
1

1.5em 0pt

JADAVPUR UNIVERSITY

MASTER DEGREE THESIS

Refurbishing Sensor Cloud
Infrastructure for Efficient IoT

Applications

A thesis submitted in fulfillment of the requirements for the degree of
Master of Technology in Distributed & Mobile Computing

in the

School of Mobile Computing And Communication

by

AKASH CHOWDHURY
University Roll Number: 001730501013

Examination Roll Number: M4DMC19015
Registration Number: 141110 of 2017-2018

Under the Guidance of

Dr. NANDINI MUKHERJEE
Professor, Department of Computer Science and Engineering

Faculty of Engineering and Technology
Jadavpur University

Kolkata-700032

2019

i

Declaration of Originality and Compliance
of Academic Ethics

I hereby declare that this thesis contains literature survey and original research work
by the undersigned candidate, i.e. me, as part of Master of Technology in Distributed
& Mobile Computing studies.

All information in this document have been obtained and presented in accor-
dance with academic rules and ethical conduct.

I also declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

Name : AKASH CHOWDHURY
Class Roll No. : 001730501013
Examination Roll No. : M4DMC19015
Registration No. : 141110 of 2017-2018
Thesis Title : Refurbishing Sensor Cloud Infrastructure

for Efficient IoT Applications

Signed:

Date:

To whom it may concern
This is to certify that the work in this thesis entitled “Refurbishing Sensor Cloud
Infrastructure for Efficient IoT Applications” has been satisfactorily completed by
Akash Chowdhury, University Roll Number: 001730501013, Examination Roll Num-
ber: M4DMC19015, Registration Number: 141110 of 2017-2018. It is a bona-fide
piece of work carried out under my supervision at Jadavpur University, Kolkata-
700032, for partial fulfillment of the requirements for the degree of Master of Tech-
nology in Distributed & Mobile Computing from the School of Mobile Computing
And Communication, Jadavpur University for the academic session 2017-2019.

Dr. Nandini Mukherjee
Professor
Department of Computer Science & Engineering,
Jadavpur University
Kolkata-700032.

DIRECTOR
School of Mobile Computing
And Communication,
Jadavpur University
Kolkata-700032.

Prof. Pankaj Kumar Roy
Dean, Faculty of Interdisciplinary

Studies, Law and Management
Jadavpur University

Kolkata-700032.

Certificate of Approval
(Only in case the thesis is approved)

This is to certify that the thesis entitled “Refurbishing Sensor Cloud Infrastruc-
ture for Efficient IoT Applications” is a bona-fide record of work carried out by
Akash Chowdhury, University Roll Number: 001730501013, Examination Roll Num-
ber: M4DMC19015, Registration Number: 141110 of 2017-2018, in partial fulfillment
of the requirements for the award of the degree of Master of Technology in Dis-
tributed & Mobile Computing from the School of Mobile Computing And Commu-
nication, Jadavpur University for the academic session 2017-2019. It is understood
that by this approval the undersigned do not necessarily endorse or approve any
statement made, opinion expressed or conclusion drawn therein but approve the
thesis only for the purpose for which it has been submitted.

(Signature of the Examiner)
Date:

(Signature of the Examiner)
Date:

iv

Jadavpur University

Abstract

Faculty of Interdisciplinary Studies, Law and Management, Jadavpur University
School Of Mobile Computing And Communication

Master of Technology in Distributed & Mobile Computing

Refurbishing Sensor Cloud Infrastructure for Efficient IoT Applications

by

AKASH CHOWDHURY

University Roll Number: 001730501013
Examination Roll Number: M4DMC19015
Registration Number: 141110 of 2017-2018

In IoT, a major application scenario is environmental monitoring. To monitor any
given environment, a Wireless Sensor Network (WSN) is needed. But, any stan-
dalone WSN possess resource constraints in terms of computation, communication,
storage and power supply. Thus, WSN is integrated with the cloud computing tech-
nology to create a new infrastructure termed as the Sensor-Cloud. The Sensor-Cloud
hosts huge number of sensor nodes, most of which reside behind NATs in a private
network. A sensor node should not unnecessarily stream data to a cloud storage
all the time. As this will lead to energy drain of the sensor node. To make the sen-
sor nodes stream on demand, the sensor node must be acquired first. To do so, the
Sensor-Cloud must be able to propagate an acquiring signal through the NAT of the
sensor node. Thus, there must be a mechanism to establish a communication chan-
nel through which the acquiring signal can be propagated to the sensor node. In
Sensor-Cloud, after acquiring a set of sensor nodes, when that set of sensor nodes
stream data together to a sensor gateway it may happen that the bandwidth required
at any time instant is higher than that available in the wireless medium. It may also
happen at any instant of time that the required channel capacity exceeds the maxi-
mum available channel capacity of the access link connecting the sensor gateway to
the cloud storage. To overcome this problem, the sensor nodes must be scheduled
in such a way that the maximum bandwidth required in the wireless medium and
maximum channel capacity required at the access link at any time instant can be
minimized. Therefore, this thesis mainly focuses on solving the two aforementioned
problems of a Sensor-Cloud by providing efficient solutions for each of them.

v

Acknowledgements
On the submission of “Refurbishing Sensor Cloud Infrastructure for Efficient IoT
Applications”, I wish to express gratitude to the School of Mobile Computing And
Communication for sanctioning a thesis work under Jadavpur University under
which this work has been completed.

I would like to convey my sincere gratitude to Dr. Nandini Mukherjee,
Professor, Department of Computer Science & Engineering, Jadavpur University for
her valuable suggestions throughout the project duration. I am really grateful to her
for her constant support which helped me a lot to fully involve myself in this project
and develop new approaches in the field of Internet of Things.

I would like to express my sincere, heartfelt gratitude to Mr. Sunanda Basu,
Ph.D Scholar, Department of Computer Science & Engineering, Jadavpur University,
Kolkata, for suggestions and guidance.

I would also wish to thank Dr. Punyasha Chatterjee, Director of the School Of
Mobile Computing And Communication, Jadavpur University and Prof. Pankaj
Kumar Roy, Dean, Faculty of Interdisciplinary Studies, Law and Management, Ja-
davpur University for providing me all the facilities and for their support to the
activities of this research.

Lastly I would like to thank all my teachers, classmates, guardians and well wish-
ers for encouraging and co-operating me throughout the development of this project.
I would like to especially thank my parents whose blessings helped me to carry out
my project in a dedicated way.

Regards,
AKASH CHOWDHURY

University Roll Number: 001730501013
Examination Roll Number: M4DMC19015
Registration Number: 141110 of 2017-2018
School of Mobile Computing And Communication
Jadavpur University

Signed:

Date:

vi

Contents

Declaration of Originality and Compliance of Academic Ethics i

Abstract iv

Acknowledgements v

List of Figures ix

List of Tables xi

List of Abbreviations xii

List of Symbols xiii

1 Introduction 1
1.1 Sensor-Cloud Infrastructure . 1

1.1.1 Architectural View of Sensor-Cloud 3
1.1.1.1 Resource Host . 6

1.1.2 Advantages of Sensor-Cloud . 8
1.1.3 Applications of Sensor-Cloud . 9

1.1.3.1 Various Sensor-Cloud Platforms and software APIs . 9
1.1.3.2 Various Sensor-Cloud applications 9

1.2 Motivation . 11
1.3 Objective . 12
1.4 Contribution . 13
1.5 Organization of the Thesis . 13
1.6 Summary of the chapter . 13

2 Literature Survey 14
2.1 Various Network Address Translators traversal techniques 14

2.1.1 Categories of NAT traversal techniques 14
2.1.2 Various NAT traversal techniques 15

2.2 Instantaneous traffic minimization in a
Sensor-Cloud Infrastructure . 17

2.3 Summary of the chapter . 18

vii

3 Energy Efficient Passive NAT Traversal through UDP 20
3.1 Introduction . 20
3.2 Scheme Overview . 21

3.2.1 Identification . 22
3.2.2 Probing . 22
3.2.3 Convergence . 23
3.2.4 Alive . 23

3.3 Protocol Operation . 23
3.3.1 Handshake . 23
3.3.2 Handshake reply . 23
3.3.3 Probe . 24
3.3.4 Acknowledgement . 25
3.3.5 Reply . 27
3.3.6 Alive Request . 27
3.3.7 Alive Reply . 27

3.4 Results and Discussion . 28
3.5 Summary of the Chapter . 30

4 Sensors Scheduling for Aggregated Traffic Minimization 31
4.1 Introduction . 31
4.2 Wireless IoT Sensor Network Model . 32
4.3 Application Scenario . 34
4.4 Problem Definition . 35

4.4.1 Problem Variation . 36
4.4.1.1 Consecutive execution of transactions 38
4.4.1.2 Non-Consecutive execution of transactions 41

4.5 Proposed Heuristics . 43
4.5.1 Heuristic solution for consecutive execution of transactions . . 43

4.5.1.1 Description of Proposed Heuristic Algorithm 44
4.5.1.1.1 Brief Overview of the algorithm - 44
4.5.1.1.2 Comprehensive Description of the algorithm

- . 45
4.5.1.2 Pseudo Code for the proposed algorithm 47
4.5.1.3 Evaluation of the proposed algorithm 49

4.5.2 Heuristic solution for non-consecutive execution of transactions 54
4.5.2.1 Description of Proposed Heuristic Algorithm 54

4.5.2.1.1 Brief Overview of the algorithm - 54
4.5.2.1.2 Comprehensive Description of the algorithm

- . 56
4.5.2.2 Pseudo Code for the proposed algorithm 57
4.5.2.3 Evaluation of the proposed algorithm 59

4.6 Results And Discussions . 65

viii

4.6.1 Results in case of consecutive execution of transactions 65
4.6.2 Results in case of non-consecutive execution of transactions . . 70

4.7 Summary of the Chapter . 73

5 Concluding Remarks and Future Direction 74
5.1 Overview . 74
5.2 Future Work . 75

ix

List of Figures

1.1 Overview of the Sensor-Cloud [1] . 5
1.2 The architecture of a Sensor-Cloud . 7

3.1 Scheme Overview . 22
3.2 The protocol sequence diagram . 24
3.3 Results ADSL broadband . 28
3.4 Scheme Results in Vodafone 4G network 29
3.5 Scheme Results in Airtel 4G network . 29

4.1 Wireless Sensor Network model in Internet of Things(IoT) scenario [79] 33
4.2 Aggregated traffic load per time slot from all the four sensor nodes

with offset configuration mentioned in table 4.3 39
4.3 Aggregated traffic load per time slot from all the four sensor nodes

with offset configuration mentioned in table 4.4. The Sensor nodes
executes multiple transactions in periods (if present) consecutively. . . . 40

4.4 Aggregated traffic load per time slot from all the four sensor nodes
with offset configuration mentioned in table 4.5. The Sensor nodes
DOES NOT execute multiple transactions in periods (if present) con-
secutively. 43

4.5 Local optimization of period 0 of sensor node 0 50
4.6 Local optimization of period 1 of sensor node 0 51
4.7 ATL after sensor node 0 optimized . 51
4.8 Local optimization process in period 0 of sensor node 1 in case of off-

sets 0, 1 and 2 . 52
4.9 Local optimization process in period 0 of sensor node 1 in case of off-

sets 3 and 4 . 53
4.10 ATL after sensor node 0 optimized . 53
4.11 Local optimization process for 0th transaction of 0th period of 0th sen-

sor node . 60
4.12 Local optimization process for 0th transaction of 1th period of 0th sen-

sor node . 61
4.13 ATL after transaction 0 of period 0 and 1 of sensor node 0 have been

locally optimized . 61
4.14 The local optimization process for the 0th transaction of sensor node 1 . 63

x

4.15 The local optimization process for allocating the second transaction of
sensor node 1 . 64

4.16 The aggregated traffic in ATL at the end of the local optimization pro-
cess of sensor node 0 and 1 . 64

4.17 Proposed V/s Random Offset in terms of increasing sensor nodes for
12 and 25 sensor nodes . 65

4.18 Proposed V/s Random Offset in terms of increasing sensor nodes for
50 and 100 sensor nodes . 66

4.19 Proposed V/s Random Offset in terms of increasing sensor nodes for
250 and 500 sensor nodes . 66

4.20 Proposed V/s Random Offset in terms of increasing sensor nodes for
1000 and 2000 sensor nodes . 67

4.21 Increase in Chmax with increasing number of sensor nodes 67
4.22 Increase in BW with increasing number of sensor nodes 68
4.23 Aggregated traffic load per time slot in case of consecutive execution

of transactions . 68
4.24 Aggregated traffic load per time slot in case of consecutive execution

of transactions . 69
4.25 Aggregated traffic load per time slot in case of non-consecutive exe-

cution of transactions . 71
4.26 Aggregated traffic load per time slot in case of non-consecutive exe-

cution of transactions . 72

xi

List of Tables

3.1 Example of Delta Decision . 26

4.1 Four IoT sensor nodes - sensor 0 (p0 = 2, T0 = 1, f0 = 1, b0 = 16),
sensor 1 (p1 = 3, T1 = 2, f1 = 1, b1 = 8), sensor 2 (p2 = 6, T2 = 2,
f2 = 2, b2 = 16), sensor 3 (p3 = 6, T3 = 1, f3 = 1, b3 = 8) 36

4.2 The starting and ending point of each period in each sensor node rep-
resented by the two-tuple (xij, yij) . 37

4.3 Random Offset configuration for the four IoT sensor nodes 38
4.4 A better offset configuration for the four IoT sensor nodes when trans-

actions in each period are performed consecutively 39
4.5 A better offset configuration for the four IoT sensor nodes when trans-

actions in each period are NOT performed consecutively 42
4.6 Description of notations used in algorithm and pseudo code 44
4.7 Two IoT sensor nodes - sensor 0 (p0 = 3, T0 = 1, f0 = 1) and sensor 1

(p1 = 6, T1 = 1, f1 = 2) . 49
4.8 The set of offsets achieved from the evaluation in figure 4.5, 4.6, 4.8

and 4.9 . 54
4.9 Two IoT sensor nodes - sensor 0 (p0 = 3, T0 = 1, f0 = 1) and sensor 1

(p1 = 6, T1 = 1, f1 = 2) . 59
4.10 The set of offsets achieved from the evaluation in figure 4.11, 4.12, 4.14

and 4.15 . 62
4.11 A set of 2000 IoT sensor nodes . 65

xii

List of Abbreviations

IoT Internet Of Things
QoS Quality Of Service
WSN Wireless Sensor Network
JSON JavaScript Object Notation
M2M Machine To Machine
LAN Local Area Network
XML Extensible Markup Language
NAT Network Address Translation
GSP Global Service Provisioning
SPPS Service Provisioning using pre-signaling
RNT Requester side NAT Traversal
SSP Secure Service Provisioning
UPnP Universal Plug and Play
NAT-PMP NAT Port Mapping Protocol
PCP Port Control Protocol
STUN Session Traversal Utilities for NAT
TURN Traversal Using Relays around NAT
ICE Interactive Connectivity Establishment
CAN Context-Aware NAT Traversal
GPA Gradual Proximity Algorithm
ANTS Advanced NAT Traversal Service
P2P Peer To Peer
NAPT Network Address Port Translation
SOHO Small Office Home Office
ISP Internet Service Provider

xiii

List of Symbols

cp Client payload in probe message
sp Server payload in reply message
ρ Random number
δ Variable controlling delay decision
d Decided delay
p Period of a sensor (in number of time slots)
T Number of transactions to be done in a p
f Size of each transaction (in number of time slots)
BW Number of available frequency channels
Chmax Maximum required channel capacity (in bits per time slot)
L LCM of all the periods of the sensor nodes
θijk Offset for kthtransaction (in number of time slots) in jth

period of ith sensor node

1

Chapter 1

Introduction

1.1 Sensor-Cloud Infrastructure

Internet of Things (IoT) is a technological concept that aims to connect huge number
of devices via the Internet to manifest an infrastructure that is necessary to provide
any service or support any given application scenario. One of the most important
component that is needed to support any large scale IoT infrastructure is sensor
nodes.

A major application scenario of the IoT paradigm is environmental monitor-
ing [2]. Through environment monitoring huge amount of data is generated that
is required for analysis in order to reach to certain conclusions about the state of
the environment [3]. Thus, for monitoring of any given environment a network of
sensing nodes are required which forms a Wireless Sensor Network (WSN). Snow-
fort [4],is an open source WSN for data analytics in infrastructure and environmental
monitoring.

Any typical WSN comprises of a set of sensor nodes that is deployed in a partic-
ular environment for monitoring that environment continuously by sensing the var-
ious environmental parameters and stream those sensed data to a destination, say
a cloud server. Any WSN gets the capability of being distributed all over the envi-
ronment and have total coverage of the environment by the means of self-regulated
sensor nodes. These sensor nodes can be programmed how to get activated and start
sensing, how and when to stream the sensed data and when to again become dor-
mant. A sensor node becomes dormant or gets into a very low power state because
it is important to save energy or battery life as the nodes are battery powered and
not connected to any external power source.

The sensor nodes of a WSN can sense data about different environmental param-
eters like, temperature, humidity, atmospheric pressure, pollution, speed of wind,
vibration and motion and many more [5] [6].

These sensor nodes are equipped with -
a) A radio transceiver or some means for wireless communication,
b) A small microcontroller,
c) An energy source. In maximum cases, cells/batteries are used as power source.

Chapter 1. Introduction 2

Any sensor node is comprised of three basic modules [7] -
a) Sensing module,
b) Processing module,
c) Communication module

With the advancements in computer networks and sensing devices, it has gradu-
ally become very easy nowadays to deploy a WSN in any environment. Growing
demands for smart IoT infrastructures and the required capability prevalence in
WSN(s) to provide it has increased the utilization of WSN(s) in many fields like
healthcare [8], military and defence services like target tracking and surveillance [9]
[10], governmental projects for handling environmental issues like natural disaster
management [12], exploration of hazardous environments [11] and seismicity sens-
ing [13].

But there are many challenges and disadvantages of sensor networks and they
are as follows.

a) Communication range of the sensor nodes of a WSN are very short.
b) Issues regarding security and privacy.
c) Issues related to reliability of the WSN.
d) Mobility issues.
e) Power constraints
f) Storage constraints
g) Computational constraints
h) Bandwidth availability constraints

On top of this a design of the WSN also varies according to the environment in
which it will be deployed. It also depends on the type of monitoring application
it is or the parameter (temperature or seismicity) that is to be monitored for the
environment.

The size of the environment is also a dependency. For smaller areas less number
of sensor nodes are required to have total coverage but for larger areas the number
of sensor nodes required is quite large. All these issues degrade the performance of
a WSN thus degrading the quality of service (QoS) [14].

To strengthen the WSN(s), it was incorporated with the Cloud Computing tech-
nology. Cloud computing provided two basic things to the WSN – a) computational
efficiency, by providing highly scalable computational units and software services,
b) better control of the sensor nodes of the deployed WSN as the cloud also provides
better communication bandwidths and gives provision to host real time interactive
mobile applications for on demand remote supervision of the WSN [15]. The inte-
gration of the WSN and cloud computing gave birth to the new cloud, termed as the

Chapter 1. Introduction 3

Sensor-Cloud.

