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CHAPTER 1                                                        INTRODUCTION 

 

1.1 Composite material 

In general, a material that is formed by combining different materials on a macroscopic scale 

is known as composite material. A composite material usually derives it’s properties from it’s 

constituents and sometimes it’s properties may be quite different from those of the 

constituents. Which are plywood and reinforced concrete are some of the composite 

materials, which are being used for a long time. A composite material may be classified as 

fibrous, laminated and particulate. In fibrous composite material, the fibres are embedded in a 

matrix. The load is mainly carried by fibres. The matrix binds the fibres, distributes the load 

along the fibres and prevents the fibres from direct exposure to the environment. The fibres 

and the matrix may be of the same material or different materials. The fibres used in this 

material are characterised by their near crystal size diameter. In laminated composite 

materials, layers of differing properties are bonded together to act as an integral part. In 

particulate composite materials, particle of different materials are held in a matrix.  

 Nowadays, fibre reinforced plastics are being increasingly used in aerospace 

applications due to their high specific strength, high specific stiffness and low density. In 

addition, they have good corrosive resistance. A designer can easily tailor these materials for 

different applications. Epoxy polyester, vinyl-ester, phenol are commonly employed as a 

matrix. High performance thermoplastics are also being utilised on a large scale. It is 

generally considered that the reduction in weight up to 25% can be achieved by using fibre 

reinforced plastics in place of conventional materials of air craft. Glass-epoxy composite 

materials were the first to be used in aircraft structures in mid-forties. Due to low specific 

stiffness glass-epoxy, compared to conventional aircraft materials, it was not used in major 

applications. In around 1960 graphite and boron fibres were developed. Since, graphite-epoxy 

and boron-epoxy composite materials are superior to conventional metals used in aircrafts, in 

terms of both strength and stiffness; they were used in aircraft applications to a significant 

level. Graphite-epoxy which is much cheaper than boron-epoxy became very popular and has 

been used in aircraft structures. Kevlar-epoxy composite are also widely used in aircraft 

structures, but to smaller extents compared to graphite-epoxy composite materials.  

 In fibre reinforced plastic composites, first thin lamina is prepared from fibres and 

matrix (sometimes a lamina may also be made from woven fabric). Laminae with differing 

fibre orientations are bonded together to form an integral structural components, which is 

known as laminate. A lamina is considered to be homogeneous as macroscopic level. It has 
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three plane of symmetry, and hence termed as orthotropic. It’s stress-strain behaviour is 

usually treated as linear elastic the laminates may be symmetric or antisymmetric or 

unsymmetric. They are also referred to as cross-ply or angled ply depending on fibre 

orientations of lamina. If the fibre orientations in a laminate are zero degree or ninety degree 

it is called cross ply and or any other fibre orientations, it is known as angled ply.  

1.2 Finite element method 

With the development of computers, engineer in this century turned to matrix algebra for 

solving structural engineering problems. This has led to development of matrix analysis for 

skeletal structures and then the more generalised finite element analysis of continuum 

structures based on Variational Principles. In the finite element method, the continuum 

structure is discretised into elements of finite size, called as finite elements. The continuum 

structure is considered as an assemblage of elements connected at finite number of joints, 

known as nodes. This follows the concept of discretisation used in the finite difference 

method, which was popular prior to the advent of finite element method for solving structural 

engineering problems for which closed form solution is not obtainable. This method can be 

implemented in two ways viz, the displacements as unknowns called as the finite element 

displacement method, and the internal forces as unknowns called as finite element force 

method. The finite element displacement method is more commonly used. In the finite 

element displacement method, the element displacement field is expressed as simple 

functions, known as shape functions, and the displacements at the nodes of an element the 

strains and stress within the element are also expressed in terms of the element nodal 

displacements. Then the Variational Principles, total potential energy or virtual work, is 

applied for the element to derive the equilibrium equations in matrix form. The equilibrium 

equations for the entire continuum structures are obtained by proper assembling of element 

matrix so that continuity of displacement at the nodes, where the elements are connected is 

ensured.  

The primary of the finite element method is that it can be conveniently applied to study the 

buckling and free vibrations effects on the structural response of laminated composite plates. 

Reasonably accurate solutions may be obtained by the finite element method for free 

vibration and buckling or arbitrary laminated composite plates for various boundary 

conditions. Since, for fibre reinforced laminated plates, the traverse shear deformation cannot 

be ignored it can be easily incorporated in the finite element analysis by using the finite 

element method in the laminated plates. 
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1.3 Objectives of the investigation 

Among the most important structural functions that a system can provide are stiffness, 

strength, fracture toughness, ductility, fatigue strength, energy absorption, damping, and 

thermal stability. With conventional structural materials, it has been difficult to achieve 

simultaneous improvement in multiple structural functions, but the increasing use of 

composite materials has been driven in part by the potential for such improvements. The use 

of nano reinforcements in polymer composites has produced unprecedented improvements in 

mechanical properties of the composites material. In recent years, the use of composite 

laminates is increasing in various engineering fields where weight saving is crucial, mainly 

because of their high strength-to-weight, stiffness-to weight ratios, good energy, and sound 

absorption, and often also low production cost. The laminates have a large number of 

parameters involved with the production and fabrication processes. Complete control of these 

parameters is not economically feasible and also not practically possible. Hence variations in 

the system properties, such as material properties, geometric properties, etc., are inherent in 

nature. As the composites are used in various fields such as naval structures, aircraft 

structures etc., which are subjected to different dynamic loading, in order to obtain an 

effective design of the composite plates, a study of their free vibration and buckling due to 

different loading is important. Composite materials have inherent uncertainties due to the 

large number of design variables that a re-involve in fabrication and the lack of total control 

over the manufacturing and processing techniques. Hence, deterministic analysis is 

insufficient to provide complete information about the structural response. Consequently, 

there has been considerable interest over the last few decades in developing stochastic 

formulations for predicting the actual static and dynamic behaviour of composite plates with 

random system parameters. The modelling and determination of the foundation properties are 

also a matter of concern in the practice. 

The mathematical model is complicated since the material is of orthotropic nature. First order 

transverse shear deformation is accounted along with rotary inertia of the material. A shear correction 

factor of 5/6 is taken in the analysis. Eight-nodded iso-parametric plate finite elements have been 

implemented in the present computations.  

In this paper the free vibration and buckling behaviour of laminated composite rectangular plates are 

being provided through parametric studies conducted by incorporating variation in different aspect 

ratios, different fibre orientations, different number of layers, various boundary conditions and their 

overall thicknesses. A Finite Element program in MATLAB is developed. Detail interpretations of the 

results are provided.  
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CHAPTER 2                                              LITERATURE REVIEW 

 

The classical plate theory (CPT) [1] and first order shear deformation theory (FSDT) [2] are 

commonly used theory for the analysis of laminated composite plates. However, CPT 

predicts good results for thin plates only, because the transverse shear deformation is omitted 

in CPT. FSDT does not satisfy shear stress free conditions at top and bottom surfaces of 

plates. The shear correction factor is needed to appropriately take into account the strain 

energy of shear deformation. Its value depends on the material coefficients, geometry, 

stacking scheme, boundary conditions and loading conditions, which cannot be easily 

determined for practical problems. Further, FSDT is not capable of properly constraining all 

the displacements at the clamped supports of beams and plates. Higher order shear 

deformation theories are therefore developed to overcome these limitations of classical 

laminated plate theory for the better representation of the bending, buckling and vibration of 

the laminated composite. Several review articles on laminated composite and sandwich plates 

have been reported in the literature by various researchers, such as Reddy [3], Kapania and 

Raciti [4], Noor et al. [5], Bert [6], K. S. Sai Ram and P. K. Sinha[7],A. GuhaNiyogi [8], 

Mallikarjuna and Kant [9]. Several books are also available on vibration of plates such as, 

Leissa [10], Reddy [11], Liew et al. [12], Yang [13], Bathe [115] and Chakraverty[14]. Various 

methods for the analysis of plates are available in the literature. This article reviews the 

application of these methods for the free vibration and buckling analysis of laminated 

composite plates. The research reported from year 2000 to 2013 is reviewed with some 

classical references. 

 

2.1. Navier’sMethod 

Navier’s solution technique is used only for simply supported boundary conditions. Many 

higher order shear deformation theories have been reported in the literature for the free 

vibration analysis of simply supported plates using Navier’s method. Reddy [15] has 

developed a well known third order shear deformation theory which is further used by many 

researchers for their research. Recently, Aghababaei and Reddy [16] reformulated the third-

order shear deformation plate theory of Reddy [15] using the nonlocal linear elasticity theory 

and applied for the bending and vibration ofplates. Ray [17] has developed Zeroth order shear 

deformation theory and applied for the free vibration analysis of laminated composite plates. 

Shimpi et al. [18], Zenkour [19], Ghugal and Sayyad [20], Neves et al. [21] developed some 
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trigonometric shear deformation theories for the free vibration analysis of isotropic, 

orthotropic, laminated composite, sandwich and functionally graded plates. Recently, several 

new hyperbolic shear deformation theories are developed by Neves et al. [22] and Zenkour 

[23]. Karama et al. [24] have developed an exponential shear deformation theory for the free 

vibration and buckling analysis of laminated and composite plates which is further used by 

Thai and Choi [25] and Xiang et al. [26] developed nth-order shear deformation theory for 

thefree vibration analysis of isotropic, laminated composite and sandwich plates. Forced 

vibration analysis of antisymmetric laminated rectangular plates with distributed patch mass 

using higher order shear deformation theory of Reddy has been carried out by Alibeigloo and 

Kari [27].K. S. Sai Ram [7],Chen et al. [28] presented buckling and vibration of initially 

stressed composite plates with temperature dependent material in thermal environments. 

2.2. Levy’s Method 

 Xiang andWei [29] employed Levy’s solution technique for the free vibration and buckling 

analysis of multi-span rectangular plates. Thaiand Kim [30] also employed Levy type 

solution technique for free vibration analysis of orthotropic plates based on two variable plate 

theory. The eigen function system of the Hamiltonian operator appearing in the free vibration 

of rectangular Kirchhoff plates with two opposite edges simply supported is studied by Bai 

and Chen [30]. Aydogdu and Ece [31] presented the buckling and free vibrationanalysis of 

rectangular isotropic plates with non-ideal boundary conditions based on classical plate 

theory using Levy type solution. 

