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Chapter 1 

INTRODUCTION 

 

Leaf spring is the simplest form of spring, commonly made of spring steel and widely 

used in vehicle suspension system. This type of spring is typically constructed from one or 

more flat, thin, flexible arc shaped steel strips that are joined together in order to work as a 

single unit. Leaf spring can either be attached directly to the frame at both ends or attached 

directly at one end, usually at the front, while the other end is attached through a shackle (a 

short swinging arm). The shackle takes up the tendency of the leaf spring to elongate when 

compressed and thus makes for softer springiness. In order to conserve natural resources and 

economize energy, weight reduction has been the main focus of automobile manufacturer in 

the present scenario. So in recent times, various non-metallic materials like polymers, 

functionally graded materials (FGM), composites, etc. are being used as leaf spring material 

due to their high strength to weight ratio. Due to its numerous applications, analysis of leaf 

springs has been of great interest to several researchers. The main cause of failure of leaf 

spring is due to large bending but there are several other types of loading such as braking 

torque, driving torque, fatigue loads, shock load due to road irregularities, sudden loads due 

to the wheel travelling over the bumps, etc., which may also impose failure. However, 

analysis of failure of leaf spring under those other than bending types of loading is another 

class of study, and not undertaken in this thesis. 

 

Experimental stress and deflection analysis of leaf spring under bending type of 

loading include several techniques. Generally load-deflection behavior of leaf springs are 

studied through three point bending test in leaf spring testing rig and the developed stresses in 

leaf spring is measured by using strain gauge technique. In corresponding theoretical 

analysis, leaf springs are generally modeled as a bundle of prismatic beams under bending. 

Traditionally analysis is carried out with small deflection theory to simplify the analysis. But 

several researchers have pointed out that for better characterization of such problems analysis 

should be carried out through non-linear model. In static analysis of beams, two types of 

nonlinearities are most commonly encountered, geometric and material. Material nonlinearity 

is associated with nonlinear stress-strain relations whereas nonlinear curvature-slope and 

strain-displacement relations give rise to geometric nonlinearity. Depending on the nature of 
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problem any one or both of the nonlinearities are included in the analysis. Although elasticity 

theory has vast application in engineering problems over the last few centuries, there still 

exist these nonlinear problems where a rigorous solution cannot be obtained and approximate 

methods have to be applied. However, improvement in the field of computational powers of 

the modern computers has changed the scenario. At present various nonlinear mathematical 

models and solution algorithms, available to researchers, are employed to arrive at realistic 

predictions regarding the behavior of mechanical systems. 

1.1 Objective of the thesis 

A thorough literature review in the subject area reveals that static analysis of leaf 

springs is ever interesting and a huge number of studies are reported in literature. However, it 

is observed that theoretical and numerical works on leaf spring models are abundant but on 

the other hand pure experimental works are few. In addition, there is insufficiency in 

modeling of roller supports, through which the eye end of leaf spring is mounted. Asymmetry 

in the geometry and discontinuity in the material due to presence of clamping bolt hole in 

master leaf spring have not also been considered properly. 

 

In the present thesis, stress and deflection analysis of the master leaf of a leaf spring 

bundle is carried out experimentally. The experimental works are performed in two parts. In 

the first part of the experimental work, master leaf spring is modeled as curved cantilever 

beam considering only one half of the master leaf subjected to tip concentrated load. To 

validate the experimental model, load-deflection behavior of master leaf spring is also studied 

theoretically. The physical system is modeled as a curved cantilever beam, subjected to a tip 

concentrated load undergoing large deflection, in this study. Nonlinear differential equations 

are obtained for large deflection analysis of such a cantilever beam and these equations are 

solved numerically to get deflection profiles of the concerned problem. The theoretical study 

is further extended to predict load-deflection behavior of initially curved cantilever beams 

under different types of loads. From comparison between experimental and theoretical 

results, several observations are made. 

 

To overcome insufficiencies of the present model, in second part of the experimental 

work, a leaf spring testing rig is designed and set-up in our laboratory. In this new 

experimental set-up, stress and deflection behavior of master leaf spring is studied, modeling 
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it as a curved beam under three point bending. Moreover, asymmetry in the geometry of 

master leaf is considered and stress concentration effect due to presence of clamping bolt hole 

in master leaf spring is studied. In corresponding theoretical analysis, master leaf is modeled 

as a curved beam under combined bending and stretching stress field. Shear force, bending 

moment, etc., developed in the loaded master leaf is evaluated and finally the deflection 

profile is obtained. The theoretical results are validated with experimental ones and 

observations are reported. 

1.2 Basics of leaf spring design 

Leaf spring is generally made from several leaves stacked on top of each other in 

several layers, with progressively shorter leaves, usually of semi-elliptical shape, as shown in 

Fig. 1.1. In the most common configuration, the region near the centre of arc length provides 

location for the axle mounting, while tie holes are provided at either end for attachment to the 

vehicle body. Basics of leaf spring design can be found in several text books of Machine 

design (Khurmi and Gupta (2005), Bhandari (2010)). 

 

 

Fig. 1.1 Schematic diagram of leaf spring. 

 

The leaf at the top, known as master leaf, has maximum length and then the lengths 

gradually decrease from the top leaf to bottom leaf. The master leaf is bent at both ends to 

form the spring eyes. Two bolts are inserted through these eyes to fix the leaf spring to the 

automobile body. Multi-leaf springs are provided with one or two extra full length leaves in 

addition to master leaf. The extra full length leaves are stacked between the master leaf and 

the graduated length leaves. The extra full length leaves are provided to support the 

transverse shear force. For the purpose of analysis, the leaves are divided into two groups 

namely master leaf along with graduated-length leaves forming one group and extra full-

length leaves forming the other. Only one half of this spring is considered for analysis, the 
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equivalent model being a centrally clamped cantilever beam as shown in Fig. 1.2. The group 

of graduated-length leaves along with the master leaf can be treated as a triangular plate, as 

shown in Fig. 1.2. In this case, it is assumed that the individual leaves are separated and the 

master leaf is placed at the centre. Then the second leaf is cut longitudinally into two halves, 

each of width (ܾ 2⁄ ) and placed on each side of the master leaf. A similar procedure is 

repeated for other leaves. The resultant shape is approximately a triangular plate of thickness 

 and a maximum width at the support as (݊௚ ܾ). The bending stress in the plate at the support ݐ

is given by, 

௚(௕ߪ) = ெ್௬
ூ

= ൫௉೒ ௅൯ (௧ ଶ)⁄

ቂ భభమ൫௡೒ ௕൯(௧య)ቃ
  

⟹ ௚(௕ߪ) = ଺௉೒௅
௡೒ ௕ ௧మ

.                   (1.1) 

In Eq. (1.1), ܾ is width of each leaf, ݊௚ is number of graduate-length leaves including 

master leaf, ݐ is thickness of each leaf, ௚ܲ is portion of ܲ taken by the graduated-length 

leaves, ܲ is the force applied at the end of the spring, ܮ is length of the cantilever or half of 

the length of leaf spring. 

 

 

Fig. 1.2 Graduated-length leaves as triangular plate. 

 

It can be proved that the deflection (ߜ௚) at the load point of the triangular plate is 

given by, 

௚ߜ = ௉೒ ௅య

ଶ ா ூ೘ೌೣ
= ௉೒ ௅య

ଶ ா ቂ భభమ൫௡೒ ௕൯(௧య)ቃ
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⟹ ௚ߜ = ଺ ௉೒ ௅య

ா ௡೒ ௕ ௧య 
.                  (1.2) 

Similarly, the extra full length leaves can be treated as a rectangular plate of thickness 

 and uniform width (݊௙ ܾ), as shown in Fig. 1.3. The bending stress at the support is given ݐ

by, 

௙(௕ߪ) = ெ್௬
ூ

= ൫௉೑ ௅൯ (௧ ଶ)⁄

ቂ భభమ൫௡೑ ௕൯(௧య)ቃ
  

⟹ ௙(௕ߪ) = ଺௉೑௅
௡೑ ௕ ௧మ

.                  (1.3) 

The deflection at the load point is given by, 

௙ߜ = ௉೑ ௅య

ଷ ா ூ
= ௉೑ ௅య

ଷ ா ቂ భభమ൫௡೑ ௕൯(௧య)ቃ
  

⟹ ௙ߜ = ସ ௉೑ ௅య

ா ௡೑ ௕ ௧య 
.                  (1.4) 

 

 

Fig. 1.3 Extra full-length leaves as rectangular plate. 

 

In Eq. (1.4), ݊௙ is the number of extra full-length leaves and ௙ܲ is portion of ܲ taken 

by the extra full-length leaves. Since the deflection of full-length leaves is equal to the 

deflection of graduated-length leaves, 

௚ߜ =  ௙ߜ

⟹ ଺ ௉೒ ௅య

ா ௡೒ ௕ ௧య  
= ସ ௉೑ ௅య

ா  ௡೑ ௕ ௧య  
  

⟹ ௉೒
௉೑

= ଶ ௡೒
ଷ ௡೑

, and                  (1.5) 



Chapter 1 

6 

௚ܲ + ௙ܲ = ܲ.                  (1.6) 

From Eqs. (1.5) and (1.6), 

௙ܲ = ଷ ௡೑ ௉
ଷ ௡೑ାଶ ௡೒

.                  (1.7) 

௚ܲ = ଶ ௡೒ ௉
ଷ ௡೑ାଶ ௡೒

.                  (1.8) 

Substituting the above values in Eqs. (1.1) and (1.3), 

௚(௕ߪ) = ଵଶ ௉௅
൫ଷ ௡೑ାଶ ௡೒൯௕ ௧మ

.                 (1.9) 

௙(௕ߪ) = ଵ଼ ௉௅
൫ଷ ௡೑ାଶ ௡೒൯௕ ௧మ

.               (1.10) 

It is obvious from the above equations that bending stresses in full-length leaves are 

50% more than those in graduated-length leaves. The deflection at the end of the spring is 

determined from Eqs. (1.2) and (1.8). It is given by, 

ߜ = ଵଶ ௉ ௅య

ா ௕ ௧య൫ଷ ௡೑ାଶ ௡೒൯
.               (1.11) 

Leaf springs are designed using these load-stress and load-deflection equations for 

trivial applications only because the actual behavior under large deflection is quite different. 

1.3 Method of experimentation 

In the present work, stress and deflection behavior of a master leaf spring under 

bending type of loading conditions is studied experimentally. The load-deflection study 

includes two different techniques, a direct measurement technique and an indirect 

measurement technique. In direct measurement technique, deflection profile of master leaf 

spring is obtained by measuring coordinates of some marked points on it, using height gauge, 

scale and plumb. On the other hand, in indirect measurement of deflection profiles, image 

processing technique is adopted. Whereas, development of stresses in master leaf spring is 

studied by using strain gauge technique. These techniques are briefly described in the 

following two sub-sections. 

1.3.1 Image processing techniques 

Image processing technique is widely used in experimental mechanics, in which result 

of an experiment is obtained by processing an image. Digital image is a two dimensional 

representation of a scene where luminance of objects in that scene are assigned in each 

picture element or pixel. Thus digital image is stored as a matrix and digital image processing 
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is a collection of algorithms applied on that image or image matrix to extract useful 

information of the captured scene. The foundation of digital image processing is well 

developed and has already become classical. Digital image processing eliminates tedious 

manual work and makes the process of data analysis more accurate and objective. In image 

processing technique, camera and illumination system are the two key elements. Due to 

inhomogeneous illumination or lighting system, many spurious points and/or false edges are 

formed as wrong informations, when captured images are processed through commercial 

softwares. Thus image acquisition and post-processing should be done carefully, for 

extracting accurate information from digital image. 

 

There are some established displacement measurement methods based on the 

phenomenon of light interference, like various moire techniques, holographic interferometry 

or speckle, etc. In these methods a pattern of fringes appears on the specimen surface when 

image is captured in the camera. The fringes are contour lines of some specific deformation 

characteristics like in-plane displacements or off-plane displacements. 

 

There are also image processing methods based on the phenomenon of birefringence – 

various versions of photoelasticity. Photoelasticity is an experimental method to determine 

the stress distribution in a material. It is usually a contour map of the differences of principal 

stresses. The method is based on the property of birefringence, as exhibited by certain 

transparent materials. Birefringence is the phenomenon in which a ray of light passing 

through a birefringent material experiences two refractive indices. The property of 

birefringence is observed in many optical crystals. Upon the application of stresses, 

photoelastic materials exhibit the property of birefringence, and the magnitude of the 

refractive indices at each point in the material is directly related to the state of stresses at that 

point. For materials do not show photoelastic behavior, models made of special transparent 

materials are tested which has geometry similar to the real structure under investigation. 

 

Digital image processing is an important tool of machine vision technique which is 

used to extract information from real physical objects. It helps to take a decision from the 

sensed images in a non-invasive way with minimal human intervention. A wide application 

of machine vision system is addressed in the field of manufacturing industry for non-invasive 

inspection of manufactured products. In these methods, usually specimens made of real 

structural materials are tested. 
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1.3.2 Strain gauge technique 

Development of stresses in structural members under load is obtained through strain 

gauge technique. The most widely used gauge, however, is the bonded metallic resistance 

strain gauge. The metallic strain gauge consists of a very fine wire or, more commonly, 

metallic foil arranged in a grid pattern. The grid pattern maximizes the amount of metallic 

wire or foil subject to strain in the parallel direction. The grid is bonded to a thin backing, 

called the carrier, which is attached directly to the test specimen. It is very important that the 

strain gauge be properly mounted onto the test specimen so that the strain is accurately 

transferred from the test specimen, through the adhesive and strain gauge backing, to the foil 

itself. Manufacturers of strain gauges are the best source of information for proper mounting 

of strain gauges. 

 

A fundamental parameter of the strain gauge is its sensitivity to strain, expressed 

quantitatively as the gauge factor ( ௚ܵ). Gauge factor is defined as the ratio of fractional 

change in electrical resistance to the fractional change in length (strain) and given by 

௚ܵ = ∆ோ
ோ

∆௅
௅

ൗ = 1 + ߥ2 + ∆ఘ
ఘ

∆௅
௅

ൗ , where ܴ is resistance of the conductor, ∆ܴ is change in 

resistance, ܮ is length of the conductor, ∆ܮ is change in length of the conductor, ߥ is 

Poisson’s ratio of the material, ߩ is specific resistance and ∆ߩ is change in specific resistance 

(Doebelin and Manik (2011)). 

 

 

Fig. 1.4 (a) Wheatstone bridge and (b) quarter bridge circuits. 

 

Strain measurement requires accurate measurement of very small changes in 

resistance. To measure such small changes in resistance, strain gauges are almost always used 

in a bridge configuration with a voltage or current excitation source. The general Wheatstone 
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bridge, shown in Fig. 1.4 (a), consists of four resistive arms with an excitation voltage, ாܸ௑ , 

that is applied across the bridge. The corresponding output voltage of the bridge is ைܸ =

ቂ ோయ
ோయା ோర

− ோమ
ோభା ோమ

ቃ ாܸ௑ . The bridge is said to be balanced when the output voltage ைܸ is zero. 

Any change in resistance in any arm of the bridge will result in a nonzero output voltage. 

Therefore, if any one of four resistive arms is replaced with an active strain gauge as shown 

in Fig. 1.4 (b), changes in the strain gauge resistance will unbalance the bridge and produce a 

nonzero output voltage. If the nominal resistance of the strain gauge is designated as ܴீ , then 

the strain-induced change in resistance, ∆ܴ, can be expressed as ∆ܴ = ܴீ  ௚ܵ ߝ. Assuming 

that ܴଵ = Rଶ and ܴଷ = ܴீ, the equation for bridge sensitivity (ܵ௖) of quarter bridge circuit 

can be rewritten as  ܵ௖ = ௏ೀ
௏ಶ೉

= − ௌ೒  ఌ
ସ
ቄ1 (1 + ௚ܵ  ఌ

ଶ
ൗ )ቅ. Presence of the term ቄ1 (1 + ௚ܵ  ఌ

ଶ
ൗ )ቅ 

in sensitivity expression makes the output of quarter bridge circuit nonlinear with respect to 

strain. 

 

 

Fig. 1.5 (a) Half bridge and (b) full bridge circuits. 

 

Sensitivity of the bridge to strain is doubled by making two gauges active, although in 

opposite directions. As shown in Fig. 1.5 (a), one gauge is mounted in tension and the other 

one is mounted in compression stress fields to attain resistance values of (ܴீ + ∆ܴ) and 

(ܴீ − ∆ܴ) respectively. This half-bridge configuration yields circuit sensitivity as ܵ௖ =
௏ೀ
௏ಶ೉

= − ௌ೒ ఌ
ଶ

, which is linear and approximately double of the sensitivity for quarter bridge 

circuit. Finally the sensitivity of the circuit can further be increased by making all four of the 

arms of the bridge active, and mounting two gauges in tension and two gauges in 

compression as shown in Fig. 1.5 (b). Sensitivity of such a full-bridge circuit is given by 

ܵ௖ = ௏ೀ
௏ಶ೉

= − ௚ܵ ߝ. Sometimes strain gauges are mounted in transverse direction also to 

account for Poisson’s ratio effect. 
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1.4 Theoretical analysis 

In theoretical analysis, load-deflection behavior of master leaf spring is obtained by 

modeling it as cantilever beam following large deflection theory. The governing differential 

equation is derived based on Euler-Bernoulli theory and integrated directly which leads to 

solution in terms of elliptic integrals. The elliptic integrals are evaluated numerically in 

MATLAB® computational platform using Gaussian quadrature integration scheme, without 

using elliptic function explicitly. On the other hand, in analysis of master leaf spring as 

curved beam under three point bending, Winkler-Bach analytical curved beam theory is used 

for comparison of bending moment, bending stress, etc. developed in it with experimental 

results. In addition, effect of stress concentration in developed stress field due to the presence 

of drill hole in master leaf is addressed using analytical equations of stress distribution around 

a geometric discontinuity of a structure. Brief descriptions of static analysis of beam, elliptic 

integrals and stress concentration due to presence of geometric discontinuity in structural 

members are presented in the following sub-sections. 

1.4.1 Static analysis of beam 

When a beam is subjected to pure bending moment ܯ, Euler-Bernoulli beam theory 

states that the bending moment is proportional to the change in curvature of the beam and 

may be written mathematically as  ଵ
ఘ

= ெ
ாூ

, where ܫ is the area moment of inertia of the beam 

cross-section about neutral axis and ߩ denotes the radius of curvature of the neutral surface. 

Several aspects of beam bending analysis under static loading can be found in several text 

books on strength of materials (Timoshenko and Young (2009), Nag and Chanda (2010), 

etc.). In curvilinear coordinate system (ݏ, ݊) curvature is given by 1 ⁄ߩ = ݀߮ ⁄ݏ݀ , where ߮ is 

the slope ݀ݕ ⁄ݔ݀  at location ݏ and it is also a measure of normal direction ݊. When the 

analysis is carried out in Cartesian coordinate system (ݔ,   the curvature is given by ,(ݕ

ଵ
ఘ

= ௗమ௬
ௗ ௫మ

൤1 + ቀௗ௬
ௗ௫
ቁ
ଶ
൨
ଷ ଶ⁄

ൗ . In case of axially varying transverse load or bending moment, the 

neutral surface of the bent beam does not necessarily bend in the form of circular arc. In such 

non-uniform bending it is generally assumed that the Euler-Bernoulli moment-curvature 

relation holds at each cross-section, for both small and large deflection of beams. But the 

slope-curvature relation is calculated differently in those cases. 
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1.4.1.1 Small deflection 

In case of small deflection analysis of beam, it is assumed that slope  ௗ௬
ௗ௫

  of the elastic 

curve is very small and its square can be neglected in the curvature formula. So, in small 

deflection analysis, curvature (1/ߩ) is approximated as  ௗ
మ௬

ௗ௫మ
  and the differential equation of 

the elastic line of the beam becomes  ௗ
మ௬

ௗ௫మ
=  ெ

ாூ
. Solution of this equation, ݕ =  defines (ݔ)݂

the shape of the elastic line or the deflection curve (as it is frequently called). 

1.4.1.2 Large deflection 

Several structural members can undergo large displacements without exceeding their 

specified elastic yield stress limit. For better characterization of such bending problems, 

analysis is carried out using large deflection theory. The first reported work regarding the 

large deformation of flexible members was given by Leonhard Euler in 1744. Main features 

of large deflection analysis are constant beam length at any configuration during bending, 

moment arm shortening and presence of slope of the deflection curve in the expression of 

curvature. In Cartesian coordinate system (ݔ,   curvature-moment relationship is given by ,(ݕ

ௗమ௬
ௗ ௫మ

൤1 + ቀௗ௬
ௗ௫
ቁ
ଶ
൨
ଷ ଶ⁄

ൗ = ெ
ா ூ

 (Fertis (2006)). This equation shows that the deflection is no 

longer a linear function of the bending moment. These types of problems are known to 

involve geometric nonlinearity. A simple analytical solution to such bending problems is not 

possible, because of the presence of nonlinear terms in governing equation. Since Euler, 

many mathematicians, scientists, and engineers researched this subject and proposed many 

methodologies to solve large deflection problems of beams. The more widely used analytical 

methods include power series, elliptic integrals, etc. Numerical methods include numerical 

integration approach with iterative shooting technique, Newton-Rhapson iteration technique, 

the incremental finite element or finite difference method, etc. 

1.4.1.3 Curved beam 

Numerous mechanical parts subjected to bending, like crane hooks, leaf springs, 

arches, etc., are not initially straight and they are called initially curved beams. If ݔ direction 

is considered along the span of the beam and ݕ direction is along the applied loads, the 

centroidal axis of a curved beam has an initial curvature in ݕݔ plane. Relations between 
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stress, moment and deflection in loaded curved beams are well known from Winkler-Bach 

theory. According to this theory, when a curved beam is subjected to pure bending ܯ, the 

bending stress at any layer with radius of curvature ݎ is given by  ߪ = ெ (௥೙ି௥)
஺ ௥ (௥೙ି௥೎)

, where  ݎ௡ is 

radius of curvature of the neutral surface, ݎ௖ is radius of curvature of the centroidal surface 

and ܣ is cross-sectional area of the beam (Nag and Chanda (2010)). For rectangular cross-

section of width ܾ and thickness ℎ, radius of curvature of the neutral surface is given by  

௡ݎ = ௛
୪୬(௥మ ௥భ⁄ )

, where  ݎଵ = ௖ݎ −
௛
ଶ
  and  ݎଶ = ௖ݎ + ௛

ଶ
. 

1.4.2 Elliptic integrals 

The first reported study of elliptic integrals was in 1655 when John Wallis began to 

study the arc length of an ellipse. Both John Wallis (1616-1703) and Isaac Newton (1643-

1727) published an infinite series expansion for the arc length of ellipse. But it was not until 

the late 1700’s, when Legendre began to use elliptic functions for problems such as the 

movement of a simple pendulum and the deflection of a thin elastic bar, that elliptic integrals 

could be defined in terms of simple functions. Basic mathematics involved in evaluation of 

elliptic integrals and elliptic functions are available in many text books (Spiegel et al. 

(2009)). Brief introductions of elliptic integrals and elliptic functions are presented in the 

following two sub-sections. 

