
JADAVPUR UNIVERSITY

MASTER DEGREE THESIS

Efficient Storage Management for
Big Data in Healthcare Domain

A thesis submitted in fulfillment of the requirements for the degree of
Master of Technology in Distributed & Mobile Computing

in the

School of Mobile Computing And Communication

by

SWASTIK MUKHERJEE
University Roll Number: 001730501011

Examination Roll Number: M4DMC19014
Registration Number: 141108 of 2017-2018

Under the Guidance of

Dr. NANDINI MUKHERJEE
Professor, Department of Computer Science and Engineering

Faculty of Engineering and Technology
Jadavpur University

Kolkata-700032

2019

i

Declaration of Originality and Compliance
of Academic Ethics

I hereby declare that this thesis contains literature survey and original research work
by the undersigned candidate, i.e. me, as part of Master of Technology in Distributed
& Mobile Computing studies.

All information in this document have been obtained and presented in accor-
dance with academic rules and ethical conduct.

I also declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

Name : SWASTIK MUKHERJEE
Class Roll No. : 001730501011
Examination Roll No. : M4DMC19014
Registration No. : 141108 of 2017-2018
Thesis Title : Efficient Storage Management for

Big Data in Healthcare Domain

Signed:

Date:

To whom it may concern
This is to certify that the work in this thesis entitled “Efficient Storage Management
for Big Data in Healthcare Domain” has been satisfactorily completed by Swastik
Mukherjee, University Roll Number: 001730501011, Examination Roll Number:
M4DMC19014, Registration Number: 141108 of 2017-2018. It is a bona-fide piece
of work carried out under my supervision at Jadavpur University, Kolkata-700032,
for partial fulfillment of the requirements for the degree of Master of Technology in
Distributed & Mobile Computing from the School of Mobile Computing And Com-
munication, Jadavpur University for the academic session 2017-2019.

Dr. Nandini Mukherjee
Professor
Department of Computer Science & Engineering,
Jadavpur University
Kolkata-700032.

DIRECTOR
School of Mobile Computing
And Communication,
Jadavpur University
Kolkata-700032.

Prof. Pankaj Kumar Roy
Dean, Faculty of Interdisciplinary

Studies, Law and Management
Jadavpur University

Kolkata-700032.

Certificate of Approval
(Only in case the thesis is approved)

This is to certify that the thesis entitled “Efficient Storage Management
for Big Data in healthcare Domain” is a bona-fide record of work carried out
by Swastik Mukherjee, University Roll Number: 001730501011, Examination
Roll Number: M4DMC19014, Registration Number: 141108 of 2017-18, in
partial fulfilment of the requirements for the award of the degree of Master
of Technology in Distributed & Mobile Computing from the Department of
Computer Science and Engineering, Jadavpur University for the academic
session 2017-2019. It is understood that by this approval the undersigned do
not necessarily endorse or approve any statement made, opinion expressed
or conclusion drawn therein but approve the thesis only for the purpose for
which it has been submitted.

(Signature of the Examiner)
Date:

(Signature of the Examiner)
Date:

iv

Jadavpur University

Abstract
Faculty of Interdisciplinary Studies, Law and Management, Jadavpur

University
School Of Mobile Computing And Communication

Master of Technology in Distributed & Mobile Computing
Efficient Storage Management for Big Data in Healthcare Domain

by
SWASTIK MUKHERJEE

University Roll Number: 001730501011
Examination Roll Number: M4DMC19014
Registration Number: 141108 of 2017-18

The technological advancements in various sectors has led into generating
huge amount of data that can bring a great value to the business if this data is
managed properly. Healthcare is one of the most important sector where data
can revolutionize the conventional way of medication, decease detection and
emergency protocol following. Various treatment policies, prescription, pa-
tient history, patient family history, test report, reports from tracking devices
help the consultants to examine the progress of the patient’s health prop-
erly. However, conventional Electronic Health Record (EHR) systems are not
capable to handle this enormous amount of data. Besides, different format
of maintaining health data in different organizations restricts them from ex-
changing valuable information. An efficient storage and retrieval platform
for health data is thus very necessary to resolve this issues. Hadoop is one
of the most popular choice for distributed Big data processing and storage
with its distributed file system and MapReduce programming model. How-
ever, there exists some issues in Hadoop which is restricting it to use it’s full
potential for high performance computing. The blind partitioning of huge
dataset leads toward the random fragmentation and distribution of data in
hundreds or thousands of cluster nodes which creates a performance gap.
This thesis intends to carry out a study on issues and performance gap in
Hadoop for storing and handling Big data and further proposes the architec-
ture of efficient big data storage and retrieval platform in healthcare domain.
The proposed architecture is capable of handling vertical and horizontal fer-
mentation with guided MapReduce deployment.

v

Acknowledgements
On the submission of “Efficient Storage Management for Big Data in health-
care Domain”, I wish to express gratitude to the Department of Computer
Science & Engineering for sanctioning a thesis work under Jadavpur Univer-
sity under which this work has been completed.

I would like to convey my sincere gratitude to Dr. Nandini Mukherjee,
Professor, Department of Computer Science & Engineering, Jadavpur Uni-
versity for her valuable suggestions throughout the project duration. I am
really grateful to her for her constant support which helped me a lot to fully
involve myself in this project and develop new approaches in the field of Big
Data Engineering.

I would like to express my sincere, heartfelt gratitude to Himadri Sekhar
Roy, Ph.D Scholar, Department of Computer Science & Engineering, Jadavpur
University, Kolkata, for suggestions guidance and constant Support.

I would also wish to thank Prof. Punyasha Chatterjee, Director of the
School Of Mobile Computing Communication, Jadavpur University and
Prof. Pankaj Kumar Roy, Dean, Faculty of Interdisciplinary Studies, Law
and Management, Jadavpur University for providing me all the facilities and
for their support to the activities of this research.

Lastly I would like to thank all my teachers, classmates, guardians and
well wishers for encouraging and co-operating me throughout the develop-
ment of this project. I would like to especially thank my parents whose bless-
ings helped me to carry out my project in a dedicated way.

Regards,

SWASTIK MUKHERJEE

University Roll Number: 001730501011

Examination Roll Number: M4DMC19014

Registration Number: 141108 of 2017-18

School of Mobile Computing And Communication

Jadavpur University

Signed:

Date:

vi

vii

Contents

Declaration of Authorship i

Abstract iv

Acknowledgements v

1 Introduction 1
1.1 Introduction . 1
1.2 Motivation . 2
1.3 Objective . 3
1.4 Structure of The Thesis . 3

2 BIG DATA 4
2.1 Introduction . 4
2.2 Definition . 4
2.3 Characteristics of Big Data . 5
2.4 Solving big data problems . 6

2.4.1 Server . 6
2.4.1.1 Virtualization 6
2.4.1.2 Platform for managing data 6

2.4.2 Open sourcing . 6
2.5 Big data kindret technologies 7

2.5.1 NoSQL database . 7
2.5.2 Basic Paradigm of NoSQL 7

2.6 Column family based databases 8
2.7 Hadoop . 8
2.8 Spark . 9

3 Apache Hadoop 11
3.1 Introduction . 11
3.2 MapReduce . 12

3.2.1 Execution Overview . 12
3.3 HDFS . 14

viii

3.4 Namenode and Datanode . 15
3.5 File System Namespace . 16
3.6 File Fragmentation . 17
3.7 Replica Placement . 18

4 A study On Performance issues in Hadoop 20
4.1 Introduction . 20
4.2 Performance Issues . 20
4.3 A Study On Performance improvement in Hadoop 34

5 Proposed Architecture 35
5.1 Problem Definition . 35

5.1.1 Architectural Drawback 36
5.1.2 Restricted Portability . 36
5.1.3 Portability Assumption 36

5.2 Proposed Scheme Assumptions 37
5.2.1 Node Failure . 37
5.2.2 Read Many Intensive Application 38
5.2.3 Large Dataset . 38

5.2.3.1 Portability and Performance 38
5.3 Architectural Overview . 39

5.3.1 Client-Server Architecture 39
5.3.2 Server Node . 39
5.3.3 Client Node . 41
5.3.4 Horizontal Scalability 41
5.3.5 File System . 41
5.3.6 Big Data File Source . 42
5.3.7 File Fragmentation . 42

5.3.7.1 Parallel Processing 42
5.3.7.2 Reliability . 42
5.3.7.3 Bottleneck Avoidance 43
5.3.7.4 Efficiency . 43
5.3.7.5 Disjointedness 43
5.3.7.6 Completeness 43
5.3.7.7 Reconstruction 43

5.3.8 Locality of reference . 45
5.3.9 Replication . 45
5.3.10 Replica Placement . 46
5.3.11 Metadata and Indexing 47

ix

5.3.12 RESTful Communication 48
5.3.12.1 Uniform Interface 48

5.3.12.1.1 Resource-Based 48
5.3.12.1.2 Manipulation of Resources Through

Representations 48
5.3.12.1.3 Self-descriptive Messages 48
5.3.12.1.4 Hypermedia as the Engine of Appli-

cation State (HATEOAS) 49
5.3.12.2 Statelessness 49
5.3.12.3 Cacheable . 49
5.3.12.4 Client-Server 49
5.3.12.5 Layered System 49
5.3.12.6 Code On Demand 50

5.3.13 Metadata Disk Failure 50
5.3.14 Node Failure Detection 50
5.3.15 Node Failure Recovery 52
5.3.16 Data Loss Probability . 52

6 Implementation 54
6.1 Implementation of the framework 54
6.2 System Requirement . 54
6.3 Dashboard . 55
6.4 Node Health Administration 56
6.5 File Type . 56

6.5.1 CSV File . 56
6.5.2 TSV File . 57
6.5.3 TXT File . 57

6.6 File Fragmentation . 57

x

List of Figures

2.1 Column family based databases 8
2.2 Hadoop stack for managing big data 9
2.3 Lambda architecture of Apache spark 10

3.1 MapReduce working mechanism 12
3.2 HDFS architecture . 14
3.3 Namenode and Datanode overview 15

4.1 the time for processing to search details of the doctors 22
4.2 Node search performances . 23
4.3 time taken to search patient details 24
4.4 node search for time taken to search patient details 25
4.5 ECG report search . 26
4.6 ECG report node search . 27
4.7 Patient history search . 28
4.8 Patient history search in nodes 29
4.9 sensor observed data . 30
4.10 sensor observed data . 31
4.11 Treatment case history search 32
4.12 Treatment case history node search 33

5.1 Server-client in zone . 40
5.2 The concept of ZONE is depicted 47
5.3 Flowchart shows the node failure detection 51

6.1 The dashboard of the proposed architecture 55
6.2 The dashboard for Node health monitoring 56
6.3 The parital view of Iries.csv file 57

xi

List of Abbreviations

NoSQL Not Only SQL
SQL Structured Query Language
CAP Consistency Availability Partition Tolerance
BASE Basically, A vailable Soft state Eventual cnsistency
ACID Atomicity Consistency Durability Isolation
GFS Google File System
HDFS Hadoop Distributed file System
YARN Yet Another RDDResource Negotiator
RDD Resilient Distributed Dataset
RPC Remote Procedure Call
HDD Hard Disk Drive
RPC Remote Procedure Call
API Application Program Iterface

