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1. Introduction  

1.1. Schizophrenia 
Schizophrenia is the most common serious mental disorder with variable signs and 

symptoms and includes changes in cognition, emotion, perception, thinking and 

behaviour [1]. The expressions of these symptoms may vary from patient to patient but 

the effects are always severe and often last for as long as the patient lives. Although 

schizophrenia is discussed as a single disease, it is really comprised of a group of related 

disorders with varying aetiologies and schizophrenic patients have varying clinical 

presentations, treatment response and course of illness. 

Written descriptions of symptoms commonly observed today in patients with 

schizophrenia are found throughout history. Early Greek physicians described symptoms 

of grandeur, paranoia and deterioration of cognitive function and personality. It was only 

in the 19th century that schizophrenia was recognized as a medical condition that 

warranted study and treatment. 

1.1.1. Genetic Factors 
There is a genetic contribution to some, probably, all forms of schizophrenia. First 

degree relatives of individuals afflicted with schizophrenia and more likely to develop the 

condition than second degree relatives. In case of monozygotic twins with identical 

genetic makeup, the chances of both twins getting the disease is about 50%. However, 

this data proves that genetic factors alone do not have a role to play in the development of 

schizophrenia, and environmental and other factors are equally significant. Had it not 

been the case, then the chances of both twins developing schizophrenia would have been 

100%. According to some studies, the age of the father may play a decisive role in the 

child developing schizophrenia. Children born to fathers who are over 60 years of age are 

more at risk of developing the condition. Presumably, spermatogenesis in older men is 

susceptible to greater epigenetic damage than in younger men.  

The modes of genetic transmission in schizophrenia is unknown but several genes 

appear to make a contribution to schizophrenia vulnerability. Linkage and association 

genetic studies have provided strong evidence for nine linkage sites: 1q, 5q, 6p, 6q, 8p, 

10p, 13q, 15q and 22q. Further analyses of these chromosomal sites have led to the 

identification of specific candidate genes, and the best candidate genes are alpha-7 



2 
 

nicotinic receptor, DISC1, GRM3, COMT, NRG1, RGS 4, G72. Recently, mutations of 

the gene dystrobrevin (DTNBP1) and neureglin 1 have been associated with negative 

features of schizophrenia. 

1.1.2. Biochemical Factors 
Dopamine Hypothesis: According to the simplest formulation of the dopamine hypothesis 

of schizophrenia, the symptoms arise because of too much dopaminergic activity in the 

brain. This increased activity may be due to too much dopamine secretion, too many 

dopamine receptors or hypersensitivity of the dopaminergic receptors in the brain, or a 

combination of these mechanisms. The mesocortical and mesolimbic tracts of the 

dopamine receptors are most likely to be involved.  

Excessive dopamine release in patients with schizophrenia has been linked to the severity 

of positive psychotic symptoms. There have been reports of an increase in dopamine 

receptors in the caudate nucleus of drug-free patients with schizophrenia. There have also 

been reports of increased dopamine concentration in the amygdala, decreased density of 

the dopamine transporter and an increase number of dopamine type-4 receptors in the 

entorhinal cortex.  

Serotonin: Current hypothesis posits that serotonin excess is a cause of both positive and 

negative symptoms of schizophrenia.  

Norepinephrine: Anhedonia – the impaired capacity for emotional gratification and 

decreased ability to experience pleasure – has long been associated with schizophrenia. A 

selective neuronal generation within the norepinephrine reward neural system could 

account for this particular symptom of schizophrenia. 

GABA: The inhibitory amino acid gamma-aminobutyric acid (GABA) has been 

implicated in the pathophysiology of schizophrenia based on the finding that some 

patients with schizophrenia have a loss of GABAergic neurons in the hippocampus.  

Neuropeptides: Neuropeptides, such as substance P, and neurotensin are localized with 

catecholamine and indolamine neurotransmitters and influence the action of these 

neurotransmitters. Alteration in neuropeptide mechanisms could facilitate, inhibit or 

otherwise modify the pattern of firing of these neuronal systems.  

Glutamate: The hypotheses proposed about glutamate included those of hyperactivity, 

hypo-activity and those of glutamate induced toxicity. 

Acetylcholine and Nicotine: Decreased muscarinic and nicotinic receptors in the caudate-

putamen, hippocampus and selected regions of the pre-frontal cortex may lead to 
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schizophrenia because these receptors play a role in the regulation of neurotransmitter 

systems involved in cognition. 

1.1.3. Neuropathology 
Researchers have discovered what may be a neuropathological basis for schizophrenia, 

primarily in the limbic system and basal ganglia, including neuropathological and 

neurochemical abnormalities in the cerebral cortex, the thalamus and the brain-stem. The 

loss of brain volumes widely reported in schizophrenic brains appears to result from 

reduced density of the axons, dendrites and synapses that mediate associative functions of 

the brain. Synaptic density is highest at age 1 year and is pared down to adult values in 

early adolescence. One theory holds that schizophrenia results from excessive pruning of 

synapses during this period.  

Cerebral ventricles: Schizophrenia patients have consistently shown lateral and third 

ventricular enlargement and some reduction in cortical volume. Reduced volumes of 

cortical gray matter have been demonstrated in the earliest stages of the disease. There is 

some debate regarding whether the abnormalities are progressive or static. Whether an 

active pathological process is continuing to evolve in patients with schizophrenia is 

uncertain. 

Reduced Symmetry: There is reduced symmetry in several brain areas of the patient 

including the temporal, frontal and occipital lobes. This reduced symmetry is believed by 

some researchers to originate in foetal life and to be indicative of a disruption in brain 

lateralization during development. 

Limbic system: Because of its role in controlling emotions, the limbic system has been 

hypothesized to be involved in the pathophysiology of schizophrenia. There is a decrease 

in the size of the region including the amygdala, the hippocampus and the 

parahippocampal gyrus. The hippocampus is not only smaller in size in schizophrenia but 

is also functionally abnormal as indicated by disturbances in glutamate transmission. 

Disorganization of the neurons in hippocampus has also been seen in brain tissue sections 

of schizophrenia patients.  

Prefrontal cortex: There is considerable evidence from post-mortem brain studies that 

supports anatomical abnormalities in the prefrontal cortex in schizophrenia. Functional 

deficits in the prefrontal brain-imaging region have also been demonstrated. It has long 

been noted that several symptoms in schizophrenia mimic those found in persons in 

prefrontal lobotomies or frontal lobe syndromes. 
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Thalamus: Some studies show evidence of volume shrinkage or neuronal loss in 

particular sub-nuclei. The medical dorsal nucleus of the thalamus, which has reciprocal 

connections with the prefrontal cortex has been reported to contain a reduced number of 

neurons. The total number of neurons, dendrocytes, oligodendrocytes has been shown to 

be reduced by 30 to 45 percent in schizophrenia patients.  

Basal ganglia and cerebellum: Many patients with schizophrenia show odd movements 

which include an awkward gait and facial grimacing. Basal ganglia and cerebellum are 

involved in the control of movements. Neuropathological studies of the basal ganglia 

have produced reports about cell loss or reduction in volume of the globus pallidus or 

substantia nigra. Studies have also shown an increase in the number of D2 receptors in the 

caudate, the putamen and the nucleus accumbens. 

1.2. Diagnosis of Schizophrenia 
According to the Diagnostic and Statistical Manual of Mental Disorders, 5

th
 edition [2], the 

presence of hallucinations or delusions is not necessary for a diagnosis of schizophrenia. A 

subject can be diagnosed as schizophrenic when he / she exhibits two of the symptoms in 

Criteria A, below. Criterion B requires that impaired functioning, although not deterioration 

be present in the active phase of the illness. Symptoms must persist for at least 6 months and 

a diagnosis of schizoaffective disorder or mood disorder be absent. 

Criterion A 

1. Delusions 

2. Hallucinations 

3. Disorganized Speech 

4. Grossly disorganized or catatonic behaviour 

5. Negative Symptoms 

Criterion B 

For a significant portion of time since the onset of the disturbance, level of functioning in one 

or more major areas of functioning, such as work, interpersonal relations, or self-care, is 

markedly below the level achieved before the onset (or when the onset is in childhood or 

adolescence, there is failure to achieve interpersonal, academic or occupational functioning). 
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1.3. The Positive and Negative Syndrome Scale (PANSS) 
One of the most popular and effective way of diagnosing schizophrenia is a psychometric 

test. The results of the test are captured on the Positive and Negative Syndrome Scale, which 

is a medical scale used for measuring symptom severity in patients with schizophrenia. The 

name refers to the two types of symptoms in schizophrenia as defined by the American 

Psychiatrist Association – the positive symptoms which describe an excess of distortion of 

normal functions, viz. delusions and hallucinations and negative symptoms which represent a 

diminution or loss of normal functions. The PANSS is a relatively brief interview and it takes 

approximately 45 to 50 minutes to administer [3]. The interviewer must be trained to a 

standardized level of reliability. At the end of the interview, the patient is rated on a scale of 0 

to 6 on thirty different aspects on the basis of answers given during the interview as well as 

feedback from family members and hospital primary care workers. 

Positive Scale (7 items, minimum score= 0, maximum score = 42): 

 Delusions 

 Conceptual Disorganization 

 Hallucinations 

 Excitement 

 Grandiosity 

 Suspiciousness / persecution 

 Hostility 

Negative Scale (7 items, minimum score = 0, maximum score = 42) 

 Blunted affect 

 Emotional withdrawal 

 Poor rapport 

 Passive / apathetic social withdrawal 

 Difficulty in abstract thinking 

 Lack of spontaneity / flow of conversation 

 Stereotyped thinking 

General Psychopathology Scale (16 items, minimum score = 0, maximum score = 96) 

 Somatic concerns 
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 Anxiety 

 Guilt feelings 

 Tension 

 Mannerisms and posturing 

 Depression 

 Motor retardation 

 Uncooperativeness 

 Unusual thought content 

 Disorientation 

 Poor attention 

 Lack of judgement and insight 

 Disturbance of volition 

 Poor impulse control 

 Preoccupation 

 Active social avoidance 

Originally the PANSS was designed to assign a rating from 1 to 7 on the various items. 

However this meant that patients without any symptoms would have a rating of 30 instead of 

0. This led to misrepresentation of the effectiveness of atypical antipsychotic medication 

when tested on schizophrenics. This is why, nowadays, many psychiatrists prefer PANSS 

rating from 0 to 6 rather than 1 to 7 [4] [5]. 

1.4. High Level Design of the Work 
The work is divided into five main phases. In the first phase, a fuzzy expert system is 

designed that takes as its inputs the PANSS ratings assigned to a subject, and returns a 

crisp rating on a scale of 0 to 2. According to the recommendations of a qualified 

psychiatrist, a subject is diagnosed as schizophrenic if the rating is above 1.26 and non-

schizophrenic if the rating is below 1.26. 

In the second phase of the work, a dataset is synthesized for training an artificial neural 

network for diagnosing schizophrenia. 

In the third and fourth phases of the work, the synthetic dataset is used to train a 

multilayer perceptron and a support vector machine respectively, and the observations are 

noted. 
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In the fifth phase, the synthetic dataset is fuzzy clustered and the result is noted with data 

from real subjects. 

1.5. Motivation Behind the Work 
There is a lot of stigma attached to mental illness. Many a times, subjects are reluctant to 

consult psychiatrists in this matter. Also diagnosis of mental illness is tricky because there 

is so much overlap of symptoms of various different illnesses. In case of an ailment like 

cancer, a subject may be completely free of symptoms (pain, rapid weight loss, etc.) but 

still be diagnosed with the disease on account of physiological changes (presence, shape 

and growth pattern of tumour). In case of a mental illness like schizophrenia, however, 

diagnosis is based entirely on symptoms. A subject may have all the biomarkers of 

schizophrenia but still not be diagnosed as such if he or she has no symptoms. Thus it is 

useful to have a symptom based tool for diagnosing the condition. The fuzzy expert 

system may serve to offer a second opinion to the practising psychiatrist as to whether or 

not a subject is afflicted with schizophrenia. 
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2. Literature Review  
There is a lot of interest in the application of artificial intelligence to the diagnosis of 

psychiatric disorders including schizophrenia. 

In the early 1960‟s and 1970‟s interview based screening techniques were employed in 

order to perform psychiatric data analysis. Wing and Giddens [6]proposed a tool called 

“Present State Examination” for rating psychiatric symptoms reported by patients. The 

“Minnesota Multiphasic Personality Inventory” – a computer program written by 

Keinmuntz [7]could automatically interpret some psychiatric illnesses. However, the 

above tools have the drawbacks that they are rigid, time-consuming, have a high chance 

of human error and involve a rigid and monotonous questionnaire based data feed. Heiser 

and Brooks proposed a tool named HEADMED [8]based on a full-fledged questionnaire 

regarding the nature, severity and course of the symptoms, data processing algorithms, 

statistical data manipulation technique and inferential capacity according to the input 

given to it. Besides the prescription, HEADMED was also able to advise on optimal 

dosing, best route of administration and possible adverse effects of psychiatric drugs. 

Mulsant and Servan-Schreiber developed the BLUE BOX [9], which could diagnose 

various kinds of nervous breakdowns like depression and come up with a treatment plan 

after taking into consideration the possibility that the patient might attempt suicide. Johri 

and Guha designed an expert tool based on a set covering model using a diagonal search 

method, elicitation system and abduction knowledge [10]. Petrovic developed a tool for 

clustering the behavioural and psychological symptoms in dementia using Spearman‟s 

correlation analysis and Principal Component Analysis [11]. 

The above expert systems were designed primarily for research with little scope of 

practical application. These systems had several drawbacks in that they required large 

amounts of valid data and that the self-learning procedure was complex [12]. 

In 1996, Zou et al [13]used the back-propagation neural network as well as the Kohonen 

network to fit psychiatric diagnoses. The networks were trained to classify neurosis, 

schizophrenia and normal people.  In 2005, Aruna et al [14]proposed a neuro-fuzzy 

model for the diagnosis of psychosomatic disorders. The symptoms and signs were 

obtained by interviewing patients and fuzzy membership values were determined for the 

inputs. The fuzzy values were fed as input to a feedforward multi-layer neural network 

which was trained using the back-propagation training algorithm. The trained network 

was then tested with symptoms and signs from another set of patients. The performance 

of the model was compared with a medical expert and was also compared with 
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probability model based on Bayesian belief network and statistical model based on Linear 

Discriminant Analysis. Also, in 2005, Li et al [15] proposed a method of classification of 

schizophrenia and depression by EEG with ANNs. They showed that EEG rhythms can 

be used to distinguish among individuals suffering from schizophrenia and/or depression 

and normal healthy subjects. Back-propagation ANN and self-organizing competitive 

ANNs were used to discriminate among three kinds of subjects. The EEG rhythms were 

used as feature vectors. They also compared the two different kinds of ANNs and 

demonstrated that back-propagation ANNs have better performance than self-organizing 

ANNs. In 2009, Chattopadhyay, Pratihar and De Sarkar developed a fuzzy logic based 

screening and prediction tool for adult psychoses, a group of similar mental illnesses 

showing various cause-effect relationships among patients [12]. 

Several works have applied pattern recognition to fMRI data for schizophrenia diagnosis. 

In 2003, Ford et al [16] reduced the dimensionality of fMRI statistical spatial maps using 

Principal Component Analysis (PCA), and then differentiated between controls and 

patients with schizophrenia, brain injury and Alzheimer‟s disease by applying Fisher‟s 

linear discriminant. In 2003, Cox and Savoy [17] applied linear discriminant analysis and 

a linear support vector machine (SVM) analysis to classify among 10-class visual 

patterns. In 2004, Wang et al distinguished between brain cognitive states using a linear 

SVM. In 2006, Martinez-Ramon et al used SVMs for 4-class interleaved classification. In 

2003, LaConte et al used a linear SVM for left and right motor activation. In 2006, 

Shinakreva et al [18] used whole brain fMRI time series and identified voxels which had 

highly dissimilar time courses among groups employing the RV-coefficient. Once those 

voxels were detected, their fMRI time series data was used for subject classification.  

One of the main difficulties of using pattern recognition in fMRI is that each collected 

volume contains tens of thousands of voxels. This means that the dimensionality of the 

fMRI data is very high when compared with the number of data points, ie, the number of 

images collected from subjects, which may be of the order of tens or hundreds. This great 

difference between data dimensionality and the number of available observations means 

that the generalization performance of the estimator (classifier or regressor) goes down, 

and in some cases, the estimator cannot be used at all. This is known as “the curse of 

dimensionality”. Thus it is desirable to reduce the dimensionality in a way that incurs the 

least loss of information with an affordable computational burden [19]. 

Two approaches to solve this problem are feature extraction and feature selection. PCA is 

the most popular method of feature extraction and it extracts the important features by 
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casting high dimensional data into a low dimensional space. In 2005, Mourao-Miranda et 

al [20] used PCA for whole brain classification during fMRI attention experiments. The 

second approach is feature selection, which determines a subset of features that optimizes 

the performance of the classifier. The latter approach is useful for fMRI under the 

assumption that the information in the brain is sparse, that is, the useful information is 

concentrated in only a few areas of the brain making the rest of the areas irrelevant for 

classification tasks. In addition, feature selection can improve the prediction performance 

of the classifier as well as provide a better understanding of the underlying process that 

generated the data. Feature selection methods can be divided into three categories: filters, 

wrappers and embedded methods. Filters select a subset of features as a preprocessing 

step to classification. On the other hand, embedded methods and wrappers use the 

classifier itself to find the optimal feature set. Wrappers make use of the learning machine 

to select the feature set that increases its prediction accuracy whereas embedded methods 

incorporate feature selection as part of the training phase of the learning machine. In 

2006, Mourao-Miranda et al [21] used the filter approach in their work. In 2005, Haynes 

and Rees [22] also applied filter feature selection by selecting the top 100 voxels that had 

the strongest activation in two different visual stimuli. In 2008, De Martino et al [23] used 

a hybrid filter / wrapper approach by applying univariate voxel selection strategies prior 

to using recursive feature elimination SVM (RFE-SVM). RFE-SVM is robust but 

computationally intensive since it eliminates features one at a time in each iteration – this 

requires the SVM to be trained M times for M-dimensional data.  

