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ABSTRACT 

 

Thermal analyses for Fourier Heat Conduction in a slab of composite 

material have been considered. The application of composite materials 

has been spread in a wide range of industries. Composite wall, Roof 

slab are the example of composite materials. 

The analytical solutions of transient heat conduction in a Slab for 

isotropic and orthotropic materials are discussed in this paper by using 

separation of variable method. Transient thermal responses for both the 

cases are investigated step by step. How the temperature profiles are 

changed with respect to time and position while internal heat 

generations are varied is analyzed in this paper. The changes of 

temperature profiles are observed subjected to various design 

conditions.  

We have considered a slab which is initially at a uniform temperature 

and is exposed to ambient fluid. Slab temperature is higher than that of 

ambient fluid. The slab is subjected to convection heat transfer from 

both sides. Length and height are very high compared to its thickness. 

Heat resistance is so high along these two directions that heat transfer 

is neglected in these directions. Thus, heat transfer analysis can be 

approximated to be one dimensional which is discussed in chapter-4. 

For example, heat gain through window of a house is of one 

dimensional heat conduction. 

Further, we have considered a slab of higher thickness which can be 

compared with length but not with height. Height is so high that heat 

resistance is very high in this direction compared to other two 

directions i.e. along length and thickness. Heat transfer analysis can be 

performed along these two directions which are known as two 

dimensional heat transfer analysis discussed in chapter-5. 
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NOMENCLATURE 

Bi                       Biot Number                                                                       

h                        Heat transfer co efficient 

k                        Thermal conductivity (W.m
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-1
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t                         Time (s) 

T                        Temperature (
0
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q                        Heat transfer rate (W) 

Q                       Dimensionless heat transfer rate 

F                        Fourier Number (αt/a
2
) 

Ve                     Vernotte number (√τα/a) 

X                       Dimensionless spatial variable 

x                Spatial variable(m) 

q”                      Internal Heat generation    

φ,γ                     Variables, see Eq.(4.4) 

ψ,ρ                    Variables, see Eq.(4.12) 

A, B                   Variables, see Eq.(4.20), 

C1, C2…C5       Integration constant 

  

 

Greek Symbol 

 

α                         Thermal diffusivity 

θ                         Dimensionless temperature 

λ                         Eigen value 

µ                         Eigen Value 
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INTRODUCTION 

1.1 GENERAL BACKGROUND 

    Transfer of heat through a medium due to temperature gradient is called 

conduction heat transfer which is a microscopic level mechanism. 

During the conduction heat transfer, translational, rotational, and 

vibrational energy among the molecules comprising the medium 

changes whereas convection is a macroscopic form of transfer of 

energy through a fluid which is the result of the both processes i.e. 

conduction in the fluid and the bulk motion of the fluid. 

 

    Heat conduction has a vital role in our daily life, mainly in earth 

science, physical science, biological science, social science. 1n 1822, 

Joseph Fourier, the French mathematical physicist, studied the results 

obtained through experiments on heat conduction and thus derived a 

powerful tool named as Fourier’s Law  which dictates a linear 

relationship between a heat flux and temperature gradient, at infinite 

propagation velocity of the thermal wave. Simultaneously, in most of 

engineering applications, validity of the Fourier’s Law has been 

proved. Fourier’s law leads to infinite propagation velocities for 

thermal disturbances because of its parabolic nature of the relevant 

governing equations. 

   

1.2 FOURIER’S LAW AND THERMAL CONDUCTIVITY 

The transfer of heat by conduction can generally be described by 

Fourier Law i.e.  

 

  ��� =  −���                                                                                   (1.1) 

 

where k is the thermal conductivity, �� is the temperature gradient. 

Negative sign appears in the equation as heat flows in the direction of  
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decreasing temperature.  In general, thermal conductivity is a tensor 

which relates one vector to another. In engineering application, 

materials are isotropic i.e. these materials have the same properties in 

all directions. For these materials, we need not to consider the 

properties along X, Y and Z directions separately whereas for 

anisotropic materials, we need to calculate these properties separately 

in X, Y, Z directions. 

 

    Fourier’s law for tensor k in Cartesian co ordinate for anisotropic    

    material is as follows: 

     ���"��"� "
! = ���� ��� �� ��� ��� �� �� �� �  

! ×
#$
$$
% &'&�&'&�&'&  ()

))
*                                                         (1.2) 

 
1.3 COMPOSITE MATERIAL 

When two or more materials of which physical and chemical properties 

are different are combined among themselves to produce a new 

material which gives higher strength-weight ratio compared to its 

constituent materials, it is called composite material.  

 

Concrete slab is an example of composite material. Foils or sheets or 

foils combined with fibers are the combinations of different particulate 

composites which are called hybrid composites which enhances the 

impact resistance. Adding fibers help in resisting damage. In the 

construction field, there are lots of uses of structural composites, for 

example, sandwich panels which include roofs, floors, and walls of 

buildings. 

 

The physical and chemical properties of these composite materials are 

dependent on the direction of the applied force. All these composite 

materials’ properties are different along X-axis and Y-axis. In our  
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analysis, we have considered a slab of such composites so that 

properties differ along co ordinates. 

 

1.4 ORTHOTROPIC MATERIAL 

Materials have properties that differ along three mutually orthogonal 

axes of rotational symmetry are called orthotropic materials. These are 

subset of anisotropic materials. A familiar example of an orthotropic 

material is Wood. In this case properties are different in three mutually 

perpendicular directions i.e. axial direction, radial direction and 

circumferential direction. Polar orthotropy is the type of orthotropy 

where preferred co-ordinate system is cylindrical polar. Mechanical 

properties i.e. strength, stiffness are typically better in axial direction 

than that of measured in other two directions. Hankinson’s equation 

explains these directional differences in strength. 

 

Sheet metal is another example of orthotropic material. It is formed by 

squeezing thick sections of metal between heavy rollers and for this, 

grain structure changed. As a result, material becomes anisotropic. 