2.3 Rayleigh–Ritz Method 

Narita [32] has developed a modified Ritz method to calculate natural frequencies of 

anisotropic rectangular plates with classical boundary conditions. Free vibration response of 

isotropic skew plates was studied by using conventional Rayleigh–Ritz method. Bert [33],  

Analas and Goker [34],Wang et al[35], presented a free vibration analysis of skew sandwich 

plates with laminated faces using Ritz method. Adam [36] employed Rayleigh–Ritz method 

to carry out vibration analysis of orthotropic plates. Zhou et al. [37] presented three-

dimensional vibration analysis of thick rectangular plates using Ritz method. The study on 

vibration analysis of cross-ply laminated square plates subjected to different sets of boundary 

conditions has been carried out by Aydogdu and Timarci [38] using Ritz Method. Gupta et al. 

[39] studied vibration of polar orthotropic circular plate resting onWinkler foundation using 

Ritz method. Nallim and Grossi [40] employed Rayleigh–Ritz method for the vibration 

analysis of symmetrically laminated elliptical and circular plates. Lal and Kumar [41] used 

Rayleigh–Ritz method for the free vibrations of non-homogeneous orthotropic rectangular 
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plates with bilinear thickness via classical plate theory. Carrera et al. [42] presented free-

vibration analysis of anisotropic simply supported plates using Rayleigh–Ritz Method based 

on layer-wise, equivalent single layer and zig-zag models. The effect of non-homogeneity of 

the material of plate structures on the vibration frequencies was presented by Chakraverty et 

al. [43] using Rayleigh Ritz method. Watkins and Barton [45] studied the free vibration 

analysis of laminated and sandwich plates on elastic foundation using Rayleigh–Ritz method. 

Iurlaro et al. [45] applied Rayleigh–Ritz approach for the free vibration analysis of laminated 

composite and sandwich plates using refined zigzag theory.  

 

2.4. Differential Quadrature Method 

Shu [46],Malekzadeh et al.[47]   has presented detail information of differential quadrature 

method with its engineering applications. They also studied vibration analysis of 

symmetrically laminated plates based on FSDT using the moving least squares differential 

quadrature method. The inter laminar stresses and deflections of a laminated rectangular plate 

under thermal vibration are presented by using the generalized differential quadrature 

method.  

2.5 GalerkinMethod 

Zhang and Sainsbury [48] applied the Galerkin element method to the vibration of 

rectangular damped sandwich plates. Gorman [49] reported free vibration analysis of 

completely free rectangular plates by the superposition Galerkin method. Chenet al. [50] 

studied free vibration analysis of thin plates of complicated shapes using Galerkin’s method. 

Muthurajan et al. [51] and Chien and Chen [52] employed Galerkin’s method for the 

nonlinear vibration analysis of laminated composite rectangular plates. Givli et al. [53] 

presented free vibrations analysis of delaminated sandwich panels using a modified Galerkin 

approach. Gupta and Kumar [54] studied the vibration of non-homogenous rectangular plate 

of linearly varying thickness using Galerkin Method. Liu et al. [55] also employed Galerkin 

method for the free vibration analyses of sandwich panels with square-honeycomb cores. 

Qianet al. [56] studied free and forced vibration of thick rectangular plates by using higher 

order shear and normal deformable theory and meshless local Petroc–Galerkin method. 

2.6 Discrete Singular Convolution (DSC) Method 

Wei et al. [57] studied vibration of plates by discrete singular convolution method. Zhao et al. 

[58] examined discrete singular convolution for the prediction of high frequency vibration of 

plates. Ng et al. [59] Civalek [60].Gurses et al. [61] , Wang and Xu [62] ,Zhu and Wang [63] 
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carried out free vibration analysis of thin isotropic and anisotropic rectangular plates by the 

discrete singular convolution method.  

2.7. Exact Solutions 

Exact natural frequencies of thick multilayered laminated composite plates were presented by 

Srinivas and Rao [64] and Noor [65]. Batra and Aimmanee [66] pointed out and presented the 

in-plane distortional modes of vibration missing from the solution of Srinivas and Rao [64]. 

Leissa and Kang [67] and Kang and Shim [68] presented exact solutions for free vibration 

analysis of rectangular plate subjected to linearly varying in-plane stresses. Zhang et al. [69] 

have reported three-dimensional theory of elasticity for free vibration analysis of composite 

laminates via layer wise differential quadrature modelling. The first-known exact solutions 

for vibration of stepped rectangular Mindlin plates with two opposite edges simply supported 

and the remaining two edges being either free, simply supported or clamped was presented by  

Wei [70]. He also proposed a novel Bessel function method to obtain the exact solutions for 

the free vibration analysis of rectangular thin plates with different boundary conditions. 

Demasi [71] presented three-dimensional closed-form solutions and exact thin plate theories 

for isotropic plates. Saeidifar and Ohadi [72] developed exact solution for investigating 

vibration of non-uniform plate with time-dependent boundary conditions. Xing and Liu [73], 

Liu and Xing [74] developed new exact solutions for the free vibration analysis of isotropic 

and orthotropic plates Lim et al. [77] developed simplistic elasticity approach for exact free 

vibration solutions of rectangular Kirchhoff plates. Messina [78] presented the influence of 

different sets of edge–boundary conditions on the dynamics of freely vibrating isotropic and 

cross-ply multilayer laminated rectangular plates using three-dimensional theory of elasticity. 

2.8.Finite Element Method 

K. S. Sai Ram and P. K. Sinha [7] presented hygrothermal effects on Free Vibration and 

buckling of Laminated Composite Plates.Kant and Swaminathan [79], Swaminathan and 

Patil[138,139], Rao and Desai [80] have carried out free vibration analysis of laminated 

composite and sandwich plates based on higher order shear and normal deformation theory 

using finite element method.. Free vibration analysis of composite plates was carried out by 

Singh et al. [81] using higher order shear deformation theory with random material 

properties. Rikards et al.[82] analyzed vibration and buckling of plates using triangular 

elements. Setoodeh and Karami [83] presented the free vibration and buckling analysis of 

composite laminates with elastically restrained edges using finite element analysis. Hull and 

Buchanan [84] presented vibration analysis of square orthotropic stepped plates based on 

finite element method. Forced vibration analysis of rectangular plates using finite element 
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method has been carried out by Ahmadian and Zangeneh [85]. An accurate, three-

dimensional, higher order, mixed finite element modelling for the free vibration analysis 

ofmulti-layered laminated composite plates was presented by Desai et al. [86]. A triangular 

element based on Reissner–Mindlin plate theory is developed by Sheikh et al. [87] for the 

free vibration and buckling analysis of plates. A non-conforming C1 finite element triangular 

model was presented by Chakrabarti and Sheikh [88] for the free vibration analysis of 

laminated plates. S. Pal, A. GuhaNiyogi [89] presented folded plate formulation in a 

stiffened laminated composite and sandwich folded plate vibration using finite element 

approach. Lal et al. [90] reported nonlinear free vibration of laminated composite plates on 

elastic foundation with random system properties. Nonlinear free vibration analysis of simply 

supported piezo-laminated plates has been carried out by Tanveer and Singh [91].Vibration 

analysis of composite laminated plates with variable fiber spacing using finite element 

method was studied by Kuoand Shiau [92]. Brischetto and Carrera [93] used Carrera Unified 

Formulation to study free vibration response of simply supported multi layered orthotropic 

composite plates. Shariyat[94] has developed a generalized global–local high-order theory for 

the vibration analyses of sandwich plates subjected to thermo-mechanical loads. Singh and 

Lal [95] studied stochastic non-linear free vibration analysis of laminated composite plates on 

elastic plates. S. K. Singh and A. Chakrabarti[96] also studied the stochastic free vibration 

analysis of laminated composite platessubjected to a thermal loading with general boundary 

conditions using finite element method. Carrera et al. [97] presented refined finite element 

model for the dynamic analysis of multi layered plates. Van et al. [98] presented vibration 

analysis of laminated composite plate/shell structures via a smoothed quadrilateral flat shell 

element with in-plane rotations. Srinivasa et al. [99] presented free flexural vibration on 

laminated composite skew plates using finite element analysis whereas Manna [100] studied 

free vibration of tapered isotropic rectangular plates. The free vibration behaviour of 

sandwich functionally graded plates is investigated using finite element method by Natarajan 

and Manickam [101]. Eftekhariand Jafari [102] used mixed finite element and 

differentialquadrature formulation for free vibration of rectangular and skew Mindlin plates 

with general boundary conditions. Elmalich and Rabinovitch [103] investigated the dynamic 

behaviour of soft-core sandwich plates using finite element method. A higher order 

displacement based formulation to investigate the plane strain edge vibrations or end modes 

in composite laminated sandwich plates has been developed by Chitnis et al. [104]. Cetkovic 

and Vuksanovic [105] studied vibrations of isotropic, orthotropic and laminated composite 

plates with various boundary conditions using finite element method. Chalak et al. [106] 
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presented finite element model for the free vibration analysis of laminated composite and 

sandwich plates. Singh and Chakrabarti [107] alsostudied static, vibration and buckling 

behaviour of laminated composite and sandwich skew plates under thermo-mechanical 

loading using finite element model based on refined higher order zigzag theory. Li et al. 

[108] carried out finite element analysis for the free vibration of composite sandwich plates. 