While it is possible to remove several features at a time, it comes at the expense of 

classification performance degradation. In 2010, Ryali et al [24] presented an alternate 

approach that incorporates the use of embedded feature selection methods. The 

disadvantage of this method is that it achieves only average classification accuracy when 

applied to real fMRI data. Since multivariate non-linear feature selection is 

computationally expensive, usually only linear methods are applied for doing feature 

selection in fMRI. A trade-off is region based discrimination – such an approach assumes 

that voxels that are close to each other and are part of the same region of brain are non-

linearly related, while voxels is different brain regions are linearly related.  

In 2011, Castro et al [25] proposed a method of detecting schizophrenia in subjects by 

pattern classification of brain imaging data. Brain imaging data typically has high 

dimensionality. Their work proposes the application of recursive feature elimination 

using a machine learning algorithm based on composite kernels to the classification of 
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healthy controls and patients with schizophrenia. The framework analyzes whole brain 

fMRI data that is segmented into anatomical regions and recursively eliminates the 

uninformative ones based on their relevance estimates, thus yielding the set of most 

discriminative brain areas for group classification. The collected data was analyzed using 

two methods – General Linear Method (GLM) and Independent Component Analysis 

(ICA).  

Neural networks have been extensively used in the diagnosis of diseases like diabetes, 

chest diseases and urological dysfunction. In the 2003 work of Kayaer and Yildrim, [26] 

the 2005 work by Delen, Walker and Kadam [27], and the 2009 work by Temurtas [28], 

multi-layer neural networks have replaced conventional pattern recognition methods of 

disease diagnostic systems. The back-propagation algorithm is the most popular method 

of training the neural network, but as demonstrated by Brent in 1991 [29] and Gori and 

Tesi in 1992 [30], it suffers from a slow convergence rate and often yields sub-optimal 

solutions. A number of researchers like Gulbag and Temurtas in 2006 [31], Hagan, 

Demuth and Beale in 1996 [32], and Hagan and Menhaj in 1994 [33] have carried out 

comparative studies of the various different training algorithms. According to the 1994 

work by Hagan and Mehnaj, Levenberg Marqurdt algorithm provides faster convergence 

and better estimation results than other algorithms. In 1990, Specht [34] developed the 

probabilistic neural network (PNN), which is very useful for classification problems and 

disease diagnostic systems.  

Carpenter and Markuzon in 1998 [35], Deng and Kasabov in 2001 [36], Kayaer and 

Yildrim in 2003 [26] and Polat and Gunes in 2007 [37] performed studies focussing on 

diabetes disease diagnosis for Pima Indians.  

Neural networks classification has been used for diagnosis of chest diseases too. Aliferis, 

Hardin and Massion in 2002 [38], Ashizawa et al in 2005 [39], Copini, Miniati, Paterni, 

Monti and Ferdeghini in 2007 [40], El-Solh, Hsiao, Goodnough, Serghani and Grant in 

1999 [41], Er, Sertkaya, Temurtas and Tanrikulu in 2009 [42], Er and Temurtas in 2008 

[43], Er and Tanrikulu in 2010 [44], Hanif, Lan, Daud and Ahmed in 2009 [45], Paul, 

Ben, Thomas and Robert in 2004 [46], dos Santos, Pereira and de Seixas in 2004 [47] 

have all carried out studies on the diagnosis of chest diseases with artificial neural 

networks. These studies have applied different neural network structures to the various 

chest diseases diagnosis problem and achieved high classification accuracies using 

different datasets. 
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In 2004, Paul et al used the MLNN with one and two hidden layers and used back-

propagation with momentum as their training algorithm for predicting community 

acquired pneumonia for patients with chest problems [46]. In 2002, Heckerling reported 

an accuracy ration of 82.2% for pneumonia diagnosis [48]. In 2009, Hanif et al used three 

different neural networks to classify the severity of asthma and the suitable control 

measures to overcome it [45]. These neural networks were feedforward backpropagation 

neural networks, Elman‟s neural network and Radial Basis Function neural network. In 

2002, Aliferis et al used KNN decision tree induction, feedforward neural networks and 

support vector machines to classify lung tumours [38]. 

Human diseases can be detected at an early stage and subsequently treated with the help 

of expert systems. Fuzzy expert systems have been used to detect several illnesses like 

prostate cancer, cardiac diseases, jaundice, coronary artery disease, malaria, dengue etc. 

In 2003, Seritas, Alhaverdi and Sert proposed a method of diagnosing prostate cancer. 

The system used Prostate Specific Antigen (PSA), age and prostate volume as input 

parameters and prostate cancer risk (PCR) as output parameter [49]. The system 

determines if there is a need for biopsy and in addition, gives the user a range of the risk 

of cancer diseases. These factors were fuzzified with the linguistic variables very small, 

small, middle, high, very high, very low and low. The Mamdani max-min inference was 

used for the inference system. In 2012, Smita Sikchi et al came up with a study on the use 

of a fuzzy inference system for diagnosis of cardiac diseases. [50]. They defined a set of 

700 rules using the disease database as well as expert knowledge on the disease domain. 

They defined 11 input variables and one output variable for the fuzzy inference system. 

The input variables are nothing but the results of laboratory tests and manifested 

symptoms. Laboratory test results are converted into fuzzy compatibility values in the 

range of zero to unity by consideration of the linguistic medical concepts. Next the 

fuzzified data is used to draw an inference about the diagnosis with the help of knowledge 

contained in a knowledge base. Finally, defuzzification was used to obtain crisp values on 

an arbitrary scale of the fuzzy output variable as the risk of heart disease. The fuzzy 

inference system was Mamdani type and centroid based defuzzification technique was 

used. In 2013, Manish Rana et al proposed a fuzzy inference system model for diagnosing 

maladies of the human brain, viz. haemorrhages and tumours, as well as cardiac diseases 

and thyroid diseases [51]. For brain disease, the fuzzy system takes five inputs, viz, 

protein, red blood cells, lymphocytes, neutrophils and eosinophils, and gives three 

outputs, viz. normal, haemorrhage and brain tumour. The FIS for diagnosing heart 
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diseases takes just one input viz. the CPK-MB marker which gives an indication of acute 

myocardial infarction, and returns an output corresponding to whether or not the subject 

suffers from heart disease. For diagnosing diseases of the thyroid gland, the expert system 

takes as input the levels of T3, T4 and TSH hormones and returns an output regarding 

whether or not the subject suffers from hypothyroidism. In 2014, Nitin Sahai, Deepshikha 

Shrivastava and Pankaj Shrivastava proposed a fuzzy expert system to diagnose jaundice 

[52]. They used both the Mamdani and Sugeno fuzzy inference systems. The symptoms 

of jaundice are supplied as inputs to the FES while the grade of the disease constitutes the 

output. In 2014, Niranjana Devi and Anto proposed an evolutionary fuzzy expert system 

for the diagnosis of coronary artery disease [53]. With the help of a decision tree, the 

most significant attributes are selected and the output is converted to crisp if-then rules. 

The crisp set of rules is transformed into fuzzy rules which constitute the fuzzy rule base. 

Genetic algorithm is used to tune the fuzzy membership functions which leads to better 

accuracy.  

We have not come across any study that deals with fuzzy inference systems used for 

diagnosing schizophrenia on the basis of PANSS ratings. The same can be said about 

artificial neural networks. Though there are studies that focus on diagnosing 

schizophrenia with the help of ANNs that use features of functional MRI as input, these 

studies are not very practical since it is difficult and expensive to obtain imaging data in 

sufficiently large quantities. On the other hand the PANSS ratings can be obtained easily 

and inexpensively. Since the PANSS data that is fed to the ANN has only thirty 

dimensions which is modest compared with MRI data, the PANSS based diagnostic 

solution does not suffer from the curse of dimensionality unlike the MRI based solutions.  
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3. Theory 

3.1. Fuzzy Systems 

3.1.1. Classical Sets and Fuzzy Sets  
Once we are able to define a universe of discourse which contains all possible 

information on a given problem, we may define certain events on the basis of this 

information. A set defined on this universe is a mathematical abstraction of these events 

as well as the universe. A classical set is defined by crisp boundaries whereas a fuzzy set 

is defined by fuzzy or ambiguous boundaries. This is because a fuzzy set has vague or 

ambiguous properties, whereas there is no room for vagueness is the world of classical 

sets. [54]. 

Where classical sets are concerned, a member is either a full member of the set or not a 

member. On the other hand, in case of fuzzy sets, we have the concept of partial 

membership, wherein an entity may be members of more than one set defined on that 

universe.  

To describe classical sets, define a universe of discourse X, as a group of objects all 

having same characteristics. The individual elements in the universe will be denoted as x. 

The features of the elements in X can be either discrete countable integers, or continuous 

valued quantities on the real line. A useful attribute of sets and the universe on which they 

are defined is a parameter known as cardinality, or cardinal number. The total number of 

elements in a universe X is called its cardinal number, denoted as nx. Discrete universes 

have finite cardinal numbers since the number of elements contained in these universes is 

finite; on the other hand continuous universes have an infinite number of elements. 

Elements in a universe may be grouped into sets, and sets may be further divided into 

subsets. We define a null set, Φ, as a set containing no elements, and the whole set X, as 

the set of all elements in the universe. The null set may be thought of as parallel to an 

impossible event, whereas the whole set may be thought of as parallel to a certain event. 

All possible sets of X constitute a special set, called the power set, P(X). 

The various operations on classical sets in set-theoretic terms are: 

Union:  𝐴 ∪ 𝐵 

Intersection: 𝐴 ∩ 𝐵 

Complement: 𝐴  
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Difference: 𝐴 | 𝐵 

Properties of classical (crisp) sets - The most appropriate properties of classical sets for 

demonstrating their similarity to fuzzy sets are: 

Commutativity:  𝐴 ∪ 𝐵 = 𝐵 ∪ 𝐴 

                    𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐴 

Associativity: 𝐴 ∪  𝐵 ∪ 𝐶 =  𝐴 ∪ 𝐵 ∪ 𝐶 

                       𝐴 ∩  𝐵 ∩ 𝐶 =  𝐴 ∩ 𝐵 ∩ 𝐶 

Idempotency: 𝐴 ∪ 𝐴 = 𝐴 

                       𝐴 ∩ 𝐴 = 𝐴 

Identity:   𝐴 ∪  ∅ = 𝐴 

     𝐴 ∩ 𝑋 = 𝑋 

                𝐴 ∩ ∅ =  ∅ 

                𝐴 ∪ 𝑋 = 𝑋 

Involution:   𝐴 = 𝐴 

Two special principles of set properties are known as “excluded middle axioms” and “De 

Morgan‟s principles”. Of all the axioms described, only the excluded middle axioms are 

not valid for both classical sets and fuzzy sets.  

Axiom of the excluded middle: 𝐴 ∪ 𝐴 =  𝑋 

Axiom of the contradiction: 𝐴 ∩ 𝐴 =  ∅ 

De Morgan‟s principles: 𝐴 ∩ 𝐵        = 𝐴  ∪ 𝐵  

                                        𝐴 ∪ 𝐵        = 𝐴  ∩ 𝐵  

In general, De Morgan‟s principle can be extended for n sets, as provided here for events 

Ei: 

𝐸1 ∩ 𝐸2 ∩ … .∩ 𝐸𝑛
                      = 𝐸1

   ∪ 𝐸2
   ∪ …∪ 𝐸𝑛

    

𝐸1 ∪ 𝐸2 ∪ …∪ 𝐸𝑛
                      = 𝐸1

   ∩ 𝐸2
   ∩ …∩ 𝐸𝑛

    

In fuzzy sets there is a gradual transition from membership to non-membership, but in 

classical sets, the transition is abrupt. A fuzzy set, then, is a set containing elements that 

have varying degrees of membership in the set. Elements of a fuzzy set are mapped to a 

universe of membership values between 0 and 1. This is where the membership function 

comes in. A membership function maps elements of a fuzzy set Af to a real numbered 

value on the interval 0-1. A notation convention for fuzzy sets, when the universe of 

discourse, X, is discrete and finite, is as follows for a fuzzy set Af: 
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𝐴𝑓 =   
𝜇𝐴𝑓(𝑥1)

𝑥1
+ 

𝜇𝐴𝑓(𝑥2)

𝑥2
+ … =    

𝜇𝐴𝑓 (𝑥𝑖)

𝑥𝑖
𝑖

  

The horizontal bar is a delimiter rather than a division sign. The numerator in each term is 

the membership value in set Af associated with the element of the universe indicated in 

the denominator. The summation symbol denotes that aggregation or collection of each 

element and has nothing to do with algebraic summation. 

Now, let us try to understand fuzzy set operations. Let us define three fuzzy set Af, Bf, Cf 

on the universe of X. For a given element x of the universe, the function theoretic 

operations, union, intersection and complement for the set-theoretic operations of union, 

intersection and complement are defined for Af, Bf and Cf: De Morgan‟s principle for 

classical sets also holds for fuzzy sets; however, the excluded middle axioms do not hold 

for fuzzy sets. 

Fuzzy sets follow the same properties as crisp sets. Indeed classical sets can be thought of 

as a subset of fuzzy sets.  

3.1.2. Classical Relations and Fuzzy Relations  
An ordered sequence of r elements written in the form (a1, a2, a3,…,ar) is called an 

order-r tuple; an unordered tuple is simply a collection of r elements in which order is not 

significant. For crisp sets A1, A2,…Ar, the set of all r-tuples (a1, a2, …, ar), where a1 ϵ 

A1, a2 ϵ A2, ar ϵ Ar, is called Cartesian product of A1, A2,…Ar, and is denoted by 

A1xA2x…xAr. The Cartesian product of two or more sets is different from the arithmetic 

product of two or more sets. A subset of Cartesian product A1xA2x…xAr is called a r-ary 

relation over A1, A2,…Ar.  

The Cartesian product of two universes X and Y is determined as: 

X x Y = {(x,y) | xϵX, yϵY}, which forms an ordered pair between every x and y forming 

unconstrained matches between X and Y. This operation establishes a complete 

relationship between every element of universe X and every element of universe Y. The 

strength of this relationship between ordered pairs of elements in each universe is 

measured by the characteristic equation K, where a value of 1 indicates complete 

relationship and value of 0 denotes no relationship. This strength of relationship may be 

thought of as a mapping from ordered pairs of the universe or ordered pairs of the sets 

defined on the universes to the characteristic function. A matrix called relation matrix 
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may be conveniently used to describe this relationship when the elements and sets of the 

universe are finite.  

Cardinality of crisp relations – Suppose n element of universe X are related to m elements 

of universe Y. The cardinality of X is nx and the cardinality of Y is ny, then the cardinality 

of the relation R between the two universes is nXxY = nx * ny . Let us define R and S as 

two separate relations on the Cartesian universe X x Y, and define the null relation and 

complete relation as the relation matrices O and E respectively. An example of the 4 x 4 

form of the O and E matrices are given below: 

𝑂 =   

0 0 0 0
0 0 0 0 
0 0 0 0
0 0 0 0

  ; 𝐸 =   

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

  

The following function theoretic operations for the two crisp relations R and S can be 

defined as:  

Union: 𝑅 ∪ 𝑆 → 𝐾𝑅∪𝑆 𝑥, 𝑦 :𝐾𝑅∪𝑆 𝑥,𝑦 = max[ 𝐾𝑅 𝑥, 𝑦 ,𝐾𝑆 𝑥, 𝑦 ] 

Intersection: 𝑅 ∩ 𝑆 → 𝐾𝑅∩𝑆 𝑥, 𝑦 :𝐾𝑅∩𝑆 𝑥,𝑦 = min[ 𝐾𝑅 𝑥,𝑦 ,𝐾𝑆 𝑥,𝑦 ] 

Complement: 𝑅  → 𝐾𝑅  𝑥,𝑦 :𝐾𝑅  𝑥,𝑦 =  1 − 𝐾𝑅(𝑥,𝑦)   

Identity: ∅ → 0, 𝑎𝑛𝑑 𝑋 → 𝐸 

The properties of commutativity, associativity, distributivity, involution and idempotency 

all hold for crisp relations in the same way they do for classical set operations. Moreover 

De Morgan‟s principles and excluded middle axioms hold for crisp relations just as they 

hold for crisp sets. One may think of  the null relation O, and the complete relation E as 

being analogous to null set Φ and whole set X respectively in the set-theoretic case.  

Composition – Let R be a relation that relates or maps elements from universe X to 

universe Y, and let S be a relation that relates or maps elements from universe Y to 

universe Z. An operation called composition may be used to find a relation T, that relates 

the same elements in universe X that R contains to the same elements in universe Y that S 

contains. There are two common forms of composition operation – one is called the max-

min composition and the other is called the max-product composition. The max-min 

operation is defined as:  

T = R o S 

𝐾𝑇 𝑥, 𝑧 = max(min(𝐾𝑅 𝑥,𝑦 ,𝐾𝑆(𝑦, 𝑧))) 

The max-product operation is defined as: 

T = R o S 

max(𝐾𝑅 𝑥, 𝑦 ∗  𝐾𝑆 𝑦, 𝑧 ) 
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Fuzzy relations use Cartesian product of two universes to map elements of one universe, 

say X, to those of another universe, say Y. However the strength of the relationship 

between the ordered pairs of the two universes is measured with membership function 

and not characteristic function, and various degrees of strength of the relation may be 

expressed on the unit interval [0,1]. Hence a fuzzy relation Rf is a mapping from the 

Cartesian space XxY to the interval [0,1], where the strength of the mapping is expressed 

by the membership function of the relation for ordered pairs from the two universes or 

𝜇𝑅𝑓 𝑥,𝑦 . 

The cardinality of fuzzy sets on any universe is infinity, and so, the cardinality of fuzzy 

relations is also infinity.  

