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1.1. Introduction 

In material science, functionally graded material (FGM) may be characterized by the 

variation in composition and structure gradually over volume, resulting in corresponding 

changes in the properties of the material. Functionally graded materials can be designed for 

specific functions and applications by suitably varying the proportions of the constituent 

phases. The concept of FGM was first introduced in Japan in 1984 during a space plane 

project. In that project, a combination of materials served the purpose of a thermal barrier 

capable of withstanding a surface temperature of 2000 K and a temperature gradient of 1000 

K across a 10 mm section. Presently, the major applications of FGM lie in the high-

temperature environment.  

A typical FGM is an inhomogeneous composite made from different phases of 

material constituents (usually ceramic and metal). By gradually varying the volume fraction 

of the constituent materials, the material properties exhibit a smooth and continuous change 

from one layer to another. It thus eliminates the interface problems and reduces the thermal 

stress concentrations which are commonly encountered in the conventional composites. This 

is due to the fact that the ceramic constituents of FGMs are able to withstand high-

temperature environments due to their better thermal resistance characteristics, while the 

metal constituents exhibit excellent mechanical performance (Shen, 2009).  

There are many areas of application of functionally graded materials. FGMs have 

found applications in high-temperature nuclear reactors and chemical plants, thermal-barrier 

coatings for turbine blades, armor protection for military applications, fusion energy 

https://en.wikipedia.org/wiki/Materials_science
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devices, biomedical materials, including bone and dental implants, high speed components 

in space/aerospace industries, automotive components etc. It has application in various 

branches of engineering like aerospace, mechanical, electrical, civil, bio-medical etc. The 

potential applications of FGM are diverse and numerous. It has enormous potential for 

technological and engineering applications, especially in the extreme thermal environment 

where stress concentration due to high temperature gradients can be either minimized or 

significantly reduced. 

  Various theoretical models are developed to evaluate the effective material 

properties of FGM components with material gradation along either length or thickness 

direction of the component. Micromechanics models based on Mori-Tanaka scheme (Mori 

and Tanaka, 1973), and self-consistent model (Hill, 1965) were used by some of the 

researchers to derive the effective material properties of FGM components for theoretical 

analysis. But the most popular theoretical model in this regard is the volume fraction 

approach. In this approach, the effective material property is evaluated by using the simple 

rule of mixture (Voigt rule) of the constituents (metal and ceramic for the present work) in 

accordance with its volume fraction.      

The beam is one of the most important structural elements which are commonly 

found in various structures and machines. With the evolution of functionally graded 

materials over the past few years, beams made of FGM are being used in various 

applications. With prevailing and increasing application, various researchers are carrying out 

theoretical investigations on static, dynamic and stability behaviors of FGM beams. As the 

FGM components are known to be suitable for high temperature applications, modern day 

researchers are concentrating on the theoretical investigations of FGM components mostly 

in the thermal environment. With this background, the present work mainly deals with the 

thermal buckling analyses of FGM beams.    

For an FGM beam, the material gradation may be either in the length direction or in 

the thickness direction. The first one, termed as the Axially Functionally Graded Material 

(AFGM or AFM), is considered by some of the researchers for investigating the theoretical 

behavior. On the other hand, the second one, in which the material properties vary along the 

thickness direction, is considered by many researchers as it has wider industrial applications. 
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The present work is based on the second model where the property gradation occurs across 

the thickness in accordance with the volume fraction of the constituents.  

Of all of the modes of failure, buckling is probably the most common and most 

catastrophic. Leonhard Euler long ago showed that there was a critical load for buckling of a 

slender column. With any smaller load, the column would remain straight and support it. 

With any larger load, the least disturbance would cause the column to bend sideways with 

an indefinitely large displacement, i.e., it would buckle. The collapse of a slender element 

which is subjected to compression, leading to a sudden lateral deflection is called buckling. 

Mathematical analysis of buckling often makes use of an artificial axial load eccentricity, 

that introduces a secondary bending moment which is not a part of the primary applied load. 

As the applied load is increased on a member, such as a column, it will ultimately become 

large enough to cause the member to become unstable. Further load will cause significant 

and somewhat unpredictable deformations, possibly leading to complete loss of the 

member's load-carrying capacity. If the deformations that follow buckling are not 

catastrophic, the member will continue to carry the load that caused it to buckle. 

The main subject of the present work is to investigate the thermal buckling load of 

FGM beams. Three different thermal loadings are considered in the present thesis work. The 

first one considers the uniform temperature rise of the member. The second one considers 

linear temperature gradient across the thickness. And the third one assumes thermal loading 

at steady-state condition. In the third case, heat flows through the thickness from one surface 

to the other when the extreme surfaces of the beam are kept at different temperatures. The 

temperature dependence of the material properties is appropriately considered in the present 

analysis. 

Tapered beams are commonly found in various applications. The problem involving 

investigation of buckling load of the tapered FGM beam is also taken up in this thesis work. 

For this problem, uniformly tapered beam is considered under the application of mechanical 

load. This part of the thesis mainly focuses on determining the critical buckling load under 

different classical boundary conditions. 
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1.2. Literature Review 

An analytical investigation predicting snap-through path of a compressed bi-stable 

buckled beam was performed by Vangbo (1998) using a classical theory. It was also shown 

that the model can be used for a class of non-homogeneous sandwich beams. A one-

dimensional mathematical model was developed by Parlapalli and Shu (2004) to analyze the 

buckling behavior of a two-layer beam with single delamination under clamped and simply 

supported boundary conditions. Non-dimensionalized axial and bending stiffnesses are used 

to investigate the buckling behavior of tri-layer beams having different delaminations by 

MSRao et al. (2004), and by MSRao and Shu (2004). Bochicchio and Vuk (2010) 

investigated the buckling and longtime dynamic behavior of an extensible elastic 

homogeneous beam resting on a visco-elastic foundation with positive stiffness and damping 

constant. Kozic et al. (2014) presented an analytical theory to define the dynamic 

characteristics of elastically connected parallel-beams under compressive axial loading. 

Grognec and Saoud (2015) carried out a theoretical study of the local/global buckling and 

post-buckling behavior of sandwich columns under axial compression. Li and Qiao (2015) 

presented buckling and post-buckling behavior of shear deformable anisotropic laminated 

composite beams with initial imperfection subjected to axial compression. The next three 

sub-sections are devoted for discussing literatures for three different categories. 

 

1.2.1.   Literature survey on FGM beams in general 

High-order flexural theories for short functionally graded (FG) symmetric beams 

under three-point bending was presented by Benatta et al. (2008). Ke et al. (2009) study 

post-buckling response of FGM beams containing an open edge crack based on Timoshenko 

beam theory and von Kármán type nonlinear kinematics. In that work, exponential through 

thickness distributions of material properties are assumed, and Ritz method is employed to 

derive the nonlinear governing equations. Various higher-order shear deformation beam 

theories for bending and free vibration of FG beams were developed by Thai and Vo (2012). 

Wattanasakulpong et al. (2012) employed an improved third order shear deformation 

theory to formulate a governing equation for predicting free vibration of layered FG beams. 

The Ritz method is adopted to solve the governing equation for various types of boundary 

conditions, and the frequency results are validated by some available and experimental 
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results. Analytical relations between the critical buckling load of an FGM Timoshenko beam 

and that of the corresponding homogeneous Euler-Bernoulli beam subjected to axial 

compressive load had been derived by Li and Batra (2013) for clamped-clamped (CC), 

simply supported-simply supported (SS) and clamped-free (CF) edges. Şimşek and Yurtcu 

(2013) examined bending and buckling of a FG nano-beam based on the nonlocal 

Timoshenko and Euler-Bernoulli beam theory. The material properties of the FG nano-beam 

are assumed to vary in the thickness direction. Şimşek et al. (2013) developed a micro-scale 

FG Timoshenko beam model for the static bending analysis based on the modified couple 

stress theory.  

Nie et al. (2013) studied the plane stress problem of an orthotropic FG beam with 

arbitrary graded material properties along the thickness direction by the displacement 

function approach for the first time. A differential equation of the homogenized FGM beam 

deflection and its solution were presented by Murin et al. (2013a) to investigate the free 

vibration analysis of the beams with polynomial continuous longitudinal and transversal 

variation of material properties. Murin et al. (2013b) studied the shear correction function 

and evaluated it in the modal analysis of the FGM beams. Aydin (2013) studied free 

vibration of beams made of FGM containing any arbitrary number of open edge cracks. The 

study is based on Euler-Bernoulli beam and massless rotational springs connecting two 

intact segments of the beam. Li et al. (2014a) studied the time-dependent behavior of a 

simply-supported laminated FG beam with visco-elastic interlayer. Sarkar and Ganguli 

(2014) studied the free vibration behavior of axially functionally graded (AFG) Timoshenko 

beams, with uniform cross-section and having fixed–fixed boundary. 

The work of Sitar et al. (2014) discussed governing differential equation for 

determining large deflections of slender, non-homogeneous beam subjected to a combined 

loading and composed of a finite number of laminae, which are made of nonlinearly elastic, 

modified Ludwick's type of material with different stress-strain relations in tension and 

compression domain. A comprehensive dynamic model of a rotating hub FGM beam system 

was developed by Li et al. (2014b) based on a rigid-flexible coupled dynamics theory to 

study its free vibration characteristics. Zhang et al. (2014) developed size-dependent beam 

model made of FGM that contains both micro-scale and shear deformation effects. Liu and 

Shu (2014) developed an analytical solution to study the free vibration of exponential 
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functionally graded beams with a single delamination based on Euler-Bernoulli hypothesis. 

Xiao et al. (2014) developed an analytical solution to study the free vibration behavior of 

exponential functionally graded beams with a single delamination. 

Nguyen et al. (2013) developed the first-order shear deformation beam theory for 

static and free vibration of axially loaded rectangular FG beams. The effects of the power-

law index, material contrast and Poisson’s ratio on the displacements, natural frequencies, 

buckling loads and load-frequency curves as well as the corresponding mode shapes are 

investigated. Vo et al. (2015) presented a finite element model for free vibration and 

buckling analyses of functionally graded (FG) sandwich beams by using a quasi-3D theory 

in which both shear deformation and thickness stretching effects are included.  

 

1.2.2.  Literature survey on FGM beams under thermal loading 

Three-dimensional thermal buckling analysis was performed by Na and Kim (2004) 

for functionally graded materials for which material properties are assumed to be 

temperature dependent, and varied continuously in the thickness direction according to a 

simple power law distribution in terms of the volume fraction of ceramic and metal. They 

analyzed thermal buckling behavior under uniform or non-uniform temperature rise across 

the thickness. The buckling and vibration behavior of FGM sandwich beam having 

constrained visco-elastic layer was studied by Bhangale and Ganesan (2006) in thermal 

environment by using finite element formulation. The FGM sandwich beam was assumed to 

be clamped on both edges. Li & Song (2006) carried out large post-buckling behavior of 

clamped-clamped and pinned-pinned Timoshenko beams under non-uniform temperature 

rise across the thickness. Zhao et al. (2007) studied the thermal post buckling behavior of 

simply-supported FGM beams with temperature-independent material properties under 

uniform and non-uniform temperature rise.  

