
JADAVPUR UNIVERSITY

MASTER DEGREE THESIS

Design of Secure Storage and Access for
Cloud Based Data

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Technology in Distributed and Mobile Computing

in the

School of Mobile Computing and Communication

by
SONALI MANDAL

University Roll Number: 001730501008
Examination Roll Number: M4DMC19011
Registration Number: 141105 of 2017-2018

Under the Guidance of
Dr. SARMISTHA NEOGY

Department of Computer Science and Engineering
Faculty of Engineering and Technology

Jadavpur University
Kolkata-700032

May 24, 2019

http://www.jaduniv.edu.in//
http://www.jaduniv.edu.in/view_department.php?deptid=146

i

Declaration of Authorship
I, Sonali Mandal, declare that this thesis titled, “Design of Secure Storage and Access
for Cloud Based Data” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a masters degree
at this University.

• Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated.

• Where I have consulted the published work of others, this is always clearly at-
tributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

To whom it may concern
This is to certify that Sonali Mandal has satisfactorily completed the work in this the-
sis entitled “Design of Secure Storage and Access for Cloud Based Data”, University
Roll Number: 001730501008, Examination Roll Number: M4DMC19011, Registration
Number: 141105 of 2017-2018. It is a bonafide piece of work carried out under my su-
pervision at Jadavpur University, Kolkata-700032, for partial fulfillment of the require-
ments for the degree of Master of Technology in Distributed and Mobile Computing
from the School of Mobile Computing and Communication, Jadavpur University for
the academic session 2017-2019.

Dr. Sarmistha Neogy
Professor
Department of Computer Science & Engineering,
Jadavpur University
Kolkata-700032.

Director
School of Mobile Computing and Communication,
Jadavpur University
Kolkata-700032.

Prof. Pankaj Kumar Roy
Dean, Faculty of Interdisciplinary Studies, Law and

Management
Jadavpur University

Kolkata-700032.

Certificate of Approval
(Only in case the thesis is approved)

This is to certify that the thesis entitled “Design of Secure Storage and Access for
Cloud Based Data” is a bona-fide record of work carried out by Sonali mandal, Uni-
versity Roll Number: 001730501008, Examination Roll Number: M4DMC19011, Regis-
tration Number: 141105 of 2017-2018, in partial fulfilment of the requirements for the
award of the degree of Master of Technology in Distributed and Mobile Computing
from the School of Mobile Computing and Communication, Jadavpur University for
the academic session 2017-2019. It is understood that by this approval the undersigned
do not necessarily endorse or approve any statement made, opinion expressed or con-
clusion drawn therein but approve the thesis only for the purpose for which it has been
submitted.

(Signature of the Examiner)
Date:

(Signature of the Examiner)
Date:

iv

Jadavpur University

Abstract

Faculty of Interdisciplinary Studies, Law and Management, Jadavpur University
School of Mobile Computing and Communication

Master of Technology in Distributed and Mobile Computing

Design of Secure Storage and Access for Cloud Based Data

by
SONALI MANDAL

University Roll Number: 001730501008
Examination Roll Number: M4DMC19011
Registration Number: 141105 of 2017-2018

With the increasing usage of wearable smart devices for health monitoring, providing
health care facilities in remote areas are being developed. For an organization man-
aging all these data from health-care devices and other patient information becomes
difficult in a local database. The situation is similar for large hospitals with lots of
departments as well. The cloud computing technologies can provide a low-cost and
scalable solution to this huge volume of data. However, with the advantages of a cloud
database, comes various security issues. Firstly, secure data transfer through a net-
work is needed so that data cannot be stolen or tampered. Also data stored in the
cloud database needs to be protected because if the cloud provider is untrusted or is
attacked by an intruder, data confidentiality and integrity can be lost. Encrypting all
the data stored in the cloud database provides the required level of security. However
it produces several challenges in searching a encrypted database. This thesis describes
the challenges and presents an approach to secure a Cassandra database used in an
untrusted cloud environment. Specifically, the proposed model provides a secure in-
terface to the data that is stored in a distributed database in cloud, by tackling threats of
both internal and external attackers. It stores patient’s information in encrypted form
in the database and also modification-sensitive information is hashed and stored in
blockchain. Thus, it provides seamless access to the encrypted data for permitted users
while limiting the access for other users in the system, internal and external attackers;
along with preventing unauthorized data modification. Storage of hashes allows the
system to validate any information at any point of time, while access to the hash values
is provided with a secure protocol similar to a blockchain.

http://www.jaduniv.edu.in//

v

Acknowledgements
On the submission of “Design of Secure Storage and Access for Cloud Based Data”,
I wish to express gratitude to the School of Mobile Computing & Communication for
sanctioning a thesis work under Jadavpur University under which this work has been
completed.

I would like to convey my sincere gratitude to Dr. Sarmishta Neogy, Professor, De-
partment of Computer Science & Engineering, Jadavpur University for her valuable
suggestions throughout the duration of the thesis work. I am really grateful to her for
her constant support which helped me to fully involve myself in this work and develop
new approaches in the field of Cloud Security.

I would like to express my sincere, heartfelt gratitude to Mrs. Sayantani Saha, Assis-
tant Professor, Department of Computer Science & Engineering, Maulana Abul Kalam
Azad Universtity Of Technology, Kolkata, for her helpful suggestions and guidance.

I would also wish to thank Dr. Punyasha Chatterjee, Director of the School of Mo-
bile Computing & Communication, Jadavpur University and Prof. Pankaj Kumar Roy,
Dean, Faculty of Interdisiplinary Studies, Law and Management, Jadavpur Universi for
providing me all the facilities and for their support to the activities of this research.

Lastly I would like to thank all my teachers, classmates, guardians and well wishers
for encouraging and co-operating me throughout the development of this thesis.

I would like to especially thank my parents whose blessings helped me to carry out
my thesis in a dedicated way.

Regards,
SONALI MANDAL

University Roll Number: 001730501008
Examination Roll Number: M4DMC19011
Registration Number: 141105 of 2017-2018
School of Mobile Computing and Communication
Jadavpur University

Signed:

Date:

http://www.jaduniv.edu.in/view_department.php?deptid=146
http://www.jaduniv.edu.in//

vi

Contents

Declaration of Authorship i

Abstract iv

Acknowledgements v

1 Introduction 1
1.1 Overview . 2
1.2 Outline . 2

2 Literature Survey 4
2.1 Performing query in encrypted data . 4
2.2 Preserving data integrity from internal attacks 5

3 Background 7
3.1 Security in cloud database . 7
3.2 Cassandra . 9

3.2.1 Introduction to Cassandra . 9
3.2.2 Querying in Cassandra . 10
3.2.3 Security aspects of Cassandra . 11

Internal Authentication . 11
Internal Authorization . 12
JMX Authentication and Authorization 12
Encrypted communication . 12

3.3 Cryptographic algorithms . 13
3.3.1 AES Algorithm . 13
3.3.2 SHA Algorithm . 13

4 Proposed Model 14
4.1 Overview . 14
4.2 Approach . 14

4.2.1 Cassandra database . 15
4.2.2 User validation for shared data . 17
4.2.3 Blockchain storage . 19
4.2.4 Efficient query in blockchain . 20

vii

5 Implementation and Evaluation 24
5.1 Implemented system . 24
5.2 Results . 25

5.2.1 Evaluation of encrypted search . 26
5.2.2 Evaluation of blockchain search 26

6 Concluding Remarks and Future Directions 28
6.1 Conclusion . 28
6.2 Future work . 28

Bibliography 29

viii

List of Figures

3.1 Data transfer in trusted cloud provider. 8
3.2 Data-at-rest encryption in DBMS. 8
3.3 Data storage model of Cassandra. 10
3.4 Cassandra look-up map using row and column keys. 11

