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Abstract 

Disturbance exists in almost all kind of systems, which does mean not only external 

disturbances but also the system parameter uncertainties. It brings adverse effects on the 

desired performance of the system. Therefore, disturbance estimation and rejection are equally 

necessary for desired response of a system. Researchers found that Disturbance Observer 

provides an effective disturbance estimation technique for a wide range of systems.  

This dissertation is about verification and modification of DOB based Motion Control System, 

followed by disturbance estimation and suppression. At first, DOB design method has been 

studied. Then system response is analysed without any disturbance observer. Next, external 

disturbance along with parameter uncertainties are estimated by Disturbance Observer with 

and without the outer loop controller. Then, PID and PD both controllers are used separately 

to achieve performance goals. Finally, performance comparison has been made between the 

existing PD controller and DOB, and proposed PID controller and DOB using MATLAB. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background:  

Motion control is one of the most important technology in mechatronics. It encompasses every 

technology related to the movement of objects. Now-a-days, the focus of motion control deals 

with special control technology of motion systems with electric actuators such as dc or ac servo 

motors. Technologies like robot manipulators are driven by electrical servo motors, as a result 

robot manipulators are also included in the area of motion control field. With the advancement 

of power electronics and computer technology it is easier to improve the performance of motion 

control. Due to availability of vector control, ac servo motors can be designed with same 

characteristics as dc motors. To summarize the development of motion control technology, the 

following figure [25] is represented below. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1.1- Development of Motion Control field [25] 

 

Theory of Motion Control: 

Motion controllers and reference generators build a complete motion control. The dynamics of 

a mechanical system governed by lagrange’s equations [25] can be described by some set of 

differential equations which gives the constraints of motion. Those equations are based on 

dynamic equilibrium of force. As per the motion reference, motion controller generates some 

set of inputs to the actuator. A motion reference is now produced followed by some complex 

algorithms in reference generator which has a composite structure. Inputs to this reference 

generator can be taken from output signal of a sensor or commands from human operator.  
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The output of motion control is either position or force. Trajectory tracking is an example of 

position control and simple mass spring system can be considered as an example of force 

control considering the forces of contacts. Stiffness (κ) is an important indices which covers 

various motion.  

Let, x is position of an object and F be the imposed force on it which is a function of x. 

According to the dynamic equation [3]-  

 𝐹 = 𝑓(𝑥, �̇�, �̈�) 

By taking partial differentiation, we can get stiffness : 

κ =  
∂F

∂x
   

For ideal position control, κ value should be infinite as there should be deviation of force with 

any deviation of position. And for ideal force control κ value should be zero as there should be 

deviation of position with any deviation of force. In compliance control there is a relation 

between position and force control resulting the κ value to be finite.  

Now for the motion systems, the stability is generally affected by different external 

disturbances- like uncertain torque disturbances, load torque variation. Moreover, the control 

performances are also affected by internal model parameter perturbations caused by the 

changes of operation conditions and external working environments. So the solution to the 

disturbance rejection is a necessary task since the starting of control system and its applications. 

Researchers found strong algorithms for disturbance attenuation giving higher control 

precision and production efficiency of practical engineering systems. Some methods of 

disturbance rejection are described below.  

A. Adaptive control: This method helps rejecting undesired effects due to structure 

parameter uncertainties. At first, system parameters are estimated online, then they are 

tuned in order to get desired performance. This method does not work when those 

system parameters are hard to estimate online. 

B. Robust Control: This is a over-conservative method as it considers worst case 

parameter uncertainties. Robustness can be achieved by sacrificing the transient 

response by this method.  

C. Sliding Mode Control: It can attenuate external disturbance and parameter variation. 

But the main problem of this method is high frequency chattering. Though chattering 

can be taken care of by saturation method but active disturbance rejection is 

compromised. 

D. Internal Model Control: This method handles the effects of external disturbance. Its 

simple concept makes it widely applicable in control domain and application part. It is 

used for linear system only cutting down its wide range of application in non-linear 

system.  

Those above mentioned methods suppress disturbances by feedback control instead of 

feedforward compensation control. So, when strong disturbances are present these methods 
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work in slow way via feedback regulation. That’s why they are called passive anti-disturbance 

control (PADC).  

PADC method can suppress disturbance but to get faster disturbance rejection active anti-

disturbance control (AADC) method was invented. It directly deals with the disturbance by 

feedforward compensation estimating the disturbance. 

Traditional feedback control is the first AADC method. Here, a sensor is used to measure the 

disturbance. Then disturbance channel model is built. At last, a feedforwad controller is 

designed. The whole system counteracts the disturbances. But, in most of the practical systems 

disturbances are difficult to measure also parameter uncertainties make the system performance 

worse.  

Taking the advantage of FC and the mentioned disadvantage into account, effective disturbance 

estimation techniques needed to be invented. Disturbance Observer (DOB) is the most effective 

and popular approach to reject disturbances as robustness can be achieve in a desired 

bandwidth. It was first invented by K. Ohnishi in 1983. It is now widely used in both control 

theory and control application fields. The working principle of DOB along with block diagram 

has been described in details in chapter 3 [26].  

 

1.2 Motivation:  

In conventional analysis and design methods of control systems it is assumed that plant 

dynamics is known whereas the assumption is not true in practical cases. So, if a controller is 

designed on the basis of identified plant model then the stability and performance may 

deteriorate. Apart from these parameter uncertainties external disturbances is also present, and 

Motion Control system is not an exceptional from control point of view. So, to improve the 

stability and performance of MCS plant uncertainties and external disturbances should be taken 

into consideration. To achieve this, several 2-DOF controllers are widely used in industries. 

Among them DOB is one of the most popular methods as the robustness can be achieved in a 

desired BW. Although DOB is widely used in several applications, the trade-off between 

robustness and stability in design of a DOB was not proposed since 2015. E. Sariyildiz and K. 

Ohnishi proposed a new design criteria to adjust the trade-off, in addition a new stability 

analysis method for force control was proposed by them [24]. But in this thesis work, main 

focus is on position control system. The new design criteria [24] has been verified in this thesis 

work. Also, with a motive to improve stability and performance PID controller has been used 

in outer-loop. PID controller and DOB based position control system has been analysed in 

detail. Finally, a comparison of performance between the existing PD controller & DOB and 

Proposed PID controller & DOB based position control system has been done in this thesis 

work. 
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1.3 Thesis Objective:  

The main objective of the thesis are stated as follows: 

 To study the DOB based position control system with existing PD Controller, verifying 

the trade-off between robustness and stability while designing the DOB [24]. 

 To estimate the disturbance and to check disturbance rejection on existing DOB based 

position control system. 

 To analyse the proposed PID controller based position control system in terms of 

stability, robustness. Then to estimate the disturbance and to check disturbance 

rejection on the same. 

 To compare the existing PD controller based DOB and proposed PID controller based 

DOB through disturbance estimation error, tracking error. 

 

1.3 Salient Contributions: 

This section states the contribution of the present work in the background of the earlier work. 

 Verification of the design methods for robustness and stability analysis for existing 

DOB based position control system [24].  

 Estimation of disturbance using a set of different input waveforms as disturbance on 

existing DOB based position control system using SIMULINK model. 

 Trajectory checking on existing DOB based position control system.  

 Modelling PID controller and DOB based position control system. Hence, analysing it 

followed by disturbance estimation, trajectory tracking. 

 To compare the disturbance estimation error (DEE) and tracking error (TE) between 

existing PD controller based DOB and proposed PID controller based DOB. 

 

1.4 Organisation Of the thesis:  

The entire thesis work has been described in seven chapters as follows- 

In chapter 1, a brief overview of motion control system is described. Then, brief discussion 

including advantages and disadvantages of anti-disturbance control methods are described. 

Finally, evolution of DOB is discussed  

In chapter 2, literature survey has been done in details on DOB and its implementation on 

motion control system. 

In chapter 3, design of DOB has been described with examples. 
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In chapter 4, motion control system has been depicted with block diagram. Then 

implementation of DOB on motion control has been discussed followed by disturbance 

estimation, stability and robustness analysis. 

In chapter 5, PID controller based DOB has been proposed. Then robustness and stability 

analysis have been done analytically. Disturbance estimation and position tracking is done 

using SIMULINK model.  

In chapter 6, comparative study on DEE and TE have been done on the above mentioned 

methodologies.  

In chapter 7, the dissertation ends by this section giving conclusions and future scope of 

research in this domain. 
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Chapter 2 

LITERATURE REVIEW 

 

2.1 Introduction: 

In this survey a brief summary of DOB based motion control system has been described.  

 

2.2 Literature survey: 

Robust servo-system design method based on 2-DOF controller was proposed by T. Umeno in 

1993. The servo-system is derived from simple parametrization. The close loop characteristics 

and input response can be controlled separately. Then the 2-DOF controller is used in advanced 

motion control [1].  

T. Murakami, F. Yu, and K. Ohnishi [2] presented a torque sensorless control in multi-degree 

of freedom manipulator. In one joint the DOB is used to calculate the disturbances and another 

one is used to calculate reaction force once the disturbance is estimated. Then it is expanded to 

workspace force control in multi-degree of freedom manipulator. 

After the emergence of motion control, the connection between robustness and variable 

stiffness needed to be done. K. Ohnishi, M. Shibata, and T. Murakami [3] showed control 

of acceleration realizes specified motion while keeping robustness high. In this paper, Motion 

control of flexible structure and identification of mechanical parameters are also described. 

For reading and writing hard disk drives’ a 2-DOF control structure was proposed by L. Yi and 

M. Tomizuka [4]. The new features in this paper are a new method for generating reference 

signal for track seeking, and another is adaptive robust control method. Control with ARC 

provides better performances than conventional servo system or 2-DOF structure with DOB. 

Later decentralized adaptive robust control for trajectory tracking was proposed by Z.Yang, 

Y. Fukushima [5]. After that, 4-channel bilateral control design for haptic communication 

under time delay was proposed by A.Suzuki and K.Ohnishi [6]. But, most of DOB based 

plants are SISO type. For application to MIMO plants a control structure that reduces it to SISO 

was also proposed [7]. There are other applications of DOB are there like biped walking robots 

[8], permanent magnet linear motors etc. [9]. 

A new controller architecture was proposed by K.Zhou and Z. Ren [10] to control separately 

the robustness and performance that can overcome the problem faced in conventional feedback 

framework. In absence of disturbances only performance controller will work and in presence 

of disturbance robustification controller will also be active. 

In 2005, “law of action and reaction” by multilateral control was introduced by S.Katsura, 

Y.Matsumoto, K. Ohnishi. [11]The design of bilateral control based on DOB has been done 

here, the design is treated as position and force control in a single joint. Then it is generalized 

as multilateral control based on modal decomposition. 
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Although, DOB based controllers are used in industries widely but there was no necessary and 

sufficient condition for robust stability until 2009. H.Shim, N.H. Jo [12] proposed the same 

when Q-filter has sufficiently small time constant. If the nominal system is minimum phase 

and outer loop controller stabilizes the nominal system then the proposed theory would give 

robustness under large parameter uncertainties. To get more ideas about outer loop controller 

performance study, application of variable structure systems in motion control has been studied 

[13].  

Now, the bandwidth limitation due to noise and robustness constraints was still there because 

of conservatism. In 2013 a new robust stability analysis method was proposed by E.Sariyildiz, 

K.Ohnishi. [14] It has been showed that a lower bound exists for bandwidth of DOB to obtain 

robust stability, if the BW increases then robustness also increases. Then for non-minimum 

phase case the upper and lower bound of BW has been discussed by the same authors [15]. The 

noise suppressing techniques to improve bandwidth constraints has been discussed in the 

following papers [16]-[18].  

H. Kobayashi, S. Katsura, K.Ohnishi proposed parameter variation limitation and though 

only inertia variation had been taken into consideration, then stability of position and force 

control had been analysed [19]. 

A RTOB estimates the environmental impedance which is an application of DOB. Like DOB, 

the force control BW has been studied in the following literature [2], [20]-[22]. Advantages 

over a force sensor has also been discussed in the aforesaid literature. The recent studies on 

adaptive reaction force observer has also been studied [23]. Here the design parameters like 

inertia, BW of DOB and RTOB, force control gain is adjusted by adaptive algorithm providing 

good stability and robustness considering the design constraints of DOB. 
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Chapter 3 

BRIEF OVERVIEW OF DISTURBANCE OBSERVERS 

 

3.1 Introduction: 

In general, there are two types of disturbance rejection methods, one is PADC and another one 

AADC. DOB is in AADC category. Here only DOB has been described in details as it is more 

effective to deal with disturbance and giving robustness than high gain control and integral 

control methods. 

 

3.2 Basic framework of DOBC: 

The basic framework of DOBC is shown below  

 

Fig. 3.1- A basic framework of DOBC [26] 

It is seen from the figure that the whole system consists of two parts, one is feedback control 

part another is feedforward control part. First one is used to track and stabilize the nominal 

control plant. This part doesn’t consider plant uncertainties and external disturbances. The 

DOB estimates the disturbances and uncertainties and then it is compensated by feedforward 

control. The disturbance rejection and tracking control can be done separately which is a major 

advantage of DOBC method. The comparison with the PADC method is shown below: 

 Faster response: Feedforward control directly counteracts with disturbances giving 

faster response of the system in case of DOBC. But PADC attenuates disturbances by 

passive feedback regulation. 

