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The London equations
in 1935, shortly after the discovery that magnetic fields are expelled from 
superconductors two brothers Fritz and Heinz London proposed equations 
which are consistent with the Meissner effect and can be used with 
Maxwell's equations to predict how the magnetic field and surface current 
vary with distance from the surface of a superconductor.



The equation is based on two-fluid model. 
This model considers the free electrons within a superconductor 
as two distinct, noninteracting fluids. 
One fluid consists of ‘normal’ electrons, number density nn, 
and other is ‘superconducting’ electrons, or superelectrons, 
which form a fluid with number density ns. 

the total carrier density, no = ns + nn

no = ns at T=0

no = nn at T>Tc

J=Jn+Js,



‘normal’ electrons behave in exactly the same way as the free 
electrons in a normal metal. 
They are accelerated by an electric field E, but are frequently 
scattered by impurities and defects in the ion lattice and by 
thermal vibrations of the lattice. 

The current density Jn due to flow of these electrons 
is

ns density of the superfluid component of velocity vs 

nn density of the normal component of velocity vn



The superconducting electrons are not scattered by impurities, 
defects or thermal vibrations, so they are freely accelerated by an 
electric field. 

If the velocity of a superconducting electron is vs, then its equation of 
motion is

Combining this with the expression for the current density, 
Js= -ns evs, we find that

This is London’s 1st equation



Scattering of the normal electrons leads to a constant current in a 
constant electric field, 

whereas the absence of scattering of the electrons in a 
superconductor cause steady increase in current density at 
constant electric field. 



However, if we consider a constant current flowing in the 
superconductor, then

= 0, so E = 0. 

Therefore the normal current density Jn must be zero – all of the 
steady current in a superconductor is carried by the 
superconducting electrons. 

Of course, with no electric field within the superconductor, there 
will be no potential difference across it, and so it has zero 
resistance.



Replacing E form London’s 1st equation

This is known as London’s second equation.

Maxwell–Faraday equation 



again 

Ampère's law,



Thus

where

London’s penetration depth



Penetration Depth

Magnetic fields are expelled from the interior of a type I 
superconductor by the formation of surface currents.
In reality, they penetrate the surface to a small extent.

Solving the equation
we get

where external magnetic field is parallel to the surface of the 
sample.
Thus the London equations lead to the prediction of an 
exponential decay of the magnetic field within the superconductor



Within this thin layer, which is about 100 nm thick, the 
magnetic field B decreases exponentially from its external 
value to zero, according to the expression

The variation of magnetic field with distance inside a type I 

superconductor

B0 is the value of the magnetic field 
at the surface.
x is the distance from the surface to 
some interior point, and  is a
parameter called the penetration 
depth λ.



Assuming all of the free electrons are superconducting if we 
consider a typical free electron density in a metal 
ns =1029 m−3,
then estimated value of  λ will be 20 nm.



The number density of superconducting electrons depends on 
temperature, so the penetration depth is temperature 
dependent. For T≪Tc

, all of the free electrons are superconducting, but the number 
density falls steadily with increasing temperature until it 
reaches zero at the critical temperature. 
Since λ  ns

-1/2 according to the London model, the 
penetration depth increases as the temperature approaches the 
critical temperature. 



where λ(0) is the value of the penetration depth at T = 0 K.

Temperature dependence of penetration depth