4.1 An overview of the system model. 15
4.2 Workflow for inserting data shared by a doctor and nurse. 17
4.3 Workflow for a doctor searching for information about a patient. 18
4.4 Workflow to detect unauthorized data modification. 20
4.5 Multilevel lists for efficient searching in blockchain. 21
4.6 Data integrity check using hierarchical block chain data storage. 23

ix

List of Tables

3.1 Terminologies of Relational DBMS and Cassandra. 10

4.1 Database tables and schema details. 15
4.2 Patient_general table for storing personal information. 16
4.3 Diagnosis_data table for storing medical information. 16
4.4 Example rows from the Doctor_patient_metadata table. 16
4.5 Patient-general table for storing personal information. The data marked

in blue color are modification-sensitive. 22
4.6 Diagnosis-data table for storing ongoing diagnosis information. Data

marked with blue color are modification sensitive. 22

5.1 Versions of the software components of the implemented system. 25
5.2 Details of the python libraries used. 25
5.3 Hardware specifications of experimented machines. 25
5.4 Average query times for searching in a non-deterministically encrypted

database. 26
5.5 Query time comparison between linear and the proposed hierarchical

data structures. 27

1

Chapter 1

Introduction

Digitization of essential services paved the way to overcome lots of real-life problems
across many sectors such as education, banking, transportation, healthcare etc. Interest
in data-driven healthcare facilities has been growing rapidly. This resulted in genera-
tion huge amount of healthcare related data across many different health care services
and organizations. Moreover different organization related to the healthcare services
can contribute to a shared pool of data that is simultaneously generated and accessed by
organizations such as hospitals, clinics and government bodies. This requires efficient
and scalable storage and pervasive access to the data. Cloud computing is a natural
candidate for storing and processing this huge amount of data. Typically such data is
stored in a relational database (RDBMS) such as Oracle, SQL Server, DB2, SQLite, etc.
Recent trends shows the use of NoSQL databases such as Cassandra, MongoDb, HBase,
etc. to process such unstructured data, that allows more flexibility in data generation
and processing.

Most of these data are sensitive and private, such as: medical reports, radio-graphic
images, laboratory reaction history, insurance information, patient’s personal informa-
tion, doctor information and many more. Naturally, secure methods are required for
storage, processing and transfer of such data. Not only protection of these data interests
the patients and the medical organizations, but also laws are regulated by governments
for ensuring the protection. Encrypting all the data after generation, can provide the
required security and privacy. For example, sensitive information can be stored in the
database in encrypted form. Also, while transferring the data between an application
and a cloud server storing the database, Secure Socket Layer (SSL) can be used to main-
tain privacy in end-to-end data transfer. However, this thesis reports several challenges
in storing and querying data in encrypted form, and provides directions to tackle them.
Also, providing authorized access to different kinds of encrypted data based on the role
of an user (e.g doctor, nurse, pathologist, admin personnel) is another challenge high-
lighted and tackled in this thesis.

Chapter 1. Introduction 2

1.1 Overview

This thesis presents an efficient and secure system model for managing e-Healthcare
data stored in a public cloud environment. In short, this model provides a secure in-
terface to the data that is stored in a distributed database, by tackling threats of both
internal and external attackers, also provide efficient query management scheme. This
model uses encryption to store data securely and thereby protecting it’s confidentiality.
A secure interface is provided to the authenticated users (such as the patients, doctors,
nurses and other administrative personnel) for accessing the required data on-demand
for both read and write requests. Specifically, the model allows encrypted data to be
shared by several concerned users in a secure manner; i.e it provides seamless access to
the encrypted data for permitted users, while limiting the access for other users in the
system along with the internal or external attackers.

To preserve data integrity from external attackers and malicious internal users, we
propose a system that uses a blockchain to check and prevent unauthorized data mod-
ification. A blockchain is a list of records, called blocks; such that each block contains
a cryptographic hash of the previous block, a timestamp and some arbitrary data. We
also propose an efficient strategy to search in the blockchain that is applicable to medi-
cal database systems.

Specifically, hash values of each sensitive data record are stored in a blockchain.
These hash values of the data cannot be modified due to the immutable property of
a blockchain. This means, once hash values of data records has been written to a
blockchain, not even an authorized user can change it. Also, because of the immutable
property of a blockchain, only the parts of the data that should not be modified, are
stored in the blockchain.

In the medical data context, there is much information that need not be changed
after inserting in the database, e.g medication history, patient name, age, etc but some
of the information need to append according to patient treatment going on such as
medication list, diagnosis reports, etc. We describe a system that handles the security
and integrity of such sensitive data, reducing the risk of information leakage.

1.2 Outline

The rest of the thesis is organized as follows:

• Chapter 2: Describes a brief review of literature on security issue cloud database
systems.

• Chapter 3: Provides a brief introduction of the concepts and the technologies used
in this thesis.

• Chapter 3: Describes the proposed system and highlights the specific contribu-
tions.

Chapter 1. Introduction 3

• Chapter 4: Describes the implementation details and reports the performance of
the implemented system following the proposed approach.

• Chapter 5: Draws the summary of proposed system and shows the directions for
future work.

4

Chapter 2

Literature Survey

There are many approaches to medical data security in public cloud. Kantarcioǧlu and
Clifton, 2005 proposed a theoretical overview of a secure database server that pro-
vides probabilistic security guarantees. The authors loosely elaborated in the paper
about how research in this area should proceed. They presented an efficient encrypted
database and query processing model. Some security norms are also proposed in the
encrypted database, such as any two tables with the same schema and the same num-
ber of tuples must have indistinguishable encryption methods. Ganapathy et al., 2011
presented a distributed architecture that provides both privacy as well as fault toler-
ance to the client. In this paper a query partitioning approach is taken for the query at
the client side to the servers, which has satisfies the privacy constraints even after local
changes to a partition. However, these most of the proposed approaches in the litera-
ture focuses on general data and their applicability is limited for a medical data storage.
The limitations are in both in terms of the unique challenges that the properties of the
medical data posses, and also in terms of the scope of exploiting domain-specific infor-
mation to make the system more efficient. This thesis focuses on explicitly tackling the
problem of querying encrypted data. Also, most of the previous approaches to secure
a cloud database overlooks the threat of losing data integrity by the internal attacks, i.e
the possibility of an authorized, but malicious user modifying the stored data. In this
chapter overview of the related works in these two directions are provided.

2.1 Performing query in encrypted data

A tutorial by Arasu et al., 2014 informs that querying encrypted data quite challenging,
highlighting the obstacles in trusted hardware and performing encryption in the client-
based encrypted. Li et al., 2014 proposed a fast range query processing scheme for
mdeical database that works against chosen keyword attack (INDCKA). The key idea
in this paper is to organize indexing elements in a complete binary tree called PBtree,
which satisfies structure indistinguishability (i.e., two sets of data items have the same
PBtree structure if and only if the two sets have the same number of data items) and
node indistinguishability(i.e., the values of PBtree nodes are completely random and
have no statistical meaning). For efficient query processing, they used PBtree traversal
width minimization and PBtree traversal depth minimization algorithm. The worse

Chapter 2. Literature Survey 5

case complexity of the query processing algorithm using PBtree need O(R*log n) time,
where n is the total number of data items and R is the set of data items in the query
results.