A Sensor-Cloud infrastructure [16] is meant to manage the sensor nodes of a
WSN over the cloud. When WSN got integrated to the cloud infrastructure several
problems faced by the WSN like computational constraints, communication con-
straints and storage constraints got relaxed.

Huge amount of data could be gathered and stored in the cloud to perform an-
alytics on the data in order to make valuable conclusions about the status of the
monitored environment. With high storage capacity the QoS of the WSN services
also got uplifted as the monitoring can be done constantly and data can be gathered
at a very high rate. Sensor nodes, as a part of a WSN deployment, can now send
data directly to the cloud through a common gateway. The gateway interfaces the
WSN and the cloud storage [17].

Sensor-Cloud has many real life applications like in irrigation, monitoring of dis-
aster and environments, health monitoring and telemetric. In healthcare senario, a
patient with cardiovascular disease, can be constantly monitored by an application
hosted in the cloud that connects to the deployed WSN to continuously collect data
of different medical parameters like blood sugar level, sleeping patterns, weight,
heart beat rate, pulse rate and many more. The patient himself or his guardians can
monitor the parameters continuously through a mobile application that accesses the
data storage in the cloud where the sensor nodes of the WSN streams and stores
data [18].

1.1.1 Architectural View of Sensor-Cloud

IntelliSys defined [19] [20] SensorCloud as –
“An infrastructure that allows truly pervasive computation using sensors as an interface
between physical and cyber worlds, the data-compute clusters as the cyber backbone and
the internet as the communication medium.
”

In [21], the definition of Sensor-Cloud provided by MicroStrains is stated as –
“It is a unique sensor data storage, visualization and remote management platform that
leverage [sic] powerful cloud computing technologies to provide excellent data scalability,
rapid visualization, and user programmable analysis. It is originally designed to support
long-term deployments of MicroStrain wireless sensors, Sensor-Cloud now supports any
web-connected third party device, sensor, or sensor network through a simple OpenData
API.”

A problem with a standalone sensor network is that the application using the
sensor network keeps sole authority of using the sensor network as a single user.
Suppose for example, there is a WSN W deployed for serving application A. In this
case application A holds the sensor network W and the sensed data in such a way
that no other application, say application B, can share the resources of the sensor

Chapter 1. Introduction 4

network W. This causes massive wastage of sensing resources available in W as now
application B needs to have a sensor network of its own causing very low resource
utilization. Even when application A is not accessing the resources of the sensor
network W, application B cannot access the free resources available at the sensor
network W. If application B needs the same sensed data of application A, there is
no provision for application B to access the same data already sensed by the sensor
network W for application A.

Thus, to facilitate sharing of sensing resources, in Sensor-Cloud infrastructure
the physical sensors are virtualized on a cloud platform to create virtual sensors.
These virtual sensors get provisioned for multiple WSN applications. A virtual sen-
sor can actually be either a single physical sensor node or a group of physical sensor
nodes at the physical layer. Whereas a physical sensor node can be a part of more
than one virtual sensors. With sensor virtualization, any two virtual sensors serving
two independent WSN applications can actually share physical sensor nodes of a
single WSN. Thus, the concept of virtual sensors uplifts the resource utilization of
the physical sensing nodes and thus helps to create more innovative, efficient, scal-
able and diverse WSN applications sharing the same physical sensor nodes.

From a Sensor-Cloud, a requester when requests for a type of sensing service,
the Sensor-Cloud investigate its available resources, finds the suitable ones and pro-
visions an appropriate virtual sensor with the required specifications. The requester
does not need to think about the infrastructural level details of how the virtual sen-
sor is providing the required services or what are the physical sensor nodes that got
virtualized to create the provisioned virtual sensor. In such a scenario it can be re-
alized that a particular physical sensor node can be parts of more than one virtual
sensor node [22]. The virtual sensors after being created are continuously monitored
by the Sensor-Cloud in order to destroy the unwanted instances of virtual sensors
thus increasing QoS of the services provided by the Sensor-Cloud by proper utiliza-
tion of the physical resources [23]. To choose the appropriate sensor nodes according
to the specification of the required services (e.g. type of sensors required, amount of
data required, etc.) there exists a mechanism called publish/subscription [33] mech-
anism that helps to find and select the appropriate sensor nodes [34].

The most demanding sensing scenario in IoT healthcare services is continuous
monitoring of the patients in which the sensor nodes continuously sense health pa-
rameters and send to the cloud gateway for storage. These sensed data can be con-
tinuously monitored by a smart application and according to the parameter values
decisions can be taken automatically by the application regarding how to treat the
patient or to contact any medical personnel or hospital to reach the patient if im-
mediate medical assistance is required. Such medical services ask for smart WSN(s)
and efficient computation of decision making algorithms by the cloud based on the
sensed data sent to the cloud, in a completely automated structure involving no
third-party intervention [24].

Chapter 1. Introduction 5

In figure 1.1, an overview of the Sensor-Cloud is depicted.

FIGURE 1.1: Overview of the Sensor-Cloud [1]

Sensor-Cloud infrastructure makes the virtual sensor available to the users in
such a manner that the virtual sensors act exactly as an integral part of the IT re-
sources like disk storage, main memory and processor [35]. Users when use a vir-
tual sensor of the Sensor-Cloud infrastructure only needs to be concerned about the
status of the virtual sensor and not about the physical status of the actual physical
sensors from which the virtual sensor has been procreated.

Chapter 1. Introduction 6

In a Sensor-Cloud infrastructure, the sensor nodes are registered by the sensor
node owners free of cost. When not willing to keep the sensor nodes as a part of
the Sensor-Cloud infrastructure the owners can even deregister the sensor nodes at
any time without any cost. After the sensor nodes are registered to the Sensor-Cloud
infrastructure, they go through certain processes to become operational. From the
available sensor nodes in the Sensor-Cloud infrastructure, different templates for
service instances comprising a virtual sensor or a group of it are created so that
the users can avail the services provided by the Sensor-Cloud infrastructure. The
various components of the Sensor-Cloud infrastructure are as follows.

1.1.1.1 Resource Host

Resource Host are logical hosts that are remotely located somewhere in any orga-
nization, institution or environment.These logical hosts have a pool of remote re-
sources that gets provisioned on demand. The Resource Host consist of two main
parts - a) physical sensors, and b) a sensor coordinator.

• Physical Sensor – Physical sensors are the devices that actually sense and accu-
mulate data but are not capable of transmitting the data. The physical sensors
may not possess independent power source (eg. batteries). Multiple sensor
may share the same power resource and get activated when attached to any
power source. Each sensor have an unique id for identification.

• Sensor Coordinator – The sensor coordinator does the data transmission. It also
acts as the power source for multiple sensors but do not have sensing capabil-
ities of its own. It is a non-sensing resource with a unique id for identification.
There can be a) globally identifiable coordinator, and b) locally identifiable co-
ordinator. While the globally identifiable coordinator can be communicated
directly for the cloud server, the locally identifiable coordinator is communi-
cated through a sensor gateway. Sensor coordinators are made available with
on board power supply.

For data transmission, the coordinator is equipped with either a Wi-Fi module
or GSM module or a USB module. The sensor coordinators according to their
status of local or global coordinator, communicates with the cloud server either
directly or via the sensor gateway.

There are three main ways in which the physical sensors are attached to the
sensor coordinator.

1. Fixed – This type of attachments depicts the sensors that can never be
plugged in/out of the sensor coordinator. For example, like TelosB, Iris,
MICA2 that are located at specific positions. For example, multiple health
sensors attached to a patient in motion.

Chapter 1. Introduction 7

2. Mobile – This type of attachments involve sensors to be connected to the
coordinator either through wired or wireless means. There is mobility
support for both the sensor and cloud.

3. Variable – There is a coordinator located at any fixed location. Multiple
sensor are connected to the coordinator and those sensors are supposed
to be attached to multiple individuals in a time slotted manner.

• Sensor gateway – These devices receive data from the locally unidentifiable co-
ordinators and forwards the same to the cloud server. For efficient transfer of
data the sensor coordinators make intelligent routing decisions based on the
available network topology [40]

In figure 1.2, the various components present in the architecture of the Sensor-Cloud
is depicted.

FIGURE 1.2: The architecture of a Sensor-Cloud

Chapter 1. Introduction 8

1.1.2 Advantages of Sensor-Cloud

With the integration of Cloud and WSN, the new paradigm of Sensor-Cloud were
able to provide better QoS in terms of agility, reliability, portability, real-time access
and control, scalability and flexibility. In the following, the advantages of the Sensor-
Cloud have been enlisted which brought massive success to the concept of Sensor-
Cloud.

1. Analytics – The Sensor-Cloud infrastructure possess huge resources of vast net-
works of WSNs to gather sensed data, enormous repositories of high-end com-
putational units and fast communication networks. These infrastructural as-
sets provided huge support to users willing to perform analytics of sensor data
for creation of any smart IoT application [35].

2. Scalability – Any user can scale his/her own WSN deployment to any extent by
asking for the service from the Sensor-Cloud platform. Earlier when there was
no cloud computing integration, a user had to invest a huge amount of capital
for buying all the equipments needed to extend the WSN [36].

3. Collaboration – Sensor-Cloud infrastructure has the capability of sharing huge
amount of sensed data, gathered from the collaboration of huge number of
physical sensor nodes, among multiple organizations with different WSN ap-
plications that requires sensed data.

4. Visualization – Sensor-Cloud also provides APIs for visualization of the sensed
data that is stored in the cloud and retrieved as per queries. These APIs help to
understand better the future aspects of any situation depending on the sensed
data [37].

5. Free Provisioning of Increased Data storage and Processing Power Large-scale IoT
application data gathered form vast WSNs can be stored easily in cloud stor-
age. Storage and management of the huge amount of sensed data has become
very easy with the presence of the ubiquitous cloud resources in the Sensor-
Cloud [38].

6. Dynamic resource provisioning – The users of the Sensor-Cloud can access the
Sensor-Cloud platform from any where and at time on demand. The users can
even provision new resources on demand [38].

7. Multi-tenancy – Multi-tenancy refers to the model of operation in which multi-
ple intances are integrated to create new and innovative services. Cloud plat-
form available in Sensor-Cloud infrastructure makes it very easy to integrate
services provided by multiple tenants [36].

8. Automation – Automatic delivery of resources or provisioning of services highly
improved the resource acquisition time or service delivery time.

Chapter 1. Introduction 9

9. Flexibility – Sensor-Cloud facilitates the acquiring and releasing of services any-
time on demand. The sensor nodes are made to serve multiple application of
a single user of single application of multiple users, in any extent.

10. Low Response Time – Due to the vast high speed routing networks available in
the cloud, the WSN applications have become capable of providing real-time
services with minimal latency [39].

1.1.3 Applications of Sensor-Cloud

In this section, various Sensor-Cloud platforms and applications prevailing in the
contemporary world have been enlisted as the following.

1.1.3.1 Various Sensor-Cloud Platforms and software APIs

1. Nimbits – It is free platform available as a social service to gather sensed data
and share them though the cloud. It is an open-source platform for IoT and
is capable of providing high-end data processing services. It supports data
points for diverse input formats like JSON, GPS, XML and text-based [41].

2. Pachube – It is a cloud based service for supporting IoT with an available infras-
tructure which is scalable enough to let the users configure different IoT ser-
vices and applications. It is one of the oldest online database service providers.
It facilitates different IoT service provisioning, storage and sharing of of real-
time sensed data from various environments. Pachube also provides an easy
API to manage the stored sensed data via a very interactive website.

3. IDigi – It is a machine-to-machine (M2M) platform that facilitates building of
low cost, secured and highly scalable products to bind te enterprise applica-
tions and the remotely situated device assets together. Irrespective of the loca-
tion of the remote sensor nodes and ability to reach it, iDigi platform provides
a remote device connectivity software for simplified connectivity with remote
devices and their association with enterprise applications [43].

4. IoT ThinkSpeak – It is another open source IoT applications that provides an API
for efficient storage and retrieval of data from various device assets. It may use
any means of LAN or HTTP services over the Internet for communication with
the device assets and others [44].

1.1.3.2 Various Sensor-Cloud applications

In this section, there are many emerging Sensor-Cloud application present that have
been discussed. Various application scenarios of Sensor-Cloud has been depicted in
the following.

Chapter 1. Introduction 10

1. Ubiquitous monitoring in Healthcare – Various wearable sensor nodes like ac-
celerometer, proximity sensors, ambient light sensor, temperature sensor and
blood sugar detectors can be used to procreate an application for monitoring
the health of a patient [45].

2. Monitoring of Tunnels – The amount of light present in the tunnel can be mon-
itored by the means of smart WSNs to avoid accidents inside the tunnel or
below long and dark bridges. Distributed and continuous sensing of light lev-
els inside the tunnel will help to create an adaptive lighting system inside the
tunnel that will provide lights when the tunnel is sensed to be dark and put
off the light when there is enough presence of light to avoid accidents in the
tunnels [51].

3. Wildlife Monitoring – Sensor-Clouds is very efficient to track animals in a for-
est and detect forest fires [47]. It helps to continuously monitor endangered
species and atmospheric parameters of the forests and wildlife sanctuaries.

4. Environment monitoring for Emergency and Disaster Detection – Disasters like
earthquakes and volcanic eruptions can be detected beforehand by continu-
ously monitoring them with the help of a smart WSN comprising of sensors
like strain sensor, barometric sensors, accelerometers, vibration sensors, tem-
perature sensors, light and image sensors [48]. The sensor nodes deployed in
any environment can be used in a shared mode for different monitoring appli-
cations running in that environment.

5. Agriculture and Irrigation Control – Sensor-Cloud is capable of serving in the
field of agriculture as well. For monitoring the crops a field server can be de-
veloped that consists of camera sensors, temperature and humidity sensors,
CO2 concentration sensors, soil moisture sensor. The server can continuously
monitor the field to keep the farmer notified about the health of the crops [49].

6. Earth Observation – In [50] several GPS stations have been connected through a
sensor grid to collect GPS data and perform analytics on them. This GPS data
would help to deal with natural calamities like volcanic eruptions, cyclones,
Tsunamis and earthquakes.

7. Transportation Applications – Traffic can be tracked continuously and the sensed
data can be sent to cloud server for processing, in order to make decision on
maintaining the traffic. Applications can be developed to notify vehicles of
traffic jam occurred several kilometers away so that the driver can change the
route to reach the destination [51].

Chapter 1. Introduction 11

1.2 Motivation

In the previous section, a brief introduction to Sensor-Cloud Infrastructure has been
provided. From the entire aforementioned study, there are two problems that the
Sensor-Cloud infrastructure faces. The first problem that has been realized is re-
lated to the scenario when the sensor nodes are required to stream data to the cloud
storage as per the requirements of the monitoring application.

In the Sensor-Cloud there can be many users those request for sensor services
whenever needed. When a sensor node is not required to stream data, it stays in a
low power state to save its battery backup while deployed as a part of a WSN. When-
ever a request for a particular service is received at the Sensor-Cloud, it starts finding
the appropriate sensor node which has the capability of streaming data according to
the requirements of the user.

On finding an appropriate match the Sensor-Cloud infrastructure needs to acti-
vate the sensor node or the group of sensor nodes (as per the service requirements) so
that they get back to active state from sleep state and start streaming sensed data. In
most cases the sensor nodes are residing in a private address space or in a private
network and thus do not possess any public IPv4 address. It is quite evident that the
range of IPV4 addresses are not enough to provide all the sensor nodes with unique
public IP addresses. Thus, to extend the usability of the IPv4 range, the concept of
Network Address Translation (NAT) was introduced. By network address transla-
tion, multiple nodes residing in a private domain behind a gateway or router, can
communicate with nodes residing in the external network or Internet by sharing a
single public IPv4 address. Due to the presence of NAT, the sensor nodes residing
behind it can only possess a private IPv4 address but no unique publicly addressable
IPv4 address which is required by any cloud server willing to set up a communica-
tion channel to the sensor node as and when required. If the sensor nodes residing
behind NAT cannot be addressed publicly then it becomes a serious issue for the
Sensor-Cloud Infrastructure to propagate the activating signal to the required sensor
nodes.Thus there must be a suitable NAT traversal technique to solve this problem
of waking up the required sensor nodes residing behind NATs. This is a very impor-
tant problem that needs to be solved for a Sensor-Cloud infrastructure in order to let
it collect sensed data from the available sensor nodes and make it available to the
user. Otherwise to make the sensed data available at any time, the sensor nodes will
be required to perform non-stop data streaming. This will be highly power consum-
ing for the sensor nodes as they are power constrained devices, having cell/battery
as the only power source.

Now, when in active state the sensor nodes starts streaming data to a common
gateway, the total traffic generated in a time instant can be either high, average or
low, depending on the schedule of the sensor nodes. If at any time instant all the
sensor nodes transmit data together then the bandwidth required at the wireless

Chapter 1. Introduction 12

medium will be very high, whereas if few sensor nodes transmit at that time slot
then the bandwidth required will be low.

Now if the sensor nodes send data randomly, obeying any random schedule,
then it may happen that at any time instant bandwidth required is not available at
the wireless medium. It will be a wastage or under-utilization of the available band-
width if the bandwidth required for the worst case, in which all the sensor nodes
transmit data, is made available at the wireless medium. Thus, to avoid wastage of
available bandwidth there must be some means to determine the minimum band-
width that can be required at the wireless medium. The channel capacity of the
access link that propagates the sensed data to the cloud server from the gateway
will also get affected in the same way as the bandwidth in the wireless medium.
Thus, the minimum channel capacity required at the access link must also be deter-
mined by some means so that only the required amount of channel capacity is made
available at the access link.

Thus, there exist two problems which are needed to be addressed and solved by
some means for having better QoS for the Sensor-Cloud infrastructure.

1.3 Objective

The two problems discussed in the previous section must be solved for better imple-
mentations of the Sensor-Cloud.

The thesis thus focuses on two problems. The first problem is propagating the
activating signal to the sensor nodes residing behind NATs. The problem that should
be addressed is as follows.

A sensing device (client) is behind a NAT and a publicly addressable server
needs to signal the client when it wants to execute some operation on it. The client
is unaware when it will be signaled from the server. Being inside a NAT the client
cannot be directly addressed by the server. Repeated polling from the client will
drain its battery. Therefore, an energy efficient NAT traversal solution is required
that minimizes the client’s overhead while providing a consistent channel of com-
munication that the server can use to wake up the client as and when required. This
channel should be maintained by the cloud server and not by the sensor device. The
sensor node must only assist in the establishment of the channel as the sensor nodes
are energy constrained devices.

