Transformation Matrix Models of Machines

Day 10

ILOs - Day10

- Draw and explain the linear transformation matrix model for
- DC machine
- Explain operating characteristics there from

Linear transformation matrix model for DC machine

Linear transformation matrix model for DC machine

- DC machines have salient poles in stator
- Armature winding in rotor is distributed in slots and connected to the commutator segments making it pseudo-stationary
- d-axis of the primitive machine is along field poles
- q-axis is along brush axis (inter-polar axis)
- Thus, for DC machines, the 2-pole equivalent structure, and Kron's primitive machine structure are nearly identical
- Hence, no transformation is necessary

2-pole DC machine

Basic 2-pole equivalent

Kron's primitive model

Linear transformation matrix model for DC machine

- However, some more assumptions are necessary for using the generalized mathematical model to a real DC machine
- The effect of armature MMF along q-axis on total d-axis flux is neglected, i.e. the cross-magnetizing and de-magnetizing effects of armature reaction are neglected
- The commutation process is such that the stationary armature MMF wave is always along q axis
- Effects of saturation is neglected, i.e. magnetic circuit is assumed to stay linear

2-pole DC machine

Basic 2-pole equivalent

Kron's primitive model

Linear transformation matrix model for DC machine

- Steady state and transient analysis of DC generators
- With electrical load connected to the generator armature terminals, the output quantities are voltage, current, and power
- Voltage equations of Kron's generalized model:

Basic 2-pole DC machine equivalent

Load connected to armature

Generalized Kron's machine

Linear transformation matrix model for DC machine

- Steady state and transient analysis of DC generators

Basic 2-pole DC machine equivalent

Stator has only DS coil, but QS coil is not present
Rotor has only QR coil, but DR
Rotor has both DR and QR coils coil is not present

Generalized Kron's machine

Stator has both DS and QS coils

Load connected to armature
Generalized Kron's machine

Linear transformation matrix model for DC machine

- Steady state and transient analysis of DC generators
- Comparing with the DC machine model, the matrices can be suitably modified so that rows and columns relating to $q s$ and $d r$ can be omitted

	ds		qs	${ }^{\text {d }}$	$q r$	
$v_{d s}$	ds	${ }_{d s}+L_{\text {ds }} p$		$M_{d} p$		$i_{\text {ds }}$
$v_{q s}$	qs		$r_{q s}+L_{q s} p$		$M_{q} p$	$i_{\text {qs }}$
$v_{d r}$	$d r$	$M_{d} p$	$-M_{q} \omega_{r}$	$r_{d r}+L_{d r} p$	$-\omega_{r} L_{\text {ar }}$	$i_{\text {dr }}$
$v_{\text {qr }}$	$q r$	$M_{d} \omega_{r}$	$M_{q} p$	$\omega_{r} L_{d r}$	$r_{q r}+L_{q r} p$	$i_{a r}$

Basic 2-pole DC machine equivalent

Load connected to armature

Generalized Kron's machine

Linear transformation matrix model for DC machine

- Steady state and transient analysis of DC generators
- Comparing with the DC machine model, the matrices can be suitably modified so that rows and columns relating to $q s$ and $d r$ can be omitted:

$$
=\begin{array}{c|c|}
\hline \\
q r
\end{array} \begin{array}{|c|c|}
\hline r_{d s}+L_{d s} p & 0 \\
\hline M_{d} \omega_{r} & r_{q r}+L_{q r} p \\
\cline { 2 - 3 } \\
\hline
\end{array} \begin{array}{|c}
i_{d s} \\
\hline i_{q r} \\
\hline
\end{array}
$$

- Circuit equations:

Load connected to armature

Generalized Kron's machine

Linear transformation matrix model for DC machine

- Steady state and transient analysis of DC generators
- Voltage equations

$$
\begin{aligned}
& \begin{array}{|l|}
\hline v_{f} \\
\hline v_{t} \\
\hline
\end{array}=\begin{array}{c|c|c|}
\hline d s \\
\hline q r & r_{f}+L_{f} p & 0 \\
\hline M_{d} \omega_{r} & r_{a}+L_{a} p & i_{f} \\
\hline
\end{array} \\
& v_{f}=\left(r_{f}+L_{f} p\right) i_{f} \\
& v_{t}=M_{d} \omega_{r} i_{f}-\left(r_{a}+L_{a} p\right) i_{a}
\end{aligned}
$$