Saha et al., 2016 proposed an approach to secure sensitive medical data stored in the
public cloud with the benefits of symmetric and asymmetric encryption keys using AES
encryption algorithm. The authors proposed a framework for data-centric WSN appli-
cation. Another objective of the is to establish a secure channel for data communication
that could tackle attacks like MITM, DoS. Different segments of the patient data are
encrypted using different symmetric keys. These keys are distributed on-demand basis
to authorized users only. Before data transmission, data encrypted using AES sym-
metric key encryption algorithm. The scheme is made scalable by distributing static
symmetric keys only to the legitimate users, with fine grained access control mecha-
nism. Data integrity during transfer is achieved using SHA-1 hashing. Saha, Saha,
and Neogy, 2018 proposed a methodology for protecting the privacy and confidential-
ity on e-Healthcare data using sensitivity association, also providing efficient searching
scheme using metadata based search. A secure and efficient data retrieval strategy was
proposed by Kumari, Saha, and Neogy, 2018. Here entire patient relation fragmented
into different segments according to sensitivity. The data is divided into clusters using
correlation between patient and authorized users to whom they are assigned. In the
query evaluation phase, a co-relation metadata was used to validate a patient and the
authorized-user combination. Fu et al., 2017 proposed a content-aware semantic search
scheme for encrypted data. They used a graphical model, called conceptual graphs as a
knowledge representation tool. Specifically they vectorized the plaintext to transform
them into real valued vectors and performs query in the vector space. However the
vectorizaion process can lead to deterministic behavior, reducing the security standard.

The related works in the literature provides many directions for encrypted search
but overlooks an unique challenge in the medical data domain. Often multiple users
have to access the same attribute of a table, while having different read-write access
control. Also different rows in the same table can have many such associations with
different users. However, if the data is stored in encrypted form, the problem of sharing
such encrypted data in the same table and performing query while maintaining data
integrity is not well investigated. Typically, role based access management are used for
ensuring only authenticated users get access to the data Mitra et al., 2018, but such roles
are defined in the database management system, not the the application level, which is
a requirement for sharing encrypted data.

2.2 Preserving data integrity from internal attacks

The thesis focuses on the blockchain technology for preserving data integrity, that re-
cently has been popular as a verifiable storage for electronic health records. For exam-
ple, Azaria et al., 2016; Kuo, Kim, and Ohno-Machado, 2017; Liu, 2016 presented vari-
ous secure blockchain storage for medical data. The first key benefit of blockchain that

Chapter 2. Literature Survey 6

it is a peer-to-peer, decentralized database management system. Therefore, blockchain
is suitable for applications where independently managed health care entities collab-
orate with one another. Secondly, DDBMSs support create, read, update, and delete
functions, while blockchain only supports create and read functions, ie, it is very diffi-
cult to change the stored data. Thus, blockchain is suitable as an unchangeable ledger to
record critical information (eg, insurance claim records). Although blockchain is based
on distributed technology and thus do not suffer from single-point-of-failure, it would
be costly for DDBMS to achieve that high level of data redundancy blockchain does (ie,
each node has a whole copy of whole historical data records). Thus, blockchain should
be used only for storing data that are important and are modification sensitive.

In Muzammal, Qu, and Nasrulin, 2019, how a blockchain can be used as a relational
database was studied. Furthermore, blockchain as a storage for medical data for audit-
ing purposes was proposed in Azaria et al., 2016. However, blockchain being a linear
data structure, querying time in a blockchain also increases linearly. This becomes a
huge problem as the number of nodes in a blockchain can be in thousands or millions
in practical medical database for a large organization. However, fast querying in such
large blockchain that stores healthcare information is not very well studied. The ap-
proaches most related to this work are done by Roehrs et al., 2019 and Xu et al., 2017.
Roehrs et al., 2019 implemented a distributed architecture that distributes data among
servers and reintegrates when queried, which increases the average response time and
availability. Their architecture is formed using a P2P network, where health records are
organized into data blocks comprising a linked list and a distributed ledger of health
data. Xu et al., 2017 proposed a hierarchical data structure to enable efficient querying
in a blockchain that stores educational certificates.

The proposed approaches to minimize query time in blockchain do not exploit the
data characteristics present in a typical medical database. For example, in a medical
information system, data records are often searched by time ranges to know about the
history of the diagnosis, medication and pathological information. Also these types
of information are actually the prime candidates to be altered by malicious users. In
the proposed approach, a hybrid security model is used where only hash values of
such modification-sensitive data are stored in a blockchain to reduce overhead and the
actual data is stored in encrypted form in a Cassandra database. Also, the blockchain
storage uses a hierarchical data structure using the timestamp information present in
the medical data, that supports a much faster query.

7

Chapter 3

Background

3.1 Security in cloud database

The cloud computing model is transfers computing infrastructure and data to third-
party service providers that manage the hardware and software resources which en-
ables on-demand, anytime-anywhere access and cost reductions. Many medical orga-
nizations have started shifted electronic health information to the cloud storage. Not
only it simplifies the exchange medical records between the hospitals, clinics and other
participating organizations, but also makes the cloud a medical record storage center
which is permanent and remotely accessible by many users. The medical data stored
in cloud makes the treatment better by retrieving patient’s medical history from the
database before going for the treatment and get to know about the health issues of the
patient.

However, maintaining the confidentiality of the data stored in cloud is a major issue.
The data stored in such a cloud database can be stolen in a number of ways:

1. Data stolen while transferring using network

2. Direct abuse by untrusted cloud service provider

3. Third party attack in the network or on the cloud service provider

4. Legal issues: Law in the nation of the cloud service provider may enforce it to
reveal all the data.

One way to implement security of the data in a cloud database is to encrypt the
data before sending to the cloud this involves sharing a key with the cloud provider. In
this method all the encrypted data sent by client are first decrypted with the key and
decrypted data is stored in the DBMS. Now the client application can send an encrypted
query which is decrypted and run on the server DBMS. To ensure confidentiality the
result of the query is encrypted by the security module in the server. The client also
having the key can decrypt this encrypted result and view the data. An overview of the
scheme with a trusted cloud provider is shown in Fig. 3.1.

Although this simple solution works well, it can be only implemented with a trusted
and secure cloud provider. Also there is still a risk of leakage of sensitive data because

Chapter 3. Background 8

Trusted Cloud Server

DBMS

Security Module

Key

Plaintext Query Plaintext Result

Encrypted Query

Encrypted Result

Client Application

Security Module

Key

Plaintext data

FIGURE 3.1: Data transfer in trusted cloud provider.

securing a server in the cloud is not easy and there is a chance of third party attack.
Also legal issues can cause loss of confidentiality.

In an alternative approach called the data-at-rest encryption, no key is shared with
the server and only encrypted data is stored in the cloud DBMS, shown in figure 3.2.
Client application sends encrypted data to the cloud, and the cloud provider directly
stores the encrypted data in the DBMS. In this case, the cloud provider can never see
the actual data. So any attack on the cloud server, or an untrusted cloud provider only
gets the encrypted data which is of no use without the decryption key. Also this data is
safe from legal issues.

Client Application

Security Module

Key

Cloud Server

Encrypted Query

Encrypted Result

DBMS

Encrypted data

FIGURE 3.2: Data-at-rest encryption in DBMS.

Even though this mechanism conforms the required security standards, there are
several issues with storing encrypted data in the database management system, as re-
ported by Arasu et al., 2014:

Chapter 3. Background 9

1. Performing search query is difficult on encrypted data. This is because the user
is expected to provide a query containing attributes in plaintext, which are to be
matched with encrypted data.

2. Some queries require data to be ordered by some column value. Since a primary
requirement of any encryption algorithm that there should be no relation between
the characters of the plaintext and the ciphertext, i.e without the key the plaintext
can not be predicted from the ciphertext. So obviously, the order of some data
records(plaintext) determined alphabetically or numerically will not be the same
if the records are encrypted. So performing such queries where the actual order-
ing of the data is required, is challenging in a encrypted database.

