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Density of States

The density of states (DOS) is essentially the number 

of different states at a particular energy level that 

electrons are allowed to occupy, i.e. the number of 

electron states per unit volume per unit energy.



Calculation of the density of states

Assume that the semiconductor can be modeled as an infinite 

quantum well in which electrons with effective mass, m*, are 

free to move.

The semiconductor is assumed a cube with side L.



The wavefunction solution is: 

kx, ky, kz, and are the wavevectors for an electron in 

the x, y, and z directions

At the opposite boundaries of the rectangular region, 



The allowed states can be plotted as a grid of points 

in k space. 

Allowed states are separated by 

in the 3 directions in k space. 



The k space volume taken up by each allowed state is 

The number of states available for a given magnitude of wavevector

|k| is found by constructing a spherical shell of radius |k| and 

thickness dk. 

The volume of this spherical shell 

in k space is 4𝜋𝑘2𝑑𝑘

= 𝝅𝟑/V

Allowed states can be plotted as

grid of points in k-space



The state density in k space (No. of states per volume in k space) 

= V/ 𝜋3

The number of k states within the spherical shell = the k space 

volume times the k space state density 

As each k state can hold 2 electrons (of opposite spins), so 

the number of electron states is: 



We should count only the positive values of nx ny and nz

Hence the allowed states will be in the positive octant of 

the spherical shell and thus will be 1/8 of the previous 

expression

Using dispersion relation for electron energy

we get  



now substitute dk and k in terms of E in the expressions for g(k) dk

to obtain g(E) dE.

Next divide g(E) dE by V to get number of electron states per unit 

volume over an energy range dE and we get density of states 

function



Confining the electron in the x-y plane, the wavevector z-component           

The allowed states in k space becomes a 2 dimensional lattice of 𝑘𝑥
and 𝑘𝑦 values, spaced 

𝜋

𝐿𝑥,𝑦

𝑘𝑧=0

The state density in k space (No. of states per volume in k space) 

= A/ 𝜋2

The number of states available at a given 

|k| is found using an annular region of 

radius |k| and thickness dk



As should count only the positive values of nx and ny

the allowed states will be in the positive quadrant of the circle.

Thus a factor of ¼ is multiplied to calculate number of states in 

the annular ring

The density of states for 2D material is: 

𝐷 𝐸 =
𝑚∗

𝜋ħ2

This expression is independent

of energy E



The density of states for 1D material is: 
𝐷 𝐸 =

2𝑚∗

𝜋ħ
𝐸−

1
2

The density of states for 0D material is: 𝐷 𝐸 = 2𝛿(E)

















Ballistic, quasi-ballistic and diffusive transport

The transport in low-dimensional electron systems can be classified 

intothree regimes: 

diffusive, ballistic and quasi-ballistic.

In the diffusive regime both the length L and the width W of the 

conductor are much larger than the electron mean free path, 

W,L > ℓe

The transport properties are dominated by elastic scattering and can 

be expressed by classical Drude theory



If the width of the conductor is smaller than the ℓe, but the 

length larger,

W < ℓe < L, the transport is said to be quasi-ballistic.

This is an intermediate regime in which both impurity and 

boundary scattering become important.



Ballistic transport occurs when the mean free path is larger than 

both the width and length of the conductor, ℓe > W,L.

In this case electrons do not scatter from impurities but only from 

the boundaries of the conductor.

Backscattering at the entrance of the constriction results in a non-

zero resistance in the ballistic regime.

The limiting contact resistance depends on the geometry of the 

sample, and not its length; therefore the transport properties 

cannot be expressed in terms of local quantities, such as 

conductivity, as is the case in diffusive transport.





If a width of constriction is small enough it forms a one

dimensional conductor, known as a quantum point contact



Quantisation and the Landauer formalism

Measurements of the conductance G =dI/dV reveal that it 

does not fall in a smooth fashion, but instead exhibits

plateaus and rises

On the plateaus the

conductance is 

quantised at integer 

multiples 𝟐𝒆𝟐

𝒉







Coulomb Blockade: Non-linear Transport

The single-electron transistor consists of a metallic island, placed 

between two tunneling junctions connected to a drain and a 

source and has a gate electrode as in a normal field-effect 

transistor. 

The tunneling junctions are simply a thin (<10 nm) oxide layer 

between the island and the electrodes.





The conductance through a small grain weakly coupled to metallic 

leads shows periodic dependence on the voltage applied to a gate 

electrode. 

This phenomenon is observed in both metallic and semiconductor 

devices, and is commonly referred to as the Coulomb blockade. 

This behavior of conductance is caused by electrostatic energy 

arising due to a change in the charge of the grain(quantum dot) by an 

electron tunneling through it. 

The Coulomb blockade is typically observed in structures with a well 

defined quantum dot, which is separated from the leads by tunneling 

barriers