- These equations are valid for both steady state as well as transient conditions

Basic 2-pole DC machine equivalent

Load connected to armature

Generalized Kron's machine

Steady state analysis of DC machine

Linear transformation matrix model for DC machine

- Steady state analysis of DC generators

- Voltage equations

$$
\begin{aligned}
& v_{f}=\left(r_{f}+L_{f} p\right) i_{f} \\
& v_{t}=M_{d} \omega_{r} i_{f}-\left(r_{a}+L_{a} p\right) i_{a}
\end{aligned}
$$

- At steady state operation, the transient term (derivative, p) is omitted
- Thus, steady state voltage equations are reduced to: $V_{f}=r_{f} I_{f}$

$$
V_{t}=M_{d} \omega_{r} I_{f}-r_{a} I_{a}
$$

$$
\begin{array}{|l}
\hline \begin{array}{l}
\text { DC generator } \\
\text { equations we are } \\
\text { familiar with }
\end{array} \\
\end{array}
$$

- At no-load, the armature current is zero, i.e. $I_{a}=0$
- Thus, no-load terminal voltage (induced EMF) is: $V_{t}=M_{d} \omega_{r 0} I_{f}=E_{a 0}$
- $E_{a o}$ is the armature terminal voltage at no-load (induced EMF) and at a constant speed $\omega_{\text {ro }}$

Linear transformation matrix model for DC machine

- Steady state analysis of DC generators: No-load characteristics

$$
E_{a 0}=M_{d} \omega_{r 0} I_{f} \quad y=m_{x}
$$

- The plot of $E_{a o}$ vs. I_{f} gives the OCC, or saturation curve, or magnetization curve

- Initially, the open circuit armature voltage $E_{a o}$ increases linearly with field current
- But, at higher value of I_{f}, when the magnetic path saturates, the rotational mutual inductance or motional inductance $\boldsymbol{M}_{\boldsymbol{d}}$ begins to decrease
- The OCC plot starts to bend horizontal indicating saturation

Linear transformation matrix model for DC machine

- Steady state analysis of DC generators: Load characteristics
- Armature EMF at no-load: $E_{a 0}=M_{d} \omega_{r 0} I_{f}$

$$
V_{f}=r_{f} I_{f}
$$

- Hence, armature generated EMF at any other speed:

$$
V_{t}=M_{d} \omega_{r} I_{f}-r_{a} I_{a}
$$

$$
\begin{aligned}
E_{a} & =\frac{E_{a 0}}{\omega_{r 0}} \times \omega_{r} \\
& =M_{d} \omega_{r} I_{f} \\
& =K_{g} I_{f}
\end{aligned}
$$

Generator constant

$$
K_{g}=M_{d} \omega_{r}
$$

- Thus, armature terminal voltage at any load current I_{a} is:

$$
\begin{aligned}
V_{t} & =E_{a}-r_{a} I_{a} \\
& =M_{d} \omega_{r} I_{f}-r_{a} I_{a} \\
V_{t} & =K_{g} I_{f}-r_{a} I_{a}
\end{aligned}
$$

Linear transformation matrix model for DC machine

- Steady state analysis of DC generators: Load characteristics

$$
V_{t}=K_{g} I_{f}-r_{a} I_{a} \quad y=C-m x
$$

- The plot of V_{t} vs. I_{a} gives the load, or external characteristics of a separately excited DC generator