Feedback 

control 

Feedforward 

control 

Disturbance 

observer 

Controlled 

plant 

𝑑 
𝑦𝑟  

𝑢𝑓𝑓 

𝑢 𝑢𝑓𝑏 

�̂� 

𝑦 
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 Patch feature: The term ‘patch’ refers to the feedforward control part to the existing 

feedback control. Once the feedback control part is done, DOB is introduced to improve 

plant responses under the effect of disturbances and uncertainties.  

 Less conservative: Unlike robust control, DOBC is not designed taking worst case 

scenario. So, it doesn’t compromise with the nominal plant dynamics performance. In 

absence of any parameter uncertainties or disturbances DOBC recovers the baseline 

controller is recovered resulting better nominal plant performance. 

 

3.3 Disturbance Observer design: 

In this section, disturbance observer design has been discussed [26]. Here, the disturbance 

estimation technique is limited to only frequency domain formulation. At first the minimum 

phase case is described as follows: 

3.3.1 DOB design for minimum phase systems: 

Let us consider a SISO minimum phase system depicted as follows- 

 

Fig. 3.2- Block diagram of a basic feedback control system 

So, the output of the system can be written as- 

𝑦(𝑠) = 𝑇𝑟𝑦(𝑠)𝑟(𝑠) + 𝑇𝑑𝑦(𝑠)𝑑(𝑠) (3.1) 

Where r(s) is the reference input, y(s) is output, C(s) is controller transfer function, G(s) is plant 

transfer function, 𝑇𝑟𝑦(𝑠) is transfer function from reference input to output, 𝑇𝑑𝑦(𝑠) is transfer 

function from disturbance input to output. 

Now, based on the equation (3.1), DOB in frequency domain can be drawn as- 

 

 

 

𝐶(𝑠) 

 

d(s) 

 
y(s) 

 𝐺(𝑠) 

 

r(s) 

 

+ 

 - 

 

+ 

 

- 
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Fig. 3.3a- Block diagram of a frequency domain DOB for minimum phase linear system, an 

original form [26] 

 

𝑄(𝑠) is the transfer function for low pass filter. 𝐺𝑛(𝑠) is nominal plant transfer function and 

𝐺𝑝(𝑠) is plant transfer function with parameter uncertainties. Now, for the disturbance 

estimation considering external and internal both, lumped disturbance has been taken which is 

shown as the following figure- 

 

 

Fig. 3.3b- Block diagram of a frequency domain DOB for minimum phase linear system, an 

equivalent form [26] 

 

𝐺𝑝(𝑠) 

 

𝑄(𝑠)𝐺𝑛
−1(𝑠) 

 

_ 

 

_ 

 

_ 

 

+ 

 

d(s) 

 

�̂�(𝑠) 

 

+ 

 

+ 

 

𝑄(𝑠) 

 

r(s) 

 

y(s) 

 

u(s) 

 

𝐺𝑛(𝑠) 

 

𝑄(𝑠)𝐺𝑛
−1(𝑠) 

 

_ 

 

_ 

 

_ 

 

+ 

 

dl(s) 

 

�̂�(𝑠) 

 

+ 

 

+ 

 

𝑄(𝑠) 

 

r(s) 

 

y(s) 

 

u(s) 
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�̂�(s) = Q(s)𝐺𝑛
−1(𝑠)𝑦(𝑠) − 𝑄(𝑠)𝑢(𝑠)= Q(s)𝐺𝑛

−1(𝑠)[u(s)+𝑑𝑙(s)]𝐺𝑛(𝑠) – 𝑄(𝑠)𝑢(𝑠) (3.2) 

 

  as y(s) can be written as {u(s)+𝑑𝑙(s)}𝐺𝑛(𝑠)  

So, 

d̂(s)  =  Q(s)𝑑𝑙(s)                                          (3.3) 

Again, 

 𝑒𝑑(s)  =  �̂�(𝑠) –  𝑑𝑙(𝑠) =  [𝑄(𝑠) − 1]𝑑𝑙(𝑠)  (3.4) 

If the filter Q(s) is taken as low pass filter then 𝑒𝑑(s) will tend to zero as time goes to infinity.  

This means, 𝑙𝑖𝑚
𝑠→0

𝑄(𝑠) = 1. 

Again, output is derived in terms of input r(s) and disturbance d(s) as- 

When, d(s)=0, we find Try(s). Reducing the block diagram of fig. (3.3a) to 

 

Fig. 3.4- Simplified block diagram of fig. (3.3a) 

So, 

𝑇𝑟𝑦(𝑠)=  
𝐺𝑝(𝑠)𝐺𝑛(𝑠)

𝐺𝑛(𝑠)+𝑄(𝑠)[𝐺𝑝(𝑠)−𝐺𝑛(𝑠)]
 (3.5) 

                                                                                   

It can be seen if Q(s)=1 then, Try(s) becomes- 

𝑙𝑖𝑚
ꞷ→0

𝑇𝑟𝑦(𝑗ꞷ) = 𝐺𝑛(𝑗ꞷ) (3.6)                                                                                 

 

This equation (3.6) signifies that in low frequency domain the system response is same as that 

of nominal plant transfer function. 

Now, to find the transfer function of Tdy(s), r(s) should be taken as 0. The reduced BD 

becomes- 

1

1 − 𝑄(𝑠)
 𝐺𝑝(𝑠) 

 

𝑄(𝑠)𝐺𝑛
−1(𝑠) 

 

𝑟(𝑠) 

 

𝑦(𝑠) 

 
_ 
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Fig. 3.5- Simplified block diagram of fig. (3.3a) 

So,  

𝑇𝑑𝑦(𝑠)=  
𝐺𝑝(𝑠)𝐺𝑛(𝑠)[1−𝑄(𝑠)]

𝐺𝑛(𝑠)+𝑄(𝑠)[𝐺𝑝(𝑠)−𝐺𝑛(𝑠)]
                                                                            (3.7) 

  

It can be seen from (3.7) that if Q(s)=1 then  

lim
ꞷ→0

Tdy(jꞷ) = 0 (3.8) 

This equation (3.5) signifies the disturbances have been rejected in low frequency domain. It 

is also seen that design of Q(s) strongly determines the disturbance estimation. So, the design 

criteria of Q(s) can be stated as follows- 

 The transfer function Q(s)Gn
−1(s) should be realizable, i.e. it should be proper function. 

To ensure this criteria the relative degree of Q(s) should not be less than that of Gn(s). 

 As Q(s) approaches 1 in low frequency domain, estimated disturbance becomes same 

as lumped disturbance. Hence, it can be said the disturbances have been successfully 

attenuated by feedforward compensation based on disturbance observer. 

Numerical example to design Q(s) for minimum phase system: 

Let a nominal plant transfer function  

𝐺𝑛(𝑠) = 
(𝑠+1)

(𝑠+2)(𝑠+3)
 

It is assumed that there is no uncertainties in the system. So, the transfer function of Gp(s) is  

same as Gn(s), r(s) is taken as step input of magnitude 1 applied at t=0. 

According to the design criteria for Q(s) mentioned above, it is taken as first order LPF to make 

Q(s)Gn
−1 realizable. So, Q(s) is taken as   

 𝑄(𝑠) =
1

𝜆𝑠+1
, So, 𝑄(𝑠)𝐺𝑛

−1(𝑠) =
(𝑠+2)(𝑠+3)

(𝑠+1)(𝜆𝑠+1)
 

Now that Q(s)Gn
−1 has become proper function it can be realized. The disturbance estimation 

accuracy is determined by 𝜆 value. Again from equation (3.4) it can be said that disturbance 

Q(s)Gn
−1

1 − Q(s)
 

Gp(𝑠) 
y(s) 

 _ 

 

d(s) 
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estimation depends on frequency characteristics of {1-Q(s)} implying smaller the value of 𝜆, 

smaller will be the disturbance estimation error.  

Here, disturbance d(t) is taken as  

d(t) = {
sin(𝑡) , 0 ≤ 𝑡 ≤ 1
1 + sin(𝑡) , 𝑡 > 1

} 

Responses for the system shown below- 

 
Fig. 3.6- Bode plot for different 𝜆 values 

 
Fig. 3.7- Disturbance estimation plots for different 𝜆 values 
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Fig. 3.8- Disturbance estimation error plots for different 𝜆 values 

 
Observations:  

 

It can be seen form the figures, by choosing small 𝜆 value, disturbance estimation can be done 

more precisely. Here, for 𝜆 = 0.01, the disturbance observer maintains the error almost zero 

except at t=1 sec as there is a spike in error plot. 

 

 

3.3.2 Non-minimum phase case: 

Let a nominal plant transfer function Gn(s) is taken as – 

Gn(s) =
𝑘(1−ꞵ𝑠)

(𝛼1𝑠+1)(𝛼2𝑠+1)
                                                                                                  

𝛼1,𝛼2,ꞵ are positive real numbers. There is a RH zero in the above TF. Again the low pass filter 

is taken as  

1

𝜆𝑠 + 1
 

Now, following the same method mentioned for minimum phase system, the transfer function 

Q(s)Gn
−1 becomes: 

(𝛼1𝑠 + 1)(𝛼2𝑠 + 1)

(𝜆𝑠 + 1)𝑘(1 − ꞵ𝑠)
 

By doing this, the RH zero of the nominal plant becomes RH pole for DOB making the observer 

unstable. So, this method is not applicable for non-minimum phase systems. So, if a plant has 

RH zeroes, then it should be factored out before doing the inverse for observer designing. There 

are so many methods [26], but all pass factorization is used here. It places the zero in non-

invertible part and, a pole is also placed at the reflection of the RH zero. The system 𝐺𝑛(𝑠) is 

factored as- 

𝐺𝑛(𝑠) = 𝐺𝑛−(𝑠)𝐺𝑛+(𝑠)                                                                                                         
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Where, 𝐺𝑛−(𝑠) =
𝑘(1+ꞵ𝑠)

(𝛼1𝑠+1)(𝛼2𝑠+1)
 ,  𝐺𝑛+(𝑠) =

𝑘(1−ꞵ𝑠)

(1+ꞵ𝑠)
 

The steady-state gain is 1 for 𝐺𝑛+(𝑠). The BD for frequency domain DOB is shown as- 

 

Fig. 3.9- BD of a frequency domain DOB for non-minimum phase linear system [26] 

The output y(s) can be written as-  

𝑦(𝑠) = 𝑇𝑟𝑦(𝑠)𝑟(𝑠) + 𝑇𝑑𝑦(𝑠)𝑑(𝑠)                                                                                       (3.9) 

Where,  𝑇𝑟𝑦(𝑠) = 
𝐺𝑝(𝑠)𝐺𝑛−(𝑠)

𝐺𝑛−(𝑠)+𝑄(𝑠)[𝐺𝑝(𝑠)−𝐺𝑛(𝑠)]
                       (3.10) 

And,     𝑇𝑑𝑦(𝑠) =
𝐺𝑝(𝑠)𝐺𝑛−(𝑠)[1−𝐺𝑛+(𝑠)𝑄(𝑠)]

𝐺𝑛−(𝑠)+𝑄(𝑠)[𝐺𝑝(𝑠)−𝐺𝑛(𝑠)]
                                                                        (3.11)     

It can be deduced that, 𝑙𝑖𝑚
ꞷ→0

𝐺𝑛+(𝑗ꞷ) = 1  , 𝑙𝑖𝑚
ꞷ→0

𝑄(𝑗ꞷ) = 1     

Also, from (3.9) and (3.10) it is derived that-  

𝑙𝑖𝑚
ꞷ→0

𝑇𝑟𝑦(𝑗ꞷ) = 𝐺𝑛−(𝑗ꞷ)                                                                                                       (3.12) 

𝑙𝑖𝑚
ꞷ→0

𝑇𝑑𝑦(𝑗ꞷ) = 0                  (3.13) 

From (3.12) it can be concluded that in low frequency domain the DOB characteristics are 

same as that of 𝐺𝑛−(𝑠). And from (3.13) it can be concluded that disturbances in low frequency 

ranges have been attenuated completely.  

Example: 

Suppose transfer functions  𝐺𝑛−(𝑠), 𝐺𝑛+(𝑠), 𝐷(𝑡) are taken as 

 𝐺𝑛−(𝑠) =
0.8(1+0.1𝑠)

(1.5𝑠+1)(3𝑠+1)
 , 𝐺𝑛+(𝑠) =

(1−0.1𝑠)

(1+0.1𝑠)
, D(t)=3, for t≥2. 

𝐺𝑝(𝑠) 

 

𝑄(𝑠)𝐺𝑛−
−1(𝑠) 

 

_ 

 

_ 

 

_ 

 

+ 

 

d(s) 

 

�̂�(𝑠) 

 

+ 

 

+ 

 

𝑄(𝑠)𝐺𝑛+(𝑠) 

 

r(s) 

 

y(s) 

 

u(s) 
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 Q(s) is taken as first order LPF so that Q(s)Gn−
−1 is realizable  

1

𝜆𝑠 + 1
 

The response curves under different filter parameters shown below 

Fig.3.10- Disturbance estimation plots for different 𝜆 values 

Fig.3.11- Disturbance estimation error plots for different 𝜆 values 

 

Observations: 

For using small values of 𝜆 the disturbance estimation can be done faster and more precisely 

than using higher values of 𝜆. Like in this fig.4 using 𝜆 = 2 the estimation is showing sluggish 

response. Using 𝜆 = 0.5 the estimation is done faster than before. For 𝜆 = 0.1 the response is 

fastest. At t=2 sec the error is maximum for 𝜆 = 0.1, then it decays to zero quickly, whereas 

for 𝜆 = 2, the error is minimum at t=2 sec but it decays to sluggishly. 
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Chapter 4 

Study of Motion control System 

 

4.1 Introduction: 

In this chapter, the stability, performance and robustness of DOB based motion control system 

[24] has been analysed in detail and validated. But, in this thesis only position control system 

is the main focus of study. DOB was first proposed by K. Ohnishi to improve motion control 

system performance, after that it has been used widely in several motion control system such 

as- robotics, industrial automation, servo-system etc. due to its simple structure and an efficient 

tool to handle disturbances. Being a 2-DOF controller, DOB suppresses the disturbances in 

inner-loop, then controllers can be implemented in outer-loop to achieve performance goals 

like position, force based on nominal plant model.  

