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® Draw and explain the linear transformation matrix model for
DC machine

© Explain operating characteristics there from
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Linear transformation matrix model for DC machine

® DC machines have salient poles in stator

® Armature Winding in rotor is distributed in slots and connected to the

commutator segments making it pseudo—stationary
® d-axis of the primitive machine is along field poles
® g-axisis along brush axis (inter—polar axis)

® Thus, for DC machines, the 2-pole equivalent structure, and Kron’s

primitive machine structure are nearly identical

* Hence, no transformation is necessary
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Linear transformation matrix model for DC machine

® However, some more assumptions are necessary for using the generalized

mathematical model to a real DC machine

® The effect of armature MMF along q-axis on total d-axis flux is neglected, i.e.
the cross-magnetizing and de-magnetizing effects of armature reaction are
neglected

The commutation process is such that the stationary armature MMF wave is always along g-
axi1s

® Effects of saturation is neglected, i.e. magnetic circuit is assumed to stay linear

axis
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Linear transformation matrix model for DC machine

™~

® With electrical load connected to the generator armature terminals, the

output quantities are Voltage, current, and power

° Voltage equations of Kron’s generalized model:

° Steady state and transient analysis of DC generators

ds gs dr qr
Vds dS rds + Lds p M d p ids
Vs|  0S s + Lgs P MoP | igs
Vdr dr M d P - M qa)r rdr + Ldr P — ), I—qr idr
Vqr qr M da)r M q p a)r I—dr rqr + Lqr p iqr

Qasic 2-pole DC machine equivalent

Load connected to armature

Generalized Kron’s machine/
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Linear transformation matrix model for DC machine

° Steady state and transient analysis of DC generators

Basic 2-pole DC machine Generalized Kron’s machine
equivalent

Stator has only DS coil, but QS Stator has both DS and QS coils

coil is not present

Rotor has only QR coil, but DR Rotor has both DR and QR coils

coil is not present

Qasic 2—pole DC machine equivalent Load connected to armature Generalized Kron’s machine/
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Linear transformation matrix model for DC machine

° Steady state and transient analysis of DC generators

® Comparing with the DC machine model, the matrices can be suitably

modified so that rows and columns relating to gs and dr can be omitted

Qasic 2—pole DC machine equivalent Load connected to armature Generalized Kron’s machine/
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Linear transformation matrix model for DC machine

° Steady state and transient analysis of DC generators

® Comparing with the DC machine model, the matrices can be suitably
modified so that rows and columns relating to gs and dr can be omitted:
ds qr
Vds dS rds + Lds p 0 ids

Vool Qr | Myoo, |1, +L, Pl

ar qr

* Circuit equations: ds qr
e ==, | Ve =V, | T =T | Ly =L, Vi | ds| r, +L;p 0 I
ids — if Vis = Vi Fas = I Lds - Lf Ve| dr der I, + Lap _ia

o—" Load connected to armature ~ Generalized Kron’s machine/
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Linear transformation matrix model for DC machine

° Steady state and transient analysis of DC generators

Qasic 2-pole DC machine equivalent

° Voltage equations

Vi

Vi

ds
qr

ds

qT
re+L;p 0 I
I\/Ida)r ra+Lap _ia

v, =(r, + L, p)i,
Vi = I\/Ida)rif _(ra+ La p)ia

® These equations are valid for both steady state as well as transient conditions

Load connected to armature ~ Generalized Kron’s machine/
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Linear transformation matrix model for DC machine

° Steady state analysis of DC generators

® Voltage equations vy = (17 + Lyp) is
Ve = Maw,if — (1, + LgD) i

® At steady state operation, the transient term (derivative, p) is omitted

® Thus, steady state voltage equations are reduced to: (V¢ =1l
Vi i

a

2 V.=M,o. 1, —r, I

DC generator Vf =T, | f

equations we are

V.=E-r, I,

familiar with

® Atno-load, the armature current is zero,i.e. [, = 0
® Thus, no-load terminal voltage (induced EMF) is: V; = My@,,l( =E,
® E_ is the armature terminal voltage at no-load (induced EMF) and at a

constant speed .

