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Abstract 

In the present thesis the dynamic characteristics of rough deformable fractal surface in 

contact with a rigid flat surface is analyzed. Coordinate points constructing fractal surface are 

generated using the modified Weierstrass-Mandelbrot function in MATLAB which are imported 

to commercial finite element software ANSYS 14.5 as keypoints to construct the finite element 

model of the rough surface. A rigid flat surface capable of vertical motion is considered to come 

in contact with and any downward motion of the rigid flat causes deformation of the rough surface. 

A finite element analysis is implemented using ANSYS to obtain the static force-displacement 

relationship at the contact between deformable rough surface and rigid flat. A power law curve is 

fitted through the obtained force-displacement result points and nonlinear contact bulk stiffness 

and a parameter called ‘nonlinearity exponent’ are found out which provides the measure of 

nonlinearity of the contact system. These parameters are subsequently used to find out the dynamic 

properties of the contacting interface for free-undamped as well as for forced-damped vibration. It 

has been observed that, the nonlinearity of the system increases with the increase of surface 

roughness, tangent modulus and with the decrease of yield strength. For the sake of dynamic 

analysis, the physical dynamic contact system is modelled by single degree of freedom spring-

mass-damper system. The external excitation on the dynamic system is imparted in two ways in 

the two models presented in the thesis. For free undamped vibration analysis, contact loss is taken 

into account and the variation of normalized natural frequency w.r.t. initial displacement is 

presented for different surface and material properties. In case of forced damped vibration, it is 

found that the system exhibits softening property for linear elastic surface and the softening nature 

increases with rougher topography. The softening nature of the system increases with increase in 

tangent modulus value. Above a certain value of yield strength the nature of the frequency response 

curve is observed to change its nature from softening to hardening. Superharmonic response is also 

observed for the vibrating contact system. In the second model, the contact system is represented 

by a spring-mass-damper system with base excitation. It is found that, for higher surface 

roughness, tangent modulus and lower yield strength value, the response amplitude decreases. For 

higher nonlinearity the response amplitude decreases but above certain value of nonlinearity 

exponent the peak amplitude becomes fixed. For both the models, in frequency response curves 

multiple solution zones jump up and jump down are observed. From phase plot and time-
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displacement plot it is noted that higher nonlinearity causes higher asymmetricity of the phase plot 

w.r.t. the vertical axis. 

 



Chapter 1 

Introduction 

 

The chapter provides a general introduction to the entire work. It gives a brief idea of contact 

vibration in the context of the present work, literature review on the domain of the present work 

and the objective of the work. 
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1.1. Introduction to Contact of Rough Surfaces 

Contact interaction of solid surfaces plays an important role in the working of machine 

elements like gear, cam-follower mechanism and rolling element bearing etc. as it has huge 

influence on friction, adhesion, wear and lubrication. Interactions between solid surfaces are 

dependent on the contacting materials and the shape of the surfaces. The shape of the surface of 

an engineering material is dependent upon its production process and the nature of the parent 

material. It is well known that all the engineering surfaces are inherently associated with 

roughness. Practically it is not possible to get ideally smooth surfaces. Hence, when any surface 

to surface contact occurs it is never a flat to flat surface contact, but it is rather asperity to asperity 

contact and the real area of contact is only a fraction of the apparent area of contact. In such 

conditions the pressure at the picks is extremely high and it undergoes high rate of deformation.  

 

Figure 1.1. Rough surface contact in magnified view. 

 

Besides on the static properties, the surface parameters have also significant impact on the dynamic 

properties of the interacting surfaces. The vibration of the contacting surface is mainly caused by 

external excitation, rolling or sliding of surfaces, surface roughness/waviness or combinations of 

all of these. It is obvious that vibration (or dynamics) at the contacting rough surface has major 

influence of the fatigue and wear performance of the components, which is associated with the 

damaging of the machine element. Static and dynamic properties of contacting solid surfaces are 

the topics of huge importance because of their presence in large number of engineering 

applications. Also these topics are closely interconnected with each other. The damaging effects 
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on the machines are associated with production as well as economic loss of the corresponding 

industry. So designing the systems with the considerations for controlling these phenomenon will 

not only result in improvement in efficiency or performance but will also help to reduce economic 

losses. Hence the study of contact interactions of rough surfaces has always been an area of 

research interest. 

1.2. Literature Review 

 
It is necessary to present a brief discussion of the evolution of contact analysis in order to 

set a scene for the present analysis. Related literatures available on static and dynamic analysis of 

single asperity contact and rough surface contact are recapitulated here. 

Starting from early years to current time different researchers have carried out many theoretical 

and experimental studies to investigate contact properties of surfaces. Initially the contact 

problems were analyzed by extremely simplified models which were very much different from 

real contact conditions. Later evolution of elastic to plastic contact with increase of load, and its 

effect on contact parameters was taken into consideration. Hence contact analysis at high load 

became realistic than before. Effect of variation of the material properties were also analyzed. 

Later Fractal analysis pioneered by Mandelbrot was applied to model rough surfaces and analyze 

their contact properties. Primarily detailed stress analysis was not possible due to the lack of proper 

tool to model significant geometric and material non-linearity encountered in elastic-plastic and 

plastic regimes. After the introduction of Finite Element Analysis it emerged as a logical solution 

of these shortcomings since it is robust enough to simulate almost every feature of contact 

problems encountered. Besides the static analysis, dynamic contact analysis has become an 

important area in recent days. 

 

1.2.1. Literatures on Contact Analysis 

 

The first significant single asperity contact model was provided by Hertz [1, 2]. Hertz also 

attempted to give a precise definition of hardness of solids. This attempt has proved to be 

unsatisfactory due to the difficulty of detecting the point of first yield under the action of contact 

stress. Hertz found the contact area of the quadratic surfaces to be elliptical due to elastic 

deformation. Abbot and Firestone [3] built a surface roughness-measuring device consisting of a 

stylus and introduced the most widely used model for a fully plastic contact. It was considered that 
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if the contact stress in a solid crosses the hardness of the material it undergoes plastic deformation. 

In fact, this plastic truncation model given by Abbot and Firestone is more useful to describe a 

wear process rather than a deformation process. Greenwood and Williamson [4] presented one of 

the most basic and widely accepted model for elastic contact. It was shown how the number of 

contacting asperity, real contacting are and contact deformation depends on the topography of the 

surface. A new criterion called ‘plasticity index’ was provided which indicates whether contact 

will be elastic or plastic. But Greenwood Williamson model is considered to be over-simplified 

due to its assumptions. Greenwood and Tripp [5] gave a general theory of contact between two 

rough plane surfaces. It was showed that the load and the area of contact remain almost 

proportional, independently of the detailed mechanical and geometrical properties of the asperities 

and a single-rough-surface model can always be found which would predict the same laws as a 

given two-rough-surface model. Akyuz and Merwin [6] first studied the two-dimensional stresses 

beneath a cylindrical indenter using finite element method. Whitehouse and Archard [7] 

considered the random surface profile as an equivalent random signal characterized by height 

distribution and an auto correlation function taking care of the distribution for both asperity height 

and radii. Hardy et al. [8], Dumas and Baronet [9], and Lee et al. [10] provided more complete 

computations for the indentation of an elastic perfectly plastic half-space by a cylinder and sphere. 

Nayak [11] adopted a sophisticated statistical model which characterizes a random rough surface 

by three spectral moments of the profile which are equivalent to the variance of the distribution of 

profile heights, slopes and curvatures. Tallian [12] analyzed strongly anisotropic surfaces in which 

the surface is modelled as random process with surface heights in Gaussian distribution and found 

out that besides the surface roughness, the surface frequency plays an important role to determine 

the contact behaviour. Gupta and Cook [13] studied rough surface contact model having tip heights 

in Gaussian distribution and asperity radii in log-normal distribution. Williamson and Hunt [14] 

studied the plastic indentation experimentally and concluded that asperity persistence does not 

depend on the particular metal in contact and for local indentations, the degree of contact (the ratio 

of real to nominal area) is independent of the load. Onions and Archard [15] studied a model with 

a Gaussian distribution of both surface heights (instead of asperity heights) and asperity curvatures. 

Hisakado [16] pointed out that a Gaussian distribution of asperity heights and curvatures for a 

given asperity shape may lead to a non-Gaussian distribution of the surface height, which is 

unrealistic for most engineering surfaces. Bush et al. [17] followed the Nayak [11] microgeometry 
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assumptions and modelled the asperities as paraboloids with two different radii of curvature as 

maximum and minimum curvature of the asperity and found that in the limiting case of large 

separations, the area of true contact is proportional to the applied load, and equal to just half of the 

bearing area. O’Callaghan and Cameron [18] and Francis [19] extended the Bush et al. [17] model 

for the case in which both surfaces are rough and surfaces need not contact and concluded that this 

type of contact is negligibly different from the GW model. McCool [20] investigated the limit of 

applicability of elastic contact models of rough surfaces, using a plane strain solution for a 

sinusoidally corrugated half-space. McCool [21] also considered a general anisotropic model and 

the results were found to be in very good agreement with those of the simpler GW model. 

Greenwood [22] approximated the contact pressure and approach with an equivalent radius of 

curvature using the circular contact formula. Johnson [23] showed that the pressure distribution 

for the solids of revolution rises to infinity without interfering outside contact area and adhesion. 

Excluding the term responsible for infinite pressure distribution, Boussinesq [24] appreciated that 

the pressure distribution between two elastic bodies, whose profiles are continuous through the 

boundary of the contact area, falls continuously to zero at the boundary. Chang, Etsion and Bogy 

[25] presented an elastic-plastic asperity model for analyzing the contact of rough surfaces based 

on volume conservation of an asperity control volume during plastic deformation showed the 

relationship between mean effective pressure and hardness in terms of Poisson’s ratio. But this 

CEB model suffers from a discontinuity in the contact load as well as in the first derivative of both 

the contact load and the contact area at the transition from elastic to elastic-plastic region. 

Kucharski et al. [26] presented a finite elements analysis of contact between an elastoplastic sphere 

and a rigid plane. The relations obtained i.e. load-approach, and load-contact area, were combined 

with statistical description of the rough surface for modelling contact between the two surfaces 

and the results of numerical investigations were in good agreement with experimental results. Ju 

and Farris [27] applied spectral analysis methods and the Fast Fourier Transform (FFT) to 

characterize a surface in two-dimensional contact problems. Zhao, Maietta and Chang [28] 

presented a model for transition from elastic deformation to fully plastic flow of the contacting 

elastic-plastic asperities and the relation for the ratio of the elastoplastic contact area versus load 

was derived. It was shown that the elastoplastic contact of asperities plays an important part in the 

macrocontact behaviour of rough surfaces. Adams and Nosonovsky [29] reviewed single and 

multi-asperity contact models with an emphasis on the forces of contact and their relationship to 
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the geometrical, material and mechanical properties of the contacting bodies. Zhao and Chang [30] 

showed that the contact interactions increase the mean separation of surfaces and reduce the real 

area of contact and on the asperity level it cause redistributions of the contact load among asperities 

of different heights. As a result, the load carried by asperities of larger heights would increase. 

And for plastic asperity contact the effect is opposite. Kogut and Etsion [31] first ever effectively 

utilized commercial finite element software ANSYS for the accurate calculation of contact 

parameters in elastic-plastic as well as plastic contact analysis of a deformable sphere against a 

rigid flat and found that the evolution of the elastic-plastic contact can be divided into three distinct 

stages – elastic, elastic-plastic and fully plastic for different ω/ωc values. Again Kogut and Etsion 

[32] presented an improved elastic plastic model for the contact of rough surfaces based on an 

accurate Finite Element Analysis solution of a single asperity contact which predicted separation, 

real area of contact and real contact pressure as functions of the plasticity index and contact load. 