1.4.2.1 Evaluation of elliptic integrals 

An integral of the form ∫ܴ(ݔ, ,ݔ)ܴ where ,ݔ݀(ݕ  ,ݕ and ݔ is a rational function of (ݕ

and ݕଶ =  where ܲ is a polynomial of degree 3 or 4, is called an elliptic integral. There (ݔ)ܲ

are three basic forms of Legendre elliptic integrals, called first, second and third kinds. In 

their most general form, elliptic integrals are presented in a form referred to as incomplete 

integrals. The incomplete elliptic integrals of first, second and third kinds are denoted by ܧ ,ܨ 

and ߎ respectively and they are given by  ܨ = ∫ ௗఏ
√ଵି௞మ௦௜௡మఏ

ఝ
଴ ܧ , = ∫ √1− ݇ଶ݊݅ݏଶߠ݀ ߠఝ

଴  and 

ߎ = ∫ ଵ
ଵି௡ ௦௜௡మఏ

ௗఏ
ඥଵି(௦௜௡ఈ ௦௜௡ఏ)మ

ఝ
଴  (Spiegel et al. (2009)). In these expressions, the parameter ݇ 

(0 ≤ ݇ଶ ≤ 1) is called the modulus of the elliptic integral, ߮ (0 ≤ ߮ ≤ గ
ଶ
) is the amplitude 

angle, ߙ is the modular angle and ݊ is called the characteristic and can take on any value, 
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independently of the other arguments. Elliptic integrals are said to be ‘complete’ when the 

amplitude ߮ = గ
ଶ
. 

1.4.2.2 Types of elliptic functions 

The theory of elliptic integrals was exceedingly complicated due to presence of 

infinitely many values for each elliptic integral. In 1827, Abel simplified the subject 

immensely by inverting elliptic integrals to get elliptic functions. There are several types of 

elliptic functions including Weierstrass elliptic functions as well as related theta functions but 

the most common elliptic functions are the Jacobian elliptic functions, based on the inverses 

of the three types of elliptic integrals. The Jacobi elliptic functions are described briefly in the 

following paragraph. 

 

The three standard forms of Jacobi elliptic integrals are the sine, cosine and delta 

amplitude elliptic functions and they are denoted by ݑ) ݊ܿ ,(݇,ݑ) ݊ݏ, ݇) and ݀݊ (ݑ, ݇) 

respectively. Here, ݑ = ,߮)ܨ ݇) = ∫ ௗఏ
√ଵି௞మ௦௜௡మఏ

ఝ
଴  , ݇ is referred to as the elliptic modulus of ݑ 

and ߮, the upper bound on the elliptic integral is referred to as the Jacobi amplitude (ܽ݉݌). 

The inversion of the elliptic integral gives  ߮ = ,ݑ)ଵିܨ ݇) = ,ݑ)݌݉ܽ ݇) and from this 

relation we can write sin߮ = sin(ܽ݉(݇,ݑ)݌) = ,ݑ) ݊ݏ ݇), cos߮ = cos(ܽ݉ݑ)݌, ݇)) =

,ݑ) ݊ܿ ݇) and ඥ1 − ݇ଶ݊݅ݏଶ߮ = ඥ1 − ݇ଶ݊݅ݏଶ(ܽ݉(݇,ݑ)݌) = ,ݑ) ݊݀ ݇) (Spiegel et al. 

(2009)). These functions are doubly periodic generalizations of the trigonometric functions 

satisfying ݑ) ݊ݏ, 0) = sin ,ݑ) ݊ܿ ,ݑ (݋ = cosݑ  and  ݀݊ (ݑ, (݋ = 1. 

1.4.3 Stress concentration 

Localized high stresses due to presence of geometric discontinuities in a loaded solid 

give rise to stress concentration which is primarily responsible for local yielding, fatigue and 

fracture. Figure 1.6 represents a large, thin flat plate subjected to a uniform tensile stress ߪ in 

 direction. A hole is present in the middle of the plate which causes stress redistribution in ݔ

the plate. Generally the size of hole is assumed to be very small compared to plate width, thus 

the change in stress distribution will be localized in neighborhood of the hole. Hence, the 

stresses acting far away from the hole, i.e., at a distance several times the hole diameter, 

remain unchanged as in the plate with no hole. 
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Fig. 1.6 Stress concentration around a small hole in a plate subjected to uniform stress. 

 

The overall stress distributions in the plate are given by ߪ௥௥(ݎ, (ߠ = ఙ
ଶ
ቂቀ1− ௔మ

௥మ
ቁ+

ቀ1 + 3 ௔ర

௥ర
− 4 ௔మ

௥మ
ቁ cos(2ߠ)ቃ, ߪఏఏ(ݎ, (ߠ = ఙ

ଶ
ቂቀ1 + ௔మ

௥మ
ቁ − ቀ1 + 3 ௔ర

௥ర
ቁ cos(2ߠ)ቃ and ߪ௥ఏ(ݎ, (ߠ =

− ఙ
ଶ
ቂቀ1 − 3 ௔ర

௥ర
+ 2 ௔మ

௥మ
ቁ sin(2ߠ)ቃ, where ܽ is the hole radius (Timoshenko and Goodier 

(1951)). 

1.5 Summary of the thesis 

Chapter 1 introduces the subject matter of the proposed work and briefly discusses the 

contents of the thesis. In this chapter various applications of leaf spring is discussed and 

construction details along with basic design principles of leaf springs are introduced. This 

chapter also includes experimental techniques and basic mathematics involved in analysis of 

the present problem. 

 

In chapter 2, a detailed review of the available literature on stress and deformation 

analysis of leaf spring and its equivalent model is carried out. The review work is carried out 

quite extensively with emphasis on analysis methods and experimental techniques for 

geometric nonlinear analysis of leaf spring, beam, etc. Effects of various system parameters, 

namely loading condition and boundary condition, on static response of leaf springs and their 

equivalent models are discussed subsequently. 

 

Chapter 3 reports experimental and theoretical analysis of load-deflection behavior of 

master leaf spring as curved cantilever beam. This chapter begins with a detailed description 

of the experimental set-up and then reports experimental determination of deflection profiles 
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of master leaf spring under loaded conditions. In corresponding theoretical analysis, a semi 

analytical method is proposed to study large deflection behavior of initially curved cantilever 

beams under tip concentrated load. Comparisons between the experimental and theoretical 

results are quite good, and from this comparative study several aspects of leaf spring 

modeling are identified and reported. The proposed theoretical method is further extended to 

study large deflection behavior of initially curved beams under distributed and combined 

loads. 

 

In chapter 4, experimental stress and deflection analysis of master leaf spring under 

three point bending is reported. This chapter describes design development of a leaf spring 

testing set-up and experimental procedure to obtain deflection profiles and stress field 

developed in a master leaf spring under various loading conditions. For the purpose of 

comparison of experimental stress results with theoretical ones, master leaf spring is modeled 

as curved beam under three point bending and analysis is carried out using Winkler-Bach 

curved beam theory. Effects of asymmetric geometry and presence of central drill hole in 

mater leaf spring are also addressed in this analysis. 

 

Chapter 5 offers the conclusion of the present thesis and highlights the future scope of 

work, which is then followed by list of references and a bibliography. 

 



 

 



Chapter 2 

LITERATURE REVIEW 

 

Analysis of leaf spring is ever interesting due to its numerous applications in 

automotive industry and a huge number of research works are reported in literature. 

Literature on dynamic analysis of leaf spring is not included in the scope of this review as the 

present work concentrate on static analysis of leaf spring. Static analysis of a structure entails 

determination of deflections, stresses, moments, etc. developed in the structure under steady 

or time independent loading. The parameters of such a problem depend on several factors, for 

example, boundary condition, loading pattern, initial geometry, etc. To investigate the state of 

internal stresses produced in the process of bending of a structure, one must examine the 

corresponding deformation state which takes place within the material. Research works 

available in literature on stress and deflection analysis of leaf spring under bending type of 

loading can be broadly categorized in two major categories and they are theoretical and 

experimental works. In the following sections a concise description of various literature 

available related to research work on stress and deflection analysis of leaf spring is provided. 

2.1 Literature on theoretical work 

In theoretical stress and deflection analysis, leaf springs are generally modeled as a 

bundle of prismatic beams under three point bending, whereas many researchers consider 

only one half of the spring taking it as a cantilever beam. The following three sub-sections 

report various literatures related to deflection analysis, stress analysis and combined 

deflection and stress analysis of leaf spring and their equivalent model respectively. Major 

research findings reported in individual papers are presented chronologically. Different 

analysis methods, various system parameters and complicating effects are identified from the 

reported research papers and they are reviewed subsequently in this chapter. 

2.1.1 Deflection analysis 

Deflection is the measure to which a structural element is displaced under a load and 

it may refer to an angle or a distance. Usually deflection is measured with respect to its initial 

undeformed configuration. The deflection of a member under a load is directly related to the 
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slope of the deflected shape under that load and can be calculated by integrating the slope 

function mathematically. Traditionally deflection characteristics of beams are analyzed with 

small deflection theory which is a simplification of the theory of elasticity in linear domain. 

The derivation is based on the fundamental Bernoulli-Euler theorem, which states that the 

curvature is proportional to the bending moment. It is assumed also that bending does not 

alter the length of the beam. 

 

Later on, many researchers pointed out that for better prediction of large bending 

behavior of beams, analysis should be carried out through large deflection theory. Modeling 

of these problems is known to involve geometric nonlinearity as the slope-curvature relation 

of its deflection curve is nonlinear. Several researchers have also considered effects of 

combined bending-stretching and transverse shear deformation on deflection behaviors. The 

following paragraphs briefly describe various literature related to large deflection analysis of 

structures like leaf springs and beams under various loading conditions. 

 

Bisshopp and Drucker (1945) were the first to point out that the solution for large 

deflection of a cantilever beam cannot be obtained from elementary beam theory. The basic 

assumptions of elementary theory are no longer valid as it neglects the square of first 

derivative in the curvature formula and provides no correction for the shortening of the 

moment arm as the loaded end of the beam deflects. With this realization they proposed 

elliptic integral approach for analyzing large deflection problems which was in agreement 

with experimental observations and still widely used at present. In this theory they have 

considered the square of the first derivative in the curvature formula and also the correction 

factors due to shortening of the moment arm. 

 

Wang (1968) proposed a simple numerical method for analyzing non-linear bending 

of beams based on Bernoulli-Euler theory which states that the bending moment at any point 

of a beam is proportional to the corresponding curvature. When the slope of the beam is 

small, its square can be neglected in comparison with unity, thus the expression of the 

curvature is linearized. Wang pointed out that results based on this approximation cannot be 

applied in case of large deflection. He proposed a numerical method for analyzing two 

problems-(1) a cantilever beam bending problem under a concentrated load at the free end 

and (2) a simply supported beam subjected to a nonsymmetrical load and compared the 

results successfully with the results of Bisshopp and Drucker (1945). 



Literature Review 

19 

 

In the next year, Wang (1969) also studied non-linear bending of both cantilever and 

simply supported beams subjected to a uniformly distributed load. The expressions for slopes 

in terms of the horizontal projection of the arc length for beams carrying a uniformly 

distributed load have been derived. By using numerical methods, the slopes at all points, the 

maximum deflection, and the horizontal projection of the beam lengths have been obtained. 

 

Wang et al. (1997) presented large deflection problems of beams subjected to a point 

load with one end fixed and other end allowed to slide freely over a frictionless support. In 

this work, they have proposed solution of such non-linear problem by using both the elliptic 

integral method and the shooting-optimization technique, thus providing independent checks 

on the solutions. Features of this kind of problem are (1) the possibility of two possible 

equilibrium solutions for a given load magnitude, (2) a maximum (or critical) load and (3) a 

maximum deformed arc-length for equilibrium. 

 

Beléndez et al. (2002) analyzed the problem of deflection of a cantilever beam, in 

case of both large and small deflections. Firstly, they obtained the differential equation for the 

deflection curve in the general case of large deflection and the equations that determine the 

Cartesian coordinates of each point on the elastic curve. They have also shown that unless 

small deflections are considered, an analytical solution does not exist, since for large 

deflections a differential equation with a non-linear term must be solved. This geometrically 

non-linear equation is solved numerically with the aid of the program Mathematica, without 

using elliptic functions for the sake of simplicity. Then they obtained the approximation for 

small deflections from the equations presented for large deflections. Finally, various general 

numerical results are presented and these are compared with experimental results. 

 

Osipenko et al. (2003) presented a problem where the objective was to find the shapes 

of the leaves of leaf spring under bending, which was reduced to the problem of finding the 

densities of the forces of interaction between the leaves. In their analysis, leaf spring is 

modeled as stack of slim non-uniform curved beams (leaves) with rectangular cross-sections 

having same widths and different lengths (the lengths decrease upwards). Each leaf is fixed at 

one end and free at the other end and the loading is applied to the lower leaf in upwards 

direction. They propounded accurate formulation of the latter problem and proved uniqueness 
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of the solution. Analytical solution in the special case of two uniform straight leaves are 

constructed and furnished in this paper. 

 

Kumar et al. (2004) suggested a couple of non-convex search strategies based on the 

genetic algorithm in the context of large deflection analysis of planar, elastic beams. The first 

of these strategies is based on the stationarity of the energy functional in the equilibrium state 

and therefore is considered as weak. The second approach is based on a shooting strategy 

which directly solved governing differential equation within an optimization frame work and 

therefore is considered as strong. They have provided several numerical illustrations and 

verifications with exact solutions. It is observed from numerical results that, while both the 

methods yield reasonably accurate results, the second approach offers a more efficient and 

elegant alternative. They concluded with the future scope where these procedures can be 

applied in the context of finite-rotation (kinematically exact) beam theories and simulations 

of nonlinear beam dynamics governed by partial differential equations. 

 

Dado and Al-Sadder (2005) developed an approach that approximates the angle of 

rotation of the beam by a polynomial function to study very large deflection behavior of 

prismatic and non-prismatic cantilever beams subjected to various types of loadings. The 

coefficients of the polynomial are obtained by minimizing the integral of the residual error of 

the governing differential equation and by applying the beam’s boundary conditions. In this 

paper, they have presented several numerical examples ranging from moderately large 

deflection to very large deflection covering prismatic and non-prismatic cantilever beams 

subjected to uniform, non-uniform distributed loads and tip concentrated loading in vertical 

and horizontal directions. However the loads considered in this study are restricted to the 

non-follower type loads. Cases with different loadings and geometries are compared with 

MSC/NASTRAN computer package. They also pointed out that the presented scheme 

handles extreme cases with high accuracy and solution stability while the finite element 

method as depicted by MSC/NASTRAN failed in predicting these extreme cases. 

 

Sugiyama et al. (2006) reported development of nonlinear elastic leaf spring model 

for multi body vehicle system. They modeled the distributed inertia and stiffness of the leaves 

of the spring using the finite element floating frame of reference formulation that accounts for 

the effect of the nonlinear dynamic coupling between the finite rotations and the leaf 

deformation. The leaf spring geometry and deformations are modeled using nodal degrees of 



Literature Review 

21 

freedom defined with respect to the spring body coordinate system. They pointed out that the 

number of deformation coordinates can be reduced by assuming large leaf deformation but 

with simple shape. The nonlinear stiffness matrix is first developed for the finite element of 

each leaf and is used to determine the overall leaf spring stiffness matrix. They discussed the 

pre-stresses, the contact and friction that characterize the nonlinear behavior of leaf springs. 

Using the nonlinear leaf spring formulation presented in this study, a detailed multi-body 

model for a sport utility vehicle is developed. They have also shown that the proposed leaf 

spring model that accounts for the effect of windup, contact and friction between the spring 

leaves can be effectively used for assessing the dynamic stability of sports utility vehicles. 

 

Shvartsman (2007) proposed a direct numerical method for large-deflection analysis 

of a non-uniform spring-hinged cantilever beam under a tip follower force. The mathematical 

formulation of this problem yields a nonlinear two-point boundary-value problem which 

reduced to an initial-value problem by change of variables. The resulting problem can be 

solved without iterations. He has shown that there exist no critical loads in the Euler sense 

(divergence) for any flexural-stiffness distribution and angle of inclination of the follower 

force. In this paper he presented the load–displacement characteristics of a uniform cantilever 

under a follower force normal to the deformed beam axis. 

 

Banerjee et al. (2008) proposed non-linear shooting and Adomian decomposition 

methods to determine large deflection of a cantilever beam under arbitrary loading 

conditions. Results obtained only due to end loading are validated using elliptic integral 

solutions. The non-linear shooting method gives accurate numerical results while the 

Adomian decomposition method yields polynomial expressions for the beam configuration. 

With high load parameters, occurrence of multiple solutions is discussed with reference to 

possible buckling of the beam-column. They applied these two methods to solve a problem of 

concentrated intermediate loading (cantilever beam subjected to two concentrated self-

balanced moments) for which no closed form solution can be obtained. Some of the 

limitations and recipes to obviate these are included. 

 

Eren (2008) investigated large deflection of cantilever beams of ludwick type material 

subjected to combined loading consisting of a uniformly distributed load and one vertical 

concentrated load at the free end. In this study, both material and geometrical non-linearity 

have been considered. Horizontal and vertical deflections are calculated through Euler-
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Bernoulli curvature moment relationship assuming different arc length. Vertical deflections 

are calculated by using Runge-Kutta method. 

 

Tolou and Herder (2009) analytically investigated large deflection of members of 

compliant mechanisms. Main objective of this paper is to propose a convenient method of 

solution for the large deflection problem in compliant mechanisms in order to overcome the 

difficulty and inaccuracy of conventional methods, as well as for the purpose of mathematical 

modeling and optimization. In this work, they have considered an element by modeling it as a 

cantilever beam subjected to vertical end point load which can be used as a building block in 

more complex compliant mechanisms. First, the governing equation has been obtained for the 

cantilever beam. Subsequently, the Adomian decomposition method has been utilized to 

obtain a semi analytical solution. In addition, variations of the parameters that affect the 

characteristics of the deflection have been examined. The results reveal that the proposed 

procedure is very accurate, efficient, and convenient for cantilever beams, and can probably 

be applied to a large class of practical problems for the purpose of analysis and optimization. 

 

Chen (2010) proposed a new integral approach to solve large deflection cantilever 

beam problems. This method is different from the traditional elliptic integral method while 

can be converted to the elliptic integral in certain conditions. In this work, he have shown that 

the proposed method is applicable for any arbitrary loading conditions such as concentrated 

load, distributed load and combined load. The proposed method is also applicable for variable 

beam properties such as changing cross-sectional area. He pointed out that application of this 

approach usually requires only simple numerical techniques and straight-forward solution 

procedures. Only one first order ODE needs to be solved which is easier than traditional 

approaches. Standard search or iterative procedures or combination of them are usually 

adequate for the solution. For concentrated loads on uniform beam, theoretical and numerical 

analysis showed that this approach is equivalent to the Bisshopp and Drucker (1945) elliptic 

integral approach. He also presented numerical simulation of the experiment by Beléndez et 

al. (2003) of cantilever beam bending under a concentrated load and gravity. 

 

Mutyalarao et al. (2010a) proposed a numerical method to obtain deformed 

configuration of cantilever beam subjected to tip concentrated load, which rotates in relation 

with the tip-rotation of the beam. Firstly, they derived governing differential equations of the 

cantilever beam which are nonlinear, amenable to numerical integration. Then, they obtained 
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a relation for the applied tip-concentrated load in terms of the tip-angle of the beam. When 

the tip-concentrated load acts always normal to the undeformed axis of the beam (the rotation 

parameter = 0) there is a possibility of obtaining non-unique solution for the applied load. 

This phenomenon is also observed for other rotation parameters less than unity. When the tip-

concentrated load is acting normal to the deformed axis of the beam (the rotation parameter = 

1), many load parameters are obtained for a tip-angle with different deformed configurations 

of the beam. However, each load parameter corresponds to a tip-angle, which confirms the 

uniqueness on the solution of non-linear differential equations. 

 

In a later work, Mutyalarao et al. (2010b) also studied large deflection of cantilever 

beam subjected to a tip-concentrated load whose inclination to the deformed axis of the beam 

is assumed as constant. The mathematical formulation yields a non-linear two-point boundary 

value problem amenable to numerical integration. A relation is obtained between the load and 

the tip-angle of the beam when the tip-concentrated load is normal to the deformed axis of the 

beam. Many possible loads are found for a specified tip-angle. For the specified load, the tip-

angle is found to be unique. However, there is a change in the deformation pattern of the 

beam having a specified tip-angle with the corresponding multiple loads. This confirms the 

uniqueness of the solution for the governing non-linear differential equations of a cantilever 

beam under a tip-concentrated load whose inclination is normal to its deformed axis. 

 

Nallathambi et al. (2010) analyzed large deflections of straight and curved prismatic 

cantilever beams under follower loads at the tip. They have considered large deflection, the 

deflection dependent follower load and the initial curved geometry as important features for 

mathematical formulation which yields non-linear two-point boundary value problem. In this 

formulation, they used shear force formulation approach which reduced the two point 

boundary value problem (TPBVP) to an initial value problem (IVP). Fourth order Runge–

Kutta method along with one parameter reverse shooting method is applied to the numerical 

solution to the problem. A novel approach presented in this paper of integrating from the free 

end to the fixed end of the cantilever beam simply replaced the two parameters shooting with 

a single parameter shooting yielding several advantages. They finally demonstrated this 

solution technique for various types of follower tip loads on curved and straight cantilever 

beams and compared the results with existing results in the literature. 
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He et al. (2013) proposed a new perturbation method with two small parameters, 

describing the effect of load and geometry of the problem, to solve nonlinear large deflection 

problem of initially curved beams under two different boundary conditions. They started with 

the realization that for beams with gradient, due to the combined influences introduced by 

loads and gradient, the first derivative item in Euler–Bernoulli equation cannot be neglected 

thus making the solution of the problem be a nonlinear one. They derived the first and second 

order approximate analytical solution of the deflection, the rotation and the arc length of the 

beam, as well as the internal forces of the beam at the end. The results indicate that the choice 

of two independent parameters may describe comprehensively the nonlinear effects caused 

by loads and gradient, which enables the approximate solution to be precise enough to be 

used for the analysis of large-deflection beam with gradient. 

 

Shvartsman (2013) studied large deflection of a curved cantilever beam under a tip-

concentrated follower force by direct numerical method. He has shown that after changing 

the variables, the original non-linear boundary value problem transforms into the initial-value 

problem for pendulum equation. The resulting initial value problem is solved numerically 

using a modified Numerov’s method. In contrast to the usually used iteration methods (e.g. 

shooting technique), the problem is solved without iterations by direct numerical method. 

Some qualitative conclusions were made using Kirchhoff’s kinetic analogy. He has also 

shown that there are no critical loads in the Euler sense (divergence) for any values of the 

initial curvature and angle of inclination of the follower force. An extension of direct 

numerical method to curved spring-hinged cantilever subjected to follower force is also 

proposed. In this paper, some equilibrium configurations of the uniform curved fixed and 

spring-hinged cantilevers under normal and tangential follower force obtained by direct 

method are presented. 

 

Tari (2013) studied the problem of determining the parametric large deflection 

components of Euler–Bernoulli cantilever beams subjected to combined tip point loading. In 

this paper, they have introduced the beam’s deflection characteristic equation governing any 

combination of loading and deflection parameters. Angular, horizontal and vertical deflection 

solutions to the Euler–Bernoulli beam’s boundary value problem are obtained in terms of the 

loading parameters by using the recently developed automatic Taylor expansion technique. 

The parametric solutions are then validated by comparison with the numerical solutions 

obtained from the numerical differential solver of Mathematica. Exploiting these solutions as 
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theoretical tools, they have studied beam’s angular and axial deflections behavior for several 

tip point loading conditions. Besides the widely known beam’s axial inflection points, they 

also recognized beam’s angular inflection points for the mixed loading condition and showed 

that the parametric solutions are intelligent in recognizing the right deflection branch for both 

inflection types. 

 

Sitar et al. (2014) derived governing differential equation for determining large 

deflections of slender, non-homogeneous beam subjected to a combined loading and 

composed of a finite number of laminae, which are made of nonlinearly elastic, modified 

Ludwick's type of material with different stress–strain relations in tension and compression 

domain. The material properties are varying arbitrarily through the beam's thickness. When 

the thickness of laminae is sufficiently small and the variation of mechanical properties is 

close to continuous, the beam can be considered as made of functionally graded material 

(FGM). The derived equations are solved numerically and tested on several examples. They 

have shown that the results obtained are in good agreement with those found in the literature. 