For the second problem discussed earlier, there is need to schedule the sensor
nodes of a WSN in such a way that at any time instant the maximum bandwidth
required at the wireless medium and the maximum channel capacity required at the
access link get minimized. This will in turn prohibit wastage of resources and si-
multaneously decrease establishment cost and maintenance cost of the WSN. Thus,

Chapter 1. Introduction 13

regarding this problem the objective is to find a schedule that would lead to min-
imum bandwidth and channel capacity requirements in the wireless medium and
access link respectively.

1.4 Contribution

In chapter 3, a communication scheme is proposed to solve the problem of activating
sensor nodes on demand. In the proposed scheme sensor nodes as clients communi-
cate with the cloud server through their NATs repetitively until an energy-efficient
channel is established. This channel is maintained by the cloud server by sending
periodic keep-alive packets to the sensor node.

In chapter 4, the second issue discussed in the section ?? has been addressed.
The issue has been realized to have two possible variations. Each of the variations
have been studied thoroughly and for each variation a polynomial-time heuristic
algorithm is proposed in chapter 4. The working methodologies and results of the
algorithmic simulations are also shown comprehensively at the end of chapter 4.

1.5 Organization of the Thesis

The remaining chapters of the thesis are organized as follows. In chapter 2, the
related works of the two problems discussed in section 1.2 are discussed in detail.
Then in chapter 3, a communication scheme is proposed to solve the problem of
activating sensor nodes on demand. The problem is described thoroughly and then
the scheme is described in detail. In chapter 4, solutions for the second problem
mentioned in section 1.3 are discussed in detail. For each variation of the problem
an algorithm and a pseudo code is provided for better understanding. At the end
of the chapter, results obtained in case of both algorithms are discussed. Chapter 5
states the conclusion obtained from the entire work and some future aspects related
to the works done are depicted.

1.6 Summary of the chapter

This chapter introduces the topic of this thesis. A detailed background of the Sensor-
Cloud infrastructure has been depicted in the beginning of the chapter. Then in
section 1.2, the problems that can occur in case of the Sensor-Cloud infrastructure are
discussed in detail. Then in section 1.3, the main objectives regarding the solution of
the two problems are stated. In section 1.4, the contributions done towards solving
the problems are discussed and in section 1.5 the organization of this entire thesis
has been depicted thoroughly.

14

Chapter 2

Literature Survey

In this chapter, the related work with respect to both the problems discussed in the
previous chapter -

1. Communicating with a device residing behind a NAT from a public cloud
server, and

2. Minimization of Bandwidth requirements of the wireless interface and chan-
nel capacity of the wired access link, while sensor nodes are streaming data
together after being activated from the public server.

have been discussed. This chapter is divided into two sections where section2.1
discusses the various NAT traversal techniques through which devices behind re-
siding behind NAT in different application scenarios communicate with each other
and section 2.2 discusses about the various sensor-cloud infrastructures and various
scenarios in which there are needs of scheduling sensor nodes.

2.1 Various Network Address Translators traversal techniques

When an internal host in a private network sends a connection request to an external
host in the public network, the reply packet from the external host needs to traverse
the NAT in order to reach the client. The technique to successfully traverse a NAT is
termed as NAT traversal technique. There are different situations when NAT traver-
sal is required. One situation can be when the communicating hosts are behind
different NATs. Another situation can be when both the communicating hosts are
not behind NATs. The different categories of NAT traversal are enlisted below.

2.1.1 Categories of NAT traversal techniques

There are many NAT traversal techniques available for different application scenar-
ios. Based on the support provided by combinations of requester, service, univer-
sally addressable infrastructure nodes and application scenarios, the NAT traversal
techniques are categorized into four classes [58].

1. Requester side NAT traversal (RNT) - In this class of NAT traversal, the requester
or the client side supports NAT traversal only. It gives support to those clients

Chapter 2. Literature Survey 15

that has active participation in establishment of the connection but still faces
problems due to their existence behind NATs.

2. Global Service Provisioning (GSP) - a host hosting a particular service behind a
NAT wants to make itself available globally by maintaining a mapping on the
NAT.

3. Service Provisioning using pre-signaling (SPPS) - It is an extension to the GSP
where both the requester and service residing behind NATs supports NAT
traversal. Both must have support for at least one of the NAT traversal frame-
works.

4. Secure Service Provisioning (SSP) - It is a further extension of SPPS, where the
authentication and authorization factor is entertained. In this case the hosts
need to be authorized to access each others services or the channel established
between them. This can be implemented by enforcing restriction rules at the
hosts, at the NATs of the hosts, at the firewall or at the data relay node.

2.1.2 Various NAT traversal techniques

1. UPnP [59] - It exploits port forwarding [52] technique for establishing direct
communication between peers. But here the NAT must be enabled with UPnP
service or else UPnP is helpless.

2. NAT-Port Mapping Protocol(NAT-PMP) - NAT-PMP [60] is a protocols accord-
ing to RFC 6886 can be used by host behind NATs to get a internal-to-external
address translation mapping on the NAT for any destination on the external
address realm. The host also can specify the NAT, the lifetime of the NAT table
entry.

3. Port Control Protocol(PCP) - PCP [61] is another protocol same as NAT-PMP.
While NAT-PMP was limited to consumer-grade devices for deployment, PCP
can be also deployed in carrier-grade [62] and dual-stack lite equipments [63].
But still in this case the NAT must support either of the protocols.

4. Session Traversal Utilities for NAT (STUN) [64] - It helps to know the type of
NAT the host is residing behind to facilitate NAT traversal. It discovers the
public address of the internal host via a STUN server and notifies the external
host about it which can then communicate to the client by using that address.
However, it does not work for symmetric NATs [65].

5. Traversal Using Relays around NAT (TURN) protocol [66] - It has a relay server
that relays packets between two hosts behind NATs that has desire to commu-
nicate and send data. In this case both the peer is aware about the communi-
cation.

Chapter 2. Literature Survey 16

6. Interactive Connectivity Establishment (ICE) [67] - ICE is a more complex NAT
traversal technique when both peers are behind NAT. It uses both STUN and
TURN to obtain a set of address candidate pairs created by combining ad-
dress candidates of the two communicating hosts. These pairs are checked for
connectivity establishment. But just like STUN and TURN, even ICE is not
suitable for the problem discussed in the previous chapter. Because in all these
cases both of the communicating parties are actively participating by exchang-
ing messages. However in our case one party (the client) is not pre-informed
when the other (server) will try to communicate with the device. A complex
infrastructure like TURN, STUN and ICE in this case also becomes an over-
head.

7. Context-Aware NAT traversal (CAN) [68] - CAN believes in not trying all
forms of connectivity checks for establishing connection between hosts behind
NATs. Both the hosts behind NATs find information about their addresses
in both private and public address realms, the type of NAT they are residing
behind and whether the NAT implements hair-pin translation [69] and con-
nection tracking or not. Both hosts exchange this information with each other
through a SIP [70] based protocol. On the basis of these exchanged information
the hosts find the appropriate communication paths that further goes through
the connectivity check.

8. Gradual Proximity Algorithm (GPA) [71] - It is based on Relay policy like
TURN. It attempts to find the closest Relay server for relaying message be-
tween hosts behind NAT. Firstly it searches for a Relay in the autonomous
system, then one present in the same country otherwise it tries the one present
in the host’s continent. If still not found it chooses a Relay randomly.

9. Advanced NAT Traversal Service (ANTS) [72] - It involves sending signals to
establish direct connection between two mobile clients without involving any
intermediate server as in case of STUN and TURN. ANTS incorporates UPnP
to acquire NAT configuration data needed to traverse the NAT. The input mod-
ule takes inputs like behaviour of the NAT, type of application and proof of
being a potential requester, i.e. supports ANTS or not. Whenever an appli-
cations needs to have NAT traversal, based on the NAT behavior, application
type and the fact that the application supports ANTS or not, ANTS decides
a NAT traversal technique dynamically from it’s NAT Traversal module. For
example if the the application is a web server behind NAT then it will use GSP
type NAT traversal techniques.

10. NUTSS [73] - It exploits packet spoofing to enable NAT traversal between two
hosts behind NAT for both TCP and UDP. But all ISPs do not allow packet
spoofing.

Chapter 2. Literature Survey 17

11. MIDCOM [74] - This protocol allows hosts behind a NAT or firewall to change
the behaviors of the middle-box to enable necessary connections. But this is
not possible every time as all hosts are allowed to alter the middle-box.

12. NatTrav [75] - In this technique, a connection broker is present between the
initiator and the recipient. The recipient registers itself with the broker with a
URI to uniquely identify itself and accept connections from the initiator. The
broker provides NAT traversal service for the recipient if it is behind a NAT.

13. NATng [76] - It is a framework that uses a Domain Name System Application
Layer Gateway (DNSALG) for supporting private address name resolutions and
controlling hole punching functionality.

14. NATBLASTER [77] - Unlike NUTSS, NATBLASTER does not rely on packet
spoofing and is a technique to traverse the NAT and establish a direct TCP
connection between two hosts residing behind NATs.

None of the above mentioned works are suitable to effectively solve the NAT
traversal problem discussed in the previous chapter 1. In the following section a lit-
erature survey on various components of sensor-cloud infrastructure has been done.

2.2 Instantaneous traffic minimization in a
Sensor-Cloud Infrastructure

Throughout the years, since the evolution of Sensor-Cloud Infrastructure there have
been many works done on the Sensor-Cloud in the fields of routing protocols [25],
techniques of processing data [26], operating systems [28], coverage issues [29],
management of energy consumption [30], localization [31], clock synchronization
[27] and programming [32] In Sensor-Cloud infrastructure, good QoS measures and
proper resource utilization is very important for creating smart, efficient and cost-
effective services IoT services. It is quite evident that efficient traffic management
is necessary in order to achieve better QoS and efficient resource allocation and uti-
lization [85]. Efficient traffic management is very crucial for bandwidth optimization
and minimization of the required channel capacity at the access link that transfers
data bits from the sensor gateway to the cloud. Thus, traffic shaping [86] or traf-
fic policing [87] are two ways for instantaneous traffic minimization by altering the
outbound gateway characteristics [88] [89].

Traffic shaping is a way to optimize the overall performance of the network by
delaying certain types of packets travelling through the networks [90]. In [91], it
is seen that Bell Canada throttles the traffic generated from peer-to-peer(P2P) file
sharing applications from travelling through their access links. The technique of
traffic shaping is also used by Comcast to limit the aggregated traffic load generated
from users that consumes higher portions of their available bandwidth, by allowing
each users a time-window of 5 minutes [92].

Chapter 2. Literature Survey 18

These approaches though serves the purpose of minimizing the instantaneous
aggregated traffic or smoothing of the aggregated traffic, requires the gateway to
monitor the incoming traffic continuously. This is quite an onerous job for the gate-
way to carry out. As traffic is controlled by the gateway, the gateway is required to
have infrastructure for queuing, especially deep queues, that adds an extra amount
of delay in data transmission.

Whereas, in traffic policing, the traffic management is done by maintaining a
maximum rate for sending and receiving of data bits on interfaces of the gateway.
The traffic within the bounded sending rate are transferred straight away but the
data streams with higher data rate are either dropped or in some cases are transmit-
ted with a different priority [93]. This approach is inefficient and very much power
consuming for sensor nodes as large number of packet drops occur while transmis-
sion. This further degrades the overall output rate of a data stream.

In [94] the technique mentioned aims to change the quality of the transmitted
data at real time. Though suitable for video transmissions or voice transmissions,
this technique is not suitable for sensor data transmissions.

In [78], the technique used to smooth the aggregated traffic of all sensors is to
schedule the sensor nodes with fixed offsets [95] for starting their transmissions.
The main motivation behind the approach is to distribute the aggregated traffic from
sensor nodes as evenly as possible on the access link. For sensor nodes performing
periodic transmissions the offsets specifies the sensor nodes when to start sending
the data frames in each period where the period is comprised of a fixed number of
time slots. This approach schedules the sensor nodes so that the aggregated traffic
received at the gateway always remains within a minimum determined range of
channel capacity. Thus, the gateway need not take the burden of traffic shaping.
To schedule the sensor nodes in that manner periodic offsets were set for all sensor
nodes to obey in every period. M.Grenier et. al. proposed a scheme to enhance
controller area network (CAN) network performance by scheduling messages with
offsets [96]. The offset of each stream is chosen such that the release of its first frame
is as far as possible from the other frames already scheduled.

The application scenario and the problem depicted in chapter 4 does not bear
any significant resemblance to any of the aforementioned literature.

2.3 Summary of the chapter

In this chapter, section 2.1 discusses the related prevalent NAT traversal techniques
used in different application scenarios. The various categories of NATs present have
also been discussed briefly. After studying the literature illustrated in the section 2.1,
it was concluded that none of the mentioned techniques were suitable to effectively
solve the problem of waking up a sensor node that resides behind a NAT and is a
power constrained device.

Chapter 2. Literature Survey 19

Whereas, in the section several works related to different application scenarios
of smoothing of instantaneous traffic of sensor nodes or other media has been dis-
cussed. Based on the studied literature it was concluded that none of the works bore
any significant resemblance with the application scenario defined in chapter 4.

20

Chapter 3

Energy Efficient Passive NAT
Traversal through UDP

3.1 Introduction

Sensing devices are the key components in most IoT infrastructures. Their job is to
sense and transmit the data to any given destination as and when required. Envi-
ronment monitoring and remote supervision of various smart devices deployed in
smart homes, factories and other environments are two prevalent IoT application
scenarios in the contemporary world. In this chapter a problem faced in case of a
sensor-cloud infrastructure has been addressed. The problem mainly arises when
the sensor nodes of a sensor-cloud serves as an integral part of an IoT infrastruc-
ture serving an IoT application. The first problem that was discussed in section 1.3
was about waking up a sensor node when it has been deployed in any environment
while it resides behind a NAT.

In many scenarios, a sensor node may not be required continuously for indefinite
amount of time. In a Sensing As A Services based delivery model sensing devices
are acquired by the remotely located cloud based resource manager as and when
required. This requires the sensors to be addressable by the cloud server. However
while using IPv4 based network, sensing devices often reside behind NAT(s).

NATs [53] extend IPv4 address space and provide security to the private network
beneath it by discarding any unsolicited network packet that it receives and also by
acting as a firewall in many cases. The most common NAT prevalent in the contem-
porary world are Traditional NATs [54], specifically Network Address Port Transla-
tors (NAPT) [55], in which multiple clients residing in a private network behind a
NAPT can initiate an outbound connection by sharing the single registered public
ipv4 address of that NAPT. This type of NAT is widely used by Small Office Home
Office (SOHO) [56] groups to connect to the Internet sharing a single registered IP
address provided by Internet Service Provider (ISP). Herein, each connection is dis-
tinguished by a distinct port number.

In this scenario, there is a need to signal the sensor devices with necessary su-
pervisory commands to execute different tasks for which they are configured to per-
form. In that case, the devices can remain dormant until they are required to perform

Chapter 3. Energy Efficient Passive NAT Traversal through UDP 21

any task. This type of communication is termed as passive, as they are acquired with-
out their prior knowledge.

For example, a smart device deployed in a smart home can be instructed from
an external server to get switched on or off or perform any particular task either
independently or in cooperation with other devices present in that smart home. If
the device is a sensor then it can be instructed to start sensing data and transmit
them to a desired destination.

However, when an IoT application running on a cloud server desires to collect
sensor data and attempts to acquire the sensor devices, it needs to propagate the
activating signal to those smart devices that are behind a NAT and are not publicly
addressable. The devices behind NAT, being privately addressable cannot be ad-
dressed spontaneously by a remotely located publicly addressable server. However
a server can respond to a connection that is initiated by the client. The client’s NAT
allows the client to receive packets through the same port that was previously used
to initiate the connection. This happens due to NAT hole punching, which the NAT
implements by creating temporary NAT entries that comprises a mapping between
the private and public addresses of the client. Once a hole is punched its lifetime
is limited by a fixed amount of time determined by the NAT. Hence to establish a
consistent channel of communication from a cloud server to a client, a connection
has to be reinstated at certain time interval either by the client or by the server. This
can be done from the client side by repeated transmission of keep alive packets. But
this leads to energy drainage in those small resource constrained devices.

This chapter thus aims to describe a scheme that involves UDP hole punching
along with minimal polling to detect the translation table entry lifetime in any given
NAT and maintain the consistent channel of communication.

The proposed scheme is applicable for Basic NATs [54], NAPTs [54], Bidectional
NATs [54], Twice NATs [54] and Multihomed NATs [54]. It also works in case of
Full cone NAT [57], Restricted cone NAT [57], Port-restricted cone NAT [57] and
Symmetric NATs [57].

3.2 Scheme Overview

The proposed scheme requires two parties, a client behind a NAT and a publicly
addressable server that can communicate over UDP. Both parties exchange messages
in order to establish a consistent channel for bidirectional communication. At the
beginning, the server listens on two UDP ports for incoming connections. The client
initiates the conversation by sending messages to both ports. We refer the first port
as trial port and the second port as live port. The conversation follows the four
operational stages mentioned in Figure 3.1.

Chapter 3. Energy Efficient Passive NAT Traversal through UDP 22

FIGURE 3.1: Scheme Overview

3.2.1 Identification

The client sends a handshake message to the server along with a token to identify
itself. The server validates and responds with a cookie if the client identity is valid.
For the future communications, the client glues this cookie with all its messages.
This is done in order to stop any fraudulent device to enter the network and cause
DOS attacks [98] say by flooding requests to the cloud server in order to make it
busy or go down.

3.2.2 Probing

In this operational stage, the maximum permissible delay of the NAT is determined.
For determining the maximum sustainable delay, the client sends a probe message
to server’s trial port. On receiving this message, the server immediately sends an
acknowledgement along with a delay, after which the server promises to send a
reply. Client on receiving the acknowledgement starts a timer with the mentioned
time duration and expects to receive a delayed reply just before the timer completes.
Whether it fails or succeeds in receiving the server’s delayed reply the client sends
another probe message to the server.

The server, before sending the acknowledgement message, starts a timer with
the same interval that it sends in the acknowledgement message. If, at the client, the
timer completes before receiving a reply, it is considered that the reply sent by the
server failed to traverse the NAT.

From the next probe message, the server figures out whether the previous reply
did reach the client or not. If the previous message fails to reach the client, the server
decreases the delay for the next probe, otherwise increases. Both the client and the
server keep on repeating this process to converge to a suitable maximum delay that
is permissible by the client’s NAT.

On the other hand, on live port, the server keeps sending a message on a time
interval which is known to be successful through the previous probe on trial port.
While sending the first probe, the client simultaneously sends a message to the live
port to initiate this conversation. When the dynamic delay on the trial port increases,
the stable delay on the live port is also increased. So the delay used in communica-
tion through the live port is always below the client NAT’s threshold.

Initially the delay is always increased exponentially until it reaches such a delay
which is beyond the maximum idle time permitted by the NAT. As a result the NAT
entry is removed and the connection is lost. However a lower and an upper bound is

Chapter 3. Energy Efficient Passive NAT Traversal through UDP 23

found at the end of this stage, between which the actual delay is present. We call this
stage as exponential stage. After exponential stage is finished a localization stage is
started that finds the actual delay using bisection method.