The contact stiffness was shown to be insensitive to the plasticity index and contact load for low 

value and sensitive at high value of critical load ratio. Jackson and Green [33] presented a 2D 

axisymmetric finite element model of an elastic-perfectly plastic hemisphere in contact with a rigid 

flat surface derived from the Hertzian solution and the von Mises yield criterion which discovered 

significant geometrical and material nonlinearities. It was found that the hardness depends upon 

the modulus of elasticity, Poisson’s ratio, and the deformation itself. 

Bahrami, Yovanovich and Culham [34] developed a new model that considered the effect of 

roughness on the elastic contact of spherical bodies in which the deformations of surface asperities 

were considered to be plastic and the bulk deformation was assumed to be within the elastic limit. 

A new parameter, non-dimensional maximum contact pressure, was introduced which was shown 

to be the key parameter that controls the contact. Cai and Bhushan [35] developed a numerical 3D 

model for the analysis of rough, two-layered elastic and elastic-perfectly plastic surfaces which 

was based on a variational principle. It was found that compliant top layers can minimize the 

maximum contact pressure, the surface and subsurface stresses and increase the real area of 

contact. And stiff top layer does the opposite. Jackson and Streator [36] described a non-statistical 

iterative multi-scale model of the normal contact between rough surfaces.  It was found that only 

the lower roughness frequencies impact the real area of contact and the real area of contact is 

proportional to the load for both elastic and elasto-plastic contact. Jamari and Schipper [37] carried 

out experimental investigation of the contact between a deformable sphere and a rigid flat to 
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explore its behavior in the fully plastic contact regime. It was found that the mean contact pressure 

was constant and the contact area is simply the truncation of the sphere by the hard flat for a fully 

plastic contact regime. Kadin et al. [38] developed and analyzed a statistical model for the 

unloading of elastic–plastic contact of rough surfaces for a single load–unload cycle in which the 

hystereses of load-separation and load real contact area behavior were analyzed for a range of 

surface roughness and loading conditions. . It was shown that the main parameters affecting the 

unloading are the original plasticity index and the maximum contact loading from which the 

unloading begins. Greenwood [39] presented a modified version of the Greenwood and 

Williamson  is which closely follows the predictions of BGT model [17] in which unlike the GW 

model, curvature of the spheres do not have a constant height-independent curvature, but depends 

on the asperity height through a relation which depends on the surface statistics. It was found that 

the linear asymptotic relation between contact area and load is only a consequence of the change 

in asperity curvature with asperity height and not of treating asperity as randomly distributed 

paraboloids. Shankar & Mayuram [40] modelled an axisymmetric hemispherical asperity in 

contact with a rigid flat for an elastic perfectly plastic material in which they showed the critical 

values in the dimensionless interference ratios for the evolution of the elastic core and the plastic 

region within the asperity for different Yield Strength/Elastic Modulus ratios of the material. 

Ciavarella et al. [41] also formulated an improved version of the Greenwood and Williamson (GW) 

theory with the inclusion of interaction between asperities which was achieved by treating the 

contact pressures as uniformly distributed over the apparent contact area and the resulting 

deformation as uniform. Numerical contact simulations using Weierstrass–Mandelbrot surfaces 

were shown to agree with this improved theory. 

Sepehri and Farhang [42] presented a three dimensional contact model of two rough surfaces in 

elastic-plastic contact considering asperity shoulder-shoulder contact, in which the volume 

conservation was assumed in the plastic flow regime. Sahoo et al. [43] showed that a generalized 

solution cannot be applicable for all kind of materials as the effect of strain hardening greatly 

influences the contact parameters especially in the high or fully plastic regime which increases 

with the increase in the value of hardening parameter. The increase in strain hardening makes the 

surface capable of carrying higher amount of load in a smaller contact area. Sahoo and Chatterjee 

[44] analyzed 2D axisymmetric finite element model of an elastic perfectly plastic hemisphere in 

contact with a rigid flat and found out that the maximum mean contact pressure ratio and the 
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corresponding dimensionless interference are dependent on the E/Y ratio and the dimensionless 

contact load, contact area and mean contact pressure are independent of the radius of sphere. Brake 

[45] developed a new elastic–plastic contact model based on material properties and contact 

geometries for studying impact between two round surfaces which was divided into three phases 

for loading: an elastic regime with solution provided by Hertz, a mixed elastic–plastic regime with 

solution based on continuity, and a fully plastic regime that had a linear force–deflection 

constitutive relationship. Gandhi et al. [46] studied the effect of tangent modulus and strain 

hardness on the contact behaviour of a frictionless elastic-plastic contact for different materials by 

FE analysis and analytical method. It was found that when the tangent modulus is increased, the 

hardness increases and the projected area of the indentation is reduced, as a result straining action 

of the material increases and material can carry large load in smaller contact area. Peng et al. [47] 

studied a finite element model and showed that the yield stress to elasticity modulus ratio affects 

the contact behaviour in the early stage of contact but at high interference the boundary condition 

of hemisphere base has much influence on the contact behaviour. Peng et al. [48] found that for 

the rough surface contact under a given separation, the increase of surface topography plasticity 

index and material plasticity index was found to result in larger contact area and contact load. 

Wang and Xiang [49] analyzed the tangential contact characteristics of a single hemispherical 

asperity when the asperity deformed in the stages of normal elastic-plastic deformation by finite 

element method. Megalingam and Mayuram [50] generated Gaussian rough surfaces using FFT 

technique and carried out three-dimensional contact analyses using finite element method. It was 

found that for the surface having low surface roughness, the asperities deform mostly elastically 

whereas for medium and high surface roughness, the elasto-plastic and plastic deformation are 

significant. 

 
1.2.2. Literatures on Fractal Contact Analysis 

 

The concept of fractal geometry was first pioneered by Mandelbrot. Mandelbrot [51, 52, 

53, 54] described the inherent symmetricity and self-similarity out of the chaotic phenomena of 

nature by fractal geometry like shape of cloud, hill, coastline etc. and explained its property of 

self-similarity and self-affinity. Mandelbrot introduced mathematical representation using fractal 

dimension and proposed extension of the Weierstrass function to express fractal mathematically.  

Berry and Lewis [55] and Ausloos and Berman [56] modified the Weierstrass –Mandelbrot 
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equation later. Ling [57] presented the applicability of fractal geometry as a model of rough surface 

and analyzed the mathematical representation. Majumdar, Tien [58] used the W-M fractal function 

to obtain scale-independent fractal parameters to characterize rough surfaces and The power 

spectra of the stainless steel surface profiles was observed to coincide at high frequencies and  at 

small length scales. Majumdar and Bhushan [59] used fractal geometry to characterize the 

multiscale self-affine topography by fractal dimension and the fractal representation of surfaces 

showed that the size-distribution of the multiscale contact spots follows a power law and is 

characterized by the fractal dimension (D) of the surface. Majumdar and Bhushan [60] predicted 

that all contact spots of area smaller than a critical area are in plastic contact and when the load is 

increased, these plastically deformed spots join to form elastic spots.  Blackmore and Zhou [61] 

obtained a general distribution function for the heights of anisotropic engineering surfaces by 

extending earlier work on surface profiles. Yan and Komvopoulos [62] incorporated the modified 

W-M function generated fractal rough surface model into an elastic-plastic contact mechanics 

analysis of two approaching rough surfaces which yielded relationships for the contact force and 

real contact area and the condition of evolution of elastic and plastic deformation at the contact 

interface in terms of separation distance, fractal parameters, and material properties.  

Zahouani et al. [63] used the fractal theory as a mathematical model for random surface 

topography, to be used as input data in contact modeling and analyzed through experiments, the 

contact between fractal random surfaces and a smooth plane. Komvopoulos and Ye [64] applied 

finite element model of a rigid sphere in normal contact with a semi-infinite elastic-plastic 

homogeneous 3D rough surface generated by the two-variable W-M function with fractal 

parameters determined from real surface images  to obtain a constitutive relation between the mean 

contact pressure, real contact area, and corresponding representative strain. Palasantzas and 

Hosson [65] have calculated the real contact area between elastic bodies with self-affine rough 

surfaces, which were described in terms of analytical correlation models in Fourier space. Willner 

[66] investigated elasto-plastic normal contact of fractal surfaces by numerically generating the 

surfaces using a special form of the structure function and studied the influence of different surface 

parameters with respect to the load-area relationship and the load-gap relationship. Chung and Lin 

[67] derived two roughness parameters analytically as a function of the mean separation and 

derived the relationship among fractal dimension (D), fractal roughness parameter  (G), and scaling 

coefficient from the equivalence of two structure function expressions. Kogut and Jackson [68] 
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conducted a comparison between contact mechanics results obtained with statistical and fractal 

approaches to characterize surface topography and found that contact area versus contact load and 

separation versus contact load, predicted by the GW statistical model are largely dependent on the 

sampling resolution used to characterize the surfaces. Liou and Lin [69] showed that two invariants 

in the fractal analysis of surface asperities, fractal dimension and the topothesy can be varied by 

changing the mean separation of two contact surfaces. Sahoo and Ghosh [70] studied finite element 

analysis of non-adhesive elastic/elastic–plastic contact between a rigid flat and a self-affine fractal 

rough surface and showed that in the elastic regime, contact area is linearly proportional to the 

contact load at small loads, for small D values and at large G values. But at higher loads, for high 

D values and low G values the load area behaviour becomes nonlinear. 

 Jiang et al. [71] developed a general model based on fractal geometry to analyze the contact 

stiffness of the plane joint rough surfaces which shows that for a fixed load, decreasing the surface 

roughness increases the real contact area, and decreases the critical contact area, so those 

microcontacts yield elastic deformation, which increases the normal and tangential contact 

stiffness. Pohrt and Popov [72, 73] applied reduction method to solve the elastic contact problem 

of fractal rough surfaces having different fractal dimensions and also calculated the normal 

interfacial stiffness and constriction resistance of two elastic bodies with randomly rough surfaces 

and varying fractal dimensions  using the boundary element method. Pohrt et al. [74] compared 

exact calculations of contact stiffness between elastic bodies with fractal rough surfaces (carried 

out by means of the boundary element method) with results of the corresponding one-dimensional 

model. Sahoo and Chatterjee [75] studied the effect of material properties such as yield strength 

and modulus of elasticity on contact area, normal displacement and mean contact pressure in both 

perfect slip and full stick contact of fractal surfaces utilizing ANSYS and found that that with the 

varying elastic properties of the material but with same E/Y ratio, loading in fractal surfaces yields 

identical contact parameters. Miao and Huang [76] studied the total load, area and stiffness of a 

fractal rough surface and found that the contact area is dependent linearly on the contact load and 

the share of plastic contact area decreases as the contact load increases. Sahoo and Chatterjee [77] 

presented  a finite element simulation which described the influence of varying elastic modulus in 

a non-adhesive frictionless bulk deformation contact between isotropic self-affine fractal surface 

and a rigid flat covering elastic, elastic-plastic and the plastic region. Buczkowski et al. [78] used 

the fractal theory based on a single variable Weierstrass–Mandelbrot function to obtain the normal 
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contact stiffness if rough and smooth isotropic surfaces pressed against each other taking the actual 

deformation of asperities and a correction due to asperity interaction into account. 