Operations on fuzzy relations – Let Rf and Sf be fuzzy relations on the Cartesian space 

XxY. Then the following operations apply for the membership values of various set 

operations: 

Union: 𝜇𝑅𝑓∪𝑆𝑓
 𝑥, 𝑦 = max(𝜇𝑅𝑓

 𝑥,𝑦 , 𝜇𝑆𝑓(𝑥,𝑦)) 

Intersection: 𝜇𝑅𝑓∩𝑆𝑓
 𝑥, 𝑦 = min(𝜇𝑅𝑓

 𝑥,𝑦 ,𝜇𝑆𝑓(𝑥,𝑦)) 

Complement: 𝜇𝑅𝑓    
 𝑥,𝑦 = 1 −  𝜇𝑅𝑓

(𝑥,𝑦)  

All properties like commutativity, associativity, distributivity, involution and 

idempotency hold for fuzzy relations just as they hold for crisp relations. Also, De 

Morgan‟s principles hold, and the null relation O and the fuzzy relation E are analogous 

to the null set and the whole set in set-theoretic form respectively. Similar to fuzzy sets, 

the excluded middle axioms are not applicable to fuzzy relations.  

Equivalence Relations and Tolerance Relations: The three most significant properties of a 

relation are reflexivity, symmetry and transitivity. A relation R on a universe X may be 

considered as a relation from X to X. The relation R is an equivalence relation if it has the 

properties of reflexivity, symmetry and transitivity. For example, for a matrix relation, the 

following properties will hold: 

Reflexivity:  𝑥𝑖 , 𝑥𝑖 𝜖𝑅 𝑜𝑟 𝐾𝑅 𝑥𝑖 , 𝑥𝑖 = 1 

Symmetry:  𝑥𝑖 , 𝑥𝑗   𝜖 𝑅 →  𝑥𝑗 , 𝑥𝑖  𝜖 𝑅, or, 

𝐾𝑅 𝑥𝑖 , 𝑥𝑗  = 𝐾𝑅(𝑥𝑗 , 𝑥𝑖) 

Transitivity:  𝑥𝑖 , 𝑥𝑗  𝜖 𝑅 𝑎𝑛𝑑  𝑥𝑗 , 𝑥𝑘 𝜖𝑅 →  𝑥𝑖 , 𝑥𝑘 𝜖 𝑅 

Or, 𝐾𝑅 𝑥𝑖 , 𝑥𝑗   𝑎𝑛𝑑 𝐾𝑅 𝑥𝑗 , 𝑥𝑘 =  1 → 𝐾𝑅 𝑥𝑖 , 𝑥𝑘 = 1  
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A crisp tolerance relation R, which is also called a proximity relation, on a universe X is a 

relation that exhibits only the properties of reflexivity and symmetry but not transitivity. 

A tolerance relation R can be reformed into an equivalence relation by at most (n-1) 

compositions with itself, where n is the cardinal number of the set defining R, in this case, 

X. 

Fuzzy tolerance and equivalence relations: A fuzzy relation Rf on a single universe X is 

also a relation from X to X. It is a fuzzy equivalence relation if all three of the following 

properties of the matrix relations define it: 

Reflexivity: 𝜇𝑅𝑓
 𝑥𝑖 , 𝑥𝑖 =  1 

Symmetry: 𝜇𝑅𝑓
 𝑥𝑖 , 𝑥𝑗  =  𝜇𝑅𝑓

(𝑥𝑗 , 𝑥𝑖) 

Transitivity: 

𝜇𝑅𝑓
 𝑥𝑖 , 𝑥𝑗  =  𝜌1 𝑎𝑛𝑑 𝜇𝑅𝑓

 𝑥𝑗 , 𝑥𝑘 =  𝜌2  → 𝜇𝑅𝑓
 𝑥𝑖 , 𝑥𝑘 =  𝜌,               𝑤𝑒𝑟𝑒 𝜌 ≥

min 𝜌1,𝜌2  

3.1.3. Membership Functions, Fuzzification and De-fuzzification 
 

 

 

As shown in the Figure 3.1.3-1, the core of a membership function constitutes those 

values of x for which the membership value is 1. The support of the membership function 

for some fuzzy set is defined as that region of the universe for which the membership 

value is greater than zero. The boundaries of a membership function are constituted by 

that region of the universe for which the membership value is greater than zero but less 

µ(x) 

1 

Core 

Support 

Boundary Boundary 

  Figure 3.1.3-1: Membership Function Showing Core, Boundary and Support 
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than one. A normal fuzzy set is one whose membership function has at least one element 

x in the universe whose set membership value is unity. In fuzzy sets, where only one 

element has membership value equal to unity, the element is generally referred to as the 

prototype of the set or prototypical element.  

A convex fuzzy set is described by a membership function whose membership values 

monotonically increase or monotonically decreases or monotonically increase and then 

monotonically decrease with increasing values for elements in the universe. A special 

property of two convex fuzzy sets, Af and Bf is that the intersection of these sets is also a 

convex fuzzy set.  

The crossover points of a membership function are defined as the elements of the 

universe for which a particular fuzzy set Af has membership values greater than 0.5. The 

height of a fuzzy set Af is the maximum value of its membership function. The most 

common forms of a membership function are those that are normal and convex. However 

subnormal and non-convex membership functions are also possible. Membership 

functions may also be symmetrical or asymmetrical.  

Fuzzification – This is the process of making a crisp quantity fuzzy. Quantities that are 

thought of as crisp or deterministic may in truth have an element of uncertainty associated 

with them. For example, hardware such as a digital voltmeter generates crisp data but the 

data may be subject to experimental / observational errors. A useful though not 

compulsory step is to represent imprecise data as fuzzy sets when that data is used in 

fuzzy systems. 
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Figure 3.1.3-2 shows the comparison of a crisp voltage reading to a fuzzy set, for 

example, “low voltage”. In the figure we see that the crisp reading intersects the fuzzy set 

at a membership value of 0.3, that is, the fuzzy set and the reading can be said to concur 

at a membership value of 0.3. In the lower figure, the intersection of the fuzzy set 

“medium voltage” and a fuzzified voltage reading occurs at a membership of 0.6. We see 

that the set intersection of the two fuzzy sets is a small triangle whose largest membership 

occurs at membership value of 0.6. 

Defuzzification: The output of a fuzzy process needs to be a single scalar quantity as 

opposed to a fuzzy set. Defuzzification is the process of converting a fuzzy quantity to a 

precise quantity. The output of a fuzzy process can be the logical union of two or more 

fuzzy membership functions defined on the universe of discourse of the output variable. 

For example, let us consider a fuzzy output comprising two parts: C1f, a trapezoidal shape 

and C2f, a triangular membership shape. The unification of these two membership 
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Figure 3.1.3-2: Comparison of Fuzzy Set and Crisp of Fuzzy Readings 
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functions involves the max operator, which graphically, is the outer envelope of the two 

shapes as shown in the figure 3.1.3-3 below: 

 

 

A general fuzzy output process can involve many output parts (more than two), and the 

shapes of the membership functions representing each part of the output need not be 

restricted to triangular or trapezoidal. Among the many methods described in literature over 

the years, the following are the most popular when it comes to defuzzifying fuzzy output 

functions: 

a) Max membership principle: Also known as the height method, this scheme is limited 

to peaked output functions. This method is given by the algebraic expression: 
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Figure 3.1.3-3: Union of Two Fuzzy Sets 
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𝜇𝐶𝑓 𝑧 ∗ ≥  𝜇𝐶𝑓 𝑧 ,         𝑓𝑜𝑟 𝑎𝑙𝑙 𝑧 𝜖 𝑍 

b) Centroid method: This method, also called centre of area or centre of gravity is the 

most commonly used and physically appealing of all de-fuzzification methods. It is 

given by the algebraic equation: 

𝑧∗ =  
∫𝜇𝐶𝑓 𝑧 . 𝑧 𝑑𝑧

∫𝜇𝐶𝑓 𝑧 𝑑𝑧
 

c) Weighted average method: The weighted average method is one of the most 

frequently used in fuzzy applications since it is computationally efficient. It is usually 

restricted to symmetrical output membership functions. It is given by the algebraic 

expression: 

𝑧∗ =  
 𝜇𝐶𝑓 𝑧  . 𝑧 

 𝜇𝐶𝑓(𝑧 )
,

𝑤𝑒𝑟𝑒 𝑧  𝑖𝑠 𝑡𝑒 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 𝑜𝑓 𝑒𝑎𝑐 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑒𝑚𝑏𝑒𝑟𝑠𝑖𝑝 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

d) Mean max membership: This method, also called middle-of-maxima, is closely 

related to the first method, except that the locations of the maximum membership can 

be non-unique. This method is given by the expression, 

𝑧∗ =
𝑎 + 𝑏

2
,   𝑤𝑒𝑟𝑒 𝑎 𝑎𝑛𝑑 𝑏 𝑎𝑟𝑒 𝑡𝑒 𝑡𝑤𝑜 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑧 𝑓𝑜𝑟 𝑤𝑖𝑐 𝑚𝑎𝑥𝑖𝑚𝑎 𝑜𝑐𝑐𝑢𝑟𝑠 

e) Centre of sums: This method is not restricted to symmetric membership functions. 

This process involves the algebraic sum of individual output fuzzy sets, say, C1f and 

C2f, instead of their union. The de-fuzzified value is given as follows: 

𝑧∗ =  
 𝜇𝐶𝑓𝑘  𝑧 ∫ 𝑧  𝑑𝑧𝑛

𝑘=1

 𝜇𝐶𝑓𝑘 (𝑧)∫𝑑𝑧𝑛
𝑘=1

 

f) Centre of largest area: If the output set has at least two convex sub-regions, then the 

centre of gravity of the convex fuzzy sub-region with the largest area is used to obtain 

the de-fuzzified value of the output.  

g) First (or last) of maxima: This method uses the overall output or union of all 

individual output fuzzy sets to determine the smallest value of the domain with 

maximized membership degree.  

3.1.4. Fuzzy Logic  
Consider the story of “The Barber of Seville”. In the town of Seville there is a rule that all 

and only those men who do not shave themselves are shaved by the barber. Who shaves 
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the barber? This paradox can only work when the statement is both true and false at the 

same time. This can be shown using set notation. Let S be the proposition that the barber 

shaves himself and 𝑆  (not S) that he does not. Then since, 𝑆 → 𝑆 , and 𝑆  → 𝑆, the two 

propositions are logically equivalent, that is, 𝑆 ↔ 𝑆 . Equivalent propositions have the 

same truth value, that is, 𝑇 𝑆 =  𝑇 𝑆  =  1 − 𝑇(𝑆), which yields the expression, T(S) = 

½. 

As seen, paradoxes reduce to half truths or half-falsities mathematically. Multi-valued 

logic can address a more subtle kind of paradox. Consider the example of a litre –full 

glass of water. Consider the situation wherein the water is removed from the glass 1ml at 

a time. The question is at what point does the glass become empty.  No single ml of water 

represents that decisive value. Rather, the glass transitions from full to empty gradually 

with the removal of water 1ml at a time. 

A fuzzy logic proposition Pf is a statement involving some concept with boundaries that 

are fuzzy and not clearly defined. Most natural language is fuzzy in that it involves vague 

and imprecise terms. The truth value assigned to Pf can be any value in the interval [0,1]. 

Suppose proposition Pf is assigned to fuzzy set Af, the truth value of a proposition for an 

element x is the membership grade of x in the fuzzy set Af. The logical connectives of 

negation, disjunction, conjunction, implication are also defined in a fuzzy logic. The 

connectives are given below for two simple propositions – proposition Pf defined on 

fuzzy set Af and proposition Qf defined on fuzzy set Bf.  

Negation:  𝑇 𝑃𝑓  =  1 − 𝑇(𝑃𝑓) 

Disjunction:   Pf ꓦ Qf : x is Af or Bf   T(Pf ꓦ Qf) = max (T(Pf), T(Qf)) 

Conjunction:  Pf ꓥ Qf: x is Af and Bf  T(Pf ꓥ Qf) = min (T(Pf), T(Qf)) 

Implication:   𝑃𝑓 → 𝑄𝑓 :𝑥 𝑖𝑠 𝐴𝑓 , 𝑡𝑒𝑛 𝑥 𝑖𝑠 𝐵𝑓  

                                 𝑇  𝑃𝑓 → 𝑄𝑓 =  𝑇 𝑃𝑓  𝑉 𝑄𝑓 = max(𝑇 𝑃𝑓  ,𝑇(𝑄𝑓)) 

 

Fuzzy (Rule-Based) Systems: In the field of artificial intelligence there are various ways 

of representing knowledge. The most common way of expressing human knowledge is to 

form it into natural language expression of the type:  

IF premise (antecedent), THEN conclusion (consequent) 

This form is called the if-then rule based form, also known as the deductive form. It 

typically expresses an inference such that if we know a fact (premise or hypothesis or 

antecedent), then we can infer or derive another fact called the consequent. This type of 
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knowledge representation, characterized as shallow knowledge is quite appropriate in the 

context of linguistics, because it expresses human expression or heuristic knowledge in 

our own language of communication. The fuzzy rule based system is most useful in 

modelling some complex systems observed by humans because they make use of 

linguistic variables as their antecedents and consequents. 

3.1.5. Development of Membership Functions 
The process of assigning membership values of function to some fuzzy variables can be 

intuitive or can be based on some algorithmic or logical operations. The following is a list 

of six straightforward methods described in literature to assign membership values or 

functions to fuzzy variables: 

Intuition  

Inference 

Rank ordering 

Neural networks 

Genetic algorithm 

Inductive reasoning 

3.2. Artificial Neural Networks  

3.2.1. Introduction  
[55] A neural network is a massively parallel distributed processor made up of simple 

processing units that has a natural propensity for storing experiential knowledge and making 

it available for use. It resembles the brain in two respects: 

1) A learning process is used by the network to gather knowledge from the environment.  

2) The acquired knowledge is stored in the form of synaptic weights which are nothing 

but inter-neuron connection strengths.  

The learning process is performed by a procedure called a learning algorithm, which changes 

the synaptic weights of the network in an orderly manner to attain a desired design objective.  

Benefits of neural networks: 



26 
 

 Non-linearity – An artificial neural network may be linear or non-linear. A neural 

network, made up of an interconnection of non-linear neurons, is itself non-linear, and 

this non-linearity is distributed throughout the network.  

 Input – Output Mapping – Supervised learning or learning from examples is a popular 

method of updating the synaptic weights. The neural network is fed data which 

consists of an input pattern and a desired response. The actual output of the network is 

typically different from the desired response. Now, the training process updates the 

synaptic weights such that the difference between the actual output and the desired 

output is minimized. This step is performed for an input/output pair chosen at random 

and repeated for other pairs. The process is continued till the time there is no 

significant changes in the synaptic weights between one iteration and the next.  

 Adaptivity – Neural networks have the inherent ability to modify their synaptic 

weights to changes in the surrounding environment. If there are minor changes to the 

operating environment of a trained neural network, then the network can be easily 

retrained to take those changes into account and adapt the synaptic weights 

accordingly.  

 Evidential Response – In the context of pattern classification, a neural network may 

be designed to provide information not only about which particular pattern to select, 

but also about the confidence in the decision made.  

 Contextual Information – The structure and activation state of the neural network 

provides a means of representing knowledge. The activity of any one neuron in the 

network can potentially affect all other neurons. As a result, contextual information is 

dealt with naturally by a neural network.  

 Fault Tolerance – A neural network, implemented in hardware form, has the potential 

to be inherently fault tolerant in the sense that its performance degrades gracefully 

under adverse operating conditions.  

 VLSI Implementability – The massively parallel nature of neural networks makes it 

potentially fast for the computation of certain tasks. This same feature makes a neural 

network well-suited for implementation with VLSI technology.  

 Uniformity of Analysis and Design – Neurons in one form or another represent an 

ingredient common to all neural networks. This commonality makes it possible to 

share theories and learning algorithms in different applications of neural networks. 

Modular networks can be built by a seamless integration of modules.  
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 Neurobiological analogy – The design of a neural network is inspired by the structure 

of the human brain, which is living proof that fault-tolerant parallel processing is not 

only physically possible but also fast and powerful. Neurobiologists draw from 

artificial neural networks as a research tool for the interpretation of neurobiological 

phenomena. On the other hand, engineers draw from neurobiology for new ideas to 

solve problems that are more complex than those based on conventional hardwired 

design techniques.  

Models of a neuron – As shown in Figure 3.2.1-1, there are three basic elements of the 

neuron model: 

 A set of synapses or connecting links, each of which is characterized by a weight or 

strength of its own. Specifically, a signal xj at the input of synapse j connected to 

neuron k is multiplied by synaptic weight wkj. The synaptic weight of an artificial 

neuron may lie in a range that includes negative as well as positive values.  

 An adder for summing the input signals, weighted by the respective synaptic strengths 

of the neuron. 

 An activation function for limiting the amplitude of the output of a neuron. The 

activation function is also referred to as a squashing function because it limits or 

squashes the permissible amplitude range of the output signal to some finite value. 

Typically, the normalized amplitude range of the output of the neuron is written as the 

closed unit interval [0, 1] or alternatively, [-1, 1].  

 

 

Figure 3.2.1-1: Model of a Neuron 
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Types of activation function: 

The activation function, denoted by φ(v), defines the output of a neuron in terms of an 

induced local field v. We identify two basic types of activation function: 

 Threshold Function – For this type of activation function,  

φ (v) = 1, if v is greater than or equal to 0 

       0, if v is less than 0 

Correspondingly, the output of neuron k employing such a threshold function is 

depicted as:  

yk  = 1, if vk is greater than or equal to 0 

         0, if vk is less than 0, 

where vk is the induced local field of the neuron; that is: 

𝑣𝑘 =   𝑤𝑘𝑗 𝑥𝑗

𝑚

𝑗=1

+  𝑏𝑘  

 Sigmoid Function – The sigmoid function, whose graph is „S‟ shaped is by far the 

most common type of activation function used in the construction of neural 

networks. It is defined as a monotonically increasing function and provides a good 

balance between linear and non-linear behaviours. An example of the sigmoid 

function is the logistic function defined by: 

𝜑 𝑣 =  
1

1+exp (−𝑎𝑣)
, where a is the slope parameter of the sigmoid function. The  

sigmoid function assumes a continuous range of values from 0 to 1, whereas the 

threshold function takes a value of either 0 or 1. Also, the sigmoid function is 

differentiable, whereas the threshold function is not.  

 

The above activation functions range from 0 to +1, but it is sometimes desirable to 

have an activation function that ranges from -1 to +1. Such a function is the tanh 

function. 

