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Online Social Networks(OSNs) are abundant and widely used in current times. It is
used as a platform for communication among digital citizen. The frequency, method,
and purpose of communication are different for different OSNs. While some OSNs
have their users hooked to the screen for the better part of the day, other OSNs have
users visiting once a day. While some OSN has small textual content for communi-
cation, some OSNs are dependent on audio-visual contents, and other OSNs have a
mixture of both. While some OSNs are used mainly to keep in touch with friends, col-
leagues and relatives, other OSNs are used to meet new people. However, this variety
in OSNs is not captured in literature. As a part of the Masters Degree Thesis, a cate-
gorisation of Online Social Networks based on network properties such as Centrality
Measures, Clustering Coefficient, Homophily, Assortativity and so on has been pre-
sented that provides an insight into the network structure and behaviour based on the
categorisation.
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Chapter 1

Introduction

1.1 Overview

An Online Social Network(OSN) is an online platform that allows it is members to
see, connect, and communicate with other members. The content on an OSN might
be textual, images, audio, video or a mixture of any of these. There may or may not
be a profile for the members of the network. The members of an OSN can choose
to connect with other members of the OSN and gain rights to view and interact with
the other members. The mode of communication can be direct(personal messages) or
in-direct(posts, comments, tags, replies, retweets and so on). The connection and com-
munication are established and maintained online. There exist several definitions for
OSNs, including the one provided by Boyd and Ellison[1]. Some of the most popular

FIGURE 1.1: Types of Popular Online Social Networks

Image courtesy: https://spicensugar.files.wordpress.com/2010/09/
social-profit-landscape1.png

OSNs include Facebook, Twitter, YouTube, Quora, LinkedIn, Yelp, Google+ and so on.
Fig. 1.1 provides an idea of the number and variety of OSNs that are present. Each
of these OSNs has different characteristics and features, and they serve different pur-
poses. For example, in Facebook, the friendship is a bidirectional relationship whereas,
on Twitter, follower/following is a unidirectional relationship. In YouTube, the content
is video whereas in Yelp the content is mostly textual. LinkedIn is used to connect with

https://spicensugar.files.wordpress.com/2010/09/social-profit-landscape1.png
https://spicensugar.files.wordpress.com/2010/09/social-profit-landscape1.png
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the professional network of people whereas Facebook is used to connect to people one
already knows. Quora is used as a Question and Answer platform whereas Twitter is
used as a microblogging platform. Thus, it is difficult to generalise the OSNs under one
umbrella and yet they have a lot in common. Also, when the popularity of OSNs is on
the rise, and the importance of OSNs in the day-to-day life of the layman is increasing,
it is important to study and analyse the OSNs.
OSNs have been studied widely over the years. In the initial days, social networks
were studied from a mathematical perspective, suggesting generic models for social
networks and trying to identify the growth patterns in OSNs[2][3][4]. Mathematically,
an OSN is a graph that can be represented using a non-empty set of vertices and a set
of edges. The vertices represent entities of the network such as users, posts, videos,
tweets and so on and the edges represent the link between these entities such as friends
or followers, likes, tags, comments, shares and so on. The vertices and edges might
each have different attributes. Earlier studies include the study of random graphs, the
small world property, the preferential attachment property and so on.
The study then proceeded to group, clustering and community detection[5][6]. Thus,
rather than studying the network as a whole, groups or communities or clusters in the
network are selected, and their behaviour as a single entity is observed and analysed.
The presence of such groups, the degree of intra-group interactions and so on. are all
relevant studies in this era.

Fig. 1.2 provides a gist of the common research topics related to OSNs. In recent

FIGURE 1.2: Research Topics Related to Online Social Networks

Image courtesy: https://www.researchgate.net/profile/Alan_Godoy/
publication/275341115/figure/fig1/AS:294465735544833@1447217510420/
Categories-of-study-on-Online-Social-Networks-from-a-computational-perspective.

png

times, microstructures of the network are being studied[7] and each OSN is treated
as a different entity rather than modelling all OSN as large scale networks. Recent
studies in OSNs include the behavioural study of the networks, in-depth analysis of
network properties and OSN-specific modelling for activity and growth patterns. This

https://www.researchgate.net/profile/Alan_Godoy/publication/275341115/figure/fig1/AS:294465735544833@1447217510420/Categories-of-study-on-Online-Social-Networks-from-a-computational-perspective.png
https://www.researchgate.net/profile/Alan_Godoy/publication/275341115/figure/fig1/AS:294465735544833@1447217510420/Categories-of-study-on-Online-Social-Networks-from-a-computational-perspective.png
https://www.researchgate.net/profile/Alan_Godoy/publication/275341115/figure/fig1/AS:294465735544833@1447217510420/Categories-of-study-on-Online-Social-Networks-from-a-computational-perspective.png
https://www.researchgate.net/profile/Alan_Godoy/publication/275341115/figure/fig1/AS:294465735544833@1447217510420/Categories-of-study-on-Online-Social-Networks-from-a-computational-perspective.png
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approach finds application mainly in the field of targeted marketing and business mod-
elling. Study of microstructures of OSN combined with behavioural properties can give
an insight into individual and group behaviour in the OSN. Attempts have been made

FIGURE 1.3: Popular Categories of OSNs based on purpose

Image courtesy: https://forteconsultancy.files.wordpress.com/2010/02/
picture1.png

to categorise OSNs in the past. Fig. 1.3 provides one such categorisation. However,
these categorisations do not provide an idea of the network structure and properties of
the OSNs.