 
1.2.3. Literatures on Contact Vibration 

 

Nayak [79] presented the first significant work on contact vibration. He developed some 

of the theoretical groundwork necessary for detailed physical explanations of experimentally 

observed phenomena in vibratory point contact for three cases: undamped free vibrations, forced 

damped vibrations with a sinusoidal input, and vibrations with a broadband random input. Three 

problems of interest in rolling and/or sliding contact were considered in detail: loss of contact, 

plastic deformation, and the formation of corrugations. Hess and Soom [80, 81] studied nonlinear 

vibrations at a Hertzian contact excited by the dynamic component of an externally applied normal 

load by method of multiple scales [82] and solutions were obtained for both the average and 

instantaneous contact deflections. The average normal contact deflection during oscillations is 

found to be smaller than the static deflection under the same average load which can result in a 

reduction of the average area of contact. They also performed the same analysis for the contact 

region formed between rough surfaces and it was found that the contact region behaves as a 

nonlinear spring in parallel with a viscous damper, supporting a rigid mass. Perret-Liaudet [83,84] 

investigated a sphere-plane (Hertzian) contact problem for sub-harmonic and super-harmonic 

resonance of order two using MMS expanding the nonlinearity by third order Taylor series. The 

condition for contact loss was taken into consideration for the first time in this work. Sabot et al. 

[85] studied the non-linear vibrations of a sphere–plane contact excited by a normal load equal to 

the sum of a static load and a harmonic load and predicted the contact natural frequency, frequency 

contents and softening behavior using numerical and analytical methods. Perret-Liaudet and Sabot 

[86] studied a single-degree-of-freedom non-linear oscillator induced by an external harmonic 

normal force on a loaded sphere-plane Hertzian contact and also investigated non-linear 

resonances which lead to vibro-impact responses. Rigaud and Perret-Liaudet [87, 88] investigated 

experimental dynamic behaviour of a preloaded double sphere–plane Hertzian contact under 

sinusoidal excitation for several input levels including vibro-impact responses. In the second part 

the previous analysis was extended to the case of vibroimpact response of a preloaded and non-

sliding dry Hertzian contact under Gaussian white random normal excitation. They also analyzed 

the dynamic response of an impacting Hertzian contact subjected to an order-2 subharmonic 



[13] 

   

excitation and an order-2 superharmonic excitation [89, 90]. Ma et al. [91] studied the same sphere-

plane contact model with possible contact loss experimentally and analytically using a multi-term 

harmonic balancing method taking contact loss into consideration. Tian and Xie [92] investigated 

the dynamic contact stiffness at the interface between a vibrating rigid sphere and a semi-infinite 

transversely isotropic viscoelastic solid with an oscillating force superimposed onto a static 

compressive force in the vertical direction exciting the vibration of the sphere. Xiao et al. [93] used 

exact method, method of multiple scales and harmonic balance method to determine the natural 

frequency of a mass interacting with a nonlinear contact stiffness. The maximum initial 

displacement leading to loss of contact and the corresponding natural frequency for the system 

was determined to be only functions of the non-linearity coefficient. Zili, et al. [94] employed 

fractal contact model in conjunction with thin layer elements to capture the effects of lightly 

clamped joint interfaces on the dynamics of assembled structures taking the effects of surface 

topography, preload, and material properties into account. Xiao et al. [95] studied the force-

deflection characteristic and the nonlinear vibration of a rough surface which was constructed 

using a modified two-variable Weierstrass-Mandelbrot fractal function interacting with a rigid flat 

surface. The natural frequency was determined both exactly and approximately from the numerical 

calculation of the natural period. It was found that the degree of nonlinearity and the variation of 

natural frequency with amplitude increase with a rougher surface topography, and the maximum 

positive initial displacement leading to contact loss decreases accordingly. 

 

1.3. Summary 
 

In the present section, a gist about the research works on static and dynamic analysis of 

contact of rough surfaces is provided to outline the scope of further studies. This offers justification 

for the choice of the problems to be taken up in the thesis work. There exists a number of studies 

on the single asperity contact analysis as well as multi asperity contact analysis. Analysis of various 

parameters influencing the contact parameters like contact load, real contact area, contact pressure 

etc. has also been done by many researchers so far. Literature is abundant with studies on 

modelling of rough surfaces to explain the contact behaviours of rough surfaces in elastic, elastic-

plastic and fully plastic regime which has become much easier with the introduction of commercial 

finite element softwares. Substantial amount of research works has dealt with contact analysis of 
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fractal surfaces. Numerous research work also exist on contact behaviour on repeated loading-

unloading cycle. 

When dynamic analysis of contacting surface is considered there are much less emphasis in this 

area in comparison with the static analysis. From the literature it can be seen that there exists a few 

single asperity and sphere plane dynamic analysis considering damped and undamped nonlinear 

vibration with sinusoidal or random. But research work in the area of dynamic analysis of multi-

asperity rough surface is found to be very rare. Hence there is a large scope of research work in 

the area of dynamic analysis of contacting rough surfaces for single and/or multi asperity level. 

 

1.4.   Present Work 

 
In the present work, the dynamic properties of deformable rough surface is analyzed. 

Rough surface is modelled by Weierstrass-Mandelbrot fractal function. The static force-

displacement relationship for the deformable rough surface which comes in contact with a rigid 

flat surface is determined by Finite Element Analysis (FEA) using the commercial software 

ANSYS 14.5.  Using the static force-displacement relationship, the dynamic characteristics are 

analyzed for free-undamped as well as for forced-damped condition. The physical system of 

contact interface between the rough deformable surface and the rigid flat is assumed to be 

represented by a single degree of freedom (SDOF) spring-mass-damper model. Depending upon 

the nature of the application of the external excitation, there are two basic variations of the model. 

First, harmonic excitation force is applied on the mass of the SDOF spring-mass-damper system, 

while, in the second case harmonic excitation is applied as displacement on the base of the model. 

1.5. Present Thesis 

 
 The present thesis contains five chapters. The first chapter provides a general introduction 

to contact vibration of rough surfaces. It also includes a literature review of relevant research work 

to set the backdrop of the present analysis. The second chapter describes finite element modelling 

and static force-displacement analysis in ANSYS environment. Dynamic analysis of rough 

deformable surface for free and forced-damped vibration are presented in third chapter and fourth 

chapter on the basis of two different models, respectively. The fifth chapter contains the 

conclusions and future scope of work 

 



Chapter 2 

Finite Element Modelling and Analysis 

 

The chapter provides information about modelling of rough fractal surface in MATLAB and later in 

ANSYS. This chapter also depicts the method and results of the finite element analysis to obtain the force-

displacement characteristics of rough fractal surface.  
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2.1 Introduction 

 For the analysis of rough surfaces, modelling of realistic rough surface is necessary, which 

is never a simple procedure. In very preliminary contact surface modelling approaches, the 

asperities of rough surfaces were assumed to be in geometrical shape like spherical, cylindrical 

etc. [1, 2, 23, 33, 97].  But in reality rough surfaces are hardly found in such geometrical shape, 

but found in random shape and size. For that purpose, some statistical modelling [4, 17, 68] was 

proposed. It has been observed that surface topography is a non-stationary random process, which 

means the variance of the height distribution is related to the sampling length and hence is not 

unique for a particular surface. After B. B. Mandelbrot proposed the theory of fractal geometry, it 

was found that it can be used to model various natural phenomena, such as precipitation, 

turbulence, and surface topography. Rough surfaces exhibit the feature of self-similarity and self-

affinity i.e. similar appearances of the surface can be seen under the various degree of 

magnification. The measurement parameters of surface roughness depend strongly on the 

resolution of the roughness-measuring instrument or some other form of filter. Hence same surface 

can exhibit different measurements for different measuring instruments and scaling parameters. 

 

 

Figure 2.1. Self-affine property of a rough surface profile. 

 

Thus it is necessary to characterize rough surfaces by intrinsic parameters, which are independent 

of all scales of roughness. This suggests that fractal geometry can be a very efficient tool to model 

rough surface, since the parameter fractal dimension is an intrinsic property which is invariant with 

length scales and takes care of the nature of self-similarity.  



[18] 

 

2.2. Fractal Surface Characterization 

The profile of an engineering surface, obtained from stylus measurements, is assumed to 

be continuous even at the smallest scales. Since repeated magnifications reveal the finer levels of 

detail, the tangent at any point cannot be defined. Thus the surface profile is continuous 

everywhere but non-differentiable at all points. These properties are satisfied by the Weierstrass– 

Mandelbrot (W-M) function given by Berry and Lewis [55] 
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where w  is a complex function of real variable x . A fractal profile can be obtained as the real part 

of  xw . 
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Here, D  and f  are the fractal dimension of the profile and frequency index respectively.   is a 

random phase and    0  is a parameter that determines the density of frequencies in the 

profile. 

Ausloos and Berman [56] modified the W-M function by introducing multiple variables to account 

for higher-dimensionally stochastic processes. The height function of a 3D fractal surface 

exhibiting randomness in all planar directions is the real part of the Ausloos–Berman function. 
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M and   are the number of superimposed ridges to construct the surface and frequency density 

respectively. The anisotropy of the surface geometry is controlled by the magnitude of A . The 

angle   is used to offset the ridges in the azimuthal direction. In the present study, the ridges are 

equally offset, hence, 
M


   . The parameter k  is a wave number related to the sample size
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Yan and Komvopoulos [62] modified the equation (2.3) to obtain the final equation  
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 L  is the sample length, and G  is a height scaling parameter independent of frequency within the 

scale range, wherein fractal power law behavior exists. Frequency index is represented by f . 

Frequency index has a lower limit at zero for a truncated series of the height function and the upper 

limit is given by, 
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Where,  .int  represents the maximum integer value of the number within the bracket and sL  is the 

cut off length, which is in the order of about six lattice distances. For physical rough surfaces the 

value of fractal dimension is found to be between 2 and 3  32  D .  

 

2.3. Fractal Surface Generation 

 The height (z coordinate) of the fractal surface for the corresponding (x, y) points are 

obtained using the modified Weierstrass– Mandelbrot equation [equation (2.4)] in MATLAB. The 

values of sample length  L and cut-off length  sL  is set to be 1×10-6 m and 1.5×10-7 m 

respectively. The parameters M and has values of 1 and 1.5, respectively. The 3D surface is 

plotted using the  zyx ,,  coordinate points in MATLAB, which represent a 3D isotropic fractal 

surface. 
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Figure 2.2. MATLAB generated fractal surface with D = 2.3, G = 1.36×10-11 m in 50×50 grid. 

 

Figure 2.3. MATLAB generated fractal surface with D = 2.4, G = 1.36×10-11 m in 50×50 grid. 

 

Figure 2.4. MATLAB generated fractal surface with D = 2.5, G = 1.36×10-11 m in 50×50 grid. 
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Figure 2.5. MATLAB generated fractal surface with D = 2.4, G = 1.36×10-10 m in 50×50 grid. 

 

Figure 2.6. MATLAB generated fractal surface with D = 2.4, G = 1.36×10-12 m in 50×50 grid. 