 

Knowledge Representation – Knowledge refers to stored information or models, used by a 

person or machine to interpret, predict, and appropriately respond to the outside world. 

Knowledge representation is primarily concerned with two considerations: (1) What 

information is actually made explicit, (2) How the information is physically encoded for 

subsequent use. By the very nature of it therefore, knowledge representation is goal oriented. 
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The design of a neural network is based directly on real-life data with the dataset being 

allowed to speak for itself. The examples used to train a neural network may consist of both 

positive and negative examples. The four rules of knowledge representation are: 

 Similar inputs from similar classes generally ought to produce similar 

representations inside the network, and should therefore be grouped as belonging 

to the same class. 

 Items to be classified as separate classes should be given significantly different 

representations in the network. 

 If a particular feature is important then there should be a large number of neurons 

involved in the representation of that item in the network. 

 Prior information and invariances should be built into the design of the neural 

network, whenever they are available, in order to simplify the network design by 

its not having to learn them. 

Learning Processes – The learning process may be supervised or unsupervised. Under 

supervised learning, the neural network is trained with examples that include inputs and 

outputs. Under unsupervised learning process, the examples do not have an expected output. 

3.2.2. Rosenblatt’s Perceptron  
The perceptron is the simplest form of neural network used for classification of patterns said 

to be linearly separable (that is, lying of opposite sides of a hyperplane). It is nothing but a 

single neuron with adjustable synaptic weights and bias. A perceptron built around a single 

neuron can perform pattern classification with only two classes. By expanding the output 

layer of the perceptron to include more than one neuron, we may correspondingly perform 

classification with more than two classes. However in order that the perceptron may work 

properly, the classes have to be linearly separable. Rosenblatt proved that if the patterns used 

to train the perceptron are drawn from two linearly separable classes, then the perceptron 

algorithm converges and positions the decision surface in the form of a hyperplane between 

the two classes. This is the perceptron convergence theorem. The neural model consists of a 

linear combiner followed by a hard limiter. The summing node of the neural model performs 

a linear combination of the inputs applied to its synapses as well as incorporates an externally 

applied bias. The resulting sum, that is, the induced local field is applied to a hard limiter. 

Accordingly, the neuron produces an output of +1 if the hard limiter input is positive, and -1 

if it is negative.  
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The induced local field is given by: 

𝑣 =   𝑤𝑖𝑥𝑖

𝑚

𝑖=1

+  𝑏 

Where w1, w2, wm etc are the synaptic weights, x1, x2, xm etc are inputs and b is the externally 

applied bias. The goal of the perceptron is to correctly classify the set of externally applied 

stimuli x1, x2,…xm etc into two classes, C1 and C2. The decision rule of the classification is to 

assign the point represented by the inputs x1, x2,…xm to class C1 if perceptron output y is +1 

and class C2 if y is -1. In the simplest form of the perceptron, there are two decision regions 

separated by a hyperplane, which is defined by: 

 𝑤𝑖𝑥𝑖

𝑚

𝑖=1

+  𝑏 = 0 

The effect of the bias b is merely to shift the decision boundary away from the origin. 

The synaptic weights, w1, w2,…wm of the perceptron can be adapted on an iteration-by-

iteration basis till the time comes when the weights do not change for increasing iterations.  

3.2.3. The Least Mean Square Algorithm 
The least mean square (LMS) algorithm developed by Widrow and Hoff was the first linear 

adaptive filtering algorithm developed for solving problems like prediction. Development of 

the LMS was inspired by the perceptron. Though the LMS and perceptron have different 

applications, they both involve the use of a linear combiner.  Where computational 

complexity is concerned, the LMS algorithm‟s complexity is linear with respect to adjustable 

parameters. This makes the algorithm computationally efficient yet effective in performance. 

Simple to code and easy to build, importantly, the algorithm is robust with respect to external 

disturbances.  

From an engineering perspective, the above qualities of LMS are highly desirable. Hence, the 

popularity of the LMS algorithm has remained intact over the years.  

Consider an unknown dynamic system that is stimulated by an input vector consisting of the 

elements, x1(i), x2(i),…xm(i), where “i” denotes the instant of time at which the stimulus is 

applied to the system. The time index, i = 1,2,…n. In response to the stimulus, the system 
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produces the output y(i). Thus the external behaviour of the system is described by the data 

set: 

D: {x(i), d(i); i = 1,2,…n,…} 

Where x(i) = [x1(i), x2(i),…xm(i)]
T
 

The sample pairs constituting D are identically distributed according to an unknown 

probability law. The dimension M pertaining to the input vector x(i) is referred to as the 

dimensionality of the input vector space. The stimulus x(i) can may be spatial or temporal. 

 The M elements of x(i) originate in different points in space. In this case, we refer to 

x(i) as a snapshot of data.  

 The M elements of x(i) represent the set of present and (M-1) past values of some 

excitation that are uniformly spaced in time.  

We address the problem of how to design a multiple-input-single-output model of an 

unknown dynamic system by building it around a single linear neuron. The neural model 

operates under the influence of an algorithm that controls necessary adjustments to the 

synaptic weights of the neuron, with the following points in mind: 

 The algorithm starts from an arbitrary setting of the neuron‟s synaptic weights. 

 Continuous adjustments to the synaptic weights in response to the statistical variations 

in the system‟s behaviour are made. 

 Computations of adjustments to the synaptic weights are completed inside an interval 

that is one sampling period long.  

The neural model just described is referred to as an adaptive filter. Figure 3.2.3-1 below 

shows the signal flow graph of an adaptive filter: 
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Figure 3.2.3-1: Signal Flow Graph of an Adaptive Filter 

Its operation consists of two continuous processes: 

1. Filtering process, which involves computation of two signals: 

 An output denoted by y(i) that is produced in response to the M elements of the 

stimulus vector x(i).  

 An error signal denoted by e(i) that is obtained by comparing the output y(i) with the 

corresponding output d(i) produced by the unknown system. In effect, d(i) acts as a 

desired response. 

2. Adaptive process, which involves the automatic adjustment of the synaptic weights of 

the neuron in accordance with the error signal e(i).  

As shown in Figure 3.2.3-1, the combination of the above two processes acting together 

constitutes a feedback loop acting around the neuron. Since the neuron is linear, the output 

y(i) is exactly equal to the induced local field v(i); that is, 

𝑦 𝑖 =  𝑣 𝑖 =   𝑤𝑘 𝑖 𝑥𝑘(𝑖)

𝑀

𝑘=1

 

Where w1(i), w2(i),…wM(i) are the M synaptic weights of the neuron measured at time i. The 

neuron‟s output y(i) is compared with the corresponding output d(i) which is the desired 

output of the unknown system at time i. Generally, y(i) is different from d(i), which results in 

the error signal  

𝑒 𝑖 =  𝑑 𝑖 −  𝑦(𝑖) 
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The manner in which the error signal e(i) is used to control the adjustments to the neuron‟s 

synaptic weights is determined by the cost function used to derive the adaptive filtering 

algorithm of interest.  

The least means square (LMS) algorithm is designed to minimize the instantaneous value of 

the cost function 

휀 𝒘  =  
1

2
 𝑒2(𝑛) 

Where e(n) is the error signal measured at time n. Differentiating the above equation yields: 

𝛿휀(𝒘 )

𝛿𝒘 
= 𝑒 𝑛 

𝛿𝑒(𝑛)

𝛿𝒘 
 

The LMS algorithm works with a linear neuron. So the error signal may be expressed as  

𝑒 𝑛 = 𝑑 𝑛 −   𝒙𝑇 𝑛 𝒘 (𝑛) 

Hence, 

𝛿𝑒(𝑛)

𝛿𝒘 (𝑛)
=  −𝑥 𝑛 𝑒 𝑛  

Using the latter result as the instantaneous estimate of the gradient vector, we may write 

𝒈  𝑛 =  −𝒙 𝑛 𝑒(𝑛) 

Finally, we may formulate LMS algorithm as follows: 

𝒘  𝑛 + 1 =  𝒘  𝑛 +  𝜂𝒙 𝑛 𝑒(𝑛) 

It is worth noting that the inverse of the learning rate parameter η acts as a measure of the 

memory of the LMS algorithm: The smaller we make η, the longer the memory span over 

which LMS algorithm remembers past data will be. Consequently, the LMS algorithm 

performs accurately when η is small, but the convergence rate of the algorithm is slow.  

3.2.4. Virtues and Limitations of the LMS Algorithm 
Computational simplicity and efficiency – Two virtues of the LMS algorithm are 

computational simplicity and efficiency. Coding of the algorithm consists of two or three 

lines. Computational complexity is linear in the number of adjustable parameters.  
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Robustness – The algorithm is robust with respect to external disturbances.  

The primary limitations of the LMS algorithm are its slow rate of convergence and its 

sensitivity to variations in the eigenstructure of the input. The LMS algorithm typically 

requires a number of iterations equal to about 10 times the dimensionality of the input space 

for it to reach a steady state condition. The slow rate of convergence of the LMS algorithm 

becomes particularly serious when the dimensionality of the input space becomes high. 

3.3. Multilayer Perceptron / Back Propagation Algorithm  

3.3.1. Introduction  
The multi-layer perceptron is designed to overcome the limitations of Rosenblatt‟s perceptron 

and the LMS algorithm. The following points highlight the basic features of multi-layer 

perceptrons: 

 The model of each neuron in the network includes a non-linear activation function 

that is differentiable. 

 The network contains one or more layers that are hidden from the output as well as 

the input nodes. 

 The network exhibits a high degree of connectivity, the extent of which is determined 

by the synaptic weights of the network. 

On the flip side, because of the hidden nodes, our knowledge of the working of the network is 

incomplete. Firstly, the theoretical analysis of a multilayer perceptron is difficult to undertake 

owing to the presence of a distributed form of non-linearity and the high connectivity of the 

network. Secondly, the learning process is harder to visualize owing to the presence of hidden 

neurons. 

A popular method of training the multilayer perceptron is the back-propagation algorithm, 

which includes the LMS algorithm as a special case. The training proceeds in two phases: 

 In the forward phase, the synaptic weights of the network are unchanged and the input 

signal is propagated through the network, one layer at a time, till it reaches the output. 

Hence, in this phase, changes are confined to the activation potentials and the outputs 

of the neurons in the network. 



35 
 

 In the backward phase, an error signal is produced by comparing the output of the 

network with the desired response. The resulting error signal is propagated through 

the network, layer by layer, in the backward direction. In the second phase, successive 

adjustments are made to the synaptic weights of the network. Calculation of the 

adjustments for the output layer is straightforward, but it is much more complicated 

for the hidden layer. 

The development of the back-propagation algorithm was very significant in neural networks 

in that in that it provided a computationally efficient method for training multi-layer 

perceptrons. 

 

Figure 3.3.1-1: Architecture of a Multi-Layer Perceptron 

The Figure 3.3.1-1 shows the architecture of a multilayer perceptron with two hidden layers. 

The network shown here is fully connected. This means that a neuron in any layer of the 

network is connected to all the neurons in the previous layer. Signal flow through the network 

progresses in the forward direction, from left to right, on a layer-by-layer basis. There are two 

kinds of signals: 

 Function signals – A function signal is an input signal or stimulus that comes in at the 

input end of the network, propagates forward, layer-by-layer and emerges at the 

output end of the network. At each neuron of the network through which the function 

signal passes, the signal is calculated as a function of the inputs and the associated 

weights applied to the neuron. The function signal is also referred to as the input 

signal. 
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 Error signals – An error signal originates at the output neuron of the network and 

propagates backward through the network.  

The first hidden layer is fed from the input layer made up of sensory units (source nodes); the 

resulting outputs of the first hidden layer are applied to the next hidden layer, and so on, for 

the rest of the network.  

Each hidden or output neuron of a multilayer perceptron is meant to perform two 

computations: 

 The calculation of the function signal appearing at the output of each neuron, which is 

expressed as a continuous non-linear function of the input signal and synaptic weights 

associated with that neuron. 

 The calculation of an estimate of the gradient vector (i.e., the gradients of the error 

surface with respect to the weights connected to the inputs of a neuron), which is 

needed for a backward pass through the network. 

The hidden neurons which act as feature detectors play a critical role in the operation of 

multilayer perceptrons. With the progress of the learning process, the hidden neurons 

gradually begin to discover the important features that characterize the training data. They do 

so by performing a non-linear transformation of the input data into a new space called the 

feature space. In this new space, the classes of interest in a pattern classification task may be 

separated more easily from each other than could be the case in the original input data space. 

Note the Rosenblatt‟s perceptron has no concept of feature space. 

Credit assignment problem – The credit assignment problem is the problem of assigning 

credit or blame for overall outcomes to each of the internal decisions made by the hidden 

computational units of the distributed learning system, recognizing that those decisions are 

responsible for the overall outcomes in the first place. In order to perform a designated task, 

the neural network must assign certain kinds of behaviour to all of its neurons through a 

specification of the error correction learning algorithm. It is possible to supply a desired 

response to guide the behaviour of an output neuron since each output neuron is visible to the 

outside world. Thus as far as output neurons are concerned, it is easy and straightforward to 

adjust the synaptic weights of each output neuron in accordance with the error-correction 

algorithm. However, doing the same thing for the hidden neurons is more involved. 
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3.3.2. Batch Learning and Online Learning  
Consider a multilayer perceptron with an input layer of source nodes, one or more hidden 

layers and an output layer consisting of one or more neurons. Let 

𝑇 =  𝑥 𝑛 ,𝑑 𝑛  𝑁𝑛=1 

denote the training sample used to train the network in a supervised manner. Let yj(n) denote 

the function signal produced at the output of neuron j in the output layer by the stimulus x(n) 

applied to the input layer. Correspondingly, the error signal produced at the output of neuron 

j is defined by 

𝑒𝑗  𝑛 =  𝑑𝑗  𝑛 −  𝑦𝑗 (𝑛) 

where dj(n) is the jth element of the desired response vector d(n). The instantaneous error 

energy of neuron j is defined as: 

휀𝑗  𝑛 =  
1

2
 𝑒𝑗

2(𝑛) 

The total instantaneous error energy of the entire network is: 

휀 𝑛 =   휀𝑗 (𝑛)

𝑗  𝜖  𝐶

 

=  
1

2
  𝑒𝑗

2(𝑛)

𝑗𝜖𝐶

 

where the set C includes all the neurons in the output layer. With the training samples 

consisting of N examples, the error energy averaged over the training samples, or the 

empirical risk, is defined as: 

휀𝑎𝑣 𝑛 =  
1

2
 휀(𝑛)

𝑁

𝑛=1

 

=  
1

2𝑁
   𝑒𝑗

2(𝑛)

𝑗𝜖𝐶

𝑁

𝑛=1

 

Batch Learning – In the batch method of supervised learning, adjustments to the synaptic 

weights of the multilayer perceptron are performed after all the N examples in the training 
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sample T have been presented - this constitute one epoch of training. The cost function for 

batch learning is given by the average error energy εav. The synaptic weights of the multilayer 

perceptron are adjusted on an epoch-by-epoch basis. The advantages of batch learning are 

given below: 

 Accurate estimation of the gradient vector (i.e., the derivative of the cost function εav 

with respect to the weight vector w), thereby guaranteeing under simple conditions, 

convergence of the method of steepest descent to a local minimum; 

 Parallelization of the learning process. 

However, from a practical perspective, batch learning is rather demanding in terms of storage 

requirements. 

On-line learning – In the on-line method of supervised learning, the synaptic weights of the 

multi-layer perceptron are adjusted on an example-by-example basis. Therefore, the cost 

function to be minimized is the total instantaneous error energy ε(n). Since the training 

examples are presented to the network randomly, online learning is sometimes referred to as 

a stochastic method. The stochasticity has the desirable effect of making it less likely for the 

learning process to be trapped in a local minimum, which is a definite advantage of online 

learning over batch learning. Another advantage of on-line learning is the fact that it requires 

much less storage than batch learning. When training data is redundant, on-line learning is 

able to take advantage of this redundancy because examples are presented one at a time. 

Another useful property of on-line learning is its ability to track small changes in the training 

data. On-line learning is popular for two important practical reasons: 

 On-line learning is simple to implement.  

 It provides effective solutions to large-scale and difficult pattern-classification 

problems. 

3.3.3. The Back Propagation Algorithm  
The popularity of online learning for the supervised training of multilayer perceptrons has 

been further enhanced by the development of the back propagation algorithm. To describe 

this algorithm, consider the Figure 3.3.3-1 below: 
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Figure 3.3.3-1: Signal Flow Graph Highlighting the Details of Output Neuron 'j' 

It depicts neuron j being fed by a set of function signals produced by a layer of neurons to 

its left. The induced local field vj(n) produced at the input of the activation function 

associated with neuron j is therefore: 

𝑣𝑗  𝑛 =   𝑤𝑗𝑖  𝑛 𝑦𝑖(𝑛)

𝑚

𝑖=0

 

Where m is the total number of inputs excluding the bias applied to neuron j. The 

synaptic weight wj0 (corresponding to the fixed input y0 = +1) equals the bias bj applied to 

neuron j. Hence the function signal yj(n) appearing at the output of neuron j at iteration n 

is: 

𝑦𝑗  𝑛 =   𝜑𝑗 (𝑣𝑗  𝑛 ) 

The back-propagation algorithm applies a correction Δwji(n) to the synaptic weight wji(n), 

which is proportional to the partial derivative 
𝛿휀 (𝑛)

𝛿𝑤𝑗𝑖 (𝑛)
. According to the chain rule of 

calculus, we may express the gradient as: 

𝛿휀(𝑛)

𝛿𝑤𝑗𝑖 (𝑛)
=  

𝛿휀(𝑛)

𝛿𝑒𝑗 (𝑛)
 
𝛿𝑒𝑗 (𝑛)

𝛿𝑦𝑗 (𝑛)
 
𝛿𝑦𝑗 (𝑛)

𝛿𝑣𝑗 (𝑛)
 
𝛿𝑣𝑗 (𝑛)

𝛿𝑤𝑗𝑖 (𝑛)
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The partial derivative  
𝛿휀 (𝑛)

𝛿𝑤𝑗𝑖 (𝑛)
 represents a sensitivity factor, determining the direction of 

search in weight space for the synaptic weight wji. Now, 

𝛿휀 (𝑛)

𝛿𝑒𝑗  𝑛 
=  𝑒𝑗 (𝑛); 

𝛿𝑒𝑗 (𝑛)

𝛿𝑦𝑗  𝑛 
=  −1; 

𝛿𝑦𝑗 (𝑛)

𝛿𝑣𝑗  𝑛 
=  𝜑𝑗

′ (𝑣𝑗  𝑛 ); 
𝛿𝑣𝑗 (𝑛)

𝛿𝑤𝑗𝑖  𝑛 
= 𝑦𝑖(𝑛) 

Therefore, 
𝛿휀 (𝑛)

𝛿𝑤𝑗𝑖 (𝑛)
=  −𝑒𝑗  𝑛 𝜑𝑗

′  𝑣𝑗  𝑛  𝑦𝑖(𝑛) 

The correction Δwji(n) applied to wji(n) is defined by the delta rule, or 

∆𝑤𝑗𝑖  𝑛 =  −𝜂
𝛿휀(𝑛)

𝛿𝑤𝑗𝑖 (𝑛)
  

Where η is the learning rate parameter of the back propagation algorithm. The use of 

minus sign accounts for gradient descent in weight space (i.e., seeking a direction for 

weight change that reduces the value of ε(n)). 