Ribeiro [109]used a Hierarchical finite element for geometrically non-linear vibration of 

thick plates. Kucukrendeci and Kucuk [110] applied finite element method for the vibration 

analysis of laminated composite plates on elastic foundation. Thai et al. [111] presented a 

finite element formulation for static, free vibration and buckling analyses of laminated 

composite plates using a new higher order shear deformation theory. This paper is used to 

verify the result of the programme. 
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                   CHAPTER 3 ________________________GOVERNING EQUATION 

                

3.1 Governing Equations of Lamina 

A fibre reinforced composite lamina is an orthotropic material, since the presence of fibre say 

along direction 1, imparts more strength and stiffness in this direction compared to direction 

normal to it. As a lamina is basically a very thin plate, plane stress assumptions can be 

applied to this case. Considering unidirectional lamina as shown in Figure 3.1, the stress-

strain relation in the principal material directions 1 and 2, arranged as per right hand cork 

screw rule, in presence of temperature and moisture can be given as 

            

{
 
 

 
 
𝜎1
𝜎2
𝜎4
𝜎5
𝜎6}
 
 

 
 

 = 

[
 
 
 
 
𝑐11 𝑐12 0
𝑐12 
0
0
0

𝑐22 
0
0
0

0
𝑐44 
0
0

   

0 0
0
0
𝑐55
0

0
0
0
𝑐66]
 
 
 
 

 

{
 
 

 
 
𝜀1 − 𝑒1
𝜀2 − 𝑒2
𝜀4 or 𝛾23
𝜀5  or 𝛾31
𝜀6or 𝛾12 }

 
 

 
 

                                                             (2.1)

          Where, c11= 
𝐸1

1− 𝜈12𝜈21
,  c22 = 

𝐸2

1− 𝜈12𝜈21
 ,  

     c12= ν12 c22 = ν21 c11,                          

     c44= G23, c55= G31, c66= G12 .                                                                                   (2.2)

   

  In general though the transverse shear stresses σ4 (or τ23), σ5 (or τ31) are not used in classical 

plane stress analysis, here these stresses are accounted to adopt Mindlin’s plate theory instead 

of the conventional Kirchhoff’s theory. 

The above stress strain relation based on fibre direction is often termed as on-axis relation. 

On the contrary the off – axis relation are obtained by applying suitable transformation on the 

Y 

Figure3.1 Principal directions and local plate axes of a lamina. 

2 

Fibre direction  

X 
θ 

θ 

m=cosθ,    
n = sinθ 
θ = Fibre 
angle 
 

1 

3 
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on-axis relations. Hence the stress strain relations of the lamina, with respect to the X, Y and 

Z axes (Figure 3.1) are expressed as 

{
 
 

 
 
𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦
𝜏𝑦𝑧
𝜏𝑥𝑧}
 
 

 
 

 = 

[
 
 
 
 
 

[
 
 
 
 
 
𝑐′11 𝑐′12 𝑐′16
𝑐′12 𝑐′22 𝑐′26
𝑐′16 𝑐′26 𝑐′66

𝑐′44 𝑐′45
𝑐′45 𝑐′55]

 
 
 
 
 

]
 
 
 
 
 

{
 
 

 
 
𝜀𝑥 − 𝑒𝑥
𝜀𝑦 − 𝑒𝑦
𝜀𝑥𝑦 − 𝑒𝑥𝑦

𝜀𝑦𝑧
𝜀𝑥𝑧 }

 
 

 
 

                                       (2.3)                      

  Where, 

C'11 = m4C11 + 2m2n2 (C12+2C66) + n4C22 

C'22 = n4C11 + 2m2n2 (C12+2C66) + m4C22 

C'12 = m2n2 (C11+ C12 − 4C66) + (m4 + n4) C12 

C'16 = m3n (C11− C12 − 2C66) – mn3 (C22 – C12 – 2C66)                                           (2.4) 

                                  

C'26 = mn3 (C11 – C12 – 2C66) – m3n (C22− C12 − 2C66) 

C'66 = m2n2 (C11+ C22 − 2C12) + (m2 – n2) C66 

C'44 = m2C44 + n2C55 

C'45 = mn (C55 – C44) 

C'55 = m2C55 + n2C44   and   

ex = m2e1 + n2 e2 

ey = n2e1 + m2 e2            

exy = 2mn(e1 −e2)                                                                                                                  (2.5) 

                                                                                                

 

3.2 Governing Equations for a Laminate 

Consider a laminated composite plate of thickness t consisting of unidirectional lamina 

bonded together to act as an integral part. The bonds are infinitesimally thin and are not shear 

deformable. Hence, the displacements are continuous through the thickness of the laminate.  
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The following assumptions are made according to the Young-Norris-Stavsky theory [13], 

which is the generalization of the Mindlin theory, to accommodate laminated composite 

plates: 

1. The material behaviour is linear and elastic. 

2. The thickness, t of the laminate is small compared to the other two dimensions. 

3. Displacements u, v, and w are small compared to the laminate thickness, h. 

4. Normal to the mid-plane before deformation remains straight but not necessarily normal to 

the mid-plane after deformation. Hence Young-Norris-Stavsky theory is termed as first order 

shear deformation theory. 

5. Stresses normal to the mid-plane are neglected. 

The deformed geometry of the laminated composite plate is shown in Figure 3. 4. 

The in-plane displacements u and v of any point at any distance z from the mid-plane are 

given by: 

 u(x,y,z) = u0(x,y) + z𝜃y ,  

v(x,y,z)  = v0 (x,y)− z𝜃x                                                                                                      (2.6)                                                            

          

The shear rotation of the plate can be expressed as 

φx = 𝜃y + w,x    ,  

φy = − 𝜃x + w,y                                                                              (2.7)                                                  

          

With the displacements, defined in Eq. (2.6), the linear in-plane strains of laminate at a 

distance z from the mid-surface can be found out as,  

εx = u,x = u0,x + z 𝜃y,x  =  ε0
x + zKx   

z, w 

h/

2 

b/

2 
a/

2 

n 
k 
2 
1 

θ

y 

θ

x 

x, 

u 

y, 

v 
θ

z 

Figure 3.3 Composite plate nomenclatures Figure 3. 2 The laminated composite Plate 
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εy = v,y = v0,y − z 𝜃x,y  = ε0
y + zKy                                                                                    

γxy = u,y + v,x = u0,y + v0,x + z(𝜃y,y – 𝜃x,x) = ε0
xy + zKxy                                      (2.8)

   

  

 

 

  

Since, the transverse shear deformation is assumed to be same across the thickness of the 

laminate, these are given by, 

γxz = φx,  γyz = φy,  εz = 0                                                                                      (2.9)                                                                                                  

Eq.(2.8) can be expressed as  

[

𝜖𝑥
𝜖𝑦
𝛾𝑥𝑦
] = [

𝜀0𝑥
𝜀0𝑦

𝛾0𝑥𝑦

] + 𝑧 [

𝐾𝑥
𝐾𝑦
𝐾𝑥𝑦

],                                                                         (2.10) 

Where 

[

𝜀0𝑥
𝜀0𝑦

𝛾0𝑥𝑦

] = [

𝑢0,𝑥
𝑣0,𝑦

𝑢0,𝑦 + 𝑣0,𝑥
]  

are the mid-surface in plane strains, and  

-zθx 

 v 0 

Φy 
-θx 

-w,y 

-w,y 
z 

y 

Mid surface 

Assumed orientation of CD  

Mid surface normal 

C 

D 

zθy 

 u 0 

φx 
θy 

-w,x 

-w, x 
z 

x 

Mid surface 

Assumed orientation of AB 

  
Mid surface normal 

A 

B 

Figure 3.4. Detail deformation of the laminated composite plate 
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[

𝐾𝑥
𝐾𝑦
𝐾𝑥𝑦

] = [

𝜃𝑦,𝑥
−𝜃𝑥,𝑦

𝜃𝑦,𝑦 − 𝜃𝑥,𝑥

]  

are the mid-surface curvature. 

Inserting the above relationship in Eq. (2.3) , the following relation is obtained. 

{

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

} = [𝑐′𝑖𝑗]𝑘 {

𝜀𝑥
0 +  𝑧𝐾𝑥
𝜀𝑦
0 +  𝑧𝐾𝑦

𝜀𝑥𝑦
0 +  𝑧𝐾𝑥𝑦

} – [𝑐′𝑖𝑗]𝑘 {𝑒}𝑘       (i, j = 1, 2, 6)                           

{
𝜏𝑥𝑧
𝜏𝑦𝑧
} = α [𝑐′𝑖𝑗]𝑘 {

φ
𝑥

φ
𝑦
}                 (i, j = 4, 5)                                                  (2.11)                                                  

where, {𝑒}𝑘 = {𝑒𝑥 𝑒𝑦 𝑒𝑥𝑦}𝑇 

And α is a shear correction factor, taken as 5/6 [8], to take account for the non uniform 

distribution of the transverse shear strain across the thickness of the laminate. 

These expressions have to be integrated over the entire plate thickness to account for the 

laminate property. As a result the stress terms are replaced by the stress-resultant terms, while 

the conventional strain terms are replaced by the mid-plane strain terms. Hence, assuming 

that the laminate comprises of n laminate, the in-plane forces, 

 [

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

] = ∫ [

𝜎𝑥
𝜎𝑦
𝜎𝑥𝑦

]
𝑡/2

−𝑡/2

𝑘

𝑑𝑧 =  ∑ ∫ [

𝜎𝑥
𝜎𝑦
𝜎𝑥𝑦

]
𝑧𝑘
𝑧𝑘−1

𝑛
𝑘=1

𝑘

dz 

    = ∑ ∫ 𝑐′
𝑧𝑘
𝑧𝑘−1

𝑛
𝑘=1

𝑖𝑗

𝑘
[𝜀]𝑥,𝑦 dz − ∑ ∫ 𝑐′

𝑧𝑘
𝑧𝑘−1

𝑛
𝑘=1

𝑖𝑗

𝑘
[𝑒]𝑘 dz 

    = ∑ ∫ 𝑐′
𝑧𝑘
𝑧𝑘−1

𝑛
𝑘=1

𝑖𝑗

𝑘
([𝜀0]𝑥,𝑦 + [𝑧𝐾]𝑥,𝑦)  dz − ∑ ∫ 𝑐′

𝑧𝑘
𝑧𝑘−1

𝑛
𝑘=1

𝑖𝑗

𝑘
[𝑒]𝑘 dz                                 (2.12) 

Moments,  

 [

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

] = ∫ [

𝜎𝑥
𝜎𝑦
𝜎𝑥𝑦

]
𝑡/2

−𝑡/2

𝑘

𝑧𝑑𝑧 = ∑ ∫ [

𝜎𝑥
𝜎𝑦
𝜎𝑥𝑦

]
𝑧𝑘
𝑧𝑘−1

𝑛
𝑘=1

𝑘

𝑧dz  

 =∑ ∫ 𝑧 𝑐′
𝑧𝑘
𝑧𝑘−1

𝑛
𝑘=1

𝑖𝑗

𝑘
[𝜀]𝑥,𝑦dz −∑ ∫ 𝑧 𝑐′

𝑧𝑘
𝑧𝑘−1

𝑛
𝑘=1

𝑖𝑗

𝑘
[𝑒]𝑘dz 

 = ∑ ∫ 𝑐′
𝑧𝑘
𝑧𝑘−1

𝑛
𝑘=1

𝑖𝑗

𝑘
([𝑧𝜀0]𝑥,𝑦 + [𝑧

2𝜅]𝑥,𝑦) 𝑑z − ∑ ∫ 𝑧 𝑐′
𝑧𝑘
𝑧𝑘−1

𝑛
𝑘=1

𝑖𝑗

𝑘
[𝑒]𝑘dz                     (2.13) 