 

From the figures given above, it can be clearly seen that lower D  value and higher G  value 

corresponds to rougher and less dense surface topography and vice-versa. The magnitude of the 

fractal dimension D  describes the contribution of high and low frequency components in the 

surface function. Thus, high values of D indicate that high-frequency components are more 

dominant than low-frequency components in the surface topography profile. Hence the topography 

is denser for this case. For higher G value, the difference between the amplitude of high and low 

frequency increases causing a rougher topography. As mentioned earlier, the surface height 

function provided by the equation (2.4) is continuous, non-differentiable, scale-invariant (within 

the range determined by the upper and lower wavelengths used in the truncated series) and self-
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affine asymptotically. Hence if the surface is repeatedly magnified, more and more surface features 

appear and the magnified image shows a close resemblance to that of the original surface obtained 

at different scale. 

 

2.4. Finite Element Modelling 

Finite element modeling is used for obtaining numerical solution of contact problems 

involving the variations of different contact parameters like contact load, real contact area, mean 

contact pressure etc. Commercial finite element software ANSYS 14.5 is used to analyze rough 

surface contact involving both geometric and material nonlinearity. Solving a contact problem in 

ANSYS involves the following steps. 

 Preprocessing: Input data describing geometry, discretization of the geometric model by 

dividing it into a mesh (particular arrangement of elements) of a suitable finite element, 

and the material properties, loads and boundary conditions are provided by the user. For 

parametric study, numerous material properties subjected to varying loads are presented in 

the following chapters.  

 Solution: Elements are connected at points called nodes. Numerically, a finite element 

mesh is represented by a system of algebraic equations to be solved for unknowns at nodes. 

Identification of the nature of the problem, for example time independence, non-linearity, 

large static deformation etc. determine the solution method.  

 Postprocessing: The finite element solution and quantities derived from it are listed or 

graphically displayed. 

 

 

2.4.1. Generation of Rough Surface in ANSYS 

 The generated co-ordinate points of the fractal surface are imported to ANSYS as keypoints 

by defining array parameter. To construct a cubic block on which the rough surface is to lay, 

additional keypoints are generated, keypoints are joined to construct lines and areas are created 

with the lines using ‘*do’ loop. And finally a cubic solid block of dimension 1µm×1µm×1µm is 

generated with the top surface rough.  
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Figure 2.7.  Fractal surface with D = 2.3, G = 1.36×10-10 m modelled in ANSYS. 

  

Figure 2.8. Fractal surface with D = 2.3, G = 1.36×10-11 m modelled in ANSYS. 

 

Figure 2.9. Fractal surface with D = 2.4, G = 1.36×10-11 m modelled in ANSYS. 
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2.4.2. Modelling and Meshing 

 Before the analysis is done, it is necessary to set the material properties and mesh the model 

with appropriate elements. The model is meshed such way that the contact elements overlay the 

solid elements. Hence the solid cube is meshed with SOLID element and the rough surface on the 

top is meshed with CONTA elements. The top-most node (with the highest z coordinate value) of 

the rough surface is identified and a rectangular 2D flat surface is generated on that node. Hence 

the flat surface just touches the top-most point of the rough surface and any downward motion of 

the flat would cause deformation of the rough surface. 

 During the force-displacement analysis of the deformable rough surface, the CONTA elements 

comes in contact with 2D rigid target element. The functional properties of the elements used can 

be set through key options of the elements. The elements used in present analysis [97] are given 

bellow. 

2.4.2.1. SOLID187 

SOLID187 element is a higher order 3D, 10-node structural solid element of tetrahedral 

shape. It has a quadratic displacement behavior. The element is defined by 10 nodes having three 

degrees of freedom at each node i.e. translations in the nodal x, y, and z directions. The element has 

plasticity, hyper elasticity, creep, stress stiffening, large deflection, and large strain capabilities. It 

also has mixed formulation capability for simulating deformations of nearly incompressible 

elastoplastic materials, and fully incompressible hyper elastic materials. SOLID187 is well suited 

to model irregular meshes. The geometry, node locations and the element co-ordinate system for 

this element are shown in Figure 2.10. 

 

Figure 2.10. Geometry of structural solid element SOLID187. 
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2.4.2.2. SOLID185 

SOLID185 is used for the three-dimensional modelling of solid structures. The element is 

defined by eight nodes having three degrees of freedom at each node: translations in the nodal x ,

y  and z  directions. The element has plasticity, stress stiffening, large deflection, and large strain 

capabilities. It also has mixed formulation capability for simulating deformations of nearly 

incompressible elastoplastic materials, and fully incompressible hyper-elastic materials similar as 

SOLID187. SOLID185 Structural Solid is suitable for modelling general 3-D solid structures. It 

allows for prism and tetrahedral degenerations when used in irregular regions. The geometry, node 

locations and the element co-ordinate system for this element are shown in Figure 2.11. 

 

Figure 2.11. Geometry of structural solid element SOLID185. 

2.4.2.3. CONTA174 

  CONTA174 is an 8-node contact element used to represent contact and sliding between 3D 

target surfaces and a deformable surface. The element is applicable to 3D structural and coupled 

field contact analyses for surface to surface contact. The element is located on the surfaces of 3D 

solid or shell elements with nodes at the midpoints of its sides. It has the same geometric 

characteristics as the solid or shell element face with which it is connected. Contact occurs when 

the element surface penetrates one of the target segment elements on a specified target surface. 

Coulomb friction, shear stress friction, and user-defined friction are allowed for this element. The 

element also allows separation of bonded contact to simulate interface delamination.  
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Figure 2.12. Geometry of CONTA174 and interaction with target surface. 

2.4.2.4. TARGE170 

TARGE170 is used to represent various 3D target surfaces for the associated contact 

elements. The contact elements overlay the solid elements describing the boundary of a deformable 

body and are potentially in contact with the target surface, defined by TARGE170. This target 

surface is discretized by a set of target segment elements and is paired with its associated contact 

surface via a shared real constant set. Any translational or rotational displacement or forces and 

moments can be imposed on the target segment element. For rigid target surfaces, complex target 

shapes can be easily modelled with these elements. For flexible targets, these elements overlays 

the solid elements describing the boundary of the deformable target body. 

 

 

Figure 2.13. Geometry of TARGE170 and interaction with contact element. 
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Hence, the TARGET surface is meshed with TARGE170 element which comes in contact with 

the CONTA174 elements overlaying the SOLID187 or SOLID185 elements. For example, the 

resulting mesh for the surface having the values 3.2D  and 111036.1 G  m consists of 22375 

SOLID187 elements, 3448 CONTA174 elements and 10 TARGE170 elements and for the surface 

with 4.2D  and 111036.1 G m the resulting mesh consists of 26188 SOLID187 elements, 

3672 CONTA174 elements and 10 TARGE170 elements. 

 

 

Figure 2.14.  Fractal surface with 3.2D , 101036.1 G m after meshing. 

 

 

Figure 2.15.  Fractal surface with 3.2D , 111036.1 G m after meshing. 
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A pilot node is chosen at the centre of the rigid target surface where external load/displacement is 

to be applied. The rigid flat is constrained to move in all directions except in z  direction. And all 

the nodes at the bottom of the solid elements i.e. all the nodes at 0z are constrained to move in 

all the directions. The contact with the rigid plane is realized using surface-to-surface contact 

elements that use the augmented Lagrangian method for solving. [95] 

 

2.5. Finite Element Analysis and Solution 

 For the current analysis the solid element is meshed with 10-node structural solid element 

SOLID187 and the contact and the target elements are meshed with CONTA174 and CONTA170 

respectively. The rigid surface just touches the top-most node of the rough surface. 

 

 
Figure 2.16. Meshed model of rough surface in contact with rigid flat surface. (The point with * 

sign indicates the pilot node). 

 

A downward displacement is imparted on the rigid surface incrementally with 100 sub-steps to 

come in contact and deform the deformable rough surface. After the solution is obtained, the 

reaction force at the contact surface is recorded.  

 

2.5.1. Solution procedure in Finite Element Analysis 

In present study, the Finite Element Analysis solution is obtained by the utilization of the 

augmented Lagrangian method. The rough surface contact problem and the material property make 

the analysis highly nonlinear and difficult to converge. An iterative scheme is necessary to get the 
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solution in reasonable time. Loads are applied in number of steps to enhance solution convergence. 

Higher is the load step, higher is the chance of getting converged solution as well as higher is the 

solution time. Initially, a small interference is set of the total interference and then it is incremented 

after the load step converges. Each load step consists of 10 to 100 substeps. If the load is not 

applied in sufficient number of substeps, the elements gets distorted and converged solution cannot 

be obtained. As a solution, ANSYS internally controls the load stepping to obtain a converged 

solution by using the bisection method.  The augmented Lagrangian method is an iterative series 

of penalty methods, where a contact ‘spring’ is used to establish a relationship between two contact 

surfaces. In this method the resultant contact forces are applied as external forces and the system 

is solved again for contact with the penalty method. The procedure continues until the gap reduces 

to a reasonable value. It is a combination of penalty method and Lagrangian multiplier method to 

utilize the advantage of both. In this method, the normal force for the contact spring (i.e. normal 

pressure between the contacting surfaces) is taken as. 

 npenetrationormalnormal xkF             (2.6) 

where, F , k  and x  are the contact force, stiffness and displacement respective and  is the 

penalty term. The contact tractions (pressure and frictional stresses) are augmented during 

equilibrium iterations so that the final penetration is smaller than the allowable tolerance 

Compared to the penalty method, the augmented Lagrangian method usually leads to better 

conditioning and is less sensitive to the magnitude of the contact stiffness. To enhance convergence 

for augmented Lagrangian method, the program automatically adjusts the stiffness based on the 

current mean stress of the underlying elements and allowable penetration. However, in some 

analyses, the augmented Lagrangian method may require additional iterations, especially if the 

deformed mesh becomes too distorted. 

2.5.2. Validation Study 

Buzio et al. [96] studied the load deflection behavior between atomic force microscope 

(AFM) probes and self-affine fractal carbon films. They presented the experimental results for 

multiple asperity contact between nanostructured carbon and AFM probe. The AFM imaging 

provides fractal dimension 3.2D and fractal roughness 101055.1 G m along with the 

nominal contact area 12

0 108.4 A m2. The material properties for the system were taken as, 
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equivalent composite elastic modulus 



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




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

E
E  0.88 GPa, tangent modulus  tE  zero, 

Poisson’s ratio     0.3 and yield strength )(Y  16.07 MPa. Keeping the material and fractal 

properties same, the force-displacement analysis is carried out in ANSYS. SOLID185, 

TARGE170 and CONTA174 elements are used to construct the solid, target and contact elements 

respectively during the finite element analysis. Downward force (towards negative z direction) is 

applied on the pilot node causing downward displacement of the rigid flat as well as the deformable 

rough surface due to deformation. The displacement is recorded from the analysis. The result is in 

favorable agreement with the experimental result by Buzio et al. as well as with the result furnished 

by Chatterjee and Sahoo [77]. Non-dimensional displacement 









L


 *

is plotted against non-

dimensional load 
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
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EA

P
P

0

*
. P is the applied load,  is the displacement and L  is the sample 

length. E and 0A are equivalent composite elastic modulus and nominal contact area respectively. 

 

 

Figure 2.17. Comparison with the results of Chatterjee and Sahoo [77] and Buzio et al. 

[96]. 
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2.5.3. Results of Finite Element Analysis 

 Non-dimensional load 
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 *

 and the force-displacement curves are fitted in a power law relationship in the form 

 nkP **                 (2.7) 

 where k  is the non-linear stiffness of the rough surface which is a constant parameter with 

positive value and the parameter n is the measure of nonlinearity of the contact interaction. The 

parameter ''n  could be termed as nonlinearity exponent. First, force-deflection relation of the 

deformable rough surface in contact with a rigid flat is analyzed varying the surface properties. 