1.2 Motivation

Currently, although different OSNs are studied individually to understand the micro-
structures of the network, as a whole, all OSNs as a group are considered to be large
scale networks following power law distribution. They are also referred to as scale-free
networks[8][9]. While individual networks have been shown to be exceptions to the
power law distribution, no prominent literature exists to categorise OSNs based on the
network properties. A brief look into the structure of popular OSNs show that although
they are apparently different, there are some patterns in the structural properties of the
network that can be used to infer the microstructure of the OSN.
Based on the network structure, there also exists several growth models, information
diffusion models, rumour blocking models and so on that do not concentrate on the mi-
crostructure of the network as individually studying each OSN and devising an OSN-
specific model is not feasible. However, the generic models might not be best fits for all
OSNs. Thus, studying and categorising the different OSNs based on structural proper-
ties can help in feasibly devising category-specific models that are better fits than the
generic models.

https://forteconsultancy.files.wordpress.com/2010/02/picture1.png
https://forteconsultancy.files.wordpress.com/2010/02/picture1.png
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1.3 Contribution

The purpose of this work is to categorise popular OSNs based on their network struc-
tural properties. Initially, a set of relevant network structural properties have been cho-
sen from a massive pool of network properties. These properties are relevant and have
significant impact on the structure and microstructure of the network. As a part of this
thesis, an extensive study of the network properties of multiple OSNs is carried out.
Five real life OSNs have been considered in this research, namely, Facebook, YouTube,
Enron Email Network, Twitter, and Google+. All the network properties selected for
this thesis are evaluated for each of the five OSNs. The empirical results observed are
recorded and represented in tabular format or graphically. The significance of each of
the network properties for each of the OSNs have been explained. The empirical re-
sults are considered as a basis for categorisation. The effect of the network structural
properties on the categorisation has been explained. The OSNs are proposed to be cate-
gorised based on the observed similarities and differences in the empirical results. The
proposed categories are studied, analysed and justified. Thus, the contributions of this
thesis are

1. An extensive empirical study of multiple network properties of five OSNs is car-
ried out.

2. The significance of each of the network properties considered has been explained
with the help of the results of the empirical study.

3. The effect of the network properties on the network structure and microstructure
has been explained with the help of the results of the empirical study.

4. A categorisation of OSNs based on the network structural properties is proposed.

5. The expected structure and microstructure of each proposed category is explained.

1.4 Organisation

The thesis is divided into six chapters. The first chapter provides an introduction to
the topic of the thesis. The second chapter provides a survey of existing state-of-the-
art literature in relevant and related topics. The third chapter provides an overview
and significance of all the network properties considered for categorisation. The fourth
chapter represents the empirical studies and analyses the significance of the observed
values. The fifth chapter proposes the categorisation of the OSNs based on the observed
values. The sixth and last chapter provides a conclusion and future scope of research
in related and relevant topics.
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Chapter 2

Literature Survey

2.1 Network Theory Models

FIGURE 2.1: Random Graph

The study of modern-day networks started with two independent, and yet, quite sim-
ilar works by contemporary mathematicians. The first and more popular work is by
Paul Erdos and Alfred Renyi[2]. In this work, the concept of random graphs was in-
troduced. The concept is that all the graphs that can be drawn from a fixed number
of vertices and a fixed number of edges are equally likely. The other work, done by
Edgar Gilbert[10], is also about random graphs. This paper says that each edge of a
network has a fixed probability of being included in the network. This probability is
independent of the other edges in the network. Fig. 2.1 represents a random graph of
15 vertices. Both these papers were published in 1959 and thus began the journey of
network analysis. Random graphs follow the Poisson distribution for degree distribu-
tions.
The more relevant model for modern-day online social networks is the Barabasi-Albert

Model[11] or the Scale-free network model. Fig. 2.2 represents a scale free network of
15 vertices. Scale-free networks are those networks that asymptotically follow power
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FIGURE 2.2: Scale Free Network

law. Power law can be described using the equation

p(k) ∝ k−γ (2.1)

where k is the degree of a node, p(k) is the probability of occurrence of nodes with
degree k, and γ is the power law exponent. Thus, in a scale-free network, the probability
of high degree nodes is low, and the probability of low degree nodes is high. The power
law distribution is a variation of an exponential distribution. All new online social
networks are considered to be scale-free networks and are considered to follow power
law distributions.