Although there are many motors but we will be dealing with dc motor for its wide range of 

application in industry, simplicity and easily controllable design. At first, the dynamic equation 

of dc motor has been represented in BD. Then DOB has been applied to it with PD controller 

in outer loop. Then the design constraints of DOB and nominal plant parameters like inertia, 

torque co-efficient etc are derived analytically by considering the practical constraints of DOB 

based motion control systems. How DOB can be used as lag-lead compensator that is also 

shown. How the stability and robustness is dependent on plant parameters that has been 

described in details along with the trade-off between stability and robustness. Then robust 

position control has been analysed in detail. 

 

4.2 System description: 

Motion control theory has been described in earlier chapter. It usually includes control of 

position/velocity and acceleration but acceleration control has its limitations in many 

applications. Motion control can provide basic and advance functionality in automated control 

system. AT starting, motion control had its own controller and application software with 

motion-control algorithms to get the work done. But now-a-days much of the motion control 

can be performed in the main control-system controller by careful selection of the controller, 

but motion still requires specialty amplifiers, drives, motors, position feedback devices and 

precision mechanical linkage or actuators.  

4.2.1 Block diagram representation and time response: 

Here dc servomotor model has been described along with its block diagram and time response. 

The dynamic equation of dc motor can be written as  

𝜏𝑚 − 𝜏𝑙 = 𝐽�̈�                                                                         (4.1) 
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 𝜏𝑚 is the motor generated torque, 𝜏𝑙 is the load torque J is the inertia and �̈� is the motor 

acceleration.  

Again, 

𝜏𝑚 = 𝐾𝑡𝐼𝑎 (4.2) 

Where 𝐾𝑡 is uncertain torque co-efficient and 𝐼𝑎 is armature current of motor which is taken as 

reference input. 

In s domain the equation (4.1) becomes 

𝐾𝑡𝐼𝑎 − 𝜏𝑙 = 𝐽𝑠2𝑞 (4.3) 

So 

  𝑞 =
(𝐾𝑡𝐼𝑎 − 𝜏𝑙)

𝐽𝑠2
 

(4.4) 

Block diagram of the above equation is shown below 

 

 

 

Fig. 4.1- Block diagram of dc servo motor  

𝐼𝑎 has been taken as step input of 0.11 amp, 𝐾𝑡 = 5 Nm/A, 𝐽 = 0.1 kgm2. Sinusoidal 

disturbance of unit amplitude has been applied at t=2sec. 

The time response plot of the above figure has been shown both in presence of load torque and 

absence of load torque.  

 

 

Fig. 4.2- Motor output angle in absence of 

disturbance 

 

Fig. 4.3- Motor output angle in 

presence of disturbance 

 

𝐾𝑡 
𝐼𝑎 1

𝐽𝑠2
 

𝜏𝑙 
qm 

- 
+ 
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4.3 DOB based robust motion control system: 

A block diagram of DOB based robust motion control system is shown below  

Fig. 4.4- Block diagram of a DOB based motion control system considering ideal velocity 

estimation, dotted transfer function is considered for practical velocity estimation [24] 

 

DOB estimates external disturbances and plant uncertainties, such as gravity, friction, inertia 

variation, etc., in the inner-loop then the estimated disturbances is fed back achieving 

robustness for the motion control system.  

The dynamic equation of a DOB based dc servo motor can be written from figure as 

𝐾𝑡𝑛𝐼𝑚
𝑟𝑒𝑓

− 𝜏𝑚
𝑑𝑖𝑠 = 𝐽𝑚�̈�𝑚 (4.5) 

So,  

𝐾𝑡𝑛𝐼𝑚
𝑟𝑒𝑓

− 𝐽𝑚𝑛�̈�𝑚  = 𝜏𝑚
𝑑𝑖𝑠 = 𝜏𝑚

𝑑 + ∆𝐽𝑚�̈�𝑚 − ∆𝐾𝑡𝐼𝑚 (4.6) 

 

Where, ∆𝐽𝑚 =  𝐽𝑚 − 𝐽𝑚𝑛 which denotes the inertia variation and ∆𝐾𝑡 = 𝐾𝑡 − 𝐾𝑡𝑛 denotes 

torque co-efficient variation. 

𝜏𝑚
𝑑 = 𝜏𝑚

𝑙𝑜𝑎𝑑 + 𝜏𝑚
𝑓𝑟𝑐

+ 𝜏𝑚
𝑖𝑛𝑡 (4.7) 

  

When parameter variations are zero, 

𝜏𝑚
𝑑𝑖𝑠 = 𝜏𝑚

𝑑  (4.8) 

  

�̈�𝑚
𝑑𝑒𝑠 

𝐽𝑚𝑛

𝐾𝑡𝑛
 𝐾𝑡 

𝐾𝑡𝑛 

𝐾𝑡𝑛
−1 

1

𝐽𝑚
 

1

𝑠
 

1

𝑠
 

𝐽𝑚𝑛𝑔 

𝐽𝑚𝑛𝑔 

𝑔𝑑𝑜𝑏

𝑠 + 𝑔𝑑𝑜𝑏

 

+ + 
+ 

+ 

+ 

+ + 

+ 

- 

- 

𝜏𝑑 
�̈�𝑚 

𝑞𝑚 

�̇�𝑚
𝑛𝑜𝑖𝑠𝑒 

𝐼𝑚
𝑑𝑒𝑠 

𝐼𝑚
𝑐𝑚𝑝

 

𝐼𝑚
𝑟𝑒𝑓

 

𝑔𝑣

𝑠 + 𝑔𝑣
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As the estimation includes double derivative of position seen from equation (4.5) it 

introduces high frequency noise. Hence, a LPF is used to filter out the noise and DOB is 

derived with LPF. Velocity information is taken by taking derivative of position and a LPF.  

�̂�𝑚
𝑑𝑖𝑠 = (

𝑔𝑑𝑜𝑏

𝑠 + 𝑔𝑑𝑜𝑏
) 𝜏𝑚

𝑑𝑖𝑠 
(4.9) 

Putting 𝜏𝑚
𝑑𝑖𝑠 from equation (4.6)  

�̂�𝑚
𝑑𝑖𝑠 = (

𝑔𝑑𝑜𝑏

𝑠 + 𝑔𝑑𝑜𝑏
) (𝐾𝑡𝑛𝐼𝑚

𝑟𝑒𝑓
− 𝐽𝑚𝑛�̈�𝑚) 

Or,  �̂�𝑚
𝑑𝑖𝑠 = (

𝑔𝑑𝑜𝑏

𝑠+𝑔𝑑𝑜𝑏
) (𝐾𝑡𝑛𝐼𝑚

𝑟𝑒𝑓
− 𝐽𝑚𝑛𝑠�̇�𝑚) 

Or, �̂�𝑚
𝑑𝑖𝑠 = (

𝑔𝑑𝑜𝑏

𝑠+𝑔𝑑𝑜𝑏
) (𝐾𝑡𝑛𝐼𝑚

𝑟𝑒𝑓
+ 𝑔𝑑𝑜𝑏𝐽𝑚𝑛�̇�𝑚) − 𝑔𝑑𝑜𝑏𝐽𝑚𝑛�̇�𝑚 

This is how �̂�𝑚
𝑑𝑖𝑠 is obtained analytically. 

The compensation current Icmp is calculated from estimated disturbance as 

𝐼𝑐𝑚𝑝 =
�̂�𝑚

𝑑𝑖𝑠

𝐾𝑡𝑛
 

This compensated current is fed back to achieve robust control. 

From fig. (4.4) it is seen that DOB based motion control system has MISO structure. Its transfer 

function can be written as  

�̈�𝑚 = 𝛼
(𝑠 + 𝑔𝑑𝑜𝑏)

(𝑠 + 𝛼𝑔𝑑𝑜𝑏)
�̈�𝑚

𝑑𝑒𝑠 −
1

𝐽𝑚
𝑇𝐷𝑂𝐵

𝑆𝐸𝑁 + 𝑇𝐷𝑂𝐵
𝐶𝑜𝑆𝐸𝑁𝑠�̇�𝑚

𝑛𝑜𝑖𝑠𝑒 
(4.10) 

where  𝑇𝐷𝑂𝐵
𝑆𝐸𝑁 =

1

1+𝐿𝐷𝑂𝐵(𝑠)
 , 𝑇𝐷𝑂𝐵

𝐶𝑜𝑆𝐸𝑁 =
𝐿𝐷𝑂𝐵(𝑠)

1+𝐿𝐷𝑂𝐵(𝑠)
 , 

and 𝐿𝐷𝑂𝐵(𝑠) = 𝛼
𝑔𝑑𝑜𝑏

𝑠
 , where 𝛼 =

𝐽𝑚𝑛𝐾𝑡

𝐽𝑚𝐾𝑡𝑛
 . 

Fig. (4.4) used as conventional analysis but it is impractical if velocity estimation is assumed 

to be ideal. Precise velocity measurement is needed for DOB. Hence a LPF is used to cancel 

out the noise in velocity measurement in pre-determined BW , the LPF is shown as dotted 

block.  

In fig. (4.4) gv denotes cut-off frequency of velocity measurement. Transfer function of 

practical DOB based motion control system is  

�̈�𝑚 = 𝛼
(𝑠 + 𝑔𝑑𝑜𝑏)(𝑠 + 𝑔𝑣)

(𝑠2 + 𝑔𝑣𝑠 + 𝛼𝑔𝑣𝑔𝑑𝑜𝑏)
�̈�𝑚

𝑑𝑒𝑠 −
1

𝐽𝑚
𝑇𝐷𝑂𝐵

𝑆𝐸𝑁 + 𝑇𝐷𝑂𝐵
𝐶𝑜𝑆𝐸𝑁𝑠�̇�𝑚

𝑛𝑜𝑖𝑠𝑒 
(4.11) 

 

𝑇𝐷𝑂𝐵
𝑆𝐸𝑁 and 𝑇𝐷𝑂𝐵

𝐶𝑜𝑆𝐸𝑁are same as above but  

𝐿𝐷𝑂𝐵(𝑠) = 𝛼
𝑔𝑣𝑔𝑑𝑜𝑏

𝑠(𝑠 + 𝑔𝑣)
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From equation (4.10), (4.11) it can be said that by changing the α value DOB can be used as 

phase lag/lead compensator. If α>1, then it is phase lead compensator and if α<1 it works as 

phase lag compensator. The stability and performance can be improved by increasing phase 

lead. The upper bound of α will be derived in later section.  

 

4.3.1 Transfer function derivation: 

Case 1- when 𝒈𝒗 is infinite: 

To evaluate  
�̈�𝑚

�̈�𝑚
𝑑𝑒𝑠, 𝜏𝑚

𝑑  and �̇�𝑚
𝑛𝑜𝑖𝑠𝑒 are taken as zero input. The BD shown below 

 

Fig. 4.5- Simplified BD of fig. (4.4) 

 

�̈�𝑚

�̈�𝑚
𝑑𝑒𝑠 =

𝐽𝑚𝑛

𝐾𝑡𝑛
[

(𝑠 + 𝑔𝑑𝑜𝑏)𝐾𝑡

𝐽𝑚𝑠

1 + (
𝑠 + 𝑔𝑑𝑜𝑏

𝐽𝑚𝑠 )𝐾𝑡(
𝐽𝑚𝑛𝑔𝑑𝑜𝑏

𝑠 + 𝑔𝑑𝑜𝑏
) (

1
𝐾𝑡𝑛

)
] 

 

=
𝐽𝑚𝑛

𝐾𝑡𝑛
[

(𝑠 + 𝑔𝑑𝑜𝑏)𝐾𝑡𝐾𝑡𝑛

𝐽𝑚𝐾𝑡𝑛𝑠 + 𝐽𝑚𝑛𝑔𝑑𝑜𝑏𝐾𝑡
] 

 

=
𝐽𝑚𝑛𝐾𝑡

𝐾𝑡𝑛𝐽𝑚
[

(𝑠 + 𝑔𝑑𝑜𝑏)

𝑠 +
𝐽𝑚𝑛𝐾𝑡

𝐾𝑡𝑛𝐽𝑚
𝑔𝑑𝑜𝑏

] 

 

�̈�𝑚

�̈�𝑚
𝑑𝑒𝑠 = 𝛼 (

𝑠 + 𝑔𝑑𝑜𝑏

𝑠 + 𝛼𝑔𝑑𝑜𝑏
) 

�̈�𝑚
𝑑𝑒𝑠 

- 

𝑞𝑚 

𝐽𝑚𝑛𝑔𝑑𝑜𝑏

(𝑠 + 𝑔𝑑𝑜𝑏)𝐾𝑡𝑛

 