1

Chapter 1

Introduction

1.1 Introduction

Management of healthcare has become one of the most challenging sector
converging towards wide range of areas like patient report generation, pa-
tient monitoring, patient record accumulation, habits and personalized med-
ications, drug development, patient similarity prediction, patient history and
reports conservation. This extensive amount of actions produce enormous
amount of data which should be captured, cleaned, stored and processed.
Complex data analysis algorithms and predictive analysis tools must be used
for extracting right and real time information from this. This vast amount of
data includes medical imaging like ECG reports, scan images, other body
parameters for any disease, textual formats like prescription, blood and any
other test reports, consultants notes, insurance claims, previous health is-
sues, unstructured information from wearables and mobile phones special
apps, behavioural reports by tracking devices. It is very challenging to store
these vast amount and variety of data in conventional Electronic Healthcare
Record (EHR) systems [1] that too in a cost effective way. The sensory de-
vices and mobile phones being smart enough to capture data of patient on
the daily basis, various treatment protocols for excessive case of Diabetes or
heart failure or elder care are being possible by using Machine Learning tools
which need a huge amount of cleaned and trustworthy patient data. Anal-
ysis of these huge amount of data provides the potentiality of identifying
side effects of medicine, root cause of early infection, allergic reactions, re-
sponsibility of food and daily habits which further leads to the need of data
intensive applications.
In today’s era of advanced 5G technologies, sensory and smartphone devices
and social media platforms, massive amount of generated data is revolution-
izing every sector like business, marketing, healthcare, agriculture and ed-
ucation. This huge amount of data needs to be managed properly and cost

Chapter 1. Introduction 2

efficiently irrespective of their variety and volume. This scenario is triggering
to emerge many big data technology platforms to store and process accord-
ing to the business need. Hadoop, under Apache open sourcing umbrella,
has gained a massive popularity for its distributed architecture and horizon-
tal scalability with cost efficiency. The HDFS is the core component for effi-
cient storage of huge amount of data distributed across the cheap commodity
cluster nodes while MapReduce processes the chunks of data in parallel by
moving computation to data itself. This features of Hadoop makes it very dif-
ferent for processing big data comparing to other conventional technologies.
However, file fragmentation variety and key based partitioning of dataset are
not available in the hadoop as it does blind partitioning of dataset. Column
wise fragmentation or guided deployment of MapReduce is also an issue
that are not resolved in the hadoop. These problems are restricting Hadoop
to perform better based on the business need.

1.2 Motivation

The huge amount of data generated in the health sector are very essential
for patient care and accurate real time medication. However, the massive
amount of generated data are either unstructured or redundant or dropped
due to proper management or cleanliness of data. Data exchange in various
hospitals are also rare as different organization maintains different formats
that creates a great bottleneck for information exchange. Some studies find
column family based processing platforms performing better for some sce-
nario whereas some studies find clustered processing of data as better per-
forming tool while horizontal fragmentation of data has also become very rel-
evant for Hadoop.The study [3] shows performance issues in hadoop which
can degrade performance for healthcare data analysis. It has been also ob-
served that guided MapReduce deployment in Hadoop cluster is not sup-
ported as it does blind partitioning and distribution of big data fragmented
in smaller chunks leading towards the random distribution of data among
the hundred or thousands of Hadoop cluster nodes. Key-based file fragmen-
tation is also not supported by Hadoop framework that can improve cluster-
ization of data on the basis of business need. These scenario leads to need of
an efficient big data storage and retrieval platform resolving all these issues.

Chapter 1. Introduction 3

1.3 Objective

The main objective of the thesis is to propose a highly scalable distributed
health data storage and retrieval platform which is capable to store and pro-
cess enormous amount of big data. The thesis intends to propose the archi-
tecture to -

• Support key-based fragmentation of big data files.

• Enable guided MapReduce deployment for data analysis.

• Clustered storage of the data based on the feature selected by the end
user depending on the business need.

• Impose different use of replication factor without any data loss.

• Imply vertical and horizontal fragmentation features.

• Implement web based interactive user Interface to use Distributed plat-
form.

• Import data from external sources and storing them into user specified
cluster nodes.

1.4 Structure of The Thesis

The thesis is divided into seven chapters discussing the different aspects in
details as of below.

• Chapter 2 provides an in depth theoretical background on big data.

• Chapter 3 discusses the feature and architectural overview of Apache
Hadoop

• chapter 4 summarises a study on the performance issues observed in
Hadoop distributed framework.

• chapter 5 provides a brief overview on the proposed architecture.

• chapter 6 describes the tools and techniques used to implement the
framework.

• chapter 7 includes the discussion, limitations and future research direc-
tions for the proposed architecture.

4

Chapter 2

BIG DATA

2.1 Introduction

The rapid technological advancements in sensory technologies, Internet of
things, Artificial Intelligence, social media platforms, Internetworking and
many other alike fields are yielding gigantic amount of data every second,
every day. The communication platforms being more open to general people
and World Wide Web being the backbone of the same, the data intensivity
has increased so dramatically that the world is tending towards a new data
driven world where data is the new power. This huge amount of data, if
manipulated properly, can bring a great impact with statistical analysis and
mathematical tools which is already evident at the fields like business anal-
ysis, stock marketing, health care, gnomic research, astronomy, gov. sectors ,
agricultural industry and many other fields. To harness the merit from these
enormous amount of data, it needs to be captured, cleaned, stored and pro-
cessed to further analyze, share, transfer, query or visualize. However these
enormous amount of data is ubiquitously known as “Big Data” to generalize
the challenges associated with this.

2.2 Definition

Big Data usually refers to the data set with size beyond the ability of han-
dling by commonly used software tools that is they are difficult to capture,
manage, process and analyze the data within a tolerable elapsed time. An
American information technology research [2] and advisory firm updated its
definition as follows “Big Data is high volume, high velocity, high variety
information assets that requires new form of processing to enable enhance
decision making, insight discovers and process optimization”.

Chapter 2. BIG DATA 5

2.3 Characteristics of Big Data

The term ‘Big Data’ refers to the characteristics and challenges embedded in
harnessing the knowledge from it. It can be elaborated [5] as

• Volume – The continuous generation of data is growing exponentially
and becoming larger and larger. The accuracy of the data analytics or
analysis increases with the increase in the size of the data set. However,
these much amount of data should be cleaned, stored and processed ef-
ficiently. This is one of the major challenges of big data whose size is
converging towards petabytes to zettabytes or larger than that. It is
quite evident that this challenge of big data should be managed effi-
ciently to manipulate it properly.

• Velocity – The sudden rise in the sensory technologies, smart devices
and scaling advancements of various communication platforms have
been resulted in the generation of data at high rate. This data should
be captured properly so that the computation can take place on the fly
and the data can be manipulated in real time. But if the rate of data gen-
eration is beyond the capturing capability of the existing conventional
systems then it is called the problem of velocity for big data.

• Variety – The data being generated in different fields from different
source are of different kinds and of different shape i.e. format. The
generated data from various sources can be of structured, unstructured
or semi-structured. These generated data, irrespective of their forms or
variety, should be accumulated in the data pool efficiently to harness
the knowledge from it.

• Veracity – Veracity of data refers to the trustworthiness or the verifia-
bility of the same generated from a source. These is a major problem of
data gathering. As all of the business decision and logics depends on
the statistical analysis of dataset whose accuracy fully depends on the
quality of the data being gathered from various sources.

• Value – All the challenges embedded with big data are mainly focused
to solve and extract a great value for business which is solely depended
on the right methodologies to apply and implement accurately leading
towards more efficient business decisions.

Chapter 2. BIG DATA 6

2.4 Solving big data problems

The emergence of distributed systems, cloud technology and internet tech-
nology has made lot of alternatives and new technologies to rise for storing
and processing big data. Open sourcing of software, usage of cheap com-
modity hardware and advanced communication platforms has leaded to re-
volt various new techniques for handling, managing, storing and processing
big data. These techniques are discussed below.

2.4.1 Server

The continuous integration of cheap hardware technologies and rapid popu-
larity of open source GNU/Linux Os has made the availability and manage-
ment of servers very easy and cost effective. The amalgamation of servers
with different kinds of services and advancement in cheap network devices
create a flexibility for better management of Big data application.

2.4.1.1 Virtualization

The virtualization [6] of hardware and software with high degree of abstrac-
tion makes very flexible environment and performance enhancement for pro-
cessing big data. The degree of concurrency and full utilization of underlying
hardware technologies makes the concept of virtualization very effective for
processing big data.

2.4.1.2 Platform for managing data

The exponential growth of volume of big data sometimes causes very chal-
lenging situations for implicit managing and processing the same for real
time data intensive applications leading towards the need of explicit sched-
uler and job managing software modules for high performance. The schedul-
ing, managing and cleaning platforms are very suitable for automatic re-
source management and allocation.

2.4.2 Open sourcing

The open sourcing of various technologies like hadoop makes it very eas-
ier to develop and integrate modules suitable for case specific, data specific
or application specific scenario rather than implementing everything from

Chapter 2. BIG DATA 7

scratch. The flexibility of open source software also helps to allied with other
technologies to create efficient and cost effective platforms.

2.5 Big data kindret technologies

The advancement of technologies has emerged in various big data process-
ing platforms and frameworks. New type of databases are being highlighted
with optimal performances. The case specific or scenario based performance
of the application varies for which the work is being carried out to find out
the issues. The following subsections depict various big data allied technolo-
gies that has gained a great popularity over the years.

2.5.1 NoSQL database

Not only SQL is a paradigm of data management suitable for distributed
datasets which are very large in size. It is different from the techniques and
concepts used for the relational model that uses tabular approach. Although
the name NoSQL creates confusion of terminating SQL but it may or may not
support the SQL functionalities.

2.5.2 Basic Paradigm of NoSQL

As stated earlier, NoSQL databases donot prohibit the usage or advantages of
SQL. The NoSQL system which are designed to be completely non-relational
tends to avoid partial functionalities provided by the tabular structured query
language. NoSQL paradigm depicts three main principle of NoSQL [4]

• The Base Theorem Base model is totally diverse concept of ACID model.
The BASE model refers to the Basically Available, Soft state and Even-
tual Consistency which signifies in the high availability of data. Soft
state depicts the span or period of time when the system can be non
synchronous and at the last time data should be consistent.

• The CAP Theorem One of the famous concept referring to the theorem
of Brewer’s CAP theorem [16 himadri]. Consistency, availability and
tolerance of network partition. The main idea is not to satisfy all three
criteria of CAP at the same instance but to achieve at least two at any
instance of time. The tendency to orient a system on NoSQL paradigm
is CP, CA, or AP.

Chapter 2. BIG DATA 8

• The Eventual Consistency Theorem This is one of the consistency model
that is very popular for the paradigm of parallel programming. It par-
ticularly implies a sufficiently long period of time over which no changes
are sent, all updates can be expected to propagate eventually through
the system and all the replicas will be consistent.

2.6 Column family based databases

Column family based databases [7] are gaining popularity for storing the
unstructured data in the following column oriented model. The concept of
schema turns into the concept of key-space for the column family based stor-
age techniques where a column family holds one or more rows.