Anandrao et al. (2010) performed thermal post-buckling analysis of clamped and 

simply-supported FGM beams using Rayleigh-Ritz and finite element method. Using Euler-

Bernoulli beam theory, Kiani and Eslami (2010) investigated the thermal buckling load of 

Aluminum/Alumina FGM beams under various thermal gradients using temperature-

independent material properties. Vaz et al. (2010) investigated the elastic buckling and 

initial post-buckling behavior of aluminum alloy beams with double hinged fixed ends and 
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subjected to uniform heating. Kiani et al. (2011a, 2011b) performed thermo-electrical and 

thermal stability analysis of piezoelectric FGM beams. Wattanasakulpong et al. (2011) 

investigated the thermal buckling load of FGM beams under uniform temperature rise using 

an improved third order shear deformation theory. Pi et al. (2011) carried out thermal 

buckling analysis of clamped slender beams considering the effects of the uncertainties of 

the material and geometric parameters. 

Based on first-order shear deformation theory, Ma and Lee (2011) carried out 

thermal post-buckling analysis of FGM beams under uniform temperature rise using both 

temperature dependent material properties. Using Euler-Bernoulli beam theory, Fallah and 

Aghdam (2012) determined the thermal buckling load of FG beams resting on a nonlinear 

elastic foundation for uniform temperature rise using temperature-independent material 

properties. Ma and Lee (2012) obtained an exact, closed-form solution for the nonlinear 

static responses of beams made of functionally graded materials (FGM) subjected to a 

uniform in-plane thermal loading. The equations governing the axial and transverse 

deformations of FGM beam are derived based on the nonlinear first-order shear deformation 

beam theory and the physical neutral surface concept. The buckling behavior of 

piezoelectric FGM beams was studied by Fu et al. (2012) employing Euler-Bernoulli beam 

theory.  

Thermal effect on buckling and free vibration behavior of FG micro-beams based on 

modified couple stress theory was presented by Nateghi and Salamat-talab (2013) using 

classical and first order shear deformation beam theories. The work of Komijani et al. 

(2013) dealt with the small free vibration of functionally graded piezoelectric material 

(FGPM) beams with rectangular cross sections in pre/post-buckling regimes. The beam is 

assumed to be under in-plane thermal and electrical excitations. Shegokar and Lal (2013) 

studied the stochastic nonlinear bending response of FGM beams with surface bonded 

piezoelectric layers subjected to thermo-electromechanical loadings with uncertain material 

properties. Non-linear bending analysis of shear deformable FGM beams was carried out by 

Zhang (2013) under combined mechanical and thermal loading. The post-buckling behavior 

of the FGM Timoshenko beam was studied by Rahimi et al. (2013) using an energy 

approach.  
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Kiani and Eslami (2013) studied the thermal buckling behavior of FG beams for 

various thermal gradients using Timoshenko beam theory. Thermal buckling and post-

buckling analyses of FG Timoshenko beams lying on a non-linear elastic foundation are 

carried out by Esfahani et al. (2013) for uniform temperature rise. Ghiasian et al. [2013, 

2015] studied the dynamic buckling behavior of FGM beams resting on elastic foundation 

and subjected to uniform temperature rise loading. The free vibration behavior of thermally 

pre/post buckled FGM beams supported on a nonlinear hardening elastic foundation was 

investigated by Esfahani et al. (2014). Thermal post-buckling and large amplitude free 

vibration (including the effect of rotary inertia) behavior of prismatic and shear flexible 

Timoshenko beams were investigated by Gunda (2014) in the form of simple closed-form 

solutions by making use of the Rayleigh-Ritz method. The research work of Shen and Wang 

(2014) dealt with the large amplitude vibration, nonlinear bending and thermal post-

buckling of functionally graded material (FGM) beams resting on an elastic foundation in 

thermal environments. Li (2014) carried out thermal post buckling analysis of three-

dimensional braided shear deformable beams subjected to various temperature distributions 

through the thickness.  

Komijani et al. (2014) investigated the buckling and post-buckling analysis and 

small amplitude vibrations in the pre/post-buckling regimes of functionally graded beams 

resting on a nonlinear elastic foundation and subjected to in-plane thermal loads. The 

thermal effect on buckling and free vibration characteristics of FG size-dependent 

Timoshenko nano-beams subjected to an in-plane thermal loading were investigated by 

Ebrahimi and Salari (2015). Shen (2015a, 2015b) investigated the nonlinear vibration, 

nonlinear bending and thermal post-buckling behavior of uniformly distributed and 

functionally graded fiber reinforced cross-ply and angle-ply laminated beams resting on 

Pasternak elastic foundations under different sets of hygro-thermal environmental 

conditions.  

 

1.2.3.  Literature survey on tapered FGM beams 

The free vibration behavior of axially functionally graded beam with a non-uniform 

cross-section was investigated by Huang and Li (2010) using Euler-Bernoulli beam theory 

and by Huang et al. (2013) using Timoshenko beam theory. Shahba et al. (2011) studied free 

http://appliedmechanics.asmedigitalcollection.asme.org/article.aspx?articleID=1733194
http://appliedmechanics.asmedigitalcollection.asme.org/article.aspx?articleID=1733194
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vibration and stability analysis of axially functionally graded tapered Timoshenko beams 

through a finite element approach. The free vibration and stability of axially functionally 

graded tapered Euler-Bernoulli beams were studied by Shahba and Rajasekaran (2011) using 

a new approach called differential transform element method (DTEM). Rajasekaran (2013a, 

2013b) studied bending vibration behavior of centrifugally stiffened axially functionally 

graded Euler-Bernoulli and Timoshenko tapered beams. The large displacement response of 

tapered cantilever beams made of axially functionally graded material was investigated by 

Kien (2013) using the finite element method.  

The large deflections of tapered functionally graded beams subjected to end forces 

were studied by Kien and Gan (2014) using the finite element method and employing a first 

order shear deformable beam element. The large displacement behavior of tapered cantilever 

FG beams subjected to end forces was performed by Kien (2014) using Euler-Bernoulli 

beam theory. Niknam et al. (2014) investigated non-linear bending behavior of tapered FGM 

beam subjected to thermal and mechanical loading employing Euler-Bernoulli beam theory. 

Free vibration dynamic analysis of axially functionally graded tapered beam was carried out 

by Rajasekaran and Tochaei (2014) using the various differential element method. Maganti 

and Nalluri (2015) investigated bending vibration behavior of rotating functionally graded 

double-tapered beam.  

 

1.3. Mathematical Background 

 The present work is based on the energy principle of structural mechanics. The 

governing equation is derived using the principle of minimum total potential energy. The 

solution of the governing equation is obtained by approximating the displacement fields 

following Ritz method. A brief discussion of the principles and methodologies followed in 

the present thesis work is given in the present section. 

 

1.3.1. Energy principles in structural mechanics 

The energy principles of structural mechanics include the principles of virtual 

displacements and forces, the principle of minimum total potential energy and the principle 

of maximum total complementary energy (Shames and Dym, 2009; Reddy, 2002; Cook et 
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al. 2002). These principles in variational form are used to derive the equations of 

equilibrium or motion of deformable solids. 

The virtual work is the work done on a particle or a deformable body by actual 

forces in moving through a hypothetical or virtual displacement that is consistent with the 

geometric constraints. The applied forces are considered to be constant during the imposed 

virtual displacement. The principle of virtual displacements states that the virtual work done 

by actual forces is zero, if and only if the body is in equilibrium.  

If a particle is in equilibrium under the action of n  concurrent forces 1 2 3, , .... nF F F F , 

and if the particle is given an arbitrary virtual displacement u  during which all forces along 

with their directions are fixed, then the total virtual work done by all forces is given by, 

 uFuFuFuFW n  ......321  uF
n

i

i 







 

1

   (1.1) 

The expression 
1

n

i

i

F


 
 
 
  is the vector sum of all forces acting on the particle. From vector 

mechanics, it is known that the sum is zero if the particle is in equilibrium and thus giving 

0W . Conversely, if 0W  and u  is arbitrary, it follows that



n

i

iF
1

0 , i.e., the 

particle is in equilibrium. In other words, the particle is in equilibrium if and only if  

0W  for any choice of u .The statement 0W  is the mathematical statement of the 

principle of virtual displacements for a particle. Here,   is the variational operator.  

A generalization of the principle of virtual displacements for deformable bodies can 

now be considered. In deformable bodies, material points can move relative to one another 

and do internal work in addition to the work done by the external forces. Thus, it should 

consider the virtual work done by internal forces (i.e., stresses) as well as that done by 

external forces. Consider a continuous material occupying the volume   and in equilibrium 

under the action of body forces f and surface tractions t . Suppose that over portion 1S  of 

the boundary, displacements arc specified to be û  and on portion 2S , tractions are specified 

to be t̂ . The boundary portions 1S  and 2S  are disjoint (i.e., do not overlap) and their sum is 

the total boundary S . Let ),,( 321 uuuu   be the displacement vector corresponding to the 

equilibrium configuration of the body, and let ij  and ij  be the associated stress and strain 
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components, respectively. No assumption is made in concerning the constitutive behavior of 

the material body.  

The set of admissible configurations is defined by sufficiently differentiable 

displacement fields that satisfy the geometric boundary conditions: uu ˆ on 1S . Of all such 

admissible configurations, the actual one corresponds to the equilibrium configuration with 

the prescribed loads. In order to determine the displacement field u corresponding to the 

equilibrium configuration, let the body experience a virtual displacement u from the 

equilibrium configuration. The virtual displacements are arbitrary continuous functions 

except that they satisfy the homogeneous form of the specified geometric boundary 

conditions, i.e., 0u on 1S . The principle of virtual work states that a continuous body is 

in equilibrium if and only if the virtual work of all forces (internal and external), acting on 

the body, is zero through a virtual displacement, i.e., 

  I E 0W W W            (1.2) 

Here, IW  is the virtual work due to the internal forces and EW  is the virtual work done 

due to the external forces. The principle of virtual work is independent of any constitutive 

law. The principle may be used to derive the equilibrium equations of deformable solids. 

The principle of virtual work discussed is applicable to any continuous body with 

arbitrary constitutive behavior (i.e., elastic or inelastic). A special case of the principle of 

virtual work that deals with elastic (linear as well as nonlinear) bodies is known as the 

principle of minimum total potential energy. For elastic bodies, there exists a strain energy 

density function 0U  such that, 

  
ij

ij

U







 0         (1.3) 

The strain energy density 0U  is a function of strains at a point and is assumed to be positive 

definite. Let, d  is the elemental volume over the volume  . The principle of virtual 

displacements, i.e., 0W , can be expressed in terms of the strain energy density 0U  as 

follows: 

0W   

I E 0W W     
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2

ˆ 0ij ij
S

d f ud t udS   
 

    
      

0 0ij

ij

U
d V 




  


  

0 0U d V 


    

  0U V    

  0   

where, 
2

ˆ
S

V f ud t udS  


   
     , 

2

ˆ
S

V fud tudS


   
     and   dUU 0 . 