The fractal dimension D  is varied from 2.3 to 2.6 and fractal roughness parameter keeping the 

fractal roughness G  constant at 1.36×10-10 m. Then the value of fractal roughness is varied from 

1.36×10-10 m to 1.36×10-13 m keeping the value of fractal dimension constant at 2.4. The material 

is taken as infinitely linear elastic i.e. no yielding occurs up to infinite stress. The elastic modulus 

and the Poisson’s ratio of the material is taken as 200 GPa and 0.3 respectively. 

   

Figure 2.18. Plots of non-dimensional force versus non-dimensional displacement of rough 

surfaces for varying fractal dimension (D). 
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Figure 2.19. Plots of non-dimensional force versus non-dimensional displacement of rough 

surfaces for varying fractal roughness parameter  G . 

 

The curves are fitted in a power law relationship in the form of equation (2.7) to obtain the values 

of the nonlinear stiffness  k and the nonlinearity exponent  n . The values for different fractal 

dimension and fractal roughness parameters values are shown in table 2.1. 

 

Table 2.1.   Values of nonlinear stiffness  k and nonlinearity exponent  n  for different fractal 

dimension  D and fractal roughness  G values. 

Fractal Roughness  

 G  

Fractal Dimension  

 D  

Nonlinear stiffness 

 k  

Nonlinearity exponent 

 n  

1.36×10-11  m 2.3 2.5751 1.74723 

1.36×10-11  m 2.4 2.7927 1.5372 

1.36×10-11  m 2.5 1.9254 1.2719 

1.36×10-11  m 2.6 1.5275 1.1421 

1.36×10-10  m 2.4 5.4703 2.1092 

1.36×10-12  m 2.4 1.9939 1.2934 

1.36×10-13  m 2.4 1.5909 1.1638 

 

Since the n value is a measure of nonlinearity, it can be seen that nonlinearity increases for rougher 

surface topography i.e. higher fractal roughness parameter  G and lower fractal dimension  D and 

vice versa.  



[33] 

 

The previous plots are presented under the assumption of infinite linear elasticity, which is not 

practical. To investigate the dynamic contact behaviour in post elastic domain, it is required to 

define the yield strength along with tangent modulus. Now, keeping the surface properties fixed at 

4.2D  and 111036.1 G  m, force-displacement relationship is analyzed for the variation of 

material property of the rough deformable surface. The material is considered to yield and behave 

according to a bilinear model after yielding. Yield strength )(Y is considered to be fixed at 250 

MPa and the value of the tangent modulus  tE  is varied as 100 GPa, 60 GPa and 10 GPa. The 

elastic modulus and Poisson’s ratio is set fixed at the previously mentioned value. Finite element 

analysis is applied to obtain the force-displacement relationship of the rough surface for different 

tangent modulus values. 

 Non-dimensional load versus non-dimensional displacement curve for the variation of tangent 

modulus is presented in Figure 2.20. 

 

 

Figure 2.20. Plots of non-dimensional force versus non-dimensional displacement of rough 

surface for varying tangent modulus  tE . 

 

The load-deflection behaviour under varying yield strength with constant tangent modulus has also 

been studied. The elastic modulus, Poisson’s ratio and the tangent modulus is set fixed at 200 GPa, 

0.3 and 10 GPa respectively and yield strength is varied as 250 MPa, 560.8 MPa, 911.5 MPa, 
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1265.3 MPa and 1619 MPa. These yield strength values cover a range of steels used in engineering 

applications [33, 75]. The non-dimensional force-displacement curves obtained from the finite 

element analysis are showed in Figure 2.21. 

 

Figure 2.21. Plots of non-dimensional force versus non-dimensional displacement of rough 

surface for varying yield strength  Y . 

 

The curves for the variation of tangent modulus and yield strength of the deformable surface are 

fitted in a power law relationship in the form of equation (2.7) to obtain the values of the nonlinear 

stiffness  k and the nonlinearity exponent  n . 

 

Table 2.2. Values of nonlinear stiffness (k) and nonlinearity exponent (n) for different tangent 

modulus (Et) and yield strength (Y) values. 

 

Yield Strength 

(MPa) 

Tangent Modulus 

(GPa) 

Nonlinear stiffness 

 k  

Nonlinearity exponent 

 n  

N/A Linear Elastic 2.7927 1.5372 

250 100  1.2666 1.4989 

250 60 0.71652 1.453 

250 10 0.06957 1.1057 

560.8 10 0.05301 0.8816 

911.5 10 0.05112 0.7709 

1265.3 10 0.05416 0.7174 

1619 10 0.05944 0.6914 
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It can be observed that for higher tangent modulus value, the surface exhibits higher nonlinearity. 

The nonlinearity exponent  n  is found to decrease with the increase of yield stress value. For the 

yield strength values 560.8 MPa, 911.5 MPa, 1265.3 MPa, and 1619 MPa, the n value is found to 

be less than 1.    

2.6. Summary 

 In the present chapter, coordinate points constructing fractal surface are generated from the 

modified Weierstrass-Mandelbrot function in MATLAB and are imported to ANSYS as keypoints 

by defining array parameters. Additional keypoints are created and used to construct a cubic solid 

block of dimension 1μm × 1μm × 1μm on which the rough deformable surface is to lay. The 

deformable surface comes in contact with a 2D rigid flat. Any downward motion of the rigid flat 

surface results deformation of the rough surface. Finite element analysis is applied to obtain the 

force-displacement relationship of the rough surface. The obtained force-displacement curve from 

finite element analysis is fitted in a power law curve to obtain nonlinear contact bulk stiffness and 

a parameter called ‘nonlinearity exponent’ which provides the measure of nonlinearity of the 

contact system. The values of these two parameters are determined for the variation of surface 

roughness and material property of the deformable surface. It has been observed that, the 

nonlinearity of the system increases with the increase of surface roughness, tangent modulus and 

with the decrease of yield strength.  
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Chapter 3 

Dynamic Analysis of Rough Fractal 

Surface: Model I 

 

The chapter provides an analysis on free undamped and forced damped vibration of deformable rough 

fractal surface in contact with a solid flat surface and also the effect of surface roughness and material 

properties on it.  
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3.1. Introduction 

It is well known that if an elastic body is given a small disturbance from its stable 

equilibrium position, it starts vibrating about the equilibrium position. For the case of rough 

contacting surfaces the same phenomenon takes place. Under the influence of any type of external 

disturbance and excitation, vibration/oscillation takes place at the contact interface. In engineering 

components like gears, belt drives, cam-followers etc. vibration at contact surfaces is a very 

common and influential phenomenon. The amplitude of the vibration at the contact surface are 

often found to be very low and hence it is not an easy task to measure the vibration parameters of 

the contact surfaces. But a theoretical study can be presented to obtain characteristics of the 

dynamic behaviour of such systems. 

3.2. Dynamic Model 

The present dynamic system consists a deformable body of mass m with a rough surface at the top 

and a rigid flat surface capable of vertical motion. While in motion, the rigid flat comes in contact 

with the rough surface causing deflection at its multiple asperities as shown in Figure 3.1. 

However, the rough surface is considered to be deflected with a bulk stiffness k for the entire 

surface. The dynamic behaviour of the contacting system is dependent on the force-displacement 

relationship of the surface which is analysed in chapter 2. 

 

 

Figure 3.1. Model of the deformable surface coming in contact with rigid flat surface. 

 

For the sake of dynamic analysis, the dynamic contact system is equivalently modelled as a single 

degree of freedom spring-mass-damper system (Figure 3.2.) which is considered to be valid for 

low frequency behaviour only [64]. The mass of the block (m) is equal to the mass of the 

deformable body whereas the spring stiffness is taken as the bulk stiffness of the surface. The mass 
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rests on a vertical spring and a viscous damper. It should be pointed out that the spring is non-

linear in nature. On the other hand, damping model is considered to be linear and viscous, with 

linear damping co-efficient c.  

 

Figure 3.2. SDOF model representation of the dynamic contact model. 

 

The vertical displacement of the system is denoted by z. The spring undergoes a deflection of zs 

due to the weight of the block and the static equilibrium position of the system is denoted by ‘o’ 

as shown in Figure 3.2. Under any form of excitation the mass vibrates vertically about the static 

equilibrium position. Once the mass is disturbed from its static equilibrium and is in motion, the 

restoring force is supplied by the nonlinear spring, which models the load-displacement 

characteristic at the contact interface. Hence, the force-displacement behaviour at the contact 

between deformable rough surface and rigid flat, studied through a finite element analysis in the 

previous chapter (chapter 2), is imposed on the spring as its nonlinear force-displacement 

behaviour. So, the spring force is expressed as a nonlinear function of spring displacement as 

follows  

 n

ss zzkF                (3.1) 

where sF  is the restoring force, k is the nonlinear stiffness of the spring and n is the nonlinearity 

exponent. It should be mentioned here that, different k and n values are obtained as the output of 

the FE analysis performed in chapter 2, corresponding to various combination of fractal surface 
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profile parameters and material properties. These k and n values are the input parameters for the 

present dynamic analysis. 

 Considering damping and weight of the block, the equation of motion of the system at any time 

instant ‘t’ can be written as 

   tFmgzzkzczm
n

s cos              (3.2) 

where F denotes the amplitude of the harmonic excitation force, while   is the forcing frequency. 

From the force-displacement relationship we obtain the static deflection of the spring is obtained 

as 

  n

s kmgz
/1

/               (3.3) 

This equation of motion is only valid when the rough surface is in contact with the rigid flat 

surface, i.e. 
szz  . Beyond this limit contact loss occurs and the rough surfaces does not remain 

in contact with the rigid flat. 

To generalize the equation of motion for different domain of parameters it is required to normalize 

the equation. For this purpose certain non-dimensional parameters are introduced. 
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 is utilized to normalize the 

external forcing frequency, time and damping coefficient. u,  ,   and   are normalized 

displacement, frequency, time and damping ratio respectively. After normalizing, the equation 

motion can be written in the following form, 
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where, the non-dimensional excitation force is represented as mgFF /ˆ   and ʹ denotes 

differentiation w.r.t. non-dimensional time. The expression  n
u 1  is expanded into a third order 

Taylor series expansion and hence equation (3.4) becomes 
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The governing differential equation describes linearly damped forced vibration of the contact 

interface under external harmonic excitation force. As the equation contains both quadratic and 

cubic nonlinearity terms, it can be classified as a Duffing-Helmholtz type equation with natural 

frequency value (
n ) of unity. Primarily it can be noted that level of nonlinearity of the dynamic 

system increases with the increase of the coefficient of the quadratic and cubic term of the 

equation, i.e. 
2 and

3 , which are dependent on the value of nonlinearity exponent (n).  

3.3. Numerical Solution methods 

In the present work, ordinary differential equations and integrations are computed 

numerically in MATLAB environment using numerical ODE solver ‘ode45’ and numerical 

integration subroutine ‘quad’ which are based on Runge-Kutta method and adaptive Simpson’s 

quadrature method respectively. 

3.3.1. Runge-Kutta Method 

Runge-Kutta Method is an efficient iterative method used in temporal discretization for the 

approximate solutions of ordinary differential equations[100,101]. In the Runge-Kutta method of 

first order (or Euler’s method) the approximate numerical solution of the ordinary differential 

equation of the following form is obtained 

 yxfy ,'                        (3.6) 

with the initial value,   00 yxy              (3.7) 

The interval between the initial and the final point is divided into small subdivisions of length h. 