Stopping criteria – In general, the back-propagation algorithm cannot be shown to 

converge, and there are no well-defined criteria for stopping its operation. Rather, there 

are some reasonable criteria, each with its own practical merit, which may be used to 

terminate the weight adjustments.  

The back propagation algorithm is considered to have converged when the Euclidean 

norm of the gradient vector reaches a sufficiently small gradient threshold.  

Another criterion for convergence is: 

The back-propagation algorithm is considered to have converged when the absolute rate 

of change in the average squared error per epoch is sufficiently small. 

The rate of change of the average squared error is typically considered to be small enough 

if it lies in the range of 0.1 to 1 percent per epoch. Unfortunately, this criterion may result 

in premature termination of the learning process. 

3.3.4. Virtues of Back Propagation Learning  
The back-propagation algorithm is a computationally efficient technique for computing the 

gradients (i.e., first order derivatives) of the cost function ε(w), expressed as a function of the 

adjustable parameters (synaptic weights and bias terms) that characterize the multilayer 

perceptron.  

The computational power of the algorithm is derived from two distinct properties: 

 The back-propagation algorithm is simple to compute locally.  
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 It performs stochastic gradient descent in weight space, when the algorithm is 

implemented in its on-line (sequential) mode of learning. 

 

3.4. Support Vector Machines  

3.4.1. Introduction  
The advantage of the multilayer perceptron trained with back-propagation algorithm is its 

simplicity, but the algorithm is slow to converge and is not optimal. In this section, 

another class of feedforward network, called support vector machines, is presented. 

Basically, the support vector machine is an elegant binary learning machine. Given a 

training sample, the support vector machine constructs a hyperplane as the decision 

surface in such a way that the margin of separation between positive and negative 

samples is maximized. This basic idea is extended in a systematic manner to deal with 

patterns that are difficult to separate non-linearly. 

At the heart of the development of the support vector machine is the notion of the inner-

product kernel between the support vector xi and a vector x drawn from the input data 

space. Most importantly, the support vectors consist of a small subset of data points 

extracted by the learning algorithm from the training sample itself. Indeed, it is because of 

this central property, the learning algorithm, involved in the construction of the support 

vector machine is also referred to as the kernel method.  

The support vector machine can be used to solve both pattern classification and non-

linear regression problems. However, their impact has been mostly felt in case of 

classification of non-linearly separable patterns.  

3.4.2. Optimal Hyperplane for Linearly Separable Patterns  
Consider the training sample  𝑥𝑖 ,𝑑𝑖 

 𝑁
𝑖=1

, where xi is the input pattern for the i-th 

example and di is the corresponding desired response (target output). In the beginning, let 

us assume that the pattern (class) represented by the subset di = +1 and the pattern 

represented by the subset di = -1 are linearly separable. The equation of a decision surface 

in the form of a hyperplane that does the separation is 

𝑤𝑇𝑥 + 𝑏 = 0 
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Where x is an input vector, w is an adjustable weight vector and b is the bias. We may 

thus write 

𝑤𝑇𝑥𝑖 +  𝑏 ≥ 0       𝑓𝑜𝑟 𝑑𝑖 =  +1  

𝑤𝑇𝑥𝑖 +  𝑏 < 0      𝑓𝑜𝑟  𝑑𝑖 =  −1 

For a given weight vector w and bias b, the separation between the hyperplane and the 

nearest data point is known as the margin of separation, denoted by ρ. The aim of a 

support vector machine is to find the particular hyperplane for which the margin of 

separation, ρ, is maximized. If this condition is met, the decision surface is referred to as 

the optimal hyperplane. Such an optimal hyperplane is depicted in the Figure 3.4.2-1 

below: 

 

Figure 3.4.2-1: The Optimal Hyperplane of a Support Vector Machine 

Let w0 and b0 denote the optimum values of the weight vector and bias respectively. 

Correspondingly, the optimal hyperplane, representing a multidimensional linear decision 

surface in the input space, is defined by 

𝒘0
𝑇𝒙 + 𝑏0 = 0 

The discriminant function gives an algebraic measure of the distance from x to the 

optimal hyperplane: 𝑔 𝒙 = 𝒘0
𝑇𝒙 + 𝑏0    

The easiest way to see this is to express x as: 

𝑥 = 𝑥𝑝 +  𝑟 
𝑤0

| 𝑤0 |
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Where xp is the normal projection of x on to the optimal hyperplane and r is the desired 

algebraic distance; r is positive if x is on the positive side of the optimal hyperplane and is 

negative if x is on the negative side. Since, by definition, g(xp) = 0, it follows that 

𝑔 𝒙 = 𝒘0
𝑇𝒙 + 𝑏0 = 𝑟| 𝒘0 |  

Or equivalently,  

𝒓 =
𝑔(𝒙)

| 𝒘0 |
 

Particularly, the distance from the origin to the optimal hyperplane is given by b0/||w0||.  

If b0 > 0, the origin is on the positive side of the optimal hyperplane; if b0 < 0, it is on the 

negative side. If b0 = 0, the optimal hyperplane passes through the origin. Now we need to 

find the parameters w0 and b0 for the optimal hyperplane, given a training set. The 

particular data points (xi, di) for which  

𝒘0
𝑇𝒙 + 𝑏0 = 1 

is satisfied are called support vectors – hence the name “support vector machines”. All 

the remaining examples in the training sample are completely irrelevant. Generally 

speaking, the support vectors are those data points that lie closest to the optimal 

hyperplane and are most difficult to classify. As such, they have a direct bearing on the 

optimum location of the decision surface.  

Consider a support vector x
(s)

 for which d
(s)

 = +1. Then, by definition we have,  

𝑔 𝒙 𝑠  =  𝒘0
𝑇𝒙 + 𝑏0 =  ±1,      𝑓𝑜𝑟  𝑑 𝑠 =  ±1 

The algebraic distance of the support vector x
(s)

 to the optimal hyperplane is 

𝑟 =  
𝑔(𝒙 𝑠 )

| 𝒘0 |
 

 

Let ρ denote the optimum value of the margin of separation between the two classes that 

constitute the training sample. Then, it follows that, 

𝜌 = 2𝑟 

=  
2

| 𝑤0 |
 

Maximizing the margin of separation between binary classes is same as minimizing the 

Euclidean norm of the weight vector w. 
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3.4.3. The Support Vector Machine Viewed As a Kernel Machine  
Inner Product Kernel – Let x denote a vector drawn from input space of dimension m0. Let 

{φj(x)}represent a set of non-linear functions that, between them, transform the input space of 

dimension m0 to a feature space of infinite dimensionality. Given this transformation, the 

hyperplane acting as a decision surface may be defined in accordance with the formula 

 𝑤𝑗  𝜑𝑗  𝒙 = 0

∞

𝑗=1

 

Where {wj} denotes an infinitely large set of weights that transforms the feature space into 

the output space. It is in the output space where the decision is made on whether the input 

vector x belongs to one of two possible classes, positive or negative. Using matrix notation, 

𝒘𝑇𝜱 𝒙 =  0 

Where 𝜱 𝒙  is the feature vector and w is the corresponding weight vector. We seek linear 

separability of the transformed patterns in the feature space.  

The scalar term φ
T
(xi)φ(x) is an inner product. Accordingly, let this inner product term be 

denoted as the scalar  

𝒌 𝒙,𝒙𝒊 =  𝜱𝑻(𝒙𝒊)𝜱(𝒙) 

=   𝜑𝑗  𝑥𝑖 𝜑𝑗  𝑥 

∞

𝑗=1

,                     𝑖 = 1,2,3,… .𝑁𝑠 

K(x, xi) is the kernel, which is a function that calculates the inner product of the images 

produced in the feature space under the embedding Φ of two data points in the input space. 

The kernel k(x, xi) is a function that has two basic properties: 

Property 1: The function k(x, xi) is symmetric about the centre point xi, that is, 

𝑘 𝑥, 𝑥𝑖 =  𝑘  𝑥𝑖 , 𝑥        𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 

The function attains its maximum value at point x = xi.  

Property 2: The total volume under the surface of the kernel k(x, xi) is constant.  

The Kernel Trick – We can now make two important observations: 
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 Where pattern classification in the output space is concerned, specifying the kernel 

k(x, xi) is sufficient; in explicit computation the weight vector w0 is not needed. This 

is commonly referred to as the kernel trick.  

 Though it has been assumed that the feature space could be of infinite dimensionality, 

the definition of the optimal hyperplane consists of a finite number of terms that is 

equal to the number of training patterns used in the classifier. 

Because of the above observations, the support vector machine is also referred to as the 

kernel machine. For pattern classification, the machine is parameterized by an N-dimensional 

vector whose i-th term is specified by the product αidi, for i = 1,2,…,N. 

We may view k(xi, xj) as the ij-th element of the symmetric N-by-N matrix 

𝑲 =  𝑘 𝑥𝑖 , 𝑥𝑗   
𝑁

𝑖 ,𝑗=1
 

The matrix K is a non-negative definite matrix called the kernel matrix; it is also referred to 

simply as the Gram. It is non-negative definite or positive semi-definite in that it satisfies the 

condition  

𝒂𝑻𝑲𝒂 ≥ 0 

For any real valued vector a whose dimension is compatible with that of K. 
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4. Design of Experiments  
A set of five experiments have been conducted as part of the work. As part of the first 

experiment, a fuzzy expert system has been developed for diagnosing schizophrenia. This 

expert system is harnessed as part of Experiment-2 to generate a synthetic dataset for training 

artificial neural networks for diagnosing schizophrenia. Experiments 3, 4 and 5 shed light on 

various points observed when an artificial neural network, a support vector machine and a 

fuzzy clustering utility are fed this synthetic data. 

4.1. Experiment 1 – Design of the Fuzzy Inference System for 

Diagnosing Schizophrenia 
A fuzzy logic based system has been developed that captures the expertise of the 

psychiatrist in diagnosing the condition. The solution was based on the diagnosis of 

schizophrenia based on the Diagnostic and Statistical Manual of Mental Disorders, 5
th

 

edition (DSM-5) criteria [2]. According to these criteria, the subject must experience at 

least two of the following: delusions, hallucinations, disorganized speech, grossly 

disorganized or catatonic behaviour and negative symptoms. Out of the two symptoms, if 

one is either catatonic behaviour or negative symptoms then the other must be delusions 

or hallucinations or disorganized speech. The solution is based on six fuzzy inference 

systems (FIS), the outputs of five of which serve as inputs to the sixth. Schizophrenia is a 

psychotic illness and has a lot in common with other psychotic illnesses and mania. The 

final diagnosis of schizophrenia and in general the degree of psychosis manifested in the 

subject‟s behaviour is evident in the crisp output of the sixth fuzzy inference system. 

Fuzzy based systems have successfully been deployed to diagnose diseases, in particular 

heart disease and diseases of the thyroid gland [56]. In this work, we have cascaded a set 

of FIS‟s for diagnosing schizophrenia.  

A fuzzy inference system accepts crisp inputs from the user, fuzzifies it and passes it to 

the inference engine. The inference engine generates an output depending on the rules of 

the knowledge base, de-fuzzifies it and gives the user a crisp output. There are several 

methods of de-fuzzifying the output of which we used the centroid method, which is the 

most popular. The fuzzification of the input is done with the help of membership 

functions. In the world of fuzzy logic, it is rarely black and white, but rather it is all 

various shades of gray. A membership function dictates how black or how white a 

variable is on a scale of 0 to 1. This is called the degree of membership. Apart from input 

membership functions, there are output membership functions. Besides the membership 
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functions, there are rules which determine how the inputs affect the output. The schematic 

of the FIS‟s is shown below in the Figure 4.1-1: 

 

Figure 4.1-1: Cascaded Fuzzy Inference Systems 

FIS-1 measures the subject‟s delusions, FIS-2 measures his hallucinations, FIS-3 

measures the degree of disorganized speech, FIS-4 measures the degree of highly 

disorganized or catatonic behaviour, while FIS-5 measures the level of negative 

symptoms evident in the subject‟s behaviour. The outputs of each of FIS-1, FIS-2, FIS-3, 

FIS-4 and FIS-5 serve as inputs for FIS-6. The PANSS scale is mapped to the following 

items, as given in Table 4.1-1: 

Table 4.1-1: Symptoms of Schizophrenia as Noted on the PANSS Scale 

Delusions Passive / Apathetic Social 

Withdrawal 

Motor Retardation 

Conceptual Disorganization Difficulty in Abstract 

Thinking 

Uncooperativeness 

Hallucinatory Behaviour Lack of Spontaneity and 

Flow of Conversation 

Unusual Thought Content 

Excitement Stereotyped Thinking Disorientation 

Grandiosity Somatic Concern Poor Attention 

Suspiciousness / Persecution Anxiety Lack of Judgement and 

Insight 

Hostility Guilt Feelings Disturbance of Volition 
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Blunted Affect Tension Poor Impulse Control 

Emotional Withdrawal Mannerisms and Posturing Preoccupation 

Poor Rapport Depression Active Social Avoidance 

 

These PANSS items are selectively mapped to the subject‟s level of delusions, 

hallucinations, disorganized speech, highly disorganized or catatonic behaviour and 

negative symptoms. The mapping is shown below in Table 4.1-2: 

Table 4.1-2: Mapping of PANSS Item to DSM-5 Trait 

DSM-5 Trait PANSS Item Degree of Impact on DSM-

5 Trait 

Delusion Delusions High 

Suspiciousness / Persecution 

Hostility 

Unusual Thought Content 

Disturbance of Volition 

Conceptual Disorganization 

Grandiosity Medium 

Lack of Judgement 

Uncooperativeness 

Anxiety Low 

Guilt 

Hallucination Hallucinatory Behaviour  High 

Disturbance of Volition 

Poor Impulse Control Medium 

Somatic Concern Low 

Disorganized Speech Stereotyped Thinking High 

Lack of Spontaneity 

Difficulty in Abstract 

Thinking 

Medium 

Disorientation Low 

Grossly Disorganized or 

Catatonic Behaviour 

Mannerisms and Posturing High 

Motor Retardation 



49 
 

Stereotyped Thinking 

Depression 

Excitement 

Anxiety Medium 

Disorientation 

Tension 

Poor Attention Low 

Preoccupation 

Negative Symptoms Blunted Affect High 

Emotional Withdrawal 

Social Avoidance 

Passive / Apathetic Social 

Withdrawal 

Poor Rapport Medium 

Lack of Spontaneity and 

Flow of Conversation 

Difficulty in Abstract 

Thinking 

Low 

Stereotyped Thinking 

 

Each of FIS-1, FIS-2, FIS-3, FIS-4 and FIS-5 receives several inputs and each input is 

associated with two membership functions – “ofconcern” and “notofconcern”. There is a 

rule base that determines how the inputs – which are  fuzzified by the membership 

functions – determine the fuzzified output. Each FIS has a single output variable that is 

associated with three membership functions – “low”, “medium” and “high”. A de-

fuzzification technique based on the centroid method is chosen that generates a crisp 

output for the FIS. This output is given as input to FIS-6. As a specific example, the 

schematic of FIS-2 which evaluates the subject‟s hallucinations is given below: 
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Figure 4.1-2: Structure of the FIS for Measuring Hallucinations 

The rule bases: 

The rule base for FIS-1 is given as: 

Rule1: If “Delusions” is “ofconcern” or “Suspiciousness” is “ofconcern” or “Hostility” is 

“ofconcern” or “Unusual Thought Content” is “ofconcern” or “Disturbance of volition” is 

“ofconcern” or “Conceptual Disorganization” is “ofconcern”, then “Delusions” is “high” 

Rule2: If “Delusions” is “notofconcern” and “Suspiciousness” is “notofconcern” and 

“Hostility” is “notofconcern” and “Unusual Thought Content” is “notofconcern” and 

“Disturbance of volition” is “notofconcern” and “Conceptual Disorganization” is 

“notofconcern” and “Grandiosity” is “ofconcern”, then “Delusions” is “medium” 

Rule3: If “Delusions” is “notofconcern” and “Suspiciousness” is “notofconcern” and 

“Hostility” is “notofconcern” and “Unusual Thought Content” is “notofconcern” and 

“Disturbance of volition” is “notofconcern” and “Conceptual Disorganization” is 

“notofconcern” and “Lack of judgement” is “ofconcern”, then “Delusions” is “medium” 

Rule4: If “Delusions” is “notofconcern” and “Suspiciousness” is “notofconcern” and 

“Hostility” is “notofconcern” and “Unusual Thought Content” is “notofconcern” and 

“Disturbance of volition” is “notofconcern” and “Conceptual Disorganization” is 

“notofconcern” and “Uncooperativeness” is “ofconcern”, then “Delusions” is “medium” 

Rule5: If “Delusions” is “notofconcern” and “Suspiciousness” is “notofconcern” and 

“Hostility” is “notofconcern” and “Unusual Thought Content” is “notofconcern” and 