3.2.3 Convergence

Throughout the conversation the stable delay on live port keeps increasing until
it reaches the maximum permitted delay. Server detects that scenario as conver-
gence and instructs the client to stop sending probing messages. The communication
moves towards the alive phase.

3.2.4 Alive

After convergence stage, the server starts sending only delayed reply packets to the
client at a fixed time interval. In ideal scenario the client receives all the messages
sent by the server because the delay used are all just below the NAT’s permissible
delay. However if an alive message is not received by the client within the expected
time duration client sends a failure message to re-establish communication.

The Sequence diagram shown in Figure 3.2 details the communication between
the client and the server on trial port.

3.3 Protocol Operation

To implement the above mentioned communication scheme a protocol has been de-
signed. The protocol consists of 7 different messages. In this section each of these
messages are explained.

3.3.1 Handshake

An handshake message is sent by the client which contains the unique identification
credentials. On receiving this message, server verifies whether the client is allowed
by the server or not. Upon acceptance, a handshake reply message is sent by the
server. If no handshake reply is received by the client within a short period of time,
the client re-transmits the handshake message.

3.3.2 Handshake reply

An handshake reply consists of a 32 bit unique cookie that the server maintains
to uniquely identify that connection. The server maintains a table that maps that
cookie with the client connection endpoint (pair of IP address and port). The client
glues the same cookie with all its subsequent messages. If the server gets the same
cookie from a different connection endpoint, it assumes that the client endpoint has
changed due to some connectivity problem on client side and replaces the client’s
endpoint with the current one.

Chapter 3. Energy Efficient Passive NAT Traversal through UDP 24

FIGURE 3.2: The protocol sequence diagram

3.3.3 Probe

In the probing stage, the client sends a probe message expecting a delayed reply mes-
sage from the server. The probe message contains two fields, the cookie and a pay-
load. The cookie field contains the cookie received in handshake reply message. The

Chapter 3. Energy Efficient Passive NAT Traversal through UDP 25

payload is required to validate the probe message sent to the server by the client.
This validation is done by the server. The payload field contains a 32 bit integer
that is generated by the client, based on the previous reply message received from
the server. The payload is generated in such a way that helps the server to decide
whether that client has received the last reply or not as the generated payload for
a probe depends on the payload of the last reply message received by the client.
Our implementation uses Equation 3.1 to generate the client payload (cp) for the nth

probe as cpn. spn−1 and cpn−1 are respectively the previous server payload received
in reply to the previous probe and the last client payload sent. The Initial values
sp0, and cp0 are set to 0 and a random value respectively, which are used to generate
cp1 and sp1. ρn is a random number used at the nth probe. Server uses the ρn for
generating a unique payload for the reply message.

cpn = spn−1 ⊕ (cpn−1 + 1) (3.1)

spn = cpn ⊕ ρn (3.2)

cpn ⊕ spn−1 == cpn−1 + 1 (3.3)

3.3.4 Acknowledgement

On receiving a probe message, the server decides a suitable delay after which the
expected delayed reply message will be sent. That delay is sent to the client as an
immediate acknowledgment of the client’s probe. For the first probe, delay (d) of
1 second is decided. For the subsequent probes the delay is gradually increased or
decreased depending on whether the client has received the last reply or not. This
delay decision is controlled by a variable δ shown in Equation 3.4 which is initially
set to 2. On success this delta is multiplied with the current delay (d) to yield the
next delay, which leads to an exponential growth. The first failure terminates the
exponential growth phase and the upper bound of the permissible delay is found. A
localization stage is started that finds the actual maximum permissible delay using
bisection method. In case of failure δ is modified as shown in Equation 3.4 and is
multiplied with d∗ which is the last successful delay. In case of success in localization
phase δ is not modified, but d is modified and set to the current one.

d =

d× δ success

d∗ × δ failure
where δ =

2 success at exponential stage

δ success at localization stage
δ+1

2 failure

(3.4)

If the client has received the server’s payload spn−1 of (n− 1)’th probe before send-
ing the n’th probe then Equation 3.3 is satisfied as shown in Equation 3.5. Hence the
server detects whether the client has failed or succeeded in receiving the previous
reply message by evaluating Equation 3.3.

Chapter 3. Energy Efficient Passive NAT Traversal through UDP 26

cpn ⊕ spn−1 substitute cpn using Eq 3.1

= ((spn−1 ⊕ (cpn−1 + 1)))⊕ spn−1

= (cpn−1 + 1)

(3.5)

An example is shown in Table 3.1 assuming the actual limitation is around 180 sec-
onds. The first row is the initial stage. The exponential growth stage is continued
till the 8th row. The successful probes are marked with green color and the failed
rows are marked with red color. Although the example takes 20 probes to converge,
we can eliminate some probes that go beyond previously marked upper bounds. In
Table 3.1 the previous upper bounds are marked with # symbol. The rows marked
with a ∗ go beyond the last known upper bound, thus skipped to save number of
probes in our implementation.

A randomly generated 16 bit integer identifier is attached with the ack message
which is carried in the subsequent reply message to associate the reply with the cur-
rent probe.

TABLE 3.1: Example of Delta Decision

d d∗ δ

0 1 1 2

1 1*2 2 1 2

2 2*2 4 2 2

3 4*2 8 4 2

4 8*2 16 8 2

5 16*2 32 16 2

6 32*2 64 32 2

7 64*2 128 64 2

8 128*2 256 128 2 #

9 128*1.5 192 128 1.5 #

10 128*1.25 160 128 1.25

11 160*1.25 200 160 1.25 *

12 160*1.125 180 160 1.125 #

13 160*1.0625 170 160 1.0625

14 170*1.0625 180 170 1.0625 *

15 170*1.03125 175 170 1.03125

16 175*1.03125 180 175 1.03125 *

17 175*1.015625 177 175 1.015625

18 177*1.015625 179 177 1.015625

19 179*1.015625 181 179 1.015625 *

20 179*1.0078125 180 179 1.0078125 *

21 179*1.00390625 179 179 1.00390625

Chapter 3. Energy Efficient Passive NAT Traversal through UDP 27

3.3.5 Reply

The server after sending the ack, waits for d time and sends the reply to the client.
This marks the end of a single probe comprising the probing and delay decision
stage. The reply message contains the identifier which was sent in the ack and a
payload. The identifier is used to validate relevance of the reply message in context
of the previous ack. The payload of nth probe spn is calculated using Equation 3.2
where cpn is the payload received in the client’s probe message and ρn is a random
number generated on iteration n.

However, as UDP is unreliable, it can lead to message loss. So, instead of sending
a single reply, a set of k redundant replies are sent from the server. Delay between
each of these replies are set to µ time units such that kµ < 1 second. The last redun-
dant reply is sent on d time unit and the first reply is sent on d− kµ time. The client
matches the identifier received from the last ack message with the identifier in the
reply message and discard redundant replies, after receiving the first reply.

A NAT may associate different timeouts for an UDP port depending on the type
of conversation carried on that port. NATs detect whether the conversation is bidi-
rectional or unidirectional and assigns a larger timeout for bidirectional commu-
nications. In most NATs the default timeouts for unidirectional and bidirectional
communication are respectively 30 seconds and 180 seconds [97]. However, it can
be altered by the network administrator. In case of failures, a new conversation ses-
sion is started that is initially unidirectional. So a 1 second probe is performed to
make that conversation session bidirectional. After the 1 second probe is finished
the next probe is performed and the delay decided for it happens to be according to
Equation 3.4 as shown in Table 3.1.

3.3.6 Alive Request

This message is sent by the client to the server for establishing the Alive connection.
It comprises of two fields, cookie and safe delay. The safe delay field stores the last
successful delay on the trial port conversation. After sending a alive request with safe
delay d, the client expects it will receive an alive reply at every d seconds interval
without sending another alive request. However if the alive reply is not received,
client sends another alive request to reopen the port.

3.3.7 Alive Reply

In trial port communication whenever a probe is successful, the delay assumed in
that probe is updated as safe delay. Thus this safe delay is either incremented or kept
same by the server. Once a delay is evident to be safe it implies that UDP datagrams
sent on that interval can pass through the client’s NAT without requiring the client
to send anything. The alive reply message is repeatedly sent using the current safe
delay as time interval. This message consists of the safe delay after which time the

Chapter 3. Energy Efficient Passive NAT Traversal through UDP 28

next alive reply will be sent. So if the safe delay is updated then the client is also
notified through this message.

3.4 Results and Discussion

To experiment with the proposed scheme we have implemented a client and a server
and tested under different network configurations. The entire scheme is imple-
mented in C++ on linux based environments. The server has been set up on a
remotely located virtual machine having publicly addressable IPv4 address. The
client is always behind a NAT. At first we have experimented by putting the client
under an ADSL based broadband connection. Routers from different manufactur-
ers including TP-Link, Netgear, Huawei, ASUS have been used in the experiments.
In Figure 3.3 the orange line shows probe delays and the blue line shows the alive
delays.

FIGURE 3.3: Results ADSL broadband

Chapter 3. Energy Efficient Passive NAT Traversal through UDP 29

FIGURE 3.4: Scheme Results in Vodafone 4G network

FIGURE 3.5: Scheme Results in Airtel 4G network

To experiment with GSM based internet services we have used mobile hotspot
with various manufacturers including, Samsung, Apple, Motorola under two net-
work providers, Vodafone and Airtel both providing 4G services. It has been ob-
served that both providers sustain 122 seconds delay as shown in Figures 3.4 and
3.5. For the broadband based experiments it took about 29 minutes and 6 seconds to

Chapter 3. Energy Efficient Passive NAT Traversal through UDP 30

converge. Whereas, in the GSM based experiments a total time of about 18 minutes
and 14 seconds were taken to attain convergence.

We have observed for 24 hours, that the live channel is consistent for server to
client communication. During that time the server was able to wake up the client
at any time. It is also observed that the consistent live channel may fail to receive
the UDP alive replies from the server due to network problems. But number of such
occurrences are significantly low. In that case the client re-transmits an alive request
to re-initiate the alive channel. For our experiments on wired broadband connection
no re-transmission was necessary for 24 hours. Therefore after convergence, a con-
sistent server to client communication channel was established without the client
sending any UDP packet. However for the GSM based experiments some packet
loss were encountered. Though the number of such occurrences was significantly
low.

3.5 Summary of the Chapter

In this chapter, the problem of successfully traversing the NAT of the sensor nodes
in order to instruct them to stream data, have been addressed. The chapter first de-
fines the problem scenario which depicts the need to traverse the NAT of the sensor
nodes. Then in section 3.2, the overview of scheme designed to solve to the problem
have been discussed. And then in section 3.3, a protocol have been proposed in order
to implement the designed scheme illustrated in section 3.1 with the comprehensive
operational details have been discussed. Finally in 3.4, the proposed protocol have
been tested in three different networks. For GSM based networks Vodafone 4G and
Airtel 4G network have been considered and for ADSL based broadband connection
BSNL broadband network have been considered. The experiments have also been
performed in case of different router vendors which includes routers of TP-Link,
Netgear, Huawei, and ASUS. The results mentioned in 3.4, depicts that ADSL based
broadband networks sustain the established channel better than the GSM based net-
works.

31

Chapter 4

Sensors Scheduling for Aggregated
Traffic Minimization

4.1 Introduction

In a sensor-cloud infrastructure, a set of sensor nodes comprising a Wireless Sensor
Network (WSN) is required to stream sensed data at a certain rate to a particular
destination. In a typical sensor-cloud infrastructure IoT sensor nodes are connected
to the cloud servers through routing gateways.

These IoT Sensor nodes when deployed in any given environment, forming a
WSN, is required to sense and send data to a cloud storage or an application hosted
in the cloud, on demand.

In the previous chapter the addressed issue was all about how to activate a stan-
dalone sensor node or a network of sensor nodes on demand from a public server
or cloud server, so that they wake up and start streaming sensed data while residing
in a private network behind a routing gateway. The proposed mechanism stated in
the previous chapter solves the issue of activating sensor nodes in private network,
as and when required.

In this chapter, the problem that is addressed, arises when a set of active sensor
nodes starts streaming data from a common starting time instance. Herein, the maxi-
mum aggregated traffic load generated at any time instance, due to the simultaneous
data streaming of the active sensor nodes, must be minimized.

In large scale IoT scenarios like environment monitoring in smart homes or smart
cities [83] [84], sensor nodes generate huge amount of traffic when they actively
stream sensed data simultaneously according to their respective schedules to any
particular application or cloud storage through a common gateway. This huge traffic
must be efficiently accommodated [79] in both the communication interfaces, the
one between the sensor nodes and the gateway and the one between the gateway
and the cloud server. As the IoT sensor devices are growing exponentially with
time [80] [81], the amount of data transfers between the sensor nodes and cloud
servers are also increasing. Thus, increasing the amount of generated traffic that the
IoT networks must be able to accommodate efficiently [82].

Chapter 4. Sensors Scheduling for Aggregated Traffic Minimization 32

But unfortunately, IoT networks fail to do so as at any time instant the aggregated
traffic load from all the sensor nodes may require a transmission bandwidth that is
higher than that available in the IoT networks and thus may cause instant congestion
and data loss. In order to solve this problem of exceeding bandwidth requirements,
congestion and probable data loss, sensor nodes must be scheduled with offsets so
that the maximum aggregated traffic load that gets generated from all the sensor
nodes at any time instance can be minimized.

For more comprehensive understanding of the problem, a wireless IoT sensor
network model is considered in section 4.2, where figure 4.1 depicts the wireless IoT
sensor network model.

4.2 Wireless IoT Sensor Network Model

In figure 4.1, the wireless IoT sensors represent a set of sensor nodes deployed in
any given environment with an objective to collect sensed data. The gateway is
connected to two communication interfaces, a wireless network between the sensor
nodes and the gateway and a wired medium between the gateway and the Internet
leading to the cloud server. The total available bandwidth of the wireless medium is
divided into number of frequency channels each having a bit rate enough to prop-
agate the sensed data. Each sensor node requires a wireless frequency channel to
stream data to the gateway through the wireless interface. The gateway further
transfers the received data bits to the cloud server through the wired interface com-
prising the single wired access link which possesses a particular channel capacity
that is measurable in terms of bit rate.

All the wireless IoT sensor nodes having specific periods, duties and transaction
sizes when transmit data to the gateway through different wireless frequency chan-
nels the traffic from all the sensors received at the gateway during each time slot is
aggregated and transferred to the cloud server by the gateway via the wired access
link. Thus, the capacity of the access link must be enough to transfer all of the ag-
gregated data bits in each time slot.

On the other hand, at any time slot if n sensor nodes are to transmit data then n
frequency channels will be required. This n must not be more than the total number
of frequency channels available at the wireless interface.

If n is large enough to demand a bandwidth (i.e. range of frequencies) that is not
available at the wireless interface then it may happen that in a particular time slot
more than one sensor nodes attempt to transmit data through the same frequency
channel. This will lead to collision among all the transmissions happening via same
frequency, causing data loss and power wastage of the sensor nodes.

Chapter 4. Sensors Scheduling for Aggregated Traffic Minimization 33

FIGURE 4.1: Wireless Sensor Network model in Internet of
Things(IoT) scenario [79]

Chapter 4. Sensors Scheduling for Aggregated Traffic Minimization 34

Thus, the bandwidth at the wireless interface of the gateway is measured in
terms of range of available frequencies or number of available frequency channels,
whereas in the access link the channel capacity can be measured in terms of bit per
time slot.

4.3 Application Scenario

According to the application scenario, there is a set S, where |S| ∈ Z+, of n (n ∈ Z+)
IoT sensor nodes, comprising a WSN for collecting data from any given environ-
ment.

Each ith sensor node in set S, represented as si, where 0 ≤ i ≤ n − 1, in the
set S must perform a certain number of transactions, say Ti (Ti ∈ Z+) number of
transactions, once per a certain amount of time, termed as period pi of the ith sensor
node, where pi (pi ∈ Z+) is measured in terms of number of unit time slots. The Ti

number of transactions, that is required to be performed in a period pi is termed as
duty, of the sensor node si.

In each of the Ti number of transactions sensor node si streams wi (wi ∈ Z+)
number of readings or samples. Therefore, size of a transaction, denoted as fi

(fi ∈ Z+), is defined as the number of time slots required by the sensor node si to
fully complete all the processes required to stream the wi number of readings.

Now, according to the application scenario, the size of a period pi happens to
be always higher enough to accommodate Ti number of transactions completely.
Therefore,

pi ≥ (Ti × fi), (4.1)

Now at any time slot t if ct number of sensor nodes are scheduled to transact then
for possible transmission at the wireless medium there must be at least ct number of
frequency channels available to avoid collision and data loss at the time slot t.

Thus to avoid collision and data loss in any time slot t the maximum number of
frequency channels , denoted by BW, that must be available for wireless interface at
any instance of time can be defined as

BW = max(ct)∀t ∈ [0, ∞) (4.2)

It is also given that each sensor node si is capable of transmitting a maximum of
bi (bi ∈ Z+) bits of data in one time slot. Set B comprises of the set of bi(s), of every
ith sensor node ∀i 0 ≤ i ≤ n− 1 in set S.

Now suppose if in any time slot t (t ∈ Z+) a set Xt of sensor nodes, where Xt ⊆
S and |Xt| ≤ |S|, are scheduled to transmit data bits at their maximum rate then at

Chapter 4. Sensors Scheduling for Aggregated Traffic Minimization 35

that time slot t total bits that can be transmitted to the gateway, denoted as µt

(µt ∈ Z+), can be defined as

µt =
|Xt|

∑
m=0

bm, (4.3)

where Xt is the set of sensor nodes transmitting at time slot t and bm is the max-
imum number of bits that the mth sensor node in setXt can transmit per time slot.
Therefore, maximum required channel capacity at the access link, denoted as Chmax,
measured in bits per time slot, can be defined as in equation 4.4.

Chmax = max(µt)∀t ∈ [0, ∞) (4.4)

Now, in each period pi, each of the Ti transactions is performed by the sensor
node si after waiting for a certain number of time slots from the start of the period
pi, termed as offset, which can range from (0, ..., pi - fi) and is denoted by θi. There-
fore, θi is a two-dimensional matrix of sensor node si, where each of the elements of
the matrix is a θjk which is the offset for starting the kth transaction in jth period of
ith sensor node. Hence, in the application scenario, the WSN is assumed to be com-
prised of n sensor nodes of which each sensor node si is characterized by a six-tuple
sensor node as si = (i, pi, Ti, fi, bi, θi) where i represents the identification number of
the sensor node.