FIGURE 2.1: Column family based databases

Varying number of columns can be stored in each row in column family
based databases. Column stores are very efficient as it uses data compres-
sion techniques for space efficiency. The scalability of column family based
databases is very high and these databases perform great for aggregation
queries. The main feature of column family based databases is that they are
very fast to be loaded and processed.

2.7 Hadoop

Hadoop [8] under apache open source licence has gained a massive popu-
larity as it can process huge volume of data in parallel and store them in the
HDFS which is distributed over the cluster nodes made with cheap commod-
ity hardware.

It was developed with the concept of Google File System (GFS) [9] and
MapReduce [10] model is an added advantage with high degree of concur-
rency. The cheap commodity cluster nodes used in the HDFS is scalable to
hundreds or thousands of nodes with fault tolerance and cost efficiency. Lots

Chapter 2. BIG DATA 9

FIGURE 2.2: Hadoop stack for managing big data

of work have been carried out to improve the performance of hadoop. Many
software facilities of databases and other utilities are being added. Yet An-
other resource Negotiator (YARN) [11] is a resource manager added with
hadoop that makes it more reliable, fast and fault tolerant.

2.8 Spark

Apache spark is an open source distributed cluster computing framework
that supports both the real time and historical data analysis. It relies on the
Resilient Distributed Dataset (RDD) [12] which is nothing but a read-only
multiset of distributed data items accumulated by cheap commodity cluster
nodes.

Chapter 2. BIG DATA 10

FIGURE 2.3: Lambda architecture of Apache spark

The concept of RDD facilitates to overcome the limitations and restric-
tions found in MapReduce paradigm. It also supports many machine learn-
ing libraries and GraphX [13], the graph processing library.

11

Chapter 3

Apache Hadoop

3.1 Introduction

The distributed data processing and storage is a prior choice for capturing,
storing, managing and analysing huge amount of data which also provides
reliability, recovery, file management, parallel processing with consistency.
The main feature of distributed systems is scalability. In the distributed data
processing platform horizontal scaling adds an added advantage of affixing
any number of nodes at will. These advantages helps to remove the shortage
of space much needed for big data and also adds more number of compu-
tations with parallel processing and high throughput. Vertical scaling refers
to adding more power to existing computing machines which somehow in-
creases cost making the application more expensive. However, horizontal
scaling gives the flexibility to increase the number of nodes depending on
the need of application requirement or business needs. Thus horizontal scal-
ing removes the shortage of space required to store and process data at lower
cost and little maintenance complexity.

Distributed Big data processing frameworks should have the capability
to store the data and read or write it based on the application scenarios. Data
management, data cleaning, data read or write, data integration, data anal-
ysis or predictive analysis is taken place very frequently for business case
study. These further leads to the need of a file system that is efficient enough
to allow read-write operations on the data distributed over many nodes with
the capability of parallel processing. These requirements led google to form a
distributed file system named as Google File System (GFS) that allows user to
use cheap commodity hardwares to store big data which further led to form
google Big table based on the concept of cloud computing. Yahoo on the
other hand, introduced HDFS based on the ideology of GFS and got instant
attention of big data engineers and researchers as well.

Chapter 3. Apache Hadoop 12

3.2 MapReduce

MapReduce refers to the programming model working on the [Key,Value]
pairs, mainly implemented aiming to process and hatch large data sets. The
MapReduce model works on the basis of map function and reduce function.
Key-Value pairs, regulated by the user, are processed by the map function to
further generate intermediate Key-Value pairs. The intermediate Key-Value
pairs are further fed to reduce function for merging all the values for each
key. Parallel execution in distributed cluster nodes requires communication

FIGURE 3.1: MapReduce working mechanism

between machines, splitting of input data, scheduling the program execu-
tion among nodes, data failure or machine failure recovery, synchronization
among all the nodes and consistency among read-write operations for every
node. All these challenges are handled automatically in the MapReduce pro-
gramming model to increase the transparency and required to have a little
or no experience of distributed systems for using or manipulating the same.
These features of MapReduce model bring a great flexibility to process ter-
abytes of data. It is also scalable to thousands of commodity cluster nodes
working in parallel and producing high throughput for enormous chunk of
data.

3.2.1 Execution Overview

The input data gets automatically splitted into a set of N parts for the invoca-
tion of map function among all the distributed nodes. Multiple splits offers
the ideal environment for processing partitioned inputs in parallel. The in-
termediate key space is partitioned into R pieces with the help of partitioning
function e.g. [h(key) Mod R] where h refers to a hash function. The partition-
ing of intermediate key is aimed to invoke the reduce function. The number

Chapter 3. Apache Hadoop 13

of partitioning function and partitions are regulated by the user. The calling
of MapReduce function generates sequence of steps to flow the execution of
Map and Reduce function.

The input files, at first, splitted into N pieces by the MapReduce library
each of whose size differs generally 16 megabytes (MB) to 64 MB. However,
the size of the input splits are totally controlled by the users. The program
then starts copying itself to be executed among all the cluster nodes. Among
all the copies of the program one copy gets a special treatment for being the
server and the rest being the slave or clients assigned by the server. The
server selects the otiose clients for N map tasks and R reduce tasks to as-
sign the same. The map tasks and reduce tasks differ in the responsibilities.
The client assigned with map tasks read the records of the input split fed to
it for parsing the Key-Value pair and passes each pair to user defined map
functions while the intermediate Key-Value pairs are buffered in the mem-
ory. This buffered data are partitioned into R parts and being written into the
disks periodically. The location of these written pairs are accumulated only
to be forwarded to the server which in turns sends the same to reduce clients.
Being proclaimed by the server about the addresses of partitioned data, the
reduce client uses Remote Procedure Call (RPC) to read the buffered data.
All the intermediate data are then gets sorted by the intermediate keys in a
way that all the occurences of the same type of key are batched together. The
type of sorting i.e. external sorts or internal sorts solely depends on the size
of the intermediate data. If the size of the intermediate data is too large then
the external sorting technique is used extensively. The sorted intermediate
data are then iterated over by the reduce client. The key is passed depend-
ing on the encounter with unique intermediate key.The output of the Reduce
function is attached to a final output file for this reduce partition. The server
wakes up just after the completion of all the map and reduce tasks and The
user program call of MapReduce returns back to the user code. The success-
ful execution of MapReduce results in generating R number of output files
which further may be treated as input file of another MapReduce functions.

For each map and reduce tasks the state of each task i.e. idle, in-progress
or completed is tracked in server data structure. The location of interme-
diate file regions are converged from map to reduce client via server. That
is why the size and location of the R is also stored in the server data struc-
ture.The MapReduce library is highly scalable from hundred to thousands
cluster nodes. So, it is obvious that it needs to be fault tolerant for more
reliable execution of whole task.

Chapter 3. Apache Hadoop 14

3.3 HDFS

The Hadoop Distributed File System (HDFS) [14] is one of the most popular
distributed file systems which runs on the cheap commodity cluster nodes
without replacing the core file system provided by the Operating System of
the same. HDFS is scalable from hundreds to thousands of cluster nodes
with the feature of high fault tolerance at lower cost and great reliability. The
high throughput feature of HDFS makes it suitable for hatching large dataset
of applications.

FIGURE 3.2: HDFS architecture

The hardware failure in HDFS is very normal as it is made of hundreds or
thousands of server machines connected with network switches. Each of the
server machines, being made of cheap commodity hardwares, holds part of
the HDFS. The huge number of components makes it regular with the non-
trivial probability of failing components or nodes any time. Thus discovery
of failure and fast and automatic recovery from failure is must for reliability
of the whole architecture. HDFS supported applications need streaming ac-
cess to the data set as they are not the general purpose applications running
on regular file systems. The HDFS is typically designed for batch processing
than interactive use. The main motto of the architecture is high throughput
data access. Being scaled to hundreds of nodes the HDFS is supposed to sup-
port large data sets ranging from gigabytes to exabytes and even larger than
that. High aggregated data bandwidth and hundreds of nodes is supported
in single cluster further supporting tens of millions of files for individual
instances. HDFS follows simple approach of Read-Many-Write-Once file ac-
cess policy to maintain the tenacity. A file once updated and closed need
not to be changed. This approach makes it easy to maintain the coherence

Chapter 3. Apache Hadoop 15

among multiple nodes accessing single file. The data being huge in size gets
distributed among hundred to thousands nodes and thus taking computa-
tion near data rather than bringing data near computation is cost effective in
terms of network communication, bandwidth utilization and high through-
put generation for the system. Portability is another factor that makes HDFS
so special as it is easily portable from one platform to another.

3.4 Namenode and Datanode

HDFS is totally based on the server-slave architecture with one server server
node named as Namenode which manages the file system namespace and
access control to files by clients. The rest of the individual cluster nodes are
termed as Datanodes. They together form a storage space HDFS running on
it. A file system namespace is revealed by the HDFS to store the user data
in the file system. The big data file is splitted into one or more fixed size
blocks and stored in the Datanodes available in the cluster. The file system
namespace operation like open, close, renaming of file and directories are
executed by the Namenode along with the mapping of blocks to Datanode.
However, the read and write operations are served by the Datanodes. Block
creation, replication and deletion is handled by the Datanodes but only on
the requests from the Namenode. The Datanode and Namenodes are cheap

FIGURE 3.3: Namenode and Datanode overview

commodity hardware machines with GNU/Linux OS running on it. The
builtin language supported by the HDFS is java which is highly portable and
can be extended to any platforms. Every task is regulated from Namenode
which in general configured on more reliable machines. No two Datanodes

Chapter 3. Apache Hadoop 16

communicate with each other to avoid network complexity and architectural
bottlenecks.

3.5 File System Namespace

HDFS traditionally supports hierarchical order of file organization. The ap-
plication or users can create directories and store files inside these directories.
The file system namespace hierarchy is same as most of the other existing file
systems. The files can be created, read, renamed and moved from one direc-
tory to another.HDFS does not support hard links or soft links. However, the
HDFS architecture does not repel implementing these features. The total in-
formation of file system is maintained by the Namenode which consistently
keep tracks of the changes taken place on any instance of time. Even, the
number of copies of a particular file is kept in list for failure recovery. The
number of copies of file is terms as replication factor. The main advantage of
HDFS is that it doesn’t replace the core operating system running on top of
the commodity clusters and each and every node of the cluster holds a part of
the each part of HDFS. Though the HDFS runs on the unreliable cheap hard-
wares it is highly available, consistent and reliable to fetch data any number
of time. Beside the horizontal scaling factor of HDFS also brings the flexibil-
ity to add any number of node to the cluster without affecting the capability
of HDFS. The application using HDFS can accumulate data by generating a
new file and appending or writing back the data into the newly created file.
The bytes that are written to the file can’t be altered or removed. The upda-
tion of the file is allowed only after reopening the file and appending or delet-
ing the bytes and closing it. This helps to achieve the consistency of HDFS.
HDFS follows the approach of ‘Single Writer, Multiple Reader’ (SWMR) ap-
proach.