 

Mohyeddin and Fereidoon (2014) analyzed large deflections of a straight prismatic 

shear-deformable simply supported beam subjected to a point load at its mid-span. Governing 

deferential equations are derived for vertical and horizontal displacements as well as the 

slope and rotation angle of the beam cross-section based on the Timoshenko beam theory. 

The system of boundary value problem is solved analytically to yield a closed-form solution. 

The results are compared with available experimental data and those obtained for Euler–

Bernoulli beam in the literature. 

 

Nguyen (2014) studied large displacement behavior of tapered cantilever Euler-

Bernoulli beams made of functionally graded material subjected to end forces. The effective 

Young’s modulus of the beams is assumed to be graded in the thickness direction by a power-

law distribution. Based on the co-rotational approach, a finite element formulation is derived 

and employed in the study. An incremental/iterative procedure in combination with the arc-

length control method is used in computing the large displacement response of the beams. 

They presented numerical results which showed that the derived formulation is capable to 

give accurate results by using just several elements. A parametric study is given to highlight 

the influence of the material inhomogeneity, taper ratio and taper type on the large 
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displacement behavior of the beams. They also investigated and highlighted large 

displacement behavior of beams composed of different constituent materials. 

 

Batista (2015) reported solution for the equilibrium configuration of an elastic beam 

subject to three-point bending in terms of Jacobi elliptical functions. General equations are 

derived, and the domain of the solution is established. Several examples that illustrate a use 

of the solution are discussed. The obtained numerical results are compared with the results of 

other researchers. In this work, they have also derived an approximation formula by which 

the beam load is given as a polynomial function of beam deflection. The range of 

applicability of the approximation is illustrated by numerical examples. 

 

Li and Lee (2015) analyzed bending of a simply supported beam with emphasis on the 

effect of the horizontal reaction force which is generally neglected for small deflection 

analysis. Based on Timoshenko's kinematic relation, a governing equation is derived. Three 

typical cases including uniformly distributed loading, three-point bending and four-point 

bending are analyzed. Expressions for the deflection and the cross-section rotation are 

obtained and a non-linear load–deflection relation is derived. They have shown that the 

results available for Euler– Bernoulli and Timoshenko beams are recovered from the 

proposed formulation when the horizontal force is neglected. They also discussed the 

influences of shear deformation and loading position on the transverse deflection and 

graphically presented the deflection and load–maximum displacement curve. A comparison 

of the deflections with and without the horizontal reaction force and with experimental data is 

made. Obtained results are useful in safety design of linear and non-linear beams under 

complicated loading. 

2.1.2 Stress analysis 

Stress analysis is a primary task for mechanical engineers involved in the design of 

structures of all sizes and shapes. In case of structural failures stress analysis is also used to 

investigate the causes of such failures. Typically, the input data for stress analysis are a 

geometrical description of the structure, the properties of the materials used for its parts, how 

the parts are joined, and the maximum or typical forces that are expected to be applied to 

each point of the structure. In addition, when geometric discontinuity, like central drill hole 

of master leaf spring, is present in a loaded mechanical part, stress concentration occurs. In 
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effect, stress increases above the nominal level calculated by conventional mechanics of 

materials in the vicinity of the discontinuity. This stress concentration effect aggravates 

failure of such mechanical parts under load. 

 

Fraternali and Bilotti (1997) presented a one-dimensional theory and a finite element 

model for the stress analysis of laminated curved beams. In this analysis, they have 

considered moderately large rotations, moderately large shear strains and a different elastic 

behaviour of the material in tension and in compression. Approximate inter-laminar stress 

field is obtained by using a penalty technique to enforce the perfect bonding condition 

between the adjacent laminae of the beam. Finally they have presented some numerical 

results to show the potential of the proposed finite element model. 

 

Ahmed et al. (2014) investigated development of stresses in a simply supported 

composite beam with stiffened lateral ends using displacement-potential field. Firstly, they 

have pointed out that the present problem is a mixed-boundary-value elastic problem and 

then determined the potential field of the problem by solving a single fourth-order partial 

differential equation of equilibrium. Stress components are derived in terms of the potential 

function using Fourier series. In this work, they have considered two different types of 

stiffeners at the opposing lateral ends of the beam, where the fibres are directed along the 

beam axis. They have also investigated the effect of beam aspect ratio on the state of stresses 

at different critical sections of beam. Comparison of the present method with the 

corresponding solutions of classical beam theory and standard computational method is also 

presented in this paper. 

 

Amon et al. (1971) considered problem of reducing the stress concentration at a hole 

in an infinite sheet by reinforcement. They analyzed the problem by describing the sheet 

according to plane stress elasticity theory and the reinforcement as a beam. Finally they have 

shown that for a typical reinforcement, the maximum stress can be reduced from 3S to 0.6S, 

where S is the one-dimensional uniform tension applied to the sheet. 

 

Troyani et al. (2004) studied effect of stress concentration due to presence of U-

shaped notches in short flat bars subjected to in-plane bending. In this study, they have 

considered the effect of length as a significant parameter which is generally neglected in 

analysis of stress concentration. They have defined a threshold value as transition length and 
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demonstrated that below this threshold value, magnitude of stress concentration factors are 

significantly larger than the values calculated through traditional methods. Theoretical stress 

concentration factors for a wide range of notch radii are calculated using finite element 

method and presented graphically. The corresponding values of transition lengths are 

calculated and presented in this paper.   

 

Batista (2011) presented an analytical study on stress concentration around a hole in 

an infinite plate subjected to uniform load at infinity. Firstly he has presented 

Muskhelishvili’s method in detail and proposed a modified Muskhelishvili’s method to 

calculate stress concentration factors around holes of relatively complex shapes. Finally, he 

demonstrated applicability of the proposed method through several examples of stress 

distribution around polygonal holes of a complex geometry utilizing the Schwartz–Chistoffel 

mapping function. 

 

Mohammadi et al. (2011) presented an analytical calculation for stress concentration 

factor around a circular hole present in an infinite plate made of inhomogeneous material 

subjected to uniform biaxial tension and pure shear loading. In this analysis, they have 

considered radial variations of Young’s modulus and Poisson’s ratio of the plate material. 

Governing differential equation of stress concentration factor for biaxial tension is derived 

and solved. Stress concentration factor for pure shear is calculated by using a Frobenius 

series solution. Finally, they have analyzed the effect of non-homogeneous stiffness and 

varying Poisson’s ratio on the stress concentration factors. 

 

Nagpal et al. (2011) presented an overview of various techniques developed for 

analysis and mitigation of stress concentration factor due to presence of discontinuity in flat 

plate. Determination of stress concentration factor around different discontinuities in a 

rectangular plate made up of different materials under different loading conditions includes 

several methods of analysis and they are analytical, numerical and experimental. They have 

compared several methods and pointed out that a single method can not be suggested for 

every situation. In this review, they have considered singularities of circular and elliptical 

holes in rectangular plate. 

 

Castagnetti and Dragoni (2013) investigated Neuber’s criterion to study stress 

concentration in elastic solids due to presence of periodic notches under different loading 



Literature Review 

29 

conditions. They observed from a critical review that Neuber’s method is very accurate for 

the ideal configuration of a sharp and shallow notch under shear stresses, but the accuracy is 

very poor for real notches with a large root radius, in particular for normal stresses. In this 

work, they have proposed two modified expressions for the depth reduction factor and 

distinguishing between notches under shear or normal stresses. This modification provides 

very accurate results, and becomes quite useful for real geometries. 

2.1.3 Combined deflection and stress analysis 

The results of static analysis of a structure are typically a quantitative description of 

the stress over all those parts and the deformation caused by those stresses. Generally stress 

and deflection analysis is performed together for designing a structure. The following 

paragraphs present literatures on combined stress and deflection analysis of leaf springs under 

different loading conditions. 

 

Rajendran and Vijayarangan (2001) presented optimal design of a composite leaf 

spring. The design variables (thickness and width of leaf) are optimized using a non-

traditional optimization technique called Genetic Algorithm (GA). Main objective of this 

paper was to reduce the weight of leaf spring which affects vibrational characteristics of 

vehicle including comfort, directional stability etc. In this work, a reduction of 75.6% weight 

is achieved when a seven-leaf steel spring is replaced with a mono-leaf composite spring 

under identical conditions of design parameters and optimization. 

 

Shokrieh and Rezaei (2003) presented design optimization of composite leaf spring 

using finite element method. Firstly, they analyzed development of stresses and deflections in 

a steel leaf spring using finite element package ANSYS and verified the results with the 

existing analytical and experimental solutions. Then, a composite leaf spring made from 

fiberglass with epoxy resin is designed using these results. In this design, they have 

considered stresses (Tsai–Wu failure criterion) and displacements as design constraints. The 

results showed that an optimum spring width decreases hyperbolically and the thickness 

increases linearly from the spring eyes towards the axle seat. They have concluded with the 

observation that the optimized composite spring has much lower stresses, higher natural 

frequency and nearly 80% lower weight without eye units compared to the steel spring. 
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Rahman et al. (2007) presented design and nonlinear analysis of a parabolic leaf 

spring. Governing differential equations of the problem are derived and solved numerically to 

calculate stress and deflection developed in the beam. The numerical analysis demonstrated 

effects of end shortening geometric nonlinearity on the response of the beam. In this work, 

they have shown that the actual bending stress calculated by nonlinear theory is 2.30-3.39% 

less than the values calculated by traditional theories. In addition, the maximum stress occurs 

at a region far away from the fixed end of the deigned leaf spring. Comparison of the present 

numerical scheme with results of other researchers is also presented in this paper and they are 

in good agreement. 

 

Almeida et al. (2011) presented a geometric nonlinear analysis of functionally graded 

beams using Total Lagrangian approach. In the formulation of the problem, they have 

incorporated the effect of material gradation considering the beam element effective cross-

section rigidities associated to axial, shear and flexural deformation kinematics. Finally, they 

illustrated the main features of the formulation through two examples and compared stress 

and deflection behaviors of such functionally graded beams with beams of homogeneous 

material. 

 

Raghavedra et al. (2012) performed a comparative study between laminated 

composite leaf spring and steel leaf spring with respect to weight, stiffness and strength. In 

the present work, they have considered the dimensions of an existing mono steel leaf spring 

of a Maruti 800 passenger vehicle for modeling. Stress and deflection behaviors of leaf 

springs made of three different composite materials namely, E-glass/Epoxy, S-glass/Epoxy 

and Carbon/Epoxy are studied. Stresses and deflections are considered as design constraints 

in this study. Finally they have furnished results which showed that the laminated composite 

leaf spring is lighter and more economical than the conventional steel spring with similar 

design specifications. 

 

Kumar and Teja (2012) analyzed design of a composite leaf spring with the objective 

of minimizing weight of leaf spring. Firstly, they discussed advantages of composite 

structures over metallic structures with respect to specific stiffness and strength. The leaf 

spring is modeled in Pro/E and stress and deflection analysis is done using ANSYS 

Metaphysics software. Finally, they have presented results which showed that composite leaf 

spring has superior strength and stiffness and lesser in weight compared to steel. 
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Cannarozzi and Molari (2013) proposed a stress based formulation for non-linear 

deflection analysis of curved, extensible, shear flexible, elastic beams. The formulation is 

based on variational principle which serves as the basis for a finite element analysis. The 

displacements are derived from the stresses by means of integration. Several numerical 

examples are presented to illustrate the effectiveness of the approach. This approach also 

leads to high accuracy of stress and displacement results due to the choice of stresses as 

primary variables. 

 

Ghodake and Patil (2013) presented stress and deflection analysis of leaf springs 

made of glass fibre reinforced polymer and steel, using finite element method. The 

dimensions of an existing conventional steel leaf spring of a light commercial vehicle are 

taken for evaluation of results. Comparison of stress, deflection and strain energy results 

between the composite and steel leaf springs are presented in this paper. A reduction in the 

weight of composite leaf spring is obtained up to 85% compared with steel. In 2013, 

Pozhilarasu and Pillai also presented a comparative study on the performance of composite 

(Glass Fibre Reinforced plastic - GFRP) and conventional leaf springs using finite element 

package ANSYS. In this work, they have fabricated an Eglass/Epoxy composite leaf spring 

using hand layup method. The composite and steel leaf springs are tested using universal 

testing machine and the results are compared. 

 

Roy and Saha (2013) applied a geometry updation technique by using variational 

method to find out deflection profiles of non-uniform beams under various loading 

conditions. Besides the free end displacement, the variation of stress, strain and the bending 

moment of the beam having variable material properties with the beam length are obtained by 

the technique of minimization of total potential energy. The mathematical formulation is 

based on a variational principle using Galerkin’s assumed mode method. The displacement 

functions are approximated by linear combination of sets of orthogonal coordinate functions, 

developed through Gram-Schmidt scheme and substituted in the governing equilibrium 

equation. The final solution of the large displacement geometric nonlinear problem is 

obtained iteratively with the help of MATLAB computational simulation. They pointed out 

that the free end displacements and the shortening of projected beam length are greatly 

affected by the variation in elasticity modulus value. Finally they compared the results with 

existing results and furnished some new results. They have also shown the influence of 
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material gradation for various types of exponential and parabolic distribution for three 

different types of loading. 

 

Parkhe et al. (2014) presented stress and deflection analysis of Carbon fiber epoxy 

based leaf spring under static load condition by using FEA. In this analysis, the composite 

mono leaf spring is modeled by considering varying cross-section, with unidirectional fiber 

orientation angle for each lamina of a laminate. Static analysis of a 3-D model has been 

performed using ANSYS 12.0. Weight reduction of 22.5% is achieved compared to mono 

steel leaf spring. In 2014, Rajagopal et al. also reported a comparative study between 

composite and steel leaf spring with respect to stress and deflection. 

2.2 Review on methods of theoretical analysis 

Theoretical research works on stress and deflection analysis of beams include 

different techniques for formulation and solution of such bending problems. These theories 

exist in individual or in mixed mode and they include analytical, semi analytical, numerical 

and finite element methods. 

2.2.1 Analytical method 

Analytical solution to static problems of structures is possible when the analysis is 

limited to the consideration of linear theory of elasticity. But in case of geometric nonlinear 

analysis, simple analytical solution is not possible due to the presence of nonlinear terms in 

governing equations. When non-uniform geometry and geometric discontinuity in a 

mechanical part are considered, the problems become much more complex. However, 

analytical solutions to static problems of structures like beams, leaf springs, plates, etc. are 

proposed by many researchers and they are presented in the following paragraphs. 

 

The first analytical work to deal with the large deflection analysis of beam was that of 

Bisshopp and Drucker (1945) who proposed elliptic integral approach to solve such 

geometric nonlinear problem. Osipenko et al. (2003) analyzed leaf spring bending problem 

by modeling it as a stack of slim curved cantilever beams and constructed analytical solution 

of the bending problem. Mohyeddin and Fereidoon (2014) considered the effect of shear 

deformation in large deflection analysis of a straight prismatic beam and proposed closed-

form solution based on Timoshenko beam theory. Ahmed et al. (2014) presented elasticity 
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solution of an initially straight beam and proposed an analytical scheme based on the 

displacement-potential field. In 2015, Batista proposed solution of large deflection problem 

of a simply supported beam under three point bending loads in terms of Jacobi elliptic 

functions. Li and Lee (2015) considered the effect of horizontal reaction force in bending 

problems of simply supported beams under different types of loading. 

 

In 1971, Amon et al. analyzed the problem of a reinforced hole in a sheet by using 

plane stress elasticity theory. Later on, many researchers have analyzed effect of stress 

concentration in the vicinity of geometric discontinuity in a loaded structure. Batista (2011) 

proposed analytical method based on modified Muskhelishvili’s method to calculate stress 

concentration factors around holes in infinite plates. Whereas, Mohammadi et al. (2011) 

considered radial variations of Young’s modulus and Poisson’s ratio of the plate material in 

this regards. Castagnetti and Dragoni (2013) reviewed Neuber’s criterion and proposed two 

modified expressions in connection with stress concentration in elastic solids due to presence 

of periodic notches under different loading conditions. 

2.2.2 Semi analytical method 

Geometric nonlinear analysis of structures like beams, leaf springs, etc. results 

nonlinear system governing equations. In order to solve such nonlinear problems, several 

researchers have proposed methods where governing equations of the problems are derived 

based on classical mechanics and then numerical methods are used for solution purpose. 

Approaches based on variational principle, stationarity of the energy functional, Lagrangian 

formulations, etc. have also been reported in literature for solution of such nonlinear 

structural problems. These approaches are known as semi analytical methods and literatures 

available related to these methods for static analyses of beams are presented in the following 

paragraph. 

 

Wang (1969) used finite difference method with Newton-Rhapson iteration technique 

to investigate load-deflection behavior of uniform beams under distributed load. Wang et al. 

(1997) presented a comparative study between elliptic integral approach and shooting-

optimization technique for large deflection analysis of beams. In their elliptic integral 

approach, the elliptic integrals are evaluated using iterative technique, without using elliptic 

functions. Later on, Beléndez et al. (2002) used Mathematica computational platform to solve 
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elliptic integrals, encountered in large deflection analysis of cantilever beam under 

concentrated load. Kumar et al. (2004) proposed search strategy based on the stationarity of 

the energy functional in the equilibrium state for large deflection analysis of initially straight 

beam. Dado and Al-Sadder (2005) considered very large deflection of a non-prismatic beam 

under complex load and proposed an approach based on approximation of the angle of 

rotation of the beam by a polynomial function to solve such beam bending problem. Banerjee 

et al. (2008) proposed Adomain decomposition method to determine large deflection of beam 

under arbitrary loading condition. Tolou and Herder (2009) also used Adomain 

decomposition method to analyze large deflection behavior of members of compliant 

mechanism. Chen (2010) proposed an integral approach for large deflection study of beam 

with complex load and varying beam properties. Almeida et al. (2011) presented finite 

element formulations for large deflection analysis of beams based on total Lagrangian 

formulation. He et al. (2013) proposed perturbation method based on two small parameters to 

solve nonlinear large deflection problem of beams with gradient under two different 

boundary conditions. In this year, approximate analytical solutions employing the recently 

developed automatic Taylor expansion technique (ATET) to solve large deflection problem 

was proposed by Tari (2013). Cannarozzi and Molari (2013) presented solution of large 

deflection problems of beams based on principle of total potential energy. Roy and Saha 

(2013) proposed a geometry updating technique by using variational method to find out 

deflection profiles of non-uniform beams under various loading conditions. 

2.2.3 Numerical method 

As mentioned earlier, closed form solutions to static problems of structures like 

beams, leaf springs, etc. are few due to the presence of nonlinearity in system governing 

equations. If non-prismatic and curved beams are considered, the complexity of the problems 

becomes much greater. In such situation numerical scheme is the only approach available. 

Widely used numerical approaches in structural analysis include numerical integration 

techniques based on iterative shooting technique, finite difference method with Newton-

Raphson iterative technique, etc. Numerical approaches available in literature for static 

analysis of beams and leaf springs are presented in the following paragraph. 

 

In 1968, Wang proposed a simple numerical scheme for analyzing nonlinear bending 

problem of initially straight beams where numerical integrations were carried out by 
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Simpson’s rule. In a paper, Rajendran and Vijayarangan (2001) studied deflection behavior of 

leaf spring and presented solution technique using genetic algorithms (GA). Later on, 

Rahman et al. (2007) studied deflections and stresses developed in leaf springs under 

concentrated loads numerically. Eren (2008) considered both material and geometrical non-

linearity in large deflection analysis of beams and proposed an approach based on Runge-

Kutta method to obtain its load-deflection characteristics. Large deflection behavior of beams 

under follower type loading was solved numerically by Shvartsman (2007), Mutyalarao et al. 

(2010a) and Mutyalarao et al. (2010b). Nallathambi et al. (2010) addressed effect of initial 

curvature of initially curved beams under follower force and applied fourth order Runge-

Kutta method along one parameter reverse shooting method to solve the problem. In a later 

work, Shvartsman (2013) solved the same problem by using direct numerical method. Sitar et 

al. (2014) numerically studied large deflection behavior of beams of material with different 

stress–strain relations in tension and compression domain. 

2.2.4 Finite element method 

As it is well-known, a system of differential equations can be used to model a 

physical phenomenon. So, in order to describe relations among the involved quantities of 

interest, a solution of the differential equation has to be found out. However, governing 

differential equations of structures for large deflection analyses are nonlinear and for solving 

such nonlinear equations, a technique has been successfully used where the whole domain of 

the structure is divided into finite elements of arbitrary shape. 

 

Fraternali and Bilotti (1997) and Pai et al. (2000) presented finite element formulation 

based on total Lagrangian approach to study large deflection behavior of beams. Sugiyama et 

al. (2006) developed a nonlinear finite element formulation based on floating frame of 

reference for nonlinear elasticity analysis of leaf springs. In a paper, Troyani et al. (2004) 

addressed the effect of length of plates with opposite U-shaped notches subjected to in-plane 

bending in theoretical stress concentration factors using finite element method. Solutions of 

geometric nonlinear problems of leaf springs and beams through several commercial finite 

element packages like ANSYS, ABAQUS, MSC/NASTRAN and NACS etc. have been 

reported by several researchers in literature. Many papers, for example, papers by Shokrieh 

and Rezaei (2003), Shankar and Vijayarangan (2006), Hou et al. (2007), Charde and Bhope 

(2012), Kumar and Teja (2012), Raghavedra et al. (2012), Ghodake and Patil (2013), Parkhe 
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et al. (2014), Aşık et al. (2014), Ahuett-Garza et al. (2014) presented development of stresses 

and deflection behavior of leaf springs and beams under different loading conditions by 

commercial finite element packages. 

2.3 Review on types of loading 

Development of stresses and deflections in structures like leaf spring, beam, etc. 

highly depends on the nature of problem parameters. One most important parameter of such a 

structural problem is type of loading to which the member is subjected. Mechanical loads 

applied to beams can be divided into two major categories and they are follower type and 

non-follower type loads. When the angle of inclination of applied load remains fixed with 

respect to the deformed axis of beam then the applied load is called follower type load. 

Otherwise the loading condition is referred to as non-follower type loading. Generally non-

follower type loading include two types of loads and they are concentrated and distributed 

loads. On the other hand, follower type loading is mostly concentrated type. The following 

two sub-sections briefly describe the literatures available related to static analysis of beams 

and leaf springs under concentrated and distributed loading conditions respectively. 

2.3.1 Concentrated load 

Large deflection behavior of initially straight beams under concentrated follower type 

load has been studied numerically by Shvartsman (2007) and Mutyalarao et al. (2010a, 

2010b). Whereas, papers by Nallathambi et al. (2010) and Shvartsman (2013) addressed 

effect of initial curvature of curved beams in deflection behavior under concentrated follower 

type loading condition. 

 

Large deflection behavior of beams under non-follower type concentrated load was 

first addressed by Bisshopp and Drucker (1945). Later on, development of stresses and 

deflections in beams under concentrated loads have been reported by Wang (1968), Wang et 

al. (1997), Fraternali and Bilotti (1997), Pai et al. (2000), Beléndez et al. (2002), Kumar et al. 

(2004), Dado and Al-Sadder (2005), Banerjee et al. (2008), Tolou and Herder (2009), Chen 

(2010), Almeida et al. (2011), Cannarozzi and Molari (2013), Mohyeddin and Fereidoon 

(2014), Nguyen (2014), Aşık et al. (2014), Ahuett-Garza et al. (2014) and Batista (2015). 

Static analyses of leaf springs and crane hooks under concentrated loads have also been 

presented in several research papers (Rajendran and Vijayarangan (2001), Shokrieh and 
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Rezaei (2003), Shankar and Vijayarangan (2006), Sugiyama et al. (2006), Rahman et al. 

(2007), Hou et al. (2007), Rashmi (2011), Raghavedra et al. (2012), Charde and Bhope 

(2012), Kumar and Teja (2012), Roy and Saha (2013) and Parkhe et al. (2014)). 