4.4 Problem Definition

If all the n IoT sensor nodes in set S, each of which is characterized by a six-tuple as
si = (i, pi, Ti, fi, bi, θi), performs their respective kth transaction ∀ k ∈ [0, Ti), in each of
their respective jth period [t0 + j×pi → t0 + (j+1)×pi) ∀ j ∈ Z+ with offset θjk, where
t0 is the common start time for all sensor nodes in S, then the maximum aggregated
traffic load ct (ct ∈ Z+), on any time slot t can be as high as |S|, in the worst case,
where ct is defined as the total number of sensor nodes in set S that are scheduled
with offset θjk to transact on that tth time slot. If ct = |S|, then it denotes that all the
sensor nodes in set S are scheduled to transact on the tth time slot. This worst case
scenario occurs because of a worst combination of all θi ∀ i, (0 ≤ i ≤ n − 1) of n
sensor nodes.

Therefore, the objective is to find out the respective θi of every sensor node si in
set S, such that the combination of all those θi will lead to the minimization of the
maximum ct, ∀t ∈ [0, ∞).

To examine the resultant aggregated traffic from n sensor nodes it is necessary
to consider a specific number of time slots for observing the traffic, say L number of
time slots. As L is considered to be the LCM of the periods of the n sensor nodes, the

Chapter 4. Sensors Scheduling for Aggregated Traffic Minimization 36

traffic load pattern observed in each of the L time slots will exactly repeat in the next
L number of time slots.

Therefore any sensor node si will have L
pi

number of periods in L time slots and
the traffic load in any tth time slot in L time slots will be same as in any (m× L + t)th

time slot, where m ∈ Z+ and 0 ≤ m ≤ ∞.
Thus, the objective is to find that combination of all θi ∀ i, 0 ≤ i ≤ n − 1) of n

sensor nodes for L time slots, due to which the maximum aggregated traffic load ct

on any time slot t ∀ t ∈ [0, L− 1], will be minimized, where θi of sensor node si for L
time slots is a two-dimensional matrix in which each element is θjk where θjk is the
offset which the sensor node si uses to perform the kth transaction in its jth while θjk

∈ [0, pi - fi], ∀ i ∈ [0, n), j ∈ [0, L
pi

) and ∀ k ∈ [0, Ti).
The minimization of the maximum ct ∀ t ∈ [0, L− 1] leads to the minimization of

1. bandwidth requirements (or, number of frequency channels) at the wireless inter-
face for data transmission in the WSN and,

2. the maximum channel capacity Chmax (in, bits per time slot) in equation 4.4,
necessary to be possessed by the access link.

4.4.1 Problem Variation

The problem discussed so far can have two variations with respect to how the T
number of transactions are to be executed in a period, where T > 1. Both the varia-
tions are enlisted below.

1. Consecutive execution of transactions - There is a restriction that all the T number
of transactions are required to be done consecutively.

2. Non-consecutive execution of transactions - There is NO such restriction that the
T number of transactions are required to be done consecutively.

To have a deeper insight of both the problem variations mentioned above, an
example has been considered in table 4.1 that depicts the specifications of a set of
four sensor nodes.

TABLE 4.1: Four IoT sensor nodes - sensor 0 (p0 = 2, T0 = 1, f0 = 1,
b0 = 16), sensor 1 (p1 = 3, T1 = 2, f1 = 1, b1 = 8), sensor 2 (p2 = 6,

T2 = 2, f2 = 2, b2 = 16), sensor 3 (p3 = 6, T3 = 1, f3 = 1, b3 = 8)

i pi Ti fi bi
0 2 1 1 16
1 3 2 1 8
2 6 2 2 16
3 6 1 1 8

In table 4.1, there is a set |S| of four IoT sensor nodes that have been considered
to comprise a WSN. According to the periods of sensor node 0 (p0 = 2), sensor node

Chapter 4. Sensors Scheduling for Aggregated Traffic Minimization 37

1 (p0 = 3), sensor node 2 (p2 = 6) and sensor node 3 (p3 = 6) the number of time
slots for which the maximum aggregated traffic must be monitored is the LCM of all
the periods which is six. Thus in fig 4.2, six time slots (t0 → t5) is shown.

For sensor node 0, there are three periods that are present among the six time
slots. Similarly, for sensor node 1 there are two periods each of three time slots and
for sensor node 2 and 3 there is a single period each of which comprises of six time
slots. In table 4.2 the periods of each sensor is shown by the two-tuple (xij, yij),
where time slot xij and yij represents the starting point and the finishing point of the
jth period in case of the ith sensor node.

TABLE 4.2: The starting and ending point of each period in each sen-
sor node represented by the two-tuple (xij, yij)

i j xij yij
0 0 0 1

1 2 3
2 4 5

1 0 0 2
1 3 5

2 0 0 5
3 0 0 5

Suppose all the four IoT sensor nodes starts performing each of their T transac-
tions in each of their periods with a random offset combination of θijk that is men-
tioned in table 4.3. Herein, θijk represents the offset at which the ith sensor node starts
the kth transaction of the jth period.

If the four IoT sensor nodes obey the offset configuration mentioned in table
4.3 then the maximum aggregated traffic load per time slot will look as depicted in
figure 4.2.

Now, in the 0th time slot, as all the four sensor nodes transmit data bits to the
gateway shown in figure 4.1, c0 = 4 which is the maximum ct, ∀t ∈ [0→ 5), accord-
ing to equation 4.2, BW = 2.

As the four sensor nodes can send data bits at their maximum capacity in the 0th

time slot, so at the access link the Chmax required in the worst case will be 48 bits per
time slot according to equation 4.4.

Now, with respect to the example discussed so far that was considered in 4.1, the
comprehensive explanation of the aforementioned problem variants 1 and 2 are as
follows.

Chapter 4. Sensors Scheduling for Aggregated Traffic Minimization 38

TABLE 4.3: Random Offset configuration for the four IoT sensor
nodes

i j k θijk
0 0 0 0

1 0 0
2 0 0

1 0 0 0
0 1 1
1 0 0
1 1 1

2 0 0 0
0 1 2

3 0 0 0

In figure 4.2, s0, s1, s2, s3 represents the four sensor nodes as mentioned in table
4.1. As per the offset configurations mentioned in table 4.3, all the four IoT sensor
nodes are scheduled to transact at the 0th time slot. Thus this configuration of offsets
can be considered as the worst configuration because there exist at least one time
slot in which all the sensor nodes are scheduled to transact together. As in the 0th

time slot it can be seen that all the four sensor nodes can transmit data together the
number of frequency channel required at that time slot for the wireless medium is
four.

4.4.1.1 Consecutive execution of transactions

With respect to this problem variant in which every ith sensor node must execute Ti

number of transactions consecutively in each of their jth period a better configuration
of offsets can be the one depicted in table 4.4.

Chapter 4. Sensors Scheduling for Aggregated Traffic Minimization 39

FIGURE 4.2: Aggregated traffic load per time slot from all the four
sensor nodes with offset configuration mentioned in table 4.3

TABLE 4.4: A better offset configuration for the four IoT sensor nodes
when transactions in each period are performed consecutively

i j k θijk

0 0 0 0
1 0 0
2 0 0

1 0 0 0
0 1 1
1 0 0
1 1 1

2 0 0 2
0 1 4

3 0 0 1

Now if the same four sensor nodes in 4.1, obey the offset configurations men-
tioned in table 4.4 then as depicted in figure 4.3, the maximum aggregated traffic
load on any time slot or maximum ct happens to be 3, where t is the 4th time slot in
the six time slots.

Chapter 4. Sensors Scheduling for Aggregated Traffic Minimization 40

FIGURE 4.3: Aggregated traffic load per time slot from all the four
sensor nodes with offset configuration mentioned in table 4.4. The
Sensor nodes executes multiple transactions in periods (if present)

consecutively.

According to the offset configuration mentioned in table 4.4 the aggregated traffic
pattern of the four sensor nodes happens to be so that at the fourth time slot sensor
node s0, s1 and s2 are scheduled to perform their transaction.
Thus in the 4th time slot it can be seen that as three sensor nodes might transmit data
together the number of frequency channel required at the wireless medium in that
time slot is three and this further concludes that BW = 3, ct is maximum in t=4.

It is also realized from figure 4.3 that in the 4th time slot, as three sensor nodes s0,
s1 and s2 transmit data bits to the gateway shown in figure 4.1, at their maximum
capacity, µt is found to be maximum for t = 4. Thus, the maximum channel capacity
Chmax (in, bits per time slot) that will be required in the worst case can be calculated
as follows.

According to equation 4.3,
µ4 = 40 bits/time slot,
It is evident from fig 4.3, that µt is maximum for t = 4
Then, from equation 4.3 and 4.4,
Chmax = 40 bits per time slot

Thus, it is evident that in case of the worst configuration in table 4.3, the four
sensor nodes requires a maximum of four frequency channels for communication at
the wireless interface and for the access link the maximum channel capacity required
is 48 bits per time slot. Whereas, in case of the the better offset configuration in ta-
ble 4.4 the four sensor nodes requires a BW = 3 for communication at the wireless

Chapter 4. Sensors Scheduling for Aggregated Traffic Minimization 41

medium and Chmax = 40 bits/time slot for the access link.

Thus, it can be concluded that an optimal configuration of the offsets for the first
problem variant will surely minimize the bandwidth and channel capacity require-
ments in the wireless interface and in the access link respectively. A straight forward
optimization for the first problem variant can require checking of(

L
p ×

(
(p− f × T) + 1

))n
combinations where n is the total number of sensor nodes

to be scheduled. This will take an exponential time in the order of O(Ln).

In Section 4.5.1, an heuristic algorithm is proposed that incorporates a greedy
approach to solve this problem variant. Unlike the straight forward optimization

of exponential time that checks
(

L
p ×

(
(p − f × T) + 1

))n
combinations, the pro-

posed heuristic algorithm checks only
(

n× (p− f × T)
)

combinations and works
in polynomial time in the order of O(Ln).

4.4.1.2 Non-Consecutive execution of transactions

Now, for the second problem variant in which there is no restriction of scheduling
transactions together in a period, the worst case scenario possible in this case will
look as depicted in figure 4.2, which shows the aggregated traffic generated per time
slot for performing transactions according to offsets mentioned in table 4.3.

According to the offset configuration mentioned in table 4.5 the aggregated traffic
pattern of the four sensor nodes happens to be so that in all the L = 6 time slots
maximum ct is two.

In all time slots as maximum ct = 2 there can be at most two sensor nodes that
can transmit data together at any time slot and thus for the wireless medium in any
time slot BW = 2.

It is also realized from figure 4.4 that in the time slot 2 and 4, sensor nodes s0 and
s2 transmit data bits to the gateway shown in figure 4.1, at their maximum capacity,
µt is found to be maximum for t = 4 and t = 2. Thus, the maximum channel capacity
Chmax (in, bits per time slot) that will be required in the worst case can be calculated
as follows.

According to equation 4.3, considering t = 2
µ2 = 32 bits/time slot,
It is evident from fig 4.4, that µt is maximum for t = 2 and t=4
Then, from equation 4.3 and 4.4,
Chmax = 32 bits per time slot

Thus, it is evident that in case of the worst configuration in table 4.3, the four sen-
sor nodes requires a maximum of four frequency channels for communication at the
wireless interface and for the access link the maximum channel capacity required is
48 bits per time slot.

Chapter 4. Sensors Scheduling for Aggregated Traffic Minimization 42

TABLE 4.5: A better offset configuration for the four IoT sensor nodes
when transactions in each period are NOT performed consecutively

i j k θijk
0 0 0 0

1 0 0
2 0 0

1 0 0 0
0 1 1
1 0 0
1 1 2

2 0 0 1
0 1 3

3 0 0 5

Now if all the four sensor nodes obey the offset configurations mentioned in table
4.5 instead of the one mentioned in table 4.3 then the resultant aggregated traffic load
pattern per time slot will be as depicted in figure 4.4.

Whereas, in case of the the better offset configuration in table 4.5 the four sensor
nodes requires,
BW = 2, i.e., two frequency channels for communication at the wireless medium
and
Chmax = 32 bits/time slot for the access link.

Thus it can be concluded that an optimal configuration of the offsets for the sec-
ond problem variant will surely minimize the bandwidth and channel capacity re-
quirements in the wireless interface and in the access link respectively. A straight
forward optimization for this problem variant can require checking of(

L
p ×

(
(p − f × T) + 1

)
×T
)n

combinations where n is the total number of sensor

nodes to be scheduled. This will take an exponential time in the order ofO
(

L×T)n).
In Section 4.5.2, an heuristic algorithm is proposed that incorporates a greedy ap-

proach to solve this problem variant. Unlike the straight forward optimization of ex-

ponential time that checks
(

L
p ×

(
(p− f × T) + 1

)
×T
)n

combinations, the proposed

heuristic algorithm checks only
(

n × (p − f × T)×T
)

combinations and works in
polynomial time in the order of O(nLT).

Chapter 4. Sensors Scheduling for Aggregated Traffic Minimization 43

FIGURE 4.4: Aggregated traffic load per time slot from all the four
sensor nodes with offset configuration mentioned in table 4.5. The
Sensor nodes DOES NOT execute multiple transactions in periods

(if present) consecutively.

4.5 Proposed Heuristics

This section is divided into two subsections,

• Heuristic solution for consecutive execution of transactions

• Heuristic solution for non-consecutive execution of transactions

4.5.1 Heuristic solution for consecutive execution of transactions

The notations mentioned in table 4.6, are used to describe the algorithm. In this sec-
tion, first a proper description of the proposed heuristic approach has been depicted
and then in 4.5.1.2 a pseudo code based on the proposed algorithm has been illus-
trated.

Chapter 4. Sensors Scheduling for Aggregated Traffic Minimization 44

TABLE 4.6: Description of notations used in algorithm and pseudo
code

No. Symbol Description

1 i Iterator for sensor nodes

2 j Iterator for period of a sensor node

3 k Iterator for transaction in a period

4 θijk Appropriate offset for the kth transaction
in jth period of ith sensor node

5 L LCM of all the period of all the sensor
nodes

6. ATL A set of size L to store the final aggregated
traffic from all the sensor nodes after local
optimization process ends

7. AGGREGATE_ONE A set of size L to store traffic of any sensor
node for any particular offset while find-
ing the best offset

8. TEMPORARY A set of size L to store aggregate of ATL
and AGGREGATE_ONE for any partic-
ular offset while finding the best offset

9. max(x) function that returns the maximum load
in any position of list x

10. sd(x) function that returns the standard devia-
tion of x

11. circularShift(x) function that returns the list x after circu-
larly shifting its elements one position to
the right

4.5.1.1 Description of Proposed Heuristic Algorithm

The following is a brief description of the algorithm that can be implemented to
solve the problem mentioned in 4.4 for the variation of consecutive execution of
transactions.

4.5.1.1.1 Brief Overview of the algorithm - The main backbone behind the algo-
rithm is local optimization in each period. For a sensor node i, the optimal offset for
all of its periods are found. The process involves the following.

• Local periodic optimization - Firstly, two one-dimensional list called TEMPO-
RARY[q] and ATL[q] of size L is considered, where 0 ≤ q ≤ L− 1 and L is the
LCM of the period of the n sensor nodes as mentioned in the previous section.
Each of the L positions represents each of the L time slots. All the L position
in TEMPORARY[q] and ATL[q] is initialized to be zero. ATL stores the total
aggregated traffic load generated up till the last locally optimized sensor node.

Chapter 4. Sensors Scheduling for Aggregated Traffic Minimization 45

AGGREGATE_ONE is another list of size L that stores the traffic generated
for any particular offset. In TEMPORARY, the summation of the AGGRE-
GATE_ONE generated for any of the offset choices and the current ATL is
saved. Thus, TEMPORARY depicts the impact of a particular offset on the
ATL. All the available offset choices ranging between [0, (p-fT)] are checked
one by one. The most appropriate offset θij found for the jth period is selected
as the offset according to which the ith sensor node will start the T number of
transactions in the jth period. As the transactions are to be executed consecu-
tively, it is enough just to know when the transactions should be started in any
period. Thus, an offset choice θij is considered to be the most appropriate if -

1. on adding traffic to the TEMPORARY[q] according to that offset θij, the
maximum aggregated traffic load among all the positions in TEMPO-
RARY[q] results to be minimum and,

2. the standard deviation of all the loads in L positions of TEMPORARY[q]
also results to be minimum.

The standard deviation is also checked because it depicts how evenly the load
is distributed among the L positions in TEMPORARY[q]. The standard devi-
ation of any list, say W can be calculated as in equation 4.5.

std(W) =

√√√√ 1
|W|

L−1

∑
q=0

(W[j]− 1
|W|

|W|−1

∑
q=0

W[q]2) (4.5)

• Every jth period of the ith sensor node is locally optimized by finding the best
offset choice for it. According to the best set of offsets obtained for all the
periods, the best generated TEMPORARY is made the new ATL.

• For the next sensor node, again for every jth period, the traffic generated in
AGGREGATE_ONE for each of the offsets choices is added to the new ATL in
TEMPORARY[q] in order to find the best set of offsets. The offset for which the
maximum aggregated traffic load among all the positions in TEMPORARY[q]
results to be minimum along with minimum standard deviation value of TEM-
PORARY[q], is selected as best offset.

• This entire process is done for all the n sensor nodes. And at the end of the local
optimization process for all the sensor nodes, we get an offset configuration
either same as the optimal configuration or the one very very close to it in
terms of maximum BW and Chmax requirements.

4.5.1.1.2 Comprehensive Description of the algorithm - To have a better insight
of the proposed algorithm, a more detailed description of the proposed algorithm,
step by step, is mentioned below.

Chapter 4. Sensors Scheduling for Aggregated Traffic Minimization 46

Every θij value returned after the following operations will be the most appro-
priate offset selected for jth period of ith sensor node.

1. Sort the every ith sensor node of S in such a way that, pi ≤ pi+1 AND (fi × Ti) ≤
(fi+1 × Ti+1), if pi = pi+1.

2. for i=0→ n-1 : // for all n sensor nodes
a. for j=0→ L

pi
: // for all L

pi
periods of ith sensor node

I. For every jth period that starts with jth time slot in L time slots, find the θij

∈ [0, pi - (fi × Ti)] for which max(TEMPORARY) AND std(TEMPORARY) is
found to be minimum after performing the following operations.