A fixed time lease for the opened file by the HDFS client is generated.
During the lease time, the file gets locked for others client leading towards
the consistent change in the file. If the client which has already been granted
with the lease required to extend the same then it has to send a heartbeat
signal to the namenode and renew the lease period of updating the file. The
lease period is strictly bounded with soft limit or hard limit. The client that
is granted the lease of a file starts updating it with write operation until the
lease has been expired. If the soft limit of lease expires and the lease granted
client somehow fails to close the file, the Namenode waits for the hard time
limit for response of that client after which it is assumed that the client has

Chapter 3. Apache Hadoop 17

exempted from updating the file. The Namenode then automatically revokes
the lease and close that file itself on behalf of exempted client. Meanwhile
any other client may preempt the lease period of that file. HDFS doesn’t
guarantee of making the data visible to the reader till the write operation to
that particular file is finished and the file has been closed.

The bytes written by the client are first buffered in the temporary storage
only to be pushed in the pipeline formed by the Datanodes when the buffer
size gets filled. The buffered data are pushed into the pipeline as a form of
packet of bytes. Every packet sent, is supposed to get the acknowledgement
after which the next packet is dispatched.

3.6 File Fragmentation

In general the dataset in big data environment has a huge size ranging from
gigabyte to exabyte and even more than that. It is also evident that this much
amount of data cannot not be accommodated in individual Datanodes lead-
ing towards the need of accumulation of many Datanodes forming a cluster
and the big data file is fragmented into fixed size chunks. This fixed size
chunks are called blocks. Though the size of the chunks can be controlled by
the user, it generally varies from 64 to 128 MB. Size of all the blocks kept same
except for the last block. The smaller size of block increases the number of
file fragments which further increases complexity for data locality and data
fetching capacity. The larger size of chunks results in the more page replace-
ment and forms complexity in management. All the fragmented chunks or
blocks of the big data file is distributed among the cluster node which further
gets stored in the Hard Disk Drive (HDD) or secondary memories of Datan-
odes as a form of file. Generally the conventional secondary data storage
formats are divided into tracks and sectors. The intersection point of every
track and sector is called a block whose general size is 512 byte. All the blocks
of HDD is byte addressable by the file system provided by the underlying OS
of Datanodes. The HDFS blocks are much bigger than that of underlying OS,
though a block of HDFS is actually combination of multiple blocks of OS
at the lower level of storage. Given a source of big data file Hadoop starts
buffering the records of the file till it reaches to the specified size of say 64
or 128 MB ad then it sends the buffered data to a datanode available in the
cluster as a form of packet and store it there.

Chapter 3. Apache Hadoop 18

Failure recovery is must for HDFS as any Datanode can fail at any point
of time. Thus multiple copies of same block of data is kept in various Datan-
odes. The number of copies of a block can be regulated by the user. However
3 copies are kept in general for automatic and quick failure recovery. The
Namenode is mainly responsible for taking decision about replication main-
tenance and failure recovery. That is why the Namenode sends Blockreport
and Heartbeat signal periodically. The Heartbeat signal from a datanode sig-
nifies that the Datanode is alive. If for certain period of time the Heartbeat
signal is not received that means the Datanode has died. Blockreport from a
Datanode signifies the list of all the blocks on that particular Datanode.

3.7 Replica Placement

The reliability and performance of HDFS totally depends on the placement
of the replicas among the Datanodes as it signifies the fault tolerance. Op-
timality in the placement of replica needs lots of attention and experiments
as it can make the system lot more reliable than usual.It also increases the
bandwidth utilization and data availability.

The HDFS being an accumulation of hundred or thousands of Datanodes,
the communication configuration is done via switches. The nodes under one
switch is called as rack. One node of one rack is local to another node in the
same rack. The network bandwidth inside one rack is higher than outside
of that rack. The communication between two nodes of different rack passes
by the switches. Every Datanode starts determining its rack number during
their the start up time with the help of HDFS API to register with the rack
id in Namenode list. The very simplistic approach is to place the replicas
in unique racks so that failing of a network switch can easily recover from
failure by using data of another rack. However it increases the cost of writes
as every updation of any blocks must be reflected in others copies of the same
blocks.

To improve the write cost of data blocks with the replication factor three,
one copy is placed on one Datanode and another copy is placed on another
node of the same rack while the third copy is placed on a different node
of different rack. The probability of node failure is much higher than that
of rack failure. Fetching of copies from a local rack is fast as the networks
bandwidth in the same rack is higher. Selection of replica is done based on
the nearest distant node from the reader. If the reader requests to read a
block, the nearest copy of that block is served.

Chapter 3. Apache Hadoop 19

A metadata of all the blocks and read-write updates is kept in the name
node. The standard TCP/IP protocol is used for communication. Datanode
to Namenode and RPC call is used to invoke MapReduce functions to the
Datanodes.

20

Chapter 4

A study On Performance issues in
Hadoop

4.1 Introduction

Hadoop has become one of the most advanced and preferable choice for
processing and analyzing big data. However, it obviously has some bot-
tlenecks. These shortcoming became a great bottleneck for scalability and
performance. IBM highlighted that with this architecture can be scalable to
5000 node and 40000 jobs. However, YARN has been introduced to overcome
this problem which can scale to 32000 to 40000 nodes and 26 millions job.

In spite of having this problem there are other problems too that should
be resolved to improve Hadoop performance a lot. The big data file which
is fragmented into many parts starts a blind partitioning resulting in the ran-
dom distribution of blocks. The blind partitioning of data is only helpful for
faster fragmentation but causes to deploy the MapReduce functions in an un-
guided manner. This further leads to communication and computation over-
head leading towards the poor performance of Hadoop MapReduce model.
The fragmentation of big data does not happen according to the user choice
based on key. Besides, the replication is also not used intelligently. The repli-
cation factor is only used for recovery and fault tolerance.

4.2 Performance Issues

The main performance degradation of Hadoop is due to constant deficiency
of high disk performance I/O and bandwidth of network. The impact of bot-
tlenecks affected by disk environments is more obvious than that caused by
CPU or memory performance for applications which is data intensive. There

Chapter 4. A study On Performance issues in Hadoop 21

are multiple causes for this I/O performance problem bottleneck. The per-
formance gap between processors and I/O systems in a clusters is rapidly
amplifying. As an example, processor performance has seen an annual in-
crease of approximately 60% for the last two decades, while the overall per-
formance improvement of disks has been hovering around an annual growth
rate of 7% during the same period of time. Second, the heterogeneity of var-
ious resources in clusters makes the I/O bottleneck problem even more pro-
nounced.

HDFS always places the first block replica onto the writer node if the
node is in the cluster, and on a node with highest proximity otherwise. This
scheme makes the cluster very unbalanced in terms of data placement in
case the write node does not leverage MapReduce. All the first block replicas
would be placed on the writer node. Over a long course of run, this makes
the writer node a hotspot. Also, analyzing the MapReduce layer it can be
seen that, it tries to execute application copies on cluster nodes that have re-
quired data locally available. As it is generally the case that disk I/O is faster
than network I/O, moving computation is cheaper than moving data. Since
Hadoop has been into its use and prominence for quite a long time, hardware
components have evolved since the early stages of Hadoop. The general im-
plementation of HDFS does not take the gap in generation of hardware com-
ponents into account. Considering disk I/O, an application copy running
on a recent disk generation, like Solid State Disks or faster SATA, with twice
as much I/O speeds shall be able to transfer, approximately, twice as much
as data blocks on an older generation. If the gaps in hardware technologies
are given significant weightage, it would surely play an important role in the
overall performance of the cluster. If the idea of storing related data can be
extended till the hardware disk implementation on the underlying OS level
then the locality of reference would bring a great performance enhancement
for big data storage and retrieval.

The study [3] proposes a data model and executes some simple queries to
examine the performance of Hadoop for each query. The queries are given
below.

• Find all doctors names and their details with specialization string is
’cardiologist’.

• Find all information of patients like demographic info, religion, food
habit etc, with patient’s name ’xyz’;

• Find all ECG report of a particular patient with name ’x’;

Chapter 4. A study On Performance issues in Hadoop 22

• Find history of ’Diabetes’ of a particular patient with name ’x’;

• Find sensor observed data of a patient for one hour;

• Patient treatment case history with name ’B’;

Every query results in the formation of MapReduce codes to achieve the out-
come. The volume of the data flowing the proposed model varies from 8 lac
records to only 50 records with 1 to 16 commodity cluster nodes. Each ex-
perimentation was done 3 times and the average of the 3 execution time is
taken.

Query 1: Find all doctors names and their details with specialization
string is ’Cardiologist’.

FIGURE 4.1: the time for processing to search details of the doc-
tors

Chapter 4. A study On Performance issues in Hadoop 23

The doctor’s name and details with the string ‘Cardiologist’ is returned by
the query. The node wise performance graph is shown in following fugure.

The following graph shows the node performance with data volume re-
spect to time.

FIGURE 4.2: Node search performances

Chapter 4. A study On Performance issues in Hadoop 24

Query 2: Find all information of patients like demographic info, religion,
food habit etc, with patient’s name ’xyz’.

FIGURE 4.3: time taken to search patient details

The query returns the result with specified node search performance shown
in followingfig.

Chapter 4. A study On Performance issues in Hadoop 25

FIGURE 4.4: node search for time taken to search patient details

Chapter 4. A study On Performance issues in Hadoop 26

Query 3: Find all ECG report of a particular patient with name ’x’.

FIGURE 4.5: ECG report search

The above query extracts all the information regarding ECG report for a
particular patient

Chapter 4. A study On Performance issues in Hadoop 27

FIGURE 4.6: ECG report node search

Chapter 4. A study On Performance issues in Hadoop 28

Query 4: Find history of ’Diabetes’ of a particular patient with name ’x’.

FIGURE 4.7: Patient history search

The node search performances for hadoop is shown in below graph

Chapter 4. A study On Performance issues in Hadoop 29

FIGURE 4.8: Patient history search in nodes

Chapter 4. A study On Performance issues in Hadoop 30

Query 5: Find sensor observed data of a patient for one hour.

FIGURE 4.9: sensor observed data

the query results in observing data for patient. below graph shows the
node search performance.

Chapter 4. A study On Performance issues in Hadoop 31

FIGURE 4.10: sensor observed data

Chapter 4. A study On Performance issues in Hadoop 32

Query 6: Treatment case history of a patient with name ’B’.

FIGURE 4.11: Treatment case history search

the output is extracted and below graph shows the node search perfor-
mances

Chapter 4. A study On Performance issues in Hadoop 33

FIGURE 4.12: Treatment case history node search

The above figures the performance bottlenecks observed in Hadoop to
process the simple queries with the proposed data model.It can be easily no-
ticed from the plotted graphs, that the computation time increases when the
data volume grows gradually. But in case node count increases, for the small
volume of data, the computation time is increasing as it need more time to
map the data and reduce the data after computation. However when the
data volume grows in a rapid scale, the computation time increases gradu-
ally with data volume.

Chapter 4. A study On Performance issues in Hadoop 34

4.3 A Study On Performance improvement in Hadoop

The growing need of big data technologies in healthcare and other sector
drags lot of attention of researchers for carrying out the exploration for the
issues related to big data. The HadoopDB [15] is one of the most relevant
work where the advantages of hadoop is allied with that of the relational
databases by placing the analogous data in similar nodes with fault tolerance
and dynamic scheduling.

Various work has been done like in [16] [17] where a benchmark has been
tried to be set to overcome the performance gap between Parallel Databases
[18] and Hadoop where as Hadoop++ [19] has been proposed where “tro-
jan” file has been created. Hadoop++ doesn’t require any change in the core
hadoop architecture as it is not a dynamic approach. This is static approach
to rearrange the data which is provided by the user as input file.

