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Density of States

The density of states (DOS) 1s essentially the number
of different states at a particular energy level that
electrons are allowed to occupy, 1.e. the number of
electron states per unit volume per unit energy.



Calculation of the density of states

Assume that the semiconductor can be modeled as an infinite
quantum well in which electrons with effective mass, m1', are
free to move.

The semiconductor 1s assumed a cube with side L.
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The wavefunction solution 1s:
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kx, kv, k2, and are the wavevectors for an electron 1n
the x, y, and z directions

At the opposite boundaries of the rectangular region,
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The allowed states can be plotted as a grid of points
in k space.

Allowed states are separated by 7/L, .

in the 3 directions 1n k space o4 E(k)




The k space volume taken up by each allowed state 1s
r/LLL =mN

The number of states available for a given magnitude of wavevector

| k| 1s found by constructing a spherical shell of radius | k4| and
thickness dk. K,

Allowed states can be plotted as
or1d of points 1n k-space

The volume of this spherical shell oy P
in k space is 4mwk?dk Ky



The state density 1n k space (No. of states per volume 1 k space)
= V/ 3

The number of k states within the spherical shell = the k space
volume times the k space state density

e
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As each k state can hold 2 electrons (of opposite spins), so
the number of electron states 1s:
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We should count only the positive values of nvnyand n-

Hence the allowed states will be 1 the positive octant of
the spherical shell and thus will be 1/8 of the previous
expression
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Using dispersion relation for electron energy £ =
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we get 2kdk =



now substitute dk and & in terms of £ m the expressions for g(k) dk
to obtain g(F) dE.

Next divide g(Ft) dE'by Vto get number of electron states per unit
volume over an energy range dE and we get density of states
function
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Confining the electron 1n the x-y plane, the wavevector z-component
k,=0
The allowed states in k space becomes a 2 dimensional lattice of k,

T
and k,, values, spaced —
Lx,y

The state density 1n k space (No. of states per volume 1 k space)

The number of states available at a given
| k| 1s found using an annular region of

radius | 4| and thickness dk




As should count only the positive values of nxand ny
the allowed states will be 1 the positive quadrant of the circle.

Thus a factor of Y4 1s multiplied to calculate number of states 1

the annular ring

e(k)dk = [é} 2rkdk =2 spin states =4 equivalent states= & [E} dk
T T

The density of states for 2D matenal 1s:
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The density of states for 1D matenal 1s: D(E) = = _1
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The density of states for OD material1s:  D(E) = 26(E)
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Electron Transport Physics in Nanoscale Systems

Hydrodynamic and ballistic transport

Quantized conductance
Coulomb blockage of tunneling

Coherent carrier transport

Charge density wave and spin density wave transport



Traditional View of Conductors:
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Important length scales

Elastic mean free path (1.): average distance the electrons

travel without being elastically scattered

I.= vgt.. vg denotes the Fermu velocity of the electrons

Phase coherent length (1): average distance the electrons

travel betore thewr phase 1s randomized

lg = VgTy. T denotes the dephasing tume of the electrons

Fermu wavelength (Az): de Broglie wavelength of Fermi electrons
md= 3: A= 23(7/3n)'"
md= 2: A= (2u/n)l?

md= 1: A= 4n



conventional device:
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Conduction at the macroscale

Large number of states contribute to overall
current

Large number of electrons

Resistivity, mobillity, electric field, bias voltage,
macrocopic currents are well-defined

Quantum effects are averaged out by thermal
effects



Conduction at the nanoscale

Small number of states can affect the overall current

Wavefunction coherence lengths are comparable to
characteristic device dimensions

Single electrons charging effects can be significant

These can amount to overall macroscopic electronic

properties that show deviations from bulk electronic
properties



Ballistic, quasi-ballistic and diffusive transport

The transport in low-dimensional electron systems can be classified
intothree regimes:

diffusive, ballistic and quasi-ballistic.

In the diffusive regime both the length L and the width W of the
conductor are much larger than the electron mean free path,
W.,L> le

The transport properties are dominated by elastic scattering and can
be expressed by classical Drude theory
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It the width of the conductor 1s smaller than the e, but the
length larger,
W < Le <L, the transport 1s said to be quasi-ballistic.

This 1s an mtermediate regime 1 which both impurity and
boundary scattering become important.

Quasi - ballistic

R/\/\pk 1W




Ballistic transport occurs when the mean free path 1s larger than
both the width and length of the conductor, £e > W,L.

In this case electrons do not scatter from impurities but only from
the boundaries of the conductor.

Backscattering at the entrance of the constriction results in a non-
zero resistance 1 the ballistic regime.

The Iimiting contact resistance depends on the geometry of the
sample, and not its length; therefore the transport properties
cannot be expressed in terms of local quantities, such as
conductivity, as 1s the case 1n diffusive transport.
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If a width of constriction 1s small enough 1t forms a one
dimensional conductor, known as a quantum point contact
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Quantisation and the Landauer formalism

Measurements of the conductance G =dI/dV reveal that 1t
does not fall in a smooth tashion, but instead exhibits

plateaus and rises

T —— On the plateaus the
' conductance 1s
quantised at integer
multiples 2e?
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The voltage source will raise the chemical potential (or the Fermi level) on one side of
the conductor with respect to the other by an amount eV

o

Electrons do not scatter in the quantum Es E
wire. Therefore:

+ All electrons that enter the wire from the Eir
left contact make it to the right contact En Ieb"
+ All electrons that enter the wire from the \ E_+E, E. +E,
right contact make it to the left contaget ----\;r-—--—o- = ===
I N Ee 1
Total Current: k, k,
The net current is the sum of the currents
due to the right-moving and left-moving l R
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The Quantum of Conductance:

» The quantum of conductance is the smallest possible non-zero conductance of a
completely ballistic conductor. Equivalently, the quantum of resistance is the
highest possible resistance of a completely ballistic conductor.

* All completely ballistic conductors (whether in 1D, 2D, or 3D) will have
conductance that is in multiples of the quantum conductance value (one can think
of ballistic conductance in 2D and 3D as a number of 1D conductors in parallel)



Coulomb Blockade: Non-linear Transport

The single-electron transistor consists of a metallic 1sland, placed
between two tunneling junctions connected to a drain and a
source and has a gate electrode as 1n a normal field-effect

transistor.
The tunneling junctions are simply a thin (<10 nm) oxide layer

between the 1sland and the electrodes.
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Coulomb blockade
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The conductance through a small grain weakly coupled to metallic
leads shows periodic dependence on the voltage applied to a gate
electrode.

This phenomenon is observed 1n both metallic and semiconductor
devices, and 1s commonly referred to as the Coulomb blockade.

This behavior of conductance 1s caused by electrostatic energy
arising due to a change m the charge of the grain(quantum dot) by an
electron tunneling through it.

The Coulomb blockade 1s typically observed in structures with a well
defined quantum dot, which 1s separated from the leads by tunneling
barriers



(a) Schottky emission (b) Frenkel-Poole emission
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