Here, U is the strain energy and V  is the work potential. The sum UV   is called the 

total potential energy of the elastic body. Hence the principle of minimum total potential 

energy is mathematically given by,  

    0 VU .        (1.4) 

The principle of virtual displacements as well as the principle of minimum total 

potential energy provide, when applied to an elastic body, the equilibrium equations. The 

main difference between them is that principle of virtual displacements gives the 

equilibrium equations in terms of stresses (or stress resultants), whereas the principle of 

minimum total potential energy gives them in terms of the displacements, because a 

constitutive relation is assumed to replace the stresses in terms of the displacements. 

 

1.3.2. Ritz method 

The energy methods derived from the principles of virtual displacements and forces 

as applied to continuous systems are used to determine the governing equations and natural 

boundary conditions of the problem. By directly using the variational statements (i.e., virtual 

work principles, the principle of minimum total potential energy, or the principle of 

complementary energy), a powerful method is often used in structural mechanics for 

determining the approximate solutions to the governing equations of a problem. The method 

bypasses the derivation of the governing differential equations (Euler equations) and goes 

directly from a variational statement of the problem to the solution of the Euler equations. 
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One such direct method was proposed by German engineer W. Ritz (Shames and Dym, 

2009; Reddy, 2002).  

For a quadratic functional  I u , let the solution 0u  is obtained by  minimizing it, 

i.e., making   0uI . In structural mechanics problems, the functional  uI  represents the 

total potential energy and   0uI  (the principle of minimum total potential energy) yields 

the Euler equation. An approximation is taken for  xU N  of  xu0 , for a fixed and 

preselected N , in the form given below: 

         xxcxUxu
N

i

iiN 0

1

0   


,     (1.5) 

where,  0 x  is the function that satisfies the specified essential boundary conditions of the 

problem,  xi  are the set of coordinate functions that satisfy the homogeneous form of the 

specified essential boundary conditions and ic  are the set of unknown real constants 

(coordinates). These constants are determined by the condition that  NUI  is the minimum. 

In the Ritz method, an approximate solution NU  (which may be exact if the right 

kind of approximate solution is chosen) is taken to the problem as a finite linear combination 

of the form of equation (1.5). If 0  and i  are taken such that NU  satisfies the specified 

essential boundary condition,   00 u  and if NU  is substituted into the total potential 

energy functional  , then,   is obtained as a function of the parameters Nccc ,...,, 21  (after 

carrying out the indicated integration with respect to x) as given below:  

   Nccc ,...,, 21 .       (1.6) 

Then ic are determined (or adjusted) such that 0 , in other words,   is minimized with 

respect to ic , where 1,2,3....i N . The minimization of   is given mathematically as 

follows:  

  0     

1 2

1 2

........ 0N

N

c c c
c c c
  

  
    

  
 

1

0
N

j

j j

c
c





 


         (1.7) 
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Since the set  ic  is linearly independent, it follows that: 

  0




ic
  for Ni ...3,2,1     (1.8) 

or      bcA          (1.9) 

The equation (1.9) represents a set of N  linear equations among Nccc ,...,, 21  whose solution 

together with equation (1.5) yields the approximate solution  xU N . This completes the 

description of the Ritz method. In equation (1.9),  A  is termed as the stiffness matrix and 

 b  is termed as the load vector. 

 

1.4. Overview of the Thesis Problems  

 Two broad categories of problems are solved in the present thesis work. The first one 

involves determination of thermal critical buckling load of FGM beams under in-plane 

thermal loading. The second kind of problem deals with the determination of critical 

buckling load of FGM tapered beams. It is to be mentioned that the thermal buckling 

problem constitutes the major portion of the present thesis work. 

 FGM beam made of ceramic and metal constituents is considered. For modeling 

FGM, material gradation along the thickness direction is considered. Employing the simple 

rule of mixture (Voigt model; Shen, 2009), effective material properties are evaluated in 

accordance with the power law variation of volume fraction of the constituents. In the FGM 

model considered, the top and the bottom layers are pure ceramic and pure metal 

respectively. For the thermal problem, temperature dependence of the material properties is 

considered using the well-known cubic polynomial relationship (Reddy and Chin, 1998). 

 Euler-Bernoulli beam theory is used to model the slender FGM beam. The governing 

equations are derived using the principle of minimum total potential energy. The 

formulation is based on unknown displacement fields. The governing equations, obtained as 

an eigenvalue problem, are solved by approximating the displacement fields following Ritz 

method. The descriptions of the specific problems are given in following sub-sections.    
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1.4.1. Thermal buckling of FGM beams 

 If the temperature of an axially constrained beam layer is increased above the stress-

free value, a compressive thermal stress is induced. Hence, a compressive thermal force is 

induced in an axially restrained beam with temperature rise. For an FGM beam, the induced 

thermal force generally does not pass through the centroidal axis, making it eccentric. So an 

FGM beam under temperature rise is prone to instability due to the effect of the thermal 

compressive force. For such a beam, the temperature change leading to the critical buckling 

condition must be calculated as it is very important parameter for the design.    

 Three different thermal loadings are considered (Javaheri and Eslami, 2002): (a) 

Uniform temperature distribution or UTD, in which the temperature of the entire beam is 

increased uniformly; (b) Linear temperature distribution or LTD, in which the top (pure 

ceramic) layer is kept at a higher temperature than that of the bottom one (pure metal kept at 

stress-free temperature always), and a linear temperature gradient is assumed along the 

thickness direction; and, (c) Non-linear temperature distribution or NLTD, in which the 

extreme layers are kept at different temperatures as considered in LTD but a non-linear 

thermal gradient is induced at steady-state heat conduction condition.   

 Three different boundary conditions are considered for this category of the problems, 

namely, beam with both ends clamped (CC), beam with both ends simply supported (SS) 

and, beam with one end clamped and the other simply supported (CS). In all these cases, 

axial displacements at the ends are restricted. For this study, three different metal-ceramic 

functionally graded material compositions are used. These are Stainless Steel 

(SUS304)/Alumina (Al2O3), Stainless Steel/Silicon Nitride (Si3N4) and Stainless 

Steel/Zirconia (ZrO2).       

  

1.4.2. Buckling of tapered FGM beams 

  For this problem, critical buckling load of uniformly tapered FGM beams is 

determined. The beam with constant width is assumed to be tapered along the length 

direction where the thickness changes uniformly from one end to the other. Three different 

boundary conditions are considered, namely, beam with both ends clamped (CC), beam with 

both ends simply supported (SS) and, beam with one end clamped and the other simply 

supported (CS). It is to be mentioned that for CS beam, the clamped end is assumed to be of 
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higher thickness compared to that at the simply supported end. Two FGMs such as Stainless 

Steel (SUS304)/Zirconia (ZrO2) and Titanium alloy (Ti-6Al-4V)/Zirconia are considered for 

this study.  

 

1.5. Layout of the Thesis 

 The mathematical formulation of the thermal buckling problem is described in 

chapter 2. The description of FGM modeling and its temperature dependence are discussed 

in detail. The temperature coefficients for various material properties are given for different 

FGM constituents. Mathematical modeling of various thermal loadings is discussed. The 

governing equation is derived and the solution algorithm is described as the problem is 

physically non-linear. The assumed coordinate functions for the approximate displacement 

fields are listed.   

 In the present thesis work, the graphical variations of non-dimensional thermal 

buckling load with volume fraction index are presented. These variations are presented in 

two different forms; one for different length-thickness ratios for a fixed FGM and the other 

for different FGMs for a fixed length-thickness ratio. The results in these formats along with 

appropriate discussions are presented in chapter 3, chapter 4 and chapter 5 for UTD, LTD 

and NLTD respectively. Additional considerations for limit thermal loads are discussed in 

chapter 5. It is to be mentioned that the limit thermal load is defined as the load at which the 

material property responsible for thermal stress calculation becomes zero. 

 Chapter 6 discusses the entire problem of determination of critical buckling load of 

FGM beams starting from the mathematical formulation to the results obtained and its 

corresponding discussion. The variation of non-dimensional buckling load with taperness 

parameter is presented graphically for different volume fraction indices. Tapered beam up to 

ninety percent reductions in end thicknesses are considered.  The buckling mode shape plots 

for different taperness parameters are also presented.   
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2.1. Problem Description 

The term beam has a very specific meaning in structural mechanics. It is a 

component that is designed to support transverse loads, that is, loads that act perpendicular 

to the longitudinal axis of the beam. Here, Euler-Bernoulli beam theory is followed and, thus 

the effect of shear deformation is neglected. Generally, for a beam with a length-thickness 

ratio 20 or more, Euler Bernoulli beam theory can be used. A beam with length L , width 

b and height h  is considered as shown in Figure 1. As shown in Figure 1, x, y and z denote 

the coordinate axes along the length, width and thickness directions respectively. It is to be 

mentioned that the coordinate z originates from the mid-plane of the beam. In the present 

work, the graded material properties are assumed to be through the thickness direction.  

The FGM beam considered consists of metal and ceramic constituents. The bottom 

layer ( 2z h  / ) consists of fully metal constituent, i.e., it is a metal rich layer. For any 

layer, moving from bottom to top, the metal constituent decreases and the ceramic 

constituent increases. Finally, the top layer ( 2z h  / ) consists of fully ceramic constituent, 

i.e., it is a ceramic rich layer. The bottom layer (metal rich) is considered to be at 

temperature mT , the top layer (ceramic rich) is considered to be at temperature cT  and the 

stress free temperature is taken as 0T . It is to be noted that 0T =300 K is considered 

throughout this work. It is to be mentioned that cT > mT  for non-uniform temperature 

distribution across the beam thickness. 
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Figure 2.1: Beam with dimension and coordinate axes. 

 

If the temperature of an axially constrained beam layer is increased above the stress-

free value, a compressive thermal stress is induced. Hence, a compressive thermal force is 

induced in an axially restrained beam with temperature rise. For an FGM beam, the induced 

thermal force generally does not pass through the centroidal axis, making it eccentric. So an 

FGM beam under temperature rise is prone to instability due to the effect of the thermal 

compressive force. At critical condition, an FGM beam under in-plane thermal load attains a 

bent equilibrium configuration in the neighborhood of its straight configuration under 

external disturbance. The present work deals with the determination of temperature rise at 

critical condition where, the equilibrium conditions are applicable at the bent configuration.   

Three different thermal loadings are considered: (a) Uniform temperature 

distribution (UTD), in which the entire beam temperature is raised to a temperature uT > 0T , 

(b) Linear temperature distribution (LTD), in which the thermal gradient is linear across the 

beam thickness and, (c) Non-uniform temperature distribution (NLTD), where a non-linear 

thermal gradient is set up across the beam thickness due to steady-state heat conduction. The 

temperature dependence of the relevant material properties, namely elastic modulus E , 

shear modulus G , thermal expansion coefficient   and Poisson’s ratio   are considered. 