3. Another set of queries like sum, average etc. require mathematical operation to
be perform on the data records. The encryption scheme that allows performing
an mathematical operation on encrypted data and getting the same result as if
perform on actual data is called Homomorphic encryption. This is challenging
and there are only a few Homomorphic encryption schemes available, that to
allows only a restricted set of operations.

3.2 Cassandra

In this section the motivation for using Cassandra as the database is provided, along
with a brief description of its security aspects.

3.2.1 Introduction to Cassandra

Cassandra is a highly scalable, distributed, structured key-value store NoSQL database
that is chosen to demonstrate the security model presented in the thesis. It is a mixture
of the distributed system technology like the Dynamo database and the data model is
column family based like Google’s BigTable. Cassandra is eventually consistent, i.e it
may not be consistent all the time but will be consistent eventually after a finite time.
Cassandra supports four types of storage model: Wide Column Store/Column Fami-
lies, Document store, Key Value/Tuple Store, Eventually Consistence Key Value store,
Graph Databases. The design goal of Cassandra is to handle large amount of workload
across multiple nodes without single point of failure by replicating data. All the nodes
in a cluster play the same role. Each independent node interconnected to other nodes
at the same time.

Cassandra deals with unstructured data and flexible schema. Internal data model of
Cassandra and the equivalent relational database terminologies are shown in Table 3.1.
Attributes are only blob-values in the internal model and the attributes of one row are
always stored sorted by the name of the attribute, when written to the internal storage
called the SSTable, shown in Figure 3.3).

Chapter 3. Background 10

TABLE 3.1: Terminologies of Relational DBMS and Cassandra.

Relational Model Cassandra Model
Database Keyspace
Table Column Family(CF)
Primary Key Row Key
Column Name Column Name/Key
Column Value Column Value

Write Data

Index

memtable

Memory

Disk

Commit Log SSTable

Flush

FIGURE 3.3: Data storage model of Cassandra.

Every tuple also contains one special attribute: the primary key, which is used for
distributing and replicating the tuples across the nodes of the database cluster, in ad-
dition to its traditional use for indexing. Cassandra does not repeat the names of the
columns in memory or in the SSTable. In the SSTable on disk, Cassandra stores data
after flushing the memtable. Any data written to Cassandra, is first written to a commit
log before being written to a memtable. This provides durability in the case of unex-
pected shutdown. On starting Cassandra any mutations in the commit log is be applied
to memtables.

3.2.2 Querying in Cassandra

Cassandra provide its own query language called Cassandra Query Language(CQL),
available in the online documentation Cassandra Query Language. CQL is somewhat
similar to Structured Query Language(SQL), that offers an easy interface to interact
with the database. This is because the Thrift API, that was being used prior to CQL,
was found difficult to comprehend. CQL supports various set of data type i.e native
types, collection types, user-defined types, tuple types and custom types. CQL uses
database roles to represent users or group of users.

Chapter 3. Background 11

Row Key

Column1

Value1

Column2

Value2

Column3

Value3

FIGURE 3.4: Cassandra look-up map using row and column keys.

CQL uses a map for efficient key look-up, and the its sorted nature gives efficient
scans. In Cassandra, both the row keys and column keys to do efficient look-ups and
range scans, as shown in Figure 3.4. The number of column keys is unbounded, In
other words, i.e very wide rows are supported.

The difference between the internal data model used by Cassandra and the CQL
data model is that the columns have fixed types in the CQL data model, i.e. they are no
longer just blob values, and the primary key can be a compound key, i.e. consisting of
multiple columns. Additionally, the primary key is further divided into two different
parts: the partitioning primary key and the clustering primary key, both of which can
be made of an arbitrary amount of columns. The partitioning primary key is the one
that is used as the primary key in the internal data model, and thus it is used to share
and replicate the tuples. The clustering primary key is used when transporting CQL
tuples into internal tuples to define their ordering, i.e. multiple CQL tuples with a
common partitioning primary key will be sorted in one internal tuple based on their
clustering primary key, when written to the internal storage.

3.2.3 Security aspects of Cassandra

There are three major components to the security features provided in Cassandra by de-
fault: Internal authentication, Internal authorization and SSL/TLS encryption for client
and inter-node communication. A detailed documentation on the security provided by
Cassandra is available online Cassandra Security Documentation.

Internal Authentication

Internal authentication is based on Cassandra-controlled roles and passwords. Role-
based authentication encompasses both users and roles, i.e different users can have
different roles in the database and the specifc roles are granted using password based
authentication. The roles can represent either actual individual users or roles that those
users have in administering and accessing the Cassandra cluster.

Chapter 3. Background 12

Internal Authorization

Cassandra supports object permissions, that are assigned using Cassandra’s internal
authorization mechanism for the following objects: keyspace, table, function, aggrega-
tion, roles and MBeans (available only in Cassandra 3.6 and later). Authenticated roles
with passwords stored in Cassandra are authorized for selective access. The permis-
sions are stored in Cassandra tables.

Permission is configurable for CQL commands that are used to create or manipu-
late data. The allowable commands are: CREATE, ALTER, DROP, SELECT, MODIFY,
and DESCRIBE, which are used for the generic interaction with the database. The EXE-
CUTE command may be used to grant permission to a role for the SELECT, INSERT, and
UPDATE commands. Additionally, the AUTHORIZE command can be used to grant
permission for a role to GRANT, REVOKE or AUTHORIZE other role’s permissions.

JMX Authentication and Authorization

Cassandra runs under a Java virtual machine, and it provides various statistics and
management operations via the Java Management Extensions (JMX). JMX is a Java tech-
nology that supplies tools for managing and monitoring Java applications and services.
JMX authentication and authorization allows only a set of users to access JMX tools and
JMX metrics. In Cassandra version 3.5 and earlier, JMX is configured with password
and access files. In Cassandra 3.6 and later, JMX connections may use the same internal
authentication and authorization mechanisms as CQL clients.

Encrypted communication

Cassandra provides secure communication between a client machine and a database
cluster and between nodes within a cluster. Enabling encryption using SSL ensures
that data being transferred is not stolen or tampered. The options for client-to-node
and node-to-node encryption are managed separately and may be configured indepen-
dently. In both cases, some default values of JVM for supported protocols and cipher
suites are used when encryption is enabled. These can be modified using the settings in
cassandra.yaml file. However, this is not recommended unless there is a need to disable
vulnerable ciphers or protocols in cases where the JVM itself cannot be updated.

The settings for managing inter-node encryption can be set using the Cassandra.yaml
file. To enable inter-node encryption, the inter-node setting should be changed from its
default, none to any of these: rack, dc or all. If neither is set to true, client connections
are entirely un-encrypted. If enabled option is set to true and the optional option is set to
false, all client connections is encrypted. If both options are set to true, both encrypted
and un-encrypted connections are supported using the same port. Client connections
using encryption with this configuration is automatically detected and handled by the
server.

To summarize, Casandra provides some basic security protocols such as user au-
thentication and SSL encryption for data transfer between the clients and the distributed

Chapter 3. Background 13

nodes. However, if Casandra itself runs in a cloud computing environment, then the
stored data can be compromised. To store data in an untrusted cloud provider, the
thesis presents a secure application layer on top of Cassandra.

3.3 Cryptographic algorithms

3.3.1 AES Algorithm

To perform encryption, a non-deterministic encryption algorithm called Advanced En-
cryption Standard(AES) is chosen. AES is a symmetric key block cipher algorithm.
This cryptographic algorithm perfroms very secure encryption, overcoming the draw-
backs of the DES encryption algorithm. In DES algorithm 64-bit blocks and the 56-bit
key is used for data encryption and decryption, but in AES 128 bit blocks and 128-bit
key/256-bit is used. Plaintext is converted to a target ciphertext using substitution and
transposition techniques after a minimum of 10 and a maximum of 14 rounds of execu-
tion.

