have balanced winding:

$$
r_{d s}=r_{q s}=r_{s} \quad r_{d r}=r_{q r}=r_{r}
$$

- Assuming uniform air gap:

$$
L_{d s}=L_{q s}=L_{s} \quad L_{d r}=L_{q r}=L_{r}
$$

- Coils DS-QS and DR-QR being assumed identical:
$M_{d}=M_{q}=M$

Linear transformation matrix model for 3-ph IM

- Performance equations
- The voltage equations for generalized representation is:

- Stator and rotor both have balanced winding:

$$
r_{d s}=r_{q s}=r_{s} \quad r_{d r}=r_{q r}=r_{r}
$$

- Assuming uniform air gap:

$$
L_{d s}=L_{q s}=L_{s} \quad L_{d r}=L_{q r}=L_{r}
$$

- Coils DS-QS and DR-QR being assumed identical:
$M_{d}=M_{q}=M$

Linear transformation matrix model for 3-ph IM

- Performance equations
- The voltage equations for generalized representation is:

- In an induction motor, the rotor bars are all shorted:
$\therefore v_{a r}=v_{b r}=v_{c r}=0 \quad v_{a r}=v_{\beta r}=0 \quad v_{d r}=v_{q r}=0$

Linear transformation matrix model for 3-ph IM

- Performance equations
- The voltage equations for generalized representation is:

- In an induction motor, the rotor bars are all shorted:
$\therefore v_{a r}=v_{b r}=v_{c r}=0 \quad v_{\alpha r}=v_{\beta r}=0 \quad v_{d r}=v_{q r}=0$
- Since the rotor is shorted, the currents $i_{d r}$ and $i_{q r}$ will reverse their directions
- The negative signs of $i_{d r}$ and $i_{q r}$ will be taken care by suitably changing the signs of corresponding impedance matrix elements

Linear transformation matrix model for 3-ph IM

- Performance equations:Torque
- The developed torque expression is given by:

$$
T_{e}=\left[i_{t}\right][G][i]
$$

$$
\begin{aligned}
T_{e}=\left[i_{t}\right][G][i] & =-i_{q s} M i_{d r}+i_{d r} L_{r} i_{q r}+i_{d s} M i_{q r}-i_{d r} L_{d r} i_{q r} \\
& =M\left(i_{d s} i_{q r}-i_{d r} i_{q S}\right)
\end{aligned}
$$

- Note that from the torque expression it is clear how stator and rotor currents that are in coils 90° apart in space are working together to produce torque
- $(+)$ torque component indicates motoring action,