 

Hence, all the composite materials are anisotropic in nature. All 

orthotropic materials are anisotropic but all anisotropic materials are 

not orthotropic in nature. Isotropic materials posses equal strength in 

all directions and for this reason, efficient structure can’t be made by 

this type of material whereas it is possible by anisotropic material. In 

most of the application, there is a necessity of these variations in 

strength along directions. As for example, in a beam, it is the transverse 

direction on which load is imposed whereas beam bent along 

lengthwise direction and strength along lateral direction is utilized. 

There is no load imposed in lateral direction. 
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Thermal conductivity has nine components. For anisotropic material, if 

all the components except the diagonal components become zero, then 

it is called orthotropic material which described by the following 

matrix: 

 

- = .-// 0 00 -11 00 0 -22
3                                                                      (1.3) 

 

 

1.5 OBJECTIVE 

 

The attention of this paper is to focus on the thermal analysis of the 

orthotropic composite material. The aim of the analysis is to find out 

the variation of the temperature as a function of time and position 

within the body. 

 

Here analysis is performed across a square shaped slab. Face 

dimensions are considered very large compared to the thickness. One 

dimensional analysis is done in chapter-4 of this paper and two 

dimensional analysis is done in chapter 5 of this paper. Boundary 

conditions applied to each surface is uniform. 

 

The objective of the analysis of the heat conduction is to observe the 

temperature profiles and how the temperature changes inside the body 

with time as well as with spatial co-ordinates. To calculate the heat flux 

at any point of the body, we have to know the temperature profile first. 

Further, if we know the temperature field we can also come to know 

the following parameters: thermal stresses, heat treatment method, 

expansion, design insulation thickness, deflection etc. 



6 

 

 

 

CHAPTER -2 

 

 

 

 

 

LITERATURE SURVEY 

     

 



Chapter – 2: Literature Survey 

7 

 

 

LITERATURE SURVEY 

2.1 LITERATURE SURVEY  

The heat conduction equation of Fourier provides the solution 

displayed propagation speed of thermal signals infinitesimally. 

Cattaneo and Vernotte [1] individually evaluated a relaxation model of 

time dependent for heat flux in solid in order to avoid the failure of 

parabolic heat conduction equation in high heat flux and highly 

unsteady (transient) situations applications e.g. laser pulse annealing of 

semi conductors. A finite speed of heat flux has been considered in this 

model, which leads to the following equation: 

 

� =  −��� − ��  
��

��
                                                                           (2.1)

  

Where q is the heat flux, �� is the relaxation time, k is the thermal 

conductivity and T is the temperature. The classical Fourier’s diffusion 

model is invalid [2-4] for large temperature gradient, low temperature 

or a very high heating speed. Non Fourier heat conduction can arise in 

practical engineering problems e.g. in cryogenic engineering and 

surface melting of metals [5, 6]. There is no formula of physically 

realistic principal except Fourier’s heat conduction for the transient 

diffusion problem. There is of fundamental importance as the equation 

can’t be confidently integrated over an arbitrary domain unless exact 

form of the integration is known. 

     

     Eq. (2.1) and the energy conservation law, together, provide a profile  

     of hyperbolic equation for an unsteady temperature. Fushinobu et al. 

[7] analyzed the classical Fourier heat conduction models which 

predict the temperature distribution in general engineering problems. 

Cimmelli [8] discussed that zero time lag between imposing 

temperature gradient and conduction heat transfer is not true because 

two linked phenomenon can’t happen simultaneously. 
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How the temperature profile of thermal wave varies with sudden 

change in temperature at the wall in a semi infinite solid is analyzed by 

Baumeister and Hamill [9]. He has used Laplace Transformation 

Method here. Taitel [10] established a solution analytically for a thin 

layer on both sides with respect to a step change of temperature in 

1972. A numerical solution for a thin layer on one side with respect to 

a step change of temperature was provided by Garey [11] in 1982. An 

analytical solution for a finite slab with insulated boundaries using a  

volumetric energy source has been given by Ozisik [12] in 1984.For a 

finite slab under boundary condition of rectangular heat pulse, an 

analytical solution of hyperbolic heat conduction equation using flux 

formulation was given by Frankel [13] in 1985. Glass [14, 15] solved 

the HHC equation with surface radiation in 1985 and temperature 

dependent conductivity in a finite medium in 1986. In a semi infinite 

solid subjected to a periodic on-off heat flux, an explicit analytical 

solution was presented by Glass [16] for a hyperbolic heat conduction 

equation. In the above mentioned presentation, non linear profiles with 

surface radiation were solved by using a finite difference scheme. 

Gembarovic [17] analytically solved HHC equation under 

instantaneous and extended heat pulse in a finite slab. . Tzou [18, 19] 

analyzed the damping and resonance characteristics of thermal waves 

of a heat source subjected to periodic heating. Under pulse surface 

heating, in a finite medium, Fourier heat conduction equation was 

analyzed by Tang and Araki [20]. Mikhailov and Cotta [21] gave the 

solution of a hyperbolic heat conduction equation for periodic nature 

and steady condition in a finite slab using the computer algebra system 

Mathematica. Tang and Araki [22] provided the solution of non Fourier 

heat conduction under periodic surface disturbances in a finite medium. 

The characteristics of thermal waves were studied analytically by 

Juhng [23]. Solution of non Fourier heat conduction equation under 

periodic surface disturbances using the finite integral transform was 

given by Abdel and Hamid [24]. Wang [25] analyzed the structure of 

the solution of hyperbolic heat conduction equation. Lor and Chu [26] 

gave solution of the problem considering thermal resistance in the 

interface. Using hermite approximation for integration and considering  
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circumferential symmetry heat flux in radial direction in a nuclear fuel 

rod, transient heat conduction was explained by Clarissa [27]. An 

Orthogonality relationship has been built by F.de.Monte [28] and 

obtained a final series of solution for a composite slab. The unsteady 

heat transfer analysis in a nuclear fuel rod has been performed by Su 

and Cotta [29].An improved lumped parameter approach had been used 

here. By using hermite approximation method, average fuel and 

cladding temperature is calculated. Transient cooling of a long slab has 

been analyzed by Alhama and Campo [30] by using asymmetric heat 

convection. With surface radiation and periodic thermal disturbances, 

in a finite medium, a semi-analytical numerical solution was provided 

by Yen and Wu [31]. Using the transfer function method, Fourier heat 

conduction across a one dimensional slab was analyzed by Cossali [32] 