3.3.2 SHA Algorithm

A hashing algorithm is used to map a variable length data to a fixed length data, in
such a way that the process becomes irreversible, i.e it is impossible to get the original
data from the hashed data. In this work, Secure Hashing Algorithm(SHA) is used, that
is a modified version of the previous MD5 hashing algorithm. This algorithm takes
less than 264 bits length input and converts into 128-bits length digest. This algorithm
follows several steps for execution. The first step is used for padding zero or one in
input text as multiple of 512-bit blocks then extra 64 bits are appended to end of the
message, that is carrying information about the length of the original message. The
message is divided into 512 bit-blocks, then the chaining variables are initialized and
the actual mathematical process (OR, AND, NOT, XOR operations) is performed. In
this way, the produced hash digest length is large that’s why 2160 operations need to
break this algorithm, which is infeasible to do.

14

Chapter 4

Proposed Model

4.1 Overview

In this section, an efficient and secure system model is introduced for managing e-
Healthcare data stored in a public cloud environment. In short, this model provides a
secure interface to the data that is stored in a distributed database, by tackling threats
of both internal and external attackers. This model uses encryption to store data se-
curely and thereby protecting it’s confidentiality. A secure interface is provided to the
authenticated users (such as the patients, doctors, nurses and other administrative per-
sonnel) for accessing the required data on-demand for both read and write requests.
Specifically, the model allows encrypted data to be shared by several concerned users
in a secure manner; i.e it provides seamless access to the encrypted data for permitted
users, while limiting the access for other users in the system along with the internal or
external attackers.

Another part of this work to prevent unauthorized modification of data by inter-
nal attackers blockchain has been used. Internal attackers may be able to modify the
data in the database. To prevent this, hash values of each data record are stored in a
blockchain. These hash values of the data cannot be modified due to the immutable
property of blockchain. This means, once hash values of data records has been writ-
ten to a blockchain, not even an authorized user can change it. However, this can be
only applied to be data that can not be modified. In the medical data context, there are
many such information that need not be changed after inserting in the database, e.g
medication history, diagnosis reports etc.

4.2 Approach

The proposed approach of the secure system model consists of different modules as
described below. An overview of the system architecture is shown in Figure 4.1. In the
following sub-sections different modules of the system are described.

Chapter 4. Proposed Model 15

End User

Search, Add, Modify, Delete

Security InterfaceResults

Group Key
Management

Verify Group Key

Create Group

Organization Cloud

Database
Encrypted Query & Data Manipulation

Encrypted Result

Hash Storage
(Blockchain)

New Record

Verify Hash

FIGURE 4.1: An overview of the system model.

4.2.1 Cassandra database

The Security Module as shown in Figure 4.1 is responsible for getting various patient’s
and doctor’s information and storing them in the Cassandra database after encryp-
tion. Information includes general information of the patient that are unchanged: pa-
tients unique identification number(pid), name(pname),phone number(phno), date of
birth (dob), blood group (blood_group) and patients diagnosis details that can be up-
dated including blood pressure(blood_pressure), pulse rate (pulse_rate), diagnosis date
(date), etc. and the current treatment particulars(medication). All these information are
received from the users as plaintext and stored in the database as ciphertext after en-
cryption. The tables in the database used in our model, along with their schema are
shown in Table 4.1.

TABLE 4.1: Database tables and schema details.

Table Name Schema
patient_general pid, pname, dob, blood_group, gender,

phone_number, date
diagnosis_data pid, blood_pressure, pulse_rate, hemoglobin,

date, medication, x-ray report
doctor_patient_metadata pid, dp_metadata
nurse_patient_metadata pid, np_metadata
doctor_nurse_metadata pid, dn_metadata

The patient_general table is used to store personal information about the patients. A
row from this table is shown in Table 4.2. Information stored in this table is accessed by
all the users in the system and some users have read-only access. Data in this table is
generally added first by nurse and administrative personnel.

The diagnosis_data table contains details of ongoing treatment and medication. A

Chapter 4. Proposed Model 16

TABLE 4.2: Patient_general table for storing personal information.

pid pname dob blood_group gender phno
40122 O+ 19/3/1968 Sisir Sarkar Male 8112637289

sample row from this table is shown in Table 4.6. This table is accessed by doctors,

TABLE 4.3: Diagnosis_data table for storing medical information.

pid blood-
pressure

pulse-
rate

hemoglobin date medication x-ray
report

40122 143/12 66 12.3 27/03/05 Tab.
Flex...

Image

nurses, and pathologists. Some users may have read-only access to some parts (columns)
to a data record. For example, only doctors have read-write access to medication infor-
mation, while other users have read-only access.

The doctor_patient_metadata, nurse_patient_metadata and doctor_nurse_metadata tables
contains pid and diffrent types of metadata based on the relationships. The metadata
is used to enable querying on encrypted data. The metadata is created for unique user-
to-patient and user-to-user relationships.

For example, the doctor_patient metadata is a user-to-patient relationship which
stores metadata for patients and the doctor who is treating the patient. The doctor-
nurse metadata is a user-to-user relationship which stores metadata for nurse-doctor
pairs, where the nurse is attending to patients treated by the doctor. The metadata is
created by first appending the identification numbers of the concerned users. Then a
hashing algorithm is used on the appended numbers, and the hashed value is stored in
the table. For the patient-to-user relationship, the patient identification number (pid) is
used in the same way.

The metadata is not encrypted so that it can be used in a query. However, metadata
contains the identification number of the users and the patient. To avoid leakage of
these identification numbers, a hashing scheme is used. This is because from the hashed
value, original identification numbers cannot be extracted. A deterministic hashing
algorithm is used, so that for the same identification number pair, the same hashed
value is always generated. The pid is used as a reference key among all the tables.

An example of populated rows from the doctor_patient_metadata table is shown in
Table 4.4.

TABLE 4.4: Example rows from the Doctor_patient_metadata table.

pid meta
40122 4012231
40123 4012331
40124 4012450

The database used in our model can handle heterogeneous data types such as text,
numeric data and image. This is because before performing encryption, the data is
converted to binary form as array of bytes, irrespective of the original data type. After

Chapter 4. Proposed Model 17

encryption, the data is stored in the database, as the blob data type that supports storing
raw binary data. Specifically this makes it possible to store encrypted images (such as
x-ray reports), then retrieve and decrypt the same with ease.

4.2.2 User validation for shared data

A model for a user validating other users if they share common data is presented here.
This is made available to the Security Interface by the Group Key Management module.
Users may have different privileges on the data, based on their roles in the organization.
For example, a doctor might have access to more sensitive data than a nurse. Also, two
users groups may share a set of data, while some other sets of data may have mutually
exclusive access rights. For example, a nurse might have access to medication history,
which is inaccessible to a pathologist; whereas pathologist might have reports protected
from nurses.

In the proposed system, sharing of encrypted data by specific user groups is enabled
in the application level, instead of the database level. This makes it possible to encrypt
the shared data, before sending it to the cloud database. Encrypted data sharing is
performed by using a shared key (that is shared by the user groups) to encrypt and
decrypt all the shared data in a user group. An example workflow for inserting a data
row by a doctor, where some of the data is also shared by a nurse is shown in Fig. 4.2.

pid: 4091 did: 10

Hashed metadata: 0xE0FF...

Encrypted pid: 0x4A28DBC9

Doctor’s passkey: XXXX Shared key= Doctor’s passkey:
XXXX + Nurse’s passkey: YYYY=
XXXXYYYY

 Encrypted data stored in patient_general and
diagnosis_data table

Metadata: 409110

FIGURE 4.2: Workflow for inserting data shared by a doctor and nurse.