The thermal conductivity coefficient K  is assumed to be independent of temperature for the 

present study. It is to be mentioned that the material property is assumed to be linear elastic 

obeying Hooke’s law. 
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Three different boundary conditions are considered, namely, beam with both ends 

clamped (CC), beam with both ends simply supported (SS) and, beam with one end clamped 

and the other end simply supported (CS). For all these cases, axial displacements at the ends 

are fully constrained. 

 

2.2.  Modeling of FGM 

The volume fraction cV  of the ceramic constita power lawssumed to follow power 

law given by, 
1

2

k

c

z
V

h

 
  
 

. Accordingly, the volume fraction mV  of the other constituent 

(metal) is given by, 
1

1 1
2

k

m c

z
V V

h

 
     

 
. Here k  )0(  k  is the volume fraction 

index.  

The effective material property fP  of any layer z is determined using the simple rule 

of mixture (Voigt rule) of the metal and ceramic constituents as given below (Shen, 2009):   

 
k

mcmccmmf
h

z
PPPVPVPP 










2

1
,    (2.1) 

where, cP  and mP  are the material properties of the ceramic and metal constituents 

respectively, and, cV   and mV  are the volume fraction of the ceramic and metal constituents 

respectively. The value of k  equal to zero represents a fully ceramic beam  1cV . Hence 

the various effective material properties are given as follows: 

 
1

2

k

f m c m

z
E E E E

h

 
    

 
,      (2.1a) 

 
1

2

k

f m c m

z

h
   

 
    

 
,      (2.1b) 

 
1

2

k

f m c m

z

h
   

 
    

 
,       (2.1c)  

 
1

2

k

f m c m

z
K K K K

h

 
    

 
.      (2.1d)  
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Table 2.1: Temperature coefficients for different material properties. 

 

 

Material Property 1P  0P  
1P  2P  3P  

 

Stainless 

Steel 

(SUS304) 

 (K
-1

) 0 12.33e-6 8.086e-4 0 0 

E (Pa) 0 201.04e+9 3.079e-4 -6.534e-7 0 

K (W m
-1

 K
-1

) 0 15.379 -1.264e-3 -2.092e-6 -7.223e-10 

  0 0.3262 -2.002e-4 3.797e-7 0 

Alumina 

(Al2O3) 

 

 (K
-1

) 0 6.8269e-6 1.838e-4 0 0 

E (Pa) 0 349.55e+9 -3.853e-4 4.027e-7 -1.673e-10 

K (W m
-1

 K
-1

) -1123.6 -14.087 -6.227e-3 0 0 

  0 0.2600 0 0 0 

Silicon 

Nitride 

(Si
3
N

4
) 

 

 (K
-1

) 0 5.8723e-6 9.095e-4 0 0 

E (Pa) 0 348.43e+9 -3.07e-4 2.16e-7 -8.946e-11 

K (W m
-1

 K
-1

) 0 13.723 -1.032e-3 5.466e-7 -7.876e-11 

  0 0.2400 0 0 0 

Zirconia 

(ZrO2) 

 

 (K
-1

) 0 12.766e-6 -1.491e-3 1.006e-5 -6.778e-11 

E (Pa) 0 244.27e+9 -1.371e-3 1.214e-6 -3.681e-10 

K (W m
-1

 K
-1

) 0 1.7 1.276e-4 6.6485e-6 0 

  0 0.2882 1.133e-4 0 0 
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The effective shear modulus is determined using the relation, 
 2 1

f

f

f

E
G





. It is to be 

mentioned that the subscripts c , m  and f  correspond to the ceramic, metal and effective 

material constituents respectively. 

As the present problem involves increase of the temperature of the beam layers 

above the stress-free temperature, the material properties should be calculated in accordance 

with the temperature. The temperature-dependent material properties of the individual 

constituents cP( or )mP  are calculated using a cubic polynomial relationship (Touloukian, 

1967) given by,  

cP  or mP )1( 3

3

2

21

1

10 TPTPTPTPP  

     (2.2) 

 where, 32101 ,,,, PPPPP  are the coefficients of temperature, which are specific to the 

materials considered and T  is the temperature in K. Except the thermal conductivity, all 

other material properties are now functions of both the thickness coordinate and the 

temperature. Various temperature coefficients for different material properties 

corresponding to different material constituents are listed in Table 2.1. 

 

2.3.  Temperature Distribution 

 As already mentioned that an increase in the beam temperature above the stress-free 

value gives rise to a thermal compressive force. In this thesis work, three different thermal 

loadings are considered with cT  and mT  being the temperatures of the top and bottom layers. 

These are as follows: 

(i) Uniform Temperature Distribution (UTD) 

(ii) Linear Temperature Distribution (LTD) 

(iii) Non-Linear Temperature Distribution (NLTD) at steady-state heat conduction 

condition.  

 

2.3.1.  Uniform Temperature Distribution (UTD) 

 Under this category, the beam temperature is uniformly increased to a value of 

uT > 0T .   This leads to same temperature rise for all the beam layers above 0T . But as the 
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different FGM beam layers are having different thermo-mechanical properties, the thermal 

compressive stress are different for different layers. For any layer z, the temperature is given 

by, 

0( )T z T T  ,        (2.3)  

where, T  is given by 0uT T T   . Here, T  is defined as the dimensional thermal load 

for UTD.  

 

2.3.2.  Linear Temperature Distribution (LTD) 

Generally, the temperature distribution for any given surface temperatures (top & 

bottom surfaces) is obtained by solving the steady-state heat conduction equation along the 

beam thickness. But, if the beam is thin enough, the temperature distribution is 

approximated as linear through the thickness. Hence, the temperature as a function of 

thickness coordinate z can be written in the following equation form: 

 
1

( )
2

m c m

z
T z T T T

h

 
    

 
.       (2.4) 

From equation (2.4), it is clear that the layer wise temperature )(zT  is a function of z  which 

follows a linear relation between cT  and mT . In this case, the temperature field is considered 

to be uniform over the beam length, but vary linearly along its thickness. Here, 

 c mT T T    is defined as the dimensional thermal load for LTD. 

 

2.3.3.  Non-Linear Temperature Distribution (NLTD) 

In this case, heat conduction across the thickness is assumed at steady-state 

condition. The temperature field is considered to be uniform over the beam length, but 

varies along its thickness. In this case, it is assumed that no source of heat generation exists 

within the beam system. Hence, the temperature distribution along the thickness direction 

can be obtained by solving the one-dimensional steady-state heat conduction equation 

through the thickness of the beam. The one-dimensional heat conduction equation is given 

by equation (2.5) below: 

 

 



Chapter 2 

 23 

 
 2

2
0

dK zd T dT
K z

dz dz dZ
   

  0
d dT

K z
dz dz

 
  

 
.       (2.5) 

Here,  zK  is the thermal conductivity, which is also varying along the thickness of the 

FGM beam. The above equation is solved with the given temperature boundary conditions at 

the bottom and the top surfaces of the beam. The boundary conditions are: 

 
2

h cz
T T


             (2.6a) 

and   
2

h mz
T T


          (2.6b) 

The solution of equation (2.5) results in a non-linear temperature distribution across 

the beam thickness. The approximate solution of equation (2.5) is obtained by Javaheri and 

Eslami (2002) in the form of a polynomial series. The layer-wise temperature distribution 

across the thickness ( z ) is given by the polynomial series (containing six terms) below:  

1 2 12

2

1 1 1
( )

2 ( 1) 2 (2 1) 2

k k

cm cm
m

m m

K KT z z z
T z T

D h k K h k K h

 
      

           
      

3 1 4 1 5 13 4 5

3 4 5

1 1 1

(3 1) 2 (4 1) 2 (5 1) 2

k k k

cm cm cm

m m m

K K Kz z z

k K h k K h k K h

        
           

        

 (2.7) 

where,
5

5

4

4

3

3

2

2

)15()14()13()12()1(
1

m

cm

m

cm

m

cm

m

cm

m

cm

Kk

K

Kk

K

Kk

K

Kk

K

Kk

K
D














 ,

mc TTT   and mccm KKK  . 

From the above equation of temperature distribution, it is clear that the layer wise 

temperature )(zT  is a function of z , where in the equation, z  is in the increasing power 

from beginning to the end of the equation. So the layer wise temperature varies non-linearly 

from layer to layer. Here, cmK  is the difference between the thermal conductivities of the 

ceramic rich layer and metal rich layer, and T  is defined as the temperature difference 

between the ceramic-rich and the metal-rich surfaces of the beam. Here,  c mT T T    is 

defined as the dimensional thermal load for NLTD.   
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2.4.  Governing Equation 

The governing equation of the beam at critical condition is derived using the 

principle of minimum total potential energy, shown in equation (1.4) in the previous chapter. 

It is again given below: 

  0VU         (1.4)  

where, U  is the total strain energy of the beam, V is the potential energy of the applied load 

and  is the variational operator. 

The present formulation is displacement based, where the displacement fields along 

the x and z directions are taken as  xu  and  xw  respectively. The displacement fields are 

defined at the mid-plane of the beam. The strain along the axial direction is contributed by 

the bending deformation and the stretching deformation of the mid-plane. The expression of 

axial strain is given by,   

x

d dw
u z

dx dx


 
  

 
 

            
2

2

du d w
z

dx dx
  .        (2.8) 

In equation (2.8), the first term is due to stretching effect and the second term is due to 

bending action. 

 The strain energy U  is derived as follows: 

1

2
xU dv   

     21

2
f xE dv   (assuming linear elastic stress-strain material behavior) 

                 

2

22

2

0

2

1

2

h

L

f

h

du d w
E z bdzdx

dx dx





 
  

 
   

                  

22 2 22
2

2 2

0

2

2
2

h

L

f

h

b du du d w d w
E z z dzdx

dx dx dx dx





       
                

   

                    

22 2 2

31
2 2 2

0 0 0
2 2

L L L
AA du d w du d w

dx A dx dx
dx dx dx dx

      
        

      
     (2.9) 
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where, the stiffness coefficients 1A , 2A  and 3A  are defined as below: 

2

1

2

h

f

h

A b E dz





  , 
2

2

2

h

f

h

A b E z dz





   and 
2

2

3

2

h

f

h

A b E z dz





  .    (2.10) 

For any layer, the temperature rise above the stress-free temperature 0T  induces 

compressive thermal stress th  which is given by,  

        0th f fz E z z T z T     .      (2.11) 

The potential energy V  due to applied compressive thermal stress is derived as follows: 

th nlV dv    

            dxdz
dx

du

dx

dwb

h

h

L

th





























  





222

2

0
2

  

                

2 2

0 0
2 2

L L

th thN Ndu dw
dx dx

dx dx

   
     

   
       (2.12) 

where, the pre-stress coefficient thN  is given by,  

2

2

h

th th

h

N b dz





  .         (2.13) 

In deriving equation (2.12), the non-linear part of the axial strain nl  is used, which is given 

by, 

2 2
1

2
nl

dw du

dx dx


    
     

     

 

Following Ritz method, the displacement fields are approximated as finite linear 

combinations of admissible functions and unknown coefficients ic  given by,  

 
1

nu

i i

i

u c


 ,            (2.14a) 

  
1

nw

nu i i

i

w c 



  .        (2.14b) 
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Table 2.2: List of lowest order functions for different boundary conditions. 