Then, using the initial condition as our starting point, rest of the solution is generated by using 

the iterative formulas 

hxx nn 1                (3.8) 

 nnnn yxfhyy ,.1                 (3.9) 

But this method is not accurate. So, to increase the accuracy of the solution a trial step is taken at 

the midpoint of the interval. Then use the value of both x and y at that midpoint is used to compute 

the real step across the whole interval. 



 [43]   

   

 nn yxfhk ,.1              (3.10) 
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 3
21 hOkyy nn              (3.12) 

The above mentioned technique is known as the second-order Runge-Kutta or midpoint method. 

However the most popular and often utilized method is the classical fourth-order Runge-Kutta 

formula which can be obtained by extending the above procedure in a similar way. 

 nn yxfhk ,.1              (3.13) 
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          (3.17) 

 

Figure 3.3. Initial solution point (Point 1), trial midpoints (Point 2 and 3), trial endpoint (Point 4) 

and final endpoint (Point 5) for fourth order Runge-Kutta method [100]. 

In the present analysis, the non-linear ordinary differential equation, derived in the previous section 

is solved using MATLAB ODE solver ‘ode45’ of MATLAB which utilizes Dormand-Prince 
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method for to obtain the solution. Dormand-Prince method is an adaptive Runge-Kutta method 

based on Runge-Kutta method of order 4. The one step calculation in the Dormand-Prince method 

is done as shown through the following expressions. 

 nn yxfhk ,.1              (3.18) 
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The next step value yn+1 is calculated as 
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The ordinary differential equations encountered in the present analysis are solved by using 

numerical codes developed in MATLAB with the help of ‘ode45’ solver. 

3.3.2. Adaptive Simpson’s Method 

Adaptive Simpson’s method is a numerical integration method proposed by G.F. Kuncir in 

1962. This method uses an estimate of the error obtained from calculating a definite integral 

using Simpson's rule. In this method the Simpson’s rule is used where the error is estimated and 

used to obtain precise solution. [102,103] 
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Using Simpson’s rule over the sub-interval  ba, the value of the integral by Simpson’s method 
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Where, f(x) is a real-valued function of a real variable, defined on a finite interval bxa   

Error of the integral is given by  45
1
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2

ab
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Incorporating the error value, the modified value of the integral  
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A point c is taken as the midpoint of the interval  ba, , i.e. 
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Hence,    baEbaE ,16, 21             (3.31) 

Value of the integral    2211 ESESfI          (3.32) 

From equation (3.31) and (3.32) we obtain, 

       baEbaEbaSbaS ,,,, 2122   
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The result of the integral can be improved by using 
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If the error tolerance is , 

The condition of the solution to be sufficiently accurate is  

2E , i.e. 


15

12 SS
 

If the condition is not satisfied the interval is halved and the same procedure is repeated. 

3.4. Undamped Free Vibration 

The dynamic characteristics of the rough surface without any damping effect and excitation 

are analyzed first. The equation of motion can be obtained by setting the damping factor and the 

forcing amplitude to zero. Substituting 0  and 0ˆ F  in equation (3.4) the following expression 

is obtained.  
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where, 0C   is the constant of integration which can be calculated from the initial conditions. For 

the present analysis the initial conditions used are 0)0( uu  , 0)0(' u  

The value of 0C  obtained from the above condition is 
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Putting the value of 0C  in equation (3.37), 
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The natural time period 0  can be obtained by carrying out the integration  
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The normalized natural frequency is obtained as. 
00 /2   

As mentioned earlier, contact loss between the rough surface and the rigid flat occurs when 1u . 

Hence, the minimum value of the initial displacement, (min)u  is -1. Setting the value of uʹ in 

equation (3.39) equal to zero, the maximum value of the initial displacement before contact loss is 

obtained as, 

  11)(max
/1


n
nu             (3.42) 

The evaluation of the integration shown in equation (3.41) is carried out numerically in MATLAB 

using adaptive Simpson quadrature method and the normalized natural frequency is obtained.  

From the equation (3.42) the values of the maximum initial displacement before contact loss 

[n(max)]  for different combinations of fractal parameters (D and G) can be obtained, which are 

furnished with the corresponding nonlinearity exponent (n) values  in the table 3.1.  

Table 3.1.Values of maximum initial displacement before contact loss and corresponding 

nonlinearity exponent (n) for different combinations of fractal dimension (D) and fractal 

roughness (G) values. 

Fractal Roughness 

(G) 

Fractal Dimension  

(D) 

Nonlinearity exponent 

(n) 

Maximum displacement  

for contact loss 

[u(max)] 

1.36×10-11  m 2.3 1.74723 0.7832 

1.36×10-11  m 2.4 1.5372 0.8325 

1.36×10-11  m 2.5 1.2719 0.9063 

1.36×10-11  m 2.6 1.1421 0.9484 

1.36×10-10  m 2.4 2.1092 0.7123 

1.36×10-12  m 2.4 1.2934 0.8998 

1.36×10-13  m 2.4 1.1638 0.9410 

 

From table 3.1 it can be observed that, with increase of the roughness of the surface i.e. with 

surfaces having higher value of nonlinearity exponent (n), the maximum displacement value for 

which the contact loss occurs, decreases. Which means the tendency of contact loss of rough 

surface increases with increase in nonlinearity. 
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The variation of the non-dimensional natural frequency for the corresponding non-dimensional 

initial displacement ranging from the minimum to the maximum values for the variation of fractal 

dimension (D) and fractal roughness parameter (G) values are shown in Figure 3.4 and Figure 3.5 

respectively.  

As the magnitude of the initial displacement increases from the static equilibrium position u = 0, 

the value of natural frequency decreases. It can be observed that with higher nonlinearity, the rate 

of variation of natural frequency w.r.t initial amplitude becomes higher.  

 

Figure 3.4. Plots of non-dimensional natural frequency vs. non-dimensional initial displacement 

of rough surfaces for varying fractal dimension (D). 

 

 
Figure 3.5. Plots of non-dimensional natural frequency vs. non-dimensional initial displacement 

of rough surfaces for varying fractal roughness (G). 
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For figure 3.4 the value of G is kept constant at 1.36×10-11 m and D is varied from 2.3 to 2.6 and 

for figure 3.5 the value of D is kept constant at 2.4 and G is varied from 1.36×10-13 m to        

1.36×10-11 m. Now keeping the surface properties same (D=2.4, G=1.36×10-11 m), tangent 

modulus and yield strength of the surface are varied and the same analysis is repeated. Plots of 

non-dimensional natural frequency vs. initial displacement for variation of tangent modulus are 

put forward in Figure 3.6 and the results for the variation of yield strength are shown in Figure 3.7. 

 

 

Figure 3.6. Plots of non-dimensional natural frequency vs. non-dimensional initial displacement 

of rough surfaces for varying tangent modulus (Et). 

 

 
Figure 3.7. Plots of non-dimensional natural frequency vs. non-dimensional initial displacement 

of rough surfaces for varying yield strength (Y). 
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A significant change in the nature of the natural frequency-initial displacement curve is observed 

for the yield strength values 560.8 MPa, 911.5 MPa, and 1619 MPa. Here, the value of the 

nonlinearity exponent is found to be less than unity (the corresponding values are given in table 

2.2 in previous chapter) and the nature of the initial displacement-natural frequency curves are 

vertically reversed as compared to the curves for nonlinearity exponent n > 1. Which means at the 

static equilibrium position of 0u  non-dimensional natural frequency reaches its minimum value 

of 10  and increases with any change. 

It has been mentioned previously that when nonlinearity exponent value is greater than unity, with 

higher nonlinearity, the rate of variation of natural frequency w.r.t initial amplitude becomes 

higher. The same condition is applicable when nonlinearity exponent value is less than unity.  

 From Figure 3.7, it can be inferred that the condition n = 1, serves as a limiting case, on two side 

of which the initial displacement-natural frequency behaviour is evidently different. For n > 1, the 

natural frequency decreases with increase in magnitude of initial displacement, whereas for n < 1, 

natural frequency increase with increase in magnitude of initial displacement. It is clear that the 

system natural frequency is dependent on the initial displacement, which is a typical nonlinear 

characteristic. Here it need to be mentioned that n = 1 corresponds to linear system behaviour (also 

confirmed by equation 3.1). For the sake of completeness, the system is also analyzed for n = 1 

following the same procedure. The normalized natural frequency vs. initial displacement plot is 

shown in Figure 3.8 and quite clearly, the normalized natural frequency remains constant at 

10  for all values of initial displacement. 

 
Figure 3.8. Non-dimensional natural frequency vs. non-dimensional initial displacement plot for 

linearly behaving contact system. 
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This behaviour is also in agreement with well-established knowledge of linear systems, where 

natural frequency is independent of initial condition. 

3.5. Forced Damped Vibration 

The vibration behaviour of the contacting surface under harmonic excitation has also been 

analyzed. Equation (3.5) is the equation of motion of the contacting surface under viscous damping 

and harmonic external excitation. The equation is solved numerically in MATLAB using 

numerical ordinary differential equation solver (ode45).  The force damped dynamic 

characteristics of the system is represented by the normalized excitation frequency versus 

harmonic response amplitude plots i.e. frequency response curves. To visualize the effect of 

surface roughness on dynamic behaviour of rough surface, comparison of  frequency response 

curves for different fractal dimension and fractal roughness are presented.  The frequency response 

curves for the surfaces having fractal dimension D = 2.3 to 2.6 are presented in Figure 3.9 to 3.12. 

The value of fractal roughness (G) in these cases is kept fixed at 1.36×10-11 m. This is followed by 

frequency response curves for surfaces having fractal roughness (G) 1.36×10-13 m to 1.36×10-10 m. 

The corresponding fractal dimension is considered to be fixed at 2.4. 

 

 

 
Figure 3.9. Frequency response curve for rough fractal surface with D = 2.3, G = 1.36×10-11 m. 
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Figure 3.10. Frequency response curve for rough fractal surface with D = 2.4, G = 1.36×10-11 m. 

 
Figure 3.11. Frequency response curve for rough fractal surface with D = 2.5, G = 1.36×10-11 m. 

 
Figure 3.12. Frequency response curves for rough fractal surface with D = 2.6, G = 1.36×10-11m. 
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Figure 3.13. Frequency response curve for rough fractal surface with D = 2.4, G = 1.36×10-13 m. 

 
Figure 3.14. Frequency response curve for rough fractal surface with D = 2.4, G = 1.36×10-12 m. 

 
Figure 3.15. Frequency response curve for rough fractal surface with D = 2.4, G = 1.36×10-10 m. 
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It can be observed that for linearly elastic surface, the system exhibits softening nature, evident 

from tilting of the response curve towards the left of the vertical. This is also This is also consistent 

with the free vibration results, as softening nonlinearity s associated with decrease of natural 

frequency for increasing displacement. Rougher is the surface topography (indicated by lower 

values of D and higher values of G), higher is the nonlinearity exponent (n) and higher is the 

softening nature of the system. 

To generate the frequency response curve, frequency sweep up and sweep down are performed. 

Sweep up involves starting with a small excitation frequency value and continuously increasing 

the excitation frequency in each step. On the other hand in sweep down, the excitation frequency 

is decreased from a finite value. While performing sweep up, jump up phenomenon has been 

observed (for softening type frequency response curve). Here, for a small increment of excitation 

frequency the response amplitude shows a substantial increase, hence, jumping to a higher value. 