The shared key is dynamically generated by collecting pass-codes from all the users
in the group. For inserting data row that contains shared data, a shared key is generated
from individual keys of the members of the group. Then the shared parts of the data

Chapter 4. Proposed Model 18

row is encrypted with the shared key and non-shared parts are encrypted with the key
of the user, who is performing the insertion. It can also happen that, different parts of a
data row is shared by different groups.

To validate a user in a group, for every request the user makes to access shared
data, the system asks all the users in the group for pass-codes. If correct pass-codes are
received from all the users in the group, then the correct shared key is generated and
encryption/decryption is performed. By this mechanism, role-based data accessed is
implemented in an implicit manner i.e only if a user provides a valid pass-key then the
required shared key will be generated and decryption will be successful. If a user is not
authorized to access some data, he/she will not be able to provide the correct pass-key
and thus decryption will fail.

An example workflow for a doctor searching for information about a patient is
shown in Fig. 4.3.

Match hashed metadata:0xE0FF

pid: Encrypted 0x4A28DBC9

Doctor’s passkey: XXXX
Shared key= Doctor’s passkey:

XXXX + Nurse’s passkey: YYYY=
XXXXYYYY

pid: 0x4A..., x_ray_report: 0x4C..., medication: 0x19…,

Decryption key-1: 0x00C1... Decryption key-2: 0xEFDDDA…

pid: 4091, x_ray_report: image, medication: medication list

Attribute
membership

Individual attributes Shared attributes

FIGURE 4.3: Workflow for a doctor searching for information about a
patient.

The full procedure of extracting decrypted information from the database for the
same example is given below.

Chapter 4. Proposed Model 19

1. The doctor provides patient identification number and his/her own identification
number to the system.

2. Metadata is generated by appending the doctor identification number and the
patient identification number an then hashing the appended value by a deter-
ministic hashing scheme .

3. The doctor-patient relation table is queried to find the row containing the doctor-
patient metadata and the corresponding encrypted patient identification number
is extracted.

4. Depending upon the query, the patient_general or the diagnosis_data or both is
queried using the encrypted patient identification number. After this step, in-
formation about the patient is found in encrypted form.

5. If some part of the queried information is shared by multiple users then the sys-
tem asked for passkeys from all the users including the doctor. The passkeys are
appended then hashed to generate the shared key.This is done for all possible
doctor-to-other-users relationship. If some information is only accessed by the
doctor then only the doctor passkey is used as the decryption key.

6. The above step generates a set of decryption keys for different parts of the patient
information that is possibly shared by disjoint user groups. The decryption key
is used to decrypt specific parts of the patient information. Finally, the decrypted
information is shown to the doctor.

4.2.3 Blockchain storage

Although storing data in encrypted form prevents attacks from external threats, in-
ternal attackers who are maliciously logged in to the system as authorized users, can
still modify sensitive data. An approach to maintain data integrity is proposed in this
section, that uses a blockchain to check and prevent unauthorized data modification.

A blockchain is a list of records, called blocks; such that each block contains a cryp-
tographic hash of the previous block, a timestamp and some arbitrary data. We also
propose an efficient strategy to search in the blockchain that is applicable to medical
database systems. Specifically, hash values of each sensitive data record, that are in the
encrypted form, are stored in a blockchain. These hash values of the encrypted data
cannot be modified due to the immutable property of a blockchain. This means, once
hash values of encrypted data records has been written to a blockchain, not even an au-
thorized user can change it. Also, because of the immutable property of a blockchain,
only the parts of the data that should not be modified, are stored in the blockchain.

In the medical data context, there is much such information that need not be changed
after inserting in the database, e.g medication history, patient name, age, etc but some
of the information need to append according to patient treatment going on such as

Chapter 4. Proposed Model 20

medication list, diagnosis reports, etc. The blockchain storage only stores the hash val-
ues of the ciphertext of such modification-sensitive sensitive data, preventing the risk
of information modification my malicious users.

The proposed model uses both the encrypted Cassandra database and the blockchain
storage to provide data integrity. When data is queried from the encrypted database,
the system first extracts authorized user data from the cloud storage using proper au-
thentication system and also extracts the hash values of the data stored in the blockchain
storage. After this, the calculated hash value of the encrypted data is matched with the
hash value queried from the blockchain. If the two hashes match, then the data is un-
modified. The workflow for checking data integrity is shown in Figure 4.4.

Data querying Extract data
from database

Calculate hash
value of those
data

Match with
hash data from
blockchain

FIGURE 4.4: Workflow to detect unauthorized data modification.

Data in a block can’t be modified even by authorized user, because this will inval-
idate the internal hashes of the blockchain that are dependent on previous blocks, i.e
the hashes are calculated in a cascading manner. So, even if an authorized user changes
some parts of the data in the encrypted database, the authorized user can’t store the
changes in blockchain. Data is always inserted in the last block, i.e the blockchain only
supports insert and select queries, no update queries are allowed. The data integrity
check is performed during a select query. So if in the meantime, if a malicious user mod-
ifies a data record in the encrypted database with a valid key, still the data alteration can
be checked using the blockchain. The main motivation for using the blockchain to store
the hash values is that, it is very difficult to change the data stored in the blockchain,
so the hash values are protected from the internal attackers. Also, no database user has
access to the blockchain. The data in the blockchain is inserted and queried internally
by the application. This prevents unauthorized users from forcefully tampering the
blockchain itself.

4.2.4 Efficient query in blockchain

The blockchain storage is used for storing hash values of the modification-sensitive
parts of the patient’s data. However, as blockchain is essentially a linked list of blocks,
searching in the blockchain for hash validation must be performed sequentially, i.e ran-
dom access to a block in the blockchain is not permitted. In practice, a medical or-
ganization can have hundreds of patients getting admitted per day. This can result
in sequential search in a blockchain with millions of blocks, which is very inefficient.
Asymptotically, the time complexity is O(n) in the worst case, where n is the number
of blocks in the blockchain. The data in the block is always timestamped. We exploit
this property to implement the blockchain in a hierarchical manner to support efficient

Chapter 4. Proposed Model 21

search. An overview of this hierarchy is shown in Fig. 4.5.

Year_1 Year_2 …… Year_k

Month_1 Month_2 …… Month_12

block_1 block_2 …… block_m block_m+1 ……

FIGURE 4.5: Multilevel lists for efficient searching in blockchain.

The topmost level of this hierarchical data structure consists of a list ordered by
year, which is extracted from the timestamp. The middle level is a list of lists, where
each list consists of months that belong to the year, determined by the position in the
outer list. Similarly, the lowest level consists of the actual blockchain, stored as a nested
list, where individual lists contain the blocks for a month. The procedure for validating
the data integrity of a patient is described below:

1. First, the encrypted data record is fetched from the database, which includes the
same timestamp stored in the blockchain.

2. Hash value of the encrypted data record is calculated using SHA-256, that yields
H1

3. The timestamp is partitioned into year and months.

4. Then the top level list is searched using the year as search-key.

5. Using the returned position and the month, the mid level nested list is searched
and so on.

6. At the lowest level, data is searched in a linear fashion, and the corresponding
data block is extracted.

7. From the extracted data block, the has value of the encrypted data record is cal-
culated using SHA-256, that yields H2.

8. If H1 = H2 the data is returned, else an error is raised to show that data integrity
is lost.

In the worst case, total number of comparisons are k+ l +m, where k is the length of
the top level list, l is for the mid level and m is for the bottom level list. As the number
of months in a year is a constant number, the total asymptotic complexity is given by
O(k + m), where k + m is much lesser than n.