  

Type of 

Boundary 
Boundary Conditions Function 

CC 

0
0 0

x x L
u u

 
 ,   1 1

x x
x

L L


    
     
    

 

0
0 0, ,

x x L
w w

 
   

0

0 0,
x x L

dw dw

dx dx 

   

2 2

1 1 2
x x x

L L L


       
        
       

 

SS 

0
0 0

x x L
u u

 
 ,   1 1

x x
x

L L


    
     
    

 

0
0 0, ,

x x L
w w

 
   

0

0 0,
x x L

dw dw

dx dx 

   
1 sin

x

L




 
  

 
 

CS 

0
0 0

x x L
u u

 
 ,   1 1

x x
x

L L


    
     
    

 

0
0 0, ,

x x L
w w

 
   

0

0 0,
x x L

dw dw

dx dx 

   

2 2

1 3 5 2
x x x

L L L


       
        
       

 

 

 

Here, i  and i  are the sets of orthogonal admissible functions for the field 

variables u  and w ; and nu and nw  are the number of the functions for approximating u  

and w  respectively. The set of orthogonal functions i  and i are generated numerically 

from the lowest order admissible functions by Gram-Schmidt orthogonalization scheme.  

The lowest order functions for each of these displacement fields along with the boundary 

conditions are given in Table 2.2. The orthogonal set of functions is selected in order to 
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ensure convergence of the solution.  The lowest order functions for each displacement field 

are selected in order to satisfy the geometric boundary conditions of the beam. 

Using the approximate displacement fields in the expressions of U  and V  given by 

equations (2.9) and (2.12), and applying the minimum potential energy principle given by 

equation (1.4), the governing equation is obtained in the following form: 

    0ij j ij jK c K c               (2.15)  

where, 
ijK    is the conventional stiffness matrix and 

ijK    is the stress stiffness matrix, 

each of dimension nwnu  . Equation (2.15) is transformed into an eigenvalue problem of 

the form given below: 

    
1

0ij ij j jK K c I c 


               (2.16)  

where,   represents the eigenvalue and  jc  represents the corresponding eigenvector. The 

elements of ijK    and ijK    are given below: 

 

Elements of the conventional stiffness matrix: 

1, 1
1, 0

,

L
j i

j nuji
i nu

d d
K A dx

dx dx

 



      

2

1, 2 2
1, 0

,

L
j i nu

ji j nu
i nu nu nw

d d
K A dx

dx dx

  

  

       

2

1, 2 2
1, 0

,

L
j nu i

j nu nu nwji
i nu

d d
K A dx

dx dx

 

  


       

2 2

1, 3 2 2
1, 0

.

L
j nu i nu

j nu nu nwji
i nu nu nw

d d
K A dx

dx dx

  
  
  

      

 

Elements of the stress stiffness matrix: 

      1,
1, 0

,

L
j i

j nuji th
i nu

d d
K N dx

dx dx


 




      

1,
1,

0,j nuji
i nu nu nw

K

  

     
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1,
1,

0,j nu nu nwji
i nu

K
  


     

            1,
1, 0

.

L
j nu i nu

j nu nu nwji th
i nu nu nw

d d
K N dx

dx dx


  

  
  

       

 

The present work aims at finding the thermal buckling load for the first buckling 

mode. Hence, the purpose of solving equation (2.16) is to find the lowest eigenvalue as it 

corresponds to the fundamental buckling load. The eigenvector  jc  corresponding to the 

lowest eigenvalue is used to find the buckling mode shape of the fundamental mode. It is to 

be noted that   represents a value which is equivalent to the thermal buckling load. 

 

2.5.  Solution Methodology 

The eigenvalue to be found out represents the fraction of the thermal load at critical 

condition. The elements of the conventional stiffness matrix depend on the stiffness 

coefficients 1A , 2A  and 3A . Also the elements of the stress stiffness matrix depend on the 

pre-stress coefficient thN . These coefficients are dependent on the material properties as can 

be seen from equations (2.10) and (2.13). As temperature dependent material properties are 

considered in the present work, the elements of the matrix 
1

ij ijK K


       in equation (2.16) 

are also dependent on the thermal load. Hence, to find out the thermal buckling load at 

critical condition, an iterative method is used to obtain the correct solution. In the present 

work, for the case of LTD and NLTD, the bottom layer (metal rich surface) is always 

considered to be at stress-free temperature 0T  , i.e., mT = 0T =300 K.    

The step-wise algorithm of the iterative method used to solve equation (2.16) is 

briefly given below: 

Step 1:  

For UTD: Increase 
u

T  by a suitable amount to provide a new value of thermal load 

  0uassumed
T T T   . 
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For LTD and NLTD: Increase 
c

T  by a suitable amount to provide a new value of thermal 

load   c massumed
T T T   .  

It is to be mentioned that before beginning the first iteration, it is considered that 
0u

T T  for 

UTD or, 
c m

T T  for LTD and NLTD. 

Step 2: Determine the through-thickness temperature distribution with the assumed value of 

the thermal load  
assumed

T  (as discussed in section 2.3). 

Step 3: Evaluate the stiffness coefficients and pre-stress coefficients using equations (2.10) 

and (2.13) respectively. 

Step 4: Determine the elements of the conventional stiffness matrix ijK    and the stress 

stiffness matrix 
ijK   . 

Step 5: Solve equation (2.16) to get the solution value  
solved

T  from the determined 

eigenvalue. 

Step 6: Calculate the percentage error as        100/
assumed solved assumed

T T T       .  

Step 7: Check if max  , where, max  is a predefined small number to check the 

convergence. If yes, consider  
solved

T  as the solution for the current load step. Otherwise, 

go to step 1 and repeat steps 1-7.   
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3.1.  Introduction 

A uniform temperature distribution corresponds to the case when the temperature of 

the entire beam is raised to a higher value uT . The results are presented in graphical form in 

which the thermal buckling load in non-dimensional form is presented with the variation of 

volume fraction index k  of the FGMs considered. The variation of k  is considered to be 

from 0 to 50. Non-dimensional thermal buckling load   is defined as 

   
crmcm TThL 

2

0 /12 , where 0m  is the thermal expansion coefficient of the metal 

constituent at 
0

T . As mentioned in the previous chapter, the dimensional thermal load is 

given as  0uT T . The results are presented for three boundary conditions, namely, 

clamped-clamped (CC), simply supported-simply supported (SS) and, clamped-simply 

supported (CS). It is to be mentioned that the value of 0T  is taken as 300 K.  The results are 

generated for h= 0.01 m and b= 0.02 m.   

 Three different metal-ceramic functionally graded material compositions are 

considered. These are Stainless Steel (SUS304)/Alumina (Al2O3), Stainless Steel/Silicon 

Nitride (Si3N4) and Stainless Steel/Zirconia (ZrO2). Two different categories of   vs. k  

plots are shown. The first one is the variation of   with k  for different length-thickness 

( /L h ) ratios, and these are presented for different combinations of boundary conditions and 

materials. The second category represents the variation of   with k  for different FGM 

compositions, and these are presented for different combinations of boundary conditions and 

length-thickness ratios.       
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3.2.  Validation Study 

 The validation plot showing the variation of non-dimensional thermal buckling load 

  with volume fraction index k  is shown in Figure 3.1 for /L h =25. The validation is 

carried out with the results of Kiani and Eslami (2013) for Stainless Steel/Silicon Nitride 

beam with clamped-clamped boundary condition. The comparison shows good agreement 

and thus validates the present mathematical model. The comparison does not show an exact 

matching as the present work is based on Euler-Bernoulli beam theory, whereas, the work of 

Kiani and Eslami (2013) is based on Timoshenko beam theory.    

 

 

Figure 3.1: Validation plot showing variation of dimensional thermal buckling 

load   
cru TT 0  with volume fraction index ( k ) for CC Stainless Steel/Silicon Nitride beam 

for /L h=25 with UTD. 

 

3.3.  Comparative Plots For Different Length-Thickness Ratios 

The variation of non-dimensional thermal buckling load   with volume fraction 

index k  for Stainless Steel/Alumina (SUS304-Al2O3) beam is shown in Figure 3.2a-c for 

CC, SS and CS boundary conditions respectively. Similar plots are shown in Figure 3.3a-c 

for Stainless Steel/Silicon Nitride (SUS304-Si3N4) beam and in Figure 3.4a-c for Stainless 
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Steel/Zirconia (SUS304-ZrO2) beam. In each of the figures, plots are presented for /L h =25, 

40, 50, 75, 100, 150.       

It is seen from Figure 3.2 that the non-dimensional thermal buckling load decreases 

with an increase in the volume fraction index. The decrease is sharp for low values of the 

volume fraction index (0 to 2). But then it becomes gradual up to k =50. It is also seen that, 

with increase in length-thickness ratio, the non-dimensional thermal buckling load increases 

for any particular value of the volume fraction index. The natures of the plots are quite 

similar irrespective of the boundary conditions and length-thickness ratios. It is also seen 

that for the same volume fraction index, the non-dimensional thermal buckling load is 

maximum for CC beam and minimum for SS beam, with the CS beam coming in between 

the other two.  

The plots shown in Figure 3.3 for SUS304-Si3N4 beam are found to be similar in 

nature with the plots of Figure 3.2. This is true irrespective of the boundary conditions and 

length-thickness ratios. The thermal loads for the SUS304-Si3N4 beam are observed to be 

slightly lesser than that of the SUS304-Al2O3 beam.           

The k  vs.   plots for SUS304-ZrO2 beam, as shown in Figure 3.4, are found to be 

of different nature compared to the plots of SUS304-Al2O3 and SUS304-Si3N4 beams. Here, 

for SUS304-ZrO2 beam, the non-dimensional thermal buckling load increases with increase 

in volume fraction index. The increase is observed to be sharp for k =0 to 5, and becomes 

gradual beyond k =5 up to k =50. Similar to the other two FGM beams, it is seen that the 

non-dimensional thermal buckling load increases with increase in length-thickness ratios for 

any particular value of the volume fraction index.  

 

3.4.  Comparative Plots For Different Materials 

The variation of non-dimensional thermal buckling load   with volume fraction 

index k  for three different FGMs are presented in Figure 3.5a-c for CC, SS and CS beam 

respectively having /L h =25. Similar plots are presented in Figures 3.6-3.9 for /L h =50, 75, 

100, 150 respectively. It is clear from Figures 3.5-3.9 that the natures of the  vs. k  plots 

are almost identical for Stainless Steel/Alumina and Stainless Steel/Silicon Nitride beams. 

The plots for these two FGMs are found to coincide with each other. Comparisons among 
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three FGMs reveal that the thermal buckling load for Stainless Steel/Zirconia beam is lower 

than that of the other two FGM beams. The relative differences in the thermal buckling 

loads are found to be decreasing with increases in the values of the volume fraction index. 

The observations made are true for all the /L h  ratios and boundary conditions considered. 