The third kind of network model, also associated with modern day online social net-
works, is known as the Small World Network. One model for small world networks
was identified by Duncan J. Watts and Steven H. Strogatz[4]. It was initially developed
as a small world model for random graphs but was later extended to include other net-
work types such as social networks. Fig. 2.3 represents a small world network of 15
vertices. A small world network is one where the average path length of the network
grows proportional to the number of nodes in the network, that is,

l ∝ |V| (2.2)

where l is the average path length of the network and V is the vertex set.
l can be defined using the equation:

l =
∑∀i,j∈V ρ(i, j)

|E| (2.3)

where ρ(i, j) is the distance between the nodes i and j, V is the set of vertices and E is
the set of edges.
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FIGURE 2.3: Small World Network

2.2 Study of Network Properties

Structural properties of the network can be used to identify crucial details about the net-
work structure and microstructures and has multiple applications. Some of the most
researched wide domains of applications include information propagation, community
detection, study of the growth of the network and so on. Understanding the influence
of different structural properties on the dynamics of information flow in an OSN is an
interesting open field of research. Different community detection methods utilise dif-
ferent network properties and more approaches can be developed maximising a set of
network properties. The effect of network properties on how a network grows is also
an interesting problem. Thus, studying the network properties has been a significant
field of research.
The most popular group of network properties to be studied are centrality measures.
Several centrality measures have been studied for online social networks. Some of
the more common centrality measures include - degree centrality, closeness central-
ity, eigenvector centrality and betweenness centrality.
In 1978, a paper by Linton C. Freeman[12] studied the three centrality measures for
online social networks, and that led to a series of developments in measuring an OSN
with respect to its centrality measures. In a later paper[13], it is shown that the effect of
distance-based centrality is negligible on the structure and behaviour of online social
networks. In a paper by Hage and Harary[14], they show that the concept of centre and
eccentricity is essential and needs to be included along with the centrality measures for
meaningful analysis. Thus, it can be seen that with the study of each new OSN, contra-
dictory and yet, correct, analysis can be made about how an OSN behaves. In [15], the
importance of tie strength when analysing different centrality measures, namely, de-
gree, closeness and betweenness centrality, has been shown. This work, thus, considers
weighted graphs for centrality measure analysis.
Closeness centrality is a popular centrality measure that has been studied widely in the
literature. The work by Linton C. Freeman[12] already establishes closeness centrality
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as an important centrality measure. In [16], an efficient algorithm for finding the top-
k ranks for closeness centrality for large scale networks has been proposed. Another
important centrality measure is eigenvector centrality. This centrality measure has a
unique property in contrast to the other centrality measures. Eigenvector centrality can
be effectively applied to weighted graphs[17]. The effect of betweenness centrality has
also been studied widely in OSNs. In [18], the authors study the betweenness central-
ity correlation between different categories of OSNs based on assortativity. That is, the
authors study the correlation of betweenness centrality in assortative, neutral and dis-
assortative networks. In [19], a new betweenness centrality measure is defined that can
be applied to weighted graphs and is dependent on all the independent paths between
any two points in the network.
Two other essential properties of OSNs are assortativity and homophily. MEJ Newman
in his works [20] and [21] studied the mixing and assortative mixing of nodes in the
network. These works study mixing patterns for static characteristics of the nodes such
as age, ethnicity and so on. Assortativity can also be studied concerning the similarity
in degree centrality. Homophily is another network property that is a measure of sim-
ilarity. The similarity of nodes can be based on static characteristics such as age and
gender, or dynamic characteristics such as friends circle and activity[22][23]. In [24], it
has also been shown that networks grow following the principle of homophily.

2.3 Communities, Groups, and Microstructures

The purpose of social network analysis is to get a clear understanding of the OSNs
work. One key element of any OSN is the formation of groups or communities in OSNs.
A wide field of study has been dedicated to studying the microstructures in OSNs and
identifying communities in the OSNs. A study by Leskovec et. al.[25] shows that small
and tightly-knit communities, which dissolve at large scale. Another work by Mislove
et. al.[9] studies the structure of multiple popular OSNs. The findings of this paper
show that these OSNs have an inner structure of connected high degree nodes, and pe-
ripheral structures of small tightly-knit clusters of low degree nodes. In [26], it is shown
that in most of the OSNs, three general structures exist. The first is isolated nodes, the
second is small isolated communities with a star-like topology, and a well-connected
central core structure which forms a giant component.
The behaviour of groups or communities over time is another exciting and significant
field of study. In [27], the authors study the network structural factors that promote
joining new groups and catalyse leaving old groups. The paper also studies the net-
work structural factors responsible for the inclusion of new members in a group. In
another paper[28], the authors show the time dependence of community structures in
large scale networks. The findings of this paper indicate that the behaviour of small
tightly-knit communities and that of the large scale network as a whole are different.
In [29], it is shown that in a network consisting of smokers and non-smokers, the size
of clusters of smokers remains constant over time but the total number of smokers de-
crease with time. Thus, smokers quit in clusters, which is another example of group
dynamics.
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2.4 Social Network Analysis in Marketing

Currently, the main application of social network analysis is in marketing and advertis-
ing. In [30], the presence of brand communities in present-day OSNs, and how it can be
beneficially exploited has been studied. In [31], the effect of different network proper-
ties on marketing studies. The paper shows the how different structural properties can
be used to better understand relationships amongst members of a business-to-business
network. In [32], the effect of network properties on research in the field of hospital-
ity management and marketing is highlighted. Studies in this paper show that most
academic collaborators are located in close geographic proximity in a network of co-
authors.
The future of online social network analysis in the field of marketing has been stud-
ied in [33] amongst recent studies in this domain. Another recent work which comes
as an application of online social network analysis in marketing includes the work in
[34]. In this work, green consumption related published articles were considered and
community detection was applied in order to find the main theoretical relationships.