Shear forces,                            

[
𝑄𝑥
𝑄𝑦
] = ∫ [

𝜎𝑥𝑧
𝜎𝑦𝑧

]
𝑡/2

−𝑡/2
𝑘
𝑑𝑧 =  ∑ ∫ [

𝜎𝑥𝑧
𝜎𝑦𝑧

]
𝑧𝑘
𝑧𝑘−1

𝑛
𝑘=1

𝑘
dz                                             

             = ∑ ∫ α [𝑐′𝑘𝑖𝑗]𝑘  {
𝜀𝑥𝑧
ε𝑦𝑧
}

𝑧𝑘
𝑧𝑘−1

𝑛
𝑘=1

𝑘
dz                                                (2.14)  
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From equations [2.12~ 2.14] the internal force and moment resultants can be expressed as,     

{F}= [D] {ε} – {FN}                                                                    (2.15)                                                                            

where, {F} = {Nx Ny Nxy Mx My Mxy Qx Qy }T   

{ε}= { εx εy εxy Kx Ky Kxy φx  φy}T  = { εx εy εxy Kx Ky Kxy εxz  εyz}T   

{FN} = In plane force and Moments = {NN
x NN

y NN
xy MN

x MN
y MN

xy 0 0 }T   

[D]= 

[
 
 
 
 
 
 
 
𝐴11 𝐴12 𝐴16 𝐵11 𝐵12 𝐵16 0 0
𝐴12 𝐴22 𝐴26 𝐵12 𝐵22 𝐵26 0 0
𝐴16 𝐴26 𝐴66 𝐵16 𝐵26 𝐵66 0 0
𝐵11 𝐵12 𝐵16 𝐷11 𝐷12 𝐷16 0 0
𝐵12 𝐵22 𝐵26 𝐷21 𝐷22 𝐷26 0 0
𝐵16 𝐵26 𝐵66 𝐷16 𝐷26 𝐷66 0 0
0 0 0 0 0 0 𝐴44 𝐴45
0 0 0 0 0 0 𝐴45 𝐴55

  

]
 
 
 
 
 
 
 

 

Here,  

(Aij, Bij, Dij) = ∑ ∫ 𝑐′
𝑧𝑘
𝑧𝑘−1

𝑛
𝑘=1

𝑖𝑗

𝑘
[1, 𝑧, 𝑧2 ]𝑘dz                 (i, j = 1, 2 and 6) 

and (Aij) = 𝛼 ∑ ∫ 𝑐′
𝑧𝑘
𝑧𝑘−1

𝑛
𝑘=1

𝑖𝑗

𝑘
dz                                             (i, j = 4, 5)                     (2.16)

    

 Since the deflection w does not vary with z, the non-linear portion of the overall strains in 

Eq(2.8) in a laminated plate can be expressed as 

εxnl = 
1

2
(u2

x + v2
x + w2

x) 

εxnl = 
1

2
(u2

y + v2
y + w2

y) 

εxynl = (ux uy + vx vy + wx wy) 

εxznl = (ux uz + vx vz) 

εyznl = (uy uz + vy vz)                                                                                            (2.17)                                                                 

From the Strain-displacement relation in Eq(2.10) 

εxnl = 
1

2
[u0

2
x + v0

2
y + w2

x + 2z(u0xθyx – v0xθxx) + z2 (θ2
yx + θ2

xx)] 

εynl = 
1

2
[u0

2
y + v0

2
y + w2

y + 2z(u0yθyy – v0yθxy) + z2 (θ2
xy + θ2

yy)] 

εxynl = [u0x u0y + v0x v0y + wx wy + z(u0yθyx + u0xθyy) − z(v0yθxx + v0xθxy)  

          + z2 (θyx θyy + θxx θxy)] 

εxznl = [u0x θy − v0x θx + z(θyθyx + θxθxx)] 

εyznl = [u0y θy − v0y θx + z(θyθyy + θxθxy)]                                                                             (2.18)                                    
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3.3  Governing Differential Equations from Energy Principles 

The potential energy of deformation of a laminated plate is given  

Ua = ∭ {𝜀𝑛𝑙
𝑎

𝑣
}T {𝜎𝑎} dV                                                                                                    (2.20)                                               

where, {𝜀𝑛𝑙
𝑎 }𝑇 = { εxnl  εynl  εxynl }T                                                                                                             (2.21)

  

 {𝜎𝑎} = {σa
x  σa

y  τa
xy }T                                                                                                                                                          (2.22) 

in which σa
x, σa

y, τa
xy, are the in plane stresses produced by applied in-plane loads. 

The potential energy of inertia force and moment is expressed as  

Vi =  −∬ {𝑢}𝑇
𝐴

{𝑋}𝑑𝐴.                                                                                                (2.23)                            

where, {X} = {pu0ω2
n, pv0ω2

n, pwω2
n, Iθxω2

n, Iθyω2
n,}T  

p = ∑ (𝑧𝑘 − 𝑧𝑘−1)
𝑛
𝑘=1 𝜌𝑘 , I = 

1

3
 ∑ (𝑧𝑘

3 − 𝑧𝑘−1
3 )𝜌𝑘

𝑛
𝑘=1                              

The total potential energy is  

∏ = U + Vi                                                                                                                                                                                      (2.24)                                                                        

According to the principle of total potential energy the first variation of ∏ in eq.(2.24) is 

stationary for equilibrium of the laminated plate. Thus by equating δ∏ to zero in eq (2.24) the 

respective equilibrium conditions are obtained.  

 

3.4 Boundary Conditions: 

In the present investigation two types of boundary conditions are employed. They are simply- 

supported and clamped. The restrained displacements are described below for various cases.  

Anti-symmetric cross-ply laminates, simply-supported 

X=-a/2, a/2 : 𝑣̇=0, w=0, 𝜃𝑥 = 0 

Y=-b/2, b/2 : 𝑢̇=0, w=0, 𝜃y  = 0 

Anti-symmetric angle-ply laminates, simply-supported 

X= -a/2, a/2 : 𝑢̇=0,w=0, 𝜃𝑦 = 0 

Y= -b/2, b/2 : 𝑣̇=0, w=0, 𝜃𝑦= 0 

Anti-symmetric cross-ply and angle-ply laminates, clamped 

X=-a/2, a/2; y=-b/2, b/2 : 𝑢̇=0,𝑣̇=0,w=0 ,𝜃𝑥 = 0, 𝜃𝑦 = 0 
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FINITE ELEMENT FORMULATIONS 

3.5 INTRODUCTION 

The finite element formulation and the solution details are presented in this chapter. The 

formulation is based on the governing equations derived in the presenting chapter. The 

element stiffness, geometric stiffness and mass matrices as well as the load vectors are 

derived using the principle of total potential energy. An eight nodded isoperimetric element is 

employed, both the geometry and displacement field of which are expressed in terms of the 

same shape functions. The present element in local natural coordinate system can be mapped 

to an arbitrary shape in the Cartesian coordinate system. 

 

3.6 Quadratic Isoperimetric Element  

A flat Mindlin eight noded plate element with six degrees of freedom (D.O.F) at each node, 

i.e., u0, v0, w, 𝜃x, 𝜃y , 𝜃z is used in the analysis. The co-ordinates and the elastic parameters 

inside the element can be interpolated using shape function (interpolation function) Ni as 

given in Figure 3.5. 

x = ∑ 𝑁𝑖(𝜉, 𝜂)𝑥𝑖
8
𝑖=1         y = ∑ 𝑁𝑖(𝜉, 𝜂)𝑦𝑖

8
𝑖=1                                                                       (2.26)                          

where xi and yi are the global co-ordinates at a node i. 

u0 = ∑ 𝑁𝑖(𝜉, 𝜂)𝑢𝑜𝑖
8
𝑖=1    v0 = ∑ 𝑁𝑖(𝜉, 𝜂)𝑣𝑜𝑖

8
𝑖=1    w = ∑ 𝑁𝑖(𝜉, 𝜂)𝑤𝑖

8
𝑖=1     

θx = ∑ 𝑁𝑖(𝜉, 𝜂)𝜃𝑥𝑖
8
𝑖=1     θy = ∑ 𝑁𝑖(𝜉, 𝜂)𝜃𝑦𝑖

8
𝑖=1                                                                      (2.27)                

 

 

 

  

 

 

 

 

 

in which uoi,  uoi, voi, wi, 𝜃xi, 𝜃yi are the displacement at a node i. 

The shape functions Ni in eqs.(2.26) and (2.27) are defined as  

Ni = (1+ξξi) (1+ηηi)(ξξi +ηηi −1)/4 ; i = 1, 3, 5, 7 

Ni = (1−ξ2) (1+ηηi)/2 ; i = 2,6 

6

7 

7(-1,1) 
5(1,1) 

η 

ξ

ξ 

8 
4 

1(-1,-1) 3(1,-1) 2 

Figure  3.5 8  Noded element 
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Ni = (1−η2) (1+ξξi) /2 ; i = 4,8                                                   (2.28)                                

Where ξ and η are the local natural co-ordinates of the element and ξi and ηi are the value of 

them at node i. 