 

 

 

Figure 3.2: Variation of non-dimensional thermal buckling load ( ) with volume fraction 

index ( k ) for different length-thickness ratios of Stainless Steel/Alumina beams for UTD: 

(a) CC, (b) SS and (c) CS. 
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Figure 3.3: Variation of non-dimensional thermal buckling load ( ) with volume fraction 

index ( k ) for different length-thickness ratios of Stainless Steel/Silicon Nitride beams for 

UTD: (a) CC, (b) SS and (c) CS. 
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Figure 3.4: Variation of non-dimensional thermal buckling load ( ) with volume fraction 

index ( k ) for different length-thickness ratios of Stainless Steel/Zirconia beams for UTD: 

(a) CC, (b) SS and (c) CS. 
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Figure 3.5: Variation of non-dimensional thermal buckling load ( ) with volume fraction 

index ( k ) for different FGM compositions having /L h =25 for UTD: (a) CC, (b) SS and (c) 

CS. 
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Figure 3.6: Variation of non-dimensional thermal buckling load ( ) with volume fraction 

index ( k ) for different FGM compositions having /L h =50 for UTD: (a) CC, (b) SS and (c) 

CS. 
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Figure 3.7: Variation of non-dimensional thermal buckling load ( ) with volume fraction 

index ( k ) for different FGM compositions having /L h =75 for UTD: (a) CC, (b) SS and (c) 

CS. 
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Figure 3.8: Variation of non-dimensional thermal buckling load ( ) with volume fraction 

index ( k ) for different FGM compositions having /L h=100 for UTD: (a) CC, (b) SS and 

(c) CS. 
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Figure 3.9: Variation of non-dimensional thermal buckling load ( ) with volume fraction 

index ( k ) for different FGM compositions having /L h=150 for UTD: (a) CC, (b) SS and 

(c) CS. 
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4.1.  Introduction 

In the case of linear temperature distribution (LTD), a linear temperature gradient is 

assumed through the thickness of the beam. The top (ceramic-rich) and the bottom (metal-

rich) layers of the beam are considered to be at temperatures cT  and mT  respectively, where, 

cT  > mT  and mT  is assumed to be equal to the stress-free temperature 0T  (300 K). In this 

case, the equation governing the through-thickness temperature distribution is given by 

equation (2.4), which is given by,  
1

( )
2

m c m

z
T z T T T

h

 
    

 
. It is to be mentioned that a 

temperature distribution at steady-state condition can be approximated to be linear for a thin 

beam. 

The results are shown in graphical form in which the non-dimensional thermal 

buckling loads are presented for different values of the volume fraction index k  of the 

FGMs considered. It is considered that k  ranges from 0 to 50. Non-dimensional thermal 

buckling load   is defined as    
crmcm TThL 

2

0 /12 , where 0m  is the thermal 

expansion coefficient of the metal constituent at 
0

T . As previously mentioned, the 

dimensional thermal load is given as  c mT T . Three boundary conditions are considered, 

namely, clamped-clamped (CC), simply supported-simply supported (SS) and, clamped-

simply supported (CS). The results are generated for h= 0.01 m and b= 0.02 m.   

 Three different metal-ceramic functionally graded materials are considered. These 

are Stainless Steel/Alumina (Al2O3), Stainless Steel (SUS304)/Silicon Nitride (Si3N4) and 
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Stainless Steel/Zirconia (ZrO2). Two different categories of k  vs.   plots are shown. The 

first one corresponds to the variation of   with k  for different length-thickness ( /L h )  

 

 

 

 

 

Figure 4.1: Variation of (i) effective elastic modulus and (ii) effective thermal expansion 

coefficient along the thickness direction for cT =1000K for LTD: (a) Stainless 

Steel/Alumina, (b) Stainless Steel/Silicon Nitride and (c) Stainless Steel/Zirconia. 
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Figure 4.1: Continued. 

 

ratios, and these are presented for different combinations of boundary conditions and 

materials. The second one considers the variation of   with k  for different FGM 

compositions, and these are shown for different combinations of boundary conditions and 

length-thickness ratios. 

The present problem involving thermal buckling of FGM beam for LTD is strongly 

dependent on the how the effective thermal expansion coefficient and effective elastic 

modulus vary with temperature. In this case, the temperature profile is essentially considered 

to be linear through the thickness. Hence the variation of through-thickness material 

properties for any given thermal load  c mT T  strongly governs the present problem. For 

illustration purpose, Figure 4.1 is presented which shows the variation of through-thickness 

material properties for  c mT T =700 K for the three FGMs considered. In each of the 

figures, the through- thickness variation of the material properties are shown for different 

values of k. 

 

4.2.  Validation Study 

The variation of non-dimensional thermal buckling load   with volume fraction 

index k  is compared with the results of Kiani and Eslami (2013) for Stainless Steel/Silicon 

Nitride beam with clamped-clamped boundary condition. The same is also compared with 
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the results generated by ANSYS (version 10.0). The comparison plots are shown in Figure 

4.2 for /L h=40. Figure 4.2 shows very good agreement of the present plot with ANSYS. It 

also shows that the trend of the present plot matches with that of Kiani and Eslami (2013). 

The reason for deviation of the present result from that of Kiani and Eslami (2013) can be 

attributed to the fact that the present work is based on Euler-Bernoulli beam theory, 

whereas, the work of Kiani and Eslami (2013) is based on Timoshenko beam theory. The 

finite element model in ANSYS is created using SHELL91 elements with layered variation 

of material properties across the thickness. Thus, Figure 4.2 validates the present model for 

LTD.  

 

 

Figure 4.2: Validation plot showing variation of dimensional thermal buckling load with 

volume fraction index for CC Stainless Steel/Silicon Nitride beam for /L h =40 with LTD. 

 

4.3.  Comparative Plots For Different Length-Thickness Ratios 

The variation of non-dimensional thermal buckling load   with volume fraction 

index k  for Stainless Steel/Alumina beam is presented in Figure 4.3a-c for CC, SS and CS 

boundary conditions respectively. Similar kinds of plots are presented in Figure 4.4a-c for 

Stainless Steel/Silicon Nitride beam and in Figure 4.5a-c for Stainless Steel/Zirconia beam. 

In each case, plots are presented for /L h=25, 40, 50, 75, 100, 150.       
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It is observed from Figure 4.3 that the non-dimensional thermal buckling load 

decreases with an increase in the volume fraction index. The decrease is sharp for low 

values of the volume fraction index. Beyond that, the decreasing nature is quite gradual up 

to k =50. Moreover, with an increase in the length-thickness ratio, the non-dimensional 

thermal buckling load is found to be increasing for any value of the volume fraction index. 

The natures of the plots are quite similar irrespective of the boundary conditions and length-

thickness ratios. It is also seen that for the same volume fraction index, the non-dimensional 

thermal buckling load is maximum for clamped-clamped beam, followed by clamped-simply 

supported beam and minimum for simply supported-simply supported beam. 

The k  vs.   plots for SUS304-Si3N4 beam, shown in Figure 4.4, are found to be of 

similar nature with that for Stainless Steel/Alumina beam. This is true irrespective of the 

boundary conditions and length-thickness ratios considered. Apparently, the thermal loads 

for the SUS304-Si3N4 beam are observed to be slightly lesser than that of the SUS304-Al2O3 

beam.           

The k  vs.   plots for SUS304-ZrO2 beam, shown in Figure 4.5, are seen to be of 

completely different nature compared to the plots of SUS304-Al2O3 and SUS304-Si3N4 

beams. In this case, the non-dimensional thermal buckling load is seen to be increasing with 

increase in volume fraction index values. The increase is observed to be sharp for lower 

value of k and it becomes gradual for moderate to high values of k . Similar to the other two 

FGM beams, it is seen that the non-dimensional thermal buckling load increases with 

increase in length-thickness ratios for any particular value of the volume fraction index. 

Unlike the other FGMs, the effects of length-thickness ratio are seen to be more prominent 

for the SUS304-ZrO2 beam.  

   

4.4.  Comparative Plots For Different Materials 

 The variation of non-dimensional thermal buckling load   with volume fraction 

index k  for three different FGMs are presented in Figure 4.6a-c for CC, SS and CS beam 

respectively having /L h=25. Similar plots for /L h=50, 75, 100, 150 are presented in 

Figures 4.7-4.10 respectively. It is seen that the natures of the   vs. k  plots are almost 

identical for Stainless Steel/Alumina and Stainless Steel/Silicon Nitride beams. The plots for 
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these two FGMs are seen to coincide with each other. This is more prominent for higher 

length-thickness ratios. Comparisons among three FGMs reveal that the thermal buckling 

load for Stainless Steel/Zirconia beam is lower than that of the other two FGM beams. The 

relative differences in the thermal buckling loads are found to be decreasing with increases 

in the values of the volume fraction index. The observations made are true for all the /L h  

ratios and boundary conditions considered. 

 

 

Figure 4.3: Variation of non-dimensional thermal buckling load ( ) with volume fraction 

index ( k ) for different length-thickness ratios of Stainless Steel/Alumina beams for LTD: 

(a) CC, (b) SS and (c) CS. 



Chapter 4 

 47 

 

 

 

 

 

Figure 4.4: Variation of non-dimensional thermal buckling load ( ) with volume fraction 

index ( k ) for different length-thickness ratios of Stainless Steel/Silicon Nitride beams for 

LTD: (a) CC, (b) SS and (c) CS. 
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Figure 4.5: Variation of non-dimensional thermal buckling load ( ) with volume fraction 

index ( k ) for different length-thickness ratios of Stainless Steel/Zirconia beams for LTD: 

(a) CC, (b) SS and (c) CS. 
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Figure 4.6: Variation of non-dimensional thermal buckling load ( ) with volume fraction 

index ( k ) for different FGM compositions having /L h =25 for LTD: (a) CC, (b) SS and (c) 

CS. 
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Figure 4.7: Variation of non-dimensional thermal buckling load ( ) with volume fraction 

index ( k ) for different FGM compositions having /L h =50 for LTD: (a) CC, (b) SS and (c) 

CS. 
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Figure 4.8: Variation of non-dimensional thermal buckling load ( ) with volume fraction 

index ( k ) for different FGM compositions having /L h =75 for LTD: (a) CC, (b) SS and (c) 

CS. 
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Figure 4.9: Variation of non-dimensional thermal buckling load ( ) with volume fraction 

index ( k ) for different FGM compositions having /L h=100 for LTD: (a) CC, (b) SS and 

(c) CS. 
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Figure 4.10: Variation of non-dimensional thermal buckling load ( ) with volume fraction 

index ( k ) for different FGM compositions having /L h=150 for LTD: (a) CC, (b) SS and 

(c) CS. 
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5.1.  Introduction 
In this case, steady-state heat conduction is considered where heat flows between the 

bottom surface (metal-rich having temperature mT ) and the top surface (ceramic-rich having 

temperature cT > mT ). Here, mT  is assumed to be equal to the stress-free temperature 0T  (300 

K) and the temperature field is considered to be uniform over the beam length.  The 

temperature distribution is obtained by solving the one-dimensional heat conduction 

equation, given in equation (2.5). It is seen that the through-thickness temperature gradient 

in this case is non-linear in nature and this is given by equation (2.7). 