2.5 Previous Categorisation of OSNs

The categorisation of OSNs can be interpreted in multiple ways. Most attempts of cate-
gorisation or classification on OSNs are related to node classification, relationship clas-
sification or classification of the content present on online social networks. However,
little literature exists on categorising OSNs based on the structural network properties.
Node classification attempts such as the network embedding approach preserving the
structural as well as attribute proximity[35] or classification of nodes in streaming data,
i.e., the massive volume of data generated continuously[36]. These works concentrate
on classifying nodes based on some learning or training and do not focus on categoris-
ing the OSN as a whole. Another form of classification on OSN includes relationship
classification. In [37], the authors first study and categorise the different types of re-
lationships in the network based on their network properties as well as behavioural
properties. They then exploit this classification to optimise information propagation
in OSNs. Content classification is another well-researched area in OSNs. In [38], the
authors present a feature selection technique for large scale short textual data for real-
time classification. The feature selection is based on both the social network data and
the content-based data and thus provides more accurate results.

2.6 Summary

It can be seen by reviewing the existing literature, that the network properties have
been extensively studied in the past and their results thoroughly analysed. It can also
be seen that the network microstructures have also been studied thoroughly and effi-
cient methods have been suggested for identifying and extracting the microstructures.
Literature also exists on the classification of nodes, edges and content based on both the
network structural properties as well as the attributes and behavioural properties.
However, examples of combining multiple network properties to categorise the OSNs
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as a whole, and not their nodes, edges or content individually, can be found in the litera-
ture. Also, no study of structure and microstructures of an OSN based on categorisation
is present in literature. This kind of an empirical study can be crucial to quickly iden-
tify, analyse and process OSNs, especially because of the growth of existing networks
and the inclusion of new OSNs. This research work, thus, provides a unique categori-
sation of OSNs based on structural properties and the correlation of the categories with
network structure and microstructures. The next chapter provides a theoretical study
of different network properties and structures that are relevant for understanding the
structure and microstructures of an OSN.
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Chapter 3

Network Structural Properties

3.1 Degree Centrality

One of the most widely studied network property is Degree Centrality. Degree cen-
trality can be defined as the number of edges connected to a node. For directed networks,
degree centrality can be of two types - out-degree and in-degree. Out-degree is the
number of edges originating from a node and in-degree is the number of edges ending
at a node.[39]
Degree centrality is a measure of connectedness or importance of a node. The more the
degree of a node (i.e., the more the number of edges connected to a node), the more is it
is “importance”. The “importance” can be studied from many perspectives. From the
network structure perspective, high degree centrality nodes contribute more towards
network growth following the preferential attachment rule.
The preferential attachment rule follows the rich gets richer phenomena. The rule is
that higher the degree of a node more is its probability of attaining new edges. The
new edge might be between two existing nodes or between a new node and an existing
node. By principle, it is more probable for a new node to attach to an “important” node,
thus making it more “important”. However, the preferential attachment rule does not
consider the activity level or inherent bias of a node.
A node can have a high degree centrality but might be inactive in the network, which
can decrease it is “importance”. Moreover, a node might be inherently “popular” out-
side the network which might affect the popularity of the node in the network. These
two cases can lead to an exception to the preferential attachment rule.
Most large scale networks follows Power Law Distribution[40][11]. The preferential at-
tachment rule leads to the power law distribution of online social networks. A power
law distribution has a probability distribution function

p(x) =
α− 1
xmin

e(ln x−µ)2/2σ2

xσ
√

2π
(3.1)

Degree centrality is generally represented using a degree distribution plot. The degree
distribution can be represented using a pdf plot, a log-log plot of the pdf and cumula-
tive degree distribution. The distributions can be represented using both uniform and
non-uniform bin sizes. The power law distribution has a signature curve in the pdf and
CDF plot and is a straight line with a negative slope in the log-log plot.
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3.2 Power Law Exponent

Power law exponent is closely connected to the degree distribution of the network. Power law
exponent describes the shape of the long-tail distribution. The study of networks started
with random networks[2]. The degree distribution for random networks follows the
Poisson distribution. However, most real-life large scale networks, whether it be the
World Wide Web[3] or Co-author network[40] so on. all follow Power law distribution[41].
The power law distribution can be calculated as follows -

p(k) ∝ k−γ (3.2)

where γ is the power law coefficient. Thus, the number of nodes with degree k de-
creases exponentially with a factor of γ as the value of k increases. In other words, high
degree nodes are infrequent, and low degree nodes are frequent.
Given the degree distribution of a network, the power law exponent can be estimated
as follows -

γ = 1 + n

(
∑

u∈V
ln

d(u)
dmin

)−1

(3.3)

where, V is the vertex set, d(u) is the degree of node u and dmin is the minimum degree
threshold.