subject to periodic boundary condition. Transient, one dimensional 

heat conduction problem for a slab has been analyzed by H.Sadat [33] 

by using perturbation method. A second order model for unsteady heat 

conduction in a slab has also been derived by H.Sadat [34] with 

perturbation method. It has been observed that for high values of Biot 

number in surrounding the center of the slab, the simple model is more 

accurate. Symmetrically heated on both sides for a finite medium, 

solution of a hyperbolic heat conduction equation was analyzed by 

Lewandowska and Malinowski [35]. Under the circumstances of 

arbitrary periodic and non-periodic surface disturbances, Moosai [36, 

37] gave solution of hyperbolic heat conduction equation (HHC). The 

unsteady, one dimensional heat conduction of a slab has been analyzed 

by Keshavarz and Taheri [38] by using Polynomial Approximation 

method. Considering temperature dependent thermal conductivity; 

lumped parameter model’s development was suggested by Gesu [39]. 

At uniform temperature and finite Biot numbers, on Fourier heat 

conduction on a sphere exposed to surrounding was analyzed by 

Astrogorsky [40]. Laplace transformation method is used here. 

Thermal wave propagation analysis in a finite slab was performed by 

Monterio [41]. Integral transformation method is used here. Hyperbolic 

heat conduction subject to laser heating varying with time was 

analyzed by Lam and Fong [42].Considering 1-D cylindrical and  
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spherical geometries; non-Fourier heat conduction was analyzed by 

Mishra and Sahai [43]. Lattice Boltzman method is used here. 

Temperature variation in thin die-electric material was analyzed by 

Sarkar and Hazi Sheikh [44]. Laplace transformation method is used 

here. One dimensional transient heat conduction of a slab was solved 

by Keshavarz and Taheri [45] in 2007 by using Polynomial 

Approximation Method. 

 

The Literature survey clearly shows that last few years, works are 

exhibited related to one dimensional HHC equation for various types of 

initial and boundary conditions or different source term in a finite and 

semi infinite mediums. Also, some research works are done for two 

dimensional HHC which are solved numerically. 

 

Quasilinear diffusion equations with non linear source were 

analytically solved by Separation of variable method by Changzheng 

Qu [46] and generalized porous medium equation with non linear 

source was solved analytically by P.G.Estevez [47]. Laplace’s 

Equation for a particular set of boundary condition i.e. �"# = 0 is 

solved by separation of variable method by W. Miller [48]. Wei Tao 

Zhao [49] analyzed non Fourier heat conduction in a solid sphere 

considering arbitrary surface thermal disturbances using separation of 

variable method and the comparison of temperature response between 

the hyperbolic and parabolic equations are established. Non linear 

wave equation was solved analytically by R.Z. Zhdanov [50]. Qu [51] 

provided exact solutions to nonlinear diffusion equations obtained by 

generalized conditional symmetry in 1999. Qu [52] provided exact 

solutions to quasilinear diffusion equations with the nonlinear source in 

2000. Lu et al. [53] analytically solved transient heat conduction in a 

composite circular cylinder in 2006. 
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2.2 SCOPE OF PRESENT WORK 

Lot of research works has been done on transient heat conduction 

which are solved analytically. There are many procedures in solving 

analytically e.g. - The orthogonal expansion technique [54-57] which 

technique was first developed by Vodicka [54]; the quasi-orthogonal 

expansion technique [58, 59] which was developed by Tittle [58]; the 

Laplace transform method [60]; the Green's function approach [60-63]; 

the Galerkin procedure [64-66]; the finite integral transform technique 

[67]; Separation of variable method [68]. 

 

The above mentioned literature review showed that lot of works has 

been performed based on other methods compared to separation of 

variable method. 2-D Fourier heat conduction equation has not yet 

solved by this method considering different heat transfer co efficient in 

both sides of the slab of orthotropic material. 

 

Very little work has been exhibited on analytical solution of Fourier 

Heat conduction for orthotropic materials by Separation of Variable 

Method.  Present work is humbly focused in that field.   

 

In this paper, under the guidance of arbitrary initial conditions, 2 

dimensional heat conduction equations are solved analytically by using 

Fourier series method. The main purpose of this work is to provide an 

analytical benchmark for one dimensional and two dimensional Fourier 

heat conduction for Isotropic and Orthotropic materials. 

 

Main aim of the present work is to compare the temperature profiles 

obtained from Isotropic and Orthotropic material subjected to different 

design conditions. 
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METHODOLOGY 

 

 

3.1 METHODOLOGY 

In this paper, heat transfer of a slab for isotropic and orthotropic 

material has been solved analytically. There are some cases where it is 

very difficult to solve the system numerically. However, solution is 

much secured by analytical methods. Analytical methods provide an 

exact solution of how the model behaves under any circumstances. 

Accuracy is also much higher than Numerical Methods. 

 

Separation of variable method is one of the simplest analytical methods 

for solving partial differential equations. This method is also known as 

“Fourier Method”. Separation of Variable Method gives a closed form 

solution. This method provides an exact and unique solution. It is 

assumed that the dependent variable is the product of a number of 

functions which are single independent variables. Thus, a partial 

differential equation is reduced to a system of ordinary differential 

equations, each being a function of single independent variable. 

 

For example, for a case of a non-steady heat conduction for a plane 

wall, the dependent variable ‘u’ is the solution function u(x,t). In this 

case, partial differential equation, ‘u’ is a function of two independent 

variables ‘x’ and ‘t’. This method depends upon the assumption that a 

function of the form: 

 

 ���, �� = ��������                                                                          (3.1) 

 

will be a solution to the partial differential equation which is called as 

product separable solutions. Application of this method results two 

ordinary differential equations, one equation is function of ‘x’ and the 

other one is function of ‘t’. Many partial differential equations have  



Chapter – 3: Methodology 

14 

 

 

 

this type of separable solutions. By using separation of variables, we 

were able to convert our linear homogeneous partial differential 

equation with linear homogeneous boundary conditions into an 

ordinary differential equation. The boundary value problem is an Eigen 

value problem.  We have to identify the Eigen values λ during solving 

the boundary value problem. This Eigen value will generate non-trivial 

solutions to the corresponding Eigen functions. 