2.3.2 Distributed load 

In a paper, Wang (1969) studied large deflection behavior of beams under uniformly 

distributed loads. Later on, stresses and deflections characteristics of beams under uniformly 

distributed loads have been addressed by several researchers (Osipenko et al. (2003), He et al. 

(2013), Cannarozzi and Molari (2013), Ghodake and Patil (2013), Roy and Saha (2013) and 

Ahmed et al. (2014)). Dado and Al-Sadder (2005) considered non-uniform distribution of 

loads as well. Chen (2010) pointed out that due to geometric nonlinearity in large deflection 

analysis, the intensity of the distributed load is not constant along the undeformed axis of the 

beam. Rather, the load intensity is constant along the axis of the deformed beam. In such 

cases the loading condition is assumed as non-uniformly distributed over the projected length 

of the beam. 

 

In 2008, Eren studied deflection behavior of beams under combined action of 

concentrated and uniformly distributed load. Later on many papers, for examples, papers by 

Chen (2010), Roy and Saha (2013), Tari (2013), Sitar et al. (2014) and Li and Lee (2015) 

presented development of stresses and deflections in beams under combined loads. 

2.4 Review on types of boundary condition 

Boundary conditions are defined as the set of conditions specified for the solution of 

governing differential equation of a physical system at the boundary of its domain. Deflection 

characteristics and stress field developed in beam like structures under different loading 

conditions depend on their boundary conditions. Stress and deformation analysis of leaf 

spring is generally carried out through two classical beam models and they are fixed-free i.e., 

cantilever model (Osipenko et al. (2003), Roy and Saha (2013), Shokrieh and Rezaei (2003), 

Rahman et al. (2007)) and three point bending model (Sugiyama et al. (2006), Kumar and 

Teja (2012), Raghavedra et al. (2012), Ghodake and Patil (2013), Parkhe et al. (2014)). Many 

other non-conventional boundary conditions are also considered by several researchers. 

Literature related to fixed-free, simply supported-simply supported and non-conventional 
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boundary conditions, in connection with beam bending, are described in the following three 

sub-sections respectively. 

2.4.1 Fixed-free 

In 1945, Bisshopp and Drucker analyzed large deflection behavior of beam whose one 

end is fixed and other end is free i.e., cantilever beam under tip concentrated load. Later on, 

many research papers, for example papers by Wang (1968), Beléndez et al. (2002), Kumar et 

al. (2004), Banerjee et al. (2008), Eren (2008), Mutyalarao et al. (2010a), Mutyalarao et al. 

(2010b), Nallathambi et al. (2010), Tari (2013), Shvartsman (2013), Sitar et al. (2014) 

reported non-linear static analysis of cantilever beams. Papers by Dado and Al-Sadder 

(2005), Chen (2010) and Nguyen (2014) considered geometry variation along the length of 

cantilever beam in large deflection. Tolou and Herder (2009) reported geometric non-linear 

analysis of members of compliant mechanism. In this study, an element is considered and 

modeled as a cantilever beam under vertical end point load. They concluded with the future 

scope that this cantilever model can further be used as a building block in more complex 

compliant mechanisms. Almeida et al. (2011) analyzed stresses and deflection characteristics 

of functionally graded beams and furnished two examples of cantilever beams under different 

type of loading. Cannarozzi and Molari (2013) have shown performance of their proposed 

approach for non-linear analysis of planar beams through cantilever beam examples. 

2.4.2 Simply supported-simply supported 

After successful comparison of results for cantilever beam with exact ones, Wang 

(1968) applied the proposed numerical method to solve bending problem of a simply 

supported beam under concentrated load. In the next year, Wang extended his work to 

address large deflection behavior under distributed load. Later on, Fraternali and Bilotti 

(1997) analyzed development of stresses in laminated curved beams incorporating the effects 

of large rotation and different behavior of material under tension and compression. In this 

paper, they have shown the effectiveness of the proposed method through solution of bending 

problem of an initially straight simply supported beam under concentrated load. Mohyeddin 

and Fereidoon (2014) considered transverse shear deformation in large deflection analysis of 

straight simply supported isotropic beam under three point bending. In this analysis, they 

have pointed out that the reaction forces at supports are not quite vertical, but normal to the 

beam midline in the absence of frictional forces in large deflection. Batista (2015) analyzed 
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deflection behavior of beam under three point bending considering both smooth and rough 

supports. In this study, he has also presented a detail discussion on the effect of the radius of 

supports. Li and Lee (2015) addressed effect of horizontal reaction force in large deflection 

analysis of simply supported beam. They pointed out that contact locations between the beam 

and the supports are somewhat shifted from the original position to attain equilibrium and for 

smooth simple supports the reaction forces at two ends are normal to the deformed beam. 

2.4.3 Non-conventional 

Wang et al. (1997) analyzed large deflection characteristics of beam whose one end is 

hinged and elastically restrained against rotation and the other end is free to move over a 

frictionless support. Later on, Shvartsman (2007) presented large deflection analysis of beam 

whose one end is spring hinged and the other end is free and subjected to a concentrated load. 

In a paper, Cannarozzi and Molari (2013) reported nonlinear analysis of hinged clamped 

circular arch and shallow hinged arch. In the same year, He et al. presented large deflection 

analysis of beam with gradient with one end fixed and other end simply supported. Ahmed et 

al. (2014) presented analysis of stress field in a simply supported composite beam with 

stiffened lateral ends. In this analysis, two types of stiffeners, namely the axial and lateral 

stiffeners are considered for the opposing lateral ends of the beam for which the fibers are 

assumed to be directed along the beam axis. 

2.5 Literature on experimental work 

Several researchers have used many techniques for stress and deflection analysis of 

structure like leaf springs and beams under different loading conditions. Experimental works 

are further classified in two categories on the basis of their goal and they are pure 

experimental and combined experimental and theoretical. It is observed that combined 

experimental and theoretical research works on stress and deflection analysis of leaf spring, 

beam, etc., are available in literature but on the other hand pure experimental works are few. 

2.5.1 Pure experimental work 

Pure experimental works are performed with the goal of recreating the conditions of 

actual working environment of a structural component in order to predict its behavior under 
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such conditions. The following paragraphs briefly describe various literatures related to pure 

experimental works on stress and deflection analysis of structures. 

 

Ryan and Fischer (1938) carried out experiment using photo-elastic technique to 

study stress concentration effect due to presence of holes in beams under pure bending. The 

experimental results are compared with theoretical and experimental results of other 

researchers. From this study they have proposed rules for design of rectangular beams with 

centrally located holes under pure bending. 

 

Politch (1985) described three methods for strain measurement and compared with 

analytical method. These three methods are speckle shearing interferometry (SSI), electrical 

strain gages and mechanical deflectometers. These methods were applied on a simply 

supported uniformly loaded plate of composite material. Good agreement was obtained 

between the measured and the calculated results, at the points of measurement within the 

range of loading. 

 

Shenhua et al. (1997) carried out experimental work on precision roll-forging of 

taper-leaf spring of vehicle and results have been used in the design of precision roll-forging 

process and the dies for the forming of taper-leaf springs. In this work, they determined 

equations to evaluate the width-extension and slip-forward values that affect the work piece 

quality and their correcting curves experimentally and proved that such equations are both 

practical and reliable. Satisfactory results were obtained when the equations were applied to 

the design of the roll-forging process and dies for forming different taper-leaf springs: there 

was no flash on the parts, the dimensional accuracy was high and the surface quality was 

excellent. Industrial applications have shown that the precision roll-forging technique for 

taper-leaf springs can increase the productivity, decrease production costs and investment in 

equipment, and meet the requirements for product quality and properties being especially 

economical and suitable for the production of massive taper-leaf springs. 

 

Al-Qureshi (2001) presented a comparative study on performances of leaf springs 

made of steel and composite material. Firstly, a leaf spring of glass fiber reinforced plastic 

was designed and fabricated. Mechanical and geometrical properties of the fabricated leaf 

spring were similar to those of an existing multi-leaf steel leaf spring. These leaf springs were 

subjected to a series of laboratory static tests followed by a road test. In the experiment, 
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springs were mounted on a beam which was attached to the lower platen of a hydraulic 

testing machine. A specially designed punch was attached to the upper platen of the machine. 

This study demonstrated that composites can be used for leaf springs which meet the 

requirements together with substantial weight saving. 

 

Mahdi and Hamouda (2013) presented an experimental investigation on mechanical 

behavior of hybrid and nonhybrid semi-elliptical springs made of composite material. In this 

work, compression, tension, torsion and cyclic tests are performed with three types of 

composites, namely, carbon/epoxy, glass/epoxy and glass/carbon/epoxy. Finally, the results 

of these tests are presented which showed that the fiber type and ellipticity ratio significantly 

influenced the spring stiffness. After 1.15 million fatigue cycles, composite semi-elliptical 

suspension spring’s useful stroke is reduced by only 2% of its original height. The relaxation 

of the composite elliptic spring is very sensitive to the compression rate. 

 

Motra et al. (2014) presented comparison between several strain measurement 

techniques and analyzed the uncertainty sources incorporated in them. In this work, the 

geometry of structural steel samples was analyzed by 3D scanner and vernier caliper. Strain 

values were determined by using three different techniques, namely strain gauge, 

extensometer and machine crosshead motion. These three techniques of strain measurement 

are compared in quantitative manner based on the mechanical properties of structural steel. 

Finally they have concluded with the observation that the extensometer and strain gauge 

provided reliable data, however the extensometer offers several advantages over the strain 

gauge and crosshead motion for testing structural steel in tension. 

2.5.2 Combined experimental and theoretical work 

Combined experimental and theoretical works are carried out with the goal of 

verifying or establishing the validity of a theoretical simulation study. In the following 

paragraphs a brief description of literatures available related to combined experimental and 

theoretical works on stress and deflection analysis of structures like leaf springs, beams, etc. 

are presented. 

 

Ko (1985) performed a coupon tests to validate their theoretical study on the effect of 

hole size in stress concentration factor in composite plate. The specimens were tested in a 
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tensile test machine and load was increased until the specimens failed under uniaxial tension. 

One specimen without hole was also studied in similar manner to obtain the tensile strength 

of the material. Comparison is made between experimental and theoretical results of stress 

distributions around a hole present in a composite plate and presented graphically. 

 

Pai et al. (2000) performed large bending and twisting tests on flexible straight and 

curved beams to validate their finite element model for large deformation analysis of beams. 

For the purpose of experimentation of such beams under different loading conditions, two 

special test fixtures are designed. Finally, they have compared the experimental results with 

theoretical ones and presented in the paper. 

 

Beléndez et al. (2003) conducted experiment with a steel ruler of rectangular cross-

section which was built-in at one end and loaded by a concentrated load at the free end to 

study load-deflection behavior of a cantilever beam under tip concentrated load. Deflection 

profile as well as tip deflection and end shortening of the beam are directly measured by 

using horizontal and vertical rulers. 

 

Shankar and Vijayarangan (2006) conducted a test of steel leaf spring in a leaf spring 

test rig following standard procedures recommended by SAE to study development of 

stresses and deflections in it under concentrated load. In this test, the spring is loaded from 

zero to the prescribed maximum deflection by a concentrated load applied at the centre of the 

spring. Stresses and deflections of the spring centre are recorded in the load interval of 50 N. 

 

Hou et al. (2007) conducted a static test of glass reinforced plastic (GRP) leaf spring 

with three different designs of eye-end attachment to obtain stress and deflection developed 

in the spring. Strain gauges were placed on the top and bottom surfaces of the leaf springs 

along the fibre direction. Deflection was measured at the centre of the suspension where the 

load was applied. 

 

Mujika (2007) analyzed three point bending test taking into account shear and local 

deformation effects in the load application and supports. Indentation tests and three-point 

bending tests have been carried out on two composite specimens at five different spans. 

Load–deflection curves have been determined in three fixed strain ranges and a fixed load 

range. The best results have been obtained for the highest strain range, as local deformation 
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effects can be considered linear. Local deformation effects can have even more importance 

than shear effects in the case of small span to depth ratio. 

 

Rashmi (2011) carried out experiment using the concept of photo elasticity to 

determine stress distribution in a loaded crane hook. A crane hook model made out of a 

birefringent material was selected for the study which has geometry similar to that of the 

crane hook. When a ray of light passes through a birefringent material, it experiences two 

refractive indices. This property of birefringent material is known as birefringence and the 

present experimental method is developed based on this property. 

 

Charde and Bhope (2012) investigated evaluation of stresses in master leaf over the 

span using strain gauge technique. Firstly, they pointed out that the maximum stress induced 

in the master leaf is at support. But due to non-geometric linearity and large deflection 

behavior the stress may be occurred at any section over the span of leaf spring. They carried 

out stress analysis of half cantilever master leaf of leaf spring with and without extra full 

length leave. Four strain gauges were located on the master leaf to determine stresses over the 

span. Finally, experimental results are verified with the results of finite element method. 

 

Aşık et al. (2014) carried out experiment for determination of stresses and deflections 

developed in curved glass beam under concentrated load. In this combined experimental and 

theoretical work, they have performed three point bending tests by applying a constant 

bending load of 500 N in radial direction only. Strain gauges are mounted on the curved 

beam and a portable strain indicator is used for strain measurement. In this connection, a 

computer aided screw-driven testing machine is used to maintain minimum of 2 mm/min 

loading rate until the load reaches the maximum value, 500 N. Finally, deflection and stress 

results are compared with theoretical results and presented in graphical forms. 

 

Ahuett-Garza et al. (2014) presented a combined experimental and theoretical study 

on use of curved beams as large displacement hinges in planar compliant mechanisms. An 

aluminum model of the mechanism was built and its load-deflection behavior was studied by 

using a displacement sensor. The analytical and FEA models predicted values within 3% of 

each other, with a ratio of output to input deflection being about 1. Whereas, the experimental 

measurements reported the ratio of output to input displacement as 0.9. They have identified 

several factors which may be the reasons for the deviation. These factors include friction 
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force produced by the guide on the output pin of the mechanism which is generally neglected 

in theoretical analysis. In addition, the position of the center of each one of the hinges may 

not be exactly the same as a normal pinned joint would display. 

 

Ozmen et al. (2015) developed testing and simulation method for the durability of leaf 

springs based on accelerated fatigue life testing. Load spectra were measured from different 

vehicles on rough road testing track which contain variable amplitude. Fatigue life of leaf 

spring is determined using this variable amplitude loading. Afterwards, accelerated spectra 

were generated for testing and used in newly built fatigue test bench. In this work, they have 

also performed finite element and multi body simulation calculations and processed load 

spectra with multichannel fatigue life calculation to generate a virtual test rig. 



Chapter 3 

ANALYSIS OF LEAF SPRING AS CANTILEVER BEAM 

 

From the literature review, presented in the previous chapter, it is observed that leaf 

spring is generally analyzed and designed by modeling it as initially curved cantilever beam 

following large deflection theory. In spite of widespread studies available in this area, there 

seems to be lack of geometrical nonlinear study for beam which has some initial curvature. 

Moreover, there is a lack of experimental fidelity in the ensuing models. Most of the 

available experimental works measure deflection at some points only, whereas experimental 

measurement of complete displacement field throughout the domain is rare. The present 

chapter focuses on both experimentally and theoretically large deflection behavior of master 

leaf spring through cantilever model. Description of the experimental set-up is presented at 

the beginning of the chapter. Subsequently measurement technique of deflection filed and 

mathematical modeling of the physical system are reported. Effect of initial curvature of 

initially curved beam is considered in the present theoretical study. From comparison 

between experimental and theoretical deflection results, several aspects of cantilever 

modeling of leaf spring are identified. Further theoretical analysis is carried out to study 

deflection behavior of initially curved beam under distributed and combined loads. 

3.1 Description of experimental set-up 

Photograph and schematic diagram of the experimental set-up are shown in Fig. 3.1 

(a) and Fig. 3.1 (b) respectively. Major sub-assemblies of the experimental set-up are 

hydraulic cylinder clamping arrangement (items 1-3), hydraulic cylinder support structure 

(item 4) and hydraulic power pack (item 9). Detail of the hydraulic cylinder components is 

shown in Fig. 3.2. A hexagonal cap (item 3) is attached to the head of the ram (item 2) by 

means of threaded fastening. A hydraulic circuit is formed between the hydraulic cylinder 

and the hydraulic power pack by using a hose which passes through control valve (item 10). 

This control valve enables controlling of fluid pressure in the hydraulic cylinder. Main 

components of hydraulic cylinder support structure are bottom plate and top plate. Details of 

components of hydraulic cylinder support structures together with its sub-assembled drawing 

are furnished in Fig. 3.3 (a-c). Main components of hydraulic cylinder support structure are 

bottom plate and top plate. Bottom plate is mounted on a concrete foundation (item 8) and 
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top plate is mounted above the bottom plate by using stud, lock nut and washer. The 

hydraulic cylinder is bolted over the top plate in such a way that the ram can move up and 

down through the central recess of the top plate. The experimental set-up, housed in Machine 

Elements laboratory is a general purpose set-up, which is used for clamping various types of 

structures. 

 

 
 

Item Description 

 

Item Description 
1 Hydraulic cylinder 6 Weight 
2 Ram 7 Weight pan 
3 Cap 8 Foundation 
4 Hydraulic cyl. support structure 9 Hydraulic power pack 
5 Master leaf spring 10 Control valve 

 

Fig. 3.1 (a) Photograph and (b) schematic diagram of the experimental set-up. 
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Fig. 3.2 Details of hydraulic cylinder (item 1) and ram (item 2) sub-assembly and the 

clamping cap (item 3). 

 

To study load-deflection behavior of leaf spring, the master leaf (item 5) of an 

automobile leaf spring bundle, made from spring steel is procured and placed on the bottom 

plate of the hydraulic cylinder support structure. Width and thickness of its rectangular cross-

section are 38.5 mm and 6.25 mm respectively. The span, camber and arc-length along 

periphery of the master leaf are measured in its free state and these measurements (in mm) 

are 866, 129 and 921.8 respectively. The master leaf spring is clamped centrally between the 

bottom plate and hexagonal head of the ram at a pressure of one ton. Two weight pans (item 

7) are connected to the eye ends of the master leaf spring to apply load (item 6) on it. The 

engagement of ram of the hydraulic cylinder with master leaf spring divides it into two 

halves. Experimental observation is made in one half of the spring only, which is modeled as 

cantilever beam with initial curvature in the corresponding theoretical analysis. 

3.2 Experimental procedure and observations 

It is observed that clamping of the master leaf spring induces a change in its span. In 

addition, the clamping produces an initial deflection of the spring without application of 

external load in form of dead weight. Thereafter the spring is loaded symmetrically by 

placing equal weights on the weight pans at both ends. Central clamping divides the master 

leaf spring into two symmetric curved cantilever beams and limit load of such a beam is 
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calculated by using bending stress equation of Winkler-Bach curved beam theory, which is 

described in the following paragraph. 

 

 

Fig. 3.3 Hydraulic cylinder support structure sub-assembly (item 4) and details of its 

components-(a) stud, (b) bottom plate and (c) top plate. 

 

Winkler-Bach curved beam theory says that when a curved beam is subjected to pure 

bending ܯ, the bending stress at any point on the layer with radius of curvature ݎ is given by 
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ߪ = ெ (௥೙ି௥)
஺ ௥ (௥೙ି௥೎)

, where ݎ௡ is radius of curvature of the neutral surface, ݎ௖ is radius of curvature 

of the centroidal surface, ܣ is cross-sectional area of the beam. Induced stress in each half of 

the master leaf will be maximum at the fixed end and at this location bending moment is 

given by ܯ =  is the applied load and ݈ is half-span of the leaf spring. Now ܨ where ,݈ ܨ

calculation of the limit load only depends on calculations of ݎ௖ and ݎ௡. Once profile ݕ =  (ݔ)݂

of left half of the master leaf in its free state is obtained following the procedure discussed in 

the following sub-sections, radius of curvature of the centroidal surface is calculated at fixed 

end (i.e., ݔ = 0) by using the equation ݎ௖ = ൜[1 + ቀௗ௬
ௗ௫
ቁ
ଶ

]ଷ/ଶ ௗమ௬
ௗ ௫మ
ൗ ൠฬ

௫ ୀ ଴
. As the cross-section 

of the master leaf is rectangular of width ܾ and thickness ℎ, radius of curvature of the neutral 

surface is given by ݎ௡ = ௥మି௥భ
୪୬(௥మ ௥భ⁄ )

, where ݎଵ = ௖ݎ −
௛
ଶ
 and ݎଶ = ௖ݎ + ௛

ଶ
. Taking allowable stress 

as 75% yield stress value of the spring material (1500 MPa) the limit load is calculated and 

its magnitude is approximately 500 N. 

 

 

Fig. 3.4 Photographs of deflection profiles of the master leaf under different loading. 
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Experiment is performed at eight different load steps, where the first load step is 

designated as clamping force. The other seven load steps are designated as load – 1, 2, 3, 4, 5, 

6 and 7 whose magnitudes (in N) are 62.784, 138.321, 211.896, 287.433, 361.989, 438.507 

and 460.089 respectively. In each step of loading deflection profile is captured and recorded 

by using a digital camera (Make: Nikon India Pvt. Ltd., Model: COOLPIX L30, Resolution: 

20 MP, Optical zoom: 5x, LCD screen: 7.5 cm). A graph paper is placed immediately behind 

the spring for the purpose of post processing of the photographs to obtain deflection profiles 

of the spring under each loading condition. The photographs of deflection profiles under the 

eight load steps are taken for the left side of the spring only and shown in Fig. 3.4. It is 

observed that under the maximum load beam has become almost horizontal. 

 

Dynamic behavior of the master leaf spring under load is also observed during the 

present experimentation and for this purpose a shear mode piezoelectric accelerometer 

(Make: Kistler Instrument Corporation, Type: 8728A500, Acceleration range: ±500 g (g = 

9.80665 m/sଶ), Frequency range: 1 Hz–10 kHz (±5%)) is mounted on it using Petro-Wax 

adhesive. At each load step, the system is excited with the blow of a soft rubber hammer to 

obtain natural frequency of the master leaf spring under loaded condition. At clamped 

condition, natural frequency of the master leaf is observed by using a digital storage 

oscilloscope (Make: Tektronix Inc., Model: TDS 210, Peak detect bandwidth: 50 MHz, 

Lower frequency limit: 10 Hz). Due to low frequencies of the master leaf spring under the 

other seven load steps, the oscilloscope is unable to capture signal from the vibrating leaf 

spring. In these load steps, natural frequencies of the master leaf are obtained through post 

processing videos, taken during oscillations of the master leaf. Natural frequencies of left half 

of the master leaf under each load step are tabulated in Table 3.1. 

 

Table 3.1 Natural frequencies of master leaf spring under different load steps 

Load 
Clamping 

force 
Load-

1 
Load-

2 
Load-

3 
Load-

4 
Load-

5 
Load-

6 
Load-

7 

Natural 
frequency (Hz) 

20 3.82 2.5 2.33 1.98 1.84 1.67 1.56 
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3.2.1 Deflection profile through image processing 

As mentioned earlier, experimental observation is made only in left half of the master 

leaf spring. To obtain profile of left half of the master leaf spring in its free state, the master 

leaf is placed on a graph paper and profiles are drawn along its outer and inner edges. Centres 

of the left eye end and mounting drill hole are also located on the graph paper and then 

master leaf is removed. Now centre line of the master leaf is drawn between the outer and 

inner curvature lines. Thereafter, a perpendicular straight line is drawn on the centre line from 

the eye centre and this normal point on the centre line is considered as one end of master leaf 

profile. Other end of the master leaf profile is at the centre of the drill hole which is 

considered as origin of Cartesian coordinate system (ݕ ,ݔ). Projected length of curvature line 

of left half of the master leaf profile is then divided into ten equal divisions and its profile is 

obtained as ݕ =  by measuring coordinates of each division point. This profile is then (ݔ)݂

exported in MATLAB® computational platform to calculate arc length of half of the master 

leaf in its free state, which is found to be 460.9 mm. 