3.3 Connected Components

Number of components is a measure for the group formation and connectivity of the network.
A connected component in a network is a sub-graph in which there exists a path be-
tween every pair of vertices i, j ∈ V ′ where V ′ is the set of vertices of the sub-graph.
For directed networks, there are two types of connected components - weakly con-
nected components and strongly connected components. A weakly connected compo-
nent is a sub-graph in which if the direction of the edges is disregarded, it becomes a
connected component. A strongly connected component is a sub-graph in which there
exists a directed path between every pair of vertices i, j ∈ V ′ where V ′ is the set of ver-
tices of the sub-graph. A network is said to be connected if the number of connected
components(strongly connected network for directed networks) is 1 and disconnected
otherwise.

3.4 Path Lengths

The diameter of a network gives a sense of the vastness or scale of the network. The
distance(ρ(i, j)) between two nodes i, j ∈ V is the minimum number of edges between
the two nodes, where V is the vertex set. The diameter of the network is given as -

max(ρ(i, j))∀i, j ∈ V (3.4)

That is, the diameter of a network is the maximum distance of all calculated distances
in the network[42].
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Average Path Length of a network is another measure of the vastness or scale of the net-
work. It is given by the formula -

∑i,j∈V ρ(i, j)
|V|2 (3.5)

That is, the average path length of a network is the average of all calculated distances
in the network.
The OSNs are huge if measured in terms of the number of nodes or number of edges.
Therefore, they can be expected to have large values for diameter and average path
lengths. However, all OSNs have small diameters and average path lengths below
6[43].
If a network is disconnected, then path lengths such as diameter and average path
length are calculated for the biggest connected component(that is, the connected com-
ponent with the highest number of nodes).

3.5 Density

Density is the ratio of the number of edges present in the network to the total number of edges
possible in the network[42]. The maximum possible number of edges in a directed net-
work can be -

|V|(|V| − 1) (3.6)

and the maximum possible number of edges for the undirected network can be -

|V|(|V| − 1)
2

(3.7)

where, |V| is the number of nodes in the network.
Therefore, for directed network the value for density of the network is calculated as -

|E|
|V|(|V| − 1)

(3.8)

and that for undirected network as -

2|E|
|V|(|V| − 1)

(3.9)

where, |E| is the number of edges in the network.

3.6 Clustering Coefficient

Clustering Coefficient is a measure of denseness of a network and its vertices. In other
words, the clustering coefficient measures the denseness of the neighbourhood of a
node. There are three types of clustering coefficients -
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FIGURE 3.1: Global Clustering Coefficient

3.6.1 Global Clustering Coefficient

Global Clustering Coefficient is a denseness measure for the network as a whole[42]. It
is calculated as -

3 ∗ number o f triangles
number o f triplets

(3.10)

where, a triplet is a connected sub-graph of 3 vertices and a triangle is a cycle of size 3.
Fig. 3.1 represents the global clustering coefficient of a network.
Higher is the value of the global clustering coefficient; denser is the network. However,
the global clustering coefficient by itself is not a sufficient measure for network dense-
ness. This is because, parts of the network might be very dense while other parts might
be sparse, but the global clustering coefficient might be dense which can be misleading.

3.6.2 Local Clustering Coefficient

FIGURE 3.2: Local Clustering Coefficient and Average Local Clustering
Coefficient
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Local Clustering Coefficient is a denseness measure for the neighbourhood of a node.
For directed networks, the local clustering coefficient is calculated as -

ei

ki(ki − 1)
(3.11)

and that for undirected network as -

2ei

ki(ki − 1)
(3.12)

where k is the number of neighbours of a node and e is the number of edges present in
the network between the k neighbours.
The local clustering coefficient for every node of a network might be represented as a
distribution curve or as histograms.
The average local clustering coefficient for the whole network can be calculated as fol-
lows -

∑ lcc(i)i∈V
|V| (3.13)

where V is the set of vertices and lcc(i) is the local clustering coefficient of node i and
|V| is the number of nodes in the network.
Fig. 3.2 depicts the local clustering coefficient and the average local clustering coef-
ficient of a network. The average local clustering coefficient is a measure of average
denseness of the network[4]. However, average local clustering coefficient by itself is
not a sufficient measure for network denseness. This is because, parts of the network
might be very dense while other parts might be sparse, but the average global cluster-
ing coefficient might be dense which can be misleading.
Thus, to have a clear understanding of the network structure, all the different types of
clustering coefficient needs to be considered.

3.7 Cliques and Hubs

3.7.1 Cliques

FIGURE 3.3: Cliques
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Cliques are complete sub-graphs. They are the densest sub-graph possible, where every
node in the sub-graph is adjacent to all other nodes in the sub-graph. Fig. 3.3 represents
complete subgraphs of size 2, 3, and 4 and a clique of size 4 embedded in a graph. Thus,
the density, average local clustering coefficient and global clustering coefficient of such
a sub-graph are 1, the local clustering coefficient of every node is also 1. However,
finding such sub-graphs in an OSN is unlikely. A pseudo-clique is a relaxed form of a
clique where some of the edges of the clique might be missing. There is no standard
threshold percentage of edges that needs to be present in a sub-graph for it to be a
pseudo-clique.