A. for w=0→ (fi × Ti):
i. TEMPORARY[(j× pi) +w + θij] = ATL[(j× pi) + w + θij] + 1 //incre-
mental traffic of jth period of ith sensor node with offset θij.
ii. end for w

II. Add traffic to the jth period of ATL according to the most appropriate offset
θij found in the previous step.

A. for w=0→ (fi × Ti):
i. ATL[(j × pi) + w + θij] = ATL[(j × pi) + w + θij] + 1
ii. end for w

III. Return θij

IV. end for j
b. end for i

Chapter 4. Sensors Scheduling for Aggregated Traffic Minimization 47

4.5.1.2 Pseudo Code for the proposed algorithm

In this section, a pseudo code have been provided for better comprehensive under-
standing of the entire algorithm.
1. main():

a. begin main
i. Input: A set of n sensor nodes with values their characteristics mentioned in
the tuple (i, pi, Ti, fi, bi)
ii. Sort the every ith sensor node of S in such a way that, pi ≤ pi+1 AND (fi ×
Ti) ≤ (fi+1 × Ti+1), if pi = pi+1.
iii. L : (Global variable) Initialized with the LCM of pi for all i=0→ n-1
iv. ATL[q]:(Global variable) List of size L for all q=0→ L− 1
v. θ[i]: List of size n, where each of index stores a list of size L

pi
that stores the

best found offset for each of the L
pi

periods of the ith sensor node.
vi. for i=0→ n-1:

θ[i] = findBestSetOfOffsets(pi, (fi × Ti))
ATL = addTraffic(θ[i], pi, (fi × Ti))

vii. end for i
viii. RETURN θ[0→ n-1]

b. end main

2. findBestSetOfOffsets(pi, (f T)i:
a. begin findBestSetOfOffsets
b. o[0 →(L

pi
- 1)] : List of size L

pi
, stores the respective offsets for each of the L

pi

periods. Initialized with 0
c. for j=0 to L

pi
-1:

i. x = j × p− i //start of period
ii. y = ((j + 1)× p− i) - 1 //end of the period
iii. o[j] = findBestOffset(pi, (f T)i, x, y)
iv. end for j

d. RETURN o[0→(L
pi

- 1)]
e. end findBestSetOfOffsets

Chapter 4. Sensors Scheduling for Aggregated Traffic Minimization 48

3. findBestOffset(pi, (f T)i, x, y):
a. begin findBestOffset
b. AGGREGATE_ONE[q] : List, the length is L, initialized to 0 ∀ q = 0→ L-1
c. TEMPORARY[q] : List, the length is L, initialized to 0 ∀ q = 0→ L-1
d. for w=0→ (f T)i-1:

i. AGGREGATE_ONE[x + w] = 1
ii. end for w

e. for q=0→ L− 1 :
i. TEMPORARY[q] = AGGREGATE_ONE[q] + ATL[q]
ii. end for q

f. maxLoad = max(TEMPORARY)
g. sd = sd(TEMPORARY)
h. Offset = 0
i. for t=1→ (pi - (f T)i):

I. AGGREGATE_ONE = circularShift(AGGREGATE_ONE)
II. for q=0→ L− 1 :

i. TEMPORARY[q] = AGGREGATE_ONE[q] + ATL[q]
ii. end for q

III. maxLoadTemp = max(TEMPORARY)
IV. sdTemp = sd(TEMPORARY)
V. IF (maxLoadTemp ≤ maxLoad AND sdTemp < sd)

THEN
i. maxLoad = maxLoadTemp
ii. sd = sdTemp
iii. Offset = t

VI. end for t
j. RETURN Offset
k. end findBestOffset

Chapter 4. Sensors Scheduling for Aggregated Traffic Minimization 49

4. addTraffic(θ[i], pi, (f T)i):
a. begin addTraffic
b. TRAFFIC[q]: A list of size L to hold traffic of L slots. Initialized to 0.
c. for j=0→ (L

pi
):

I. for w=0→ (f T)i-1:
i. TRAFFIC[(j× pi) + θ[i][j]+ w] = 1
ii. end for w

II. end for j
d. for q=0→ (L− 1):

I. ATL[q] = ATL[q] + TRAFFIC[q]
II. end for q

e. RETURN ATL
f. end addTraffic

4.5.1.3 Evaluation of the proposed algorithm

In this section, an example depicted in 4.7 has been considered. The traffic of sen-
sor nodes 0 and 1 have been represented by blue and orange colour respectively.
According to the algorithm depicted in the previous section, the evaluation of the

TABLE 4.7: Two IoT sensor nodes - sensor 0 (p0 = 3, T0 = 1, f0 = 1)
and sensor 1 (p1 = 6, T1 = 1, f1 = 2)

i pi Ti fi
0 3 1 1
1 6 1 2

example shown in table 4.7 is as follows.
The LCM of the periods of the sensor nodes 0 and 1 happens to be 6. Thus

in figure 4.5 six times positions have been shown for ATL, TEMPORARY, and
AGGREGATE_ONE. In figure 4.5, the process of local optimization is depicted for
the period 0 of sensor node 0. After checking all the offset choices offset 0 was found
to be most appropriate for period 0 of the sensor node 0. In figure 4.6, the process
of local optimization is depicted for the period 1 of sensor node 0. After checking
all the offset choices offset 0 was found to be most appropriate for period 0 of the
sensor node 0. Thus, the traffic of the sensor node 0 is added to the ATL as depicted
in figure 4.10.

Chapter 4. Sensors Scheduling for Aggregated Traffic Minimization 50

FIGURE 4.5: Local optimization of period 0 of sensor node 0

Chapter 4. Sensors Scheduling for Aggregated Traffic Minimization 51

FIGURE 4.6: Local optimization of period 1 of sensor node 0

FIGURE 4.7: ATL after sensor node 0 optimized

Chapter 4. Sensors Scheduling for Aggregated Traffic Minimization 52

FIGURE 4.8: Local optimization process in period 0 of sensor node 1
in case of offsets 0, 1 and 2

Chapter 4. Sensors Scheduling for Aggregated Traffic Minimization 53

FIGURE 4.9: Local optimization process in period 0 of sensor node 1
in case of offsets 3 and 4

In figure 4.6, the local optimization process for the period 1 of sensor node 0 has
been depicted. In figure 4.8, the local optimization process for the period 0 of sensor
node 1 has been represented while the offsets 0, 1 and 2 are checked. In figure 4.9,
the local optimization process for the period 0 of sensor node 1 has been represented
while the offsets 3 and 4 are checked.In figure 4.10 the ATL status is depicted after
optimizing sensor node 0 and sensor node 1.

FIGURE 4.10: ATL after sensor node 0 optimized

Thus in the table 4.8, the set of offsets achieved from the algorithm for each pe-
riod of each sensor node has been enlisted.

Chapter 4. Sensors Scheduling for Aggregated Traffic Minimization 54

Sensor node period offset

0 0 0

0 1 0

1 0 1

TABLE 4.8: The set of offsets achieved from the evaluation in figure
4.5, 4.6, 4.8 and 4.9

4.5.2 Heuristic solution for non-consecutive execution of transactions

The notations mentioned in table 4.6, are used to describe the algorithm. In this
section, first a proper description of the proposed heuristic approach has been de-
picted and then in 4.5.2.2 a pseudo code based on the proposed algorithm has been
illustrated.

4.5.2.1 Description of Proposed Heuristic Algorithm

The following is a brief description of the algorithm that can be implemented to
solve the problem mentioned in 4.4 for the variation of non-consecutive execution of
transactions.

4.5.2.1.1 Brief Overview of the algorithm - The main backbone behind the algo-
rithm is local optimization for each transaction in each period. For a sensor node
i, the most appropriate offset (in number of time slots) for every kth transaction in
every jth period can be found through the algorithm described below.

• Local optimization for each transaction in a period - This process is meant to find
the best possible offset for any transaction in a period. It focuses on locally opti-
mizing each transaction in each period one by one. Firstly, two one-dimensional
list called TEMPORARY[q] and ATL[q] of size L is considered, where 0 ≤ q ≤
L− 1 and L is the LCM of the period of the n sensor nodes as mentioned in the
previous section. Each of the L positions represents each of the L time slots. All
the L position in TEMPORARY[q] and ATL[q] is initialized to be zero. ATL
stores the total aggregated traffic load generated up till the last locally opti-
mized sensor node. AGGREGATE_ONE is another list of size L that stores the
traffic generated for any particular offset. To optimize a transaction in a period
the summation of the AGGREGATE_ONE generated for an offset choice and
the current ATL is saved in TEMPORARY and checked if that offset choice
is best in terms of the maximum amount of load it generates per position of
the TEMPORARY. Thus, TEMPORARY depicts the impact of a particular off-
set on the ATL. All the available offset choices ranging between [0, (p-fT)] are
checked in this way, one by one. The most appropriate offset θijk found for the
kth transaction in jth period is selected as the offset according to which the ith

sensor node will start the kth transaction among the T transactions, in the jth

Chapter 4. Sensors Scheduling for Aggregated Traffic Minimization 55

period. As the transactions are to not to be executed consecutively, it must be
known that when a kth transaction should be started in any period.

An offset choice θijk, is considered to be the most appropriate if -

1. on adding traffic generated in TEMPORARY[q] according to that offset
θijk to the ATL, the maximum aggregated traffic load among all the posi-
tions in ATL results to be minimum and,

2. the standard deviation of all the loads in L positions of ATL also results
to be minimum.

The standard deviation, according to equation 4.5, is also checked because it
depicts how evenly the load is distributed among the L positions in TEMPO-
RARY. After checking all the available options for θijk the most appropriate
offset θijk found for the kth transaction of jth period, from the available range,
is selected as the offset according to which the ith sensor node will start the
kth transaction among the T number of transactions to be done in the jth pe-
riod. This process is repeated for all the transactions in all the periods of any
sensor node. After finding the best θijk for a transaction, the TEMPORARY so
generated is made new ATL.

• For the next sensor node, again for every kth transaction in every jth period,
the traffic generated for each of the offsets choices is added to the TEMPO-
RARY[q] and checked one by one by adding TEMPORARY[q] with the ATL.
This entire process is done for all the n sensor nodes. And at the end of the
local optimization process for all the sensor nodes, we get an offset configura-
tion either same as the optimal configuration or the one very very close to it
in terms of maximum BW and Chmax requirements. It is quite evident that if
a transaction k of size fi time slots is scheduled to start at a time slot t in any
period then the next transaction of that period can only start at (t + fi)

th time
slot.

Chapter 4. Sensors Scheduling for Aggregated Traffic Minimization 56

4.5.2.1.2 Comprehensive Description of the algorithm - To have a better insight
of the proposed algorithm, a more detailed description of the proposed algorithm,
step by step, is mentioned below.

Every θijk value returned after the following operations will be the most appro-
priate offset selected for the kth transaction in jth period of ith sensor node.

1. Sort the every ith sensor node of S in such a way that, pi ≤ pi+1 AND (fi × Ti) ≤
(fi+1 × Ti+1), if pi = pi+1.

2. for i=0→ n-1 : // for all n sensor nodes
a. for j=0→ L

pi
: // for all L

pi
periods of ith sensor node

I. for k=0→ Ti: //for each of the transactions
A. For every kth transaction, find the

θijk ∈
[

0,
(

pi−
(
(Ti−k)× fi

))]
for which max(TEMPORARY) AND sd(TEMPORARY)

is found to be minimum after performing the following operations.
1. for w=0→ fi:

i. TEMPORARY[(j× pi) + w + θijk] =

ATL[(j× pi) + w + θijk] + 1 //incremental traffic of jth transaction in
jth period of ith sensor node with offset θij.
ii. end for w

B. Add traffic of the kth transaction to the jth period of ATL according to the
most appropriate offset θijk found in the previous step.

1. for w=0→ fi:
i. ATL[(j × pi) + w + θijk] = ATL[(j × pi) + w + θijk] + 1
ii. end for w

C. Return θijk

D. end for k
II. end for j

b. end for i

Chapter 4. Sensors Scheduling for Aggregated Traffic Minimization 57

4.5.2.2 Pseudo Code for the proposed algorithm

In this section, a pseudo code have been provided for better comprehensive under-
standing of the entire algorithm.
1. main():

a. begin main
i. Input: A set of n sensor nodes with values their characteristics mentioned in
the tuple (i, pi, Ti, fi, bi)
ii. Sort the every ith sensor node of S in such a way that, pi ≤ pi+1 AND (fi ×
Ti) ≤ (fi+1 × Ti+1), if pi = pi+1.
iii. L : (Global variable) Initialized with the LCM of pi for all i=0→ n-1
iv. ATL[q]: (Global variable) One-dimensional list of size L for all q=0→ L− 1
v. θ[i]: List of size n, where each of index stores a list of size L

pi
that further stores

a list of Ti offset for each of the Ti transactions in each of the L
pi

periods of the ith

sensor node.
vi. for i=0→ n-1:

A. θ[i] = findBestSetOfOffsetsForSensorNode(pi, fi, Ti)
B. for j=0→ L

pi
-1:

I. ATL = addTraffic(θ[i][j], pi, fi, Ti, j)
II. end for j

C. end for i
vii. RETURN θ[0→ n-1]

b. end main

2. findBestSetOfOffsetsForSensorNode(pi, fi, Ti):
a. begin findBestSetOfOffsetsForSensorNode
b. o[0→(L

pi
- 1)] : List of size L

pi
, stores the respective set of offsets for each of the

L
pi

periods. Initialized with 0
c. for j=0 to L

pi
-1:

i. x = j × p− i //start of period
ii. y = ((j + 1)× p− i) - 1 //end of the period
iii. o[j] = findBestSetOfOffsetForPeriod(pi, fi, Ti, x, y)
iv. end for j

d. RETURN o[0→(L
pi

- 1)]
e. end findBestSetOfOffsetsForSensorNode

Chapter 4. Sensors Scheduling for Aggregated Traffic Minimization 58

3. findBestSetOfOffsetForPeriod(pi, fi, Ti, x, y):
a. begin findBestSetOfOffsetForPeriod
b. o[0 to Ti-1] : List of size Ti that stores the respective offsets for each of the Ti

transactions. Initialized with 0
c. for k=0 to Ti-1:

i. offsetForPreviousTransaction← Set the offset found for the previous transaction
as the current transaction must be allocated after the previous transaction
ii. o[k] = findBestOffset(offsetForPreviousTransaction, pi, fi, Ti, x, y, k)
iii. end for k

d. RETURN o[0 to Ti-1]
e. end findBestSetOfOffsetForPeriod

4. findBestOffset(offsetForPreviousTransaction, pi, fi, Ti, x, y, k):
a. begin findBestOffset
b. AGGREGATE_ONE[q] : one-dimensional list, the length is L, initialized to 0 ∀
q = 0→ L-1
c. TEMPORARY[q] : one-dimensional list, the length is L, initialized to 0 ∀ q = 0
→ L-1
d. for w=0→ fi-1:

i. AGGREGATE_ONE[x + w + offsetForPreviousTransaction + fi] = 1
ii. end for w

e. for q=0→ L− 1 :
i. TEMPORARY[q] = AGGREGATE_ONE[q] + ATL[q]
ii. end for q

f. maxLoad = max(TEMPORARY)
g. sd = sd(TEMPORARY)
h. Offset = offsetForPreviousTransaction + fi

i. for t=(offsetForPreviousTransaction + fi + 1)→
(

pi -
(
(Ti-k)× fi

))
:

I. AGGREGATE_ONE = circularShift(AGGREGATE_ONE)
II. for q=0→ L− 1 :

i. TEMPORARY[q] = AGGREGATE_ONE[q] + ATL[q]
ii. end for q

III. maxLoadTemp = max(TEMPORARY)
IV. sdTemp = sd(TEMPORARY)
V. IF (maxLoadTemp ≤ maxLoad AND sdTemp < sd)

THEN
i. maxLoad = maxLoadTemp
ii. sd = sdTemp
iii. Offset = t

VI. end for t

Chapter 4. Sensors Scheduling for Aggregated Traffic Minimization 59

j. RETURN Offset
k. end findBestOffset

4. addTraffic(θ[i][j], pi, fi, Ti, j):
a. begin addTraffic
b. TRAFFIC[q]: A list of size L to hold traffic of L slots. Initialized to 0.
c. for k=0→ (Ti-1): // for each transaction

I. for w=0→ (fi-1):
i. TRAFFIC[(j× pi) + θ[i][j][k]+ w] = 1
ii. end for w

II. end for k
d. for q=0→ (L− 1):

I. ATL[q] = ATL[q] + TRAFFIC[q]
II. end for q

e. RETURN ATL
f. end addTraffic

4.5.2.3 Evaluation of the proposed algorithm

In this section, an example depicted in 4.9 has been considered. The traffic of sen-
sor nodes 0 and 1 have been represented by blue and orange colour respectively.
According to the algorithm depicted in the previous section, the evaluation of the

TABLE 4.9: Two IoT sensor nodes - sensor 0 (p0 = 3, T0 = 1, f0 = 1)
and sensor 1 (p1 = 6, T1 = 1, f1 = 2)

i pi Ti fi
0 3 1 1
1 6 2 2

example shown in table 4.9 is as follows.
The LCM of the periods of the sensor nodes 0 and 1 happens to be 6. Thus

in figure 4.11 six times positions have been shown for ATL, TEMPORARY, and
AGGREGATE_ONE. In the figure 4.11, 0th transaction of the 0th period of the 0th

sensor node has been locally optimized and it is found that the 0th transaction should
start with an offset of 0.

Chapter 4. Sensors Scheduling for Aggregated Traffic Minimization 60

FIGURE 4.11: Local optimization process for 0th transaction of 0th pe-
riod of 0th sensor node

For the next 1th period of 0th sensor node the local optimization process for the
0th transaction has been shown in figure 4.12.

Chapter 4. Sensors Scheduling for Aggregated Traffic Minimization 61

FIGURE 4.12: Local optimization process for 0th transaction of 1th pe-
riod of 0th sensor node

At the end of the local optimization process for 0th sensor node, the offsets found
for the 0th transaction in 0th period and 0th transaction in 1th period is same, i.e. 0.
When the ATL gets updated by the traffic pattern of the 0th sensor node it looks like
the one depicted in figure 4.13.

FIGURE 4.13: ATL after transaction 0 of period 0 and 1 of sensor node
0 have been locally optimized

Chapter 4. Sensors Scheduling for Aggregated Traffic Minimization 62

For the sensor node 1, the local optimization process for the 0th transaction has
been depicted in figure 4.14. For the 0th transaction, the offset values that should
be checked only are 0, 1 and 2. Offset 3 or 4 cannot be an offset for transaction 0
as there is another transaction 1 that is also required to be allocated. If transaction
0 is scheduled with offset 3 to start at the time slot 3 among the six time slots then
it is evident that transaction 0 will end at time slot 4. This will leave only one time
slot,time slot 5, at the end which is not sufficient to allocate the second transaction
that is also required to be done. Again if transaction 0 is scheduled with offset 4 to
start at the time slot 4 among the six time slots then it is evident that transaction 0
will end at time slot 5. This will leave no time slot at the end to allocate the second
transaction that is also required to be done. Thus, for the 0th transaction of sensor
node 1, the best offset found is 1. For the second transaction to be done there are
two choices for offsets that are available (3 and 4). The local optimization process for
allocating the second transaction is done in figure 4.15.

For offset 3, the maximum load on the six time slots becomes 2 whereas for offset
option 4, the transaction gets allocated at the time slot 4 and 5 and thus the maximum
load on the 6 time slots is found to be 1. Thus for the second transaction offset 4 is
selected as the most appropriate offset.

In figure 4.16, the aggregated traffic of sensor node 0 and 1 has been depicted for
the best set of offsets found for each transaction as illustrated in 4.10.