“Disturbance of volition” is “notofconcern” and “Conceptual Disorganization” is 

“notofconcern” and “Uncooperativeness” is “notofconcern” and “Anxiety” is “ofconcern” 

, then “Delusions” is “low” 
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Rule6: If “Delusions” is “notofconcern” and “Suspiciousness” is “notofconcern” and 

“Hostility” is “notofconcern” and “Unusual Thought Content” is “notofconcern” and 

“Disturbance of volition” is “notofconcern” and “Conceptual Disorganization” is 

“notofconcern” and “Uncooperativeness” is “notofconcern” and “Guilt” is “ofconcern” , 

then “Delusions” is “low” 

Rule7: If “Delusions” is “notofconcern” and “Suspiciousness” is “notofconcern” and 

“Hostility” is “notofconcern” and “Unusual Thought Content” is “notofconcern” and 

“Disturbance of volition” is “notofconcern” and “Conceptual Disorganization” is 

“notofconcern” and “Uncooperativeness” is “notofconcern” and “Anxiety” is 

“notofconcern” and “Guilt” is “notofconcern” , then “Delusions” is “low” 

 

The rule base for FIS-2 is given as: 

Rule1: If “Hallucinatory behaviour” is “ofconcern” or “Disturbance of volition” is 

“ofconcern”, then “Hallucinations” is “high” 

Rule2: If “Hallucinatory behaviour” is “notofconcern” and “Disturbance of volition” is 

“notofconcern” and “Poor impulse control” is “ofconcern”, then “Hallucinations” is 

“medium” 

Rule3: If “Hallucinatory behaviour” is “notofconcern” and “Disturbance of volition” is 

“notofconcern” and “Poor impulse control” is “notofconcern” and “Somatic concern” is 

“ofconcern”, then “Hallucinations” is “low” 

Rule4: If “Hallucinatory behaviour” is “notofconcern” and “Disturbance of volition” is 

“notofconcern” and “Poor impulse control” is “notofconcern” and “Somatic concern” is 

“notofconcern”, then “Hallucinations” is “low” 

 

The rule base for FIS-3 is given as: 

Rule1: If “Stereotyped thinking” is “ofconcern” or “Lack of spontaneity” is “ofconcern”, 

then “DisorganizedSpeech” is “high” 

Rule2: If “Stereotyped thinking” is “notofconcern” and “Lack of spontaneity” is 

“notofconcern” and “Difficulty in abstract thinking” is “ofconcern”, then 

“DisorganizedSpeech” is “medium” 

Rule3: If “Stereotyped thinking” is “notofconcern” and “Lack of spontaneity” is 

“notofconcern” and “Difficulty in abstract thinking” is “notofconcern” and 

“Disorientation” is “ofconcern”, then “DisorganizedSpeech” is “low” 
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Rule4: If “Stereotyped thinking” is “notofconcern” and “Lack of spontaneity” is 

“notofconcern” and “Difficulty in abstract thinking” is “notofconcern” and 

“Disorientation” is “notofconcern”, then “DisorganizedSpeech” is “low” 

The rule base for FIS-4 is given as: 

Rule1: If “MannerismOrPosturing” is “ofconcern” or “MotorRetardation” is “ofconcern” 

or “StereotypedThinking” is “ofconcern” or “Excitement” is “ofconcern” then 

“Catatonic” is “high” 

Rule2: If “MannerismOrPosturing” is “notofconcern” and “MotorRetardation” is 

“notofconcern” and “StereotypedThinking” is “notofconcern” and “Excitement” is 

“notofconcern” and “Depression” is “ofconcern” then “Catatonic” is “medium” 

Rule3: If “MannerismOrPosturing” is “notofconcern” and “MotorRetardation” is 

“notofconcern” and “StereotypedThinking” is “notofconcern” and “Excitement” is 

“notofconcern” and “Anxiety” is “ofconcern” then “Catatonic” is “medium” 

Rule4: If “MannerismOrPosturing” is “notofconcern” and “MotorRetardation” is 

“notofconcern” and “StereotypedThinking” is “notofconcern” and “Excitement” is 

“notofconcern” and “Disorientation” is “ofconcern” then “Catatonic” is “medium” 

Rule5: If “MannerismOrPosturing” is “notofconcern” and “MotorRetardation” is 

“notofconcern” and “StereotypedThinking” is “notofconcern” and “Excitement” is 

“notofconcern” and “Tension” is “ofconcern” then “Catatonic” is “medium” 

Rule6: If “MannerismOrPosturing” is “notofconcern” and “MotorRetardation” is 

“notofconcern” and “StereotypedThinking” is “notofconcern” and “Excitement” is 

“notofconcern” and “Depression” is “notofconcern” and “Anxiety” is “notofconcern” and 

“Disorientation” is “notofconcern” and “Tension” is “notofconcern” and “PoorAttention” 

is “ofconcern” then “Catatonic” is “low” 

Rule7: If “MannerismOrPosturing” is “notofconcern” and “MotorRetardation” is 

“notofconcern” and “StereotypedThinking” is “notofconcern” and “Excitement” is 

“notofconcern” and “Depression” is “notofconcern” and “Anxiety” is “notofconcern” and 

“Disorientation” is “notofconcern” and “Tension” is “notofconcern” and “Preoccupation” 

is “ofconcern” then “Catatonic” is “low”  

Rule8: : If “MannerismOrPosturing” is “notofconcern” and “MotorRetardation” is 

“notofconcern” and “StereotypedThinking” is “notofconcern” and “Excitement” is 

“notofconcern” and “Depression” is “notofconcern” and “Anxiety” is “notofconcern” and 

“Disorientation” is “notofconcern” and “Tension” is “notofconcern” and “PoorAttention” 

is “notofconcern” and “Preoccupation” is “notofconcern” then “Catatonic” is “low” 
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The rule base for FIS-5 is given as: 

Rule1: If “BluntedAffect” is “ofconcern” or “EmotionalWithdrawal” is “ofconcern” or 

“ActiveSocialAvoidance” is “ofconcern” or “PassiveSocialWithdrawal” is “ofconcern” 

then “NegativeSymptoms” is “high” 

Rule2: If “BluntedAffect” is “notofconcern” and “EmotionalWithdrawal” is 

“notofconcern” and “ActiveSocialAvoidance” is “notofconcern” and 

“PassiveSocialWithdrawal” is “notofconcern” and “PoorRapport” is “ofconcern” then 

“NegativeSymptoms” is “medium” 

Rule3: If “BluntedAffect” is “notofconcern” and “EmotionalWithdrawal” is 

“notofconcern” and “ActiveSocialAvoidance” is “notofconcern” and 

“PassiveSocialWithdrawal” is “notofconcern” and “LackOfSpontaneity” is “ofconcern” 

then “NegativeSymptoms” is “medium” 

Rule4: If “BluntedAffect” is “notofconcern” and “EmotionalWithdrawal” is 

“notofconcern” and “ActiveSocialAvoidance” is “notofconcern” and 

“PassiveSocialWithdrawal” is “notofconcern” and “PoorRapport” is “notofconcern” and 

“LackOfSpontaneity” is “notofconcern” and “DifficultyInAbstractThinking” is 

“ofconcern” then “NegativeSymptoms” is “low” 

Rule5: If “BluntedAffect” is “notofconcern” and “EmotionalWithdrawal” is 

“notofconcern” and “ActiveSocialAvoidance” is “notofconcern” and 

“PassiveSocialWithdrawal” is “notofconcern” and “PoorRapport” is “notofconcern” and 

“LackOfSpontaneity” is “notofconcern” and “StereotypedThinking” is “ofconcern” then 

“NegativeSymptoms” is “low”  

Rule6: If “BluntedAffect” is “notofconcern” and “EmotionalWithdrawal” is 

“notofconcern” and “ActiveSocialAvoidance” is “notofconcern” and 

“PassiveSocialWithdrawal” is “notofconcern” and “PoorRapport” is “notofconcern” and 

“LackOfSpontaneity” is “notofconcern” and “DifficultyInAbstractThinking” is 

“notofconcern” and “StereotypedThinking” is “notofconcern” then “NegativeSymptoms” 

is “low” 

Input and output membership functions: 

Delusions (Range: 0-6): 

μnotofconcern =  e−
x2

0.248  
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μofconcern =  
1

1 + e−6.4 x−1 
 

Conceptual Disorganization (Range: 0 – 6): 

μnotofconcern =  
1

1 +  e3.395(x−1.83)
 

μofconcern =  
1

1 + e−2.27(x−2.85)
 

Hallucinatory Behaviour (Range: 0 – 6): 

μnotofconcern =  
1

1 + e9.79(x−0.518)
 

μofconcern =  
1

1 + e−7.091(x−0.598)
 

Excitement (Range: 0 – 6): 

μno tofconcern =  
1

1 + e2.263 x−2.89 
 

μofconcern =  
1

1 + e−1.65(x−2.85)
 

Grandiosity (Range: 0 – 6): 

μnotofconcern =  
1

1 + e1.53(x−2.44)
 

μofconcern =  
1

1 + e−1.65(x−2.85)
 

Suspiciousness /Persecution (Range: 0 – 6): 

μ
notofconcern = 

1

1+e1.53(x−2.44)

 

μofconcern =  
1

1 + e−1.73(x−2.08)
 

Hostility (Range: 0 – 6): 

μnotofconcern =  
1

1 + e1.11 x−3.07 
 

μofconcern =  
1

1 + e−1.16(x−3.21)
 

Blunted Affect (Range: 0 – 6): 

μnotofconcern =  
1

1 + e1.125 x−3 
 

μofconcern =  
1

1 + e−1.61(x−2.78)
 

Emotional Withdrawal (Range: 0 – 6): 

μnotofconcern =  
1

1 + e1.186 x−4.36 
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μofconcern =  
1

1 + e−1.19(x−3.04)
  

Poor Rapport (Range: 0 – 6): 

μnotofconcern =  
1

1 + e1.186 x−4.36 
 

μofconcern =  
1

1 + e−1.71(x−3.83)
 

Passive / Apathetic Social Withdrawal (Range: 0 – 6): 

μnotofconcern =  e
−x2

8.6528  

μofconcern =  
1

1 + e−1.32(x−3.35)
 

Difficulty in Abstract Thinking (Range: 0 – 6): 

𝜇𝑛𝑜𝑡𝑜𝑓𝑐𝑜𝑛𝑐𝑒𝑟𝑛 =  𝑒
−𝑥2

8.6528  

𝜇𝑜𝑓𝑐𝑜𝑛𝑐𝑒𝑟𝑛 =  
1

1 + |
𝑥 − 6.99

2.99
|2.04

 

Lack of Spontaneity (Range: 0 – 6): 

μnotofconcern =  
1

1 + e1.08(x−3.23)
 

μofconcern =  
1

1 + e−1.32(x−3.35)
 

Stereotyped Thinking (Range: 0 – 6): 

μnotofconcern =  
1

1 + e1.1.25 x−3.23 
 

μofconcern =  
1

1 + e−1.3(x−3.5)
 

Somatic Concern (Range: 0 – 6): 

μnotofconcern =  
1

1 + e1.49 x−2.5 
 

μofconcern =  
1

1 + e−1.49(x−2.49)
 

Anxiety (Range: 0 – 6): 

μnotofconcern =  e−
x2

9.946  

μofconcern =  
1

1 + e−1.14(x−3.52)
 

Guilt Feelings (Range: 0 -6): 

μnotofconcern = e−
x2

9.9458  

μofconcern =  e−
(x−6.1)2

9.1592  

Tension (Range: 0 – 6):  

μnotofconcern =  
1

1 + e1.2 x−3.36 
 

μofconcern =  
1

1 + e−1.07(x−2.61)
 

Mannerisms and Posturing (Range: 0 – 6): 
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μnotofconcern =  e−
x2

0.7466  

μofconcern =  
1

1 + e−3.58(x−1.29)
 

Depression (Range: 0 – 6): 

μnotofconcern =  
1

1 + e1.108 x−2.6 
 

μofconcern =  
1

1 + e−1.3(x−2.89)
 

Motor Retardation (Range: 0 – 6): 

μnotofconcern =  
1

1 + e1.152 x−2.6 
  

μofconcern =  
1

1 + e−1.55(x−2.5)
 

Uncooperativeness (Range: 0 – 6): 

μnotofconcern =  
1

1 + e1.32 x−2.14 
  

μofconcern =  
1

1 + e−1.19(x−3.04)
 

Unusual Thought Content (Range: 0 – 6): 

μnotofconcern =  
1

1 + e6.49 x−0.853 
 

μofconcern =  
1

1 + e−4.02(x−1.08)
 

Disorientation (Range: 0 – 6): 

μnotofconcern =  
1

1 + e8.34 x−0.534 
 

μofconcern =  
1

1 + e−7.53(x−0.724)
  

Poor Attention (Range: 0- 6): 

μnotofconcern =  
1

1 + e1.16 x−3.11 
  

μofconcern =  
1

1 + e−1.27(x−3.1)
 

Lack of Judgment and Insight (Range: 0 – 6): 

μnotofconcern =  
1

1 + e(x−3.2)
  

μofconcern =  
1

1 + e−1.42(x−2.45)
  

Disturbance of Volition (Range: 0 – 6): 

μnotofconcern =  
1

1 + e1.129(x−3.01)
 

μofconcern =  
1

1 + e−3.1(x−1.3)
 

 

Poor Impulse Control (Range: 0 – 6): 



57 
 

μnotofconcern =  
1

1 + e1.79 x−2.26 
 

μofconcern =  
1

1 + e−1.42(x−2.45)
 

Preoccupation (Range: 0 – 6): 

μnotofconcern =  
1

1 + e1.37(x−2.68)
 

μofconcern =  
1

1 + e−1.39(x−2.91)
  

Active Social Avoidance (Range: 0 – 6): 

μnotofconcern =  e−
x2

10   

μofconcern = e−
(x−6.12)2

9.4178  

The membership functions of the output variables of FIS-1, FIS-2, FIS-3, FIS-4 and FIS-5 

are: 

FIS-1: Variable Name: Delusions; Range:[0 - 2]: 

μlow =  e−
x2

0.2683  

μmedium =  e−
 x−1 2

0.2304  

μhigh =  e−
(x−2)2

0.2805  

FIS-2: Variable Name: Hallucinations; Range: [0 – 3]: 

μlow =  e−
x2

0.4564  

μmedium =  e−
 x−1.5 2

0.51836  

μhigh =  e
−(x−3)2

0.38176   

FIS-3: Variable Name: Disorganized Speech; Range: [0 – 3] 

μlow =  e
−x2

0.43115  

μmedium =  e
− x−1.58 2

0.5356  

μhigh =  e
−(x−3)2

0.3748  

FIS-4: Variable Name: Catatonic; Range: [0 – 2] 

μlow =  e
−x2

0.4215  

μmedium =  
1

1 + e−5.99 x−0.519 
−  

1

1 + e−15.5 x−1.82 
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μhigh = e
−(x−2)2

0.04205  

FIS-5: Variable Name: Negative Symptoms; Range: [0 - 4] 

μlow = e
−x2

0.6389   

μmedium =  
1

1 + e−3.601 x−1  
–  

1

1 + e−3.601 x−3 
 

μhigh = e
−(x−4)2

0.9218  

The Final Diagnosis – FIS-6, the fuzzy inference system that gives the final diagnosis, 

takes as its inputs the crisp outputs of FIS-1, FIS-2, FIS-3, FIS-4 and FIS-5. The five 

input variables are delusions, hallucinations, disorganizedspeech, catatonicbehaviour and 

negativesymptoms. Each input variable has three membership functions, viz. “low”, 

“medium” and “high”. FIS-6 has a single output variable called finaldiagnosis, which has 

three membership functions – normal, psychotic and schizophrenic. The membership 

functions are given as: 

FIS-6: Input variable names: delusions, hallucinations, disorganizedspeech, 

catatonicbehaviour and negativesymptoms; Range [0 – 6]: 

𝜇𝑙𝑜𝑤 =  𝑒
−𝑥2

2  

𝜇𝑚𝑒𝑑𝑖𝑢𝑚 =  𝑒
− 𝑥−3 2

1.486  

𝜇𝑖𝑔 =  𝑒
−(𝑥−6)2

2  

FIS-6: Output variable name: finaldiagnosis; Range [0 – 2] 

𝜇𝑛𝑜𝑟𝑚𝑎𝑙 =  𝑒
−𝑥2

0.663   

𝜇𝑝𝑠𝑦𝑐 𝑜𝑡𝑖𝑐 =  
1

1 + 𝑒−5.68 𝑥−0.717 
+ 

1

1 + 𝑒−21.9 𝑥−1.81 
 

𝜇𝑠𝑐𝑖𝑧𝑜𝑝 𝑟𝑒𝑛𝑖𝑐 =  𝑒
− 𝑥−2 2

0.04381  

The rule base for FIS-6 is: 

Rule1: If “catatonicbehaviour” is “high” or “negativesymtoms” is” high” then 

“finaldiagnosis” is “schizophrenic” 

Rule2: If “catatonicbehaviour” is “medium” or “negativesymtoms” is “medium” then 

“finaldiagnosis” is “schizophrenic” 

Rule3: If “delusions” is “high” and “hallucinations” is “high” then “finaldiagnosis” is 

“schizophrenic” 

Rule4: If “hallucinations” is “high” and “disorganizedpseech” is “high” then 

“finaldiagnosis” is “schizophrenic” 
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Rule5: If “delusions” is “high” and “disorganizedspeech” is “high” then “finaldiagnosis” 

is “schizophrenic” 

Rule6: If “delusions” is “medium” and “hallucinations” is “medium” then 

“finaldiagnosis” is “psychotic” 

Rule7: If “hallucinations” is “medium” and “disorganizedpseech” is “medium” then 

“finaldiagnosis” is “psychotic” 

Rule8: If “delusions” is “medium” and “disorganizedspeech” is “medium” then 

“finaldiagnosis” is “psychotic” 

Rule9: If “delusions” is “medium” and “hallucinations” is “low” and 

“disorganizedspeech” is “low” and “catatonicbehaviour” is “low” and 

“negativesymptoms” is “low” then “finaldiagnosis” is “psychotic” 

Rule10: If “delusions” is “low” and  “hallucinations” is “medium” and 

“disorganizedspeech” is “low” and “catatonicbehaviour” is “low” and 

“negativesymptoms” is “low” then “finaldiagnosis” is “psychotic” 