The strains at the mid-plane of the plate are given by,  

[
 
 
 
 
 
 
 
 
𝜀0𝑥
𝜀0𝑦

𝛾0
𝑥𝑦

𝐾𝑥
𝐾𝑦
𝐾𝑥𝑦
𝛾𝑦𝑧
𝛾𝑥𝑧 ]

 
 
 
 
 
 
 
 

=  ∑

[
 
 
 
 
 
 
 
 
𝑁𝑖,𝑥 0 0 0 0

0 𝑁𝑖,𝑦 0 0 0

𝑁𝑖,𝑦 𝑁𝑖,𝑥 0 0 0

0 0 0 0 𝑁𝑖,𝑥
0 0 0 −𝑁𝑖,𝑦 0

0 0 0 −𝑁𝑖,𝑥 𝑁𝑖,𝑦
0 0 𝑁𝑖,𝑥 0 𝑁𝑖
0 0 𝑁𝑖,𝑦 −𝑁𝑖 0 ]

 
 
 
 
 
 
 
 

8
𝑗=1

[
 
 
 
 
𝑢0𝑗
𝑣0𝑗
𝑤0𝑗
𝜃𝑥𝑗
𝜃𝑦𝑗 ]

 
 
 
 

                                                         (2.29) 

Or, {ε} = [B] { d}, where, [B] is the linear strain- displacement matrix. 

 

3.7 Elastic Stiffness matrix for the element 

The potential energy of deformation for the element from eq. (2.30), is 

U = 
1

2
∬ {𝜀}𝑇 [𝐷]
𝐴𝑒

{𝜀}𝑑𝐴                                                                                        (2.30)                                                   

{ε} = [B]{δe} = [[B1] [B2]  ………[B8]] {δe}                                                                (2.31)                                

where {ε}= { ε0
x ε0

y γ0
xy Kx Ky Kxy γxz  γyz}T   

{δe} = {u0j, v0j, w0j, 𝜃xj, 𝜃yj} T  , j=1,8,                                                                                              (2.32)                                                          

 then                        

U = 
1

2
 ∫ ∫ {δe} 𝑇 [𝐵]𝑇[𝐷][𝐵]

𝑏/2

−𝑏/2

𝑎/2

–𝑎/2
{δe} dx dy 

             = 
1

2
 ∫ ∫ {δe} 𝑇 [𝐾𝑒]

𝑏/2

−𝑏/2

𝑎/2

–𝑎/2
{δe} 

in which   [Ke] = ∫ ∫ [𝐵]𝑇[𝐷][𝐵]𝑑𝑥 𝑑𝑦
𝑏/2

−𝑏/2

𝑎/2

–𝑎/2
 = element stiffness matrix.                           (2.33) 

  Since dx dy = |J| dξ dη , where |J| is the determinant of the Jacobin matrix, the element 

stiffness matrix can be expressed in local natural coordinates of the element.  

From eq. (2.33).  

[Ke] = ∫ ∫ [𝐵]𝑇[𝐷][𝐵] |J|𝑑𝜉 𝑑𝜂
1

−1

1

–1
                                                                                                (2.34)                                                          

  Here, [J] = [
𝑥,𝜉 𝑦,𝜉
𝑥,𝜂 𝑦,𝜂

]            (2.35) 

A 3x3 integration of Gauss Quadrature is used in the evaluation of bending stiffness where 

as a 2x2 reduced integration is employed for shear stiffness terms. The purpose of reduced 

integration is to reduce the shear stiffness of the element [2.29]. 
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3.8 Element Geometric Stiffness Matrix 

The non-linear strains due to applied in plane load 

The non-linear strains 𝜀𝑥𝑛𝑙 , 𝜀𝑦𝑛𝑙 , 𝜀𝑥𝑦𝑛𝑙 , given by equations( 2.18) are expanses 

[𝜀𝑛𝑙
0 ]={𝜀𝑥𝑛𝑙 , 𝜀𝑦𝑛𝑙 , 𝛾𝑥𝑦𝑛𝑙}

𝑇=1/2[U]{f},                                                                                             (2.35) 

Where {f}={𝑢̅𝑥, 𝑢̅𝑦, 𝑣̅𝑥, 𝑣̅𝑦, 𝑤𝑥,𝑤𝑦, 𝜃𝑥𝑥 , 𝜃𝑥𝑦, 𝜃𝑦𝑥, 𝜃𝑦𝑦}
T 

 and [U] is obvious from equations (2.18) and (2.35)  

If {f}= [H][𝛿e ]=[[H1]…………..[H2]]{𝛿e}                                                                                           ( 2.36) 

 

In Plane Loading Conditions: 

a. Uniaxial Loading 

b. Biaxial Loading 

c. All in Plane Loading 

    

 

  
 

    

a. 
b. 

c. 
Figure.3.6 Different loading conditions 

a. Uniaxial loading b. Biaxial loading  

c.  All in plane loading 

a 
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Then from equation (2.20) the potential energy of in-plane stress, produced by applied in- 

plane load, for the element can be expressed as  

Uae=1/2∭ {𝛿𝑒}𝑣𝑒
T[H]T[U]T{𝜎𝑎} dV                                                                                               (2.37) 

[Hi] in equation (2.36) is given by  

                                  [Hi]=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑁𝑖,𝑥 0 0 0 0

𝑁𝑖,𝑦 0 0 0 0

0 𝑁𝑖,𝑥 0 0 0

0 𝑁𝑖,𝑦 0 0 0

0 0 𝑁𝑖,𝑥 0 0

0 0 𝑁𝑖,𝑦 0 0

0 0 0 𝑁𝑖,𝑥 0

0 0 0 𝑁𝑖,𝑦 0

0 0 0 0 𝑁𝑖,𝑥
0 0 0 0 𝑁𝑖,𝑦
0 0 0 𝑁𝑖 0
0 0 0 0 𝑁𝑖 ]

 
 
 
 
 
 
 
 
 
 
 
 
 

    (i=1 to 8)                                     (2.38) 

Since [U]T{𝜎𝑎}=[𝜎𝑎][H]{𝛿𝑒} ,                                                                                                        (2.39) 

Uae=1/2∭ {𝜎}
𝑣𝑒

T[H]T[𝜎]a[H]δe} dV                                      

       =1/2 {{𝛿𝑒}
T[𝐾𝐺𝑒

𝑎 ]{𝛿𝑒}, 

In which  

[𝐾𝐺𝑒
𝑎 ]=∫ ∫ ∫ [𝐻]

𝑡/2

−𝑡/2

𝑏/2

−𝑏/2

𝑎/2

−𝑎/2
T[𝜎𝑎][H]dx dy dz                                                                    (2.40) 

Is the element geometric stiffness matrix due to in- plane stresses produced by applied in-

plane load. 

By performing analytical integration in z direction, [𝐾𝐺𝑒
𝑎 ] in the element local co-ordinates 

can be written as  

[𝐾𝐺𝑒
𝑎 ]= ∫ ∫ [𝐻]

1

−1

1

−1
T[Sa][H][J]d𝜁𝑑𝜂.                                                                                    (2.41) 

The matrix [Sa] is given  

The 3x3 Gauss quadrature is employed to evaluate [𝐾𝐺𝑒
𝑎 ]. 

Since the stress distribution is not uniform in a plate with a cut-out when subjected to in- 

plane loads, the in-plane stress as resultants Nx
a, NY

a and NXY
a at each Gauss point are 

obtained separately. The geometric stiffness matrix [𝐾𝐺𝑒
𝑎 ] is foamed for these stress 

resultants. 
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{𝜎𝑎}= 

[
 
 
 
 
 
 
 
 
 
 
 
𝜎𝑥
𝑎

𝜏𝑥𝑦
𝑎 𝜎𝑦

𝑎

0 0 𝜎𝑥
𝑎 𝑠𝑦𝑚𝑚𝑒𝑡𝑖𝑐

0 0 𝜏𝑥𝑦
𝑎 𝜎𝑦

𝑎

0 0 0 0 𝜎𝑥
𝑎

0 0 0 0 𝜏𝑥𝑦
𝑎 𝜎𝑦

𝑎

0 0 −𝑧𝜎𝑥
𝑎 −𝑧𝜏𝑥𝑦

𝑎 0 0 𝑧2𝜎𝑥
𝑎

0 0 −𝑧𝜏𝑥𝑦
𝑎 −𝑧𝜎𝑦

𝑎 0 0 𝑧2𝜏𝑥𝑦
𝑎 𝑧2𝜎𝑦

𝑎

𝑧𝜎𝑥
𝑎 𝑧𝜏𝑥𝑦

𝑎 0 0 0 0 0 0 𝑧2𝜎𝑥
𝑎

𝑧𝜏𝑥𝑦
𝑎 𝑧𝜎𝑦

𝑎 0 0 0 0 0 0 𝑧2𝜏𝑥𝑦
𝑎 𝑧2𝜎𝑦

𝑎

   

]
 
 
 
 
 
 
 
 
 
 
 

 

                                                                                                                                                           (2.41)         

[Sa]= 

[
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑁𝑥
𝑎

𝑁𝑥𝑦
𝑎 𝑁𝑦

𝑎

0 0 𝑁𝑥
𝑎

0 0 𝑁𝑥𝑦
𝑎 𝑁𝑦

𝑎 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐

0 0 0 0 𝑁𝑥
𝑎

0 0 0 0 𝑁𝑥𝑦
𝑎 𝑁𝑦

𝑎

0 0 0 0 0 0
𝑁𝑥
𝑎𝑡2

12

0 0 0 0 0 0
𝑁𝑥𝑦
𝑎 𝑡2

12

𝑁𝑦
𝑎𝑡2

12

0 0 0 0 0 0 0 0
𝑁𝑥
𝑎𝑡2

12

0 0 0 0 0 0 0 0
𝑁𝑥𝑦
𝑎 𝑡2

12

𝑁𝑦
𝑎𝑡2

12 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

          (2.42) 

                                                                                                                                                          

3.9 Elemental mass matrix 

The potential energy of inertia forces for the element is obtained from eq. (2.23), 

Vi =  −∬ {𝑢}𝑇
𝐴𝑒

{𝑋}𝑑𝐴.                                                                                                     (2.43)           

where, {X} = ωn
2 [P] {u0 v0  w θx  θy}T                                 

Here, [P] = 

[
 
 
 
 
𝑝

0 𝑝

0 0 𝑝

0 0 0 𝐼
0 0 0 0 𝐼 ]

 
 
 
 

, (p and I is already given in Eq. (2.23))                            (2.44)            

Therefore,       

 Vie = −𝜔𝑛
2 ∫ ∫ {𝛿𝑒}

𝑇[𝑁]𝑇[𝑃] [𝑁] {𝛿𝑒}𝑑𝑥 𝑑𝑦
𝑏/2

−𝑏/2

𝑎/2

−𝑎/2
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       = −𝜔𝑛
2 {𝛿𝑒}

𝑇 [𝑀𝑒] {𝛿𝑒}                                                                                                            (2.45)           

where [𝑀𝑒] =  ∫ ∫ [𝑁]𝑇[𝑃] [𝑁] |J|𝑑𝜉 𝑑𝜂 
1

−1

1

−1
= element mass matrix                   

 [N] = [ [N1]  [N2] ………..[N8] ] 

       and [Ni] =  

[
 
 
 
 
 
𝑁𝑖
0 𝑁𝑖
0 0 𝑁𝑖
0 0 0 𝑁𝑖
0 0 0 0 𝑁𝑖]

 
 
 
 
 

             ( i = 1 to 8)         …………                                  (2.46) 

A 2x2 integration of Gauss Quadrature is used in the evaluation of mass matrix for an 

element. 