3.7.2 Hubs

FIGURE 3.4: Hub

Star is a sub-graph where one node is connected to all other nodes in the sub-graph.
The central node which is adjacent to all other nodes in the sub-graph is called a Hub.
All nodes in the sub-graph, other than the hub, are not adjacent to each other. However,
finding stars in OSNs is unlikely. Star-like structures are more common in OSNs, where
some of the nodes, other than the hub, in the sub-graph might be adjacent. There is no
standard upper bound on how many such edges can be present before a sub-graph can
no longer be called a star-like structure.

3.8 Closeness Centrality

Closeness centrality is a relative closeness of nodes in a network. It is the reciprocal of dis-
tances of all nodes from a particular node i in the network[44] and it can be calculated
as -

c(i) =
1

∑∀j ρ(i, j)
(3.14)

where node j and node i are in the same connected component. High closeness central-
ity means the node is closely connected to all nodes in the connected component.
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3.9 Eigenvector Centrality

Eigenvector centrality is a measure of the importance of the neighbourhood of a node[4].
Eigenvector centrality can be measured as -

e(i) =
1
λ ∑
∀j

gije(j) (3.15)

where i and j have a path between them, λ is a proportanality constant, gij is 1 if there
exists an edge between i and j, 0 otherwise. High eigenvector centrality means the
neighbourhood of a network is important.

3.10 Betweenness Centrality

Betweenness centrality is a measure of the connectedness of a network. Betweenness cen-
trality considers the number of paths that passes through a node i. These paths may or
may not originate or terminate at node i. The betweenness centrality can be calculated
as -

b(k) =
2

(|V| − 1)(|V| − 2) ∑
i,j,k 6=i,k 6=j

ν(i, j, k)
ν(i, j)

(3.16)

for undirected graphs and

b(k) =
1

(|V| − 1)(|V| − 2) ∑
i,j,k 6=i,k 6=j

ν(i, j, k)
ν(i, j)

(3.17)

for directed graphs. Here ν(i, j) is the number of shortest paths between node i and j,
and ν(i, j, k) is the number of shortest paths between node i and j that passes through
node k.
Betweenness centrality measures how important a node is in connecting other nodes.
So, if a node with high betweenness centrality is removed from a network, the network
would be a lot less connected.

3.11 Homophily

Homophily is the measure of similarity of nodes. A vertex in a graph can have multiple
attributes. Some of the attributes can be static, such as demographic data, while other
attributes can be dynamic, like friend’s list, activity level and so on. Edges of a graph
can also have multiple attributes. The similarity of vertices can be measured based on
vertex attributes as well as edge attributes. However, not all attributes of a vertex or a
node can be considered as structural property. Rather, these attributes can be termed as
beavioral properties.
Moreover, it is difficult to obtain vertex and edge attributes for OSNs due to security
issues and privacy policies adopted by the OSNs.
For this thesis, only one structural property, namely, the clustering coefficient has been
considered for judging the similarity of two nodes. If two nodes have similar local
clustering coefficients, then they are described to be similar. The vertices are divided
into clusters or groups based on their local clustering coefficient values, where nodes
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with similar local clustering coefficient are grouped. An algorithm proposed by Sen et.
al.[45] has been used or this clustering.

3.11.1 Clustering Algorithm

For this thesis, a clustering algorithm by Sen et. al.[45] has been considered. This al-
gorithm divides vertices of a network into non-empty structures referred to as focal
structures. The algorithm calculates the local clustering coefficient lcc(i), ∀i ∈ V where
V is the set of vertices. The algorithm also calculates the average local clustering co-
efficient alcc for the network. Then, for every pair of vertex i, j ∈ V the algorithm
calculates lcc(i) and lcc(j). If both lcc(i) > alcc and lcc(j) > alcc or both lcc(i) < alcc
and lcc(j) < alcc the the vertex i, j are allocated to the same focal structure, say fi. This
algorithm is appropriate because it takes into account only two simple network prop-
erty metrics, namely, local clustering coefficient and average local clustering coefficient,
and also has a low computational time complexity which is desirable for working with
large scale networks.

After clustering, the homophily value of the network is calculated as[42] -

ht
s =

{
1, i f s = t
0, otherwise

(3.18)

where, s and t are two groups as divided by the algorithm proposed by Sen et. al.[45].
This value is calculated for all pairs of s and t. A value of 1 means all edges within the
group and a value of 0 means all edges are inter-group edges[24].
The average homophily value of the whole network can be calculated as -

h =
ht

s
c

(3.19)

where c is the number of ht
s with non-zero values. Average homophily value for a

directed network can be calculated as hin and hout for in-degree network and out-degree
network respectively.
Higher values of average homophily for the network signifies that similar nodes are
well-connected in the network and lower homophily values indicate that similar nodes
are disconnected in the network.