Rule11: If “delusions” is “low” and  “hallucinations” is “low” and “disorganizedspeech” 

is “medium” and “catatonicbehaviour” is “low” and “negativesymptoms” is “low” then 

“finaldiagnosis” is “psychotic” 

Rule12: If “delusions” is “high” and  “hallucinations” is “low” and “disorganizedspeech” 

is “low” and “catatonicbehaviour” is “low” and “negativesymptoms” is “low” then 

“finaldiagnosis” is “psychotic” 

Rule13: If “delusions” is “low” and  “hallucinations” is “high” and “disorganizedspeech” 

is “low” and “catatonicbehaviour” is “low” and “negativesymptoms” is “low” then 

“finaldiagnosis” is “psychotic” 

Rule14: If “delusions” is “low” and  “hallucinations” is “low” and “disorganizedspeech” 

is “high” and “catatonicbehaviour” is “low” and “negativesymptoms” is “low” then 

“finaldiagnosis” is “psychotic” 

Rule15: If “delusions” is “low” and  “hallucinations” is “low” and “disorganizedspeech” 

is “low” and “catatonicbehaviour” is “low” and “negativesymptoms” is “low” then 

“finaldiagnosis” is “normal” 

The graphical representations of the various membership functions are depicted below in 

Figure 4.1-4 to Figure 4.1-17: 
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Figure 4.1-3: Input Membership Functions For Delusion, Conceptual Disorganization and Hallucination 
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Figure 4.1-4: Input Membership Functions for Excitement, Grandiosity and Suspiciousness / Persecution 
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Figure 4.1-5: Input Membership Functions for Hostility, Blunted Affect and Emotional Withdrawal 
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Figure 4.1-6: Input Membership Functions for "Poor Rapport", "Passive Social Withdrawal" and "Difficulty in Abstract 
Thinking" 
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Figure 4.1-7: Input Membership Functions for "Lack of Spontaneity", "Stereotyped Thinking" and "Somatic Concern" 
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Figure 4.1-8: Input Membership Functions for Anxiety, Guilt and Tension 
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Figure 4.1-9: Input Membership Functions for "Mannerisms and Posturing", "Depression" and "Motor Retardation" 
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Figure 4.1-10: Input Membership Functions for "Uncooperativeness", "Unusual Thought Content" and Disorientation 
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Figure 4.1-11: Input Membership Functions for "Poor Attention", "Lack of Judgment" and "Disturbance of Volition" 
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Figure 4.1-12: Input Membership Function for "Poor Impulse Control", Preoccupation and "Social Avoidance" 
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Figure 4.1-13: Output Membership Functions for FIS's Giving Outputs for Delusions, Hallucinations and "Disorganized 
Speech" 
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Figure 4.1-14: Input Membership Functions for Membership Variables Delusions, Hallucinations and DisorganizedSpeech 
of FIS-6 
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Figure 4.1-15: Input Membership Functions for Membership Variables CatatonicBehaviour and NegativeSymptoms of 
FIS-6 

 

 
Figure 4.1-17: Output Membership Functions for Membership Variable FinalDiagnosis of FIS-6 
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4.2. Experiment  2 – Synthesis of Training Dataset for Artificial 

Neural Network for Diagnosing Schizophrenia  
A subject‟s PANSS ratings may be fed to a neural network which would then return a 

diagnosis of schizophrenia or otherwise. If the output of the neural network is closer to 0 

than 1 for a particular input, then the subject corresponding to that input is not 

schizophrenic. If the output is closer to 1 than to 0, then the subject is schizophrenic. 

However, it is difficult to obtain the necessary number and variety of readings from real 

subjects, so, the training data may be synthesized with the help of a fuzzy inference 

system that diagnoses schizophrenia from the psychometric test ratings. The synthetic 

data obtained in such manner may be used to train neural networks that may be used to 

diagnose subjects based on the results of psychometric tests.   

Artificial neural networks have been used to classify subjects as schizophrenic or 

otherwise based on resting state functional network connectivity [57], blood-based gene 

expression signatures [58], and eye tracking [59]. However these methods involve 

collection of medical data from real subjects– a process that is expensive and 

inconvenient. On the other hand, PANSS offers a convenient and inexpensive way of 

assessing a patient‟s mental state. Each dimension of the PANSS scale would serve as an 

input dimension of the neural network. However before such a network can be used, it 

would be necessary to first train it. Training a neural network requires a large amount of 

data that must be representative of practical input types. It is difficult to collect so many 

data points from actual schizophrenics, and so it becomes necessary to synthesize the 

data. Ulloa et al showed that synthetic data may be generated for training deep networks 

with structural MRI images [60]. Castro et al showed the synthesis of structural magnetic 

resonance imaging data that grew the original dataset by a factor of ten [61]. 

In this experiment, synthetic data based on PANSS ratings has been generated. The fuzzy 

expert system designed as part of Experiment-1 has been deployed to provide data points 

for training the artificial neural network. Pseudo-random input combinations are fed into 

the system which returns a crisp output as diagnosis of schizophrenia. For training the 

neural network, the pseudo-random input combination is taken as input and 0 or 1 as 

output. The output is assigned a value of 0 or 1 depending on the crisp output of the said 

fuzzy inference system. As the PANSS is a thirty-item scale and each item can be rated 

from zero to six, a total of 7
30

 different input combinations are possible. The simplest and 

easiest thing to do would be to feed each combination into the fuzzy expert system and 

note the diagnosis. That way, one would end up with 7
30 

data points for training the neural 
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network. However, the above strategy would be unacceptable on a standard PC because 

of the large amount of data involved. Instead, input combinations must be taken 

selectively. As described in the previous section, five fuzzy inference systems, FIS-1, 

FIS-2, FIS-3, FIS-4 and FIS-5 are used to take various items of the PANSS scale as 

inputs and give outputs of the subject‟s level of delusions, hallucinations, disorganized 

speech, catatonic behaviour and negative symptoms. A sixth fuzzy inference system, FIS-

6 takes the outputs of FIS-1, FIS-2, FIS-3, FIS-4 and FIS-5 as inputs and gives a final 

diagnosis. The relationship between the fuzzy inference systems and the PANSS items 

are tabulated below in Table 4.2-1: 

Table 4.2-1: Inputs and Outputs of the Fuzzy Inference Systems 

Name of Fuzzy 

Inference System 

Inputs (Items on the 

PANSS Scale) 

Degree of Impact 

on Fuzzy 

Inference System 

Output 

Output of Fuzzy 

Inference System 

FIS-1 Delusions High Delusions 

Suspiciousness / 

Persecution 

Hostility 

Unusual Thought Content 

Disturbance of Volition 

Conceptual 

Disorganization 

Grandiosity Medium 

Lack of Judgement 

Uncooperativeness 

Anxiety Low 

Guilt 

FIS-2 Hallucinatory Behaviour High Hallucinations 

Disturbance of Volition 

Poor Impulse Control Medium 

Somatic Concern Low 

FIS-3 Stereotyped Thinking High Disorganized_Speech 

Lack of Spontaneity 

Difficulty in Abstract 

Thinking 

Medium 

Disorientation Low 

FIS-4 Mannerisms and Posturing High Catatonic_Behaviour 

Motor Retardation 

Stereotyped Thinking 

Depression 

Excitement 

Depression Medium 

Anxiety 

Disorientation 

Tension 

Poor Attention Low 
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Name of Fuzzy 

Inference System 

Inputs (Items on the 

PANSS Scale) 

Degree of Impact 

on Fuzzy 

Inference System 

Output 

Output of Fuzzy 

Inference System 

Preoccupation 

FIS-5 Blunted Affect High Negative_Symptoms 

Emotional Withdrawal 

Social Avoidance 

Passive / Apathetic Social 

Withdrawal 

Poor Rapport Medium 

Lack of spontaneity and 

Flow of Conversation 

Difficulty in Abstract 

Thinking 

Low 

Stereotyped Thinking 

 

The strategy is to take selective permutations of the various input combinations and 

present them to FIS-1, FIS-2, FIS-3, FIS-4 and FIS-5. A psychiatrist was consulted to 

divide each input variable range, zero to six, into three regions – high, medium and low, 

depending on whether the input variable is highly, moderately or only slightly indicative 

of schizophrenia. Also, from the table, it is seen that all inputs to a given fuzzy inference 

system may be classed as high-impact, medium-impact and low-impact. The rules of the 

fuzzy inference system are such that the following permutations of data would give the 

largest variety of outputs with an optimum number of data points: 

High – High – High 

Medium – Medium – Medium 

Low-Low-Low 

High-Medium-Low 

Low-Medium-high 

Low-Low-Medium 

Low-Low-High 

To explain this grouping, let‟s consider the specific example of FIS-2, the output of which 

is “hallucinations”. The input variables for this fuzzy inference system are: “hallucinatory 

behaviours”, “disturbance of volition”, “poor impulse control” and “somatic concern”. Of 

these variables, “hallucinatory behaviour” and “disturbance of volition” have a high effect 

on an outcome of hallucinations, “poor impulse control” has moderate effect while 

“somatic concern” has a low effect. Again, the range of evaluation for each variable is [0 

– 6]. For each variable, this range is divided into low, medium and high. For example, for 

“hallucinatory behaviour”, 0 is considered low, 1 is considered medium and [2 – 6] is 
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considered high. Similarly, for “disturbance of volition”, [0 – 1] is considered low, 2 is 

considered medium while [3 – 6] is considered high. For “poor impulse control”, [0 – 1] 

is considered low, [2-3] is considered medium and [4-6] is considered high. For “somatic 

concern”, [0 – 1] is considered low, [2 – 3] is considered medium and [4 – 6] is 

considered high. So, for example, “low-medium-high” means that the permutations 

consist of low readings from the first group input variables that have a high impact on the 

output of FIS-2, viz., “hallucinatory behaviour” and “disturbance of volition”, medium 

readings from “poor impulse control” and high readings from “somatic concern”. 

Therefore, the set “low-medium-high” would contain the following permutations:  

 [0, 0, 2, 4] ; [0, 0, 2, 5]; [0, 0, 2, 6]; [0, 0, 3, 4]; [0, 0, 3, 5]; [0, 0, 3, 6]; [0, 1, 2, 4]; [0, 1, 

2, 5]; [0, 1, 2, 6]; [0, 1, 3, 4]; [0, 1, 3, 5]; [0, 1, 3, 6] 

Similar permutations are taken for FIS-1, FIS-3, FIS-4 and FIS-5.  

These input combinations are fed to the fuzzy inference system under consideration, (FIS-

2, say) and outputs are generated. In order to keep the number of data points manageably 

modest, only those data points are chosen for which outputs are unique. 

In the next step, the data sets obtained from the different fuzzy inference systems are 

unified. Since FIS-2 has just four contributory PANSS items (Refer to Table 1), it 

generates a four dimensional data. Likewise, FIS-1 generates eleven dimensional data, 

and so on. Observe how the data sets for FIS-1 and FIS-2 have a common parameter, viz. 

“disturbance of volition”. Upon unifying the data sets of FIS-1 and FIS-2, what is 

obtained is fourteen dimensional data – the common dimension, “disturbance of volition” 

is considered only once. The unification is done by combining each data point of FIS-2 

with each data point of FIS-1 wherever the value of the common parameter (“disturbance 

of volition”) is same. For example, suppose the FIS-2 data set consists of the following 

data points:  

[0, 1, 0, 0 | 0.4678]; [3, 3, 2, 1| 1.2968]; [2, 1, 1, 3 | 1.0156] 

Also, suppose the FIS-1 input data set consists of the following data points: 

[1, 2, 2, 1, 0, 3, 2, 1, 1, 0, 4 | 0.9873]; [2, 4, 0, 1, 3, 2, 2, 1, 3, 2, 3 | 1.4438] 

In the above, the field after the „|‟ denotes the output of the respective fuzzy inference 

system. The result of the unification of FIS-2 and FIS-1 would be: 

[3, 3, 2, 1, 2, 4, 0, 1, 2, 2, 1, 3, 2, 3 | 1.2968, 1.4438] 

Note the unification happens only where “poor impulse control” (second field in FIS-2 

dataset and fifth field in FIS-1 dataset) has the same value in both datasets. The result of 

unification also gives a two-dimensional output data-point: [1.2968, 1.4438] 
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The unified dataset is now again unified with the dataset for the next fuzzy inference 

system (FIS-3, say) and the process is repeated till all five datasets are unified. What is 

obtained is N number of thirty-dimensional input data points and N number of five-

dimensional output data points. The five-dimensional data is fed to the FIS-6 fuzzy 

inference system to obtain a crisp output. A psychiatrist was consulted and determined 

that subjects for whom the output of FIS-6 exceeds 1.26 are the ones who need treatment 

for schizophrenia. Hence the crisp outputs for these subjects are set to 1 and the crisp 

outputs of the other subjects are set to 0.  

Thus a set of N thirty-dimensional input data points and a set N single-dimensional output 

data points is obtained. These data points can be used to train the artificial neural 

network. 

4.3. Experiment 3 – Observation of Training Neural Network 

for Diagnosing Schizophrenia  
Artificial intelligence is being increasingly used to diagnose disorders including mental 

illness. At the centre of the diagnostic system is the artificial neural network, which can 

classify subjects based on their thirty-dimensional PANSS ratings as either schizophrenic or 

not schizophrenic. A simple perceptron is good enough to classify data that is linearly 

separable; however in case of non-linearly separable data, it is necessary to project the data 

into a higher dimension. This is where the multi-layer perceptron (MLP) comes in. The MLP 

has one input layer, one output layer and one or more hidden layers. The number of nodes in 

the input layer is equal to the dimension of the input data, which in this case is thirty. The 

number of nodes in the output layer is one; and the number of nodes in the hidden layer as 

well as the number of hidden layers may be varied to get optimum classification performance 

out of the multi-layer perceptron.  

Many researchers have tried to establish the ideal number of hidden layers and the ideal 

number of nodes in each hidden layer. If Nt is the number of training samples, Ni is the 

number of input nodes, Nh is the number of neurons in the hidden layer, and No is the number 

of output nodes, then the various values of Nh may be arrived at by the following methods: 

According to Li, Chow and Yu‟s method [62] : 

𝑁 =  
 1 + 8𝑁𝑖 − 1

2
 

According to Tamura and Tateishi‟s method [63]: 
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𝑁 = 𝑁𝑖 − 1 

According to Xu and Chen‟s method [64]: 

𝑁 =  
1

2
 

𝑁𝑡

𝑁𝑖 log𝑁𝑡
 

According to Shibata and Ikeda‟s method [65]: 

𝑁 =   𝑁𝑖𝑁𝑜  

According to Sheela and Deepa‟s method [66]: 

𝑁 =  
4 𝑁𝑖

2 +  3

𝑁𝑖
2 −  8

 

According to Trenn [66]: 

𝑁 =
 𝑁𝑖 +  𝑁𝑜 − 1 

2
 

Apart from the above, there are several rules of thumb [67], viz. 

 Size of hidden layer must be between size of input layer and output layer. 

 Size of hidden layer must be two-thirds the size of the input layer plus the size of the 

output layer. 

 Size of hidden layer must be less than twice the size of the input layer.  

As for the number of hidden layers, the common consensus is that one or two hidden layers 

are sufficient for most situations [68] [69]. 

The MATLAB neural network toolbox was used for creating and training the MLPs. For 

training the neural network we used 960 training samples that were generated as an outcome 

of Experiment-3. The samples were randomly distributed into training, validation and testing 

sets by the MATLAB software. The Levenberg-Marquardt training algorithm was used and 

the mean square error was considered as the error criterion.  

Many different models of neural network with varying number of hidden nodes were created. 

First, the training was done on a neural network with a certain number of nodes in a single 

hidden layer. Then the training was repeated for a neural network with two hidden layers and 

the same number of nodes as above in each hidden layer.  
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The same training pairs were used to train all models of the neural network.  

When deploying an artificial neural network in software, the user has the flexibility of adding 

as many or as few neurons as he or she wants. However there may be a situation wherein a 

user must use a hardware implementation of a neural network [70] [71] [72] which does not 

offer the same flexibility. Under such a circumstance, the user may continue to get good 

performance out of the neural network even if the number of neurons in the hidden layer is 

larger than what is recommended, provided the neural network has just one hidden layer. 

However, the validation performance will be unacceptably poor if multiple hidden layers are 

present. The conclusion is that in the matter of classifying data for schizophrenia patients, the 

user must avoid using neural networks with more than one hidden layer. 

4.4. Experiment 4 – Choice of Support Vector Machine Kernel 

for Classifying Schizophrenia Data  
A kind of feedforward network called “Support Vector Machines” may be used to 

classify data on several diseases like heart disease, lymph diseases, cancer, acute coronary 

syndrome etc. They may also be used to classify schizophrenics and non-schizophrenics 

based on PANSS data. In order to do so it is first necessary to train the SVM using 

training data points.  

A fuzzy expert system was used to generate the training data points. The expert system 

takes as input the various different possible PANSS readings, and gives a diagnosis 

regarding whether or not the PANSS reading corresponds to a schizophrenic or a normal 

individual. The fuzzy expert system consists of six fuzzy inference systems, five of which 

deal directly with the PANSS ratings while the sixth takes as input the outputs generated 

by the five fuzzy inference systems.  

Ideally, 7
30

 different PANSS readings are possible. In order to limit the number of 

PANSS ratings so that the program would run on a standard PC, some custom MATLAB 

code was designed and executed. The result of the above exercise is a set of 960 training 

samples containing a mix of data points with positive as well as negative expected 

outputs.  

The above samples were further divided into two groups of 480 samples each, such that 

each group would contain positive as well as negative data points. One group was used 

for training the SVM while the other was used for testing the accuracy of classification.  

SVMs with various different kernels were created and used with the above data.   
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4.5. Experiment 5 – Fuzzy Clustering for Diagnosing 

Schizophrenia 
Fuzzy clustering is a kind of soft clustering technique that groups data into two or more 

clusters. In hard clustering, a data point either belongs completely to a cluster or does not 

belong to that cluster at all. In soft clustering however, there can be overlap between two 

clusters, and a data point may belong partially to two or more clusters. However, the sum 

of membership values for all the clusters for any given data point must be 1. The number 

of clusters may be specified by the user. 