Transient analysis of DC machine

Linear transformation matrix model for DC machine

- Transient analysis of DC generators
- Voltage equations $v_{f}=\left(r_{f}+L_{f} p\right) i_{f}$

$$
v_{t}=M_{d} \omega_{r} I_{f}-\left(r_{a}+L_{a} p\right) i_{a}
$$

- The generator is running at no-load $\left(i_{a}=0\right)$ with a constant no-load speed $\omega_{r 0}$
- There is sudden application of step field excitation $V_{f} U(t)$
- The field circuit transient equation in Laplace domain is:

$$
\frac{V_{f}}{s}=\left(r_{f}+L_{f} s\right) I_{f}(s) \Rightarrow I_{f}(s)=\frac{V_{f}}{s\left(r_{f}+L_{f} s\right)}
$$

- The armature circuit equation under no-load condition in Laplace domain is:

$$
\begin{gathered}
V_{t}(s)=M_{d} \omega_{r 0} I_{f}(s)=E_{a 0}(s) \\
\Rightarrow E_{a 0}(s)=M_{d} \omega_{r 0} I_{f}(s)=M_{d} \omega_{r 0} \frac{V_{f}}{s\left(r_{f}+L_{f} s\right)}
\end{gathered}
$$

Linear transformation matrix model for DC machine

- Transient analysis of DC generators

$$
\begin{gathered}
E_{a 0}(s)=M_{d} \omega_{r 0} I_{f}(s)=M_{d} \omega_{r 0} \frac{V_{f}}{s\left(r_{f}+L_{f} s\right)} \\
\Rightarrow E_{a 0}(s)=M_{d} \omega_{r 0} \frac{V_{f}}{s r_{f}\left(1+\frac{L_{f}}{r_{f}} s\right)}=M_{d} \omega_{r 0} \frac{V_{f}}{s r_{f}\left(1+\tau_{f} s\right)}=\frac{M_{d} \omega_{r 0} I_{f}}{s\left(1+\tau_{f} s\right)}
\end{gathered}
$$

$$
\tau_{f}=\frac{L_{f}}{r_{f}}=\text { field time constant }
$$

$M_{d} \omega_{r 0} I_{f}=E_{a 0}=$ no-load armature terminal voltage (induced EMF) at $\omega_{r 0}$
$\Rightarrow E_{a 0}(s)=\frac{E_{a 0}}{s\left(1+\tau_{f} s\right)}$

- Expression for generator terminal voltage at no-load under transient condition can be obtained by taking Laplace inverse of the above eqn.

Linear transformation matrix model for DC machine

- Transient analysis of DC generators

$$
E_{a 0}(s)=\frac{E_{a 0}}{s\left(1+\tau_{f} s\right)}
$$

- Expression for generator terminal voltage at no-load under transient condition can be obtained by taking Laplace inverse of the above eqn.

$$
e_{a 0}(i)=E_{a 0}\left(1-e^{-\frac{t}{\tau_{f}}}\right)
$$

- The transient characteristics looks like:

Linear transformation matrix model for DC machine

- Transient analysis of DC generators with load
- Voltage equations $v_{f}=\left(r_{f}+L_{f} p\right) i_{f}$

$$
v_{t}=M_{d} \omega_{r} I_{f}-\left(r_{a}+L_{a} p\right) i_{a}
$$

- The generator is running at load ($i_{a} \neq 0$) with a speed ω_{r}, load is $R_{L}+j X_{L}$
- There is sudden application of step field excitation $V_{f} U(t)$
- The field circuit transient equation in Laplace domain is:

$$
\frac{V_{f}}{s}=\left(r_{f}+L_{f} s\right) I_{f}(s) \Rightarrow I_{f}(s)=\frac{V_{f}}{s\left(r_{f}+L_{f} s\right)}
$$

- The armature circuit equation in Laplace domain is:

$$
\begin{aligned}
& \left.V_{t}(s)=M_{d} \omega_{r} \frac{V_{f}}{s\left(r_{f}+L_{f} s\right.}\right)^{-\left(r_{a}+L_{a} s\right) I_{a}(s)} \\
\Rightarrow & V_{t}(s)=M_{d} \omega_{r} \frac{V_{f}}{s r_{f}\left(1+\tau_{f} s\right)}-\left(r_{a}+L_{a} s\right) I_{a}(s)
\end{aligned}
$$