 

 

Fig. 3.5 Curvature lines of the master leaf under some applied loads. 

 

On the other hand, deflection profiles of the master leaf in loaded conditions are 

obtained by post processing photographs. For this purpose, each photograph is taken as 
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background in the editor of a graph handling software (AutoCAD®) and a curvature line is 

drawn along the centre line of the loaded beam. The length of the curvature line is measured 

and the drawing is scaled to equate this length with the initial beam length. Now the projected 

length of this line is divided into equal ten divisions and (ݔ,  coordinates are measured at (ݕ

each of the division points. Curvature lines corresponding to each of the load steps excluding 

load-1 are presented in Fig. 3.5 and in addition, the profile of the spring in its free state is also 

appended to this figure. Deflection profiles of leaf spring corresponding to the eight loading 

conditions, as considered in Fig. 3.5, are tabulated in Table 3.2. 

 

Table 3.2 The (࢞,࢟) coordinates of curvature line at various locations of the beam under 

different magnitude of loading 

 

Location 
number 

Load 

No 
load 

Clamp-
ing 

Load-
2 

Load-3 Load-4 Load-5 Load-6 Load-7 

0 
0.0,  
0.0 

0.0,  
0.0 

0.0,  
0.0 

0.0,  
0.0 

0.0,  
0.0 

0.0,  
0.0 

0.0,  
0.0 

0.0,  
0.0 

1 
43.85, 

1.6 
44.01, 

1.5 
44.7, 
1.1 

45.13, 
1 

45.47, 
0.8 

45.68, 
0.49 

45.84, 
0.16 

45.94, 
0.1 

2 
87.7, 
4.7 

88.02, 
4.4 

89.4, 
4.31 

90.26, 
2.8 

90.94, 
2.2 

91.36, 
0.91 

91.68, 
-0.06 

91.88, 
-0.3 

3 
131.55, 

10.5 
132.03, 

10.1 
134.1, 
8.27 

135.39, 
5.9 

136.41, 
3.9 

137.04, 
1.71 

137.52, 
-0.18 

137.82, 
-1.3 

4 
175.4, 
18.8 

176.04, 
17.7 

178.8, 
13.84 

180.52, 
10.6 

181.88, 
6.6 

182.72, 
3.08 

183.36, 
-0.47 

183.76, 
-2.1 

5 
219.25, 

29.2 
220.05, 

28.1 
223.5, 
21.16 

225.65, 
16.7 

227.35, 
11.0 

228.40, 
5.44 

229.20, 
-0.24 

229.7, 
-2.8 

6 
263.1, 
41.8 

264.06, 
40.4 

268.2, 
30.89 

270.78, 
23.9 

272.82, 
16.7 

274.08, 
9.01 

275.04, 
0.89 

275.64, 
-1.3 

7 
306.95, 

57.5 
308.07, 

55.1 
312.9, 
41.12 

315.91, 
33.5 

318.29, 
24.2 

319.76, 
14.10 

320.88, 
3.86 

321.58,  
0.4 

8 
350.8, 
76.3 

352.08, 
73.1 

357.6, 
55.11 

361.04, 
45.2 

363.76, 
33.7 

365.44, 
21.45 

366.72, 
8.57 

367.52,  
4.5 

9 
394.65, 

98.3 
396.09, 

94.2 
402.3, 
71.51 

406.17, 
59.7 

409.23, 
45.5 

411.12, 
30.75 

412.56, 
15.69 

413.46,  
10.7 

10 
438.5, 
122.6 

440.01, 
117.9 

447, 
91.62 

451.3, 
77.5 

454.7, 
60.4 

456.81, 
44.81 

458.42, 
26.98 

459.4,  
19.6 
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Fig. 3.6 Best fit deflection curves with their equation. 

3.2.2 Equations of the deflection curves 

The coordinate points of all the deflection profiles are exported in another graph 

handling software (MS-Excel) to obtain best fit deflection curve and its analytical equation. 



Chapter 3 

54 

The best fitted deflection profiles of the master leaf together with their analytical equations 

under the eight load steps, as considered in Fig. 3.5, are shown in Fig. 3.6. 

3.2.3 Post processing of experimental results 

Deflections of the master leaf spring due to applied loads are observed at the tip and 

they are tabulated in Table 3.3. It is obvious from Table 3.2 that the spring has deflected at 

clamped position, although no external load in the form of dead weights has been applied. 

Deflection of the tip at clamped position with respect to the initial no load configuration is 

4.7 mm. This deflection is due to bending effect of clamping force acting at the contact 

surface of head of the ram of hydraulic cylinder and the leaf spring. The clamping effect is 

modeled through an equivalent force at the tip, which is unknown at this stage, but need to be 

calculated for obtaining the actual experimental load-deflection behavior. 

 

Table 3.3 Observed load-deflection                       Table 3.4 Actual load-deflection  

behavior of the tip                                                   behavior of the tip 

  

 

 

 

 

 

 

 

 

The best fit linear load-deflection curve is obtained from data points of Table 3.3, as 

shown in Fig. 3.7, and it does not pass through origin. Using MATLAB® software, the load-

deflection curve is shifted so as to pass through origin and the equation of the best fit line is 

ݕ =  which is also shown in Fig. 3.7 by solid line with dots on it. Now ,ݔ0.2242

corresponding to tip-deflection 4.7 mm, clamping force is calculated as 20.9634 N. Hence, 

this additional tip load is considered to capture the effect of initial clamping, although in 

Applied load (dead 
weight) 

(N) 

Tip-deflection 
(mm) 

62.784 8.8 
138.321 26.28 
211.896 40.4 
287.433 57.5 
361.989 74.6 
438.507 93 
460.089 98.3 

 

Load 
(N) 

Tip-deflection 
(mm) 

0 0 
20.9634 4.7 
83.7474 13.5 
159.2844 30.98 
232.8594 45.1 
308.3964 62.2 
382.9542 79.3 
459.4704 97.7 
481.0524 103 
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actual case the spring has a locked up moment. It should also be noted that the magnitude and 

direction of this locked up moment gets changed with the application of external load at 

different load levels. However following the present proposition, the corrected load-

deflection behavior of the tip is given in Table 3.4. Actual experimental loads (in N) are 

calculated by adding the clamping force with every applied load and their new values are 

given in Table 3.4. Similarly the tip deflection due to clamping is also added with the 

observed tip deflections during experiment. 

 

 

Fig. 3.7 Experimental and modified best fit linear load-deflection behavior of tip. 

 

3.3 Mathematical formulation 

In theoretical analysis, the physical system is modeled as cantilever beam with initial 

curvature subjected to tip concentrated load. To study large deflection behavior of such 

initially curved cantilever beam, large deflection behavior of initially straight cantilever beam 

under tip concentrated load is first studied. Large deflection problem of cantilever beams is 

generally analyzed in curvilinear coordinate system. Euler Bernoulli beam theory in 

curvilinear coordinate system (ݏ,݊) is 1/ߩ = = ߩ/where curvature 1 ,ܫܧ/ܯ   So .ݏ݀/߮ ݀

Euler Bernoulli bending moment-curvature relationship is given as follows, 

ܫܧ ௗఝ
ௗ௦

=  (3.1)                  ,ܯ 
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Fig. 3.8 (a) Small deflection and (b) large deflection of a cantilever beam. 

 

where ߮ is the slope ݀ݔ݀/ݕ at location ݏ, and it is also the measure of normal direction ݊. 

Equation (3.1) is valid for both small and large deflection analysis but bending moment is 

computed differently as shown in Fig. 3.8. For the purpose of computation, ߮ is designated as 

߮௝௜ , where ݅ (= 1, … , ௅ܰ) is the measure of load and ݆ (= 1, … , ௚ܰ / ௙ܰ) correspond to the 

location. Slope ߮  is usually measured in (ݔ,  coordinate system but it is also expressed as (ݕ

 coordinate. When large deflection analysis is carried out in Cartesian ݏ  along (ݏ)߮

coordinate system (ݕ,ݔ), the curvature is given by  ଵ
ఘ

= ௗమ௬
ௗ௫మ

/[1 + (ௗ௬
ௗ௫

 )ଶ](యమ). However in the 

analysis of small deflection problems, the curvature is approximated as  ଵ
ఘ

= ௗమ௬
ௗ௫మ

, and as a 

consequence the domain of ݔ becomes 0 ≤ ݔ ≤  i.e., the beam stretches with increase in ,ܮ

loading as shown in Fig. 3.8 (a). On the other hand, in large deflection bending analysis of 

cantilever beams, it is assumed that the length of the beam does not change with loading. 

Hence the domain of ݏ remains unchanged and spans from 0 to 0) ܮ ≤ ݏ ≤  To maintain .(ܮ

constancy in beam length, the domain of ݔ changes with loading, spanning from 0 to the 

projected length ݈ of the beam, as shown in Fig. 3.8 (b). The first derivative of Eq. (3.1) with 

respect to ݏ yields, 

ܫܧ ௗ
మఝ
ௗ௦మ

= ௗெ
ௗ௦

.                   (3.2) 

The bending moment ܯ at location ݏ is, 

(ݏ)ܯ  = ݈) ܨ  −  (3.3)                     .(ݔ

Differentiating Eq. (3.3) with respect to ݏ and comparing with Eq. (3.2) the following non-

linear differential equation is obtained. 
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ܫܧ ௗ
మఝ
ௗ௦మ

+ ܨ  ݏ݋ܿ ߮ = 0.                 (3.4) 

Equation (3.4) is derived by taking into account the geometrical relations ܿݏ݋ ߮ = ௗ௫
ௗ௦

 and 

݊݅ݏ ߮ = ௗ௬
ௗ௦

. The equation is multiplied by  ௗఝ
 ௗ௦

  to yield  ܫܧ ௗఝ
ௗ௦

ௗమఝ
ௗ௦మ

+ ܨ ݏ݋ܿ ߮ ௗఝ
ௗ௦

= 0 and after 

carrying out some mathematical manipulations, it is expressed as, 
ௗ
ௗ௦

[ாூ
ଶ

(ௗఝ
ௗ௦

)ଶ + ܨ  ݊݅ݏ  ߮] = 0.                (3.5) 

Equation (3.5) is integrated and the associated constant of integration is evaluated by using 

boundary conditions i) ߮ = ߮௧௜௣  
ேಽ  and ii) ௗఝ

ௗ௦
= 0 at ݏ = ௧௜௣߮ .ܮ

ேಽ  represents the slope ௗ௬
ௗ௫

 

corresponding to load ܨ at load step number ௅ܰ. Hence Eq. (3.5) becomes, 

(ௗఝ
ௗ௦

)ଶ = ଶி
ாூ

௧௜௣߮݊݅ݏ)
ேಽ − ݊݅ݏ ߮).                 (3.6) 

Using a normalized load parameter ߙ (= ி௅మ

ଶாூ
) [Beléndez et al. (2002)], the above equation is 

expressed as, 

ܮ ቀௗఝ
ௗ௦
ቁ = ௧௜௣߮݊݅ݏ)ටߙ√2

ேಽ −  (3.7)               .(߮݊݅ݏ 

Upon integration, the equation provides arc length ݏ as a function of ߮ through the relation, 
௦
௅

= ଵ
ଶ√ఈ

∫ ௗఝ

ට(௦௜௡ ఝ೟೔೛
ಿಽି ௦௜௡ ఝ)

ఝ
଴ .                (3.8) 

Noting that ܮ/ݏ = 1 at the free end of the beam, Eq. (3.8) solves for the unknown slope  ߮௧௜௣
ேಽ  

corresponding to load parameter ߙ, from iterative solution of the following relation. 

ߙ√ 2 =  ∫ ௗఝ

ට(௦௜௡ ఝ೟೔೛
ಿಽି ௦௜௡ఝ)

ఝ೟೔೛
ಿಽ

଴ .                (3.9) 

An appropriate transformation of Eqs. (3.7) and (3.8), obtained by using the relations 
ௗఝ
ௗ௦

= ௗఝ ߮ݏ݋ܿ
ௗ௫

 and  ௗఝ
ௗ௦

= ௗఝ ߮݊݅ݏ
ௗ௬

, yields the (ݕ,ݔ) coordinate at any location ݏ, as given 

below. 

௫
௅

= ଵ
√ఈ
ቈට݊݅ݏ ߮௧௜௣

ேಽ −ටቀ߮݊݅ݏ௧௜௣
ேಽ − ݊݅ݏ  ߮ቁ቉,            (3.10) 

௬
௅

= ଵ
ଶ√ఈ

∫ ௦௜௡ ఝ ௗఝ

ට(௦௜௡ ఝ೟೔೛
ಿಽି ௦௜௡ ఝ) 

ఝ
଴ .              (3.11) 

The coordinate (ݔ௧௜௣
ேಽ , ௧௜௣ݕ

ேಽ) at the free end of the beam provides beam shortening 

௫ߜ) = ௧௜௣଴ݔ − ௧௜௣ݔ
ேಽ ) or stretching (ߜ௫ = ௧௜௣ݔ

ேಽ − ௧௜௣଴ݔ ) corresponding to load ܨ at load step ௅ܰ. In 
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addition the tip coordinate also provides the tip deflection ߜ௬ = ௧௜௣଴ݕ − ௧௜௣ݕ
ேಽ , which may be in 

vertically upward or downward direction. 

3.3.1 Deflection profiles of initially straight cantilever beam 

In order to obtain ߮௧௜௣
ேಽ  as a function of ߙ, Eq. (3.9) is integrated between 0 and 

߮௧௜௣
ேಽ೘ೌೣ

 for different value of  ߮௧௜௣
ேಽ . The results provide the relationship  ߮௧௜௣

ேಽ   vs.  ߙ, as 

shown in Fig. 3.9. The deflection profiles are now obtained from Eqs. (3.10) and (3.11) and 

their plots are shown in Fig. 3.10 for different values of load parameter. It is reported earlier 

that for a given value of α, axial stretching (or shortening) of the tip ߜ௫ is determined from tip 

co-ordinate ݔ௧௜௣
ேಽ , but for other coordinate values of ݔ, axial stretching has some other value 

= ݏ ௬ is the particular value atߜ Similarly .(ݏ)௫ߜ  and in general it is also a field variable in ܮ 

 .from Eq (ݏ)ݕ  is readily obtained from Eq. (3.10), but evaluation of (ݏ)ݔ Coordinate .ݏ

(3.11) requires evaluation of another elliptic integral, called as incomplete integral of second 

kind. 

 

The deflection profile, as reported in this section, pertains to an initially straight beam 

(i.e., ߮௧௜௣଴ = 0 ). However a leaf spring has an initial curvature and hence the boundary 

condition ߮௧௜௣଴ = 0 at the free boundary is not valid here. The deflection behavior of such an 

initially curved cantilever beam is analyzed by a numerical method as presented in the next 

section. 

 

 

Fig. 3.9 Inter relationship for ࣐࢚࢖࢏
ࡸࡺ  vs. ࢻ. 



Analysis of Leaf Spring as Cantilever Beam 

59 

 

 

Fig. 3.10 Deflection profiles of straight cantilever beam for different values of load 

parameter ࢻ. 

 

3.3.2 Deflection profiles of initially curved cantilever beam 

The deflection profile of a curved beam may be represented in ݔ,  ݊,ݏ as well as in ݕ

coordinate system, as highlighted for point A in Fig. 3.8 (b). The correlation between these 

two systems is established by the relation ݏ = ∫ ௦ݏ݀
଴ = ∫ ට[1 + (ௗ௬

ௗ௫
)ଶ]௫

଴  The Cartesian .ݔ݀

coordinates of the leaf spring under study is noted in its unloaded condition and a best fit 

polynomial equation of the curved profile ݕ =  is established. This equation provides (ݔ)݂

slope  ௗ௬
ௗ௫

  and hence arc length ݏ is obtained as a function of ݔ. By using the reverse relation 

 coordinates are determined for a number of equidistant points ௙ܰ along the arc ݔ the ,(ݏ)ݔ

length. Obviously for these points, ݏ௜ = /ܮ)݅ ௙ܰ), where ݅ = 1, … , ௙ܰ. 

 

The load deflection behavior of an initially straight beam is known analytically as 

described in the previous section. Now ௙ܰ number of points are taken on the cantilever beam 

with initial straight profile having coordinates (ݔ௜
ேಽ , 0), ݅=1,…, ௙ܰ. The distance of these 

points from origin are known and they are a measure of its arc length as well. At each of 

these points axial shortening ߜ௫(ݏ) and vertical deflection ߜ௬(ݏ) are calculated for a load step 
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௅ܰ. The same ௙ܰ number of points is also located on the initially curved leaf spring and ݔ,  ݕ

coordinates of these points are calculated. To get the elastic curve of the leaf spring at the 

current load step ௅ܰ,  ߜ௫(ݏ) is added to the ݔ coordinate and ߜ௬(ݏ) is subtracted from the ݕ 

coordinate of the elastic curve in its previous configuration. Considering a cantilever beam 

with known initial curvature, deflection profiles are computed for different ߙ values and the 

results are shown graphically in Fig. 3.11. 

 

 

Fig. 3.11 Deflection profiles of cantilever beam with initial curvature for different values 

of load parameter ࢻ. 

 

3.4 Comparison between experimental and theoretical results 

Load parameters ߙ are calculated from the actual experimental load and the slope at 

the free end of the beam ߮௧௜௣
ேಽ  is calculated for each of these load parameters from ߙ vs. ߮௧௜௣

ேಽ  

correlation. When ߙ and ߮௧௜௣
ேಽ  are known, it is easy to obtain deflection profiles of the loaded 

spring as shown in Fig. 3.12. The figure also shows comparison between the theoretical and 

experimental deflection profiles for loads (in N) 159.2844, 232.8594 and 308.3964. 

Deflections at the tip of the beam are obtained from deflection profiles and this theoretical 

load-deflection behavior is shown in Fig. 3.13. The figure also shows comparison between 

the experimental and theoretical load-deflection behavior of the tip. 
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Fig. 3.12 Experimental and theoretical deflection profiles of master leaf spring. 

  

 

Fig. 3.13 Experimental and theoretical load-deflection behavior of the tip of the master 

leaf spring. 

 

The theoretical and experimental results match quite well and the slight difference in 

the progressive and the digressive nature between them may be caused due to the following 

insufficiencies in modeling. 

I. The physical system is modeled as a cantilever beam of uniform cross-section 

throughout the length, but leaf spring has a geometry variation at the tip portion. 

II. Theoretical analysis is carried out for tip concentrated loading, but actual load 

application point has an eccentricity with respect to the centre line of the beam, as 



Chapter 3 

62 

may be seen in Fig. 3.5. Similarly, the length of the spring is assumed to be 

constant, but due to the eccentricity, effective length of the spring is changing at 

each loading condition. 

III. The ideal clamping requires a line load, but in actual experimental set up the 

contact at hydraulic cylinder head is of finite size. Due to this clamping 

deficiency, the profile of the deflected spring shows a point of inflection at higher 

values of applied load. Present analysis is not done with due consideration for 

actual locked up moment, the magnitude of which is changing in the course of 

experiment. 

3.5 Large deflection analysis under distributed and combined load 

After successful validation of the proposed numerical method for large deflection 

analysis of curved cantilever beam under tip concentrated load with experimental results, 

further analysis is carried out on large deflection analysis of cantilever beam under 

distributed and combined loading. These problems are not readily solvable by using elliptic 

integrals and hence the iterative method of solution in Cartesian coordinate system, as 

proposed by Chen (2010) has been used. The large deflection behavior of an initially straight 

beam is solved first and after appropriate validation, new results are obtained for initially 

curved beams. The schematic diagram of the present problem is shown in Figs. 3.14 (a, b) for 

uniform and combined loading. 

 

 

Fig. 3.14 Cantilever beam subjected to (a) uniform and (b) combined loading. 

 

A brief description of the direct integration method is furnished here for ready 

reference. To carry out large deflection analysis in Cartesian coordinate system (ݔ,  the ,(ݕ
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slope curvature relation  ଵ
ఘ

= ௗఝ
ௗ௫

/[1 + ߮ଶ](యమ) is used, where ߮ is the slope  ௗ௬
ௗ௫

  at location ݏ. 

From the moment curvature relation  ଵ
ఘ

=  ,following relation is established ,ܫܧ/ܯ

ௗఝ

[ଵାఝమ](యమ)
= ெ(௫)

ாூ
 (3.12)                .ݔ݀ 

Integration of the above differential relation over the domain ‘0 to ݏ’, i.e., from clamped end 

to the point A of Fig. 3.8 (b), yields 

∫ ௗఝ

[ଵାఝమ](యమ)

ఝ
଴ = ∫ ெ(௫)

ாூ
௫ݔ݀

଴ .               (3.13) 

It is easy to evaluate the left hand side integral as ఝ
ඥଵାఝమ

 and substituting  ௗ௬
ௗ௫

  for  ߮, the left 

hand side is finally evaluated as ௗ௬
ௗ௦

. The right hand side of the equation is designated as 

,ݔ)ܩ ݈) following the notation of Chen (2010). Finally some mathematical manipulations lead 

to the following two differential equations as given in Eqs. (3.14) and (3.15). 

ݏ݀ = ൫1/√1 −  (3.14)                ,ݔଶ൯݀ܩ

ݕ݀ = ൫1√/ܩ−  (3.15)                .ݔଶ൯݀ܩ

Equation (3.14) is evaluated iteratively with assumed values of  ݈ until the condition ∫݀ݏ =  ܮ

is satisfied, and subsequently Eq. (3.15) is solved with known value of  ݈. 

3.5.1 Deflection profiles for uniformly distributed and combined load 

When the cantilever beam is under uniformly distributed load, the bending moment at 

location ݏ is (ݏ)ܯ =  ௉
௟

(݈ −  ଶ/2. It should be noted that the magnitude of uniformly(ݔ

distributed load is a function of the current beam configuration, because the total transverse 

load ܲ = ,ݔ)ܩ is conserved at all times and for all configurations. Thus ݈ (ݏ)ݍ ݈) is found to 

be [Chen (2010)], 

,ݔ)ܩ ݈) = 
௤
ଶாூ

(݈ଶݔ − ଶ݈ݔ +  = (ଷ/3ݔ
௉
ଶாூ

ቀ݈ݔ − ଶݔ + ௫య

ଷ௟
ቁ.            (3.16) 

Using Eq. (3.16), Eqs. (3.14) and (3.15) are converted into 

ݏ݀ = ቆ1/ට1− ( ௉
ଶாூ

)ଶ ቀ݈ݔ − ଶݔ + ௫య

ଷ௟
ቁ
ଶ
ቇ݀(3.17)             ,ݔ 

ݕ݀ = ቆ( ௉
ଶாூ

) ቀ݈ݔ − ଶݔ + ௫య

ଷ௟
ቁ /ට1− ( ௉

ଶாூ
)ଶ ቀ݈ݔ − ଶݔ + ௫య

ଷ௟
ቁ
ଶ
ቇ݀(3.18)         .ݔ 
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Equation (3.17) is solved iteratively to get projected length ݈ and once the appropriate value 

of ݈ is obtained, deflection profile of the beam is obtained by solving Eq. (3.18), as mentioned 

in the previous section. 