Jiang et al. [23] led an exquisite benchmark of different parts of Hadoop’s
processing pipeline. It was noticed that (among others) indexing and map-
side “partition joins” can highly enhance performance of Hadoop. On the
contrary, in their extended work, they do not co-place partitioned data frag-
ments. [20] and [21] change the physical layout and replaces HDFS by full
fledged relational databases HadoopDB, whereas Hadoop++ invokes indexes
and co-partitiones data into raw data files directly.

Cheetah and Hive are two data warehousing solution alternatives for
Hadoop, and extend many ideas from parallel databases. But, they neither
supports co-placement and exploitation. GridBatch [22] is also an extended
work of Hadoop with various new operators and a new file type, which is
fragmented by a user-defined partitioning function. GridBatch enables ap-
plications to mark files that needs to be co-placed. The findings amalgamet
the partitioning and the colocation at the file system level.

In more advanced fragmenting features of parallel database systems [23],
such as TeraData [24], IBM DB2 [25], Aster Data [26], tables are co-partitioned,
and the query optimizer utilizes the fact to spawn optimal query execution
plans. This approach accommodate these ideas to the MapReduce paradigm,
while maintaining Hadoop’s flexibility as well as dynamicity.

However all the research either extends the work of Hadoop or proposes
a system that works statically. This thesis intends to propose a framework
that provides a platform for healthcare data analytics and storage platform.

35

Chapter 5

Proposed Architecture

5.1 Problem Definition

Hadoop has become one of the most advanced and preferable choice among
state of the art frameworks for processing and analyzing big data. However,
it obviously has some bottlenecks.

The main performance bottleneck [24] is due to unwavering lack of high
disk I/O and network bandwidth. The effect of bottlenecks caused by disk
environments is more evident than that caused by CPU or memory perfor-
mance for applications which is data intensive. There are multiple causes
for this I/O performance problem bottleneck. The performance gap between
processors and I/O systems in a clusters is rapidly amplifying. As an ex-
ample, processor performance has seen an annual increase of approximately
60% for the last two decades, while the overall performance improvement
of disks has been hovering around an annual growth rate of 7% during the
same period of time. Second, the heterogeneity of various resources in clus-
ters makes the I/O bottleneck problem [28] even more pronounced.

HDFS always places the first block replica onto the writer node if the
node is in the cluster, and on a node with highest proximity otherwise. This
scheme makes the cluster very unbalanced in terms of data placement in
case the write node does not leverage MapReduce. All the first block replicas
would be placed on the writer node. Over a long course of run, this makes
the writer node a hot spot. Also, analyzing the MapReduce layer it can be
seen that, it tries to execute application copies on cluster nodes that have re-
quired data locally available. As it is generally the case that disk I/O is faster
than network I/O, moving computation is cheaper than moving data. Since
Hadoop has been into its use and prominence for quite a long time, hardware
components have evolved since the early stages of Hadoop. The general im-
plementation of HDFS does not take the gap in generation of hardware com-
ponents into account. Considering disk I/O, an application copy running

Chapter 5. Proposed Architecture 36

on a recent disk generation, like Solid State Disks or faster SATA, with twice
as much I/O speeds shall be able to transfer, approximately, twice as much
as data blocks on an older generation. If the gaps in hardware technologies
are given significant weightage, it would surely play an important role in the
overall performance of the cluster. This thesis is intended to categorize the
shortcomings of Hadoop as of below.

5.1.1 Architectural Drawback

HDFS is not utilized to its full potential due to scheduling delays in the
Hadoop architecture that result in cluster nodes waiting for new tasks. In-
stead of using the disk in a streaming manner, the access pattern is peri-
odic. Further, even when tasks are available for computation, the HDFS client
code, particularly for file reads, serializes computation and I/O instead of de-
coupling and pipelining those operations. Data prefetching is not employed
to improve performance, even though the typical MapReduce streaming ac-
cess pattern is highly predictable.

5.1.2 Restricted Portability

Some performance-enhancing features in the native filesystem are not avail-
able in Java in a platform-independent manner. This includes options such as
bypassing the filesystem page cache and transferring data directly from disk
into user buffers. As such, the HDFS implementation runs less efficiently and
has higher processor usage than would otherwise be necessary.

5.1.3 Portability Assumption

HDFS is strictly portable, but its performance is highly dependent on the
behavior of underlying software layers, specifically the OS I/O scheduler
and native file system allocation algorithm.

These problems basically rely on the architectural point of view from ma-
chine but there are also certain issues with hadoop that prematurely hap-
pens with the design of workflow and algorithmic implementation. The
less number of nodes used for the distribution of fragments over the clus-
ter nodes signifies the lesser degree of concurrency while greater number of
nodes increases the degree of concurrency but creates more JobTracker-to-
TaskTracker [29] messages creating extra overhead in MRV1.

Chapter 5. Proposed Architecture 37

These shortcoming became a great bottleneck for scalability and perfor-
mance. IBM highlighted [30] that with this architecture can be scalable to
5000 node and 40000 jobs. However, YARN has been introduced to over-
come this problem which can scale to 32000 to 40000 nodes and 26 millions
job.

In spite of having this problem there are other problems too that should
be resolved to improve Hadoop performance a lot. The big data file which
is fragmented into many parts follow a blind partitioning resulting in the
random distribution of blocks. The blind partitioning of data is only help-
ful for faster fragmentation but causes to deploy the MapReduce functions
in an unguided manner. This further leads to communication and computa-
tion overhead leading towards the poor performance of Hadoop MapReduce
model. The fragmentation of big data does not allow the user choice based
on key. Besides, the replication is also not used intelligently. The replication
factor is only used for recovery and fault tolerance.

5.2 Proposed Scheme Assumptions

In this thesis an architectural framework is proposed to overcome the prob-
lem faced in the existing system as discussed in the earlier section. The pro-
posed architecture aims to store big data efficiently and make the analytical
query faster. The proposed architecture tries to solve the problem of perfor-
mance bottleneck and architectural drawbacks thoroughly examined in the
existing Hadoop framework. However, the proposed architectural frame-
work is based on some assumptions which is discussed below.

5.2.1 Node Failure

The proposed framework is a collection of cheap commodity cluster nodes
which is scalable to hundreds and thousands of nodes. Every node in the
cluster is a server machine that serves the requests of clients or end user. All
the node are connected via LAN cables and network switches. So it is obvi-
ous that any node of the cluster can be failed at any instance of time. Either
the network switch or hardware component of the node can face problems.
Node failure can be very dangerous in terms of reliability and data availabil-
ity. It has been investigated that the failure can be of two types. One type
is Network failure and the other is individual node failure. It has been also
observed that the probability of network failure is very less than that of the

Chapter 5. Proposed Architecture 38

node failure. Network failure may lead to multiple node failure which is fatal
for the system however not resulting in the data loss.The main aim of using
the cheap commodity cluster node is to reduce the cost. High performance
in reduced cost with higher scalability makes the application more prefer-
able and effective one. As the failure in the system is evident, the proposed
architecture must identify and cope up with these type of failures to make
the system more efficient and reliable one.

5.2.2 Read Many Intensive Application

The proposed architecture is very much suitable for the data storage space
for healthcare data. The healthcare data are generally historical data which
is stored for predictive analytics and disease similarity. Thus the proposed
architecture is very much appropriate for more read operation and less write
operation. The proposed architectures also does not fit into the scenario
where real time data is processed with in-memory computation is done than
historical batch data analysis.

5.2.3 Large Dataset

The exponential growth of wearable devices, advanced patient monitoring
systems and sensory technologies led to generate gigantic amount of health
data which needs to be stored, managed and processed. The proposed archi-
tecture assumes to have larger size of data and very capable to handle that
amount of data. However smaller dataset is not suitable for the proposed ar-
chitecture as it causes unnecessary communication and data fragmentation
leading towards the poor performance.

5.2.3.1 Portability and Performance

Portability refers to the independence of the platform and support of the het-
erogeneity. The proposed architecture is easily portable irrespective of the
platform. Simple consistency model of the proposed architecture is another
feature making the read-write operation consistent enough without affecting
the degree of concurrency. The proposed architecture also concentrates on
moving the computation to data for cost effectiveness and high performance.

Chapter 5. Proposed Architecture 39

5.3 Architectural Overview

The above mentioned assumptions are general cases for high scale high per-
formance distributed processing. The total view, components and restric-
tions are discussed in the following sections.

5.3.1 Client-Server Architecture

The proposed framework maintains a server/slave architecture as it gives
the flexibility of high scalability of adding or removing nodes. The cluster
being the combination of many server nodes, one node is assigned with spe-
cial responsibility being the server Node and all other nodes are client nodes
which follow the instruction comes from the server node. No direct commu-
nication is done between the client nodes but every client node can directly
communicate to the server node.

5.3.2 Server Node

In general the server node is conceptualized as a high available server with
high performance computing power which keeps the client number of nodes
in the cluster, node health information, data block information, node status
information, file access allowance of a client. This server node is the sin-
gle point of entry and manipulation point for the cluster and deploying the
MapReduce.

• The server nodes keep all the information about client node like the IP
addresses of each node, number of client nodes in the cluster, available
spaces in the cluster secondary disks, blocks present in the disk.

• It also maintains the metadata of all the blocks stored in the cluster
along with the client identity, block number and filename for that block.

• The server node also maintains the information regarding the size of
the files and blocks, location of the blocks stored in a particular cluster,
block sizes, block numbers, file hierarchy and file permissions for the
client.

• There are two files associated with the metadata. These are FState which
keeps the complete state of the file and blocks with the name, size and
directory structure since the start of the server node and UpdateLog
that keeps tracks the modified blocks and timing of the modification.

Chapter 5. Proposed Architecture 40

• The server node keeps track of every change in the file system from
renaming to deleting. The server node UpdateLog is updated instantly
after every modification operation such as delete, write or rename of
the file along with the timestamp.

• The server node also takes care of the replication factor which will be
later elaborated in the replication section.

• The server node always keeps all the information in the RAM for in-
stant access and high availability.

• The server node also receives the heartbeat and blockstate report to
keep track of the client node healths and state of the blocks

As the server node is the single entry point with lots of responsibilities associ-
ated with it, there exists single point of failure leading towards the whole sys-
tem breakdown.To overcome this single point of failure one secondary node
is kept additionally which saves the states of all the information gathered by
the server node periodically. The secondary server node keeps itself in sleep
mode except the periodic state save operations of the server node. When the
server node fails, the secondary node takes the charges of the server node
with the manual startup.

FIGURE 5.1: Server-client in zone

The concept of Zone has been introduced which refers to the set of client
nodes that stores all the fragments based on one key whereas the rack refers
to the set of nodes connected under one switch which is depicted in the above
figure.

Chapter 5. Proposed Architecture 41

5.3.3 Client Node

The client nodes are the main source of storage and computation pool that
carry out the storage of all the fragments and their respective replications
and the computation also migrates to the client nodes for analytical queries.
Client nodes are also the server nodes but their hardware configuration is
similar to cheap commodity machines. One client node cannot communicate
with other client node directly. The client nodes also have some responsibili-
ties as of

• A client node sends heartbeat messages to the server node to inform
that it is alive.