𝐽𝑚𝑛

𝐾𝑡𝑛
 

 

+ �̈�𝑚 
(𝑠 + 𝑔𝑑𝑜𝑏)𝐾𝑡

𝐽𝑚𝑠
 

1

𝑠2
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To evaluate sensitivity transfer function i.e. 𝑇𝐷𝑂𝐵
𝑆𝐸𝑁  and 𝑇𝐷𝑂𝐵

𝐶𝑜𝑆𝐸𝑁 we need to calculate 𝐿𝐷𝑂𝐵(𝑠) 

i.e. GH(s) for easier calculation. The simplified BD shown below 

 

 

Fig. 4.6- Simplified block diagram of fig. (4.4) 

 

Here 𝐺(𝑠) =
1

𝐽𝑚
 and 

 𝐻(𝑠) is calculated as follows 

𝐻(𝑠) = (
𝑠 + 𝑔𝑑𝑜𝑏

𝑠
)𝐾𝑡(

𝐽𝑚𝑛𝑔𝑑𝑜𝑏

𝑠 + 𝑔𝑑𝑜𝑏
) (

1

𝐾𝑡𝑛
) 

So,  

𝐿𝐷𝑂𝐵(𝑠) =  𝐺𝐻(𝑠) =
𝐽𝑚𝑛𝐾𝑡

𝐽𝑚𝐾𝑡𝑛𝑠
 

𝐿𝐷𝑂𝐵(𝑠) = 𝛼
𝑔𝑑𝑜𝑏

𝑠
 

Hence we get, 

𝑇𝐷𝑂𝐵
𝑆𝐸𝑁 =

1

1 + 𝐿𝐷𝑂𝐵(𝑠)
 

=
1

1 + 𝛼
𝑔𝑑𝑜𝑏

𝑠

 

=
𝑠

𝑠 + 𝛼𝑔𝑑𝑜𝑏
 

And, 

𝑇𝐷𝑂𝐵
𝐶𝑜𝑆𝐸𝑁 =

𝐿𝐷𝑂𝐵(𝑠)

1 + 𝐿𝐷𝑂𝐵(𝑠)
 

- 

𝑞𝑚 

(𝑠 + 𝑔𝑑𝑜𝑏)𝐽𝑚𝑛𝑔𝑑𝑜𝑏𝐾𝑡

𝑠(𝑠 + 𝑔𝑑𝑜𝑏)𝐾𝑡𝑛

 

1

𝐽𝑚
 

+ 
𝜏𝑚

𝑑  

 

�̈�𝑚 
1

𝑠2
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=
𝛼𝑔𝑑𝑜𝑏

𝑠 + 𝛼𝑔𝑑𝑜𝑏
 

 

Case 2- when 𝒈𝒗  is finite: 

From fig. (4.6), 𝐿𝐷𝑂𝐵(𝑠) can be derived by multiplying the feedback block by (
𝑔𝑣

𝑠+𝑔𝑣
) 

 𝐿𝐷𝑂𝐵(𝑠) = 𝐺(𝑠) ∗ 𝐻(𝑠) =
1

𝐽𝑚
∗ (

𝑠 + 𝑔𝑑𝑜𝑏

𝑠
) 𝐾𝑡 (

𝐽𝑚𝑛𝑔𝑑𝑜𝑏

𝑠 + 𝑔𝑑𝑜𝑏
) (

1

𝐾𝑡𝑛
) ∗ (

𝑔𝑣

𝑠 + 𝑔𝑣
) 

Or,𝐿𝐷𝑂𝐵(𝑠) = 𝛼
𝑔𝑑𝑜𝑏

𝑠
∗ (

𝑔𝑣

𝑠+𝑔𝑣
) 

So, 

𝑇𝐷𝑂𝐵
𝑆𝐸𝑁 =

1

1 + 𝐿𝐷𝑂𝐵(𝑠)
 

=
1

1 + 𝛼
𝑔𝑑𝑜𝑏

𝑠 (
𝑔𝑣

𝑠 + 𝑔𝑣
)
 

=
𝑠(𝑠 + 𝑔𝑣)

𝑠(𝑠 + 𝑔𝑣) + 𝛼𝑔𝑣𝑔𝑑𝑜𝑏
 

And, 

𝑇𝐷𝑂𝐵
𝐶𝑜𝑆𝐸𝑁 =

𝐿𝐷𝑂𝐵(𝑠)

1 + 𝐿𝐷𝑂𝐵(𝑠)
 

=
𝛼𝑔𝑣𝑔𝑑𝑜𝑏

𝑠(𝑠 + 𝑔𝑣) + 𝛼𝑔𝑣𝑔𝑑𝑜𝑏
 

 

 

 
�̈�𝑚

�̈�𝑚
𝑑𝑒𝑠 can be derived as  

�̈�𝑚

�̈�𝑚
𝑑𝑒𝑠 =

𝐽𝑚𝑛

𝐾𝑡𝑛
[

(𝑠 + 𝑔𝑑𝑜𝑏)𝐾𝑡

𝐽𝑚𝑠

1 + (
𝑠 + 𝑔𝑑𝑜𝑏

𝐽𝑚𝑠 ) 𝐾𝑡 (
𝐽𝑚𝑛𝑔𝑑𝑜𝑏

𝑠 + 𝑔𝑑𝑜𝑏
) (

1
𝐾𝑡𝑛

) (
𝑔𝑣

𝑠 + 𝑔𝑣
)

] 

 

=
𝐽𝑚𝑛

𝐾𝑡𝑛
[

(𝑠 + 𝑔𝑑𝑜𝑏)(𝑠 + 𝑔𝑣)𝐾𝑡𝐾𝑡𝑛

𝐽𝑚𝐾𝑡𝑛𝑠(𝑠 + 𝑔𝑣) + 𝐽𝑚𝑛𝑔𝑣𝑔𝑑𝑜𝑏𝐾𝑡
] 
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=
𝐽𝑚𝑛𝐾𝑡

𝐾𝑡𝑛𝐽𝑚
[

(𝑠 + 𝑔𝑑𝑜𝑏)(𝑠 + 𝑔𝑣)

𝑠(𝑠 + 𝑔𝑣) +
𝐽𝑚𝑛𝐾𝑡

𝐾𝑡𝑛𝐽𝑚
𝑔𝑣𝑔𝑑𝑜𝑏

] 

 

�̈�𝑚

�̈�𝑚
𝑑𝑒𝑠 = 𝛼

(𝑠 + 𝑔𝑣)(𝑠 + 𝑔𝑑𝑜𝑏)

𝑠2 + 𝑔𝑣𝑠 + 𝛼𝑔𝑣𝑔𝑑𝑜𝑏
 

 

4.3.2 Robustness analysis: 

The two equations (4.10) and (4.11) may seem similar but when velocity is measured using 

LPF robustness of a DOB based motion control system changes significantly. Depending on 

gv value relative degree of 𝐿𝐷𝑂𝐵(𝑠) changes. When gv is infinite it is 1 and 2 when gv is finite. 

According to bode integral theorem, 𝑇𝐷𝑂𝐵
𝑆𝐸𝑁 can not be shaped properly is relative degree of 

𝐿𝐷𝑂𝐵(𝑠) is higher than 1.The peak of 𝑇𝐷𝑂𝐵
𝑆𝐸𝑁increases at higher frequencies. So, α and 𝑔𝑑𝑜𝑏 can 

not be increased freely due to robustness constraint. This constraint can be derived analytically 

shown below 

The characteristic polynomial of 𝑇𝐷𝑂𝐵
𝑆𝐸𝑁 or 𝑇𝐷𝑂𝐵

𝐶𝑜𝑆𝐸𝑁 can be written as– 

𝐶ℎ(𝑠) = 𝑠2 + 𝑔𝑣𝑠 +α𝑔𝑣𝑔𝑑𝑜𝑏 (4.12) 

Applying 𝑔𝑣 = 𝜅𝑔𝑑𝑜𝑏 we get 

𝐶ℎ(𝑠) = 𝑠2 + 𝜅𝑔𝑑𝑜𝑏𝑠 + 𝛼𝜅𝑔𝑑𝑜𝑏
2  (4.13) 

Natural frequency ꞷ𝑛 = √𝛼𝜅𝑔𝑑𝑜𝑏, and damping co-efficient ζ = 0.5√𝛼−1𝜅 

To suppress the peak of𝑇𝐷𝑂𝐵
𝑆𝐸𝑁 or 𝑇𝐷𝑂𝐵

𝐶𝑜𝑆𝐸𝑁, 𝜁 value is taken as  

ζ ≥ 0.707 

 

Then we get 

𝛼𝑔𝑑𝑜𝑏 ≤
𝑔𝑣

2
 

(4.14) 

The equation (4.14) shows a new practical design constraint. 𝛼 and 𝑔𝑑𝑜𝑏 are limited by this 

constraint when we consider imperfect velocity estimation. The robustness of a DOB can be 

improved by increasing the lower constraint of ꞓ but, the upper bound of 𝛼 and 𝑔𝑑𝑜𝑏  become 

more severe, this means the stability and performance deteriorate. Consequently, there is a 

trade-off between the robustness, stability, and performance in DOB based motion control 
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systems. Bode plot has been done on sensitivity and co- sensitivity functions to represent 

graphically the robustness constraint of DOB based motion control. The figures have been 

shown below 

. 

Fig. 4.7- Sensitivity function for different values of α 

 

Fig. 4.8- Co-Sensitivity function for different values of α 

Observation from the plots: 

It is clearly seen that in case of ideal velocity estimation i.e. when 𝑔𝑣 is infinite, not only the 

performance but also the robustness improves, but in reality ideal velocity estimation is not 

achievable. In case of imperfect velocity estimation the frequency responses of sensitivity and 

complementary sensitivity function change significantly. A prominent peak has been seen in 

case of imperfect velocity estimation when α=10 as the condition given in equation (4.14) is 

not satisfying in this case. 
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4.3.3 Disturbance estimation: 

Disturbance estimation is done without any outer-loop controller and considering parameter 

uncertainties to be zero. Here, sinusoidal current of magnitude 1A is given at t=0 sec, and 

sinusoidal disturbance of 1 N-m has been applied, the values 𝑔𝑑𝑜𝑏 = 50 rad/s, 𝐽𝑚𝑛 = 0.1 kg-

m2, 𝐾𝑡𝑛 = 5 N-m/A have been taken. The fig. (4.9) represents the applied and estimated 

disturbance. 

 

Fig. 4.9- Disturbance estimation plot considering only inner-loop 
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4.4 DOB based robust Position Control System: 

The BD of DOB based robust position control system shown below 

 

Fig. 4.10- Block diagram of a DOB based robust position control system [24] 

Here 𝑞𝑚
𝑟𝑒𝑓

 and �̈�𝑚
𝑟𝑒𝑓

 denotes angle/position and acceleration reference inputs respectively. A 

PD controller is used in outer loop to achieve performance goals. KD and KP is derivative and 

proportional control gain respectively. The transfer function between �̈�𝑚
𝑟𝑒𝑓

 and 𝑞𝑚
𝑟𝑒𝑓

 derived 

from fig. (4.10) can be written as 

�̈�𝑚

 �̈�𝑚
𝑟𝑒𝑓

=
𝛼𝑠2(𝑠 + 𝑔𝑑𝑜𝑏)

𝑠2(𝑠 + 𝛼𝑔𝑑𝑜𝑏) + 𝛼(𝑠 + 𝑔𝑑𝑜𝑏)(𝐾𝐷𝑠 + 𝐾𝑃)
 

(4.15) 

When 𝑔𝑣  is infinite. And, 

�̈�𝑚

 �̈�𝑚
𝑟𝑒𝑓

=
𝛼𝑠2(𝑠 + 𝑔𝑣)(𝑠 + 𝑔𝑑𝑜𝑏)

𝑠2(𝑠2 + 𝑔𝑣𝑠 + 𝛼𝑔𝑣𝑔𝑑𝑜𝑏) + 𝛼(𝑠 + 𝑔𝑣)(𝑠 + 𝑔𝑑𝑜𝑏)(𝐾𝐷𝑠 + 𝐾𝑃)
 

(4.16) 

When 𝑔𝑣 is finite. 