The results are shown in graphical form in which the non-dimensional thermal 

buckling loads are presented for different values of the volume fraction index k . It is 

considered that k  ranges from 0 to 50. Non-dimensional thermal buckling load   is defined 

as    
crmcm TThL 

2

0 /12 , where 0m  is the thermal expansion coefficient of the metal 

constituent at 
0

T . The dimensional thermal load is given as  c mT T . Three boundary 

conditions are considered, namely, clamped-clamped (CC), simply supported-simply 

supported (SS) and, clamped-simply supported (CS). The results are generated for h= 0.01 

m and b= 0.02 m.   

Three different metal-ceramic FGMs are considered. These are Stainless 

Steel/Alumina (Al2O3), Stainless Steel (SUS304)/Silicon Nitride (Si3N4) and Stainless 

Steel/Zirconia (ZrO2). Two different categories of k  vs.   plots are shown. The first one 

considers the variation of   with k  for different length-thickness ( /L h ) ratios, and these 

are presented for different combinations of boundary conditions and materials. The second 
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case considers the variation of   with k  for different FGM compositions, and these are 

shown for different combinations of boundary conditions and length-thickness ratios. 

 

 

 

 

 

Figure 5.1: Variation of (i) effective elastic modulus and (ii) effective thermal expansion 

coefficient along the thickness direction for cT =1000K for NLTD: (a) Stainless 

Steel/Alumina, (b) Stainless Steel/Silicon Nitride and (c) Stainless Steel/Zirconia. 



Chapter 5 

 56 

 

Figure 5.1: Continued. 

 

The present problem is strongly dependent on the variation of effective elastic 

modulus and effective thermal expansion coefficient with temperature as these are 

considered to be dependent on temperature. For NLTD, the temperature profile is governed 

by the steady-state heat conduction equation, leading to a non-linear temperature distribution 

through the beam thickness. Hence the variation of through-thickness material properties for 

any specific thermal load  c mT T  strongly governs the present problem. For illustration 

purpose, Figure 5.1, showing the variation of through-thickness material properties, is 

presented for  c mT T =700K for the three FGMs considered. 

 

5.2.  Limit Thermal Load 

The aim of this work is to determine the thermal buckling load for different 

combinations of /L h  and k values for different FGMs. But it could not be obtained for 

certain parameters as the effective elastic modulus ( fE ) becomes very low at high values of 

thermal load  c mT T .  For the range of /L h  and k  values considered, this is encountered 

for Stainless Steel/Alumina beams. The thermal load for which fE  theoretically becomes 

zero is defined as limit thermal load  c m limit
T T  in dimensional form. Figure 5.2 shows the 

variations of limit thermal loads with volume fraction index for different FGMs. It is seen 
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that  c m limit
T T , while remaining constant initially, decreases with k  for Stainless 

Steel/Silicon Nitride and Stainless Steel/Zirconia beams. On the other hand, it increases with 

k  for Stainless Steel/Alumina beams. The limit thermal loads are found to be almost same 

for Stainless Steel/Silicon Nitride and Stainless Steel/Zirconia beams for moderate to high 

values of k . Although the dimensional value of limit thermal load is independent of the 

/L h  ratio, its non-dimensional form varies with /L h .  

 

 

 

Figure 5.2: Limit thermal load vs. volume fraction index plots. 

 

5.3.  Validation Study 

The validation of the present problem is carried out with ANSYS (version 10.0) and 

the validation plot is shown in Figure 5.3. It represents the comparison in the form of k  vs. 

  plots. The validation is obtained for Stainless Steel-Zirconia FGM beam for length-

thickness ratio of 100. The finite element model in ANSYS is created using SHELL91 

elements with layered variation of material properties across the thickness. The plots 

presented in Figure 5.3 match very well with each other and hence validates the present 

model. 
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Figure 5.3: Validation plot showing variation of non-dimensional thermal buckling load 

( ) with volume fraction index ( k ) for CC Stainless Steel/Zirconia beam for /L h =100 

with NLTD. 

 

5.4.  Comparative Plots For Different Length-Thickness Ratios 

The variation of non-dimensional thermal buckling load   with volume fraction 

index k  is presented in Figure 5.4a-c for CC, SS and CS boundary conditions respectively 

for Stainless Steel/Alumina beam. Similar plots are presented in Figure 5.5a-c for Stainless 

Steel/Silicon Nitride beam and in Figure 5.6a-c for Stainless Steel/Zirconia beam. In each of 

the figures, plots are presented for /L h =25, 40, 50, 75, 100, 150.  

It is seen from Figure 5.4 that the non-dimensional thermal buckling load increases 

with an increase in the volume fraction index. The thermal buckling load is obtained up to 

certain values of k  and this true for all the boundary conditions considered. This is due to 

the fact that, the limit thermal load is reached beyond a certain value of k  before the beam 

buckling occurs. The value of k  beyond which the thermal buckling load is not available is 

highest for SS beam and least for CC beam. Again the value of k  beyond which the thermal 

buckling load is not available due to limit thermal load increases with increasing values of 

/L h . For any boundary condition and a specific value of k , the non-dimensional thermal 

buckling load is almost independent of the /L h  ratio.  
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Figure 5.4: Variation of non-dimensional thermal buckling load ( ) with volume fraction 

index ( k ) for different length-thickness ratios of Stainless Steel/Alumina beams for NLTD: 

(a) CC, (b) SS and (c) CS. 
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It is observed from Figure 5.5 that the non-dimensional thermal buckling load 

decreases with an increase in the volume fraction index. The decrease is sharp for low 

values of the volume fraction index. Beyond that, the decreasing nature is gradual up to 

k =50.  Moreover, with an increase in the length-thickness ratio, the non-dimensional 

thermal buckling load is found to be increasing for any value of the volume fraction index. 

The natures of the plots are quite similar irrespective of the boundary conditions and length-

thickness ratios. It is also seen that for the same volume fraction index, the non-dimensional 

thermal buckling load is maximum for clamped-clamped beam, followed by clamped-simply 

supported beam and minimum for simply supported-simply supported beam. 

It is seen from Figure 5.6 that the nature of the plots are entirely different from the 

other FGMs considered. Here, for Stainless Steel/Zirconia beam, it is found that the non-

dimensional thermal buckling load increases initially sharply for low values of k . Then it 

decreases with k  initially sharply and then gradually becomes independent of k . This trend 

is true for all the /L h  values considered except for /L h=25 of CC and CS beams. For these 

cases,   increases with k  and, this increase in initially sharp and then gradual till k  reaches 

the value of 50. It is also observed that the non-dimensional thermal buckling load increases   

with increase in the /L h  value for any specific value of k . 

 

5.5.  Comparative Plots For Different Materials 

  The variation of non-dimensional thermal buckling load   with volume fraction 

index k  for three different FGMs are presented in Figure 5.7a-c for CC, SS and CS beam 

respectively having /L h=25. Similar plots for /L h=50, 75, 100, 150 are presented in 

Figures 5.8-5.11 respectively. The relative difference in non-dimensional thermal buckling 

load values between Stainless Steel/Alumina and the other two FGMs is significant. This 

effect becomes more pronounced for higher /L h  ratios. Due to this, it becomes difficult to 

accommodate the   vs. k  plots in a single figure for all the three FGMs. So Figures 5.8-

5.11 are presented with two different scales for the vertical axis representing thermal 

buckling load. The variation   with k  has been discussed in the previous section for 

different FGMs. The non-dimensional thermal buckling loads are not available beyond 

certain value of k  due to limit thermal load for Stainless Steel/Alumina and this becomes 

more pronounced with decreasing /L h . Hence the plots showing variation of   with k  is 
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not clearly visible for /L h =25, as shown in Figure 5.7a. Comparisons among three FGMs 

reveal that the non-dimensional thermal buckling load for Stainless Steel/Alumina beam is 

much higher compared to the other two FGM beams. This is true for all the /L h  values and 

boundary conditions considered.  It is also seen that Stainless Steel/Zirconia beam exhibits 

lowest buckling load. 

 

 

Figure 5.5: Variation of non-dimensional thermal buckling load ( ) with volume fraction 

index ( k ) for different length-thickness ratios of Stainless Steel/Silicon Nitride beams for 

NLTD: (a) CC, (b) SS and (c) CS. 
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Figure 5.6: Variation of non-dimensional thermal buckling load ( ) with volume fraction 

index ( k ) for different length-thickness ratios of Stainless Steel/Zirconia beams for NLTD: 

(a) CC, (b) SS and (c) CS. 
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Figure 5.7: Variation of non-dimensional thermal buckling load ( ) with volume fraction 

index ( k ) for different FGM compositions having /L h =25 for NLTD: (a) CC, (b) SS and 

(c) CS. 
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Figure 5.8: Variation of non-dimensional thermal buckling load ( ) with volume fraction 

index ( k ) for different FGM compositions having /L h =50 for NLTD: (a) CC, (b) SS and 

(c) CS. 
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Figure 5.9: Variation of non-dimensional thermal buckling load ( ) with volume fraction 

index ( k ) for different FGM compositions having /L h =75 for NLTD: (a) CC, (b) SS and 

(c) CS. 
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Figure 5.10: Variation of non-dimensional thermal buckling load ( ) with volume fraction 

index ( k ) for different FGM compositions having /L h =100 for NLTD: (a) CC, (b) SS and 

(c) CS. 
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Figure 5.11: Variation of non-dimensional thermal buckling load ( ) with volume fraction 

index ( k ) for different FGM compositions having /L h =150 for NLTD: (a) CC, (b) SS and 

(c) CS. 
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DDEETTEERRMMIINNAATTIIOONN  OOFF  CCRRIITTIICCAALL  BBUUCCKKLLIINNGG  LLOOAADD  OOFF  

UUNNIIFFOORRMMLLYY  TTAAPPEERREEDD  FFGGMM  BBEEAAMMSS  

 

 

6.1. Introduction 

Tapered beams are often found in many industrial applications eg., aerospace 

structures, civil structures, mechanical structures etc. With the increasing application of 

functionally graded materials, tapered FGM beams are considered as useful structural 

components. Hence, the knowledge of critical buckling load of the tapered FGM beam is 

important for the engineering designers and analysts. Various researchers have started 

working on mechanical behavior of tapered FGM beams over the last few years. The 

literature survey on this has already been presented in section 1.2.3. 

 

6.2. Problem Description 

As shown in Figure 6.1, a beam with length L , width b , left end thickness 1h and 

right end thickness 2h  is considered where 1h > 2h . Here, a beam with uniformly varying 

thickness and constant width is considered. In the present problem, x and z are the 

coordinate axes along the length and thickness directions respectively, and u  and w  are the 

displacement fields along x and z directions respectively. The beam thickness at any axial 

location is given by,     Lxnhxh /11  , where  12 /1 hhn   is defined as the taperness 

parameter. The taperness parameter n =0 corresponds to a uniform beam. 