 

When the cantilever beam is under combined uniform and tip concentrated loading, 

the bending moment at location  ݏ  is  (ݏ)ܯ = ݈) ܨ − (ݔ + ௉
௟

(݈ − ,ݔ)ܩ  ଶ/2.  Thus(ݔ ݈)  is 

found to be 

,ݔ)ܩ ݈) = ௉
ଶாூ

ቀ݈ݔ − ଶݔ + ௫య

ଷ௟
ቁ+ ி

ாூ
ቀ݈ݔ − ௫మ

ଶ
ቁ.             (3.19) 

Equations (3.14) and (3.15) are now converted into 

ݏ݀ = ቆ1/ට1− [ ௉
ଶாூ

ቀ݈ݔ − ଶݔ + ௫య

ଷ௟
ቁ  +  ி

ாூ
ቀ݈ݔ − ௫మ

ଶ
ቁ] ଶቇ݀(3.20)          ,ݔ 

ݕ݀ =  ቆ[
ܲ

ܫܧ2 ቆ݈ݔ − ଶݔ +
ଷݔ

3݈ቇ  +  
ܨ
ܫܧ ቆ݈ݔ −

ଶݔ

2 ቇ]/ 

ට1 − [ ௉
ଶாூ

ቀ݈ݔ − ଶݔ + ௫య

ଷ௟
ቁ  +  ி

ாூ
ቀ݈ݔ − ௫మ

ଶ
ቁ] ଶቇ  (3.21)          .ݔ݀ 

The solution can easily be done in this case also, following the above mentioned numerical 

method. 

3.5.2 Validation of results 

To carry out validation with the available results, intensity of the uniformly 

distributed load is defined in a non-dimensional form as 

തݍ =  ௤௅
య

ாூ
.                 (3.22) 

However, in case of combined loading, no such non-dimensional load parameter can 

be prescribed and hence results are presented in dimensional plane. The problem of a 

cantilever beam bending under simultaneous action of a concentrated load and gravity is 

validated with Chen (2010). In this comparative study, the values of the system parameters 

are 0.4 =ܮ m, ܧ = 194.3 GPa and ܫ = 1.333×10ିଵଷ ݉ସ. The weight of the beam ܲ (= 0.3032 

N) produces uniformly distributed load and in addition, the beam is acted upon by 

concentrated load  ܨ  at tip. Three different cases for  0.098 ,0 = ܨ and 0.196 N are taken up 
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and Fig. 3.15 (a) shows the deflection profiles for these loading conditions in dimensional 

plane. It is observed that comparison with the results of Chen (2010) is matching quite well. 

 

 
 

 

Fig. 3.15 Numerical simulation of the results of (a) Chen (2010) and (b) Dado and Al-

Sadder (2005). 

 

To validate the proposed method when the beam is under uniformly distributed load 

only, numerical results presented by Dado and Al-Sadder (2005) for a prismatic slender 

cantilever beam bending problem is simulated. For any prescribed value of  ݍത  we can find 
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out the dimensional value  ݍ଴ (= = ଴ݍ  ,by using the relation  (ܮ/ܲ ത݈ ாூݍ 
௅ర

,  where  ݍ଴  is the 

initial value of uniformly distributed load at straight configuration of the beam. Numerical 

computation is carried out for the aforesaid beam geometry and the computational results are 

shown by solid lines in Fig. 3.15 (b) for load intensities ݍത = 4, 10 and 20. It is obvious from 

the figures that results are not matching with the results of Dado and Al-Sadder (2005, [Fig.-

5]) appropriately. 

 

The discrepancy is coming from the assumption that load intensity  (ݏ)ݍ = ܲ/݈  

remains constant along ݔ axis for the beam configuration under consideration. However the 

intensity of the distributed load is constant along the arc length and one must consider the net 

vertical component of such a loading condition. The expressions of bending moment (ݔ)ܯ 

and the function ݔ)ܩ, ݈) are evaluated following the proposed change in loading condition 

and they are reported in the next section. Hence Fig. 3.15 (b) contains another set of results 

which are indicated by solid lines with dots on them and observation on those lines is also 

reported in the next section. 

3.5.3 Non-uniformly distributed load 

As mentioned earlier, the intensity of the distributed load  ݍ =  ௉
௟
  is constant along 

the arc length but it is not constant along the projected length. At location 0) ݔ ≤ ≥ ݔ   ݈)  

the vertical component of ݍ is 

(ݔ)௡ݍ = ௤
௖௢௦ఝ

.                 (3.23) 

For a known distribution of loading  ݍ௡, shear force ܸ(ݔ) and bending moment (ݔ)ܯ are 

given by the following relations, for the point A of Fig. 3.14. 

(ݔ)ܸ = ∫ ௟ݔ݀ (ݔ)௡ݍ
௫ ,                  (3.24) 

(ݔ)ܯ = ∫ ௟ݔ݀(ݔ)ܸ
௫ .                  (3.25) 

Thus  ݔ)ܩ, ݈)  is found to be 

,ݔ)ܩ ݈) = ∫ ெ(௫)
ாூ

௫ݔ݀
଴ .                (3.26) 

It is observed from Eqs. (3.23) – (3.26) that, determination of  ݔ)ܩ, ݈)  is a stepwise 

procedure starting from a known distribution of loading  ݍ௡. To determine  ݍ௡  one must 

know two field variables  ߮  and  ݍ  apriori, where  ߮  is a function of  ݍ. The coupled 
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problem is solved numerically by using an iterative method, in which the final load value is 

reached with increment  ∆ݍത. At load step ݅, a load increment  ∆ݍത  is given on the current load 

value of  ݅∆ݍത, ݅= 1, 2,…, ௅ܰ. The corresponding dimensional load intensity ݍ଴ is obtained 

from the relation  ݍ଴௜ = ത݈௜ݍ  ாூ
௅ర

, where ݈௜ is the current projected length. At this load step the 

incremented value of total transverse load ܲ is calculated as ܲ௜ =  which is uniformly ,ܮ଴௜ݍ

distributed over the current projected length ݈௜. So intensity of the distributed load is given by  

௜ݍ = ௉೔

௟೔
= തݍ ாூ

௅య
, ݅=1, 2,…, ௅ܰ. Net vertical component field of the load intensities are 

calculated as (ݍ௡)௝௜ = (௤)೔

௖௢௦    (ఝೕ
೔షభ)

, ݅=1, 2,…, ௅ܰ and ݆=1,…, ௙ܰ. As mentioned earlier the 

search procedure begins with an assumed projected length ݈௜ for load step ݅. ௙ܰ number of 

points are taken between ‘0 to ݈௜’ and at each of these points shear force, bending moment 

and the function (ܩ൫ݔ, ݈௜൯)௝௜ , ݅ = 1,…, ௅ܰ and ݆ = 1,…, ௙ܰ, are calculated from Eqs. (3.24), 

(2.25) and (3.26) respectively. Once the function is determined, (ௗ௦
ௗ௫

)௝௜  is calculated from Eq. 

(3.14) and this is numerically integrated between ‘0 to ݈௜’ to find arc length ݏ௜, ݅ = 1,…, ௅ܰ. ݈௜ 

value is adjusted until the condition {(ܮ − {ܮ/(௜ݏ  <  ௘௥௥ is satisfied. Once ݈௜ is calculatedߝ

from the search procedure, deflections at ௙ܰ points are obtained from Eqs. (3.26) and (3.15). 

 

 

Fig. 3.16 Transverse load vs. error plot. 

 

At load step ݅, with known value of ݈௜ one can check the total transverse load ௖ܲ௔௟
௜  by 

numerically integrating (ݍ௡)௝௜  over the domain 0 to ݈௜, ݅ = 1,…, ௅ܰ and ݆=1,…, ௙ܰ, which 
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ideally should be equal to ܲ௜. In the computation scheme this is a source of error and this is 

accounted for in each load step through post-processing. This error is calculated as {(ܲ௜ −

 ௖ܲ௔௟
௜ )/ܲ௜}  and plotted against transverse load ܲ௜ which is shown in Fig. 3.16. This is clearly 

seen from the figure that error is bounded between -8.89 % and 3.34 % and in general error 

increases with load. This indicates that selection of a proper error limit value ߝ௘௥௥ is a 

function of the loading. However in the present work computation is carried out within 0.01% 

error. Fig. 3.15 (b) shows the deflection profiles for non-dimensional load intensities ݍത = 4, 

10, 20 and these results are successfully validated with the results of Dado and Al-Sadder 

(2005, [Fig.-5]). 

3.5.4 New results for cantilever beam with initial curvature 

New results are furnished for an initially curved beam considering the geometry of the 

master leaf spring mentioned in experimental work. The load deflection behavior is observed 

under two different loading conditions: uniform and combined. Under uniform loading four 

different distributed loads, totaling 232, 308, 383 and 460 N are considered. In case of 

combined loading a base distributed load 232 N is considered and on top of that three 

different tip concentrated loads 76, 151 and 228 N are imposed. Load deflection behavior 

under above said loading conditions is determined by using the method of superposition 

mentioned in section 3.3.2 and the results are shown in Fig. 3.17. 

 

 

Fig. 3.17 Load-deflection behavior of the master leaf spring under uniformly distributed 

and combined loads. 
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It is clearly seen from Fig. 3.17 that deflections under uniformly distributed loads are 

less compared to those under combined loads when the magnitude of total vertical load is 

same. As a particular case, it may be noted that for the cases of uniform and combined 

loading as shown by curves 8 and 4, the magnitudes of total transverse loads are same. 

 



 

 



Chapter 4 

ANALYSIS OF LEAF SPRING UNDER THREE POINT BENDING 

 

In the previous chapter, load-deflection behavior of a master leaf spring is studied by 

considering only one half of the spring. In that analysis, geometry of the spring is assumed 

symmetric and effect of clamping is modeled through an equivalent constant force acting at 

the tip. This equivalent force of clamping moment is predicted by an indirect approach 

through post processing. But in actual case this clamping effect changes with loading and 

highly dependent on spring geometry. In order to overcome such insufficiencies in modeling, 

a new leaf spring testing rig is designed and presented in this chapter. In the present analysis, 

whole geometry of the leaf spring is considered and thus the chapter begins with a detailed 

study of geometry of the specimen i.e., the master leaf spring. Subsequently details of the 

experimental set-up and measurement procedures are described and results of the 

experimentally observed deflection and strain fields are reported. Mathematical formulation 

of the corresponding theoretical model is furnished and a comparative study is carried out. 

The chapter concludes with some reporting on stress concentration effect, observed at the 

location of central drill hole of the master leaf. 

4.1 The specimen geometry 

Cross-section of the master leaf spring is rectangular and its width and thickness are 

measured by using vernier caliper and they are 38.5 mm and 6.25 mm respectively as already 

reported in the earlier chapter. In addition, inner and outer diameters of each eye end of the 

master leaf spring are measured by using outside caliper and inside caliper. From these 

measurements, pitch circle diameters of the eye ends are determined. The master leaf spring 

is then placed on a graph paper and its profile is drawn along the outer and inner edges. 

Centres of the eye ends and mounting drill hole are also located on the graph paper and then 

the spring is removed from the graph paper. A straight line is drawn between these centres, 

which is the span of the leaf spring. Now pitch circles are drawn at eye centres and centre line 

of the master leaf spring is drawn between the outer and inner curvature lines of its profile 

making its ends tangential to the roller pitch circles. These points of tangencies are denoted 

by ܣଵ and ܤଵ for left roller and right roller respectively. Profile of the master leaf spring in its 
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free state is shown in Fig. 4.1 through schematic diagram. In Fig. 4.1, major dimensions 

(span, camber and arc length) of the master leaf spring are shown and enlarged details of eye 

ends and mounting drill hole are shown separately. Midpoint of the span is considered as 

origin of Cartesian coordinate system and another perpendicular straight line is drawn at this 

point. ݕ ,ݔ coordinates of twenty one equally spaced points (indicated as 2, 3, 4, …, 22 in Fig. 

4.1) on the centre line together with two points of tangencies ܣଵ and ܤଵ (indicated as 1 and 

23 in Fig. 4.1) are measured with respect to origin and tabulated in Table 4.1. The tabulated 

values indicate that leaf spring geometry is not symmetric about its mid-point. It is apparent 

that the centre of the drill hole is not passing through the midpoint of span and the 

eccentricity between them is 1.6 mm. 

 
 

 

Fig. 4.1 Profile of the master leaf spring in its free state. 

 

Photograph of the master leaf spring in its free state is shown in Fig. 4.2. As shown in 

Fig. 4.2 (b), twenty one equally spaced points (indicated as 1, 2, 3, …, 21) are marked on the 

master leaf spring along its centre line, using prick punch to determine profile of the leaf 

spring under load. These marked points are used as reference in subsequent geometry 

measurement of the master leaf spring under loaded condition. 
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Table 4.1 ࢞, ࢟ coordinates at various measurement locations of the master leaf spring in 

its free state 

Loc. 1 2 3 4 5 6 7 8 9 10 11 
 40- 80- 120- 160- 200- 240- 280- 320- 360- 400- 439.3- ݔ
 128 125 120.5 114 107 96 84 68.5 52 33 11.4 ݕ

 
Loc. 12 13 14 15 16 17 18 19 20 21 22 23 
 439.1 400 360 320 280 240 200 160 120 80 40 0 ݔ
 11.5 32.5 52 68.5 84 97 106.5 115 121 125 128 129 ݕ

 

 

 

Fig. 4.2 Photographs of the master leaf spring - (a) top view and (b) front view. 

 

4.2 Description of experimental set-up 

To study development of stresses and deflections in leaf spring under bending type of 

loading, a special leaf spring testing rig is designed and set-up in Machine Elements 

laboratory. This experimental set-up simulates three point bending test. Detail descriptions of 
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the measurement instruments and the components of the experimental set-up together with 

their manufacturing details are presented in the following sub-sections. 

 

 

Item Description 
 

Item Description 
A Plumb C Scale 
B Height gauge D Strain indicator 

 

 

 

Fig. 4.3 (a) Photographs of the experimental set-up taken from i) front and ii) right 

sides, (b) photographs at the locations of strain gauges on the master leaf spring taken 

from i) top and ii) bottom and (c) schematic diagram of strain gauges. 
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4.2.1 The measurement instruments 

It is said that a photograph is worth over thousand words and hence photograph of the 

experimental set-up is shown in Fig. 4.3 (a), taken from front and right sides of the set-up. 

Some measurement contrivances are also shown in Fig. 4.3 (a) and marked as items A-D, and 

in addition, the digital camera used in previous experiments, is also used to capture snapshots 

of deflection profiles. Details on strain gauge mounting and circuit connection can be found 

in strain gauge manual (TML, Tokyo Sokki Kenkyojo Co., Ltd.) and operation manual of 

strain indicator (Syscon Instruments) respectively. As it is shown in Fig. 4.3 (b), strain gauges 

1 and 2 are located on the top surface of the master leaf spring at distance 20 mm from the 

centre of the drill hole in left side, whereas strain gauges 3 and 4 are placed on the bottom 

surface at the same location. Similarly strain gauges 5 and 6 are placed on the top surface and 

strain gauges 7 and 8 are placed on the bottom surface at same distance in the right side of the 

drill hole. Figure 4.3 (c) shows location of the eight strain gauges which are mounted on the 

master leaf spring along longitudinal direction, through schematic diagram. Detail 

specifications of the measurement instruments are given in page 76 and their photographs are 

shown in Fig. 4.4. 

 

 

Fig. 4.4 Photographs of measurement instruments. 
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Specifications of the measurement instruments 

I. Strain gauge 
Make - Tokyo Sokki Kerkyujo Company Limited 

Type - Foil type 

Batch No. – 93 28090 

Gauge factor – 2.10±1% 

Gauge length – 5 mm 

Gauge resistance - 350±1.0 Ω 

Temperature compensation – 11x10-6 /º C 

Transverse sensitivity – 0.3% 

II. Strain indicator 
Make – Syscon Instruments 

Serial No. - 8117 

Display – On a 3 ½ digit, 12.5 mm character height, seven segment, red LED 

Measuring range - ±2000 micro strains 

Accuracy - Within ±0.2% of the range 

No of inputs - 05 

Acceptable bridge configuration - (a) Full Bridge and (b) Half Bridge 

Acceptable gauge resistance – 100 Ω to 1000 Ω 

Operating temperature - + 10º C to + 45º C 

Power supply requirement - 230V ± 10 %, 50 Hz, AC mains 

Cabinet - 420mm (W) × 088mm (H) × 295mm (D) 

III. Height gauge 
Make – Aerospace 

Range – 0 – 300mm 

Least count – 0.02 mm 

IV. Scale 
Make – Kristeel – Shinwa 

Range – 0 - 600mm 

V. Plumb 

Specially designed plumb to suit the purpose of experiment 

Material – En 24 
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4.2.2 The component details of support structure 

 

Item Description 

 

Item Description 
1 Vertical guide rod 7 Load connector 
2 Bush for guide rod support 8 Master leaf spring 
3 Guiding disc 9 Roller support sub-assembly 
4 Slotted discs for loading 10 C.I. bed 
5 Bridge 

11 RCC foundation 
6 Box structure 

 

Fig. 4.5 Schematic diagrams of the experimental set-up (a) top view, (b) front view and 

(c) side view. 

 

The schematic diagrams of the set-up corresponding to Fig. 4.3 (a) are shown in Fig. 

4.5 (a-c), which indicate some major dimensions. The kernel of the set-up is the master leaf 

of an automobile spring assembly (item 8), which is mounted on a machined cast iron bed 

(item 10) by using roller supports at the ends (item 9). Some of the features of the roller 

supports are shown in the enlarged detail ‘X’ of Fig. 4.5, whereas the major roller support 

sub-assembly details are shown separately in Fig. 4.6 (a). Individual component details of 

roller support arrangement are shown in Fig. 4.6 (b) and discussed afterwards. Manufacturing 
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drawings of other components of the experimental set-up are furnished in Fig. 4.7 (a, b), 

classified under a) load supporting and b) load imparting components. The following 

paragraph provides a general description of the set-up and descriptions in greater details are 

furnished subsequently. 

 

 

Item Description 

 

Item Description 
9.1 Fixed plumb pointer 9.5 Spacer 
9.2 Ball bearing 9.6 Washer 
9.3 Pin 9.7 Nut (M 12 X 1.25 mm) 
9.4 Ring 9.8 Plumb pin 

 

Fig. 4.6 (a) Roller support sub-assembly (item 9). 

 

The set-up, as shown in Fig. 4.5, is mounted over the cast iron (C.I.) bed, which rests 

on a RCC foundation (item 11). Two box structures (item 6) are mounted on the C.I. bed 

through chain-gear mechanism. This mechanism enables the box structures to move in 

horizontal direction over the C.I. bed, so that distance between them can be adjusted to carry 

out experiment with leaf springs of different sizes. However, for the present experimentation, 

the box structures are made fixed with 300 mm distance between them. The C.I. bed, RCC 

foundation and box structures are available in the laboratory as part of general purpose of 

experimentations. The two box structures are indicated by dotted lines in schematic diagram 

of the experimental set-up to maintain clarity. A bridge structure (item 5) is bolted over the 

box structures and the guiding disc (item 3) is again bolted over the bridge structure after 

proper centre line alignment of load line. These two components constitute the overall load 

support structure to house the loading components. 
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Fig. 4.6 (b) Detail of roller support sub-assembly components. 

 

As shown in Fig. 4.6 (a), each roller support mainly consists of one pin (item 9.3), one 

spacer (item 9.5) and two ball bearings (item 9.2). Presence of ball bearings in roller support 

offer frictionless movement of the two halves of the spring about vertical load line. 

Components of each roller support are assembled together with each eye end of master leaf 

spring by using nut and washer. A threaded pin (item 9.8) is screwed into the ring (item 9.4) 

of each roller support sub-assembly and a fixed plumb pointer (item 9.1) is attached to that 

pin by means of threaded fastening. When leaf spring is loaded by placing slotted discs (item 

4) over load connector (item 7), fixed plumb pointers move in horizontal direction along with 

the roller supports. To measure horizontal movements of these fixed plumb pointers, two 

steel rules are placed in grooves of the cast iron bed. The zero values of the scales are set with 

reference to the vertical load line and they are used to record roller movement towards left 

and right directions respectively. 
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Fig. 4.7 (a) Details of bridge, guiding disc and box structure (components of overall load 

support structure). 
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Fig. 4.7 (b) Details of guide rod, bush and load connector (items used to impart load). 

 

The items used to impart load on the spring include guide rod (item 1), bush (item 2) 

and load connector (item 7) and their detailed drawings are furnished in Fig. 4.7 (b). Different 
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types of load connectors are used to produce line contact or area contact with leaf spring, at 

the location of arc length centre. Each load connector consists of a loading pin and a loading 

disc. Projected part of the loading pin is inserted in the drill hole of the master leaf spring and 

loading disc is placed over the pin. The vertical guide rod is then fitted to the loading pin 

through the central hole of the loading disc. The upper end of the guide rod passes through 

the bush, which is fitted on the guiding disc to restrict horizontal movement of the load. 

4.3 Experimental procedure and observations 

During experimentation, the master leaf spring is placed in the test rig in such a way 

that the central drill hole is in right side of geometrical centre line, when seen from the front 

of experimental set-up. As mentioned earlier, there are two types of load connector – area 

contact type and line contact type. Line contact type load connector produces eccentric 

loading with eccentricity 1.6 mm. Whereas, area contact type load connector produce 

concentric loading in one setting and eccentric loading with eccentricity 3.2 mm in reverse 

setting (due to the fact that area contact type load connector has eccentricity of 1.6 mm in 

itself). These three types of load connector settings are further referred as type 2, 1 and 3 

respectively. For each of the loading conditions, loading is increased gradually by placing 

slotted discs over the particular type of load connector. The limit load is calculated by using 

bending stress equation of Winkler-Bach curved beam theory and taking 75% of yield stress 

value of spring steel material. Experimentation is carried out at seven different load steps (݅ = 

1, …, 7) under each type of load connectors and ݅ = 0 indicates the free state of the leaf 

spring. The first load step (݅ = 1) is designated as pre load, as no disc weight is mounted on 

load connector, but the guiding rod and load connector attachment produces an initial load on 

the leaf spring. For area and line contact type load connectors the pre load values are 8.142 N 

and 8.535 N respectively. 

4.3.1. Deflection profiles 

Experimental measurements for determination of deflection profile of the loaded leaf 

spring are not straight forward, as in the case of its measurement in free state. Deflection 

profiles of the master leaf spring under different loading conditions are determined by using 

two different techniques – direct measurement technique and indirect measurement 

technique. Results coming from these two measurement techniques and comparison between 

them are presented in the following three sub-sections. 
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4.3.1.1. Direct measurement technique 

 

Table 4.2.1 ࢞,࢟ coordinates of marked points (refer Fig. 4.2) for load connector type 1 

Location 
number 

Load (N) 

Pre load 83.679 159.216 234.753 310.290 384.846 470.193 

2 
-400,  
31.55 

-404, 
30.55 

-405, 
30.55 

-406, 
26.95 

-406, 
27.55 

-409, 
26.55 

-409, 
25.55 

3 
-355,  
52.55 

-359, 
51.55 

-361, 
47.55 

-362, 
44.95 

-362, 
43.05 

-363, 
42.05 

-363, 
37.55 

4 
-313,  
70.55 

-316, 
67.05 

-319, 
62.55 

-319, 
57.95 

-319, 
54.55 

-319.5, 
52.55 

-321, 
47.55 

5 
-269,  
87.55 

-270, 
81.55 

-270, 
76.55 

-272, 
72.95 

-274, 
69.15 

-274, 
62.55 

-274, 
56.55 

9 
-92,  

123.55 
-93, 

116.55 
-94,  

104.55 
-94,  

97.75 
-95,  

90.25 
-95,  

83.05 
-95,  

71.05 

10 
-48,  

126.55 
-49, 

118.05 
-51, 

108.05 
-51, 

100.35 
-51.5, 
92.75 

-52,  
84.55 

-52,  
73.05 

11 
0,  

127.55 
0,  

120.05 
0,  

109.55 
0,  

101.35 
0,  

92.85 
0,  

85.55 
0,  

74.05 

12 
50,  

126.55 
51,  

119.55 
52,  

108.55 
53,  

101.05 
54,  

90.75 
55,  

84.55 
56,  

73.05 

13 
96,  

123.55 
97,  

114.55 
99,  

104.55 
95,  

96.35 
96,  

88.85 
96,  

81.05 
96,  

71.05 

14 
140,  

116.55 
140, 

109.55 
142,  
98.55 

143,  
92.15 

144,  
85.85 

145,  
78.55 

146,  
69.55 

17 
274,  
85.55 

275,  
81.55 

276,  
75.05 

277,  
69.65 

277,  
66.22 

278,  
61.55 

279,  
57.55 

18 
322,  
69.55 

323,  
65.55 

325,  
60.55 

326,  
57.35 

326,  
55.45 

327,  
50.65 

327,  
48.05 

19 
366,  
51.55 

366,  
48.95 

370,  
45.55 

372,  
43.05 

373,  
41.05 

373,  
38.55 

373,  
37.75 

20 
404,  
33.55 

405,  
31.96 

410,  
28.05 

411,  
27.95 

412,  
27.55 

413,  
27.55 

413,  
25.05 

 

As mentioned earlier, there are twenty one equally spaced points marked on the leaf 

spring along its centre line. At a particular load step under a particular load connector, span of 

the leaf spring is obtained directly from the readings of fixed plumb pointers along horizontal 

scale (item C). Horizontal coordinates (ݔ) of the marked points are determined by taking 
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projections of these points over the horizontal scale by using a separate plumb (item A). 