4.4.1 Transfer function derivation: 

Case 1: When 𝒈𝒗 is infinite: 

From equation (4.10) it is found that  

�̈�𝑚

�̈�𝑚
𝑑𝑒𝑠 = 𝛼 (

𝑠 + 𝑔𝑑𝑜𝑏

𝑠 + 𝛼𝑔𝑑𝑜𝑏
) 

 

The simplified BD of fig.(4.10) has shown below 

�̈�𝑚
𝑑𝑒𝑠 

𝐾𝑡𝑛
−1 

𝐽𝑚𝑛𝑔 

𝐽𝑚𝑛𝑔 

+ 
- 

- 𝑞𝑚 

𝑔𝑑𝑜𝑏

𝑠 + 𝑔𝑑𝑜𝑏

 

𝐽𝑚𝑛𝑔 

1

𝑠
 

1

𝑠
 

1

𝐽𝑚
 

𝐾𝑡𝑛 

𝐾𝑡 
𝐽𝑚𝑛

𝐾𝑡𝑛
 𝐾𝐷𝑠 + 𝐾𝑃  

 

+ + 

+ 

+ + 

�̈�𝑚
𝑟𝑒𝑓

 𝜏𝑚
𝑑  

 

�̂�𝑚
𝑑  

𝑞𝑚
𝑟𝑒𝑓

 �̇�𝑚 �̈�𝑚 

- 



28 | P a g e  
 

 

Fig. 4.11 – Simplified block diagram of fig. (4.9) 

�̈�𝑚

 �̈�𝑚
𝑟𝑒𝑓

=
𝛼 (

𝑠 + 𝑔𝑑𝑜𝑏

𝑠 + 𝛼𝑔𝑑𝑜𝑏
)

1 + 𝛼 (
𝑠 + 𝑔𝑑𝑜𝑏

𝑠 + 𝛼𝑔𝑑𝑜𝑏
) (

𝐾𝐷𝑠 + 𝐾𝑃

𝑠2 )
 

 

 

�̈�𝑚

 �̈�𝑚
𝑟𝑒𝑓

=
𝛼𝑠2(𝑠 + 𝑔𝑑𝑜𝑏)

𝑠2(𝑠 + 𝛼𝑔𝑑𝑜𝑏) + 𝛼(𝑠 + 𝑔𝑑𝑜𝑏)(𝐾𝐷𝑠 + 𝐾𝑃)
 

 

(4.17) 

 

Case 2- when 𝒈𝒗  is finite: 

�̈�𝑚

 �̈�𝑚
𝑟𝑒𝑓

=
𝛼

(𝑠 + 𝑔𝑣)(𝑠 + 𝑔𝑑𝑜𝑏)
𝑠2 + 𝑔𝑣𝑠 + 𝛼𝑔𝑣𝑔𝑑𝑜𝑏

1 + 𝛼
(𝑠 + 𝑔𝑣)(𝑠 + 𝑔𝑑𝑜𝑏)

(𝑠2 + 𝑔𝑣𝑠 + 𝛼𝑔𝑣𝑔𝑑𝑜𝑏)
(

𝐾𝐷𝑠 + 𝐾𝑃

𝑠2 )
 

 

 

 

�̈�𝑚

 �̈�𝑚
𝑟𝑒𝑓

=
𝛼𝑠2(𝑠 + 𝑔𝑣)(𝑠 + 𝑔𝑑𝑜𝑏)

𝑠2(𝑠2 + 𝑔𝑣𝑠 + 𝛼𝑔𝑣𝑔𝑑𝑜𝑏) + 𝛼(𝑠 + 𝑔𝑣)(𝑠 + 𝑔𝑑𝑜𝑏)(𝐾𝐷𝑠 + 𝐾𝑃)
 

    (4.18) 

It is obvious from the equation (4.18) that characteristic functions are dependent on 𝑔𝑑𝑜𝑏, 𝑔𝑣, 

𝛼  𝐾𝑃, 𝐾𝐷.  

4.4.2 Stability analysis: 

Let us consider the equation (4.15) by using RH criterion to perform stability analysis we get 

- 

 

 

 

+ �̈�𝑚
𝑟𝑒𝑓

 �̈�𝑚 

(𝑠 + 𝑔𝑑𝑜𝑏)

(𝑠 + 𝛼𝑔𝑑𝑜𝑏)
∗

(𝐾𝐷𝑠 + 𝐾𝑃)

𝑠2
 

(𝑠 + 𝑔𝑑𝑜𝑏)

(𝑠 + 𝛼𝑔𝑑𝑜𝑏)
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𝛼−1 < 1 + 𝑔𝑑𝑜𝑏

𝐾𝐷

𝐾𝑃
+

𝐾𝐷

𝑔𝑑𝑜𝑏
+

𝐾𝐷
2

𝐾𝑃
 

(4.19) 

 This equation (4.19) is the stability criteria. From this equation it can be concluded that 

stability of robust position control can be improved by increasing the value of 𝛼 and 𝑔𝑑𝑜𝑏. But 

from the robustness analysis i.e. from eq (4.14) it has been observed that 𝛼 and 𝑔𝑑𝑜𝑏 can not 

be freely increased. This is the trade-off between robustness and stability. 

Generally it is assumed that robustness and performance can be controlled in inner and outer 

loop separately, but it is not true indeed. The robustness depends on outer loop as well. It will 

be clarified by deriving 𝑇𝑃𝐶
𝑆𝐸𝑁 and 𝑇𝑃𝐶

𝐶𝑜𝑆𝐸𝑁. 

𝑇𝑃𝐶
𝑆𝐸𝑁 =

1

1 + 𝐿𝑃𝐶(𝑠)
 

(4.20) 

𝑇𝑃𝐶
𝐶𝑜𝑆𝐸𝑁 =

𝐿𝑃𝐶(𝑠)

1 + 𝐿𝑃𝐶(𝑠)
 

(4.21) 

𝐿𝑃𝐶(𝑠) = 𝛼
𝑔𝑑𝑜𝑏𝑠2 + (𝑠 + 𝑔𝑑𝑜𝑏)(𝐾𝐷𝑠 + 𝐾𝑃)

𝑠3
 

(4.22) 

When gv is infinite, and 

𝐿𝑃𝐶(𝑠) = 𝛼
𝑔𝑑𝑜𝑏𝑔𝑣𝑠2 + (𝑠 + 𝑔𝑑𝑜𝑏)(𝑠 + 𝑔𝑣)(𝐾𝐷𝑠 + 𝐾𝑃)

𝑠3(𝑠 + 𝑔𝑣)
 

(4.23) 

When gv is finite. 

From equations (4.20) and (4.21) it is observed that increasing the outer loop controller gain 

leads to more robust system when 𝛼𝑔𝑑𝑜𝑏 > 0.5𝑔𝑣 .Still, inner loop becomes sensitive to high 

frequency noises. Again, increasing outer loop controller gain has several disadvantages like 

energy consumption, vibration due to high frequency dynamics etc.  

Derivation of 𝑳𝑷𝑪(𝒔): 

Case1- when 𝒈𝒗  is infinite: 

The characteristic equation from (4.15) we get 

𝐶ℎ(𝑠) = 𝑠2(𝑠 + 𝛼𝑔𝑑𝑜𝑏) + 𝛼(𝑠 + 𝑔𝑑𝑜𝑏)(𝐾𝐷𝑠 + 𝐾𝑃)  

By rearranging we get 

𝐶ℎ(𝑠) = 𝑠3 + 𝛼[𝑔𝑑𝑜𝑏𝑠2 + (𝑠 + 𝑔𝑑𝑜𝑏)(𝐾𝐷𝑠 + 𝐾𝑃)]  
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𝑠3[1 +
𝛼{𝑔𝑑𝑜𝑏𝑠2 + (𝑠 + 𝑔𝑑𝑜𝑏)(𝐾𝐷𝑠 + 𝐾𝑃)}

𝑠3
 

 

So, loop transfer function  

𝐿𝑃𝐶(𝑠) =
𝛼[𝑔𝑑𝑜𝑏𝑠2 + (𝑠 + 𝑔𝑑𝑜𝑏)(𝐾𝐷𝑠 + 𝐾𝑃)]

𝑠3
 

 

 

Case2- when 𝒈𝒗  is finite: 

The characteristic equation from (4.16) we get 

𝐶ℎ(𝑠) = 𝑠2(𝑠2 + 𝑔𝑣𝑠 + 𝛼𝑔𝑣𝑔𝑑𝑜𝑏) + 𝛼(𝑠 + 𝑔𝑣)(𝑠 + 𝑔𝑑𝑜𝑏)(𝐾𝐷𝑠 + 𝐾𝑃)  

By rearranging we get 

𝐶ℎ(𝑠) = 𝑠3(𝑠 + 𝑔𝑣) + 𝛼[𝑔𝑣𝑔𝑑𝑜𝑏𝑠2 + (𝑠 + 𝑔𝑣)(𝑠 + 𝑔𝑑𝑜𝑏)(𝐾𝐷𝑠 + 𝐾𝑃)]  

𝑠3(𝑠 + 𝑔𝑣)[1 +
𝛼{𝑔𝑣𝑔𝑑𝑜𝑏𝑠2 + (𝑠 + 𝑔𝑣)(𝑠 + 𝑔𝑑𝑜𝑏)(𝐾𝐷𝑠 + 𝐾𝑃)}

𝑠3(𝑠 + 𝑔𝑣)
 

 

So, loop transfer function  

𝐿𝑃𝐶(𝑠) =
𝛼[𝑔𝑣𝑔𝑑𝑜𝑏𝑠2 + (𝑠 + 𝑔𝑣)(𝑠 + 𝑔𝑑𝑜𝑏)(𝐾𝐷𝑠 + 𝐾𝑃)]

𝑠3(𝑠 + 𝑔𝑣)
 

 

 

4.5 Simulations:  

In this section, simulation results have been given with detailed analysis. The values of the 

variables taken for this simulations shown below [26] 

𝐽𝑚𝑛= 0.1 kgm2, 𝐾𝑡𝑛= 5 Nm/A, 𝐾𝑃= 900, 𝐾𝑃=100. 

The simulation starts by considering robustness of position control system. The following 

figure describes outer-loops’ co-sensitivity function frequency response i.e. 𝑇𝑃𝐶
𝐶𝑜𝑆𝐸𝑁 when PD 

controller is used in outer-loop. Inner-loop frequency responses has already been shown in 

previous section. 
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Fig. 4.12- Outer-loop Co-Sensitivity function frequency responses for different values of α 

Fig. 4.13- Inner loop and outer-loop Co-sensitivity function frequency responses  

From the fig. (4.12) it can be said that for imperfect velocity estimation the bandwidth is lower 

than that of perfect velocity estimation. Also outer loop controller can improve robustness as 

shown in fig. (4.13). Though the robustness has increased for outer-loop, DOB becomes more 

sensitive to high frequency noises in inner-loop as 𝛼𝑔𝑑𝑜𝑏 is increased.  

Now, stability of position control has been discussed. The following fig. (4.14) is the root locus 

plotted w.r.t α when 𝑔𝑑𝑜𝑏 = 500 rad/s.  
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Fig. 4.14- Root locus plot showing stability of position control system 

The figure clearly describes that on increasing the α, i.e. the gain value, the plot is shifting 

towards left, thereby increasing stability. Though the increment is limited by robustness 

constraint as described earlier. So, the trade-off between robustness and stability has been 

described analytically and graphically.  

The position response is shown below when sinusoidal angle reference and sinusoidal 

disturbance has been applied at t=0 and t=2 respectively 

Fig.4.15- Position Control response when sinusoidal input is applied at t=0 and sinusoidal 

disturbance at t=2 sec 

The position tracking error plots with different inputs have been shown in chapter 6. 
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Chapter 5 

Proposed PID Controller and DOB 

5.1 Introduction: 

In this chapter, DOB based motion control system with PID controller has been discussed in 

details. It starts with the design constraints of DOB and nominal plant parameters like inertia, 

torque co-efficient etc., these are derived analytically by considering the practical constraints 

of DOB based motion control systems, the criteria is similar as shown in chapter 4. How the 

stability and robustness is dependent on plant parameters that has been described in details 

along with the trade-off between stability and robustness. PID controller tuning has also been 

discussed. Then PID controller and DOB based robust position control has been analysed in 

detail. 

5.2 DOB based motion control system: 

 

Fig. 5.1- Servo motor system with DOB  

From fig. (5.1)  its transfer function can be written as  

�̈�𝑚 = 𝛼
(𝑠 + 𝑔𝑑𝑜𝑏)

(𝑠 + 𝛼𝑔𝑑𝑜𝑏)
�̈�𝑚

𝑑𝑒𝑠 −
1

𝐽𝑚
𝑇𝐷𝑂𝐵

𝑆𝐸𝑁 + 𝑇𝐷𝑂𝐵
𝐶𝑜𝑆𝐸𝑁𝑠�̇�𝑚

𝑛𝑜𝑖𝑠𝑒 
(5.1) 

 

where  𝑇𝐷𝑂𝐵
𝑆𝐸𝑁 =

𝐺𝑛(𝑠)[1−𝑄(𝑠)]

𝐺𝑛(𝑠)[1−𝑄(𝑠)]+𝐺𝑝(𝑠)𝑄(𝑆)
 , 

𝐽𝑚𝑛

𝐾𝑡𝑛
 𝐾𝑡 

𝐾𝑡𝑛
−1 

1

𝐽𝑚
 

1

𝑠
 

1

𝑠
 

𝑔𝑣

𝑠 + 𝑔𝑣

 
+ 

+ 

+ + 

+ 
- 

𝜏𝑑 

�̈�𝑚 
𝑞𝑚 

�̇�𝑚
𝑛𝑜𝑖𝑠𝑒 

𝐼𝑚
𝑑𝑒𝑠 

𝐼𝑚
𝑐𝑚𝑝

 

- 

 

𝐾𝑡𝑛𝑔𝑑𝑜𝑏

𝑠 + 𝑔𝑑𝑜𝑏

 
𝐽𝑚𝑛𝑠𝑔𝑑𝑜𝑏

(𝑠 + 𝑔𝑑𝑜𝑏)
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 𝑇𝐷𝑂𝐵
𝐶𝑜𝑆𝐸𝑁 =

𝐺𝑝(𝑠)𝑄(𝑆)

𝐺𝑛(𝑠)[1−𝑄(𝑠)]+𝐺𝑝(𝑠)𝑄(𝑆)
 ,  

and 𝐺𝑛(𝑠) =
𝐾𝑡𝑛

𝐽𝑠
 , where 𝑄(𝑠) =

𝑔𝑑𝑜𝑏

𝑠+𝑔𝑑𝑜𝑏
 . 

Fig. (5.1) is used as practical block diagram. Precise velocity measurement is needed for DOB. 