Similarly for frequency sweep down, jump down phenomenon has been observed. In all the figures 

the location of jump up and jump down has been indicated by a dotted and dashed line respectively. 

These figures also demonstrates multi-response zone i.e. for a single excitation frequency value, 

two response amplitudes are obtained. However, theoretically a nonlinear system has three steady 

state solutions (of which two are stable and one unstable) for response amplitude at a given external 

excitation frequency. The present numerical method obtains the two stable solutions in forward 

and backward sweep but unable to capture the unstable solution. 

 
Figure 3.16. Frequency response curve for rough surface material with yield stress 250 MPa and 

tangent modulus 10 GPa. 
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Figure 3.17. Frequency response curve for rough surface material with yield stress 250 MPa and 

tangent modulus 60 GPa. 

 
Figure 3.18. Frequency response curve for rough surface material with yield stress 250 MPa and 

tangent modulus 100 GPa. 

 

The frequency response curves for the deformable surfaces having yield strength 250 MPa and 

varying tangent modulus values as 10 GPa, 60 GPa and 100 GPa are presented in Figure 3.16 to 

Figure 3.18. It can be observed that for higher tangent modulus, nonlinearity increases and the 

vibrating system tends to be more softening in nature. 

Now, keeping the tangent modulus fixed at 10 GPa, the yield strength is varied. For the yield 

strength values of 560.8 MPa, 911.5 MPa, 1265.3 MPa and 1619 MPa the frequency response 

curves are shown in Figure 3.19 to Figure 3.22. 
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Figure 3.19. Frequency response curve for rough surface material with tangent modulus 10 GPa 

and yield stress 560.8 MPa. 

 
Figure 3.20. Frequency response curve for rough surface material with tangent modulus 10 GPa 

and yield stress 911.5 MPa. 

 
Figure 3.21. Frequency response curve for rough surface material with tangent modulus 10 GPa 

and yield stress 1265.3 MPa. 
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Figure 3.22. Frequency response curve for rough surface material with tangent modulus 10 GPa 

and yield stress 1619 MPa. 

 

From the figures above it can be observed that for the yield strength values 560.8 MPa, 911.5 MPa, 

1265.3 MPa and 1619 MPa, the frequency response are hardening in nature since the nonlinearity 

exponent values are less than unity. For the hardening type of frequency response curves, jump 

down phenomenon has been observed while performing sweep up, and while frequency sweep 

down, jump up phenomenon has been observed.  For higher yield strength value, the hardening 

nature of the system increases with higher nonlinearity. 

 

 

3.5.1. Superharmonic Response 

 A nonlinear system is capable of showing response at excitation frequency different from 

the system’s linear natural frequency. A superharmonic response exists when the excitation 

frequency is a fraction of the linear natural frequency. From the normalized equation of motion of 

the forced damped system [equation (3.5)] it was noted that the value of the normalized natural 

frequency is unity. The current system exhibits superharmonic response at normalized excitation 

frequency value 0.5  2/n . Figure 3.23 shows the frequency response curve of the system with   

n = 2.0. It can be seen that there exists a small response at normalized excitation frequency of 0.5. 

A magnified view of the same response is also shown in the figure. 
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Figure 3.23. Superharmonic response for the system corresponding to n = 2.0. 

3.5.2. Phase and Time-Displacement Plot Analysis 

Keeping the normalized initial displacement at 0.5, phase plots and time-displacement plots are 

obtained from the numerical solution of equation (3.5). The plots (in non-dimensional plane) for 

varying nonlinearity exponent (n) from 0.6 to 2.0 are presented from Figure 3.24 to Figure 3.27 to 

obtain a qualitative relationship of displacement and velocity of the dynamic contact system with 

the nonlinearity exponent (n). 

    

(a)       (b) 

Figure 3.24. (a) Phase plot and (b) time-displacement plot of vibrating rough surface with    

n = 0.6 for normalized initial displacement as 0.5. 
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(a)       (b) 

Figure 3.25. (a) Phase plot and (b) time-displacement plot of vibrating rough surface with    

n = 1.0 for normalized initial displacement as 0.5. 

 

    

(a)       (b) 

Figure 3.26. (a) Phase plot and (b) time-displacement plot of vibrating rough surface with    

n = 1.5 for normalized initial displacement as 0.5. 
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(a)       (b) 

Figure 3.27. (a) Phase plot and (b) time-displacement plot of vibrating rough surface with    

n = 2.0 for normalized initial displacement as 0.5. 

Detailed discussion on the phase plot and time-displacement plot are provided in the next chapter 

(chapter 4) in which the nature is found to be similar with the present model. 

3.6. Summary 

 In the current chapter, vibration of a rough deformable surface in contact with a rigid flat 

is modelled by the dynamics of a single degree of freedom spring-mass-damper system. Static 

force-displacement relationship of the rough surface is used to determine the dynamic 

characteristics of the surface for free as well as for forced damped vibration. For free undamped 

vibration analysis contact loss is taken into account and the variation of normalized natural 

frequency w.r.t. initial displacement is presented for different surface and material properties. In 

case of forced damped vibration, the dynamic characteristics are presented in the form of frequency 

response curves. It is found out that for linearly elastic surface, the system is found to be softening 

in nature and the softening nature increases with the increase of roughness of the surface. Similarly, 

the softening nature increases with increase in tangent modulus for elastic-plastic contact. While 

analyzing the effect of yield strength value of the rough surface material, it is found that above a 

certain value of yield strength the nature of the frequency response curve changes from softening 

to hardening in nature.  Superharmonic response is also observed for the vibrating contact system. 



Chapter 4 

Dynamic Analysis of Rough Fractal 

Surface: Model II 

 

The chapter provides an analysis on the dynamic properties of deformable rough fractal surface in 

contact with harmonically excited rigid flat surface and also the effect of surface roughness and material 

properties on it.  
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4.1. Introduction 

The objective of the present thesis is to analyse the dynamic characteristics of contact between a 

rough deformable surface and a rigid flat. In the previous chapter a representative single degree of 

freedom (SDOF) model is devised where excitation in terms of a harmonic force is applied to the 

mass. The present chapter introduces a similar method, but here the excitation is imparted in the 

form of harmonic excitation to the base. It is assumed that with movement of the rigid flat, multiple 

asperities of the rough surface are pressed and deformed and as a result the rough surface vibrates 

under the influence of the rigid flat. A figure representing the physical system has been shown is 

Figure 3.1 and replicated in Figure 4.1(a) for ready reference. It is presumed that the suggested 

model would successfully capture the dynamic behaviour of the system.  

(a) 

 
(b) 

 

 
Figure 4.1. (a) Deformable rough surface in contact with rigid flat surface and (b) SDOF 

dynamic model representation 
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4.2. Dynamic Model 

The dynamic contact system is modelled as a vertical single degree of freedom (SDOF) 

spring-mass-damper system in which the harmonic excitation is imparted in form of external 

displacement function on the base the spring-mass-damper is resting on.  Hence the dynamics of 

the system is dependent on the relative motion of the block and the movable base.  

Similar to the previous model, the mass block is considered to be equivalent to the deformable 

body in terms of mass, i.e., the block has the same mass as that of the rough solid (m). The spring 

stiffness is taken as the bulk stiffness of the surface (k). The load-displacement behaviour of the 

contact interface as obtained from the FE analysis of chapter 2 is imposed on the spring as its 

response under loading. As the load-displacement characteristic is nonlinear in nature, the 

restoring force of the system becomes a nonlinear function of spring deformation. The damper is 

considered to be linear and viscous with linear damping co-efficient c, same as the previous model. 

Due to the weight of the block, the spring undergoes a deflection of zs. The static deflection of the 

spring (zs) is given by  

  n

s kmgz
/1

/                (4.1) 

The deflected position of the block due to its weight is considered as the static equilibrium position 

around which the mass vibrates under the influence of the externally excited base and z(t) indicates 

the displacement of the system with respect to the equilibrium. The force-displacement 

relationship of the spring is taken as 

 n

ss zzkF                 (4.2) 

Where sF  denotes the restoring force, k is the nonlinear stiffness of the spring and n is the 

nonlinearity exponent. The parameters k and n are obtained from the results of FE analysis from 

chapter 2. External harmonic excitation is applied as displacement on the base that the spring-

mass-damper system is resting on. The mathematical form of the harmonic excitation is given as, 

)(cos tYy                  (4.3) 

Hence )(sin tYy                (4.4) 

where, )(ty  denotes the displacement of the base. Y and  are the excitation amplitude and 

frequency respectively. Considering the relative motions between the mass and the base, the 

governing equation of the system can be written as,  

  0])[(  mgyzzkyzczm nn
s
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Putting the values of y and y from equation (4.3) and (4.4), the final form of the equation of motion 

is obtained. 

      tYctYkmgzzkzczm
nn

z  sincos            (4.6) 

To generalize the equation of motion for multiple domains it is converted into a normalized 

equation of motion by introducing few non-dimensional parameters. 
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The parameter s used for normalization is the natural frequency at the static equilibrium position
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 . u , ,  , Z  and   are normalized displacement, frequency, time, excitation 

amplitude and damping coefficient respectively. After normalization `the dimensionless equation 

of motion becomes 
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where, '  denotes differentiation w.r.t. non-dimensional time. The expression  n
u 1  is expanded 

into a third order Taylor series expansion and hence the following equation is obtained. 
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

nn
 . 

The governing differential equation describes linearly damped forced vibration of the rough 

surface in contact with a harmonically excited rigid flat surface. Since the restoring force part of 

the left hand side of equation (4.8) contains a quadratic and a cubic term in u, it can be classified 

as a Duffing-Helmholtz type equation with natural frequency  n  value of unity. The above 

mentioned equation is solved numerically using ODE solver (ode45) of MATLAB to obtain 

dynamic characteristics of the vibrating rough surface. 

If the harmonic excitation to the base is reduced to zero (i.e. Z = 0), the problem becomes a linearly 

damped nonlinear free vibration problem. In this scenario, the governing differential equation of 

the system is given by 

02 3
3

2
2  uuuuu              (4.9) 

Here, in absence of base excitation the RHS is reduced to zero. Further simplification can be 

considered by neglecting damping and taking 0 . This scenario represents a nonlinear free 
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vibration situation governed by the following equation. This situation was analysed in the section 

3.3 in Chapter 3. 

03
3

2
2  uuuu             (4.10) 

4.3. Dynamic Analysis and Results 

 Frequency response curve is an effective way to represent dynamic behaviour of a system. 

It plots the response amplitude for the variation of excitation frequency which depicts the nature 

of the vibration of the system, whether it is hardening or softening in nature.  The comparison of 

the frequency response curves for the surfaces with G = 1.36×10-13 m and fractal dimension (D) 

varying from 2.3 to 2.6 are presented in Figure 4.2 and 4.3. In Figure 4.2, frequency response 

curves for D values 2.4, 2.5 and 2.6 (corresponding ‘n’ values 1.5372, 1.2719, 1.1421 respectively) 

are plotted for the level of excitation of Z = 0.0198, while in Figure 4.3 frequency response curves 

for D values 2.3 and 2.4 (corresponding ‘n’ values  1.74723, 1.5372 respectively) are presented 

for higher excitation amplitude Z = 0.036. 

 It can be observed from the figures that for same excitation amplitude, with increase of the 

nonlinearity exponent value (n), the level of response amplitude decreases drastically. In the 

previous model as well, the same nature of decrement of response amplitude was observed. But 

since the parameter ‘n’ appears as an exponent in the equation of motion of the present model 

[equation (4.8)], the effect of the parameter ‘n’ is much pronounced.  