• A client node also performs low level file read and write operations.

• It also receives request of MapReduce function via RPC and pushes
back the output of the analytics to the data pipeline.

5.3.4 Horizontal Scalability

The client node is collection of cheap commodity hardware nodes. Vertical
scalability refers to the integration of hardware parts for a single node. Verti-
cal scalability is not really a optimal solution in terms of cost effectiveness. In
fact vertical scalability lessens the degree of concurrency where as horizon-
tal scalability [31] refers to the addition of nodes in the cluster. Horizontal
scalability is very cost effective and can fully scale to hundreds or thousands
of nodes with transparency. The proposed architecture prefers to scale hori-
zontally i.e. adding any number of node to the cluster forming a distributed
storage pool.

5.3.5 File System

The file system of the proposed architecture is hierarchical and read write
operations are supported like other file systems. Directory inside directory
can be created by the user in hierarchical manner. Moving, renaming and
removing the files is also supported.

The updation or any change in any file stored in the client node are in-
stantly reported to the server node with the timestamp which is in turn recorded
in the UpdateLog and FState json file by the server node.

The file system of the proposed architecture never replaces the underlying
architecture provided by the OS. The core file system remains intact with its

Chapter 5. Proposed Architecture 42

own set of operations. The file system of the proposed architecture is a layer
which filters information and passes to the underlying OS thus increasing
the ease of maintenance and portability to the other platforms.

5.3.6 Big Data File Source

The enormous chunk of big data files are generally imported from cloud stor-
age and also it can be gathered by web scraping and from any other sources.
However, the proposed architecture seeks for URL of the big data to fetch the
data and distribute among nodes.

5.3.7 File Fragmentation

Fragmentation of big data refers to partitioning of big data in subsets to dis-
tribute them among the Datanodes of cluster. It provides a great advantage
of no single point of failure and higher degree of parallel programming. Dis-
tributed processing enhances the analytical performance as the degree of
parallel processing increases. Horizontal scalability is also effective as rea-
son that storage pool can be increased at any point of time to accommodate
any size of the data. However, efficient scheme of fragmentation and opti-
mization in fragment placing techniques are required to improve the system
efficiency drastically.

The huge amount of dataset can’t be stored in one Datanode. Even if it
is possible to store that much amount of data in just one Datanode parallel
processing becomes quite impossible resulting in the poor performance for
query and analytics. So the importance of fragmenting big data in smaller
subsets is explained in the following section.

5.3.7.1 Parallel Processing

The more number of nodes signify the more number of fragments. Distri-
bution of fragments can easily avoid single point of failure and maintaining
replication can be easily utilized for parallel processing. The degree of con-
currency generates high throughput of the system.

5.3.7.2 Reliability

Distribution of fragments ensures that the whole dataset is spread over the
multiple nodes of the cluster so that failure of one node can’t result in the loss

Chapter 5. Proposed Architecture 43

of whole data. So fragmenting data removes the high probability of single
point of failure.

5.3.7.3 Bottleneck Avoidance

Application views are usually subsets of the relations. Therefore, the locality
of accesses of applications is not defined on entire relations but on their sub-
sets. Hence it is better to consider subsets of relations as distribution units.

5.3.7.4 Efficiency

Since in hadoop computation migrates to data fragmentation increases the
degree of concurrency of processing, query and optimizes the data at a rate
of high throughput.

These importance makes the process of fragmentation a much needed
step towards efficient big data storage and analytics platform. However,
fragmentation should follow certain criteria as of follows.

5.3.7.5 Disjointedness

The fragmentation technique should be efficient enough to partition the data
into non overlapping subsets. Non-overlapping subsets are ideal to maintain
the consistency for the write operation.

5.3.7.6 Completeness

The fragmentation algorithm must cover the whole dataset. Fragmentation
of partial dataset is misleading and may lead to poor incorrect performance.

5.3.7.7 Reconstruction

The fragmentation techniques must follow this criteria of reconstructing the
fragments into the whole dataset with intact form. This approach follows ac-
curacy and increases consistency of the system.

The fragmentation techniques must follow the above mentioned approaches
to avoid incorrectness of the system due to inefficient fragmentation.

The main problem of the existing system like Hadoop is that it performs
a blind partitioning of the big data file without leaving any option for the

Chapter 5. Proposed Architecture 44

end user resulting in blind MapReduce deployment and more communica-
tion overhead. The proposed framework supports a new approach of key
based vertical and horizontal fragmentation and key-less horizontal and ver-
tical fragmentation. Key based fragmentation is referred to the partitioning
of big data file based on the attributes in chunk sizes, decided by the end
user. By default the buffer size is of 128 MB but the user can decide the size
of the buffer based on the business need.

The end user gives input like buffer size, Big data file source (generally
URL), array of keys and client node ids in which the user intends to dis-
tribute the file fragments. The user fully interact with server node. The end
user and the client nodes don’t have the direct interaction. The server node
then start reading the record based on the key and create buffers for every
distinct occurrences of key in the record. The keys are chosen wisely by the
end user according to the business need and analytical need. The server node
creates buffer for every distinct occurrence of key and push the records into
the buffer till it reaches the size of buffer decided by the user otherwise the
buffer size remains 128 MB. when the buffer gets filled, it is pushed to that
client nodes which is selected by the end user.

The user can choose the big data file to be fragmented by the vertical way
or horizontal way. The user can choose as many number of attributes as keys,
based on which the file fragments should be clustered upon. If the user can
chose to fragment the file with blind partitioning, it is also supported by the
proposed architecture. The end user gets the full flexibility of choosing the
client nodes with their ids to decide which client node should store which
key based fragments. In this manner every fragment holds all of its records
based on the same key or attribute and further mapped to the desired client
node.

The known mapping of already sorted and clustered fragments are very
much helpful for guided deployment of analytical queries with less commu-
nication overhead.

Suppose for scenario of a health dataset of 5 city of a country with 5 key
attributes like patient_id, patient_name, city, disease and age is chosen to
be fragmented based on ‘city’ among 10 client nodes selected by the end
user then assuming an even occurrence of records for each city may lead

Chapter 5. Proposed Architecture 45

to accommodating 2 client nodes per city with the awareness of end user. So
for city based analytics or query the user need to deploy MapReduce function
in only two client nodes for a specific city. Besides the city, other attributes
can also be chosen but the sorting clusterization is depicted in Replication
section.

5.3.8 Locality of reference

The locality of reference is referred to the phenomenon in which same set of
memory is tend to be accessed by a program for a particular period of time.
In general the loops and subroutine programs tends to access the same mem-
ory location or the nearby address space to increase the cache efficiency. The
key based sorted clustering results in the same set of records with respect to
key for the selected client nodes. This further implies that MapReduce func-
tions deployed for the analytics based on the key tends to access the same
set of client nodes for a particular time period which is termed as ‘Locality of
Reference’ with respect to cluster node access.

5.3.9 Replication

The replication scheme for the proposed architecture is very different with
respect to other replication scheme of existing big data storage and process-
ing platform. In general the main purpose of the replication scheme is to
recover automatically and quickly from failure and data availability. Replica-
tion also helps to enhance the performance based on the selection algorithm
of a replica for a particular scenario. Replica placement scheme is thus very
important for performance enhancement and data failure recovery.

The number of replicas is termed as Replication Factor. The replication
factor of Hadoop and the proposed architecture is by default 3. The repli-
cation factor is configurable in Hadoop cluster. Exact copies of the block in
hadoop is created to make it fault tolerant.

The proposed architecture uses the replication in very different way. If the
number of keys chosen by the end user id less than 3 then the default repli-
cation factor is used by the proposed architecture. However, if the number of
keys chosen by the user is greater than or equal to 3 then the replication fac-
tor of the proposed system is set to be the number of keys. Every replication
of the block is not the exact image of the parent block but every replication
of block is a key based sorted clusterization fragment.

Chapter 5. Proposed Architecture 46

Suppose for a big data file that is fragmented in ‘N’ partitions based on
the Key K1, then again that file will be fragmented based on the key K2 in ‘M’
partitions where N ≥ M or N ≤ M. This will continue till Kn where n is the
number of key chosen based on which the big data file should be fragmented.

5.3.10 Replica Placement

Replica placement is very important for a distributed system to make it fault
tolerant. The client nodes connected in one network switch is defined to
be in the same ‘Rack’. That means every connection by a network switch
is termed as ‘Rack’. Various Rack awareness replica placement strategies
are proposed for the optimal performance of the analytical queries. How-
ever, all the replica placement strategies are based on the general scenario of
one replica being the exact image of the other replica. As the replica in the
proposed architecture are very different from the existing strategies, replica
placement is very important as well as challenging. The client nodes under
one network switch form a rack. Similarly a concept of ‘Zone’ is introduced
in the proposed scheme. A Zone is referred to the collection of client nodes
storing all the fragments of a big data file based on one key. So for a big data
file which is chosen to be fragmented based on the n number of keys will
have n Zones. No client node will hold the fragments based on two or more
keys. So no two Zones overlap in terms of storing key based fragments. Sup-
pose W is the set of all the client nodes in a cluster under one server node.
W1 is a the set of ids of all the client nodes containing all the fragments based
on some key K1. Similarly W2 is the set of ids all the client nodes containing
all the fragments based on some key K2 of this continues till the Wn being
the set of ids of all the client nodes containing all the fragments based on Kn.
According to the proposed scheme, the replicas should be placed in the zone
such that

W1 ∩W2 ∩ · · · · · ·Wn = φ (5.1)

The replica placement according to equation 5.1 helps in failure recovery
which is discussed in the failure and recovery section.

This scheme helps the user to choose multiple key based sorted clusteri-
zation of the records for big data file much needed for guided deployment of
MapReduce function resulting in the decrease of communication overhead
and performance improvement.

Chapter 5. Proposed Architecture 47

FIGURE 5.2: The concept of ZONE is depicted

5.3.11 Metadata and Indexing

The file size in the big data is expected to be greater than 1TB for which mul-
tiple key based fragments will be generated and distributed among the client
nodes. It is mandatory to maintain the metadata. In the proposed architec-
ture two level hierarchical metadata is proposed to maintain the mapping
information of fragments to node which is stored in server node efficiently.
One level of metadata is maintained in the server node which is kept in the
RAM for quick access of information. The metadata is a json file. Another
level of metadata is kept in the client nodes. The server node indexing only
keeps the information of document name, fragment ids and their correspond-
ing client node ids. The raw structure of the server metadata is

• DocumentName = < FileName.*>

• Key = < Distribution AttributeKey>

• Distribution = < KeyID>

• DistributionAttributeKey = < DocumentContent >

• ClusterID = < ClusterIdentifierIDs >

• ClusterIndexRef = < ClusterID + ClusterF ileName >

The tree like structure of metadata helps to identify the fragmentation
key and corresponding node ids. Individual client nodes also preserve the
metadata which stores the root file name, number block and sizes of the frag-
ments. The raw structure of the client node metadata is

Chapter 5. Proposed Architecture 48

• DocumentName = < ClusterIndexRef >

• Distribution = < blockID + ClusterID + KeyID + FragmentID + >

The conservation of the metadata helps an easy access to the file frag-
ments and their structure to guide the MapReduce function.