Sensor period transaction offset
0 0 0 0
0 1 0 0
1 0 0 1
1 0 1 4

TABLE 4.10: The set of offsets achieved from the evaluation in figure
4.11, 4.12, 4.14 and 4.15

Chapter 4. Sensors Scheduling for Aggregated Traffic Minimization 63

FIGURE 4.14: The local optimization process for the 0th transaction of
sensor node 1

Chapter 4. Sensors Scheduling for Aggregated Traffic Minimization 64

FIGURE 4.15: The local optimization process for allocating the second
transaction of sensor node 1

FIGURE 4.16: The aggregated traffic in ATL at the end of the local
optimization process of sensor node 0 and 1

Chapter 4. Sensors Scheduling for Aggregated Traffic Minimization 65

4.6 Results And Discussions

In this section, there are two subsections, 4.6.1 and 4.6.2. In section 4.6.1,

4.6.1 Results in case of consecutive execution of transactions

Figure, 4.17a, 4.17b, 4.18a, 4.18b, 4.19a, 4.19b, 4.20a, 4.20b depicts comparison of the
proposed (Pro.) with the case of random offset (Rand.) for 12, 25, 50, 100, 250, 500,
1000 and 2000 sensor nodes having p=60, f=5, T=1 and b=8 bits, respectively. The
proposed algorithm (in blue) has been compared with the case when random set of
offsets (in orange) are chosen. With growing size of the sensor network, the increase
in resource requirements for both Chmax and BW in case of Proposed and Random
Offset has been depicted in figure 4.21 and 4.22 respectively.

In figure 4.23, a set of sensor nodes with the specifications mentioned in the table
4.11 have been considered. Herein, the sensor nodes are heterogeneous to each other
in nature.

Sensor Nodes p T f b
1− 12 12 1 5 8

12− 50 15 2 5 8

51− 100 30 4 5 8

101− 500 60 6 5 8

501− 1000 60 7 5 8

1001− 2000 120 8 10 8

TABLE 4.11: A set of 2000 IoT sensor nodes

FIGURE 4.17: Proposed V/s Random Offset in terms of increasing
sensor nodes for 12 and 25 sensor nodes

(A) Pro./Rand.: Chmax(8/96), BW(1/12) (B) Pro./Rand.: Chmax(24/200), BW(3/25)

Figure 4.17a shows the value of Chmax = 8 bits per time slot and BW = 1 which
means that a maximum of one frequency channel is required according to the sched-
ule obtained by means of the proposed algorithm. But, on the other hand it can be

Chapter 4. Sensors Scheduling for Aggregated Traffic Minimization 66

seen that due to a random offset combination the maximum number of sensor nodes
that has been scheduled to transmit in any particular time slot is twelve. Which
means all the 12 sensor nodes have been scheduled to transmit together and thus
twelve frequency channel would be required. Therefore, for the case of random off-
sets Chmax = 96 bits per time slot and BW=12.

Figure 4.17b shows the value of Chmax = 24 bits per time slot and BW = 3 which
means that a maximum of 3 frequency channel is required according to the schedule
obtained by means of the proposed algorithm. But, on the other hand it can be seen
that due to a random offset combination the maximum number of sensor nodes that
has been scheduled to transmit in any particular time slot is 25. Which means all
the 25 sensor nodes have been scheduled to transmit together and thus 25 frequency
channel would be required. Therefore, for the case of random offsets Chmax = 200
bits per time slot and BW=25. Similar picture have been depicted in 4.18a, 4.18b,
4.19a, 4.19b, 4.20a and 4.20b in case of 50, 100, 250, 500, 1000 and 2000 sensor nodes
respectively.

FIGURE 4.18: Proposed V/s Random Offset in terms of increasing
sensor nodes for 50 and 100 sensor nodes

(A) Pro./Rand.: Chmax(40/400), BW(5/50) (B) Pro./Rand.: Chmax(72/800), BW(9/100)

FIGURE 4.19: Proposed V/s Random Offset in terms of increasing
sensor nodes for 250 and 500 sensor nodes

(A) Pro./Rand.: Chmax(168/2K), BW(21/250) (B) Pro./Rand.: Chmax(336/4K), BW(42/500)

Chapter 4. Sensors Scheduling for Aggregated Traffic Minimization 67

FIGURE 4.20: Proposed V/s Random Offset in terms of increasing
sensor nodes for 1000 and 2000 sensor nodes

(A) Pro./Rand.: Chmax(672/8K), BW(84/1K) (B) Pro./Rand.: Chmax(1336/16K), BW(167/2K)

In figure 4.20, 4.19, 4.18 and 4.17 all the sensor nodes are of homogeneous type.
Such an experiment is done to observe the performance of the proposed algorithm
if the number of sensor nodes n is increased exponentially.

In figure 4.21, the Chmax has been observed in case of the of the increasing size of
the sensor network. The number of sensor nodes n has been increased exponentially
to observe the results of the proposed algorithm. From this experiment it was found
that the proposed algorithm schedules way better than the one in case of random
offset combination. In the same way the behavior of the BW have also been observed
in figure 4.22.

FIGURE 4.21: Increase in Chmax with increasing number of sensor
nodes

Chapter 4. Sensors Scheduling for Aggregated Traffic Minimization 68

FIGURE 4.22: Increase in BW with increasing number of sensor nodes

FIGURE 4.23: Aggregated traffic load per time slot in case of consec-
utive execution of transactions

Chapter 4. Sensors Scheduling for Aggregated Traffic Minimization 69

FIGURE 4.24: Aggregated traffic load per time slot in case of consec-
utive execution of transactions

In figure 4.23, a set of sensor nodes with the specifications mentioned in the table
4.11 have been considered. Herein, the sensor nodes are heterogeneous to each other
in terms of p, f and T.

In the figure 4.23, L = 120, as the LCM of the periods of the Sensor nodes con-
sidered in table 4.11. Thus in the x-axis there are 120 time slots. The traffic load
per time slot in case of Random Offset is depicted in blue and the resultant aggre-
gated traffic according to the proposed algorithm is depicted in orange. The value
of Chmax= 12208 bits per time slot. And the value of BW = 1526, which means that

Chapter 4. Sensors Scheduling for Aggregated Traffic Minimization 70

there exist a time slot among the 120 time slots in which a 1526 sensor nodes have
been scheduled to transact which requires a maximum of 1526 frequency channels.
And as Chmax=12208 bits per time slot the access link must have a channel capacity
of at least 12208 bits per time slot.

Thus for a span of 1200 time slots the resultant aggregated traffic per time slot
looks like as depicted in figure 4.24, where the x-axis depicts each of the 1200 time
slots and the y-axis shows the number of sensor nodes transacting in a time slot.
In figure, 4.24, if each of the 2000 sensor nodes, streams data with random offsets
in each period for all of the T number of transactions, then the shape of the aggre-
gated traffic load per time slot can look like the one represented by the blue line, in
the worst case. The worst case is a schedule that leads all the 2000 sensor nodes to
transmit data together in a time slot. For any point in x-axis at which the blue line
touches the highest peak of 2000 on the y-axis, depicts a time slot in which all the
2000 sensor nodes are scheduled to transmit data. Whereas, the orange line shows
the aggregated traffic generated according to the offsets obtained by means of the
proposed algorithm which takes 250.57045197486877 seconds to compute. The low-
est and highest peak value in case of random offset is 0 and 2000. whereas in case of
the proposed algorithm the lowest and the highest peak is 997 and 1526 respectively.
Thus, collectively from the comparisons found according to the difference in peak
values (highest peak - lowest peak) and in figure 4.24, it is quite evident that the load
distribution is more even in case of the proposed algorithm having a highest peak
value of 1526, instead of 2000 as in case of random offsets.

4.6.2 Results in case of non-consecutive execution of transactions

In figure 4.25, a set of sensor nodes with the specifications mentioned in the table 4.11
have been considered. Herein, the sensor nodes are heterogeneous to each other in
terms of p, f and T.

In the figure 4.25, L = 120, as the LCM of the periods of the Sensor nodes consid-
ered in table 4.11. Thus in the x-axis there are 120 time slots. The traffic load per time
slot in case of Random Offset is depicted in blue and the resultant aggregated traffic
according to the proposed algorithm is depicted in orange. The value of Chmax= 9792
bits per time slot. And the value of BW = 1224, which means that there exist a time
slot among the 120 time slots in which a 1224 sensor nodes have been scheduled to
transact which requires a maximum of 1224 frequency channels. And as Chmax=9792
bits per time slot, the access link must have a channel capacity of at least 9792 bits
per time slot.

Chapter 4. Sensors Scheduling for Aggregated Traffic Minimization 71

FIGURE 4.25: Aggregated traffic load per time slot in case of non-
consecutive execution of transactions

Thus for a span of 1200 time slots the resultant aggregated traffic per time slot
looks like as depicted in figure 4.26, where the x-axis depicts each of the 1200 time
slots and the y-axis shows the number of sensor nodes transacting in a time slot. In
figure, 4.24, if each of the 2000 sensor nodes, streams data with random offsets in
each period for all of the T number of transactions, then the shape of the aggregated
traffic load per time slot can look like the one represented by the blue line, in the
worst case. The worst case is a schedule that leads all the 2000 sensor nodes to
transmit data together in a time slot.

For any point in x-axis at which the blue line touches the highest peak of 2000
on the y-axis, depicts a time slot in which all the 2000 sensor nodes are scheduled
to transmit data. Whereas the orange line shows the aggregated traffic generated
according to the offsets obtained by means of the proposed algorithm which takes
936.4897356033325 seconds to compute.

Chapter 4. Sensors Scheduling for Aggregated Traffic Minimization 72

FIGURE 4.26: Aggregated traffic load per time slot in case of non-
consecutive execution of transactions

The lowest and highest peak value in case of random offset is 0 and 2000. Whereas,
in case of the proposed algorithm the lowest and the highest peak is 1219 and 1224
respectively. Thus collectively, from the comparisons found according to the differ-
ence in peak values (highest peak - lowest peak) and in figure 4.26, it is quite evident
that the load distribution is more even in case of the proposed algorithm having a
highest peak value of 1224, instead of 2000 as in case of random offsets.

Chapter 4. Sensors Scheduling for Aggregated Traffic Minimization 73

4.7 Summary of the Chapter

In this chapter, the topic of sensor scheduling in sensor-cloud infrastructure has been
discussed. The importance of sensor scheduling has been realized and then two
problem scenarios in case of sensor-cloud has been introduced. Both the problems
have been defined comprehensively. In order to solve the problems two algorithms
have been discussed. For each of the two algorithms a pseudo code is also provided.
For both the algorithms discussed, an example for each has been evaluated for com-
prehensive understanding of the proposed algorithms. The chapter ends with the
results section in which for each problem few data sets have been considered and
solved according to the proposed algorithms. The results achieved in case of the
proposed algorithms have been been compared with the worst case and best case
scenarios to realize their efficiency in performance.

74

Chapter 5

Concluding Remarks and Future
Direction

5.1 Overview

In a Sensor-Cloud infrastructure, to acquire the sensor nodes deployed in a WSN
that resides behind a NAT , the sensor nodes must be signalled with an message that
must be able to reach the device after successfully traversing the NAT. In chapter 3
this problem was considered and solved with a unique communication protocol that
establishes a connection between the sensor nodes and the cloud server. The pro-
posed scheme establishes a communication channel to wake up a sensor node that
is behind NAT from a remotely located publicly addressable server. This communi-
cation scheme can be used for IoT based solutions to enable cloud services to gain
on demand unattended access to the sensing devices. The experiments carried out
shows that communication cost of the sensing devices is significantly low, thereby
leading to less energy consumption of resource constrained devices and more service
lifetime. Instead of repeated polling from the client, our scheme gradually learns the
maximum permitted interval at which the server can poll to keep the connection
alive. This protects the small devices from energy drain and thus provides a more
energy efficient solution.

With respect to the second problem, it can be concluded that the two proposed
polynomial time algorithms for both the variations provide results which are signif-
icantly better than the worst case. Though they do not provide the optimal result
every time being heuristic algorithms, the results are quite satisfactory with respect
to the worst case scenario.

In case of the consecutive execution of transactions unlike the straight forward

optimization which checked
(

L
p ×

(
(p− f × T) + 1

))n
combinations, the proposed

algorithm only checks
(

n × (p − f × T)
)

combinations and works in polynomial
time in the order of O(Ln).

And in case of non-consecutive execution Unlike the straight forward optimiza-

tion of exponential time that checks
(

L
p ×

(
(p− f × T) + 1

)
×T
)n

combinations, the

Chapter 5. Concluding Remarks and Future Direction 75

proposed heuristic algorithm checks only
(

n× (p− f × T)×T
)

combinations and
works in polynomial time in the order of O(nLT).

The maximum required bandwidth at the wireless interface and the maximum
required channel capacity at the access link for any given WSN can be determined
in polynomial time with the help of the two proposed algorithms in their respective
scenarios.

Thus, as the required bandwidth and channel capacity needed for a WSN de-
ployment can be determined, the IoT WSN service applications provided by the
Sensor-Cloud will not consume excess resources of the cloud. This also extends the
lifetime of the sensor nodes. The power consumption gets minimized as the sensor
nodes send data only when activated. Resource allocation also gets optimized in the
Sensor-Cloud platform.

5.2 Future Work

The communication protocol discussed in chapter 3 can be used to communicate
with various other devices residing behind NAT. For example, to directly communi-
cate with an IoT application hosted at home, the proposed mechanism can be used
by the owner via a mobile application. If the IoT devices at home are battery pow-
ered then the proposed scheme can help to establish a channel between the devices
and the cloud which may be maintained by the cloud, avoiding energy drainage in
those devices. An owner of a house can communicate with a IoT application run-
ning at home any time by sending a packet through the communication channel that
can be established by means of the proposed algorithm. In the proposed work only
a communication scheme is addressed, however for the security of both, the server
and the client (sensor devices), other methodologies are needed to be incorporated.
This may include detecting malicious nodes, preventing Denial of Service (DOS) at-
tacks on the wake up server, and other malicious attempts to gain unsolicited access.

In case of Sensor-Cloud there exist many issues that needs to be taken care of
other than bandwidth optimization while designing a Sensor-Cloud application.
Few issues that must also be focussed on are reliability, Service Level Agreement
(SLA) violation, fault tolerance, security and privacy. A critical patient must be
monitored continuously without network failure which can not be guaranteed ev-
erytime. A patient can be in motion and can go out of network coverage. In such
a scenario, if the patient gets into a critical condition then there shall be no means
of medical assistance available to the patient until the patient gets network cover-
age to get the server notified about the patient’s illness. For any particular type of
service it is very hard to choose the correct combination of cloud providers to sup-
port the IoT application flawlessly. Security and privacy of sensed sensitive data like
heath records need to be kept secured. As the cloud is providing the computational
resources for various Sensor-Cloud applications, it is expected that the SLA is pre-
served and for this the cloud providers are charging the owner of the application

Chapter 5. Concluding Remarks and Future Direction 76

for hosting. Now, due to huge processing of sensor data in any critical environ-
ment with harsh climatic conditions, if the services fail to preserve the SLA then
it will have an adverse effect on the faith and trust that the user had on the cloud
providers.

Thus, there are many research areas to focus on in order to bring smartness and
innovation to the Sensor-Cloud infrastructure.

77

Bibliography

[1] Alamri, A., Ansari, W.S., Hassan, M.M., Hossain, M.S., Alelaiwi, A. and Hos-
sain, M.A., 2013. A survey on sensor-cloud: architecture, applications, and ap-
proaches. International Journal of Distributed Sensor Networks, 9(2), p.917923.

[2] Lozano, J., Apetrei, C., Ghasemi-Varnamkhasti, M., Matatagui, D. and Santos,
J.P., 2017. Sensors and Systems for Environmental Monitoring and Control. Jour-
nal of Sensors, 2017.

[3] Puiu, D., Barnaghi, P., Tönjes, R., Kümper, D., Ali, M.I., Mileo, A., Parreira,
J.X., Fischer, M., Kolozali, S., Farajidavar, N. and Gao, F., 2016. Citypulse: Large
scale data analytics framework for smart cities. IEEE Access, 4, pp.1086-1108.

[4] Liao, Y., Mollineaux, M., Hsu, R., Bartlett, R., Singla, A., Raja,
A., Bajwa, R. and Rajagopal, R., 2014. Snowfort: An open source
https://www.overleaf.com/project/5ce406992f38b8239fc51c3bwireless sensor
network for data analytics in infrastructure and environmental monitoring.
IEEE Sensors Journal, 14(12), pp.4253-4263.

[5] K. Romer and F. Mattern, “Te design space of wireless sensor networks,” IEEE
Wireless Communications, vol. 11, no. 6, pp. 54–61, 2004.

[6] T. Haenselmann, “Sensor networks,” GFDL. In, Wireless Sensor Network textbook
2006.

[7] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on
sensor networks,” IEEE Communications Magazine, vol. 40, no. 8, pp. 102–114,
2002.

[8] Alemdar, H. and Ersoy, C., 2010. Wireless sensor networks for healthcare: A
survey. Computer networks, 54(15), pp.2688-2710.

[9] G. Simon, G. Balogh, G. Pap et al., “Sensor network-based countersniper sys-
tem,” in Proceedings of the 2nd International Conference on Embedded Networked
Sensor Systems (SenSys ’04), pp. 1–12, Baltimore, Md, USA, November 2004.

[10] S. K. Dash, J. P. Sahoo, S. Mohapatra, and S. P. Pati, “Sensorcloud: assimila-
tion of wireless sensor network and the cloud,” in Advances in Computer Science
and Information Technology. Networks and Communications, vol. 84, pp. 455–464,
SpringerLink, 2012

BIBLIOGRAPHY 78

[11] Stanczyk, B. and Buss, M., 2004, September. Development of a telerobotic sys-
tem for exploration of hazardous environments. In 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566)
(Vol. 3, pp. 2532-2537). IEEE.

[12] M. Castillo-Een, D. H. Quintela, R. Jordan, W. Westho, and W. Moreno, Wire-
less sensor networks for ash-ood alerting, in Proceedings of the 5th IEEE Inter-
national Caracas Conference on Devices, Circuits and Systems (ICCDCS ’04), pp.
142–146,November 2004

[13] G. Werner-Allen, K. Lorincz, M. Welsh et al., “Deploying a wireless sensor net-
work on an active volcano,” IEEE Internet Computing, vol. 10, no. 2, pp. 18–25,
2006.

[14] Chen, D. and Varshney, P.K., 2004, June. QoS Support in Wireless Sensor Net-
works: A Survey. In International conference on wireless networks (Vol. 233, pp.
1-7).

[15] W. Kim, “Cloud computing: today and tomorrow,” Journal of Object Technology,
vol. 8, pp. 65–72, 2009.

[16] M. Yuriyama and T. Kushida, “Sensor-cloud infrastructure physical sensor
management with virtualized sensors on cloud computing,” in Proceedings of
the IEEE 13th International Conference on Network-Based Information Systems (NBiS
’10), pp. 1–8, September 2010.