3.12 Assortativity

Assortativity is a measure of connectedness of similar nodes. Here, the similarity is implic-
itly considered in terms of degree centrality. Assortativity can assume positive values
and negative values. The range of assortativity values lie within [−1, 1]
The assortativity value for a network can be calculated as[20][21] -

r =
∑jk ejk − qjqk

σ2
q

(3.20)
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where

qk =
(k + 1)qk+1

∑j jpj
(3.21)

and

σ2 = ∑
k

k2qk −
(

∑
k

kqk

)2

(3.22)

The value of r can be interpreted as -

r


≈ 0, neutral
> 0, assortative
< 0, disassortative

(3.23)

where, in assortative networks, nodes with a similar degree are connected, and nodes
with a dissimilar degree are disconnected. In disassortative networks, dissimilar nodes
are connected, and similar nodes are disconnected. In neutral networks, either both
similar as well as dissimilar nodes are disconnected, or both are connected. Assortativ-
ity value for a directed network can be calculated as rin and rout for in-degree network
and out-degree network respectively.

3.13 Summary

In this chapter, the network structural properties have been studied in details. These
properties form the basis of the empirical study that has been conducted in the next
chapter. Five real-life OSNs have been considered for empirical study of the network
structural properties. Each of the property is empirically studied for each of the OSN.
The network properties studied in this chapter, either individually or collectively, help
in inferring some structural or microstructural details of the OSNs. The inferences are
drawn based on the results of the empirical study that has been conducted in the mext
chapter.
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Chapter 4

Empirical Study of Network
Structural Properties

4.1 Overview

The previous chapter outlines the major network structural properties. These proper-
ties have been empiricaly studied in this chapter. The network structural properties
have an expected value or expected range of values for the OSNs. The observed values
for the network structural properties have been compared with the expected values or
range of values. The similarities and differences in the observed and expected values
are acknowledged, analysed and explained to better understand the network structure
and microstructure of the OSNs.

4.2 Selection of Networks

The first step in conducting this research was to identify and select OSNs. In current
times, there is a wide variety of OSNs available. However, considering the complete
set of networks is not feasible for this study. Therefore, the challenge was to select a
sample that would provide a correct and accurate representation.
For this research, five online social networks were chosen, namely, Facebook, YouTube,
Email, Twitter, and Google+. This set provides much variety in terms of purpose, type
of relationship, nature of the relationship, network density and many such other net-
work metrics.

4.2.1 Facebook

Facebook was founded in 2004 in the United States of America and made worldwide
debut in 2005. It is listed as a social networking site. Currently, there are more than
2.38 billion active user profiles on Facebook. The nature of the relationship of Face-
book is friendship, which is a bidirectional relationship(unless explicitly restricted by
the user). The nature of the content on Facebook can be textual, audio-visual and
other multimedia types. Facebook was primarily used to connect, share and stay in
touch with people one already knows. Facebook has two other popular OSNs, namely,
Instagram and WhatsApp, as its subsidiaries. The dataset has been collected from
http://konect.uni-koblenz.de/networks/facebook-wosn-links. It is an undirected

http://konect.uni-koblenz.de/networks/facebook-wosn-links
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network of friends relationship. The number of nodes in the network is 63,731 and the
number of edges is 8,17,035.

4.2.2 YouTube

YouTube was founded and launched in 2005 in the United States of America and has
been active worldwide ever since. It is listed as a Video hosting site. YouTube cur-
rently works as a subsidiary of its parent company Google. The type of content on
YouTube is exclusively audio-visual. However, follow-up communication based on
the audio-visual content is textual. Although holding a profile on YouTube is not
compulsory for viewing contents, it is mandatory for any form of communication.
The nature of the relationship on YouTube is friendship, which is bidirectional. Cur-
rently, YouTube has 1.3 billion user profiles. The dataset has been collected from http:
//socialcomputing.asu.edu/datasets/YouTube. In this dataset, 5 edge sets are pro-
vided. Out of the five edge sets, "1-edges.csv" was considered. It is an undirected
network of friends relationship. The number of nodes in the network is 13,723 and the
number of edges is 76,765.

4.2.3 Email

The email network considered for this research is known as the Enron Email network.
It is a set of emails that were sent/received by the employees of the American company
Enron. The data was initially made public by the Federal Energy Regulatory Commis-
sion. There were multiple integrity issues in the initial dataset, and the version of the
dataset that has been used for this research has all the integrity issues resolved. The
dataset contains both professional as well as personal emails. The emails sent/received
by non-employees of Enron has also been considered in the dataset, as long as at least
one of the sender or receiver of the email is an Enron employee. Email-based networks
are also considered as online social networks, and thus this network has been included
for this study. The nature of the relationship for this network is email. The dataset
has been collected from https://snap.stanford.edu/data/email-Enron.html. In this
edge set, each undirected edge has been represented using two directed edges. Thus, it
is considered as an undirected network of email contacts. The number of nodes in the
network is 36,692 and the number of edges is 1,83,831.