 

Figure 4.2. Comparison between frequency response curves for surfaces having D values 2.4, 

2.5 and 2.6 for Z = 0.0198. 
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Figure 4.3. Comparison between frequency response curves for surfaces having D values 2.4 

and 2.3 for Z = 0.036. 

Similarly the comparison of the frequency response curves for the surfaces with 4.2D  and G 

varying from 1.36×10-11 m to 1.36×10-13 m are presented in Figure 4.4. The amplitude of excitation 

is taken as Z = 0.0192. 

 
 

Figure 4.4. Comparison between frequency response curves for surfaces having G values 

varying from 1.36×10-11 m to 1.36×10-13 m for 0192.0Z . 

 

Here, it can be observed from the figures that with rougher surface topography (higher G and lower 

D value) the response amplitude of the contacting system decreases for same level of excitation. 
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Now, keeping the surface parameters constant at G = 1.36×10-11 m and D = 2.4 material properties 

(tangent modulus and yield strength) are varied. Frequency response curves for the deformable 

surfaces having yield strength 250 MPa with varying tangent modulus values as 10, 60 and 100 

GPa are presented in Figure 4.5, whereas surfaces with tangent modulus fixed at 10 GPa with 

varying yield strength values as 560.8 MPa, 911.5 MPa, 1265.3 MPa and 1619 MPa are furnished 

in Figure 4.6. 

 
Figure 4.5. Frequency response curves for rough surface material with yield stress 250 MPa and 

varying tangent modulus 10, 60 and 100 GPa for 02.0Z . 

 
Figure 4.6. Frequency response curves for rough surface material with tangent modulus 10 GPa 

and varying yield strength 560.8 MPa, 911.5 MPa, 1265.3 MPa and 1619 MPa for Z = 0.000295. 
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It was observed from the figures 4.5 and 4.6 that for same excitation amplitude, lower tangent 

modulus (Et) and higher yield strength (Y) value results in higher response amplitude.  

When it comes to the nature of the frequency response i.e. whether the system is of softening or 

hardening type it can be observed that for the value of nonlinearity exponent (n) less than unity, 

the system is found to be hardening in nature and softening for nonlinearity exponent value greater 

than unity as indicated by Figure 4.7. For each case, jump up and jump down phenomenon has 

been shown in the plot. 

 
Figure 4.7. Comparison of frequency response curves with n values 0.98 and 1.02 for 028.0Z . 

4.3.1. Superharmonic Response 

 For the present system, amplitude peaks are observed at excitation frequency values 2/n

, 3/n  etc. i.e. the system exhibits superharmonic responses. In Figure 4.8  to 4.13 superharmonic 

response is shown for the variation of the nonlinearity exponent (n) from 1.2 to 2.1 keeping the 

excitation amplitude fixed at Z = 0.02. It is seen that superharmonic response can be noted at 

normalized excitation frequency values of 0.5  2/n , 0.33  3/n , and 0.25  4/n . In Figure 4.14 

the magnified view of the responses inside the rectangle of Figure 4.10 shows the superharmonic 

responses at frequencies 3/n , 4/n , 5/n , 6/n  and so on. For the increase of the nonlinearity 

exponent, as previously mentioned, the response amplitude decreases at natural frequency as well 

as at superharmonic frequencies. Interestingly, it is found that for each step of the increase of the 

n value, the decrement of response amplitude at the natural frequency  n  is higher than the 
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decrement at 2/n . Hence, at a certain point (n = 1.8) the amplitude at  2/n  is found to be higher 

than at the natural frequency value  n  (Figure 4.11). 

Beyond another certain value of n, another significant phenomenon is observed, where the 

amplitude at the natural frequency becomes fixed and does not change with increase of the 

nonlinearity exponent (Figure 4.11, 4.12 and 4.13) Also it has been observed that the value of the 

amplitude it gets fixed at, depends upon the excitation amplitude and increases when the later 

increases. 

 

Figure 4.8. Superharmonic response for nonlinearity exponent value 1.2. 

 
Figure 4.9. Superharmonic response for nonlinearity exponent value 1.4. 



[71] 

 

 
Figure 4.10. Superharmonic response for nonlinearity exponent value 1.6. 

 
Figure 4.11. Superharmonic response for nonlinearity exponent value 1.8. 

 
Figure 4.12. Superharmonic response for nonlinearity exponent value 2.0. 
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Figure 4.13. Superharmonic response for nonlinearity exponent value 2.1. 

 
Figure 4.14.  Magnified view of the superharmonic responses for nonlinearity exponent (n) 1.6. 

4.3.2. Phase and Time-Displacement Plot Analysis 

From the numerical solution of the equation of motion of the current contacting system 

[equation (4.8)] phase plots and time-displacement plots (in non-dimensional plane) are obtained. 

The normalized initial displacement is set as 0.5.  The corresponding phase plot and the time-

displacement plots for the systems with nonlinearity exponent (n) values 0.6, 1.0, 1.5 and 2.0 are 

presented in Figure 4.15 to 4.18. Now, setting the normalized initial displacement as -0.5, phase 

plot and time-displacement plots for the systems with nonlinearity exponent (n) values 0.6 and 2.0 

are furnished in Figure 4.19 and 4.20. 
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(a)       (b) 

Figure 4.15. (a) Phase plot and (b) time-displacement plot of vibrating rough surface with    

n = 0.6 for normalized initial displacement as 0.5. 

 

    
Figure 4.16. (a) Phase plot and (b) time-displacement plot of vibrating rough surface with    

n = 1.0 for normalized initial displacement as 0.5. 

(a)       (b) 
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(a)       (b) 

Figure 4.17. (a) Phase plot and (b) time-displacement plot of vibrating rough surface with    

n = 1.5 for normalized initial displacement as 0.5. 

 

 

 

    
(a)       (b) 

Figure 4.18. (a) Phase plot and (b) time-displacement plot of vibrating rough surface with    

n = 2.0 for normalized initial displacement as 0.5. 
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(a)       (b) 

Figure 4.19. (a) Phase plot and (b) time-displacement plot of vibrating rough surface with    

n = 0.6 for normalized initial displacement as -0.5. 

   
(a)       (b) 

Figure 4.20. (a) Phase plot and (b) time-displacement plot of vibrating rough surface with    

n = 2.0 for normalized initial displacement as -0.5. 

 

Observing the phase plot and dime-displacement plots for a range of nonlinearity exponent 

values with both positive and negative initial displacement, it is seen that when nonlinearity 

increases (value of n shifts towards either sides of unity), the asymmetricity of the phase plot 
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w.r.t the vertical axis  0u  increases. As the value of the nonlinearity exponent (n) decreases 

from unity, the maximum displacement in the positive direction increases compared to the 

maximum displacement in the negative direction and the opposite happens when the value of 

the nonlinearity exponent increases from unity.  

4.4. Summary 

In the present chapter an analysis of the dynamic characteristics of rough deformable fractal 

surface influenced by a contacting harmonically excited rigid flat surface. The dynamic system is 

represented by a single degree of freedom spring-mass-damper system with harmonic excitation 

on the base the spring-mass-damper is resting on. The parameter nonlinearity exponent which is 

obtained from the force-displacement relationship of the deformable rough surface is used to 

determine the dynamic characteristics of the system. The effect of the variation of fractal 

parameters and the material properties are also analysed. It is observed that for higher nonlinearity 

the response amplitude decreases but above certain value of nonlinearity exponent the amplitude 

becomes constant. From phase plot and time-displacement plot it is noted that higher nonlinearity 

causes higher asymmetricity of the phase plot w.r.t. the vertical axis. As the value of the 

nonlinearity exponent decreases from unity, the maximum displacement in the positive direction 

increases compared to the maximum displacement in the negative direction and when the value of 

the nonlinearity exponent increases from unity, maximum negative displacement increases 

compared to the maximum positive displacement. 



Chapter 5 

Conclusions 

 

 This chapter provides the conclusion to the present thesis along with the 

future scope of work. 
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5.1. Conclusions 

The main objective of the present research work is to analyze the dynamic characteristics 

of rough deformable fractal surface in contact with a rigid flat. In the present thesis, coordinate 

points constructing fractal surface are generated using the modified Weierstrass-Mandelbrot 

function in MATLAB. These points are imported to ANSYS as keypoints by defining array 

parameters to construct the finite element model of the rough fractal surface which comes in 

contact with a rigid flat surface. Downward motion of the rigid flat causes deformation of the 

rough surface. A Finite element analysis is implemented to obtain the force-displacement 

relationship. Fitting a power law curve through the obtained result points, nonlinear contact bulk 

stiffness and a parameter called ‘nonlinearity exponent’ (n) are found out which provides the 

measure of nonlinearity of the contact system. It has been observed that, the nonlinearity of the 

system increases with the increase of surface roughness, tangent modulus and with the decrease of 

yield strength. 

In the present thesis, the physical dynamic contact system is modelled by single degree of 

freedom spring-mass-damper system. The external excitation on the dynamic system is imparted 

in two ways in the two models presented in the present thesis. The output parameters of the static 

force-displacement analysis are utilized as input parameters to the dynamic analysis of the surface 

for free-undamped as well as for forced-damped vibration. For free undamped vibration analysis, 

contact loss is taken into account and the variation of normalized natural frequency w.r.t. initial 

displacement is presented for different surface and material properties. 

 In case of forced damped vibration, the dynamic characteristics are presented in the form 

of frequency response curves. It is found out that for linearly elastic surface, the system is softening 

in nature and the softening nature increases with the increase of roughness of the surface. Similarly, 

the softening nature increases with increase in tangent modulus for elastic-plastic contact. While 

analyzing the effect of yield strength value of the rough surface material, it is found that above a 

certain value of yield strength the nature of the frequency response curve changes from softening 

to hardening in nature. In the second model, the contact system is represented by a spring-mass-

damper system with base excitation. It is found that, for higher surface roughness, tangent modulus 

and lower yield strength value, the response amplitude decreases. For higher nonlinearity the 

response amplitude decreases but above certain value of nonlinearity exponent the peak amplitude 

becomes fixed. For both the models, forced vibration study reveals a few typical nonlinear 
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characteristics with regards to the frequency response curves. Multiple response amplitudes 

corresponding to a single external excitation frequency has been observed for both hardening as 

well as softening nonlinearities. However, it should be mentioned that, the present method is 

unable to capture the unstable response. Jump up and jump down has also been observed while 

performing frequency sweeps. From phase plot and time-displacement plot it is noted that higher 

nonlinearity causes higher asymmetricity of the phase plot w.r.t. the vertical axis. 

5.2 Future scope of work 

 In the present thesis, the dynamic analysis of contact between a rough deformable fractal 

surface and a rigid flat is carried out for the variation of surface roughness parameters and material 

properties. There are a number of avenues on which the research work could be extended, which 

are noted as bellow 

 To incorporate adhesion as a factor influencing damping of the dynamic system and study 

the effect of adhesion on the overall dynamic characteristic of the system. 

 Effect of the contact vibration parameters on wear and friction of the contacting surface. 

 Dynamic analysis of contact surfaces constructed with layered materials. 

Objective of a simulation study is to predict the system behaviour with accuracy on the basis of 

mathematical modelling.  In the present scenario, the dynamic model is a basic SDOF spring-

mass-damper system. So, there is a scope for inclusion of further complexities into the model. 

For example, in the present work linear damping model has been considered. But, in future 

nonlinear damping models can be incorporated for accurate prediction of output parameters. 
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