 

When the equation is non homogeneous, we have to convert this 

equation to homogeneous equation first, then we can apply separation 

of variable method (SOV). SOV Method for Quasilinear equation is 

first studied by Changzheng Qu et al. [69]. Generalized conditional 

symmetry approach is used here. 

 

 

3.2 APPLICATION OF ANALYTICAL METHOD 

 

For calculating the heat transfer rates and analyzing the temperature 

history, analytical method can be applied for finite shaped bodies. 

Analytical method is applicable where boundary conditions are 

uniform or where temperature is also uniform throughout the body 

initially or where heat transfer co efficient does not change with time.  

 

3.3 APPLICATION OF SOV METHOD 

This method is applicable to simple and finite geometry (for example, a 

cylinder, a sphere, a rectangular slab etc). Boundary surfaces have to 

be explained by simple mathematical functions. The partial differential 

equation and associated boundary conditions and initial conditions 

must be linear. The main governing equation may contain one 

homogeneous term. 
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1-D TRANSIENT HEAT CONDUCTION 

 

 

4.1     1-D TRANSIENT HEAT CONDUCTION 

One dimensional transient heat conduction occurs while quenching a 

steel rod and then soaking the same by a bath. Another example is 

perishable vegetables immersed in a chilled bath in a cold storage. 

Here geometry is different. Walls of a building are heated gradually as 

time passed. Heat flows from outer wall to inner wall which is an 

example of this phenomenon.  

 

The one dimensional transient heat conduction equation can be solved 

numerically as well as analytically. Here, we solve the partial 

differential equation analytically by using “separation of variable 

method” (SOV). Our first aim is to convert the partial differential 

equation to an ordinary differential equation.  

 

Heat conduction in a square shaped slab of thickness ‘2a’ is considered 

here. Initially, the slab is at temperature T0 and ambient temperature is 

Ta assumed to be constant. Origin of the axis has been chosen at the 

center of the slab so that there persists symmetry of temperature 

distribution about X=0. Thermal conductivity has been considered as 

kx. The governing differential equations considering no heat generation 

and with heat generation to be solved are as follows: 

 

     
���
��� = �

�
��
�                                                                                       (4.1a)  

 

    And 
 
    

���
��� + ""

$%
= �

�
��
�                                                                                (4.1b)                                                   

                                           

The results obtained by solving Eq. (4.1a) by SOV method can be 

checked by Heisler Charts. Heisler [70] presented the transient  
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temperature charts for a large plane wall, long cylinder and sphere in 

1947. These charts are called Heisler chart. H. Grober [71] modified 

these charts in 1961. There are three charts for each Geometry.1st chart 

determines the temperature at the center of the geometry for a given 

time‘t’. Temperatures at other locations are determined by second 

chart. The total amount of heat transfer is determined by 3rd chart. 

Results obtained by solving Eq. (4.1b) by SOV method can’t be 

checked through this chart as there is heat generation inside the slab. 

This is the limitation of Heisler Chart. 

 
4.2     PROBLEM STATEMENT 

The both sides of the slab are subjected to convective heat transfer 

where convective heat transfer co efficient of both sides of the slab is 

‘h1’ and ‘h2’ for left and right sides respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

                     Fig: 4.1 Heat transfer across a 1-D Slab 

 

The non dimensional form of the governing differential equation 

without heat generation is: 

       

     
��'
�(� = �'

�)                                                                                           (4.2) 

 

 

X 0 

2a 

Ta 

T0 

 h1 h2 

t=0 

t=Ta  
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Where θ is the dimensionless temperature, F is the Fourier number and 

X is the dimensionless distances are defined as follows: 

 
. =

�
/ and  0 = 1

/                                                                             (4.2a)       

2 = (�4�5)
(�74�5 )                                                                                     (4.2b) 

8 = 9� (  
:;< /�)                                                                                (4.2c) 

 

The non dimensional form of the governing differential equation with  

heat generation is: 

 

��'
�(� + =>(1 + ?2) = �'

�)                                                                    (4.3) 

 

   where, 

=> = ("7 /� )
$%(�74�5)                                                                                  (4.3a)        

 

@AA = @>[1 + CA(D − D/)]                                                               (4.3b)                           

@AA = @>(1 + ?2)                                                                            (4.3c)        

? = CA(D> − D/)                                                                             (4.3d)   

 

The analytical solution provides exact solution whereas infinite series 

and transcendental equations arriving during other type of solutions. 

 
4.3    BOUNDARY AND INITIAL CONDITION 

Dimensionless boundary conditions are: 

 GH  . = 0, �'
�( = 0                                                                          (4.4a)                                                             

 GH  . = 1, �'
�( = −JKL2                                                                 (4.4b)                                                                 
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In non dimensional form, the initial condition is: 

GH 8 = 0, 2 = 1                                                                             (4.4c)              

 

These conditions are same for both types of heat conduction-(i) without 

heat generation (ii) with heat generation. 

 

4.4    Mathematical Formulation 

4.4.1 Without Heat Generation: 

 

The non dimensional temperature ‘θ’ can be expressed as a product 

function of ‘X’ and ’F’ as follows: 

2 = ∅(.)O(8)                                                                                  (4.5)      

Substituting the value of θ in the governing equation: 

 

P�∅
P(� + QL∅ = 0                                                                                 (4.5a) 

and 
PR
P) + QLO = 0                                                                                   (4.5b)         

   

   The general solution of the above two equations are: 

2 = S4T�){V WXY(Q.) + J YKZ(Q.)}                                                (4.6)  

 

where A & B are arbitrary constants. Now we have to find out the value 

of A and B to get the solution of the problem. 