5.3.12 RESTful Communication

The proposed schemes follows the RESTful architecture [32]. REST stands
for Representational State Transfer protocol, an architecture for designing
loosely coupled application over HTTP. The requesting system is allowed to
access and manipulate the resources of web by using a set of predefined and
uniform rules. Our system being a client-server architecture strictly follows
the six constraints defined by the REST architecture explained in following
sections.

5.3.12.1 Uniform Interface

The proposed schemes follows the RESTful architecture. The requesting sys-
tem is allowed to access and manipulate the resources of web by using a
set of predefined and uniform rules. Our system being a client-server archi-
tecture strictly follows the six constraints defined by the REST architecture
explained below-

5.3.12.1.1 Resource-Based Individual resources are identified in requests.
For example API/users requested to represent the pages associated with this
which further implies from which resource the page should be viewed.

5.3.12.1.2 Manipulation of Resources Through Representations Client
has representation of resource which contains enough information to mod-
ify or delete the resource on the server, provided, it has permission to do
so.Usually user get a user id when user request for a list of users and then
use that id to delete or modify that particular user.

5.3.12.1.3 Self-descriptive Messages Each message includes enough in-
formation to describe how to process the message so that server can easily
analyses the request.

Chapter 5. Proposed Architecture 49

5.3.12.1.4 Hypermedia as the Engine of Application State (HATEOAS)
It needs to include links for each response so that client can discover other
resources easily.

5.3.12.2 Statelessness

It means that the necessary state to handle the request is contained within
the request itself and server would not store anything related to the session.
In REST, the client must include all information for the server to fulfill the
request whether as a part of query params, headers or URI. Statelessness en-
ables greater availability since the server does not have to maintain, update
or communicate that session state. There is a drawback when the client need
to send too much data to the server so it reduces the scope of network opti-
mization and requires more bandwidth.

5.3.12.3 Cacheable

Every response should include whether the response is cacheable or not and
for how much duration responses can be cached at the client side. Client will
return the data from its cache for any subsequent request and there would be
no need to send the request again to the server. A well-managed caching par-
tially or completely eliminates some client–server interactions, further im-
proving availability and performance. But sometime there are chances that
user may receive stale data.

5.3.12.4 Client-Server

REST application should have a client-server architecture. A Client is some-
one who is requesting resources and are not concerned with data storage,
which remains internal to each server, and server is someone who holds the
resources and are not concerned with the user interface or user state. They
can evolve independently. Client doesnot need to know anything about busi-
ness logic and server doesnot need to know anything about the frontend UI.

5.3.12.5 Layered System

An application architecture needs to be composed of multiple layers. Each
layer doesnot know anything about any layer other than that of immediate
layer and there can be lot of intermediate servers between client and the end

Chapter 5. Proposed Architecture 50

server. Intermediary servers may improve system availability by enabling
load-balancing and by providing shared caches.

5.3.12.6 Code On Demand

It is an optional feature. According to this, servers can also provide exe-
cutable code to the client. The examples of code on demand may include the
MapReduce code invoking in the client nodes.
The proposed architecture strictly follows the six constraints specified by the
RESTful architecture.

5.3.13 Metadata Disk Failure

The metadata in both the server and client node is very important for the
guided MapReduce deployment and the data availability or data persever-
ance. If the metadata disk failure cannot be recovered then that will cause
a system break down and all the information regarding fragments and files
will be lost. Hence metadata perseverance is one of the most important fac-
tors to consider for making the system fault tolerant.

In the proposed system two level metadata indexing is proposed. For ev-
ery updation of the metadata it sends one copy to the secondary node which
keeps it safe and sends an receiving acknowledgement to the master node. If
the master nodes fails then secondary node can be manually started with the
last received metadata to take charge of the master node.

5.3.14 Node Failure Detection

The node failure in a distributed cluster of hundred and thousands of cheap
commodity machines is very common. The client nodes send heartbeat mes-
sages to the master node in every 3 seconds interval to provide the evidence
of their aliveness. The heartbeat message sent by the client nodes are noth-
ing but the HTTP request for which the master node sends HTTP response.
When the client gets the HTTP response from the server node, it again waits
for 3 seconds to repeat the process.

The HTTP request/response message simply implies that the communi-
cation channel between client to server is still alive. The server node main-
tains a statusLog that keeps track of the alive nodes in the system. Whenever
the server node gets the HTTP request message from the client node it up-
dates the status of that node as alive.

Chapter 5. Proposed Architecture 51

FIGURE 5.3: Flowchart shows the node failure detection

However, failure can occur any time due to network congestion or node
failure. The client node expects an immediate response from the server node
after sending the HTTP request in every 3 second interval. If the response
doesn’t come immediate then the client node assumes network congestion
and sends another HTTP request packet after waiting 5 seconds. If the re-
sponse still don’t come then the connection between server to that client is
lost. Server meanwhile not getting any response for nearly 9 seconds de-
clares the client as dead node and updates the status of the client as dead.

This helps to achieve to keep track of the status of the communication
channel’s between client and server. The message request from the client

Chapter 5. Proposed Architecture 52

doesn’t make the server too busy. In general HTTP request uses TCP connec-
tion. The client sends the request packet with just one TCP connection and
as it is stateless architecture the response packet which comes from the client
node to serve node do not use the TCP connection.

5.3.15 Node Failure Recovery

As soon as the node failure detection is discovered, the fragments and meta-
data information should be recovered immediately for performance improve-
ment. Although the replication of the fragments are maintained in the other
nodes, but they are not the exact images of the last fragments. All the frag-
ments of the big data file based on the key forms a Zone and every Zone con-
sists different key based fragments. Let’s assume, S is the set of all records
stored in the big data file which is to be fragmented in fragments such as
K1 f1, K1 f2, K1 f3, . . . , K1 fn partitions. It is obvious that

{K1 f1 ∪ K1 f2 ∪ K1 f3 ∪ · · · · · · K1 fn} = S (5.2)

So whenever a node failure of a particular Zone occurs, all the fragments
of the same big data file from another Zone is accumulated and fragmented
according to the key of the failed Zone to be stored in other alive available
node immediately. This way the system is capable to recover from failure
automatically and quickly. Thus the replication factor is also used very dif-
ferently not only to make the system fault tolerant but to make the system
generating high throughput with guided MapReduce deployment.

5.3.16 Data Loss Probability

The node failure is so evident in the distributed cluster that sometime fa-
tal error or inefficient replica placement or management may lead to data
loss. The proposed architecture uses replication factor very differently for
performance enhancement. Still there exists a slight amount of data loss
probability. The replicas in the proposed scheme are fragmented based on
the different key. If one node failure occurs then it is detected immediately
and all the information regarding the file fragments are recovered with the
zone information. With all the recovered information and zone information,
the first approach is to detect the zone and node id which is containing the
other replicas of the failed node files. Then all the replicas are accumulated

Chapter 5. Proposed Architecture 53

from that retrieved zone to again get back the key based fragments that was
lost due to the failure of node. But there is a probability of failing at least
one node from every zone containing at least one record occurring in all the
failed node. Then that record is impossible to be recovered and data will be
permanently lost. But it is evident that the probability of failure of at least
one node from every zone containing same set of records that too at the same
time is very low and it decreases with the increase of replication factor. Let’s
assume that probability of failure of a node in a particular time is P and there
exists n number of zone from Z1 to Zn each containing K number of client
nodes.For simplicity K is assumed to be same for every zone but in real sce-
nario it may vary. The data can only be impossible to recover if at least 1 node
from every zone fails containing at least same set of records. So the failure
of the systems can occur when (at least 1 node failure from zone Z1) and (at
least 1 node failure from zone Z2) and And (At least 1 node fail from
zone Zn) which further signifies (1 - no of fails) and (1 - no of fails) and (1 -
no of fails) . . . so on . It can be deduced from binomial distribution that the
maximum probability of data loss can be deduced from the above statement
is

1−
(

K
0

)
P0(1− P)K × 1−

(
K
0

)
P0(1− P)K × · · · · · · nthterm (5.3)

which further implies the data loss probability as below.

{1− (1− P)K} × {1− (1− P)K} × · · · · ·· (5.4)

which finally can be simplified as

{1− (1− P)K}n (5.5)

From the equation 5.5 it is very much clear that the data loss probability of
the proposed system is very low and it decreases drastically with the increase
of replication factor or the number of Zones.There exists a trade off between
the number of Zones and number of cluster nodes in one Zone.It has been
observed that if number of cluster nodes decreases then the data loss proba-
bility increases slightly than the scenario when the number of Zone increases
and Data loss probability decreases.But both of the scenario increase in the
number of zone and number of cluster nodes defines a bare minimum of data
loss.

54

Chapter 6

Implementation

6.1 Implementation of the framework

The proposed system is experimented using 5 node cluster implying a client
server architecture from which one node is used for the master server and the
rest of the nodes are used as client nodes. Another node is used to act as the
secondary node. RESTful architecture is used for communication towards
client to server and vice versa. Node js Express version 4.17.0 is used for
making the server application. Express is the minimalist web framework of
node js that has myriad of HTTP utility methods and middleware. It provides
a thin layer of fundamental web application feature.

Node js 10.15.3 LTS version is used. The main reason behind choosing
node js is that it is an event-driven JavaScript runtime which is very easy to
integrate and designed specially to build scalable network applications.

Fragmentation of file, splitting and key-based fragmentation, metadata
indexing is done through python version 3.7.1 as it is very efficient in terms
of code readability and reusability.

The frontend of node status and file fragmenting User Interface is built
using Bootstrap 3.4.1, HTML5, CSS3 and Electron js Version 4.2.0.

6.2 System Requirement

The master node used in the proposed architecture has Intel Core i7-8700
3.2 GHz 6-Core LGA 1151 Processor with 1TB HDD AND 16GB DDR4 RAM
with the client nodes having the configuration of AMD A8-7600 Kaveri Quad-
Core 3.8GHz Socket FM2+ Desktop Processor with 4GB DDR4 RAM. The
secondary node used in the proposed architecture has same configuration as
the client nodes. All the machines are in a same hosting facility attached with
D-Link 8 port 10-100 MBPS bandwidth switch. Out of the 1TB of hard disk

Chapter 6. Implementation 55

space, 20% is reserved for OS and application program and 80% for storage
and processing.

6.3 Dashboard

The application when starts opens at the default browser automatically on
the port number 5000 of the hist machine. The port number can be config-
urable by the administrator. The dashboard seeks for the big data file source
URL for which it locate the file and shows the attribute of the file as a check-
box.

FIGURE 6.1: The dashboard of the proposed architecture

The file source and head of the file is shown in the browser of master
server. The user chooses the attributes as the check box to fragment the big
data file based on the chosen attribute row wise or column wise. If the num-
ber of chosen attribute is less than 3 then by default 3 replicas of each frag-
ment are maintained. If no attributes are checked in the provided checkbox
then random partitioning takes place with default replication factor 3 with
row wise fragmentation. The front end of the dashboard is made using par-
ticle.js V2.0.0. and the server is made with nodejs express framework. The
application also supports an automatic opening in the default browser of the
host machine.

Chapter 6. Implementation 56

6.4 Node Health Administration

Node health monitoring dashboards has also been made with bootstrap 4
which shows the status of the nodes as active or failed. The back-end node
js scripts helps to monitor the node failure following the procedure stated
earlier.