Hence a LPF is used to cancel out the noise in velocity measurement in pre-determined BW.  

In fig. (5.1) 𝑔𝑣  denotes cut-off frequency of velocity measurement. Transfer function of 

practical DOB based motion control system is  

�̈�𝑚 = 𝛼
(𝑠 + 𝑔𝑑𝑜𝑏)(𝑠 + 𝑔𝑣)

(𝑠2 + 𝑔𝑣𝑠 + 𝛼𝑔𝑣𝑔𝑑𝑜𝑏)
�̈�𝑚

𝑑𝑒𝑠 −
1

𝐽𝑚
𝑇𝐷𝑂𝐵

𝑆𝐸𝑁 + 𝑇𝐷𝑂𝐵
𝐶𝑜𝑆𝐸𝑁𝑠�̇�𝑚

𝑛𝑜𝑖𝑠𝑒 
(5.2) 

 

𝑇𝐷𝑂𝐵
𝑆𝐸𝑁 =

1

1 + 𝐿𝐷𝑂𝐵(𝑠)
 

𝑇𝐷𝑂𝐵
𝐶𝑜𝑆𝐸𝑁 =

𝐿𝐷𝑂𝐵(𝑠)

1 + 𝐿𝐷𝑂𝐵(𝑠)
 

Where, 𝐿𝐷𝑂𝐵(𝑠) = 𝛼
𝑔𝑣𝑔𝑑𝑜𝑏

𝑠(𝑠+𝑔𝑣)
 

From equation (5.1), (5.2) it can be said that by changing the α value DOB can be used as phase 

lag/lead compensator. If α>1, then it is phase lead compensator and if α<1 it works as phase 

lag compensator. The stability and performance can be improved by increasing phase lead. The 

upper bound of α will be derived in later section.  

 

5.2.1 Transfer function derivation: 

Case 1- when when 𝒈𝒗 is infinite: 

To evaluate  
�̈�𝑚

�̈�𝑚
𝑑𝑒𝑠, 𝜏𝑚

𝑑  and �̇�𝑚
𝑛𝑜𝑖𝑠𝑒 are taken as zero input. The simplified block diagram is same 

as fig. (4.5). So, from chapter 4, equation (4.10) it can be written 

�̈�𝑚

�̈�𝑚
𝑑𝑒𝑠 = 𝛼 (

𝑠 + 𝑔𝑑𝑜𝑏

𝑠 + 𝛼𝑔𝑑𝑜𝑏
) 

 

To evaluate sensitivity transfer function i.e. 𝑇𝐷𝑂𝐵
𝑆𝐸𝑁 and 𝑇𝐷𝑂𝐵

𝐶𝑜𝑆𝐸𝑁 , the values of 

𝐺𝑛(𝑠), 𝐺𝑝(𝑠), 𝑄(𝑆)  have been put. 

So, 
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𝑇𝐷𝑂𝐵
𝑆𝐸𝑁 =

𝐾𝑡𝑛

𝐽𝑚𝑛𝑠
[1 −

𝑔𝑑𝑜𝑏

𝑠 + 𝑔𝑑𝑜𝑏
]

𝐾𝑡𝑛

𝐽𝑚𝑛𝑠 [1 −
𝑔𝑑𝑜𝑏

𝑠 + 𝑔𝑑𝑜𝑏
] +

𝐾𝑡

𝐽𝑚𝑠 (
𝑔𝑑𝑜𝑏

𝑠 + 𝑔𝑑𝑜𝑏
)
 

=

𝐾𝑡𝑛

𝐽𝑚𝑛

𝐾𝑡𝑛

𝐽𝑚𝑛
+

𝐾𝑡𝑔𝑑𝑜𝑏

𝐽𝑚𝑠

 

=
𝑠

𝑠 + 𝛼𝑔𝑑𝑜𝑏
 

And, 

𝑇𝐷𝑂𝐵
𝐶𝑜𝑆𝐸𝑁 =

𝐾𝑡

𝐽𝑚𝑠 (
𝑔𝑑𝑜𝑏

𝑠 + 𝑔𝑑𝑜𝑏
)

𝐾𝑡𝑛

𝐽𝑚𝑛𝑠 [1 −
𝑔𝑑𝑜𝑏

𝑠 + 𝑔𝑑𝑜𝑏
] +

𝐾𝑡

𝐽𝑚𝑠 (
𝑔𝑑𝑜𝑏

𝑠 + 𝑔𝑑𝑜𝑏
)
 

=

𝐾𝑡𝑔𝑑𝑜𝑏

𝐽𝑚𝑠
𝐾𝑡𝑛

𝐽𝑚𝑛
+

𝐾𝑡𝑔𝑑𝑜𝑏

𝐽𝑚𝑠

 

=
𝛼𝑔𝑑𝑜𝑏

𝑠 + 𝛼𝑔𝑑𝑜𝑏
 

 

Case 2- when 𝒈𝒗  is finite: 

As the above expressions for ideal velocity estimation is same, so derivation 𝐿𝐷𝑂𝐵(𝑠) is similar 

to that done in chapter 4. So, directly we can write  

𝐿𝐷𝑂𝐵(𝑠) = 𝛼
𝑔𝑑𝑜𝑏

𝑠
∗ (

𝑔𝑣

𝑠 + 𝑔𝑣
) 

So, 

𝑇𝐷𝑂𝐵
𝑆𝐸𝑁 =

1

1 + 𝐿𝐷𝑂𝐵(𝑠)
 

=
1

1 + 𝛼
𝑔𝑑𝑜𝑏

𝑠 (
𝑔𝑣

𝑠 + 𝑔𝑣
)
 

=
𝑠(𝑠 + 𝑔𝑣)

𝑠(𝑠 + 𝑔𝑣) + 𝛼𝑔𝑣𝑔𝑑𝑜𝑏
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And, 

𝑇𝐷𝑂𝐵
𝐶𝑜𝑆𝐸𝑁 =

𝐿𝐷𝑂𝐵(𝑠)

1 + 𝐿𝐷𝑂𝐵(𝑠)
 

=
𝛼𝑔𝑣𝑔𝑑𝑜𝑏

𝑠(𝑠 + 𝑔𝑣) + 𝛼𝑔𝑣𝑔𝑑𝑜𝑏
 

Derivation of  
�̈�𝑚

�̈�𝑚
𝑑𝑒𝑠 is same as that done in chapter 4. So, it can be written 

�̈�𝑚

�̈�𝑚
𝑑𝑒𝑠 = 𝛼

(𝑠 + 𝑔𝑣)(𝑠 + 𝑔𝑑𝑜𝑏)

𝑠2 + 𝑔𝑣𝑠 + 𝛼𝑔𝑣𝑔𝑑𝑜𝑏
 

 

5.2.2 Robustness analysis: 

The two equations (5.1), (5.2) may seem similar but when velocity is measured using LPF 

robustness of a DOB based motion control system changes significantly. As discussed in 

chapter 4, depending on 𝑔𝑣  value relative degree of 𝐿𝐷𝑂𝐵(𝑠) changes. When 𝑔𝑣  is infinite 

relative degree is 1 and 2 when 𝑔𝑣   is finite. According to bode integral theorem, 𝑇𝐷𝑂𝐵
𝑆𝐸𝑁 can not 

be shaped properly is relative degree of 𝐿𝐷𝑂𝐵(𝑠) is higher than 1.The peak of 𝑇𝐷𝑂𝐵
𝑆𝐸𝑁increases at 

higher frequencies. So, α and 𝑔𝑑𝑜𝑏 can not be increased freely due to robustness constraint. 

This constraint can be derived analytically shown below 

The characteristic polynomial of 𝑇𝐷𝑂𝐵
𝑆𝐸𝑁 or 𝑇𝐷𝑂𝐵

𝐶𝑜𝑆𝐸𝑁 can be written as– 

𝐶ℎ(𝑠) = 𝑠2 + 𝑔𝑣𝑠 +α𝑔𝑣𝑔𝑑𝑜𝑏 (5.3) 

Applying 𝑔𝑣 = 𝜅𝑔𝑑𝑜𝑏 we get 

𝐶ℎ(𝑠) = 𝑠2 + 𝜅𝑔𝑑𝑜𝑏𝑠 + 𝛼𝜅𝑔𝑑𝑜𝑏
2  (5.4) 

Natural frequency ꞷ𝑛 = √𝛼𝜅𝑔𝑑𝑜𝑏, and damping co-efficient ζ = 0.5√𝛼−1𝜅 

To suppress the peak of𝑇𝐷𝑂𝐵
𝑆𝐸𝑁 or 𝑇𝐷𝑂𝐵

𝐶𝑜𝑆𝐸𝑁, ζ value is taken as  

ζ ≥ 0.707 

Then we get 

𝛼𝑔𝑑𝑜𝑏 ≤
𝑔𝑣

2
 

(5.5) 

The equation (5.5) shows a new practical design constraint which is same as shown in previous 

chapter. The robustness of a DOB can be improved by increasing the lower constraint of 𝜁 but, 

the upper bound of 𝛼 and 𝑔𝑑𝑜𝑏  become more severe, this means the stability and performance 
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deteriorate. Consequently, there is a trade-off between the robustness, stability, and 

performance in DOB based motion control systems.  

Bode plot has been done on sensitivity and co- sensitivity functions to represent graphically 

the robustness constraint of DOB based motion control. The figures have been shown below 

Fig. 5.2- Sensitivity function frequency responses for different values of α 

Fig. 5.3- Co-Sensitivity function frequency responses different values of α 
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Observation from the plots: 

It is clearly seen that in case of ideal velocity estimation i.e. when 𝑔𝑣  is infinite, not only the 

performance but also the robustness improves, but in reality ideal velocity estimation is not 

achievable. In case of imperfect velocity estimation the frequency responses of sensitivity and 

complementary sensitivity function change significantly. A prominent peak has been seen in 

case of imperfect velocity estimation when α=10 as the condition given in eq (5.5) is not 

satisfying in this case. These observations are also same as shown in previous chapter. 

The robustness analysis and design constraint here shown is completely same as that of the 

literature [24].  

5.2.3 Disturbance estimation: 

Disturbance estimation is done without any outer-loop controller and considering parameter 

uncertainties to be zero. Here, sinusoidal current of magnitude 1A is given at t=0 sec, and 

sinusoidal disturbance of 1 N-m has been applied at t=2 sec,the values 𝑔𝑑𝑜𝑏 = 50 rad/s, 𝐽𝑚𝑛 =

0.1 kg-m2, 𝐾𝑡𝑛 = 5 N-m/A have been taken. The fig. (5.4) represents the applied and estimated 

disturbance. 

Fig. 5.4- Reference angle tracking when sinusoidal angle reference and sinusoidal 

disturbance is applied at t=0, t=2 sec respectively 
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5.3 Proposed PID Controller and DOB based Position Control System: 

5.3.1 Brief overview of PID Controller tuning: 

In this section we will first design PID Controller then we will use it with the DOB based 

system. It is well known fact that PID is most popular control method due to its simplicity and 

effective performance. Till date so many PID tuning methods have been proposed [27], but 

none of them meets the desired performance in motion control. The most common tuning 

method was proposed by Ziegler-Nichols but this methods big overshoot, robustness to time 

varying parameter is low, and it also needs many iterations. There is also one method Cohen-

Coon formula [28]-[[29] which was invented for better robustness but it gives big overshoot 

and oscillatory response. There are also advanced methods such as Rivera’s method [ref to 10] 

and many intelligent tuning methods like Genetic algorithm (GA), Fruit fly optimization 

[28],[29]. Though this advanced methods are superior than the conventional ones but the main 

problem with these methods are that they are too complex to use. Main problem of these tuning 

methods for motion control is its complex system dynamics, uncertainties, unknown 

disturbances etc. To handle this problem a practical PID tuning method [30] has been used in 

this thesis. It uses the advantage of 2-DOF approach. It provides high robustness to unmodelled 

dynamics, uncertainties etc.  

5.3.2 PID Controller tuning: 

Here a parallel form PID controller is tuned for position control system. The BD is shown 

below 

 

 

 

 

 

 

 

Fig. 5.5- Parallel form PID [27] 

 

 

Here the assumption is that servo system is free from external disturbances and it is linear. One 

more assumption is that the system inertia should be chosen to the upper bound of exact inertia. 

So, the desired gains according to desired natural frequency and damping co-efficient 

E(s) 

 

𝐾𝑃 

 

𝐾𝐼
𝑠⁄  

 

𝐾𝐷𝑠 

 + 

+ 
+ 

𝜅𝑐  

 

P(s) 
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𝐾𝑃
𝑑𝑒𝑠 = 𝐽𝑚𝑛ꞷ𝑛

2  

𝐾𝐷
𝑑𝑒𝑠 = 𝐽𝑚𝑛2𝜁ꞷ

𝑛
 

Now, the real controller gains  

𝐾𝑃 = 𝐽𝑚𝑛ꞷ𝑛
2 + 𝐾𝐷

𝑑𝑒𝑠𝑅 

𝐾𝐼 = 𝐾𝐷
𝑑𝑒𝑠𝑅 

𝐾𝐷 = 𝐾𝐷
𝑑𝑒𝑠 

Where, R is the robustness variable. Higher the value of R higher will be the robustness until 

the system gets affected negatively due to practical constraint like noise. 

From the previous section, i.e. in robustness analysis we get the values of 𝜁ꞷ
𝑛

,ꞷ𝑛
2 .  