     

    Applying the first boundary conditions, we get as follows:  

2 = VS4T�) WXY(Q.)                                                                        (4.7)                              

 

Applying the second boundary condition, we get the following 

characteristic equation: 

Q\ HGZ Q\ = JK                                                                                  (4.8) 
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The final solution is 

2 = V\S4T]�) WXY(Q\.)                                                                   (4.9)     

 

The constant An can be found out by applying the initial condition:   

V\ = ^ _`\(T])
LT]a_`\(LT])                                                                            (4.10)                                   

 

Substituting the value of An, we get the value of θ as:                                

2 = ∑ ^ _`\(T])
LT]a_`\(LT]) S4T]�) WXY(Q\.)c\d�                                          (4.11)  

    

4.4.2 With Heat Generation: 

 
Governing differential Eq. (4.3) is a non homogeneous equation. The 

non dimensional temperature ‘θ’ can be expressed as a summation 

function of ‘X’ and ’X’ &’ F’ as follows: 

2 = e(.) + f(., 8)                                                                       (4.12) 

 

Substituting the value of ‘θ’ in terms of ‘ψ’ and ‘ρ’ in Eq. (4.3), we 

have the following two equations: 

P�g
P(� + => + =>?e = 0                                                                    (4.13) 

and 

��:
�(� + =>?f = �:

�)                                                                            (4.14) 

 

Eq. (4.13) is non homogeneous which can be converted to 

homogeneous equation as follows: 

P�∅
P(� + =>?∅ = 0                                                                             (4.15)  

where,                

∅ = => + =>?e                                                                              (4.16)                           

 

   General solution of Eq. (4.15) is: 

∅ = h� WXY(i=>?.) + hL YKZ(i=>?.)                                        (4.17) 
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Solving Eq. (4.17), we get the value of ‘ψ’ as: 

e = [ j`� k7 lm_nik7o (p
o√(j`�ak7o) _`\(R4ik7o) − �

o]                                                  (4.18)     

 

where, 

O = HGZ4�( j`� 
ik7o)                                                                            (4.19)         

 

For solving Eq. (4.14), ‘ρ’ can be expressed as a product function of 

‘X’ and ’F’ as follows: 

 

f(., 8) = V(.)J(8)                                                                      (4.20)      

 

Substituting the value of ‘ρ’ in terms of ‘A’ and ‘B’ in Eq. (4.14), we 

have the following two equations: 

 

P�r
P(� + (=>? + QL)V = 0                                                                  (4.21) 

and 
Pj
P) + QL J = 0                                                                                 (4.22) 

 

Solving the above two equations, we get the values of ‘A’ and ‘B’ as 

follows: 

 
V = hs WXY(i=>? + QL .)                                                            (4.23) 

and             

J = htS4T]� )                                                                                    (4.24)    

 

Putting these values of ‘A’ and ‘B’ in Eq. (4.20):  

f = ∑ h\c�  WXY(u=>? + Q\L .)S4T]� )                                           (4.25)            
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By integration, value of Cn arrived as: 

h\ = (v]ak])
{(v]ak])a_`\(v]ak])} [4 w1 + �

ox _`\wy]z{]
� x

v]ak]    

                                                    

         
j`�

o √{j`��a(y]|{]
� )�} _`\(R4y]|{]

� ) {k] _`\ v]av] _`\ k]
v]k]

 }]                 (4.26) 

 

where,               

                        

}\ = u(=>? + Q\L )  + i=>?                                                       (4.27)     

and  

=\ = u(=>? + Q\L)  − i=>?                                                       (4.28)       

     O = HGZ4� Lj`�
(v]4k])                                                                          (4.29)  

      ~ = HGZ4�( Lj`� 
v]ak]

)                                                                                   (4.30) 
     v]ak]

L = (~ − Z�)                                                                                     (4.31)    
where, (~ − Z�)L > (=> ?) to avoid the imaginary values of λ  

Final expression of ‘θ’ is as follows: 

 

   2 = � j`� lm_nik7o (p
o√(j`��ak7 o) _`\(R4ik7o) − �

o� +                      

 

          ∑ h\c�  WXY(u=>? + Q\L .)S4T]� )                                           (4.32)      
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2-D TRANSIENT HEAT CONDUCTION 

 

5.1     2-D TRANSIENT HEAT CONDUCTION 

When the temperature is a function of two spatial co-ordinates i.e. 

along X-axis and Y-axis and time, the heat transfer is known as two 

dimensional transient heat conduction. Here, Thickness of the slab is 

large compared to previous case. 

 

Two dimensional transient heat transfer phenomenon plays an 

important role in industry as well as in environmental problems. As for 

example, inside the steam boiler, transfers of heat through the furnace 

walls occur along two directions i.e. along width and thickness. In Air 

conditioning duct which carries cold air is of 15-18 Deg C range 

whereas ambient temperature is of 35-40 Deg C. The duct is of square 

shaped and length is too high that heat transfer along that direction is 

neglible. But heat transfer occurs in other two directions i.e. along 

thickness and width of the duct. This is also an example of two 

dimensional transient heat conduction. 

 

 In this analysis, we have considered the slab material as orthotropic. 

Thermal conductivity along X-axis and Y-axis are different. However, 

we have considered thermal conductivity as a constant parameter. The 

two dimensional transient heat conduction equations can also be solved 

by various ways. Here, we solve the same by using Separation of 

Variables Method.  

 

The Governing differential equation is: 

 

���
��� + �� ���

� � = "
#

��
�$                                                                            (5.1) 
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5.2     PROBLEM STATEMENT  
We consider the heat conduction across a square shaped slab of 

dimension, ‘2a’ as shown in figure 5.1. Surrounding temperature 

across the slab in all direction is uniform i.e. Ta. The slab is initially at 

temperature T0, having heat flux at one side and exchanging heat by 

convection in another side. Constant heat transfer co-efficient ‘h1’ and 

‘h2’ are assumed along the horizontal surface of the slab and the 

vertical surface of the slab respectively.  
 
 

 

 
 
 
 
 
 
 

 

 
 

 

 

Fig 5.1: Heat Conduction across square shaped slab 
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The origin of the axis has been selected at the center of the slab. We 

divide this slab into four equal sections around the origin. Heat transfer 

analysis has been performed across a cross sectional module of length 

‘a’ and thickness is also ‘a’. 