FIGURE 6.2: The dashboard for Node health monitoring

The node health monitoring dashboard shows the total number of nodes,
total number of active and dead nodes and task progress.

6.5 File Type

The proposed architecture intends to manage all the file types related to
Healthcare data.However, the proposed architecture has been experimented
with three types of file discussed below.

6.5.1 CSV File

CSV file are the the tabular structured comma separated plain text data where
each row is a new line and each comma is a column. the first line is the
attributes and the rest of the lines are it’s values. The Iris.csv dataset has
been used for row and column wise fragmentation.

Chapter 6. Implementation 57

FIGURE 6.3: The parital view of Iries.csv file

6.5.2 TSV File

Tab Separated File is also a tabular structure plain text data format where the
values are separated by the tab. each line of the text is a row and every tab
separated value is column. Iris.tsv file has been used for the experimentation
purpose.

6.5.3 TXT File

Text file of iris dataset used to experiment row wise and column wise frag-
mentation and storing them on the available cluster nodes.

6.6 File Fragmentation

The experimentation of file fragmentation is implemented using Python lan-
guage as file handling and management in python is very flexible for its
rich amount of library files and functionalities. Binary and text are the ba-
sic two file type supported in python languages. a python script is writ-
ten which is triggered by the node js server to read and load the data in
chunks and read it line wise to insert it into a list separated by the separa-
tors. At first, the first line of contents are collected to create a Key-Value

Chapter 6. Implementation 58

mapping. the data structure used for this implementation is python dictio-
nary. as soon as the attributes are stuffed in the dictionary some buffers are
created and the rest of the contents are buffered in the same. Then the buffer
is traversed to collect it’s items to sort them based on the user decision of
key based, or row or column wise fragmentation. Then they are passed to
the active and available client nodes chosen by the administrator. The frag-
ments are handed over to the node js script that is running on the client node
server to capture and write as a file with the information of fragment num-
ber,fragment key, time stamp. All the fragments of the files gets stored in the
"/opt/node/fragments" directory.

59

Bibliography

[1] Menachemi, N., Collum, T. H. (2011). Benefits and drawbacks of elec-
tronic health record systems. Risk management and healthcare policy, 4,
47.

[2] Gartner, Inc. is an American information technology research and advi-
sory firm [online] available : http://en.wikipedia.org/wiki/Gartner

[3] Ray, H. S., Naguri, K., Sil Sen, P., Mukherjee, N. (2016, February). Com-
parative Study of Query Performance in a Remote Health Framework
using Cassandra and Hadoop. In Proceedings of the International Joint
Conference on Biomedical Engineering Systems and Technologies (pp.
330-337). SCITEPRESS-Science and Technology Publications, Lda.

[4] Han, J., Haihong, E., Le, G., Du, J. (2011, October). Survey on NoSQL
database. In 2011 6th international conference on pervasive computing
and applications (pp. 363-366). IEEE.

[5] Lohr, S. (2012). The age of big data. New York Times, 11(2012).

[6] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., ...
Warfield, A. (2003, October). Xen and the art of virtualization. In ACM
SIGOPS operating systems review (Vol. 37, No. 5, pp. 164-177). ACM.

[7] Driesen, V., Eberlein, P. (2014). U.S. Patent No. 8,924,384. Washington,
DC: U.S. Patent and Trademark Office.

[8] Shvachko, K., Kuang, H., Radia, S., Chansler, R. (2010, May). The
hadoop distributed file system. In MSST (Vol. 10, pp. 1-10).

[9] Ghemawat, S., Gobioff, H., Leung, S. T. (2003). The Google file system.

[10] Dean, J., Ghemawat, S. (2008). MapReduce: simplified data processing
on large clusters. Communications of the ACM, 51(1), 107-113.

[11] Vavilapalli, V. K., Murthy, A. C., Douglas, C., Agarwal, S., Konar, M.,
Evans, R., ... Saha, B. (2013, October). Apache hadoop yarn: Yet another

BIBLIOGRAPHY 60

resource negotiator. In Proceedings of the 4th annual Symposium on
Cloud Computing (p. 5). ACM.

[12] Zaharia, M., Xin, R. S., Wendell, P., Das, T., Armbrust, M., Dave, A., ...
Ghodsi, A. (2016). Apache spark: a unified engine for big data process-
ing. Communications of the ACM, 59(11), 56-65.

[13] Gonzalez, J. E., Xin, R. S., Dave, A., Crankshaw, D., Franklin, M. J., Sto-
ica, I. (2014). Graphx: Graph processing in a distributed dataflow frame-
work. In 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14) (pp. 599-613).

[14] Shvachko, K., Kuang, H., Radia, S., Chansler, R. (2010, May). The
hadoop distributed file system. In MSST (Vol. 10, pp. 1-10).

[15] Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D., Silberschatz, A., Rasin,
A. (2009). HadoopDB: an architectural hybrid of MapReduce and DBMS
technologies for analytical workloads. Proceedings of the VLDB Endow-
ment, 2(1), 922-933.

[16] Dean, J., Ghemawat, S. (2008). MapReduce: simplified data processing
on large clusters. Communications of the ACM, 51(1), 107-113.

[17] Afrati, F. N., Ullman, J. D. (2010, March). Optimizing joins in a map-
reduce environment. In Proceedings of the 13th International Confer-
ence on Extending Database Technology (pp. 99-110). ACM.

[18] Zhou, J., Bruno, N., Wu, M. C., Larson, P. A., Chaiken, R., Shakib, D.
(2012). SCOPE: parallel databases meet MapReduce. The VLDB Jour-
nal—The International Journal on Very Large Data Bases, 21(5), 611-636

[19] Dittrich, J., Quiané-Ruiz, J. A., Jindal, A., Kargin, Y., Setty, V., Schad, J.
(2010). Hadoop++: Making a yellow elephant run like a cheetah (with-
out it even noticing). Proceedings of the VLDB Endowment, 3(1-2), 515-
529.

[20] Abouzeid, Azza, Kamil Bajda-Pawlikowski, Daniel Abadi, Avi Silber-
schatz, and Alexander Rasin. "HadoopDB: an architectural hybrid of
MapReduce and DBMS technologies for analytical workloads." Proceed-
ings of the VLDB Endowment 2, no. 1 (2009): 922-933.

[21] Dittrich, Jens, Jorge-Arnulfo Quiané-Ruiz, Alekh Jindal, Yagiz Kargin,
Vinay Setty, and Jörg Schad. "Hadoop++: making a yellow elephant run

BIBLIOGRAPHY 61

like a cheetah (without it even noticing)." Proceedings of the VLDB En-
dowment 3, no. 1-2 (2010): 515-529.

[22] Liu, Huan, and Dan Orban. "Gridbatch: Cloud computing for large-
scale data intensive-batch applications." In Cluster Computing and the
Grid, 2008. CCGRID’08. 8th IEEE International Symposium on, pp. 295-
305. IEEE, 2008.

[23] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 3rd
edition, 2009

[24] Al-Kateb, M., Ghazal, A., Crolotte, A., Bhashyam, R., Chimanchode,
J., Pakala, S. P. (2013, March). Temporal query processing in Tera-
data. In Proceedings of the 16th International Conference on Extending
Database Technology (pp. 573-578). ACM.

[25] Karlsson, J. S., Lal, A., Leung, C., Pham, T. (2001). IBM DB2 everyplace:
A small footprint relational database system. In Proceedings 17th Inter-
national Conference on Data Engineering (pp. 230-232). IEEE.

[26] Rowan, L. C., Mars, J. C. (2003). Lithologic mapping in the Mountain
Pass, California area using advanced spaceborne thermal emission and
reflection radiometer (ASTER) data. Remote sensing of Environment,
84(3), 350-366.

[27] GARG, P. (2014). Performance Enhancement of Big Data Processing in
Hadoop Map/Reduce (Doctoral dissertation, INDIAN INSTITUTE OF
TECHNOLOGY BOMBAY MUMBAI).

[28] Shafer, J., Rixner, S., Cox, A. L. (2010, March). The hadoop distributed
filesystem: Balancing portability and performance. In 2010 IEEE Inter-
national Symposium on Performance Analysis of Systems Software (IS-
PASS) (pp. 122-133). IEEE.

[29] Manjaly, J. S., Chooralil, V. S. (2013, August). Tasktracker aware
scheduling for hadoop mapreduce. In 2013 Third International Confer-
ence on Advances in Computing and Communications (pp. 278-281).
IEEE.

[30] Lu, L., Jin, H., Shi, X., Fedak, G. (2012, September). Assessing MapRe-
duce for internet computing: a comparison of Hadoop and BitDew-
MapReduce. In Proceedings of the 2012 ACM/IEEE 13th International
Conference on Grid Computing (pp. 76-84). IEEE Computer Society.

BIBLIOGRAPHY 62

[31] Garcia, D. F., Rodrigo, G., Entrialgo, J., Garcia, J., Garcia, M. (2008,
August). Experimental evaluation of horizontal and vertical scalability
of cluster-based application servers for transactional workloads. In 8th
International Conference on Applied Informatics and Communications
(AIC’08) (pp. 29-34).

[32] Feng, X., Shen, J., Fan, Y. (2009, October). REST: An alternative to RPC
for Web services architecture. In 2009 First International Conference on
Future Information Networks (pp. 7-10). IEEE.

	Declaration of Originality and Compliance of Academic Ethics
	Abstract
	Acknowledgements
	Introduction
	Introduction
	Motivation
	Objective
	Structure of The Thesis

	BIG DATA
	Introduction
	Definition
	Characteristics of Big Data
	Solving big data problems
	Server
	Virtualization
	Platform for managing data

	Open sourcing

	Big data kindret technologies
	NoSQL database
	Basic Paradigm of NoSQL

	Column family based databases
	Hadoop
	Spark

	Apache Hadoop
	Introduction
	MapReduce
	Execution Overview

	HDFS
	Namenode and Datanode
	File System Namespace
	File Fragmentation
	Replica Placement

	A study On Performance issues in Hadoop
	Introduction
	Performance Issues
	A Study On Performance improvement in Hadoop

	Proposed Architecture
	Problem Definition
	Architectural Drawback
	Restricted Portability
	Portability Assumption

	Proposed Scheme Assumptions
	Node Failure
	Read Many Intensive Application
	Large Dataset
	Portability and Performance

	Architectural Overview
	Client-Server Architecture
	Server Node
	Client Node
	Horizontal Scalability
	File System
	Big Data File Source
	File Fragmentation
	Parallel Processing
	Reliability
	Bottleneck Avoidance
	Efficiency
	Disjointedness
	Completeness
	Reconstruction

	Locality of reference
	Replication
	Replica Placement
	Metadata and Indexing
	RESTful Communication
	Uniform Interface
	Resource-Based
	Manipulation of Resources Through Representations
	Self-descriptive Messages
	Hypermedia as the Engine of Application State (HATEOAS)

	Statelessness
	Cacheable
	Client-Server
	Layered System
	Code On Demand

	Metadata Disk Failure
	Node Failure Detection
	Node Failure Recovery
	Data Loss Probability

	Implementation
	Implementation of the framework
	System Requirement
	Dashboard
	Node Health Administration
	File Type
	CSV File
	TSV File
	TXT File

	File Fragmentation