2𝜁ꞷ
𝑛

= 𝑔𝑣 and ꞷ𝑛 = √𝛼𝜅𝑔𝑑𝑜𝑏 from eq (5.3) respectively. 

Putting R as 𝑔𝑑𝑜𝑏 = 50 rad/s, 𝑔𝑣 = 100 rad/s we get 

𝐾𝑃 = 1000, 𝐾𝐼 = 500, 𝐾𝐷 = 10. 

 

 

5.3.3 Position Control System analysis with PID Controller & DOB: 

The BD is shown below 
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Fig. 5.6- Proposed PID controller & Dob based position control system 

𝑞𝑚
𝑟𝑒𝑓

 and �̈�𝑚
𝑟𝑒𝑓

 denotes angle/position and acceleration reference inputs respectively. A PID 

controller is used to achieve performance goals. The transfer function between �̈�𝑚
𝑟𝑒𝑓

 and 𝑞𝑚
𝑟𝑒𝑓

 

derived from fig. (5.6) can be written as 

�̈�𝑚

 �̈�𝑚
𝑟𝑒𝑓

=
𝛼𝑠3(𝑠 + 𝑔𝑑𝑜𝑏)

𝑠3(𝑠 + 𝛼𝑔𝑑𝑜𝑏) + 𝛼(𝑠 + 𝑔𝑑𝑜𝑏)(𝐾𝐷𝑠2 + 𝐾𝑃𝑠 + 𝐾𝐼)
 

(5.6) 

When gv is infinite. And, 

�̈�𝑚

 �̈�𝑚
𝑟𝑒𝑓

=
𝛼𝑠3(𝑠 + 𝑔𝑣)(𝑠 + 𝑔𝑑𝑜𝑏)

𝑠3(𝑠2 + 𝑔𝑣𝑠 + 𝛼𝑔𝑣𝑔𝑑𝑜𝑏) + 𝛼(𝑠 + 𝑔𝑣)(𝑠 + 𝑔𝑑𝑜𝑏)(𝐾𝐷𝑠2 + 𝐾𝑃𝑠 + 𝐾𝐼)
 

(5.7) 

When gv is finite. 

5.3.4 Transfer function derivation: 

Case 1: When 𝒈𝒗  is infinite: 

From equation (5.1) it is found that  

�̈�𝑚

�̈�𝑚
𝑑𝑒𝑠 = 𝛼 (

𝑠 + 𝑔𝑑𝑜𝑏

𝑠 + 𝛼𝑔𝑑𝑜𝑏
) 

(5.8) 

 

The simplified BD of fig. (5.6) has shown below 

 

 

𝐾𝑡𝑛
−1 

1

𝐽𝑚
 + 1

𝑠
 

1

𝑠
 𝐾𝑡 𝐾𝐷𝑠 + 𝐾𝑃 +

𝐾𝐼

𝑠
 

 

+ 

+ 
+ 

�̂�𝑚
𝑑  

𝑞𝑚
𝑟𝑒𝑓

 �̇�𝑚 

𝐾𝑡𝑛𝑔𝑑𝑜𝑏

𝑠 + 𝑔𝑑𝑜𝑏

 
𝐽𝑚𝑛𝑠𝑔𝑑𝑜𝑏

(𝑠 + 𝑔𝑑𝑜𝑏)
 

𝐽𝑚𝑛

𝐾𝑡𝑛
 

𝜏𝑚
𝑑  

 + 

+ 

- 

- 

- 

�̈�𝑚
𝑑𝑒𝑠 

�̈�𝑚
𝑟𝑒𝑓

 

𝑞𝑚 
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Fig. 5.7- Simplified block diagram of fig. (5.6) 

�̈�𝑚

 �̈�𝑚
𝑟𝑒𝑓

=
𝛼 (

𝑠 + 𝑔𝑑𝑜𝑏

𝑠 + 𝛼𝑔𝑑𝑜𝑏
)

1 + 𝛼 (
𝑠 + 𝑔𝑑𝑜𝑏

𝑠 + 𝛼𝑔𝑑𝑜𝑏
) (

(𝐾𝐷𝑠2 + 𝐾𝑃𝑠 + 𝐾𝐼)
𝑠3 )

 

 

 

�̈�𝑚

 �̈�𝑚
𝑟𝑒𝑓

=
𝛼𝑠3(𝑠 + 𝑔𝑑𝑜𝑏)

𝑠3(𝑠 + 𝛼𝑔𝑑𝑜𝑏) + 𝛼(𝑠 + 𝑔𝑑𝑜𝑏)(𝐾𝐷𝑠2 + 𝐾𝑃𝑠 + 𝐾𝐼)
 

 

 

Case 2- when 𝒈𝒗  is finite: 

�̈�𝑚

 �̈�𝑚
𝑟𝑒𝑓

=
𝛼

(𝑠 + 𝑔𝑣)(𝑠 + 𝑔𝑑𝑜𝑏)
𝑠2 + 𝑔𝑣𝑠 + 𝛼𝑔𝑣𝑔𝑑𝑜𝑏

1 + 𝛼
(𝑠 + 𝑔𝑣)(𝑠 + 𝑔𝑑𝑜𝑏)

(𝑠2 + 𝑔𝑣𝑠 + 𝛼𝑔𝑣𝑔𝑑𝑜𝑏)
(

(𝐾𝐷𝑠2 + 𝐾𝑃𝑠 + 𝐾𝐼)
𝑠3 )

 

 

 

�̈�𝑚

 �̈�𝑚
𝑟𝑒𝑓

=
𝛼𝑠3(𝑠 + 𝑔𝑣)(𝑠 + 𝑔𝑑𝑜𝑏)

𝑠3(𝑠2 + 𝑔𝑣𝑠 + 𝛼𝑔𝑣𝑔𝑑𝑜𝑏) + 𝛼(𝑠 + 𝑔𝑣)(𝑠 + 𝑔𝑑𝑜𝑏)(𝐾𝐷𝑠2 + 𝐾𝑃𝑠 + 𝐾𝐼)
 

 

It is obvious from the equations (5.6) and (5.7) that characteristic functions are dependent on 

𝑔𝑑𝑜𝑏, 𝑔𝑣, 𝛼  𝐾𝑃, 𝐾𝐷.  

 

 

 

- 

 

+ 
�̈�𝑚

𝑟𝑒𝑓
 �̈�𝑚 

𝛼(𝑠 + 𝑔𝑑𝑜𝑏)

(𝑠 + 𝛼𝑔𝑑𝑜𝑏)
∗

(𝐾𝐷𝑠 + 𝐾𝑃 +
𝐾𝐼

𝑠
)

𝑠2
 

𝛼
(𝑠 + 𝑔𝑑𝑜𝑏)

(𝑠 + 𝛼𝑔𝑑𝑜𝑏)
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5.3.5 Stability analysis: 

Let us consider the equation () by using RH criterion to perform stability analysis we get  

𝛼−1 <
(𝐾𝐷 + 𝑔𝑑𝑜𝑏)(𝐾𝑃 + 𝑔𝑑𝑜𝑏𝐾𝐷)

𝐾𝐼 + 𝑔𝑑𝑜𝑏𝐾𝑃
 

This above equation is the stability criteria. From this equation it can be concluded that stability 

of robust position control can be improved by increasing the value of 𝛼 and 𝑔𝑑𝑜𝑏. But from the 

robustness analysis i.e. from equation (5.5) it has been observed that 𝛼 and 𝑔𝑑𝑜𝑏 can not be 

freely increased. This is the trade-off between robustness and stability. 

Generally it is assumed that robustness and performance can be controlled in inner and outer 

loop separately, but it is not true indeed. The robustness depends on outer loop as well. It will 

be clarified by deriving 𝑇𝑃𝐶
𝑆𝐸𝑁 and 𝑇𝑃𝐶

𝐶𝑜𝑆𝐸𝑁. 

𝑇𝑃𝐶
𝑆𝐸𝑁 =

1

1 + 𝐿𝑃𝐶(𝑠)
 

 

𝑇𝑃𝐶
𝐶𝑜𝑆𝐸𝑁 =

𝐿𝑃𝐶(𝑠)

1 + 𝐿𝑃𝐶(𝑠)
 

 

𝐿𝑃𝐶(𝑠) = 𝛼
𝑔𝑑𝑜𝑏𝑠3 + (𝑠 + 𝑔𝑑𝑜𝑏)(𝐾𝐷𝑠2 + 𝐾𝑃𝑠 + 𝐾𝐼)

𝑠4
 

(5.9) 

When gv is infinite, and 

𝐿𝑃𝐶(𝑠) = 𝛼
𝑔𝑑𝑜𝑏𝑔𝑣𝑠3 + (𝑠 + 𝑔𝑑𝑜𝑏)(𝑠 + 𝑔𝑣)(𝐾𝐷𝑠2 + 𝐾𝑃𝑠 + 𝐾𝐼)

𝑠4(𝑠 + 𝑔𝑣)
 

(5.10) 

When gv is finite. 

From equation of 𝑇𝑃𝐶
𝑆𝐸𝑁 , 𝑇𝑃𝐶

𝐶𝑜𝑆𝐸𝑁 it is observed that increasing the outer loop controller gain 

leads to more robust system when 𝛼𝑔𝑑𝑜𝑏 > 0.5𝑔𝑣 .Still, inner loop becomes sensitive to high 

frequency noises. Again, increasing outer loop controller gain has several disadvantages like 

energy consumption, vibration due to high frequency dynamics etc.  

Derivation of 𝑳𝑷𝑪(𝒔): 

Case1- when gv is infinite: 

The characteristic equation from (5.6) we get 

𝐶ℎ(𝑠) = 𝑠3(𝑠 + 𝛼𝑔𝑑𝑜𝑏) + 𝛼(𝑠 + 𝑔𝑑𝑜𝑏)(𝐾𝐷𝑠2 + 𝐾𝑃𝑠 + 𝐾𝐼)  

By rearranging we get 
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𝐶ℎ(𝑠) = 𝑠4 + 𝛼[𝑔𝑑𝑜𝑏𝑠3 + (𝑠 + 𝑔𝑑𝑜𝑏)(𝐾𝐷𝑠2 + 𝐾𝑃𝑠 + 𝐾𝐼)]  

𝑠4[1 +
𝛼{𝑔𝑑𝑜𝑏𝑠3 + (𝑠 + 𝑔𝑑𝑜𝑏)(𝐾𝐷𝑠2 + 𝐾𝑃𝑠 + 𝐾𝐼)}

𝑠4
 

 

So, loop transfer function  

𝐿𝑃𝐶(𝑠) =
𝛼[𝑔𝑑𝑜𝑏𝑠3 + (𝑠 + 𝑔𝑑𝑜𝑏)(𝐾𝐷𝑠2 + 𝐾𝑃𝑠 + 𝐾𝐼)]

𝑠4
 

 

 

Case2- when gv is finite: 

The characteristic equation from () we get 

𝐶ℎ(𝑠) = 𝑠3(𝑠2 + 𝑔𝑣𝑠 + 𝛼𝑔𝑣𝑔𝑑𝑜𝑏) + 𝛼(𝑠 + 𝑔𝑣)(𝑠 + 𝑔𝑑𝑜𝑏)(𝐾𝐷𝑠2 + 𝐾𝑃𝑠 + 𝐾𝐼)  

By rearranging we get 

𝐶ℎ(𝑠) = 𝑠4(𝑠 + 𝑔𝑣) + 𝛼[𝑔𝑣𝑔𝑑𝑜𝑏𝑠3 + (𝑠 + 𝑔𝑣)(𝑠 + 𝑔𝑑𝑜𝑏)(𝐾𝐷𝑠2 + 𝐾𝑃𝑠 + 𝐾𝐼)]  

𝑠4(𝑠 + 𝑔𝑣)[1 +
𝛼{𝑔𝑣𝑔𝑑𝑜𝑏𝑠3 + (𝑠 + 𝑔𝑣)(𝑠 + 𝑔𝑑𝑜𝑏)(𝐾𝐷𝑠2 + 𝐾𝑃𝑠 + 𝐾𝐼)}

𝑠4(𝑠 + 𝑔𝑣)
 

 

So, loop transfer function  

𝐿𝑃𝐶(𝑠) =
𝛼[𝑔𝑣𝑔𝑑𝑜𝑏𝑠3 + (𝑠 + 𝑔𝑣)(𝑠 + 𝑔𝑑𝑜𝑏)(𝐾𝐷𝑠2 + 𝐾𝑃𝑠 + 𝐾𝐼)]

𝑠4(𝑠 + 𝑔𝑣)
 

 

 

5.4 Simulations: 

The following bode magnitude plots for Co-sensitivity functions have been done taking 

different values of α and using the value of the parameters as-  𝑔𝑑𝑜𝑏 = 50 rad/s, 𝑔𝑣 = 100 

rad/s, 𝐾𝑃 = 1000, 𝐾𝐼 = 500, 𝐾𝐷 = 10. 
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Fig.5.8- Co-sensitivity function frequency response for outer-loop 

Fig.5.9- Co-sensitivity function frequency response for inner-loop and outer-loop 
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Fig.5.10- Comparison of Co-sensitivity function frequency response for outer-loop 

From fig. (5.8) it can be seen that bandwidth for ideal velocity estimation is higher than the 

practical one for every values of α. Again, it is observed from fig. (5.9) that using the PID 

controller in outer-loop increases the bandwidth along with robustness. Fig. (5.10) shows a 

comparative plot for outer-loop Co-sensitivity function between existing PD controller & DOB 

and proposed PID controller & DOB. For proposed controller the bandwidth is higher which 

means more robustness. 