Camber of the leaf spring is measured by using a height gauge (item B) and ݕ coordinates of 

other marked points are also obtained by using the height gauge. However, out of the twenty 

one marked point, experimental reading is available in fourteen points only as the tip of the 

height gauge could not reach at seven locations. The observations are tabulated in Tables 

4.2.1, 4.2.2 and 4.2.3 for the three different types of load connectors. 

 

Table 4.2.2 ࢞,࢟ coordinates of marked points (refer Fig. 4.2) for load connector type 2 

Location 
number 

Load (N) 

Pre load 84.072 159.609 235.146 310.683 385.239 470.586 

2 
-404,  
33.85 

-407, 
33.15 

-407.5, 
32.65 

-411, 
29.95 

-412, 
29.65 

-417, 
28.65 

-419, 
25.95 

3 
-361,  
52.15 

-365, 
51.35 

-365.5, 
49.65 

-366, 
47.95 

-368, 
43.15 

-371, 
41.65 

-373, 
38.95 

4 
-316,  
72.15 

-322, 
67.65 

-323, 
63.15 

-323, 
60.95 

-324, 
56.65 

-326, 
53.15 

-328, 
46.75 

5 
-273,  
89.35 

-277, 
82.15 

-278, 
78.15 

-279, 
72.95 

-280, 
67.25 

-281, 
62.35 

-283, 
53.75 

9 
-97,  

122.15 
-97, 

114.85 
-97,  

107.55 
-97,  

99.75 
-98,  

92.35 
-98,  

81.95 
-99,  

68.95 

10 
-55,  

126.15 
-55, 

118.25 
-56, 

111.55 
-56, 

103.35 
-57, 

94.85 
-58,  

85.25 
-59,  

72.35 

11 
0,  

127.65 
0,  

120.05 
0,  

112.15 
0,  

104.35 
0,  

94.95 
0,  

85.65 
0,  

71.35 

12 
45,  

127.15 
45,  

119.05 
45,  

111.15 
45,  

103.05 
45,  

92.85 
45,  

85.55 
45,  

70.95 

13 
90,  

122.15 
90.5,  

115.55 
90,  

107.25 
90.5,  
99.35 

91,  
90.95 

92,  
84.95 

93,  
68.95 

14 
133,  

116.15 
134, 

110.35 
135,  

102.95 
136,  
95.15 

136,  
87.95 

136,  
81.95 

138,  
66.65 

17 
267,  
84.65 

267,  
82.15 

272,  
77.05 

272,  
75.05 

272,  
70.65 

272,  
63.05 

280,  
55.15 

18 
314,  
68.85 

316,  
66.15 

321,  
63.65 

322,  
60.35 

322,  
57.55 

323,  
54.25 

324,  
46.75 

19 
359,  
51.15 

360,  
49.15 

365,  
47.55 

367,  
46.05 

367.5,  
43.15 

368,  
42.65 

370,  
37.15 

20 
398,  
33.65 

400,  
33.15 

405,  
32.15 

407.5,  
30.15 

408,  
29.65 

406,  
28.65 

411,  
27.45 
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Table 4.2.3 ࢞,࢟ coordinates of marked points (refer Fig. 4.2) for load connector type 3 

Location 
number 

Load (N) 

Pre load 83.679 159.216 234.753 310.290 384.846 470.193 

2 
-402,  
34.68 

-404,  
34.18 

-408,  
31.18 

-409,  
30.68 

-411,  
30.18 

-412,  
27.48 

-415,  
23.99 

3 
-359,  
53.38 

-362,  
50.08 

-365.5, 
47.28 

-367,  
46.38 

-369,  
45.18 

-370,  
41.98 

-372,  
37.99 

4 
-315,  
72.58 

-318,  
67.38 

-320,  
63.28 

-322.5, 
61.88 

-323.5, 
59.38 

-323.5, 
52.48 

-324,  
47.99 

5 
-272,  
84.98 

-272.5, 
82.38 

-273,  
78.18 

-275,  
74.68 

-276,  
69.18 

-277,  
61.98 

-280,  
54.49 

9 
-95,  

124.18 
-96,  

116.38 
-97,  

107.38 
-98,  

101.18 
-98,  

92.18 
-99,  

81.48 
-99.5, 
72.59 

10 
-53.5,  
127.38 

-54,  
119.18 

-56,  
109.18 

-56.5, 
103.88 

-56.5, 
96.38 

-56.4, 
83.48 

-56.5, 
73.79 

11 
0,  

127.48 
0,  

119.18 
0,  

110.28 
0,  

105.18 
0,  

96.88 
0,  

85.48 
0,  

73.99 

12 
49,  

127.48 
49,  

119.05 
49,  

110.38 
49.5, 

103.68 
49.5,  
94.88 

49.5,  
83.28 

49.5,  
72.99 

13 
93.5,  

123.38 
94,  

116.08 
94.5, 

106.38 
95,  

100.18 
99,  

91.38 
99.5, 

 81.48 
99.6,  
71.99 

14 
134,  

117.18 
135, 

109.68 
136, 

102.18 
136.5, 
97.78 

137,  
89.38 

137.5, 
78.48 

138,  
68.49 

17 
367,  
86.78 

268,  
83.48 

269,  
78.58 

269.5, 
75.48 

270,  
68.68 

272.5, 
61.48 

273,  
54.79 

18 
318,  
70.38 

319,  
66.78 

321,  
63.38 

322,  
61.48 

323,  
57.08 

324,  
50.68 

325,  
46.19 

19 
362,  
52.38 

363,  
48.98 

365,  
47.38 

367,  
45.88 

368,  
41.18 

370,  
37.98 

372,  
35.19 

20 
400,  
33.18 

401,  
32.68 

403,  
32.28 

405,  
31.68 

407,  
31.18 

410,  
26.48 

413,  
25.99 

 

4.3.1.2. Indirect measurement technique 

At each step of loading, deflection profile of the master leaf spring is captured from 

front by using a digital camera and recorded in computer for post processing. Photographs of 

deflection profiles at each load step under the three types of load connectors are presented in 

Figs. 4.8.1, 4.8.2 and 4.8.3. 
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Fig. 4.8.1 Photographs of the master leaf spring at different load steps under load 

connector type 1. 

 

Taking each photograph of Fig. 4.8 as background in the editor of AutoCAD® 

software, centres of the rollers are located. Then the horizontal line between the two roller 

centres and the vertical load line are drawn. Intersection point of these two straight lines is 

considered as origin of present coordinate system. Thereafter, roller pitch circles are drawn 

and the centre line of the master leaf is drawn making its ends tangential to the roller pitch 

circles. These points of tangencies are denoted by ܣଵ and ܤଵ for left roller and right roller 

respectively. Two straight lines are drawn between left eye centre and ܣଵ and between right 

eye centre and ܤଵ respectively. Reaction forces coming from roller supports acts along these 
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straight lines at left and right ends of master leaf spring respectively. Angles of these straight 

lines with negative and positive ݔ axis are denoted by ߙ௅ and ߙோ (refer Fig. 4.9) and called 

reaction force angles at left and right rollers respectively. Then the drawing is scaled with 

respect to the origin by using appropriate scale factors along ݔ and ݕ direction. Scaling along 

 .direction is done with respect to the span of the master leaf at that particular load step ݔ

Whereas, scaling along y direction is done with camber of the spring at that particular load 

step. AutoCAD® drawings of curvature lines of the master leaf spring, constructed from the 

photographs of leaf spring, shown in Fig. 4.8, are presented in Figs. 4.9.1, 4.9.2 and 4.9.3. 

 

 

Fig. 4.8.2 Photographs of the master leaf spring at different load steps under load 

connector type 2. 
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Fig. 4.8.3 Photographs of the master leaf spring at different load steps under load 

connector type 3. 

 

Now the projected length of curve ⌒ ܣଵܤଵ is divided into twenty equal divisions. ݔ,  ݕ

coordinates of each division points are measured from the drawing and exported in a data file 

by using an auto-lisp code. For each type of load connector, seven such data files are 

generated with appropriate file names. At each step of loading under each type of load 

connector, reaction force angles ߙ௅ and ߙோ and arc length of master leaf spring ⌒ ܣଵܤଵ are 

measured and tabulated in Tables 4.3.1, 4.3.2 and 4.3.3 for load connectors 1, 2 and 3 

respectively. 
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Fig. 4.9.1 Curvature lines of the master leaf spring at different load steps under load 

connector type 1. 

 

Table 4.3.1 Variations of reaction force angles and arc length with load under load 

connector 1 

Load (N) ߙ௅ (º) ߙோ (º) 
Arc (⌒ ܣଵܤଵ) 
length (mm)  

Pre load 58 62 918.51 
83.679 59 62 919.39 

159.216 61 64 924.67 
234.753 63 67 923.80 
310.290 65 68 923.38 
384.846 68 72 922.53 
470.193 70 73 925.72 
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Fig. 4.9.2 Curvature lines of the master leaf spring at different load steps under load 

connector type 2. 

 

Table 4.3.2 Variations of reaction force angles and arc length with load under load 

connector 2 

Load (N) ߙ௅ (º) ߙோ (º) 
Arc (⌒ ܣଵܤଵ) 
length (mm)  

Pre load 58 62 925.18 
84.072 60 64 924.07 

159.609 62 64 924.99 
235.146 64 67 925.76 
310.683 65 68 926.48 
385.239 66 72 925.28 
470.586 68 75 925.61 
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Fig. 4.9.3 Curvature lines of the master leaf spring at different load steps under load 

connector type 3. 

 

Table 4.3.3 Variations of reaction force angles and arc length with load under load 

connector 3 

Load (N) ߙ௅ (º) ߙோ (º) 
Arc (⌒ ܣଵܤଵ) 
length (mm)  

Pre load 60 61 921.69 
83.679 62 62 917.93 

159.216 63 64 919.8 
234.753 63 64 925.16 
310.290 64 65 923.25 
384.846 66 67 926.48 
470.193 67 68 927.26 
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4.3.1.3. Comparison between the measurement techniques 

 

 

 

 

 

Fig. 4.10 Deflection profiles of the master leaf spring at different load steps under (a) 

load connector 1, (b) load connector 2 and (c) load connector 3. 
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The data files obtained from AutoCAD® by post processing photographs, are exported 

in MATLAB® computational platform. Deflection profiles of the master leaf spring under 

each of the loading conditions are drawn once again as MATLAB® plots. These deflection 

profiles, coming from each type of load connectors, are clubbed together and presented in 

Fig. 4.10 (a-c). The figure also shows results from direct measurement and hence a 

comparison between the two measurement methods are results obtained. Effect of loading 

type on the patterns of deflection profiles, produced by the three load connectors are carried 

out corresponding to the maximum load and shown in Fig. 4.11. It is observed that line 

contact type load connector has some effect on deflection profile. 

 

 

Fig. 4.11 Effect of load connector type on deflection profile. 

 

4.3.2. Strain readings 

Strains developed at the location of strain gauges in left side of the drill hole are 

measured by using a full-bridge circuit with strain gauges 1, 3, 2 and 4, whereas, strain 

gauges 5, 7, 6 and 8 are used to measure strains in right side of the drill hole (refer Fig. 4.3 

(b)). At pre-load condition, each circuit is balanced by setting zero in the strain indicator. 

Strain readings, indicated in strain indicator at different loading conditions, are presented in 

Tables 4.4.1 and 4.4.2 for left and right sides respectively. 
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Table 4.4.1 Strain readings (micro) at left side 

Load (N) 
Load connector 

Type 1 Type 2 Type 3 
75.537 388 401.75 361.375 

151.074 779.625 783.875 674.875 
226.611 1179.375 1113.25 1103.875 
302.148 1598.5 1560.125 1556.875 
376.704 2025 1876.25 1877.875 
462.051 2362.5 2300.75 2315.25 

 

Table 4.4.2 Strain readings (micro) at right side 

Load (N) 
Load connector 

Type 1 Type 2 Type 3 
75.537 381.125 403.5 363.5 

151.074 768.125 788.375 677.875 
226.611 1173.125 1120.25 1119.25 
302.148 1589.5 1570.625 1542.375 
376.704 1994.5 1888.875 1905.625 
462.051 2341 2316.5 2348.25 

 

Individual strain gauge readings are also observed at each loading condition by using 

quarter-bridge circuits. A dummy gauge is used to complete each quarter-bridge circuit, 

which is mounted on a piece of the same material as the leaf spring. These individual strain 

gauge readings are presented in Tables 4.5.1, 4.5.2 and 4.5.3 for load connectors 1, 2 and 3 

respectively. 

 

Table 4.5.1 Individual strain gauge readings (micro) under load connector 1 

Load 
(N) 

Individual strain gauge readings 
1 2 3 4 5 6 7 8 

75.537 -160 -158 160 161 -168 -166 156 156 
151.074 -332 -350 330 325 -352 -346 363 346 
226.611 -553 -544 525 522 -544 -580 473 565 
302.148 -721 -705 711 715 -741 -746 710 713 
376.704 -926 -914 878 902 -962 -878 895 924 
462.051 -1033 -1110 1072 1099 -1118 -1175 1075 1125 
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Table 4.5.2 Individual strain gauge readings (micro) under load connector 2 

Load 
(N) 

Individual strain gauge readings 
1 2 3 4 5 6 7 8 

75.537 -333 -396 340 250 -309 -320 355 365 
151.074 -678 -788 745 530 -702 -680 715 755 
226.611 -1058 -1207 1190 825 -1087 -1150 1100 1135 
302.148 -1400 -1565 1532 1117 -1325 -1505 1475 1515 
376.704 -1770 -1868 1860 1360 -1837 -1900 1845 1810 
462.051 -2208 -2477 2410 1620 -2205 -2355 2225 2365 

 

Table 4.5.3 Individual strain gauge readings (micro) under load connector 3 

Load 
(N) 

Individual strain gauge readings 
1 2 3 4 5 6 7 8 

75.537 -313 -168 158 163 -393 -378 365 378 
151.074 -785 -341 325 327 -793 -792 755 748 
226.611 -1238 -517 504 502 -1180 -1185 1162 1162 
302.148 -1650 -707 687 693 -1593 -1618 1519 1599 
376.704 -2137 -869 826 887 -2001 -2028 1914 1956 
462.051 -2506 -1068 1047 1069 -2430 -2497 2492 2475 

 

4.4 Theoretical stress analysis 

For the purpose of comparison of experimental stress results with theoretical ones, 

master leaf spring is modeled as curved beam subjected to three point bending. Stress field 

developed in such curved beam under different loading conditions is calculated by using 

Winkler-Bach curved beam theory. Mathematical formulation of the problem and comparison 

between theoretical and experimental stress results are presented in the following two sub-

sections. 

4.4.1 Mathematical formulation 

Free body diagram (FBD) of the master leaf is shown in Fig. 4.12 (a) by modeling it 

as an initially curved beam under three point bending. The FBD is drawn in equilibrium 

position attained after application of load and point ܣଵ is considered as origin of the present 

coordinate system ௫ܱ ௬ ௭. At a particular load step, distance of load line from ௫ܱ ௬ ௭ is ܮௐ, 

where horizontal restraining force ܲ develops with load ܹ due to the geometric asymmetry 
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of the master leaf. Reaction forces at left and right ends of the curved beam are ܴ௅ and ܴோ 

respectively coming from the roller supports. The lines of action of these forces make angle 

 axis. Reaction force coming from left roller ܴ௅ has ݔ ோ with negative and positiveߙ ௅ andߙ

components ( ௫ܲ௅, ௬ܲ௅) and in case of the right end roller, components of ܴோ are ( ௫ܲோ, ௬ܲோ). 

 

 

Fig. 4.12 (a) Free body diagram and (b) cross-section of curved beam in normal plane. 

 

From force equilibrium condition in vertical and horizontal directions: ܹ = ௬ܲ௅ +

௬ܲோ and ܲ = ௫ܲ௅ − ௫ܲோ. Taking moment of all forces about point ܣଵ, ௬ܲோ =  ௐܮܹ)

(ௐܪܲ+ ⁄ܮ  and ௬ܲ௅ = ܹ − ௬ܲோ , where ܪௐ is ݕ coordinate of master leaf profile at ݔ =  .ௐܮ

Horizontal components of reaction forces at left and right ends are ௫ܲ௅ = ௬ܲ௅ tan ⁄௅ߙ  and 

௫ܲோ = ௬ܲோ tan ⁄ோߙ  respectively, which yields restraining force ܲ at load application point. At 

location 0) ݔ≤ ݔ ≤  ,shear force and bending moment are given by (ܮ

௫ܸ = ൜ ௬ܲ௅,                                0 ≤ ݔ ≤ ௐܮ
௬ܲ௅ ௐܮ                      ,ܹ− ≤ ݔ ≤  (4.1)               ܮ

௫ܯ = ቊ ௬ܲ௅ ݔ  + ௫ܲ௅ 0                                                              ,ݕ ≤ ݔ ≤ ௐܮ
௬ܲ௅ ݔ + ௫ܲ௅ ݕ ݔ)ܹ− − (ௐܮ + ௐܪ)ܲ − ௐܮ         ,(ݕ ≤ ݔ ≤  (4.2)           ܮ

According to Winkler-Bach formula, bending stress developed in the beam at location ݔ 

(0≤ ݔ ≤  ,is given by (ܮ

௕௫ߪ = ௫ܯ− ݕ  ௡ݎ)݁ ܣ − ⁄(ݕ .                (4.3) 

For rectangular cross-section, as shown in Fig. 4.12 (b), radius of curvature of neutral axis is 

given by  ݎ௡ = ℎ [ln (ݎଶ ⁄⁄[(ଵݎ . 

4.4.2 Comparison with experimental results 

Profiles of the master leaf spring under each of the load connectors are exported in 

MATLAB® computational platform. Now ௙ܰ (number of computational points within the 
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domain of the physical system) number of points is taken on the leaf spring profile and at 

each of these points bending moment is calculated from Eq. (4.2). As the leaf spring profile 

has non-uniform curvature, radii of curvature of its centroidal axis and neutral axis are 

calculated numerically at each of the ௙ܰ points. Thereafter, bending stress is calculated at 

each point from Eq. (4.3). Stress fields developed in the master leaf at different load steps 

under load connector type 1 are presented in Fig. 4.13. The stress fields produced by other 

two load connectors are also shown in the figure corresponding to the maximum load, and it 

is observed that effect of loading type variation is insignificant. 

 

 

Fig. 4.13 Stress field developed in the master leaf under load connector 1 and effect of 

connector type on stress field. 

 

Experimental strain values, presented in Tables 4.4.1 and 4.4.2, are multiplied by 

modulus of elasticity of the spring material (considered as 207 GPa) to get stresses developed 

at the locations of strain gauges in left and right sides of the hole under each load step. These 

experimental stresses developed in the master leaf under load connector type1 are presented 

in Fig. 4.14. Figure 4.14 also show theoretical stress values at the locations of strain gauges 

under load connector type 1 calculated from stress field presented in Fig. 4.13. Individual 

plots of experimental and theoretical stress are regular indicating definite trends in results but 

they are not matching and the error increases with the load. The presence of hole in master 

leaf spring might be a possible source of error. 
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Fig. 4.14 Load vs. stress plots at (a) left and (b) right sides of the hole. 

 

A correction in the cross-sectional area of the master leaf is done to capture the effect 

of hole in stress field developed in the master leaf. In this correction, it is assumed (Ryan and 

Fischer (1938)) that stress concentration is effective within the region five times the hole 

diameter (݀) from centre of hole along ݔ axis in both left and right sides. At centre of the 

hole, net cross-sectional area of the master leaf is ܣ௡ = ܣ − ݀ℎ. In both sides of the drill 

hole, cross-sectional area is varied linearly between ܣ at boundaries of the stress 

concentration effected region and ܣ௡ at hole centre. Now with this correction, the theoretical 

stress results at locations of strain gauges are calculated under each load step and presented in 

Fig. 4.15. The figure also shows comparison between theoretical and experimental results and 

it is clearly seen that they are matching quite well. So it is obvious from these results that 
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presence of hole in master leaf spring produces stress concentration effect. In addition, the 

beam is not only subjected to bending but there is in plane tensile load as well. Effect of these 

factors in stress field is presented in the next section. 

 

 
 

 

Fig. 4.15 Load vs. stress plots at (a) left and (b) right sides of the hole with correction. 

 

4.5 Stress concentration effect 

At location 0) ݔ≤ ݔ ≤ in plane load is given by ௧ܲ௫ (ܮ = ௫ܲ௅ cos߮௫ − ௫ܸ sin߮௫, 

where ߮௫ is slope of the beam profile at that location. This in plane load produces axial stress 

which is given by, 
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௧௫ߪ = ௧ܲ௫ ܾ ℎ⁄                    (4.4) 

So at location 0) ݔ≤ ݔ ≤  ,which is given by ߪ the beam is subjected to combined stress ,(ܮ

ߪ = ௕௫ߪ + ௧௫ߪ                    (4.5) 

Presence of circular hole in master leaf spring gives rise to stress concentration. 

Overall stress distributions around a circular hole in an infinite plate subjected to nominal 

stress ߪ, as given by Nagpal et al. (2011), are 

௥ߪ = ߪ) 2⁄ )[(1− (ଶߣ + (1 + ସߣ3 − (ଶߣ4 cos(2ߠ)] 

ఏߪ = ߪ) 2⁄ )[(1 + (ଶߣ − (1 + (ସߣ3 cos(2ߠ)]               (4.6) 

௥ఏߪ = ߪ)− 2⁄ )[(1− ସߣ3 + (ଶߣ2 sin(2ߠ)] 

In the above equations, ߣ = ܽ ⁄ݎ ,  ܽ is the radius of hole (refer Fig. 4.16). Due to the 

state of stress (ߪ௥, ߪఏ, ߪ௥ఏ) at point (ߠ ,ݎ), the induced stress along ݔ axis is back calculated 

using the analytical form of Mohr’s circle, 

௫ߪ = ቂ(ఙೝାఙഇ)
ଶ

ቃ + ቂ(ఙೝିఙഇ)
ଶ

ቃ cos 2(180− (ߠ + ௥ఏߪ sin 2(180−  (4.7)           (ߠ

4.5.1 Result and discussion 

As discussed in the previous section, stress distribution around a hole in a loaded 

mechanical structure is highly sensitive to location (ߠ ,ݎ) with respect to the hole centre. 