Chapter 4. Proposed Model 22

To describe the working principle with an example, consider the data stored in the
Patient-general table shown in Table 4.5, that stores personal information about the pa-
tient that are collected when the patient is admitted for the first time.

TABLE 4.5: Patient-general table for storing personal information. The
data marked in blue color are modification-sensitive.

Patient-id Patient_name Gender age Phn_no Date
40122 Purusottam Sarkar Male 45 8112637289 15/02/17
40125 Swarup Ghosh Male 16 9091906754 16/02/17
40126 Balaram Bagdi Male 54 9891901757 16/02/17
40127 Jamaluddin Ahamed Male 80 9748190043 17/02/17

The blockchain for the patient is created by inserting the hash values of the modification-
sensitive personal information in the first block of the blockchain, also called the genesis
block. Also, consider the data stored in diagnosis_data table that contains details of ongo-
ing treatment and medication, shown in Table 4.6. The first row is storing the diagnosis
information for the first visit, and the second row stores some updated information af-
ter the patient came for a re-checkup. Similarly, subsequent addition of information for

TABLE 4.6: Diagnosis-data table for storing ongoing diagnosis informa-
tion. Data marked with blue color are modification sensitive.

Patient
-id

Blood-
pressure

Pulse-
rate

Hemoglobin Date Medication Test
report

40122 143/12 66 12.3 15/02/17 Tab. Flex ... -
40122 140/11 65 - 05/03/17 Repeat Chest

X-Ray
40125 99/44 57 - 16/02/17 Tab In-

deral 10mg
ECG

40126 145/85 110 - 16/02/17 Tab. Glu-
formin G2

-

40127 138/78 94 - 16/02/17 Tab.ESLO
2.5mg

ECG,HB,
CR,FBS,
HDL

the same patients are stored in the successive blocks in the blockhain. When adding a
new block to the blockchain of a particular patient, the timestamp information in the
data record generation is used to find the allowed slot in the hierarchy.

For the example shown in Figure 4.6, the genesis block contains the patient id and
personal information, the next update of diagnosis results and medication are added to
next block and stored in the same month slot. Then for a visit in the the next month,
X-ray and ECG reports are stored in the Block2. As the two data records are gener-
ated in different months, they are stored in the blockchain by linking with hierarchy
accordingly.

The proposed hierarchical searching approach is generic and it can be extended to
an arbitrary number of levels. This can be useful to further partition the blockchain, so
that at the lowest level, the number of clustered blocks becomes manageable, thereby

Chapter 4. Proposed Model 23

Patient_id:40122
Patient_name:Purusottam Sarkar
Gender:male
Timestamp:1485930993

Blood_presure:143/12
Hemoglobin:12.3
Medication:Tab Flexon…
Timestamp:1485931833

Test: chest X-Ray, ECG
Timestamp:1488340233

Genesis block Block:1 Block:2

2017 2018 2019 …... …...

January February March ……. …... December

FIGURE 4.6: Data integrity check using hierarchical block chain data
storage.

limiting the linear searching time to a tolerable limit. Another important aspect is to be
noted that, there is a small amount of overhead incurred due to managing the hierar-
chy. So, insertion time in the blockchain is increased by a small factor. However, as in
the healthcare data domain, the number of searches is usually much greater than the
number of insertions, the overhead in insertion can be traded off for the benifit of faster
search.

24

Chapter 5

Implementation and Evaluation

In this chapter the details of the implementation of a system that follows the security
model proposed in Chapter 4 are described.

5.1 Implemented system

The proposed work is implemented using the python programming language, using
Cassandra as the database. The CQL commands for using the Cassandra database are
presented below:

• Creating the keyspace:
CREATE KEYSPACE userdatabase WITH

REPLICATION={’class’:’SimpleStrategy’, ’replication_factor’:’3’}
AND DURABLE_WRITE= true;

• Creating the doctor-patient metadata table:
CREATE TABLE userdatabase.dpmeta
(dpmeta text PRIMARY KEY,
pid blob);

• Creating the patient_general table:
CREATE TABLE userdatabase.patient_general
(pid blob PRIMARY KEY,
dod blob,
gender blob,
gurdianname blob,
phone blob,
pname blob);

• Creating diagnosis_data table:
CREATE TABLE userdatabase.diagonosis_data
(pid blob PRIMARY KEY,
blood_group blob,
blood_pressure blob,
date blob,

Chapter 5. Implementation and Evaluation 25

hemoglobin blob,
pulse_rate blob,
test_report blob);

The software components of the system and their versions are shown in Table 5.1.

TABLE 5.1: Versions of the software components of the implemented sys-
tem.

Component type Name Version
Programming environment Python 3.6.5

Database Cassandra 3.11.3
Query engine Cqlsh 5.0.1

Operating system Ubuntu 14.04

For performing encryption, hashing and for connecting to the Cassandra database
several python libraries were used. Table 5.2 shows the details of the libraries.

TABLE 5.2: Details of the python libraries used.

Library Purpose Version
Cassandra-driver The driver connects to the Cassandra

cluster from python. The driver also
supports performing CQL queries.

3.13

Pycryptodome Performs encryption and decryption
using AES algorithm.

3.5.1

Bcrypt Performs hashing using SHA-256 al-
gorithm.

3.1.4

Pillow Performs image manipulation 5.0.0
Pickle Performs python object serialization,

used to store blockchain objects as
files.

11.0.1

5.2 Results

The system was experimented with using two different machines, both running Ubuntu
14.04 operating system. Table 5.3 shows the hardware specification for these two ma-
chines. One of the machine was used as a cloud server and another was used to run the
client application. The two machines were connected by a personal WiFi network with
a link speed of 150 megabytes per second.

TABLE 5.3: Hardware specifications of experimented machines.

Machine CPU speed Memory (Speed) Disk (Speed)
Server machine 2.7 GHz, 4cores 4 GB (2400 MHz) 1 TB (5400 rpm)
Client machine 2.2 GHz, 2cores 4 GB (1600 MHz) 512 GB (5400 rpm)

In the following sections the experiments with the proposed system, performed in
these machines are described and the results are reported.

Chapter 5. Implementation and Evaluation 26

5.2.1 Evaluation of encrypted search

Search query is performed on the database by specifying a search term, which consists
of a column name and an expected value to be matched. Consider a search query:
“SELECT * FROM patient_general WHERE pid=3457”. In this query, information about
a patient whose pid is 3457 is to be found. If non-deterministic encryption scheme is
used, then different ciphertexts are generated for every encryption. This means, if data
is stored by encrypting non-deterministically, then the ciphertext generated from the
search term will be different than that is stored in the database, and no matching could
be done. To perform query in such a non-deterministically encrypted database, we
have analyzed two methods for querying data:

1. The columns containing the search term are stored as plaintext. This is a trivial
approach but it does not enable fully encrypted database. Also, all the columns
for possible search terms has to be kept in plaintext. For example, users may
want to search by patient’s name, date of admission etc. These information can be
considered semi-sensitive, but they have to be stored in plaintext in this method.

2. The ciphertext of the search term is stored in a the metadata table, along with the
metadata generated for the user. When the data is to be queried, the metadata is
used as an secondary index, to first find the ciphertext of the search term. Then
the ciphertext of the search term is used to find the actual data row.

Table 5.4 shows the comparison of the above mentioned system variants. The results
were calculated by averaging the measured time of 100 query in a database with 5000
inserted rows.

TABLE 5.4: Average query times for searching in a non-deterministically
encrypted database.