3.10 Solution Process 

The minimization of ∏ in the equation (2.24) leads to the following equilibrium conditions  

for the free vibrations  of the laminated plates ( [K] – ωn
2[𝑀𝑒]) {δ} = 0   ……                     (2.47) 

From this equation frequencies and different mode shape are determined.                                                                                            

for the buckling of the laminated plates in in-plane loading problem this equation are found. 

 ( [K] – 𝜇[𝐾𝐺𝑒
𝑎 ]) {δ} = 0                                                                                        …..                      ( 2.48)                                                        

From which the critical loads are determined. 

Both the problem are solved by developing a Matlab programme (appendix). Here Eigen 

values are calculated by using Matlab function. 

3.11 Flow Chart of the Computer Programme 

 

 

 

 

 

START 

“main_programme” 

 

 

   parameters are assigned 

         in “input_coord” 

Subroutine “inputco” create 

coordinate and connectivity             
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Subroutine “STIFFNESS” 

-Determination of elemental stiffness 

matrix [stif] and mass matrix [amass]  

 

Subroutine “GEOMASS” 

 geometric  stiffness matrix [gtsg2]  

 

Assigning boundary conditions 

                      In “id” 

              Subroutine “QOFF” 

-Determination of OFF-axis    

stiffness of a lamina  

 

Subroutine” CONS” 

-Determination of stiffness 

Matrix [D] of a lamina  

 

 Subroutine” INERTIA” 

-Determination of density matrix [P]  

 

 

Do I = 1 to NEL 

(NEL = No. of Element) 

 

 

Subroutine “ASSEMBLY” 

global matrix{st],global mass matrix[sm]& 

global geometric matrix[gm] 

 

    Appling boundary conditions 

reduced form of st, sm & gt matrixes 

Find eigen value and eigen matrix 
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CHAPTER4.                                NUMERICAL RESULT 

The finite element formulation has been used to compare the present results with the 

published papers. It has also been used to generate new results to study the effects of 

various parameters on the dynamic and buckling behaviour of the composite plate 

structure. Generally 3 x 3 integration is applied for bending stiffness and 2 x 2 for shear 

stiffness and mass matrices to avoid shear locking phenomenon. Here 3x3 integration is 

used for mass matrix for dynamic study and geometric stiffness for buckling study. 

I. Numerical studies 1 for free vibration of composite laminated plate 

II. Numerical studies 2 for buckling behaviour of composite laminated plate 

 

4.1 Numerical Studies 1 for Free Vibration of Composite Laminated Plate 

 

4.1.1 Study on Mesh Convergence 

A mesh convergence study is shown in the following examples. 

Angle ply (300/-300/300) laminate is analyzed for first five natural frequencies with different 

mesh size, as shown in Table 4.1.1. The material properties are as given in as  

Table 4.1.1: Material properties used in mesh convergence study  

Material 1 E1(GPa) E2(GPa) G12 = G13 

(GPa) 

G23(GPa) ν12 ρ(KG/m3) 

Glass 

Epoxy 

60.7 24.8 12.0 12.0 0.23 

 

1300 

 

The geometry of the structure is shown in Figure [4.1.1]. The plate is clamped on one 

side. A 0.01m thick 1m x 1m square cantilever plate is analyzed. 

 

  

 

 

 

 

 

 

 

Free 

Free Free 

FIXED 

 
Fig.4.1.1 Boundary condition 
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Table 4.1.2. Natural Frequency (Hz) for square plate for different meshes 

Meshing 4x4 6x6 % Error 8x8 %Error 10x10 % Error 

Mode1 9.836 9.835 0.013 9.834 0.008 9.833 0.005 

Mode2 21.685 21.651 0.157 21.634 0.077 21.627 0.032 

Mode3 56.868 56.782 0.153 56.774 0.013 56.771 0.007 

Mode4 66.482 66.233 0.376 66.190 0.065 66.178 0.019 

Mode5 83.572 83.117 0.548 83.006 0.134 82.969 0.044 

It can be seen that by modelling the composite laminated plate using 8x8 or 10x10 elements 

provides quite accurate result , taking minimum computation time and computer memory. 

Hence in the further studies of the composite laminated plate 4x4, 6X6 elements are 

considered. Sometimes 10X10 meshes is used for more accurate results. 

4.1.2 Validation for free vibration  

Validation has been performed for composite laminated plate for free vibration analysis to 

observe the accuracy and reliability of the present code in modelling of composite laminated 

plate of simply supported boundary conditions. For validation following material properties 

has been used. 

   Table 4.1.3: Material properties used in validation study 1 

Material2 E1(GPa) E2(GPa) G12 = G13 

(GPa) 

G23(GPa) ν12 ρ(KG/m3) 

Graphite epoxy 280 7 4.2 3.5 0.25 1300 

The dimension of the composite laminated plate are a x b x h = 1m x 1m x .010m. The 

lamination of plate is (45𝑜/−45𝑜/45𝑜 ).Here 8 noded with 6 degrees of freedom serendipity 

element is considered. A 10x10 mesh is taken for the study. 

Table 4.1.4: Comparison of non dimensional frequencies for validation study  

Boundary Conditions A\H Ratio Present(λ) Paper(λ)[111] Percent Difference 

  10 15.1575 15.12 0.248 

  20 17.68 17.6438 0.205 

SSSS 50 18.702 18.6586 -0.046 

  100 18.891 18.8205 0.3745 

                      [Non dimensional frequency λ= ωna2 (ρ/E2 t2)1/2]. 
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The program has been validated with ANSYS also. 

Table 4.1.5  Material properties used in validation study with ANSYS 

Material3 E1(GPa) E2(GPa) G12=G13 (GPa) G23(GPa) ν12, ν21 ρ(KG/m3) 

Carbon  

epoxy 

130 9.5 6 3. 0.23 

0.017 

1600 

The dimension of the composite laminated plate is a x b x h = 1m x 1m x .010m. The 

lamination of plate is (00/900/900 /00). Here CFFF boundary condition has been used. A 

10x10 mesh is taken for the study. There is no difference with ANSYS result. 

                                Table 4.1.6  Comparison of frequencies (Hz) with ANSYS  

Mode No Present ANSYS %Difference 

1 6.339 6.339 0.000 

2 13.569 13.564 0.035 

3 39.875 39.870 0.012 

4 52.452 52.418 0.064 

5 90.816 90.732 0.093 

  

4.1.3. Case Study    

To analyze different case the previous element properties has been used and here some new 

element properties also have been used. 

Table 4.1.7: Material properties used in different case  study 

Material  

Name 

E1(GPa) E2(GPa) G12 = G13 

(GPa) 

G23(GPa) 

 

ν12 ρ(KG/m3) 

 

Material 4 9.5 9.5 3.6 3.6 0.3 1600 

Material 5 E1/E2 9.5 5.7 4.75 0.25 1600 

 

Case Study-1: Study of dynamic behaviour of laminated composite plate for different 

boundary condition. 

Case Study-2: Study of dynamic behaviour of laminated composite  plate by varying ply 

orientation at different layer. 

Case Study-3: Study of dynamic behaviour of laminated composite plate by varying cross 

ply orientation at different layer. 
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Case Study-4: Study of dynamic behaviour of laminated composite plate by varying angle 

ply orientation at different layer. 

Case stusy-5: Study of dynamic behaviour of laminated composite plate for different aspect 

ratio. 

Case stusy-6: Study of dynamic behaviour of laminated composite plate structure for 

different orthotropy ratio (E1/E2). 

 

4.1.3.1. Case Study-1: Study of dynamic behaviour of laminated composite plate 

structure for different boundary condition. 

In this problem the change in dynamic behaviour of laminated composite plate for different 

boundary conditions and a/h ratio is discussed. In the following analysis 0/90/90/0 ply 

composite square plate is used. Material 5 [Table 4.1.7] is taken for the analysis with 

E1/E2=40.  

Table 4.1.8.Frequency (Hz) for Different Boundary Conditions 

Boundary Condition CFFF CCFF SSSS CFCF CCCF SCSC CCCC 

a/h=100 mode 1 9.546 26.383 73.214 60.897 66.771 151.645 167.220 

mode 2 15.524 67.797 134.106 64.394 166.682 202.466 258.802 

mode 3 60.012 147.219 267.629 169.898 176.477 354.273 427.164 

mode 4 68.851 170.451 280.161 172.262 256.853 413.744 429.473 

mode 5 150.878 178.197 317.196 177.034 368.821 469.892 510.651 

a/h=10 mode 1 93.026 232.051 537.278 232.051 587.830 771.951 878.084 

 Non dimensional frequency λ= ωna2 (ρ/E2h2)1/2 

a/h=10 mode 1 2.399 5.984 16.628 15.832 15.158 19.905 22.642 

a/h=100 mode 1 3.687 6.812 24.334 23.449 18.891 39.103 43.317 

 

C=Clamped, F=Free, S=Simply Supported 

 

The boundary condition is defined  

by CSCF. 
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     Fig.4.1.2  
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In the table 4.1.8 frequency for two a/h ratios are shown to clarify the result, after that non 

dimensional frequency is shown. From table 4.1.8, it is observed that CFFF boundary 

conditions gives very low frequency and CCCC gives very high frequency. Hence with 

clamped boundary conditions, stiffness increases. Frequency verses different mode for 

different boundary conditions are shown in the Fig 4.1.3.1. Variations with non dimensional 

frequency are shown in Fig 4.1.3.2.For thinner (a/h=100) plate non dimensional frequency is 

higher than thicker (a/h=10) plate, but in actual frequency is higher at thicker plate because of 

higher stiffness. For further study non dimensional frequency is used to simplify the non 

dimensional parameter for different cases. 
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4.1.3.2. Case Study-2: Study of dynamic behaviour of laminated composite plate 

structure for variation in a/h ratio and ply orientation at different layer: 

In this case study, the variation of non dimensional frequency for simply supported plate is 

shown (Table 4.1.9 and Fig. 4.1.4), for the plate with the material constants as in the previous 

case, for a/h ratio varying from 5 to 100 and different layup sequence. From the result, it is 

observed that non dimensional frequency increases with increase in a/h ratio. Though the rate 

of increasing is decreases with increase in a/h value. For a particular a/h ratio, stiffness 

increases for angle ply orientation and stiffness is less for cross ply plates. 