Linear transformation matrix model for DC machine

- Transient analysis of DC generators with load

$$
V_{t}(s)=M_{d} \omega_{r} \frac{V_{f}}{s r_{f}\left(1+\tau_{f} s\right)^{-}}-\left(r_{a}+L_{a} s\right) I_{a}(s)
$$

- The load current expression in Laplace domain:

$$
\begin{aligned}
& I_{L}(s)=I_{a}(s)=\frac{V_{t}(s)}{\left(R_{L}+L_{L} s\right)} \\
\Rightarrow & I_{a}(s)\left(R_{L}+L_{L} s\right)=V_{t}(s)=M_{d} \omega_{r} \frac{V_{f}}{s r_{f}\left(1+\tau_{f} s\right)^{-(}\left(r_{a}+L_{a} s\right) I_{a}(s)} \\
\Rightarrow & I_{a}(s)\left(R_{L}+L_{L} s\right)=\frac{M_{d} \omega_{r} I_{f}}{s\left(1+\tau_{f} s\right)}-\left(r_{a}+L_{a} s\right) I_{a}(s)
\end{aligned}
$$

$M_{d} \omega_{r} I_{f}=E_{a}=$ Induced EMF at ω_{r}

$$
\begin{aligned}
& \Rightarrow I_{a}(s)\left(R_{L}+L_{L} s\right)=\frac{E_{a}}{s\left(1+\tau_{f} s\right)}-\left(r_{a}+L_{a} s\right) I_{a}(s) \\
& \Rightarrow I_{a}(s)\left(R_{L}+L_{L} s+r_{a}+L_{a} s\right)=\frac{E_{a}}{s\left(1+\tau_{f} s\right)}
\end{aligned}
$$

Linear transformation matrix model for DC machine

- Transient analysis of DC generators with load

$$
\begin{gathered}
I_{a}(s)\left(R_{L}+L_{L} s+r_{a}+L_{a} s\right)=\frac{E_{a}}{s\left(1+\tau_{f} s\right)}, \\
\Rightarrow I_{a}(s)\left[\left(R_{L}+r_{a}\right)+s\left(L_{L}+L_{a}\right)\right]=\frac{E_{a}}{s\left(1+\tau_{f} s\right)} \\
\Rightarrow I_{a}(s)\left(R_{L}+r_{a}\right)\left[1+s \frac{\left(L_{L}+L_{a}\right)}{\left(R_{L}+r_{a}\right)}\right]=\frac{E_{a}}{s\left(1+\tau_{f} s\right)} \\
\Rightarrow \quad I_{a}(s)\left(R_{L}+r_{a}\right)[1+s \tau]=\frac{E_{a}}{s\left(1+\tau_{f} s\right)} \\
\tau=\frac{\left(L_{L}+L_{a}\right)}{\left(R_{L}+r_{a}\right)}=\text { Effective armature circuit time constant } \\
\Rightarrow I_{a}(s)=\frac{E_{a}}{s\left(R_{L}+r_{a}\right)\left(1+s \tau_{f}\right)(1+s \tau)}
\end{gathered}
$$

Terminal voltage: $V_{t}(s)=\left(R_{L}+L_{L} s\right) I_{a}(s)=\frac{E_{a}\left(R_{L}+L_{L} s\right)}{s\left(R_{L}+r_{a}\right)\left(1+s \tau_{f}\right)(1+s \tau)}$

Linear transformation matrix model for DC machine

- Transient analysis of DC generators with load

Terminal voltage: $V_{t}(s)=\left(R_{L}+L_{L} s\right) I_{a}(s)=\frac{E_{a}\left(R_{L}+L_{L} s\right)}{s\left(R_{L}+r_{a}\right)\left(1+s \tau_{f}\right)(1+s \tau)}$
To get V_{t} in time domain, we need to take Laplace inverse of the above equation (partial fractions)

Armature current: $I_{a}(s)=\frac{E_{a}}{s\left(R_{L}+r_{a}\right)\left(1+s \tau_{f}\right)(1+s \tau)}$

To get I_{a} in time domain, we need to take Laplace inverse of the above equation (partial fractions)