Query type Metadata used Search term Time
Select Yes Encrypted 270.1 ms
Select No Plaintext 13.6 ms

Note that the metadata-less method performs query faster because it does very min-
imal processing. But the security of this method can be compromised as the search keys
can not be stored in encrypted form. Whereas, the query using metadata takes longer,
as it has to perform one extra query to get the metadata-key pair. But, as all the infor-
mation in the actual table is encrypted, this method is much more secure. Even though
the time taken for the metadata based search takes longer time, it does not affect the
uer experience, as the time is within seconds, i.e it performs the query in real time.

5.2.2 Evaluation of blockchain search

Detailed experiments were performed to compare the naive linear data structure and
the proposed hierarchical data structure approach in a blockchain, by varying the num-
ber of blocks and by measuring both the insertion and the query times. Table 5.5 shows

Chapter 5. Implementation and Evaluation 27

the results of the comparison.

TABLE 5.5: Query time comparison between linear and the proposed
hierarchical data structures.

Types No. of blocks Insertion time(ms) Query time (ms)
Linear 2052 0.001515 0.202277

Hierarchical 2052 0.010424 0.005797
Linear 11172 0.005885 5.996496

Hierarchical 11172 0.046613 0.027285
Linear 45372 0.018346 127.751428

Hierarchical 45372 0.114271 0.091386
Linear 113772 0.044489 707.559454

Hierarchical 113772 0.294859 0.198096

From analysis of the results, it can be seen that insertion time for the linear data
structure is always less than the proposed approach, but the difference between the
measured times of the two approaches is not large. This is because in the proposed
approach many calculations and insertions are performed for the different levels of the
data structure. Also, it is important to consider that the number of insertion operations
in a health-care organization are much less than the search operations. So, the small in-
crease in the insertion time in our approach can be traded off for much faster searching
performance.

Whereas, the proposed approach always takes much lesser time that the linear one.
Also, as the size of the blockchain increases, the proposed approach becomes more and
more faster than the linear approach.

28

Chapter 6

Concluding Remarks and Future
Directions

6.1 Conclusion

NoSQL and distributed database such as Cassandra is a good choice for storing medical
data of large organizations. Cassandra clearly have advantages like unstructured data
model and high scalability. However, Cassandra only provides security for client to
database node or inter-node communication. But there are several security vulnerabili-
ties that can lead to stolen or tampered data. This thesis presented an approach to pro-
tect the confidentiality of sensitive data of a patient stored in a cloud database. The ap-
proach provides the directions to store data in a non-deterministically encrypted form
and to search in such a encrypted database. The proposed approach tackles the prob-
lem of sharing encrypted data by different groups of user having different roles and
permissions. Also, an approach to provide data integrity in a secure blockchain stor-
age, and a method to efficiently search in such a blockchain, exploiting the properties
of medical data is presented. The proposed method uses a hierarchical data structure
that provides an asymptotic lower bound than a linear search. The proposed system
provides real time query performance, while conforming to a high security standard.

6.2 Future work

There are many scopes of future research from the work presented in this thesis. In
its current form, the proposed system is limited to simple select queries only. How to
extend the proposed approach to support more complex queries can be investigated in
future. Also, if a health-care organization has to continuously monitor a patient and
securely store such real time streaming data, sharing of such encrypted, real-time data
by different user groups can be of interest. The proposed system provides a method to
validate data integrity in a secure manner, but in case of un-authorized modification,
restoring the orignal data can also be a challnge.

29

Bibliography

Arasu, Arvind et al. (2014). “Querying encrypted data”. In: Proceedings of the 2014 ACM
SIGMOD international conference on Management of data. ACM, pp. 1259–1261.

Azaria, Asaph et al. (2016). “Medrec: Using blockchain for medical data access and
permission management”. In: 2016 2nd International Conference on Open and Big Data
(OBD). IEEE, pp. 25–30.

Cassandra Query Language. http://cassandra.apache.org/doc/latest/cql/index.
html. [Online], Accessed: 2019-05-20.

Cassandra Security Documentation. http : / / cassandra . apache . org / doc / latest /
operating/security.html. [Online], Accessed: 2019-05-20.

Fu, Zhangjie et al. (2017). “Privacy-preserving smart semantic search based on concep-
tual graphs over encrypted outsourced data”. In: IEEE Transactions on Information
Forensics and Security 12.8, pp. 1874–1884.

Ganapathy, Vignesh et al. (2011). “Distributing data for secure database services”. In:
Proceedings of the 4th International Workshop on Privacy and Anonymity in the Informa-
tion Society. ACM, p. 8.

Kantarcioǧlu, Murat and Chris Clifton (2005). “Security issues in querying encrypted
data”. In: IFIP Annual Conference on Data and Applications Security and Privacy. Springer,
pp. 325–337.

Kumari, Kritika, Sayantani Saha, and Sarmistha Neogy (2018). “Cost Based Model for
Secure Health Care Data Retrieval”. In: International Symposium on Security in Com-
puting and Communication. Springer, pp. 67–75.

Kuo, Tsung-Ting, Hyeon-Eui Kim, and Lucila Ohno-Machado (2017). “Blockchain dis-
tributed ledger technologies for biomedical and health care applications”. In: Journal
of the American Medical Informatics Association 24.6, pp. 1211–1220.

Li, Rui et al. (2014). “Fast range query processing with strong privacy protection for
cloud computing”. In: Proceedings of the VLDB Endowment 7.14, pp. 1953–1964.

Liu, Paul Tak Shing (2016). “Medical record system using blockchain, big data and to-
kenization”. In: International conference on information and communications security.
Springer, pp. 254–261.

Mitra, Gaurav et al. (2018). “Accessing Data in Healthcare Application”. In: International
Symposium on Security in Computing and Communication. Springer, pp. 301–312.

Muzammal, Muhammad, Qiang Qu, and Bulat Nasrulin (2019). “Renovating blockchain
with distributed databases: An open source system”. In: Future Generation Computer
Systems 90, pp. 105–117.

http://cassandra.apache.org/doc/latest/cql/index.html
http://cassandra.apache.org/doc/latest/cql/index.html
http://cassandra.apache.org/doc/latest/operating/security.html
http://cassandra.apache.org/doc/latest/operating/security.html

BIBLIOGRAPHY 30

Roehrs, Alex et al. (2019). “Analyzing the performance of a blockchain-based personal
health record implementation”. In: Journal of biomedical informatics, p. 103140.

Saha, Sayantani, Priyanka Saha, and Sarmistha Neogy (2018). “Hierarchical metadata-
based secure data retrieval technique for healthcare application”. In: Advanced Com-
puting and Communication Technologies. Springer, pp. 175–182.

Saha, Sayantani et al. (2016). “A cloud security framework for a data centric wsn appli-
cation”. In: Proceedings of the 17th International Conference on Distributed Computing
and Networking. ACM, p. 39.

Xu, Yuqin et al. (2017). “ECBC: A high performance educational certificate blockchain
with efficient query”. In: International Colloquium on Theoretical Aspects of Computing.
Springer, pp. 288–304.

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Overview
	Outline

	Literature Survey
	Performing query in encrypted data
	Preserving data integrity from internal attacks

	Background
	Security in cloud database
	Cassandra
	Introduction to Cassandra
	Querying in Cassandra
	Security aspects of Cassandra
	Internal Authentication
	Internal Authorization
	JMX Authentication and Authorization
	Encrypted communication

	Cryptographic algorithms
	AES Algorithm
	SHA Algorithm

	Proposed Model
	Overview
	Approach
	Cassandra database
	User validation for shared data
	Blockchain storage
	Efficient query in blockchain

	Implementation and Evaluation
	Implemented system
	Results
	Evaluation of encrypted search
	Evaluation of blockchain search

	Concluding Remarks and Future Directions
	Conclusion
	Future work

	Bibliography