[17] L. P. D. Kumar, S. S. Grace, A. Krishnan, V. M. Manikandan, R. Chinraj, and M.
R. Sumalatha, “Data fltering in wireless sensor networks using neural networks
for storage in cloud,” in Proceedings of the IEEE International Conference on Recent
Trends in Information Technology (ICRTIT ’11), 2012.

[18] M. O’Brien, Remote Telemonitoring—A Preliminary Review of Current Evi-
dence, European Center for Connected Health, 2008.

[19] http://www.ntu.edu.sg/intellisys.

[20] K. T. Lan, “What’s Next? Sensor+Cloud?” in Proceeding of the 7th International
Workshop on Data Management for Sensor Networks, pp. 978–971, ACM Digital
Library, 2010.

[21] Sensor-Cloud, http://sensorcloud.com/system-overview.

[22] C. O. Rolim, F. L. Koch, C. B. Westphall, J. Werner, A. Fracalossi, and G. S.
Salvador, “A cloud computing solution for patient’s data collection in health
care institutions,” in Proceedings of the 2nd International Conference on eHealth,
Telemedicine, and Social Medicine (eTELEMED ’10), pp. 95–99, February 2010.

BIBLIOGRAPHY 79

[23] U. Varshney, “Pervasive healthcare and wireless health monitoring,” Mobile
Networks and Applications, vol. 12, no. 2-3, pp. 113–127, 2007.

[24] U. Varshney, “Managing wireless health monitoring for people with disabili-
ties,” IEEE IT-Professional, pp. 12–16, 2006.

[25] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, “Collection tree
protocol,” in Proceedings of the 7th ACM Conference on Embedded Networked Sensor
Systems (SenSys ’09), pp. 1–14, November 2009.

[26] S. Madden and M. J. Franklin, “Fjording the stream: an architecture for queries
over streaming sensor data,” in Proceedings of the 18th International Conference on
Data Engineering, pp. 555– 566, March 2002.

[27] A. Rowe, V. Gupta, and R. Rajkumar, “Low-power clock synchronization using
electromagnetic energy radiating from AC power lines,” in Proceedings of the 7th
ACM Conference on Embedded Networked Sensor Systems (SenSys ’09), pp. 211–224,
November 2009

[28] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister, “System archi-
tecture directions for networked sensors,” in Proceedings of the 9th International
Conference Architectural Support for Programming Languages and Operating Sys-
tems, pp. 93–104, November 2000.

[29] Zhu, C., Zheng, C., Shu, L. and Han, G., 2012. A survey on coverage and con-
nectivity issues in wireless sensor networks. Journal of Network and Computer
Applications, 35(2), pp.619-632.

[30] R. Katsuma, Y. Murata, N. Shibata, K. Yasumoto, and M. Ito, “Extending k-
coverage lifetime of wireless sensor networks using mobile sensor nodes,” in
Proceedings of the 5th IEEE International Conference on Wireless and Mobile Com-
puting Networking and Communication (WiMob ’09), pp. 48–54, October 2009

[31] K.Matsumoto,R.Katsuma,N.Shibata,K.Yasumoto,andM.Ito, “Extended ab-
stract: minimizing localization cost with mobile anchor in underwater sensor
networks,” in Proceedings of the 4th ACM International Workshop on UnderWater
Networks (WUWNet ’09), November 2009.

[32] T. Sookoor, T. Hnat, P. Hooimeijer, W. Weimer, and K. Whitehouse, “Macrode-
bugging: global views of distributed program execution,” in Proceedings of the
7th ACM Conference on Embedded Networked Sensor Systems (SenSys ’09), pp.
141–154, November 2009

[33] J. Shneidman, P. Pietzuch, J. Ledlie, M. Roussopoulos, and M. Seltzerand Welsh,
“Hourglass: an infrastructure for connecting sensor networks and applica-
tions,” Harvard Technical Report TR-21-04, 2004.

BIBLIOGRAPHY 80

[34] M. Gaynor, S. L. Moulton, M. Welsh, E. LaCombe, A. Rowan, and J. Wynne,
“Integrating wireless sensor networks with the grid,” IEEE Internet Computing,
vol. 8, no. 4, pp. 32–39, 2004.

[35] R. S. Ponmagal and J. Raja, “An extensible cloud architecture model for hetero-
geneous sensor services,” International Journal of Computer Science and Informa-
tion Security, vol. 9, no. 1, 2011.

[36] A. Alexe and R. Exhilarasie, “Cloud computing based vehicle tracking informa-
tion systems,” International Journal of Computer Science and Telecommunications,
vol. 2, no. 1, 2011.

[37] C. Doukas and I. Maglogiannis, “Managing wearable sensor data through
cloud computing,” in Proceedings of the IEEE 3rd International Conference on Cloud
Computing, 2011

[38] X. H. Le, “Secured WSN-integrated cloud computing for ulife care,” in Proceed-
ings of the Consumer Communications and networking Conference (CCNC ’10), pp.
1–2, IEEE, 2010.

[39] T.-D. Nguyen and E.-N. Huh, “An efcient key management for secure multicast
in Sensor-Cloud”,” in Proceedings of the IEEE 1st ACIS/JNU International Confer-
ence on Computers, Networks, Systems, and Industrial Engineering, 2011.

[40] Bose S, Gupta A, Adhikary S, Mukherjee N. Towards a sensor-cloud infrastruc-
ture with sensor virtualization. In Proceedings of the Second Workshop on Mobile
Sensing, Computing and Communication, 2015 Jun 22 (pp. 25-30). ACM.

[41] Nimbits Data Logging Cloud Sever, http://www.nimbits.com.

[42] Pachube Feed Cloud Service, http://www.pachube.com.

[43] iDigi—Device Cloud, http://www.idigi.com.

[44] IoT—TingSpeak, http://www.thingspeak.com.

[45] G. Demiris, B. K. Hensel, M. Skubic, and M. Rantz, “Senior residents’ perceived
need of and preferences for “smart home" sensor technologies,” International
Journal of Technology Assessment in Health Care, vol. 24, no. 1, pp. 120–124, 2008.

[46] Tunnel Monitoring System: http://www.advantech.com/intelligent-
automation/IndustryD2-499E-9E16-6C1F41D1CD6/.

[47] Tovar, A., Friesen, T., Ferens, K. and McLeod, B., A DTN wireless sensor net-
work for wildlife habitat monitoring. In CCECE, 2010.

[48] N. Kurata, M. Suzuki, S. Saruwatari, and H. Morikawa, “Actual application of
ubiquitous structural monitoring system using wireless sensor networks,” in
Proceedings of the 14th World Conference on Earthquake Engineering (WCEE
’08), 2008.

BIBLIOGRAPHY 81

[49] Masayuki Hirafuji,Agriculture Working Group.
http://www.apan.net/meetings/HongKong2011/Session/Agriculture.php/.

[50] H. H. Tran and K. J. Wong, “Mesh networking for seismic monitoring—the
sumatran cGPS array case study,” in Proceedings of the IEEE Wireless Commu-
nications and Networking Conference (WCNC ’09), April 2009.

[51] Gil Jiménez, V.P. and Fernández-Getino García, M.J., 2015. Simple design of
wireless sensor networks for traffic jams avoidance. Journal of Sensors, 2015.

[52] Port forwarding : Provides information for using port forwarding with Burk
products. in Technical Bulletin, BURK TECHNOLOGY,

[53] Er. M. kaur and Dr. K.S. Kahlon. "Study and Comparison of Network Security
in IPv4 and IPv6" in International Journal of Science and Research (IJSR),(2017)

[54] P. Srisuresh, M. Holdrege. "RFC 2663: IP Network Address Translator (NAT)
terminology and considerations", IETF, (August 1999)

[55] P. Srisuresh, K. Egevang. "RFC 3022: Traditional IP network address translator
(Traditional NAT)",IETF, (2000)

[56] P. Srisuresh, B. Ford, D. Kegel. "RFC 5128: State of peer-to-peer (P2P) commu-
nication across network address translators (NATs)", IETF, (2008)

[57] Y. Wei , D. Yamada, S. Yoshida, S. Goto. "A new method for symmetric NAT
traversal in UDP and TCP", Network Research Workshop, (Aug 2008)

[58] A. Müller, G. Carle, A. Klenk. "Behavior and classification of NAT devices and
implications for NAT traversal". IEEE network, 22(5),14-9, (2008)

[59] M. Boucadair, R. Penno, D. Wing. " RFC 6970: Universal plug and play (UPnP)
internet gateway device-port control protocol interworking function (IGD-PCP
IWF)", IETF, (2013).

[60] S. Cheshire, M. Krochmal. "RFC 6886: Nat port mapping protocol (NAT-PMP)",
IETF, (2013)

[61] D. Wing, S. Cheshire, M. Boucadair, R. Penno, P. Selkirk "RFC 6887: Port control
protocol (PCP)", IETF, (2013)

[62] O. Maennel, R. Bush, L. Cittadini, SM. Bellovin. "A Better Approach than
Carrier-Grade-NAT", Columbia University Computer Science Technical Reports,
CUCS-041-08, Department of Computer Science, Columbia University, (2011)

[63] A. Durand, R. Droms, J. Woodyatt, Y. Lee, "RFC 6333: Dual-stack lite broadband
deployments following IPv4 exhaustion", IETF, (2011)

[64] J. Rosenberg, R. Mahy, P. Matthews, D. Wing, "RFC 5389: Session traversal util-
ities for NAT (STUN)", IETF, (2008).

BIBLIOGRAPHY 82

[65] H. Khlifi, J. C. Gregoire, J. Phillips. "VoIP and NAT/firewalls: issues, traver-
sal techniques, and a real-world solution", IEEE Communications Magazine,44(7),
(2006)

[66] M. Petit-Huguenin, S. Nandakumar, G. Salgueiro, P. Jones. "RFC 7065: Traversal
Using Relays around NAT (TURN) Uniform Resource Identifiers", IETF, (2013)

[67] J. Rosenberg. " RFC 5245: Interactive connectivity establishment (ICE): A proto-
col for network address translator (NAT) traversal for offer/answer protocols",
IETF, 2010.

[68] C. C. Tseng, C. L. Lin, L. H. Yen, J. Y. Liu, C. Y. Ho. "Can: A context-aware NAT
traversal scheme", Journal of network and computer applications, 36(4), (2013)

[69] B. Ford, P. Srisuresh, D. Kegel. " Peer-to-Peer Communication Across Network
Address Translators". In USENIX Annual Technical Conference, General Track,
(2005)

[70] M. Handley. "RFC 3261: Session Initiation Protocol (SIP)", IETF, (2002)

[71] R. Cuevas, A´. Cuevas, A. Cabellos-Aparicio, L. Jakab, C. Guerrero. "A collab-
orative P2P scheme for NAT Traversal Server discovery based on topological
information", Computer Networks,54(12), (2010)

[72] A Muller, A. Klenk, G. Carle. "ANTS-a framework for knowledge based NAT
traversal". In IEEE Global Telecommunications Conference 2009, GLOBECOMM,
(2009)

[73] S. Guha, Y. Takeda, P. Francis. "NUTSS: A SIP-based approach to UDP and TCP
network connectivity". In Proceedings of the ACM SIGCOMM workshop on Future
directions in network architecture, ACM, 2004

[74] R. P. Swale, P. A. Mart, P. Sijben, S. Brim, M. Shore. "RFC 3304: Middlebox
communications (MIDCOM) protocol requirements", (2002)

[75] J. L. Eppinger. "TCP connections for P2P apps: A software approach to solving
the NAT problem", Technical Report CMUISRI-05-104, Carnegie Mellon Univer-
sity, (2005)

[76] Y. C. Chen, W. K. Jia. "Challenge and solutions of NAT traversal for ubiqui-
tous and pervasive applications on the Internet", Journal of Systems and Software
82(10), (2009).

[77] A. Biggadike, D. Ferullo, G. Wilson, A. Perrig. "NATBLASTER: Establishing
TCP connections between hosts behind NATs", In ACM SIGCOMM Asia Work-
shop 2005 (Vol. 5), (2005).

[78] Oh, S. and Jang, J., 2017. A scheme to smooth aggregated traffic from sensors
with periodic reports. Sensors, 17(3), p.503.

BIBLIOGRAPHY 83

[79] Gharbieh, M., ElSawy, H., Bader, A., Alouini, M.S. Tractable stochastic geom-
etry model for IoT access in LTE networks. In Proceedings of the IEEE Globecom
2016, Washington, DC, USA, 4–8 December 2016.

[80] Theodoridis, E., Mylonas, G., Chatzigiannakis, I. Developing an IoT Smart City
framework. In Proceedings of the International Conference on Information, Intelli-
gence, Systems and Applications, Piraeus, Greece, 10–12 July 2013; pp. 1–6.

[81] Sundmaeker, H., Guillemin, P., Friess, P., Woelfflé, S. Vision and Challenges for
Realising the Internet of Things. European Commision: Luxembourg, 2010.

[82] Zaslavsky, A., Perera, C., Georgakopoulos, D. Sensing as a service and big data.
In Proceedings of the International Conference on Advances in Cloud Computing, Ban-
galore, India, 4–6 July 2012; pp. 21–29.

[83] Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M. Internet of Things
for Smart Cities. IEEE Internet Of Things Journal. 2014, 1, 22–32.

[84] Jin, J., Gubbi, J., Marusic, S., Palaniswami, M. An Information Framework for
Creating a Smart City through Internet of Things. IEEE Internet Of Things Jour-
nal. 2014, 1, 112–121.

[85] Duffield, N., Grossglauser, M. Trajectory sampling for direct traffic observation.
IEEE/ACM Trans. Netw. 2001, 9, 280–292.

[86] Georgiadis, L., Guerin, R., Peris, V., Sivarajan, K. Efficient network QoS provi-
sioning based on per node traffic shaping. In Proceedings of the IEEE INFOCOM
‘96 Conference on Computer Communications 1996, San Francisco, CA, USA, 24–28
March 1996; pp. 481–501.

[87] Comparing Traffic Policing and Traffic Shaping for Bandwidth Limiting.
Available online: http://www.cisco. com/c/en/us/support/docs/quality-of-
service-qos/qos-policing/19645-policevsshape.html.

[88] Piri, E., Pinola, J. Performance of LTE uplink for IoT backhaul. In Proceedings
of the 13th IEEE Annual Consumer Communications Networking Conference, Las
Vegas, NV, USA, 9–12 January 2016; pp. 6–11

[89] Francois, J., Cholez, T., Engel, T. CCN traffic optimization for IoT. In Proceedings
of the 2013 Fourth International Conference on the Network of the Future, Pohang,
Korea, 23–25 October 2013; pp. 1–5.

[90] Traffic Shaping. Available online:
http://www.computerhope.com/jargon/t/traffic-shaping.htm

[91] Marcon, M.; Dischinger, M.; Gummadi, K.P.; Vahdat, A. The local and global
effects of traffic shaping in the internet. In Proceedings of the 2011 3rd International
Conference on Communication Systems and Networks, Jammu, India, 3–5 June 2011;
pp. 1–10.

BIBLIOGRAPHY 84

[92] Comcast: Description of Planned Network Management Practices. Avail-
able online: http://downloads.comcast.net/docs/Attachment_B_Future_

Practices.pdf

[93] Traffic Policing. Available online:http://www.cisco.com/c/en/us/td/docs/
ios/qos/configuration/guide/15_1/qos_15_1_book/traffic_policing.pdf

[94] Gu, Z., Shin, K. Algorithms for effective variable bit rate traffic smoothing. In
Proceedings of the 2003 IEEE International Conference on Performance, Computing,
and Communications, Phoenix, Arizona, 9–11 April 2003; pp. 387–394.

[95] Ziermann, T.; Teich, J.; Salcic, Z. DynOAA—Dynamic offset adaptation algo-
rithm for improving response times of CAN systems. In Proceedings of the 2011
Design, Automation & Test. in Europe, Grenoble, France, 14–18 March 2011; pp.
1–4.

[96] Grenier, M., Havet, L., Navet, N. Pushing the limits of CAN-scheduling frames
with offsets provides a major performance boost. In Proceedings of the 4th Eu-
ropean Congress on Embedded Real Time Software, Toulouse, France, 29 January–1
February 2008.

[97] R. Rosen. "Linux kernel networking: Implementation and theory", Apress,
(2014).

[98] Bogdanoski, Mitko Shuminoski, Tomislav & Risteski, Aleksandar. (2013). Anal-
ysis of the SYN flood DoS attack. International Journal of Computer Network and
Information Security, 5. 1-11. 10.5815/ijcnis.2013.08.01.

http://downloads.comcast.net/docs/Attachment_B_Future_Practices.pdf
http://downloads.comcast.net/docs/Attachment_B_Future_Practices.pdf
 http://www.cisco.com/c/en/us/td/docs/ios/qos/configuration/guide/15_1/qos_15_1_book/traffic_policing.pdf
 http://www.cisco.com/c/en/us/td/docs/ios/qos/configuration/guide/15_1/qos_15_1_book/traffic_policing.pdf

	Declaration of Originality and Compliance of Academic Ethics
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Introduction
	Sensor-Cloud Infrastructure
	Architectural View of Sensor-Cloud
	Resource Host

	Advantages of Sensor-Cloud
	Applications of Sensor-Cloud
	Various Sensor-Cloud Platforms and software APIs
	Various Sensor-Cloud applications

	Motivation
	Objective
	Contribution
	Organization of the Thesis
	Summary of the chapter

	Literature Survey
	Various Network Address Translators traversal techniques
	Categories of NAT traversal techniques
	Various NAT traversal techniques

	Instantaneous traffic minimization in a Sensor-Cloud Infrastructure
	Summary of the chapter

	Energy Efficient Passive NAT Traversal through UDP
	Introduction
	Scheme Overview
	Identification
	Probing
	Convergence
	Alive

	Protocol Operation
	Handshake
	Handshake reply
	Probe
	Acknowledgement
	Reply
	Alive Request
	Alive Reply

	Results and Discussion
	Summary of the Chapter

	Sensors Scheduling for Aggregated Traffic Minimization
	Introduction
	Wireless IoT Sensor Network Model
	Application Scenario
	Problem Definition
	Problem Variation
	Consecutive execution of transactions
	Non-Consecutive execution of transactions

	Proposed Heuristics
	Heuristic solution for consecutive execution of transactions
	Description of Proposed Heuristic Algorithm
	Brief Overview of the algorithm -
	Comprehensive Description of the algorithm -

	Pseudo Code for the proposed algorithm
	Evaluation of the proposed algorithm

	Heuristic solution for non-consecutive execution of transactions
	Description of Proposed Heuristic Algorithm
	Brief Overview of the algorithm -
	Comprehensive Description of the algorithm -

	Pseudo Code for the proposed algorithm
	Evaluation of the proposed algorithm

	Results And Discussions
	Results in case of consecutive execution of transactions
	Results in case of non-consecutive execution of transactions

	Summary of the Chapter

	Concluding Remarks and Future Direction
	Overview
	Future Work