Now, the root locus diagram has been shown below for stability analysis  

Fig. 5.11- Root locus plot for stability analysis  
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Similar to the root locus plot in chapter 4 this figure also clearly describes that on increasing 

the α, i.e. the gain value, the plot is shifting towards left, thereby increasing stability. Though 

the increment is limited by robustness constraint as described earlier. 

The position tracking response is shown below when sinusoidal angle reference and sinusoidal 

disturbance of magnitude one is applied at t=0, t=2 sec respectively. 

Fig.5.12- Position Control response when sinusoidal input is applied at t=0 and sinusoidal 

disturbance at t=2 sec 

It can be clearly stated that reference angle tracking is done very precisely.  Position tracking 

error has been shown with different inputs in chapter 6. 
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Chapter 6 

COMPARISON OF PERFORMANCE 

6.1 Introduction: 

In this chapter, disturbance estimation error and tracking error plots have been shown between 

existing PD controller & DOB based position control system [24] and proposed PID Controller 

& DOB based position control system. Simulations have been done using different waveforms 

applied at different time such that the effects of those waveforms can be clearly observed on 

outputs be it estimated disturbance or motor output angle. The error plots are then followed by 

observations. 

The following waveforms have been used as inputs 

 

Fig. 6.1a 

 

 Fig. 6.1a 

 

Fig. 6.1c 

 

Fig. 6.1d 

Fig. 6.1- Different type of input waveforms used as position reference or disturbance, (a), (b)- 

sinusoidal input applied at t=0 and t=2 respectively; (c), (d)- square input applied at t=0 and 

t=2 respectively 
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6.2 Disturbance estimation error: 

6.2.1 Plots for ideal velocity measurement considering only external disturbances and 

parameter uncertainties to be zero: 

In this section the plots have been shown for ideal velocity estimation case, i.e. when 𝑔𝑑𝑜𝑏 =

50 rad/s, 𝑔𝑣 is infinite. 

Case 1: 

Fig.(6.1a) and Fig.(6.1b) has been applied as position reference and disturbance respectively.  

Fig.6.2- Disturbance estimation error when sinusoidal input as position reference and 

sinusoidal disturbance is applied at t=0 and t=2 sec respectively 

Observation: 

Up to 2 seconds error is zero for proposed one whereas error is non-zero. At t=2 sec, there are  

transients in both the plots. The value of error is less for proposed controller & DOB. 

Case 2: 

In this test case fig.(6.1c) and fig.(6.1b) has been applied as position reference and disturbance 

respectively. 
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Fig.6.3- Disturbance estimation error when square input as position reference and sinusoidal 

disturbance is applied at t=0 and t=2 sec respectively 

 

Observation: 

Both the plots are slightly phase delayed, but the magnitude is less in case of existing PD 

controller & DOB. But there are some spikes of very little magnitude in case of existing PD 

controller & DOB, whereas for the proposed PID controller & DOB the plot is smoother. 

Case 3: 

In this test case fig.(6.1a) and fig.(6.1d) has been applied as position reference and disturbance 

respectively. 

 
Fig.6.4a- Disturbance estimation error when sinusoidal input as position reference and square 

disturbance is applied at t=0 and t=2 sec respectively 
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Fig.6.4b- Disturbance estimation error when sinusoidal input as position reference and square 

disturbance is applied at t=0 and t=2 sec respectively (zoomed up to 4.5 seconds) 

Observation: 

There are impulses of magnitude one at the positive and negative edge of the applied 

disturbance. This is caused by delay provided from low pass filter. Proposed method is 

providing slightly faster response. 

Case 4: 

In this test case fig.(6.1c) and fig.(6.1d) has been applied as position reference and disturbance 

respectively. 

Fig.6.5- Disturbance estimation error when square input as position reference and square 

disturbance is applied at t=0 and t=2 sec respectively 
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Observation: 

Sharp impulses can be observed at the edges of applied disturbance. Rest of time error is zero. 

But the existing PD controller & DOB is not measuring the disturbance in this case. 

6.2.2 Plots for practical velocity measurement considering only external disturbances and 

parameter uncertainties to be zero: 

Now the plots have been shown for practical velocity estimation case, i.e. when 𝑔𝑑𝑜𝑏 = 50 

rad/s, 𝑔𝑣 = 100 rad/s. 

Case 1: 

Fig.6.6- Disturbance Estimation Error of the system for sinusoidal input and sinusoidal 

disturbance applied at t=0 and t=2 respectively 

Observation: 

Transients are present at start, then it decays to zero quickly. The magnitude is higher for 

existing PD controller & DOB. 

Case 2: 
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Fig.6.7a- Disturbance Estimation Error of the system for sinusoidal input and square 

disturbance applied at t=0 and t=2 respectively 

 
Fig.6.7b- Disturbance Estimation Error of the system for sinusoidal input and square 

disturbance applied at t=0 and t=2 respectively (zoomed up to 4sec) 

Observation: 

Transients are present at start, then it decays to zero quickly. The magnitude is higher for 

existing PD controller & DOB. Impulses are present at the edges of applied disturbance. The 

transients decays to zero slightly slower in case of proposed PID controller & DOB. 

 

6.2.3 Plots for ideal velocity measurement considering external disturbances and 

parameter uncertainties: 

Torque co-efficient(𝑘𝑡) is taken as 5.01, inertia co-efficient(J) is taken as 0.095. 
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Case 1:  

Fig.6.8-Disturbance Estimation Error of the system for sinusoidal input and sinusoidal 

disturbance applied at t=0 and t=2 respectively 

Observation:  

Disturbance Estimation Error is zero except at t=0 for proposed PID Controller & DOB, a 

transient is also observed at t=2 sec due to the application of disturbance at the same time; 

whereas for the existing PD Controller & DOB non zero error exists.  

Case 2:  

 

Fig.6.9a-Disturbance Estimation Error of the system for square input and sinusoidal 

disturbance applied at t=0 and t=2 respectively 
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Fig.6.9b-Disturbance Estimation Error of the system for square input and sinusoidal 

disturbance applied at t=0 and t=2 respectively (zoomed up to 3sec) 

 

Observation: 

Disturbance Estimation Error is zero except at the edges of input waveform for  proposed 

PID controller & DOB. At t=2 sec, transients are seen in the figure (6.9b) due to the 

disturbance applied on the same time. This is much better than existing one. 

Case 3:  

Fig.6.10- Disturbance Estimation Error of the system for sinusoidal input and square 

disturbance applied at t=0 and t=2 respectively 

Observation: 
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Disturbance Estimation Error is zero except at the sharp edges of the applied disturbance. 

Proposed PID controller & DOB shows better disturbance estimation.  

Case 4:  

  

Fig.6.11a- Disturbance Estimation Error of the system for square input and square 

disturbance applied at t=0 and t=1.5 respectively 

 

Fig.6.11b- Disturbance Estimation Error of the system for square input and square 

disturbance applied at t=0 and t=1.5 respectively (zoomed up to 4 seconds) 

Observation: 

Disturbance estimation is done much better by proposed PID controller & DOB. Impulses are 

present for proposed PID controller & DOB and PID controller & existing DOB. Disturbance 

estimation is very poorly done in case of proposed PD controller & DOB. 
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6.3 Tracking error: 

6.3.1 Tracking error plots considering ideal velocity measurement in presence of external 

disturbances and parameter uncertainties to be zero: 

Case 1: 

 
Fig.6.12- Tracking error when sinusoidal input as position reference and sinusoidal 

disturbance is applied at t=0 and t=2 sec respectively 

 

Observation: 

The magnitude of error for both plots is very less. Both the graphs have slight phase difference 

with the input reference. 

Case 2: 
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Fig.6.13- Tracking error when sinusoidal input as position reference and square disturbance is 

applied at t=0 and t=2 sec respectively 

Observation: 

Transient of little magnitude is observed at edges of applied disturbance from the above figure. 

The error value is almost same. 

Case 3: 

 
Fig.6.14a- Tracking error when square input as position reference and sinusoidal disturbance 

is applied at t=0 and t=2 sec respectively 
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Fig.6.14b- Tracking error when square input as position reference and sinusoidal disturbance 

is applied at t=0 and t=2 sec respectively (zoomed up to 4 seconds) 

Observation: 

There are transients at the edges of applied input angle reference. It decays to zero quickly. The 

error plots are same for both cases. 

Case 4: 

 
Fig.6.15a- Tracking error when square input as position reference and square disturbance is 

applied at t=0 and t=2 sec respectively  
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Fig.6.15b- Tracking error when square input as position reference and square disturbance is 

applied at t=0 and t=2 sec respectively (zoomed up to 4 seconds) 

Observation: 

Transients at the edges of applied input angle reference can be seen from the figure. It decays 

to zero quickly. The error plots are same for both cases. 

6.3.2 Tracking error plots considering practical velocity measurement in presence of 

external disturbances and parameter variations are zero: 

Fig.6.16- Tracking Error of the system for sinusoidal input and sinusoidal disturbance applied 

at t=0 and t=2 respectively 

Observation: 

Transients are present at start, the magnitude is higher for proposed one, but it rapidly decays 

to zero. At t=2 sec, a little fluctuation can be seen due to applied disturbance.  
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Case 4: 

 
Fig.6.17-Tracking Error of the system for sinusoidal input and square disturbance applied at 

t=0 and t=2 respectively 

Observation: 

At start transient is present for both cases, then at sharp edges of the disturbance transients are 

again present. The value is higher for proposed PID controller & DOB. 

6.3.3 Plots of tracking error for ideal velocity measurement considering external 

disturbances and parameter uncertainties: 

Case 1: 

 

Fig.6.18- Tracking Error of the system for sinusoidal input and sinusoidal disturbance applied 

at t=0 and t=2 respectively 

Observation: 

Tracking error for the proposed PID Controller & DOB has been reduced slightly. Transients 

are observed at t=2sec, i.e. at the starting time of applied disturbance. 
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Case 2: 

 

Fig.6.19a- Tracking Error of the system for square input and sinusoidal disturbance applied at 

t=0 and t=2 respectively 

 

Fig.6.19b- Tracking Error of the system (zoomed up to 3 seconds) for square input and 

sinusoidal disturbance applied at t=0 and t=2 respectively 

Observation: 

Tracking error sluggishly decays to zero for proposed PID controller & DOB. For existing PD 

Controller & DOB error decays to zero quickly.  

 

 

Case 3: 



63 | P a g e  
 

 

Fig.6.20- Tracking Error of the system for sinusoidal input and square disturbance applied at 

t=0 and t=2 respectively 

Observation: 

Tracking error for both the case are of very little magnitude having maximum value of 12*10−3 

at t=0. Transients are present at the sharp edges of applied disturbance. 

Case 4: 

 

Fig.6.21a- Tracking Error of the system for square input and square disturbance applied at 

t=0 and t=1.5 respectively 
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Fig.6.21b-Tracking Error of the system for square input and square disturbance applied at t=0 

and t=1.5 respectively (zoomed up to 2 seconds) 

Observation: 

Tracking error decays to zero sluggishly for proposed PID controller & DOB, whereas the error 

quickly goes to zero for existing PD controller & DOB. 
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Chapter 7 

Discussion and Conclusion 

 

7.1 Discussion: 

This section comprises of summary of each chapters except the introduction chapter. Chapter 

2 is brief literature survey on applications of DOB, BW adjustment, new algorithm to make it 

more efficient tool. Chapter 3 describes the DOB design methods for minimum and non-

minimum phase systems, why LPF is used along with examples to show the low pass filter 

design for the aforesaid systems can be done. Chapter 4 is the replication of the literature [26]. 

Motion control system with DOB is discussed here, therefore trade-off between robustness and 

performance has been analysed. It has been also shown how DOB is working without outer-

loop controller. Frequency responses of inner and outer-loop have been done, for stability 

analysis root locus plot is also shown. Finally, trajectory tracking has been shown. Chapter 5 

is mainly the contribution part. Here, PID controller as outer-loop controller has been used to 

improve performance than PD controller based DOB. Frequency responses, root locus plots 

have also been done here. The robustness improvement has been shown by bode plot. Chapter 

6 is comparison of performances between existing PD controller based DOB and proposed PID 

controller based DOB.  

 

7.2 Conclusion: 

As stated above, the dissertation verifies the design methods for DOB based motion control 

system. The trade-off between robustness and performance has also been verified. It is clear 

from the simulations that velocity estimation plays a great role for robustness, stability and 

performance. It can be said from comparison report that disturbance estimation is better in case 

of proposed PID controller and DOB with or without outer-loop controller. In presence of 

parameter uncertainties the proposed one shows better result. Tracking error is almost same for 

maximum cases, though in some cases existing method shows better result and vice versa. The 

analytical derivations are verified by simulations.  
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7.3 Future scope of work: 

In the course of the thesis work, different ideas for future work in this domain emerged: 

 Adaptive DOB and RTOB can be implemented for better performance. 

 The existing methodologies work well in low frequency range, if DOB based motion 

control system can perform well in high frequency range then it will be more widely 

used in industrial applications, i.e. the research are can be extended to high frequency 

range. 

 New controller can be implemented to improve performance. 

 Adaptive controllers can be implemented that will give desired response in presence of 

uncertainties and disturbances. 

 Better ways of velocity estimation can be done, that will make the system more robust 

and stable, hence performance will also be improved. 
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