 

 

5.3  BOUNDARY AND INITIAL CONDITIONS 

 

5.3.1    BOUNDARY CONDITIONS  

 

at   ' = 0 ; −*� ��
�� = 0                                                                   (5.2a)                                                       

at   ' = 1 ; −*� ��
�� = ℎ",- − -./                                                   (5.2b) 

    at   0 = 0 ;−* ��
� = 0                                                                    (5.2c) 

    at   0 = 1 ;−* ��
� = ℎ1,- − -./                                                    (5.2d)  

 

5.3.2 INITIAL CONDITIONS 

 

   at   2 = 0 ; - = -3                                                                              (5.3)  

 

5.4    GOVERNING DIFFERENTIAL EQUATION  

 

The governing differential equation (GDE) can be expressed as: 

 
�

�� 4*� ��
��5 + �

� 4* ��
� 5 =  678 ��

�$                                                     (5.4)   

       

With considering constant thermal conductivity, GDE becomes: 

 

���
��� + 9:9;

���
� � =  <=>9;

��
�$                                                                      (5.5)  
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The dimensionless parameters are defined as follows: 

 

     @ = �
.  , B =  

.  , C = �D�E�FD�E  , G = H; $<=>.�                                              (5.6) 

 

GDE in dimensionless form is: 

 

    
��I
�J� + 9:9;

��I
�K� =  <=>.�

9;
�I
�$                                                                   (5.7)                            

 

    L = 9;<=>  ;  N = LO,-3 − -./; *� = 9:9;  ; G = #$
.�                                  (5.8)      

 

    Replacing ‘kx’ and ‘ky’ by ‘kr’; and ‘t’ by ‘F’, Governing Equation in  

   dimensionless form is as follows:  

    

     
��I
�J� + *�  ��I

�K� =   �I
�P                                                     (5.9) 

 

Discussion about the Initial and boundary conditions in dimensionless 

form: 

 at   @ = 0 ;  �I
�J = 0                                                                       (5.10a)                                                

at   @ = 1 ;  �I
�J = −QR"C                                                               (5.10b) 

    at   B = 0 ;  �I
�K = 0                                                                        (5.10c) 

    at   B = 1 ; �I
�K = −QR1C                                                                (5.10d)  

 

5.4     MATHEMATICAL FORMULATION 

 

The governing equation is:   

 

     
��I
�J� + *�  ��I

�K� = �I
�P                                                                        (5.11)  

   

Temperature ‘θ’ is a product function of two new variables. By 

separating of variables, Eq. (5.11) can be solved with considering the  
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above mentioned boundary conditions. We use the trial solution of the 

form:  

 

     C,@, B, G/ = T,@, G/∅,B, G/                                           (5.12) 

 

    Replacing ‘θ’ by ‘ψ’ and ‘ϕ’ into Eq. (5.11), the governing equations  

    are as follows: 

 

     ��V
�J� = �V

�P                                     (5.13)   

     and 

     *� ��∅
�K� = �∅

�P                              (5.14) 

 

    Solutions to the Eqs. (5.13) & (5.14) are sought in the following  

    forms: 

 

     W,@, G/ = X,@/Q,G/                 (5.15) 

     and 

    ∅,B, G/ = Y,B/Z,G/                      (5.16) 

 

Replacing the value of ‘ψ’ with the terms of ‘A’ and ‘B’ in Eq. (5.13), 

we have the following two equations: 

 

    
[�\
[J� + ]1X = 0                          (5.17) 

    and 

    
[^
[P + ]1Q = 0                                                       (5.18) 

 

The solutions for the above space dependent functions ‘A’ are obtained 

by solving Helmholtz Eq. (5.17) and then applying boundary 

conditions from Eqs. (5.10a) and (5.10b) as following: 

 

     X,@/ =  _" 7`a,]b@/                                                            (5.19) 
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The solution for the time dependent function ‘B’ are immediately 

obtained from Eq. (5.18) as: 

    Q,G/ =  _deDfg� P                                                                            (5.20)                               

 

   Where C1, C3, Cn are integration constants and λn is the separation    

   constant. 

 

   Putting the above mentioned values of ‘A’ and ‘B’ in Eq. (5.15), we    

   have the following equation: 

 

   W,@, G/ = _beDfg� P 7`a,]b@/                                                        (5.21) 

 

    Substituting the value of ϕ in terms of ‘M’ & ‘N’ in Eq. (5.14), we have  

    the following two equations: 

 

     
[�h
[K� + i�

Hj Y = 0                                                                             (5.22) 

      and 

    
[k
[P + l1Z = 0                                                                                (5.23)    

 

    Solution of the above function ‘M’ is obtained by solving Eq. (5.22)  

    and applying boundary conditions from Eqs. (5.10c) and (5.10d) in the     

    above equations, we have the solutions as:  

 

      Y,B/ =  _m 7`a, i
√Hj B/ + _o aRp, i

qHj B/                                      (5.24) 

 

      

 

  The solution for the time dependent function ‘N’ is immediately  

  obtained from Eq. (5.23) as: 

 

  Z,G/ = _r eDi�P                                                                              (5.25) 
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Replacing ‘M’ and ‘N’ with the above mentioned values in Eq. (5.16): 

 

    ∅,B, G/ =  _t 7`a, iuqHj B/ eDiu�P                                                   (5.26)                                                                        

 

    Determination of Cn and Cm from Eqs. (5.21) and (5.26): 

 

    Applying initial condition at F=0, ψ(X, F) = 1, in Eq. (5.21): 

 

     _b 7`a,]b@/ = 1                                                                          (5.27) 

  

    Multiplying both sides by {cos,λxX/} and then integrating both sides    

   within the range X=0 and X=1, value of Cn arrived as follows: 

 

    Cx = { m |}x ~�1~��|}x, 1~�/�                                                                        (5.28)  

 

    Similarly, 

   _t = � mqHj ��b, �uq�j/
{1iu�qHj ��b,��uq�j /}�                                                               (5.29) 

 

   Replacing the value of Cn and Cm in Eqs. (5.21) & (5.26) and then   

   substituting these values in Eq. (5.12), we get the final expression of      

   dimensionless temperature ‘θ’ as follows: 

 

    C = ∑ ∑ [ "rqHj ��b fg ��b, �uq�j/
{1fg���b, 1fg/}{1iu�qHj ��b,��uq�j /}�t�3�b�3  

            eDfg� P eDiu�P 7`a,]b@/ 7`a, iuqHj B/]                                     (5.30) 
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RESULTS AND DISCUSSIONS 

Initially at t = 0, temperature of the slab, T = T0. When T= T0, θ = 1.At 

final stage when the system becomes steady, T=Ta. At this stage, θ= 0. 