 

Table 4.1.9 Variation of non dimensional frequency with a/h for different ply orientation 

a/h 5 10 20 50 100 

0/45/45/0 10.683 15.413 18.301 19.5107 19.747 

0/90/90/0 10.862 15.157 17.68 18.702 18.878 

30/-30/-30/30 11.866 17.0809 20.24 21.71 22.281 

60/-60/-60/60 11.866 17.081 20.2416 21.711 22.2819 

75/-75/-75/75 10.791 15.516 18.365 19.607 19.964 

45/-45/-45/45 12.295 17.804 21.198 22.806 23.446 
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4.1.3.3. Case Study-3: Study of dynamic behaviour of laminated composite plate 

structure by varying cross ply orientation at different layer. 

 

In this study total thickness of the layer is kept constant and numbers of layers are increased. 

Here CCCC boundary conditions and square composite plate of material 5 [Table 4.1.7] is 

used. Dimension of the plate is 1m x1m x.01m and E1/E2=40. 

Table 4.1.10 Frequencies (Hz) for different cross ply orientations   

 

 

 

 

Here frequency in 0/90/0 is more than 0/90/0/90 and frequency for 0/90/0/90/0 is more than 

0/90/0/90/0/90. In general it is found that for same thickness stiffness is increase with the 

number of layer and stiffness is decreases due to decrease in layer number. It is observed that 

for successive odd number of layer frequency is more than the even number of layers though 

the number of layer higher. 

 

4.1.3.4. Case Study-4: Study of dynamic behaviour of laminated composite plate 

structure for different angle ply orientation with varying layers. 

Here same condition and material are used to study the behaviour of angle ply composite 

plate. 

 

 

 

MODE 1 MODE 2 MODE 3 MODE 4 MODE 5

0/90 104.293 224.409 224.409 331.971 411.469

0/90/0 166.414 224.307 327.997 442.385 501.599

0/90/0/90 154.932 332.235 332.235 487.099 634.627

0/90/0/90/0 167.676 285.486 416.140 500.833 516.490

0/90/0/90/0/90 162.455 347.762 347.762 508.363 665.992
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Fig.4.1. 5 Frequencies (Hz) for different cross ply orientations   
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              Table 4.1.11 Frequencies (Hz) for different angle ply orientations   

             

 

In fibre orientation 0/45/0 frequency is more than 0/45 and it is the highest frequency among 

all cases for first mode, after 0/45/0 higher frequency than 0/45/0/45/0 and 0/45/0/45/0/45 

respectively. It is found that for same thickness 0/45/0 has highest stiffness and it is not 

increasing though the number of layer increases. But stiffness is decreased due to increase in 

layer number. In general frequency increases with increasing no of layer for higher mode but 

mode1 gives higher value for odd no of layers. The odd layers are symmetric in nature 

whereas the even layers are antisymmetric. As a result, there stiffness increases with the 

increasing number of layers. 

 

4.1.3.5. Case stusy-5: Study of dynamic behaviour of laminated composite plate 

structure for different aspect ratio: 

Here deviation of non-dimensional frequency with respect to a/h has been shown for ply 

orientation 0/90/90/0. In this analysis simply supported square plate has been used with 

material properties 5 [Table 4.1.7] with E1/E2 ratio 40.  Effect of length to thickness ratio on 

non dimensional frequency parameter [λ= ωna2 (ρ/E2 h2)1/2] has shown in the table 4.1.13. 

 

 

 

 

 

MODE 1 MODE 2 MODE 3 MODE 4 MODE 5

0/45 106.467 190.614 255.065 310.065 353.437

0/45/0 165.587 212.411 293.165 443.901 499.510

0/45/0/45 148.318 251.020 364.981 416.213 492.062

0/45/0/45/0 164.552 238.571 363.907 427.311 510.792

0/45/0/45/0/45 154.671 259.908 381.210 431.613 512.069
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Fig.4.1.6 Frequencies (Hz) for different angle ply orientations   
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Table 4.1.12. variation of non dimensional frequency with varying a/h 

a/h ratio 5 10 20 50 100 

mode1(Hz) 842.533 587.830 342.837 145.059 73.214 

mode2(Hz) 1498.760 1064.257 621.293 263.396 134.106 

mode3(Hz) 1659.023 1442.585 1055.289 514.924 267.629 

mode4(Hz) 2075.681 1707.026 1197.369 538.893 280.161 

mode5(Hz) 2396.536 1896.570 1211.001 582.921 317.196 

a/h Non dimensional frequency 

a/b=1 10.8626 15.1575 17.6805 18.7021 18.8787 

a/b=2 19.1773 27.1885 31.6969 33.4909 33.7951 

a/b=3 29.7682 46.664 58.9745 64.8248 65.8449 

  

From the table, it is seen that with increase in a/b ratio, stiffness of the structure increases. It 

is true for any a/h ratio. 
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4.1.3.6. Case stusy-6: Study of dynamic behaviour of laminated composite plate 

structure for different orthotropy ratio (E1/E2): 

Variation of non dimensional frequency with modular ratios (E1/E2) for different ply 

orientation has been shown for square simply supported laminated composite plate with 

different modular ratios for a/h ratio 10. Here materials 5[Table 4.1.7] have been used to find 

non dimensional frequency. From the table and corresponding figure, it is clear, that 

frequencies are increasing with E1/E2 ratio irrespective of different lay-up sequence. From 

the table it is observed that for thicker plate, 45/-45/-45/45 gives least stiffness and 60/-60/-

60/60 gives the highest stiffness, whereas for thinner plates, 45/-45/-45/45 gives maximum 

stiffness and 0/90/90/0 gives the least stiffness. 

        Table 4.1.13. Dimensional Frequency with Modular Ratios 

E1/E2 3 10 20 30 40 

0/45/45/0 7.393 10.899 14.481 17.32 19.747 

0/90/90/0 7.286 10.52 13.886 16.575 18.878 

30/-30/-30/30 7.851 12.253 16.393 19.585 22.281 

45/-45/-45/45 6.517 12.804 17.21 20.592 23.446 

60/-60/-60/60 7.851 12.253 16.393 19.585 22.281 

75/-75/-75/75 7.477 11.106 14.714 17.551 19.964 
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4.1.4. Mode Shape for Different Boundary  Condition 

Different mode shape are shown in the following figure for all clamped (CCCC), clamped 

free (CFCF) and cantilever plate (CFFF) for a square plate with 0/90/90/0 lamina. Here the 

same material has been used. 
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Mode Shape 1-CCCC 
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Mode Shape 2-CCCC 

      Fig.4.1.11 

 

 

Mode Shape 3-CCCC 

      Fig.4.1.12 
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Mode Shape 1- CFCF 

      Fig.4.1.13 

 

Mode Shape 2- CFCF 

      Fig.4.1.14 
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Mode Shape 3- CFCF 

      Fig.4.1.15 

 

 

 

Mode Shape 1- CFFF 

      Fig.4.1.16 

 

 

 



Page | 38  
 

 

 

 

 

 

 

 

 

 
 

 

Fig. 4.1.18 

Mode Shape 2- CFFF 

      Fig.4.1.17 

 

 

Mode Shape 3- CFFF 
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4.2. NUMERICAL STUDIES 2 FOR BUCKLING OF COMPOSITE PLATE 

Validation is performed for composite laminated plate formulation for buckling analysis.  

4.2. 1.Validation 

4.2.1.1 For isotropic element  

To observe the accuracy and reliability of the present code in modelling of composite 

laminated plate for buckling analysis of simply supported condition of plates has used. It is 

analyzed numerically and compared with the paper of Chakrabarti and S.K. Singh [96].The 

dimension of the composite laminated plate are a x b = 1m x 1m. The lamination of plate is 8 

noded with 6 degrees of freedom element is considered. A 10x10 mesh is taken for the study. 

Material4 [Table 4.1.7] is used for isotropic element and material 5 [Table 4.1.7] is used in 

other all cases. In this example simply supported square isotropic plate is subjected to uni-

axial loading. The analysis is carried out for different thickness ratio (a/h = 100, 10). The 

critical buckling load is obtained by using present FE model and has been compared with the 

results of Chakrabarti and S.K.Shing [96] based on refined higher order shear deformation 

theory (RFSDT). Normalized Critical buckling loads ( λcr= λ a2/π 2D where D=E2h3/12(1-

𝜐21υ12) are shown in table 4.2.2 for square isotropic plate. It is observed that the result 

matches well with paper [96]. 

 

Table.4.2.2 Comparison of  non dimensional buckling load for isotropic plate 

 

Description 

a/h present Paper[96] 

Uniaxial 

loading 

100 4.033 4 

10 3.714 3.782 

 

4.2.1.2 For orthotropic plate element  

In this example simply supported square laminated composite plate subjected to uni-axial 

loading is considered. The critical buckling load obtained by using present FE model 

obtained are presented with the results of Chakrabarti and S.K. Singh [96] based on higher 

order zigzag theory (HZT). It is observed that the present results are little lesser than [96] for 

very thick element.  
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Table.4.2.3 Validations of Non dimensional Buckling Load 

Descriptions ply  a/h E1/E2 Present Paper[17] %Error 

  

  

Uniaxial 

  

 Loading 

  

  

  

  

  

0/90/90/0 10 10 9.567725 9.76 1.970031 

20 15.02848 15.064 0.23579 

30 19.49515 19.46 -0.1806 

40 23.24245 23.13 -0.48618 

0/90/0 10 10 9.473153 9.629 1.618514 

20 14.66063 14.64 -0.14094 

30 18.76243 18.61 -0.81909 

40 22.10016 21.8527 -1.13242 

⋋𝑐𝑟=λ
𝑎

𝐸2ℎ3 nondimensional critical buckling load for simply supported condition. 