It is considered that the beam is axially restrained at the left end (x=0) and is free 

axially at the right end (x=L). When the beam is subjected to a load F  at the right end, it is 

subjected to instability or buckling, when F  reaches the critical value crF . In the present 

work, the critical buckling load is determined for different boundary conditions. At critical 
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condition, the beam attains equilibrium at a bent configuration when subjected to a small 

transverse disturbance. Hence the governing equations of equilibrium are formulated at the 

bent configuration.  

  

 

Figure 6.1: A tapered FGM Beam with dimensions and coordinate axes. 

 

Three different classical boundary conditions are considered: (i) beam with both ends 

clamped (CC), (ii) beam with both ends simply supported (SS) and, (iii) beam with one end 

clamped and the other end simply supported (CS). Analysis of critical buckling load is 

carried out for two different FGMs namely, Stainless Steel (SUS304)/Zirconia (ZrO2) and 

Titanium alloy (Ti-6Al-4V)/Zirconia.   

The theoretical formulation is based on Euler-Bernoulli beam theory. Minimum 

potential energy principle in variational form is employed to deduce the governing equation 

in terms of the displacement fields. The governing equation is an eigenvalue problem for 

which the lowest eigenvalue gives the critical buckling load. The solution of the governing 

equation is obtained by approximating the displacement fields using the Ritz method. 
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6.3. Mathematical Formulation 

The FGM beam is modeled using simple mixture of metal and ceramic constituents 

in accordance with power law variation of  volume  fraction,  which  for  ceramic  and  metal  

constituents  at  any  layer  z is given by, 
1

( ) 2

k

c

z
V

h x

 
  
 

 and.
1

1 1
( ) 2

k

m c

z
V V

h x

 
     

 
. 

Here cV  and mV  are the volume fraction of ceramic and metal constituents respectively, and 

k )0(  k  is the volume fraction index that controls the material gradation profile along 

the thickness direction. The effective elastic modulus fE  is calculated using the following 

relation: 
 

 
1

2

k

f m c m

z
E E E E

h x

 
     

 
      (6.1)   

where, 
c

E  and 
m

E  are the elastic moduli for the ceramic and metal constituents 

respectively. Linear elastic stress-strain relation is used in the present formulation. 

The governing equation is derived using the principle of minimum total potential 

energy given by equation (1.4). It is given by,   0U V   . The expression of axial strain 

is given by equation (2.8) and is as follows: 
2

2x

du d w
z

dx dx
   . The strain energy of the 

tapered FGM beam is derived as follows: 
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f xE dv   (assuming linear elastic stress-strain material behavior) 
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Table 6.1: List of functions for different boundary conditions. 

 

Type of 

Boundary 
Boundary Conditions Function 

CC 

0
0 0,

x x L
u u

 
    1

x
x

L


 
  
 

 

0
0 0, ,

x x L
w w

 
   

0

0 0,
x x L

dw dw

dx dx 

   

2 2

1 1 2
x x x

L L L


       
        
       

 

SS 

0
0 0,

x x L
u u

 
    1

x
x

L


 
  
 

 

0
0 0, ,

x x L
w w

 
   

0

0 0,
x x L

dw dw

dx dx 

   
1 sin

x

L




 
  

 
 

CS 

0
0 0,

x x L
u u

 
    1

x
x

L


 
  
 

 

0
0 0, ,

x x L
w w

 
   

0

0 0,
x x L

dw dw

dx dx 

   

2 2

1 3 5 2
x x x

L L L


       
        
       

 

 

 

where, the stiffness coefficients 1( )A x , 2A ( )x  and 3A ( )x  are defined below: 
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3
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



  .  (6.3) 

The potential energy V due to applied load F  is given as follows:  
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2 2

0 0
2 2

L L
F du F dw

V dx dx
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  The displacement fields are approximated as linear combinations of admissible 

functions and unknown coefficients. According to Ritz method, the displacement fields are 

assumed to be of the form of equation (2.13a) and (2.13b) i.e.  i

nu

i

icu 



1

 and    

i

nw

i

inucw 



1

. Here, i  and i  are the set of orthogonal admissible functions of the field 

variables u  and w ; nu  and  nw  are the number of the functions for u  and w  respectively. 

The set of orthogonal functions i  and i  are generated numerically from the lowest order 

admissible functions using Gram-Schmidt orthogonalization scheme. The list of lowest 

order orthogonal functions for u  and w  is given in Table 6.1.  

Using the assumed displacement fields and applying the minimum potential energy 

principle, the governing equation for finding the critical buckling load crF  is given by, 

    0s

ji i ji iK c K c        ,       (6.5)  

where, jiK    and s

jiK    are the structural stiffness matrix and stress stiffness matrix 

respectively. Equation (6.5) is an eigenvalue problem for which the lowest eigenvalue gives 

the critical buckling load crF  . The non-zero elements of the stiffness matrices are given 

below: 
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1,
1, 0
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j nuji
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d d
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dx dx
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     .   

 

6.4.    Results and Discussion 

The results are generated for 1h =0.01 m, b =0.02 m, 75/ 1 hL and for the following 

values of elastic modulus of the FGM constituents: 208 GPa for Stainless Steel, 106 GPa for 

Titanium alloy and 168 GPa for Zirconia. The results are presented graphically in the form 

of non-dimensional buckling load vs. volume fraction index plots. The non-dimensional 

buckling load   is defined as  2

1/cr m=F L E I , where, 12/3

11 bhI  , the moment of inertia 

at the left end and mE  is the effective elastic modulus of the corresponding metallic 

constituent. 

 

 

 

Figure 6.2: Validation plot with ANSYS. 
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6.4.1. Validation study   

A comparative plot with finite element package ANSYS (version 10.0) showing 

variation of non-dimensional buckling load   with volume fraction index n  is presented in 

Figure 6.2 for n =0.5 for Titanium alloy/Zirconia  beam. It shows very good agreement of 

the present result with ANSYS. The finite element model in ANSYS is built using 

SHELL91 elements with layered variation of material properties. 

 

6.4.2. Comparative plots for different volume fraction indices 

Figure 6.3a-c presents the non-dimensional buckling load    vs. taperness 

parameter  n  plots for Stainless Steel/Zirconia beam under different boundary conditions. In 

each of the figures, the plots are shown for different volume fraction indices, including pure 

ceramic and pure metal beams. A wide range of taperness parameters including a uniform 

beam )0( n  are considered. Similar plots for Titanium alloy/Zirconia beam are shown in 

Figure 6.4a-c. It is shown from the figures that the buckling load decreases with increase in 

taperness parameter. For Stainless Steel/Zirconia, it is found that for any fixed taperness 

ratio, the non-dimensional buckling load is lowest for the purely ceramic beam. Then 

increases gradually with a rise in volume fraction indices and becomes maximum for fully 

metallic beam. This is due to the fact that, for Stainless Steel/Zirconia beam, the elastic 

modulus value which is responsible for critical buckling is greater for metal than ceramic. 

The trend is completely reversing for Titanium alloy/Zirconia, i.e., for any fixed taperness 

ratio, the non-dimensional buckling load is lowest for purely metallic beam. Then it 

increases gradually with a rise in the volume fraction index and becomes maximum for fully 

ceramic beam. This is due to the fact that, for Titanium alloy/Zirconia beam, the elastic 

modulus value which contributes to the buckling load is greater for ceramic than metal. 

Figures 6.3 and 6.4 also show that that the non-dimensional buckling load   is 

almost invariant with the volume fraction index k  for higher taperness parameters. It means 

the effect of material profile parameter k  becomes insignificant with more thickness 

reductions between the beam ends. As expected, the CC beam corresponds to the highest 

critical buckling load and the SS beam exhibits the lowest buckling load.   

 

 



Chapter 6 

 75 

 

 

 

 

 

Figure 6.3: Non-dimensional buckling load vs. taperness parameter plots for different 

volume fraction indices of Stainless Steel/Zirconia beam: (a) CC, (b) SS and (c) CS. 
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Figure 6.4: Non-dimensional buckling load vs. taperness parameter plots for different 

volume fraction indices of Titanium alloy/Zirconia beam: (a) CC, (b) SS and (c) CS. 
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CCOONNCCLLUUSSIIOONNSS  

 

 

7.1. Conclusions 

In the present work, the critical buckling load of FGM beam is analyzed. The critical 

buckling load is very much important for predicting the stability of any structures. It is an 

axial compressive load at which a beam is buckled or collapsed due to the loss of its 

configuration. So the study of critical buckling load is important for engineering design. 

 Two types of analyses are reported in the present thesis work: (i) Thermal buckling 

load of uniform FGM beams, and (ii) Critical buckling load of uniformly tapered FGM 

beams. The FGM is modeled using a simple rule of mixture of the metal and ceramic 

constituents using power-law variation of the volume fraction. The bottom layer is 

considered as fully metallic and the top layer is considered as fully ceramic.  A 

mathematical formulation involving the principle of minimum total potential energy is 

reported. Ritz method is applied to solve the governing equations of the respective problems. 

The problem is formulated as an eigenvalue problem where the lowest eigenvalue gives the 

critical buckling load.  

 In the study of thermal buckling load of FGM beam, effective material properties are 

considered as a function of temperature. A thermal load is applied to the beam by making a 

temperature difference between the bottom and the top layer. Three different studies are 

considered: (a) A beam with uniform temperature distribution (UTD) in which the 

temperature of the beam is raised uniformly, (b) Linearly temperature distribution (LTD) in 

which the top (pure ceramic) layer is kept at a higher temperature than that of the bottom 

one (pure metal), and a linear temperature gradient is assumed along the thickness direction 

in the beam, and (c) Non-linear temperature distribution (NTD), in which the extreme layers 

are kept at different temperatures, and a non-linear thermal gradient is induced at steady-

state heat conduction condition. The study is performed for three different FGM materials, 
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namely, Stainless Steel/Alumina, Stainless Steel/Silicon Nitride and Stainless Steel/Zirconia. 

Three different boundary conditions are considered, namely, beam with both ends clamped 

(CC), beam with both ends simply supported (SS), and beam with one end clamped and the 

other end simply supported (CS). For each of these cases, a study is carried out to predict the 

variation of non-dimensional thermal buckling load with the volume fraction index. The 

graphical results in comparative form are presented for (i) different materials and (ii) 

different length-thickness ratios. 

 In the other study, critical buckling load of a uniformly tapered FGM beam is 

determined, where, a load is applied at the right end of the beam.  A beam with uniform 

width is assumed to be tapered along the length direction, in which the thickness reduces 

from the left to the right end. The study is carried out for two FGMs, namely, Stainless 

Steel/Zirconia and Titanium alloy/Zirconia, and for the above-mentioned boundary 

conditions such as CC, SS and CS. In this study, the variation of non-dimensional buckling 

load with taperness parameter is shown graphically for different volume fraction indices. 

Results are reported for tapered beams with up to ninety percent reductions in the end 

thicknesses.  

  

7.2. Future Scope of Work 

The present study can be extended to thermal buckling analysis of other materials 

such as conventional composites; FGMs involving other constituents etc. The methodologies 

adopted in the present work are robust and quite general in nature. Hence, it can be used for 

buckling analysis of any other structural elements, which are used in common engineering 

applications.  
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