Thus, actual locations of strain gauges around the drill hole in master leaf spring are required 

for stress calculation at strain gauge locations. To measure actual positions of strain gauges, 

photographs shown in Fig. 4.3 (b) are taken as background in the editor of AutoCAD® 

software. Then following the technique used for determining deflection profiles from 

photographs, actual positions {(ݔ௜,ݕ௜), ݅ = 1, 2, … , ௦ܰ௚(number of strain gauges)} of strain 

gauges are obtained and presented in Table 4.6. Positions of strain gauges are also shown in 

Fig. 4.16 through schematic diagram. Centre of the drill hole is considered as origin of the 

present coordinate system and scaling of drawing is done with width of the master leaf 

spring. 

 

Fig. 4.16 Exact locations of strain gauges. 
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Table 4.6 Locations of strain gauges in Cartesian and polar coordinates 

Strain gauge ߠ ݎ ݕ ݔ (º) 
1 -20.1227 12.7044 23.798 147.733 
2 -21.6162 -11.9744 24.711 208.984 
3 -21.0495 13.1993 24.846 147.910 
4 -20.9790 -12.4150 24.377 210.616 
5 20.7508 12.0027 23.972 30.046 
6 21.4540 -12.3413 24.750 330.091 
7 20.8382 13.7341 24.957 33.388 
8 21.6691 -11.4341 24.500 332.181 

 

 

 

Fig. 4.17 Theoretical vs. experimental stresses for the eight strain gauges under load 

connector 1. 
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Once again, profiles of the master leaf spring at each load steps under load connector 

1 are exported in MATLAB® computational platform. Now locations of strain gauges, as 

shown in Table 4.6, are taken on the leaf spring profile and at each of these ௦ܰ௚ points shear 

force and bending moment are calculated from Eqs. (4.1) and (4.2) respectively. Thereafter, 

combined stresses at locations of each strain gauge are calculated by calculating bending 

stress and in plane tensile stress from Eqs. (4.3) and (4.4) respectively. At each of these 

locations, induced stress along ݔ axis due to presence of drill hole is calculated using Eq. 

(4.7). It is apparent that Eq. (4.7) has an in-built stress concentration factor, applicable for flat 

infinite plates with a circular hole under uniform uniaxial loading. Experimental stress values 

 ௘௫௣ at locations of strain gauges are obtained by multiplying experimental strain valuesߪ

presented in Table 4.5.1 with modulus of elasticity of spring material. Experimental stress 

values are plotted against theoretical stress values ߪ௫ at each strain gauge location under load 

connector 1 and presented in Fig. 4.17. 

 

 

Fig. 4.18 Variations of slopes with strain gauge positions. 

 

Best fitted lines are drawn from data points of plots presented in Fig. 4.17 and slopes 

of these lines are obtained. These slopes are function of strain gauge locations and their 

variations are presented in Fig. 4.18 (a). Figure 4.18 (b) plots the variations separately with ݔ, 

 coordinates of the strain gauge positions. From the plots of these slopes, it is ߠ and ݎ ,ݕ
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clearly seen that variations of slopes with positions have no definite trends. However, from 

Fig. 4.17, it is obvious that the slopes are dependent on nominal stress ߪ௫ and hence on load 

ܹ. This discrepancy may be due to the fact that the equations used for calculating stress field 

are not readily applicable in the present problem. The limitations of the theory lies in the 

assumptions that the hole present in the member is small compared to the width, so that stress 

distribution around a hole in flat infinite plate is applicable. But in actual case the ratio (ܽ ܾ⁄ ) 

is a parameter which need to be incorporated in the overall stress distribution equations. 

Moreover, the uniaxial stress field is produced through combined effect of bending and 

stretching, which is in deviation with theoretical assumption. 



 

 



Chapter 5 

CONCLUSION AND FUTURE SCOPE OF WORK 

 

5.1 Conclusions 

The conclusion of the research work contributed in the previous chapters is detailed 

here. The main objective of the research is to investigate stress and deflection behavior of 

master leaf spring under different loading conditions. Experimental and theoretical analyses 

of deflections and stresses are carried out by modeling master leaf spring as curved cantilever 

beam and curved beam under three point beam bending. The significant findings and various 

developments made during this thesis work are mentioned in the following paragraphs. 

 

Firstly, large deflection analysis of leaf spring as cantilever beam is presented in 

chapter 3. In the experimental study, the master leaf spring is clamped centrally with the help 

of a hydraulic cylinder which divides the master leaf spring into two symmetric halves. In the 

present analysis, geometry of the master leaf is assumed as symmetric with respect to the 

central drill hole and thus experimental observation is made in one half of the spring only. 

Firstly, deflection profiles of master leaf are captured and recorded by using a digital camera. 

Then these observed data are post processed by using graph handling softwares (AutoCAD®, 

Microsoft Excel and MATLAB®) to get deflection profiles. Dynamic behavior of the master 

leaf under loaded conditions is also observed during experimentation. In theoretical analysis, 

master leaf is modeled as cantilever beam with initial curvature. Nonlinear differential 

equations are obtained for large deflection analysis of such beam. These equations are 

integrated directly which lead to solution in terms of elliptic integrals. Without using elliptic 

functions, elliptic integrals are evaluated by using numerical scheme in MATLAB® 

computational environment to deflection profiles. Experimental results are compared 

successfully with theoretical results in general. From the slight difference in trends of the 

comparison study, some relevant parameters of the physical system such as geometry 

variation in eye ends, non-uniform cross-section along length, clamping deficiency, etc. are 

identified. Further theoretical study on the large deflection behavior of a cantilever beam 

under distributed and combined load reveals that analytical solution based on elliptic integral 

is insufficient to predict the correct result. An iterative method with incremental loading has 
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been introduced additionally to study such problems. Here also results of other researchers 

have been compared successfully and new results have been furnished for initially curved 

cantilever beams. 

 

On the other hand, stress and deflection analysis of leaf spring under three point 

bending is presented in chapter 4. Firstly, geometry of the master leaf spring is studied and 

found to be asymmetric with respect to the mounting drill hole. A special leaf spring testing 

rig is designed and set up in Machine Elements laboratory to study stress and deflection 

characteristics of leaf spring under three point bending. Due to asymmetric geometry of the 

master leaf, concentric and eccentric loading conditions are produced by using two different 

types of load connectors. At each of the loading condition, deflection profile is obtained by 

using two different techniques – direct measurement using scale, height gauge and indirect 

measurement through post processing photographs in graph handling softwares (AutoCAD®, 

Microsoft Excel and MATLAB®). The deflection profiles, obtained by indirect measurement 

technique, are compared successfully with directly measured ones. Development of bending 

stresses in the loaded master leaf spring is obtained by using full bridge strain gauge circuits 

and a portable strain indicator. Master leaf spring is modeled as curved beam under three 

point bending in mathematical formulation and stress calculation is carried out following 

Winkler-Bach curved beam theory. Stress field developed under each of the experimental 

loading conditions is obtained by importing deflection profiles in MATLAB® computational 

platform. From comparisons between experimental and theoretical results, effect of stress 

concentration due to presence of drill hole in master leaf spring is observed. In addition, it is 

also observed that the master leaf spring is not only subjected to bending, but it is subjected 

to combined bending-stretching stress field. To study effects of stress concentration and 

stretching stress field, individual strain gauge readings is observed using quarter bridge 

circuits with each strain gauge and a dummy gauge mounted on a piece of the same material 

as that of the master leaf. Actual locations of strain gauges around the drill hole of the master 

leaf are also measured using image processing technique. The theoretical study is further 

extended to incorporate effects of stress concentration due to combined bending-stretching 

stresses at strain gauge locations within the central region of master leaf spring. At each of 

the strain gauge location, experimental and theoretical stress results are compared and several 

observations are made which will facilitate rigorous stress analysis of leaf spring under 

different loading conditions. 



Conclusion and Future Scope of Work 

107 

5.2 Future scope of work 

In the present thesis, stress and deflection behavior of master leaf spring is analyzed 

through two different models. In the first model, large deflection behavior of master leaf 

spring is analyzed as cantilever beam under tip concentrated load. Effect of geometry 

variations at eye ends, change of arc length with application of load, effect of locked up 

moment in clamping arrangement, etc., can be incorporated in mathematical formulation for 

further improvement. In the second set of experiment, stress and deflection analysis of master 

leaf spring is carried out following curved beam model under three point bending. In this 

analysis, proper modeling of roller supports should be incorporated employing the 

geometrically consistent kinematic and kinetic conditions. Apart from these, some of the 

other studies that can be taken up include, 

 

 Large displacement response of leaf spring as roller supported curved beam in 

elastic regime. 

 Static analysis of leaf spring as cantilever and roller supported beams in post-

elastic regime. 

 Dynamic analyses of leaf spring as cantilever and roller supported beams in 

elastic and post-elastic regimes. 



 

 

 



109 

References 

 
 Ahmed, S. R., Mamun, A. A., & Modak, P. (2014). Analysis of stresses in a simply-

supported composite beam with stiffened lateral ends using displacement-potential field. 

International Journal of Mechanical Sciences, 78, 140-153. 

 Ahuett-Garza, H., Chaides, O., Garcia, P. N., & Urbina, P. (2014). Studies about the use 

of semicircular beams as hinges in large deflection planar compliant mechanisms. 

Precision Engineering, 38(4), 711-727. 

 Almeida, C. A., Albino, J. C., Menezes, I. F., & Paulino, G. H. (2011). Geometric 

nonlinear analyses of functionally graded beams using a tailored Lagrangian formulation. 

Mechanics Research Communications, 38(8), 553-559. 

 Al-Qureshi, H. A. (2001). Automobile leaf springs from composite materials. Journal of 

materials processing technology, 118(1), 58-61. 

 Amon, R., Snell, J., & Widera, O. E. (1971). Reduction in stress concentration due to 

beam reinforcement of a circular hole in a sheet. Nuclear Engineering and Design, 16(3), 

279-284. 

 Aşık, M. Z., Dural, E., Yetmez, M., & Uzhan, T. (2014). A mathematical model for the 

behavior of laminated uniformly curved glass beams. Composites Part B: Engineering, 

58, 593-604. 

 Banerjee, A., Bhattacharya, B., & Mallik, A. K. (2008). Large deflection of cantilever 

beams with geometric non-linearity: Analytical and numerical approaches. International 

Journal of Non-Linear Mechanics, 43(5), 366-376. 

 Batista, M. (2011). On the stress concentration around a hole in an infinite plate subject to 

a uniform load at infinity. International Journal of Mechanical Sciences, 53(4), 254-261. 

 Batista, M. (2015). Large deflections of a beam subject to three-point bending. 

International Journal of Non-Linear Mechanics, 69, 84-92. 

 Beléndez, T., Neipp, C., & Beléndez, A. (2002). Large and small deflections of a 

cantilever beam. European Journal of Physics, 23(3), 371-379. 

 Beléndez Vázquez, T., Neipp López, C., & Beléndez Vázquez, A. (2003). Numerical and 

experimental analysis of a cantilever beam: a laboratory project to introduce geometric 

nonlinearity in mechanics of materials. International Journal Engineering Education, 19, 

885-892. 



References 

110 

 Bisshopp, K. E., & Drucker, D. C. (1945). Large deflection of cantilever beams. 

Quarterly of Applied Mathematics, 3(1), 272-275. 

 Cannarozzi, M., & Molari, L. (2013). Stress-based formulation for non-linear analysis of 

planar elastic curved beams. International Journal of Non-Linear Mechanics, 55, 35-47. 

 Castagnetti, D., & Dragoni, E. (2013). Stress concentrations in periodic notches: a critical 

investigation of Neuber's method. Materialwissenschaft und Werkstofftechnik, 44(5), 364-

371. 

 Charde, R. B., & Bhope, B. V. (2012). Investigation of stresses in master leaf of leaf 

spring by FEM and its experimental verification. International Journal Engineering 

Science and Technology, 4(2), 633-640. 

 Chen, L. (2010). An integral approach for large deflection cantilever beams. International 

Journal of Non-Linear Mechanics, 45(3), 301-305. 

 Dado, M., & Al-Sadder, S. (2005). A new technique for large deflection analysis of non-

prismatic cantilever beams. Mechanics Research Communications, 32(6), 692-703. 

 Eren, I. (2008). Determining large deflections in rectangular combined loaded cantilever 

beams made of non-linear Ludwick type material by means of different arc length 

assumptions. Sadhana, 33(1), 45-55. 

 Fraternali, F., & Bilotti, G. (1997). Nonlinear elastic stress analysis in curved composite 

beams. Computers & structures, 62(5), 837-859. 

 Ghodake, A. P., & Patil, K. N. (2013). Analysis of Steel and Composite Leaf Spring for 

Vehicle. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-ISSN, 2278-

1684. 

 He, X. T., Cao, L., Li, Z. Y., Hu, X. J., & Sun, J. Y. (2013). Nonlinear large deflection 

problems of beams with gradient: A biparametric perturbation method. Applied 

Mathematics and Computation, 219(14), 7493-7513. 

 Hou, J. P., Cherruault, J. Y., Nairne, I., Jeronimidis, G., & Mayer, R. M. (2007). 

Evolution of the eye-end design of a composite leaf spring for heavy axle loads. 

Composite structures, 78(3), 351-358. 

 Ko, W. L. (1985). Stress Concentration Around a Small Circular Hole in the HiMAT 

Composite Plate (No. NASA-H-1235). National Aeronautics and Space Administration 

Moffett Field Ca Ames Research Center. 



References 

111 

 Kumar, Y. S., & Teja, M. V. (2012). Design and Analysis of Composite Leaf Spring. 

International Journal of Mechanical and Industrial Engineering (IJMIE), ISSN, (2231-

6477). 

 Kumar, R., Ramachandra, L. S., & Roy, D. (2004). Techniques based on genetic 

algorithms for large deflection analysis of beams. Sadhana, 29(6), 589-604. 

 Li, X. F., & Lee, K. Y. (2015). Effect of horizontal reaction force on the deflection of 

short simply-supported beams under transverse loading. International Journal of 

Mechanical Sciences, 99, 121–129. 

 Mahdi, E., & Hamouda, A. M. S. (2013). An experimental investigation into mechanical 

behavior of hybrid and nonhybrid composite semi-elliptical springs. Materials & Design, 

52, 504-513. 

 Mohammadi, M., Dryden, J. R., & Jiang, L. (2011). Stress concentration around a hole in 

a radially inhomogeneous plate. International Journal of Solids and Structures, 48(3), 

483-491. 

 Mohyeddin, A., & Fereidoon, A. (2014). An analytical solution for the large deflection 

problem of Timoshenko beams under three-point bending. International Journal of 

Mechanical Sciences, 78, 135-139. 

 Motra, H. B., Hildebrand, J., & Dimmig-Osburg, A. (2014). Assessment of strain 

measurement techniques to characterise mechanical properties of structural steel. 

Engineering Science and Technology, an International Journal, 17(4), 260-269. 

 Mujika, F. (2007). On the effect of shear and local deformation in three-point bending 

tests. Polymer Testing, 26(7), 869-877. 

 Mutyalarao, M., Bharathi, D., & Rao, B. N. (2010). On the uniqueness of large 

deflections of a uniform cantilever beam under a tip-concentrated rotational load. 

International Journal of Non-Linear Mechanics, 45(4), 433-441. 

 Mutyalarao, M., Bharathi, D., & Rao, B. N. (2010). Large deflections of a cantilever 

beam under an inclined end load. Applied Mathematics and Computation, 217(7), 3607-

3613. 

 Nagpal, S., Jain, N., & Sanyal, S. (2011). Stress concentration and its mitigation 

techniques in flat plate with singularities-A critical review. Engineering Journal, 16(1), 1-

16. 



References 

112 

 Nallathambi, A. K., Rao, C. L., & Srinivasan, S. M. (2010). Large deflection of constant 

curvature cantilever beam under follower load. International Journal of Mechanical 

Sciences, 52(3), 440-445. 

 Nguyen, D. K. (2014). Large displacement behaviour of tapered cantilever Euler–

Bernoulli beams made of functionally graded material. Applied Mathematics and 

Computation, 237, 340-355. 

 Osipenko, M. A., Nyashin, Y. I., & Rudakov, R. N. (2003). A contact problem in the 

theory of leaf spring bending. International journal of solids and structures, 40(12), 

3129-3136. 

 Ozmen, B., Altiok, B., Guzel, A., Kocyigit, I., & Atamer, S. (2015). A Novel 

Methodology with Testing and Simulation for the Durability of Leaf Springs Based on 

Measured Load Collectives. Procedia Engineering, 101, 363-371. 

 Pai, P. F., Anderson, T. J., & Wheater, E. A. (2000). Large-deformation tests and total-

Lagrangian finite-element analyses of flexible beams. International Journal of Solids and 

Structures, 37(21), 2951-2980. 

 Parkhe, R., Raman, M., & Sanjay, B. (2014). Modeling and Analysis of Carbon Fiber 

Epoxy Based Leaf Spring under the Static Load Condition by Using FEA. International 

Journal of Engineering Science and Engineering, 2(4), 39-42. 

 Politch, J. (1985). Methods of strain measurement and their comparison. Optics and 

lasers in engineering, 6(1), 55-66. 

 Raghavedra, M., Hussain, S. A., Pandurangadu, V., & PalaniKumar, K. (2012). Modeling 

and analysis of laminated composite leaf spring under the static load condition by using 

FEA. International Journal of Modern Engineering Research (IJMER) Vol, 2(4), 1875-

1879. 

 Rahman, M. A., Siddiqui, M. T., & Kowser, M. A. (2007). Design and non-linear analysis 

of a parabolic leaf spring. Journal of Mechanical Engineering, 37, 47-51. 

 Rajendran, I., & Vijayarangan, S. (2001). Optimal design of a composite leaf spring using 

genetic algorithms. Computers & Structures, 79(11), 1121-1129. 

 Rashmi, U. (2011). Stress analysis of crane hook and validation by photo-elasticity. 

Engineering, 3, 935-941. 

 Roy, D. K., & Saha, K. N. (2013). Nonlinear Analysis of Leaf Springs of Functionally 

Graded Materials. Procedia Engineering, 51, 538-543. 



References 

113 

 Ryan, J. J., & Fischer, L. J. (1938). Photoelastic analysis of stress concentration for beams 

in pure bending with a central hole. Journal of the Franklin Institute, 225(5), 513-526. 

 Shankar, G. S. S., & Vijayarangan, S. (2006). Mono composite leaf spring for light 

weight vehicle–design, end joint analysis and testing. Materials science, 12(3), 220-225. 

 Shenhua, Y., Shuqing, K., & Chunping, D. (1997). Research and application of precision 

roll-forging taper-leaf spring of vehicle. Journal of materials processing technology, 

65(1), 268-271. 

 Shokrieh, M. M., & Rezaei, D. (2003). Analysis and optimization of a composite leaf 

spring. Composite structures, 60(3), 317-325. 

 Shvartsman, B. S. (2007). Large deflections of a cantilever beam subjected to a follower 

force. Journal of Sound and Vibration, 304(3), 969-973. 

 Shvartsman, B. S. (2013). Analysis of large deflections of a curved cantilever subjected to 

a tip-concentrated follower force. International Journal of Non-Linear Mechanics, 50, 

75-80. 

 Sitar, M., Kosel, F., & Brojan, M. (2014). Large deflections of nonlinearly elastic 

functionally graded composite beams. Archives of Civil and Mechanical Engineering, 

14(4), 700-709. 

 Sugiyama, H., Shabana, A. A., Omar, M. A., & Loh, W. Y. (2006). Development of 

nonlinear elastic leaf spring model for multibody vehicle systems. Computer methods in 

applied mechanics and engineering, 195(50), 6925-6941. 

 Tari, H. (2013). On the parametric large deflection study of Euler–Bernoulli cantilever 

beams subjected to combined tip point loading. International Journal of Non-Linear 

Mechanics, 49, 90-99. 

 Tolou, N., & Herder, J. L. (2009). A seminalytical approach to large deflections in 

compliant beams under point load. Mathematical Problems in Engineering, 

doi:10.1155/2009/910896. 

 Troyani, N., Hernández, S. I., Villarroel, G., Pollonais, Y., & Gomes, C. (2004). 

Theoretical stress concentration factors for short flat bars with opposite U-shaped notches 

subjected to in-plane bending. International journal of fatigue, 26(12), 1303-1310. 

 Wang, C. M., Lam, K. Y., He, X. Q., & Chucheepsakul, S. (1997). Large deflections of 

an end supported beam subjected to a point load. International Journal of Non-Linear 

Mechanics, 32(1), 63-72. 



References 

114 

 Wang, T. M. (1968). Nonlinear bending of beams with concentrated loads. Journal of the 

Franklin Institute, 285(5), 386-390. 

 Wang, T. M. (1969). Non-linear bending of beams with uniformly distributed loads. 

International Journal of Non-Linear Mechanics, 4(4), 389-395. 

 



115 

Bibliography 

 
 Bhandari, V. B. (2010). Design of machine elements. Tata McGraw-Hill Education 

Private Limited. 

 Doebelin, E. O., & Manik, D. N. (2011). Measurement systems. Tata McGraw-Hill 

Education Private Limited. 

 Fertis, D. G. (2006). Basic Theories and Principles of Nonlinear Beam Deformations. 

Nonlinear Structural Engineering: With Unique Theories and Methods to Solve 

Effectively Complex Nonlinear Problems. Springer. 

 Khurmi, R. S., & Gupta, J. K. (2005). Machine design. S. Chand. 

 Nag, D., & Chanda, A. (2010). Fundamentals of Strength of Materials. Wiley India 

Private Limited. 

 Spiegel, M. R., Lipschutz, S., & Liu J. (2009). Mathematical handbook of formulas and 

tables. Tata McGraw-Hill Education Private Limited. 

 Timoshenko, S., & Goodier, J. N. (1951). Theory of elasticity. McGraw-Hill Book 

Company. 

 Timoshenko, S., & Young, D. H. (2009). Elements of Strength of Materials. Affiliated 

east-west press private limited. 

 



 

 



117 

Publications from the Thesis 

 

Journal 

1. Ghuku, S., and Saha, K. N., A theoretical and experimental study on geometric 

nonlinearity of initially curved cantilever beams, Engineering Science and Technology, 

an International Journal, Vol.19, pp.135-146, 2016. 

2. Ghuku, S., and Saha, K. N., An experimental study on stress concentration around a hole 

under combined bending and stretching stress field, Procedia Technology, Vol.23, pp.20-

27, 2016. 

3. Ghuku, S., and Saha, K. N., Design development and performance analysis of leaf spring 

testing set up in elastic domain, The Association of Engineers, India, 2016 

(Communicated). 

 

Conference 

1. Ghuku, S., Karmakar, S., & Saha, K. N. An Experimental Study towards Geometric 

Nonlinearity of Leaf Springs. Proceedings of 23rd IRF International Conference, 

Chennai, India, pp.86-89, 2015. 

2. Ghuku, S., & Saha, K. N. Experimental Analysis on Large Deflection of a Master Leaf 

under Three Point Bending Test. Proceedings of International Conference on Trends in 

Industrial and Mechanical Engineering (IC TIME 2016), MANIT, Bhopal, India, Vol.II, 

pp.393-402, 2016. 

3. Ghuku, S., & Saha, K. N. Experimental stress and deformation analysis of an automobile 

master leaf spring. Proceedings of International Conference on Materials, Design and 

Manufacturing Process (ICMDM 2016), Anna University, Chennai, India, pp.135-141, 

2016. 

4. Ghuku, S., & Saha, K. N. An Experimental Study on Stress Concentration around a Hole 

under Combined Bending and Stretching Stress Field. Proceedings of 3rd International 

Conference on Innovations in Automation and Mechatronics Engineering (ICIAME 

2016), G H Patel College of Engineering & Technology, Gujarat, India, pp.1, 2016. 



ERRATA FOR THE PRESENT THESIS 

 

(1) First photograph of Fig. 4.8.2 in page 87 should be replaced by 

 

(2) Page 105, line 14 of the second paragraph: “…environment to deflection profiles…” 

should be read as “…environment to get deflection profiles…”. 