All the graphs have been plotted within this range of θ i.e. θ varies 

from ‘1’ to ‘0’. 

 

6.1    TEMPERATURE PROFILES IN 1-D SLAB 

 

We have tried to analyze one dimensional heat conduction considering 

constant heat generation. Temperature profiles are observed as a 

function of Fourier number as shown in previous section. Fig 6.1(a) 

and 6.1(b) shows the variation of temperature with respect to spatial 

co-ordinates at a particular time subject to constant heat generation.  
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Fig 6.1. Temperature response for 1-D heat conduction in a Slab 

 

In Fig.6.1, Bi1 value at X =0 side has been considered large compared 

to that of the other end. Lower value of heat generation has been 

considered in Fig.6.1 (a) i.e. β value is less compared to Fig.6.1 (b).  
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We have plotted the Fig.6.1 against some values of ‘F’ (i.e. 0.0, 0.05, 

0.1, 0.2, 0.4…..6.4, 12.8).From the Fig. 6.1 (a), it is clear that at F = 

6.4, the system converges towards steady state and at F = 12.8, the 

system reaches at steady state.  

 

In Fig. 6.1(b), as heat generation considered is high, system does not 

reach at steady state. At X=0 side, Biot number considered as 1.0 and 

at the other end of the slab, Biot number considered less as 0.1. As Biot 

number is less at X =1 side, convective heat transfer is also less 

compared to other side of the slab. Hence, variation of ‘θ’ is less in 

right hand side i.e. at X=1 end compared to that of the other end. For 

internal heat generation as well as lower value of Biot number at X = 1 

side of the slab, there must exist some points where θ > 1. 
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             Fig 6.2. Temperature distribution in 1-D Slab for different convected  

                          boundary condition at their boundaries 

 

We have also analyzed the case where Biot numbers at both ends of the 

slab are equal. Fig 6.2 shows the variation of temperature along with 

the spatial co-ordinates of the slab for a particular value of 

dimensionless time F and also subject to constant heat generation. As 

Biot numbers are equal at both ends, convective heat transfer becomes 

equal at both ends of the slab. Heat transfer rate increases along with  
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the length of the slab from both ends of the slab and ‘θ’ becomes 

maximum at the midpoint of the slab which has been clearly reflected 

in the Fig.6.2. Thus symmetric temperature variation obtained at both 

ends of the slab. 

 

The Fig 6.2 also shows two curves for two different values of Biot 

numbers. From this figure, it is clear that with decreasing value of Biot 

number, the curve becomes flatten. As amount of convective heat 

transfer decreasing, variation of ‘θ’ with respect to position ‘X’ also 

decreases.  

 

At very lower value of Biot number, convective heat transfer becomes 

so less that variation of ‘θ’ with respect to ‘X’ is negligible and the 

curve becomes almost flat. If  Biot numbers being very less i.e. 0.0001, 

then rate of heat transfer may be   neglected. It can be treated as 

insulated ends. In this case, variation of ‘θ’ along with length of the 

slab is very negligible. 

 

In the above mentioned phenomenon, if we consider higher value of 

internal heat generation inside the slab, then there may be chance of the 

fact that value of ‘θ’ may exceed 1 and the curve tends to slope in 

upward direction. On the contrary, if we consider the higher Bi value 

and negligible amount of heat generation, then variation of ‘θ’ 

increases and time required for achieving steady state reduced 

drastically. 
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In Fig. 6.3, we have analyzed the case, where, one end of the slab is 

insulated. Fig. 6.3 shows that at X=1 end of the slab, which is 

insulated, the dimensionless temperature ‘θ’ is equal to one which 

indicates that T=Ti, temperature of the slab is same as initial 

temperature. This is because of no heat transfer occurs at insulated end 

of the slab. With increasing the value of Biot number at the other end 

of the slab i.e. at X =0, variation of ‘θ’ is also increasing. 
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        Fig 6.3. Temperature distribution in a one-dimensional slab for  

                    different convected boundary conditions at 0X = and  

                    insulated condition at 1X =  

 

For very lower value of Biot number ‘0.1’, at X=0 end of the slab, 

convective Heat transfer is very less and at other end, there is no heat 

transfer. Hence, the curve will be flat type at X=1 end and then it starts 

sloping down slowly. If we further decrease the value of Biot number 

at X=0 end, the curve becomes almost flatten. Middle curve in the 

figure is for Bi1 value of 0.5 and the lower one is for Bi1 value of 1.0. 

Variation of ‘θ’ is higher in case of higher Bi1 value. Variation of ‘θ’ 

for the Bi1 value of 0.5 lies in between the curves of Bi1 values 0.1 and 

1.0. 
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Further, we have analyzed the case where internal heat generation has 

been varied, keeping other parameters as constant. We consider the 

constant parameters as following: 

Bi1=0.5; Bi2 =0.1; F=0.05; Q0=0.1 and value of ‘β’ has been changed 

from ‘0.1’ to ‘0.5’. 
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Fig 6.4. Effects of variable internal heat generation parameter on  

              temperature distribution in a slab 

 

Fig 6.4 shows the variation of dimensionless temperature along with 

spatial co ordinates with respect to changes of internal heat generation 

at a particular time. Variation of dimensionless temperature decreases 

along with decrease in value of ‘β’. We have plotted two curves for 

two different values of ‘β’ i.e. 0.1 and 0.5. But for this amount of 

difference in ‘β’, variation of ‘θ’ is nominal.  