 

4.2.2 Case study: 

Case study 1.  Effect of different boundary conditions on buckling load. 

 

Case Study2.  Normalized critical buckling loads (λ cr) for various aspect ratios. 

 

Case Study3. Variation with Different Modular Ratio. 

 

Case Study 4. Variation of critical buckling load with different loading. 

 

4.2.2.1 Case study 1.Effect of different boundary condition on buckling load 

 

In this case 0/90/90/0 cross ply with material 5 (Table 4.1.7) is used to calculate critical 

buckling load of a square plate. The non dimensional critical buckling load has been 

calculated from the formulae ⋋𝑐𝑟 =λ
𝑎

𝐸2ℎ3 . Here two case has been shown for a/b ratio 

(10,100). From the result it has been shown that buckling load increases with restrain 

conditions because of increasing stiffness. Here CFFF has lowest and CCCC has highest 

buckling load. 
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Table4.2.4. Non dimensional Buckling Load for Deferent Boundary Condition  

    

a/h CFFF CCFF SSSS CFCF CCCF SCSC CCCC 

10 1.667 7.681 25.122 17.515 19.657 37.166 40.771 

100 2.003 9.010 36.102 36.879 42.452 82.937 147.952 

 

 

 

 

 

 

 

4.2.2.2 CASE STUDY2: Normalized Critical Buckling Loads with Various Aspect 

Ratios. 

Normalized critical buckling loads (λ cr) have been calculated with various aspect ratios ( a/ 

b) for simply supported laminated composite plate with cross ply [0/90/90/0] .Analysis has 

been done with material 5 [Table 4.1.7] with E1/E2 equal to 40. 
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Table 4.2.5. Variations of non dimensional buckling load for different a/h ratio. 

Uniaxial loading E1/E2  =40 

a/h 5 10 20 50 100 

a/b=1 11.41 23.24 31.62 35.38 36.06 

a/b=2 11.56 45.74 93.50 113.47 115.54 

a/b=3 11.72 46.63 150.34 219.54 236.84 

Biaxial loading  

a/b=1 5.97 11.62 15.81 17.69 18.03 

a/b=2 7.44 14.96 20.33 22.69 23.11 

a/b=3 6.13 22.03 35.18 42.51 43.86 

 

From the above data it has been shown that critical bucking load is increasing with a/h ratio 

for constant aspect ratio and also critical bucking load is increasing with increasing a/b ratio 

for constant a/h ratio. It has been shown that uniaxial buckling load (Nxcr) is more than the bi- 

axial buckling load (Nxcr,Nxcr). 

If the loading Nx and Ny both applied it is equivalent to load Nxy. 
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4.2.2.3 CASE STUDY3: Variation with Different Modular Ratio 

Here analysis has been done for cross ply composite one having four and other having three 

layers. Simply supported square plate is used to analyse the plate with a/h = 10.  Uniaxial and 

biaxial both loading conditions are used for different E1/E2 ratios. Here it has been shown that 

non dimensional buckling load is increasing with increasing E1/E2 ratios. 

 

Table 4.2.6. Non dimensional critical buckling load for different loading 

E1/E2 0/90/90/0 

Uniaxial loading 

0/90/90/0 

Biaxial loading 

0/90/0 

Uniaxial loading 

0/90/0 

Biaxial loading 

3 4.928005 2.464003 4.924774 2.462387 

10 9.567725 4.783856 9.473153 4.736569 

20 15.02848 7.514215 14.66063 7.312692 

30 19.49515 9.747526 18.76243 8.736476 

40 23.24245 11.62116 22.10016 9.992563 

 

 

 

 

From the graph, it is observed that 4 layer composite plates gives relatively higher critical 

buckling load than 3 layers. Another case study is introduced for different lay-up sequence. 

Analyses have been done for different ply orientation with constant thickness and no of 

layers. A comparison has been done for constant a/h ratio 100 with simply supported 

boundary conditions of a square plate. From the table it is noticed that ply 45/-45/-45/45 has 

0

5

10

15

20

25

0 20 40 60n
o

n
 d

im
en

si
o

n
al

  
b

u
ck

li
n

g
 l

o
ad

E1/E2
SSSS

Variation With Different Modular Ratio

0/90/90/0-uniaxial

0/90/90/0-biaxial

0/90/0-uniaxial

0/90/0-biaxial

Fig. 4.2.4 



Page | 44  
 

higher buckling load than others ply orientations though for ply 30/-30/-30/30 has highest 

buckling load for lower E1/E2(=3) ratio for uni axial loading. 

Table 4.2.7 Non dimensional buckling load for different ply orientations for uniaxial loading 

(Nx) 

E1/E2 10 20 30 40 

0/45/45/0 12.012 21.196 30.317 39.389 

0/90/90/0 11.201 19.509 27.793 36.055 

 30/-30/-30/30 15.034 26.659 37.827 48.757 

45/-45/-45/45 16.377 29.241 41.556 53.6 

60/-60/-60/60 14.999 25.974 35.366 44.4028 

75/-75/-75/75 10.464 14.859 19.095 23.213 

 

 

 

  

 

 

In biaxial loading same behaviour has been observed keeping other conditions same. Same 

analysis has been done for all in plane loading along x,y and xy directions. Here it has been 

shown that ply- 45/-45/-45/45 has highest buckling load and ply-0/90/90/0 has lowest 

buckling loads. 
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Table 4.2.8 Non dimensional buckling load for different ply orientations for biaxial 

loading(Nx,Ny) 

E1/E2 10 20 30 40 

0/45/45/0 6.006 10.597 15.157 18.59 

0/90/90/0 5.6 9.754 13.896 18.027 

30/-30/-30/30 7.512 13.297 18.832 24.238 

45/-45/-45/45 8.19 14.632 20.802 26.837 

60/-60/-60/60 7.512 13.297 18.832 24.238 

 75/-75/-75/75 6.208 10.826 15.178 18.445 

 

 

 

Table 4.2.9 Non dimensional buckling load for different ply orientations for all in plane 

loading(Nx,Ny,and Nxy) 

E1/E2 3 10 20 30 40 

0/45/45/0 1.382 3.003 5.2988 7.578 9.2951 

0/90/90/0 1.342 2.8 4.877 6.948 9.014 

30/-30/-30/30 1.556 3.756 6.648 9.416 12.119 

45/-45/-45/45 1.6292 4.095 7.316 10.401 13.418 

60/-60/-60/60 1.556 3.756 6.6485 9.416 12.119 

75/-75/-75/75 1.413 3.104 5.413 7.589 9.222 
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4.2.2.4 Case Study 4: Variation of Critical Buckling Load with a/h Ratio for Different Ply 

Orientation    

Here it has been examined how the buckling load are dependent with loading condition for 

different ply orientation. This calculation has been carried out for simply supported square 

plate for material 5 (E1/E2  =40 ). It is shown that non dimensional buckling load is increasing 

with a/h ratio. Actually stiffness is decreases with increasing a/h ratio due to thinner section. 

But in non dimensional form it is increases with a/h ratio. Ply orientation 30/-30/-30/30 gives 

highest buckling loads and (75/-75/-75/75) gives the lowest buckling loads for uniaxial 

loading. The result is similar for bi-axial loading, too. For all in plane loading conditions, 

(30/-30/-30/30) gives the highest buckling load whereas (75/-75/-75/75) gives the lowest 

buckling load except for the case a/h=100. Ply orientation (30/-30/-30/30) gives higher 

stiffness because internal angle between two layer is maximum (120°) and for (75/-75/-75/75) 

it is lowest (30°). 
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Table 4.2.10. Non dimensional buckling load [⋋𝑐𝑟=λ
𝑎

𝐸2ℎ3] for different ply orientations for 

uniaxial (Nx)  loading 

a/h 5 10 20 50 100 

 45/-45/-45/45 10.578 27.571 43.102 50.161 53.6 

0/45/45/0 11.386 23.882 33.763 38.421 39.389 

 30/-30/-30/30 11.796 28.437 39.751 45.859 48.757 

60/-60/-60/60 8.155 19.767 31.214 39.445 44.403 

75/-75/-75/75 6.079 12.407 17.658 21.11 23.213 

0/90/90/0 11.408 23.242 31.624 35.384 36.055 

. 

 

 

Table 4.2.11 Non dimensional buckling load for various a/h ratio for different ply 

orientations in biaxial (Nx,Ny) loading  

a/h 5 10 20 50 100 

0/45/45/0 5.356 10.628 15.0139 17.4919 18.59 

0/90/90/0 5.968 11.621 15.811 17.692 18.027 

30/-30/-30/30 11.866 14.124 19.71 22.753 24.238 

60/-60/-60/60 6.73 14.124 19.714 22.753 24.238 

75/-75/-75/75 4.942 9.866 14.008 16.752 18.445 

45/-45/-45/45 7.421 15.355 21.644 25.129 26.837 
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Here Nx, Ny, and Nxy loading is applied to find the critical buckling loads. Here simply 

supported plate also has been used. 

Table 4.2.12. Non dimensional buckling load for various a/h ratio for different ply 

orientations in all plane loading 
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4.2.3 Buckled Shape for  Buckling 

 

 

 

 

CCCC uniaxial loading 

Fig. 4.2.11 

 

 

CCCC biaxial loading 

      Fig. 4.2.12 
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CCCC  all inplane loading 

Fig. 4.2.13 

 

CFFF-unixial loading 

          Fig. 4.2.14 
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CFFF biaxial loading 

         Fig. 4.2.15 

 

 

CCFF-uniaxial loading 

Fig. 4.2.16 
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CFFF-all inplane loading 

          Fig. 4.2.17 

 

CCFF-biaxial loading 

Fig. 4.2.18 
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CCFF-all inplane loading 

Fig. 4.2.19 

 

CFCF uniaxial loading 

Fig. 4.2.20 
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CFCF-biaxial loading 

Fig. 4.2.21 

 

CFCF-all inplane loading 

Fig. 4.2.22 
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