A trivial case would be that just one cluster is formed. The 960 data points generated as 

an outcome of Experiment-2 is clustered into two clusters using the fuzzy “fcm” utility. 

The option that signifies cluster overlap is specified as 1.1. The data points generated as 

an outcome of Experiment-2 are valid PANSS scores for hypothetical subjects. Some of 

these subjects are schizophrenic while the others are not. Upon clustering the data, the 

“fcm” utility is able to correctly separate the schizophrenic data points from the non-

schizophrenic data points.  

Next, the PANSS scores for four actual subjects are added to the pool of data points such 

that there are now 964 data points. The clustering utility is again executed and the 

membership values for the real subjects are checked. The real subjects include two 

schizophrenic and two non-schizophrenic individuals. One expects that “fcm” would be 

able to correctly include the four subjects into the two clusters. The results of clustering 

can provide valuable insights into the symptoms and diagnosis of the illness. 
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5. Results and Discussion 

5.1. Experiment1 – Fuzzy Based System for Diagnosing 

Schizophrenia 
The curves for Normal and Psychotic output membership functions of FIS-6 intersect for 

a value of FinalDiagnosis = 0.7. This is the point at which the psychiatrist‟s diagnosis 

tends to favour a diagnosis of psychosis which is not necessarily schizophrenia. Similarly, 

the curve for Psychotic and Schizophrenic output membership functions indicates that for 

a FinalDiagnosis of 1.82, the physician would be more certain of a diagnosis of 

schizophrenia than general psychosis. 

The fuzzy based system gives excellent results where diagnosing schizophrenia is 

concerned. Consider the following PANSS ratings for actual patients given in Table 5.1-

1: 

 

Table 5.1-1: PANSS Scores of Four Actual Subjects 

PANSS Items Patient Ratings; Scale: [0 – 6] 

Patient01 Patient02 Patient03 Patient04 

Delusions 1 0 0 4 

Conceptual 

Disorganization 

1 0 0 2 

Hallucinatory Behaviour 1 1 1 3 

Excitement 2 0 1 2 

Grandiosity 2 2 1 0 

Suspiciousness / 

Persecution 

1 0 0 5 

Hostility 3 3 2 4 

Blunted Affect 1 0 0 3 

Emotional Withdrawal 3 0 2 5 

Poor Rapport 3 2 2 2 

Passive / Apathetic Social 

Withdrawal 

2 0 1 3 

Difficulty in Abstract 

Thinking 

2 0 1 3 

Lack of Spontaneity and 

Flow of Conversation 

3 2 2 5 

Stereotyped Thinking 1 0 0 5 

Somatic Concern 3 0 2 2 

Anxiety 4 0 2 3 

Guilt Feelings 4 2 2 3 
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PANSS Items Patient Ratings; Scale: [0 – 6] 

Patient01 Patient02 Patient03 Patient04 

Tension 4 0 2 4 

Mannerisms and Posturing 0 0 0 1 

Depression 5 2 4 5 

Motor Retardation 2 0 1 3 

Uncooperativeness 4 2 2 4 

Unusual Thought Content 1 0 0 4 

Disorientation 3 0 2 2 

Poor Attention 4 1 2 2 

Lack of Judgement and 

Insight 

2 0 1 3 

Disturbance of Volition 1 0 0 5 

Poor Impulse Control 3 3 2 3 

Preoccupation 3 0 2 4 

Active Social Avoidance 3 2 2 2 

 

Patient01 was diagnosed with Bipolar Personality Disorder as well as schizophrenia. She 

was put on medication for schizophrenia as well as Bipolar Personality Disorder. In the 

beginning, there was much confusion among clinicians regarding her diagnosis. The 

treating psychiatrist could not be certain of a diagnosis of schizophrenia even though 

patient exhibited marked psychosis. However, treatment for schizophrenia helped to 

reduce her symptoms. The crisp output of the FIS-6 fuzzy inference system for Patient01 

was 1.4040, which is somewhat greater than 1.26. This indicates a diagnosis of 

schizophrenia which agrees with the ultimate clinical outcome of the treatment for 

schizophrenia. 

As such, Patient02 was not afflicted with any illness, but demonstrated marked psychosis 

on account of substance addiction. He was uncooperative with his care-givers and 

initially refused to seek professional help, though he had guilty feelings about his 

addiction. He also experienced auditory hallucinations which was owing to the addiction. 

The crisp output of the FIS-6 fuzzy inference system for Patient02 was 1.1787. According 

to our solution, he is not schizophrenic, which agrees with the clinical diagnosis. 

Patient03 was not schizophrenic. He experienced acute depression on account of which 

he was indulged in substance addiction. Because of his difficult family situation he 

experienced anxiety and guilt feelings. His substance addiction made him hallucinate and 

triggered an allergic reaction which caused some somatic concern, viz., crawling 

sensation on the skin. The patient was treated for depression and afterwards put on 
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therapy for his addiction. The crisp output of the FIS-6 fuzzy inference system for 

Patient03 was 1.1937 which agrees with his diagnosis. 

Patient04 was diagnosed as schizophrenic. His family sought treatment very late – at a 

stage when he was catatonic. The patient reported hearing voices in his head and 

possessed far-fetched beliefs that had no link to reality. The crisp output of the FIS-6 

fuzzy inference system for Patient04 was 1.6314 which agrees with his diagnosis. 

5.2. Experiment2 – Synthesis of Training Dataset for Artificial 

Neural Network for Diagnosing Schizophrenia  
A pattern recognition neural network was trained with the data generated. The neural 

network was configured with thirty input nodes, one output node and two hidden layers. 

Each hidden layer had thirty nodes. The results of training the network are shown in 

Figure 5.2-1: 

 

Figure 5.2-1: Validation Performance of 2-layer Neural Network Trained with Synthetic PANSS Data 

Now to test the neural network with actual data from subject‟s afflicted with mental 

disorders that may or may not be schizophrenia and let us compare the results with actual 

diagnosis in Table 5.2-1.  
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Table 5.2-1: Neural Network Outputs While Classifying Four Real Subjects 

PANSS Items Patient Ratings (Scale: 0 – 6) 

Patient 1 Patient2 Patient3 Patient4 

Delusions 1 0 0 4 

Conceptual Disorganization 1 0 0 2 

Hallucinatory Behaviour 1 1 1 3 

Excitement 2 0 1 2 

Grandiosity 2 2 1 0 

Suspiciousness / 

Persecution 

1 0 0 5 

Hostility 3 3 2 4 

Blunted Affect 1 0 0 3 

Emotional Withdrawal 3 0 2 5 

Poor Rapport 3 2 2 2 

Passive / Apathetic Social 

Withdrawal 

2 0 1 3 

Difficulty in Abstract 

Thinking 

2 0 1 3 

Lack of Spontaneity and 

Flow of Conversation 

3 2 2 5 

Stereotyped Thinking 1 0 0 5 

Somatic Concern 3 0 2 2 

Anxiety 4 0 2 3 

Guilt Feelings 4 2 2 3 

Tension 4 0 2 4 

Mannerisms and Posturing 0 0 0 1 

Depression 5 2 4 5 

Motor Retardation 2 0 1 3 

Uncooperativeness 4 2 2 4 

Unusual Thought Content 1 0 0 4 

Disorientation 3 0 2 2 

Poor Attention 4 1 2 2 

Lack of Judgment and 

Insight 

2 0 1 3 

Disturbance of Volition 1 0 0 5 

Poor Impulse Control 3 3 2 3 

Preoccupation 3 0 2 4 

Active Social Avoidance 3 2 2 2 

Output From Neural 

Network 

0.9944 3.4194e-

05 

0.0194 1 

Actual Diagnosis of  

Schizophrenia (Yes/No) 

Yes No No Yes 
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If the output of the neural network is closer to one than to zero, it means that that input 

data vector corresponds to a schizophrenic. If the output is closer to zero than to one, then 

that corresponding input vector corresponds to a non-schizophrenic. 

 

Hence, it is seen that the neural network can perform well even when trained with 

synthetic data. 

5.3. Experiment3 – Observation on Training Neural Network 

for Diagnosing Schizophrenia  
Neural networks with varying number of nodes were created and tested with the synthetic 

data. The validation error obtained in each training instance is tabulated below in Table 

5.3-1: 

 

Table 5.3-1: Validation Performance with Various Neural Network Configurations 

No. of nodes 
in each hidden 
layer 

Best Validation Performance 

No. of hidden layers = 1 No. of hidden layers = 2 

4 5.3428e-15 4.0688e-15 

5 1.2837e-18 5.4858e-15 

7 6.7224e-16 8.7213e-16 

15  2.3247e-15 3.018e-15 

20 2.1164e-15 9.2449e-16 

29 4.5492e-16 9.8195e-11 

30 8.478e-16 6.7969e-16 

35 7.5571e-16 4.4422e-16 

40 2.362e-11 1.6613e-05 

60  1.7206e-15 2.9723e-04 

80 4.8873e-13 4.5297e-04 

100 4.4468e-05 2.3377e-03 

 

It is seen that if the number of neurons in the hidden layer is greater than 35, the 

validation performance deteriorates sharply if a second hidden layer is added. The general 

consensus is that adding more hidden layers is overkill in the sense it does not improve 

performance. But our work has demonstrated that adding more hidden layers not only 
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does not improve performance, it will cause the performance to decline sharply. The 

validation performance curves for different designs of the neural network are given below 

in Figure5.3-1 to Figure 5.3-24: 

 

 

Figure 5.3-1: Validation Performance with One Hidden Layer Having Four Nodes 

 

Figure 5.3-2: Validation Performance with Two Hidden Layers Having Four Nodes in Each Layer 
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Figure 5.3-3: Validation Performance with One Hidden Layer Having Five Nodes 

 

 

 

Figure 5.3-4: Validation Performance with Two Hidden Layers Having Five Nodes in Each Layer 
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Figure 5.3-5: Validation Performance with One Hidden Layer Having Seven Nodes 

 

 

 

Figure 5.3-6: Validation Performance with Two Hidden Layers Having Seven Nodes in Each Layer 
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Figure 5.3-7: Validation Performance with One Hidden Layer Having Fifteen Nodes 

 

 

 

 

Figure 5.3-8: Validation Performance with Two Hidden Layers Each Having Fifteen Nodes 
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Figure 5.3-9: Validation Performance with One Hidden Layer Having Twenty Nodes 

 

 

Figure 5.3-10: Validation Performance with Two Hidden Layers Each Having Twenty Nodes 
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Figure 5.3-11: Validation Performance with One Hidden Layer Having Twenty Nine Nodes 

 

 

 

 

 

Figure 5.3-12: Validation Performance with Two Hidden Layers Each Having Twenty Nine Nodes 
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Figure 5.3-13: Validation Performance with One Hidden Layer Having Thirty Nodes 

 

 

 

Figure 5.3-14: Validation Performance with Two Hidden Layers Each Having Thirty Nodes 
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Figure 5.3-15: Validation Performance with One Hidden Layer Having Thirty Five Nodes 

 

 

Figure 5.3-16: Validation Performance with Two Hidden Layers Each Having Thirty Five Nodes 
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Figure 5.3-17: Validation Performance with One Hidden Layer Having Forty Nodes 

 

 

Figure 5.3-18: Validation Performance with Two Hidden Layers Each Having Forty Nodes 



95 
 

 
Figure 5.3-19: Validation Performance with One Hidden Layer Having Sixty Nodes 

 

 

Figure 5.3-20: Validation Performance with Two Hidden Layers Each Having Sixty Nodes 
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Figure 5.3-21: validation Performance with One Hidden Layer Having Eighty Nodes 

 

 

Figure 5.3-22: validation Performance with Two Hidden Layers Each Having Eighty Nodes 
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Figure 5.3-23: Validation Performance with One Hidden Layer Having Hundred Nodes 

 

Figure 5.3-24: Validation Performance with Two Hidden Layers Each Having Hundred Nodes 
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5.4. Experiment4 – Choice of Support Vector Machine Kernel 

for Classifying Schizophrenia Data  
The results obtained upon training the SVM with various different kernels are tabulated 

below: 

Table 5.4-1: Support Vector Machine Classification Performance with Various Kernels 

Type of Kernel Number of Support 

Vectors 

Classification Accuracy 

Linear Kernel 19 100% 

Gaussian Kernel 480 86.67% 

RBF Kernel 480 86.67% 

Polynomial kernel (order 1) 19 100% 

Polynomial kernel (order 2) 20 100% 

Polynomial kernel (order 3) 21 100% 

Polynomial kernel (order 4) 1 33.33% 

Polynomial kernel (order 5) 5 100% 

Polynomial kernel (order 15) 0 100% 

Polynomial kernel (order 25) 0 66.67% 

Polynomial kernel (order 100) 0 66.67% 

 

Since the number of support vectors cannot be zero, the results show that this data cannot 

be classified with a polynomial kernel of order higher than three. The Gaussian and RBF 

kernels have relatively low classification accuracy whereas the linear kernel has a high 

accuracy (100%) and relatively low number of support vectors. The linear kernel is also 

the simplest of all kernels. Therefore, taking all things into consideration, it is 

recommended that a linear kernel be used for classification of this data set. 
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5.5. Experiment5 – Fuzzy Clustering for Diagnosing 

Schizophrenia  
The synthetic data generated as part of Experiment-2 was clustered using the MATLAB 

“fcm” utility. The tool was able to separate all the data correctly into two clusters. 

Further, the PANSS ratings of four actual subjects were added to the synthetic dataset and 

the “fcm” tool was executed again. The PANSS ratings of the four subjects are given in 

Table 5.5-1: 

Table 5.5-1: PANSS Ratings of Actual Subjects 

PANSS Items Patient Ratings; Scale: [0 – 6] 

Patient01 Patient02 Patient03 Patient04 

Delusions 1 0 0 4 

Conceptual Disorganization 1 0 0 2 

Hallucinatory Behaviour 1 1 1 3 

Excitement 2 0 1 2 

Grandiosity 2 2 1 0 

Suspiciousness / Persecution 1 0 0 5 

Hostility 3 3 2 4 

Blunted Affect 1 0 0 3 

Emotional Withdrawal 3 0 2 5 

Poor Rapport 3 2 2 2 

Passive / Apathetic Social 

Withdrawal 

2 0 1 3 

Difficulty in Abstract Thinking 2 0 1 3 

Lack of Spontaneity and Flow of 

Conversation 

3 2 2 5 

Stereotyped Thinking 1 0 0 5 

Somatic Concern 3 0 2 2 

Anxiety 4 0 2 3 

Guilt Feelings 4 2 2 3 

Tension 4 0 2 4 

Mannerisms and Posturing 0 0 0 1 
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PANSS Items Patient Ratings; Scale: [0 – 6] 

Patient01 Patient02 Patient03 Patient04 

Depression 5 2 4 5 

Motor Retardation 2 0 1 3 

Uncooperativeness 4 2 2 4 

Unusual Thought Content 1 0 0 4 

Disorientation 3 0 2 2 

Poor Attention 4 1 2 2 

Lack of Judgement and Insight 2 0 1 3 

Disturbance of Volition 1 0 0 5 

Poor Impulse Control 3 3 2 3 

Preoccupation 3 0 2 4 

Active Social Avoidance 3 2 2 2 

 

According to a qualified psychiatrist, Patient01 and Patient 04 are schizophrenic, while 

Patient02 and Patient03 are not. The membership values of the four subjects in the two 

clusters are given below in Table 5.5-2: 

Table 5.5-2: Membership Values in Fuzzy Clusters of Real Subjects 

 Patient01 Patient02 Patient03 Patient04 

Cluster1 

(Schizophrenic) 

0.9727 0.4073 0.8146 0.9827 

Cluster2 (Non-

schizophrenic) 

0.0273 0.5927 0.1854 0.0173 

 

We observe that Patient03 has been wrongly classified as schizophrenic by the clustering 

tool. Now, let us consider Patient03‟s medical history. He was given to substance abuse 

as a result of which he experienced hallucinations. He also suffered from depression, 

anxiety and guilt. An allergic reaction led to somatic concerns. Thus he exhibited some of 

the classic symptoms of schizophrenia even though he was not schizophrenic. As a result, 

he had such a high membership value in Cluster1. Even though Patient03 is not 

schizophrenic he has more in common with other schizophrenics than non-
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schizophrenics. This opens up the discussion as to whether an individual who exhibits 

Patient03‟s symptoms without the use of hallucinogens should be diagnosed as 

schizophrenic even though such a diagnosis is at odds with the guidelines provided in the 

DSM as it stands today. 
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6. Conclusion  
It is seen that artificial intelligence can go a long way in the diagnosis of a complex mental 

disease like schizophrenia. This work demonstrates how a fuzzy expert system compatible 

with the Diagnostic and Statistical Manual, 5
th

 edition (DSM-5) can be built. The output of 

the expert system is such that a subject may be classified as normal, psychotic or 

schizophrenic. The expertise of a qualified psychiatrist was leveraged in order to identify the 

membership functions and fuzzy rules of the expert system.  

Next, the fuzzy expert system was leveraged to create a synthetic dataset which may be used 

to train an artificial neural network for diagnosing the disease. Training neural networks with 

more than one hidden layers laid bare some interesting observations. The synthetic dataset 

was also used to train a support vector machine wherein the best SVM kernel for diagnosing 

schizophrenia was identified.  

Finally, the synthetic dataset and some additional data from real subjects was clustered using 

fuzzy clustering. The result opened up a discussion on the diagnostic criterion for 

schizophrenia itself. 
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7. Scope of Future Work 
The considerable volume of the work notwithstanding, most of the experiments were 

performed with synthetic training data and not data from actual subjects. In future, 

PANSS ratings of actual subjects may be collected and used to refine the membership 

functions with the help of neuro-fuzzy modelling. Additionally, the membership functions 

may be modified using genetic algorithms. The membership functions used with the 

fuzzy expert system captures just one physician‟s ideas and is subject to human errors. If 

a good amount and variety of data from human subjects are available, then a feedback 

loop can be created which would keep on modifying and refining the membership 

function till there is no significant change. This is something that can be taken up for 

future research. 
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