 

As Biot number is higher at X=0 end than that of the other end, heat 

transfer is higher at X=0 end. Hence, value of ‘θ’ decreases rapidly at 

this end compared to other end of the slab. If we further increase the  

Bi1 value and further decrease the value of ‘β’ then the slab approaches 

towards equilibrium point. 
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6.2    TEMPERATURE PROFILES IN 2-D SLAB 

 

For a two dimensional slab, we have analyzed the variation of ‘θ’ along 

X-axis of the slab and also along Y-axis of the slab. Also we have 

compared the variation of ‘θ’ along with length of the slab for isotropic 

and orthotropic materials.   
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     Fig 6.5. Variation of temperature distribution in a slab: A comparison  

                   of Isotropic and orthotropic materials 

 

Fig 6.5 shows the temperature profiles for isotropic and orthotropic 

materials. For Isotropic material kr=1.0. For orthotropic material as 

discussed previous, kx and ky values are different. The variation of ‘θ’ 

with respect to X-axis, at Y=0 has been shown in Fig.6.5 (a) for 2-D  

Slab. Whereas in Fig.6.5 (b), variation of ‘θ’ along with Y-axis has 

been shown. These variations along X and Y axis are of similar 

patterns. When kr>1,with increase of kr, temperature decreases and 

variation of ‘θ’ increases. 
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In Fig. 6.6, we have plotted the curves showing the variation of ‘θav’ 

and F subject to the condition that Biot number is constant. We have 

varied the thermal conductivity ratio and observed the three different 

curves for three different values of kr. Also we have varied the Biot 

number for a constant value of kr.  
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Fig 6.6. A comparison of average temperature response in a slab as a  

             function of  F for different design conditions 
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When kr is decreasing but less than one which implies that value kx is 

increasing and Biot number along the horizontal surface of the slab i.e 

Bi1 value is increased but Bi1 value is constant. As a result, value of 

convective heat transfer co efficient h1 or length of the body to be 

increased which implies that conductive resistance increased, rate of 

heat transfer decreases.  

 

In Fig.6.6 (a), Biot numbers are of lower value i.e. 0.01 and in Fig.6.6 

(b), Biot numbers are of higher value i.e. 0.1. Biot number is high 

which means convective heat transfer rate is high compared to that of 

shown in Fig.6.6 (a). As convective heat transfer is higher in Fig.6.6 

(b), time required for to reach a steady state is very less than that of 

required in other design conditions as shown in Fig6.6 (a). This is 

clearly reflected in the above figures. Time required to reach a steady 

state is reduced when kr >1. The kr value of isotropic material is 1 lies 

in between 0.5 and 1.5. Thereby, in this design conditions, the curve 

indicates the variation of ‘θav’ with respect to F for isotropic material 

lies in between the curves indicate the variation of orthotropic 

materials of kr value of 0.5 and 1.5.  

 

We have further increased the value of Biot numbers, which is shown 

in Fig. 6.6 (c), where Biot numbers is of 0.5, time required to reach a 

steady state, got drastically reduced. However the variations of ‘θav’ 

with F for isotropic material lies in between that of the variations of kr 

value of 0.5 and 1.5 for orthotropic material. If we increase the thermal 

conductivity ratio when kr >1, heat transfer rate increases and time 

required for reaching the steady condition got reduced which is also 

cleared from the above figures. 
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CONCLUSIONS 

7.1 CONCLUSIONS 

Use of Composite materials in the field of composite technology 

progressed a lot over the last two decades. Structural integrity is the 

main features which governs the choice of materials and form of 

construction for any component. In composite materials, high specific 

strength and low weight are achieved. As for example, plywood is a 

composite material, widely used in the field of construction. 

Constituents of concrete are cement and aggregates. A robust strong 

material, concrete is widely used in infrastructure. FRP fills used in 

cooling tower in power plants are also of composite materials.  An 

analytical model considering a slab of composite material was 

developed for predicting the variation of dimensionless temperature ‘θ’ 

along with dimensionless time ‘F’ and dimensionless position ‘X’ by 

separation of variable method.  

 

From one dimensional slab analysis, it has been observed that if Biot 

numbers are same at both ends of the slab, variation of ‘θ’ is symmetric 

at both ends of the slab. With increase of heat generation, variation of 

‘θ’ also increases with respect to position ‘X’ subject to other 

parameters constant e.g.  F,Q0, Bi1 and Bi2. 

 

From the above mentioned graphs of two dimensional slab analyses, it 

is clear that with increase in thermal conductivity ratio, time taken to 

reach at steady condition being reduced subject to other design 

conditions e.g. heat generation and Biot number is being constant. With 

increase of Biot number (e.g.-from 0.01 to 0.1), time required for 

reaching steady condition got reduced drastically and variation of ‘θ’ 

with respect to position ‘X’ increases. From these analyses, it is 

observed that pattern for variation of ‘θ’ for an isotropic and 

orthotropic material are same and thermal conductivity ratio for an  
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orthotropic material plays an important role in heat transfer 

phenomenon. 

 

Temperature profiles for transient heat conduction in a slab are 

observed for both isotropic and orthotropic materials and a comparison 

between the curves are also focused for composite materials. The 

necessity of composite materials has increased tremendously in power 

plants, infrastructures and aerospace and in many other fields. Gypsum 

board used as false ceiling material in the field of infrastructure is also 

a good example of orthotropic slab. Hence, for thermal analysis of 

composite material, this present analysis can be considered. 
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SCOPE OF FUTURE WORK 

 

8.1 SCOPE OF FUTURE WORK 

A little attempt of analyzing the 2-D Fourier heat conduction for 

Isotropic and Orthotropic materials is executed in this paper. However 

the following works can also be done analytically: 

 

2-D Fourier Heat Conduction considering heat generation can be done 

in the same way. 2-D Non-Fourier heat conduction considering with 

and without heat generation can also be done by SOV Method. Present 

work has been performed on a square shaped slab. However, these 

works can also be performed on other type of Geometries i.e. Sphere, 

Cylinder etc. 

 

Heat transfer analysis can be done for the case if temperature of one of 

the surface of the slab being less than its condensing temperature i.e. 

vapors formed at the slab surface. Three dimensional unsteady 

problems along with variable thermal conductivity can be solved 

analytically. 

 

All these works can be performed considering different boundary 

conditions. All these problems can also be solved by considering the 

radiation. Even, all the above mentioned works can also be solved 

analytically by different methods e.g. – Polynomial Approximation 

Method, Finite Integral Transform Technique, Laplace Transform 

Method, Green's Function Approach, etc. 
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