- /
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Linear transformation matrix model for DC machine

° Steady state analysis of DC generators: No-load characteristics

_ — |
EaO_derOIf )/:mx
® The plot of E_ vs. I, gives the OCC, or saturation curve, or magnetization curve
Air gap line ,*
\ Y occ
£
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’l/
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® Initially, the open circuit armature voltage E_ increases linearly with field current

® But, at higher value of I, when the magnetic path saturates, the rotational mutual

inductance or motional inductance M p begins to decrease

® The OCC plot starts to bend horizontal indicating saturation
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Linear transformation matrix model for DC machine

° Steady state analysis of DC generators: Load characteristics

® Armature EMF at no-load: E,; =M@, ; Vi =ril;
® Hence, armature generated EMF at any other speed: Vi=Myao l; -1, |,
E
_ _—a0
Ea o X Wy
a)rO
=M 4, | f Generator constant
_ K =M w
= Kg I f | g d™r

® Thus, armature terminal voltage at any load current I, is:

Vt:Ea_ra Ia
:Mda)rlf _ra Ia
V=K, I, -, I,
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Linear transformation matrix model for DC machine

° Steady state analysis of DC generators: Load characteristics

1

Vo =K I, -, 1,

)/:C—mx

® The plot of V, vs. I, gives the load, or external characteristics of a separately

excited DC generator

Load characteristics
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Linear transformation matrix model for DC machine

* Transient analysis of DC generators
® Voltage equations V¢ = (rf + L, p)if
V=M, 1 —(r, +L,p)i,
® The generator is running at no-load (i, = O)with a constant no-load speed @,,
® There is sudden application of step field excitation VfU( t)

® The field circuit transient equation in Laplace domain is:

Vi Vi

?:(rf +LfS)|f(S) = If(s): S(rf +Lfs)

® The armature circuit equation under no-load condition in Laplace domain is:

Vi (S) =My, (S) = an(s)
Vi

s(rf + Lfs)

= an(s): I\/Ida)rol f (S): Ivlda)ro
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Linear transformation matrix model for DC machine

e Transient analysis of DC generators

V
ELo(S)=Myo,l(s)=Myo f
aO() d rOf() d rOS(rf+LfS)
\Y \Y M,o,l
= E_(S)=M,o, f =M, o f _ _d7vof
o(8) =My L, Tsr (l+7,s) sll+z,s)
Sr|14+—5s
I
r, =— =field time constant
I
Myl = E,y =no-load armature terminal voltage (induced EMF) at @,,
E
= E,(s)=—]"2
)= Sars)

® Expression for generator terminal Voltage at no-load under transient

-

condition can be obtained by taking Laplace inverse of the above eqn.

/
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Linear transformation matrix model for DC machine

e Transient analysis of DC generators

— EaO
Eaol8)= s(1+ T s)

* Expression for generator terminal Voltage at no-load under transient

condition can be obtained by taking Laplace inverse of the above eqn.

€a0 (') = E4 [1_ ethJ

® The transient characteristics looks like:
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Linear transformation matrix model for DC machine

* Transient analysis of DC generators with load
® Voltage equations V¢ = (rf + L, p)if
V=M, 1 —(r, +L,p)i,
® The generator is running at load (i, # 0)with a speed @, load is R, +jX;
® There is sudden application of step field excitation VU(t)
® The field circuit transient equation in Laplace domain is:

Vi Vi

?:(rf +LfS)|f(S) = If(s): S(rf +Lfs)

® The armature circuit equation in Laplace domain is:

V
V.(s)=M r Ls)l
(s)=M,o, L) (r, +L.s)1,(s)
- V() =My — 1 (r +Ls)1(s)
t T (N
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Linear transformation matrix model for DC machine

e Transient analysis of DC generators with load

g LG

S, (1+ TS
® The load current expression in Laplace domain:

L6164

Vt(s): |\/lda)r

R +L,s)
V
= LR L)V 6)= Mo, (e L)L
M, o,
= Ia(SXRL + LLS): S(1d+ Z'fo)_(ra + Las) Ia(s)

M,o,l; = E, =Induced EMF at o,

> LR L) =t (L)L)

Ea
= | (SR +Ls+r,+Ls)= res)
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Linear transformation matrix model for DC machine

e Transient analysis of DC generators with load

E
|.(s)R_+L.s+r,+L.s)= 5(1:[ s)
s)

= LR +r)+s(L+L,)]= 3(1+aff s)

o LGIR +ra)[l+3 (L + L))} - Eaf |

(RL +1, 1+7.S
E
1 — a
= I (s)R_+r,)1+s7] fers)
T= (LL ) Effective armature circuit time constant
(R.+r,)
a E
= | = 2
.(s) s(R_ +r, )(1+ ST, X1+ S7)
Ea(RL + LLS)

Terminal voltage: V, (s) — (RL + LLs)l a(s) —

N s(R_+r, 1+s7, 1+s7) Y,
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Linear transformation matrix model for DC machine

e Transient analysis of DC generators with load
E.(R_+L.s)

Terminal voltage: V (s)=(R_ +L sl (s)= S(R_+1 )(1+ St X1+ s7)
L' a f

To get V, in time domain, we need to take Laplace inverse of the above equation

(partial fractions)

E

Armature current: Ia(s): ( a
S

R +r, \1+sz, (1+57)

To get I in time domain, we need to take Laplace inverse of the above equation

(partial fractions)
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