4.2.4 Twitter

Twitter was founded in 2006 in the United States of America and has been active world-
wide since then. It is listed as a news and social networking site. There are currently
more than 300 million active users on the network. Twitter supports multimedia and
textual content and is often referred to as a microblogging site. Initially, there was a
140 character restriction on the published text, and only textual content was supported,
following the Short Message Service(SMS) ideology. Currently, the limit on textual con-
tent is 280 characters. The type of relationship on Twitter is unidirectional. Contrary to
Facebook, Twitter is primarily used to connect to popular figures. Currently, Twitter has
three other OSN subsidiaries, namely, Vine, Periscope and MoPub.The dataset has been
collected from http://konect.uni-koblenz.de/networks/munmun_twitter_social. It

http://socialcomputing.asu.edu/datasets/YouTube
http://socialcomputing.asu.edu/datasets/YouTube
https://snap.stanford.edu/data/email-Enron.html
http://konect.uni-koblenz.de/networks/munmun_twitter_social
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is a directed network of follow contacts. The number of nodes in the network is 4,65,017
and the number of edges is 8,34,797.

4.2.5 Google+

Google+ was founded in 2011 by Google in an attempt to replace a prior Google prod-
uct Google Buzz. Google+ was shut down in April 2019. It was listed as a social net-
working service. In 2015, Google+ had 111 million active user profiles. The nature of
the content on Google+ was multimedia and textual, and the type of relationship on
Google+ was friends circle, which is unidirectional. Google+ was primarily launched
as a challenge to contemporary OSNs and was connected to other Google products like
Bloggr, YouTube and Gmail. Google+ has an Enterprise version which is still in use
by G-Suite users for intra-organisation communication. The dataset has been collected
from http://konect.uni-koblenz.de/networks/ego-gplus. It is a directed network
of friends circle. It is an ego network, where there are central hubs or ego nodes and
peripheral nodes or alter-egos. The number of nodes in the network is 23,628 and the
number of edges is 39242.

It can be seen from the network descriptions provided above that none of the networks
considered for this research is a complete representation of the OSN, but rather, is a
small sample of the actual network. Thus, some errors might be present in the ob-
served values in following sections due to the sampling errors.

4.3 Results and Analysis

4.3.1 Degree Distribution

Degree distribution of a network is the probability of a node to have degree k. It is
generally represented graphically. For this research, the cumulative density function
for the degree distribution has been considered for plotting. The cumulative density
function for degree distribution can be represented as -

p(i) =
count(j|j ≥ i)

|V| ∀i ∈ 1→ dmax (4.1)

where count(j|j >= i) is the number of degree values greater than or equal to i, V is
the set of vertices, and dmax is the maximum degree in the network.
For this thesis, the cumulative density function for the degree distribution has been rep-
resented in two ways. The normal distribution has been represented with the log-log
plot represented inset. The graphical representations contain degree on the x-axis as the
independent variable and the fraction of nodes with a particular degree on the y-axis
as the dependent variable. Fig. 4.1 represents the degree distribution for the Facebook
network. It can be observed that both the normal plot and the log-log plot of degree
distribution follows the shape of power law distribution. Fig. 4.2 represents the degree
distribution for the Email network. It can be observed that both the normal plot and
the log-log plot of degree distribution follows the shape of power law distribution. Fig.
4.3 represents the degree distribution for the YouTube network. It can be observed that
both the normal plot and the log-log plot of degree distribution follows the shape of

http://konect.uni-koblenz.de/networks/ego-gplus


Chapter 4. Empirical Study of Network Structural Properties 23

(A) Cumulative Density Distribution (B) Log-Log Plot

FIGURE 4.1: Facebook Degree Distribution

(A) Cumulative Density Distribution (B) Log-Log Plot

FIGURE 4.2: Email Degree Distribution

(A) Cumulative Density Distribution (B) Log-Log Plot

FIGURE 4.3: YouTube Degree Distribution
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(A) Cumulative Density Distribution (B) Log-Log Plot

FIGURE 4.4: Google+ In-Degree Distribution

(A) Cumulative Density Distribution (B) Log-Log Plot

FIGURE 4.5: Google+ Out-Degree Distribution

power law distribution.
It can be seen that the normal plots and the log-log plots of all three undirected net-
works are close to the cumulative density function of power law. However, there are
small deviations that can be observed from these figures. These deviations suggest
that the undirected networks, although are similar to power law distributions, do not
strictly follow power law distributions. For directed networks, there are two degree
distributions, in-degree distribution and out-degree distribution. Fig. 4.4 and Fig. 4.5
represents the in-degree and out-degree distribution of the Google+ network respec-
tively. Similarly, Fig. 4.6 and Fig. 4.7 represents the in-degree and out-degree distri-
bution of the Twitter Network respectively. It can be seen that although the in-degree
distributions are somewhat similar to the power law distribution, the out-degree dis-
tributions of these networks do not follow power law. The stark difference in in-degree

(A) Cumulative Degree Distribution (B) Log-Log Plot

FIGURE 4.6: Twitter In-Degree Distribution
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(A) Cumulative Degree Distribution (B) Log-Log Plot

FIGURE 4.7: Twitter Out-Degree Distribution

(A) Local Clustering Coefficient Distribution of
OSNs(out-degree)

(B) Local Clustering Coefficient Distribution of
OSNs(in-degree)

FIGURE 4.8: Local Clustering Coefficient Distribution

and out-degree networks for directed networks show that even the same network can
have very different structure and behaviour if the direction of the edges are changed.
Observing the degree distributions of undirected networks, and the in-degree distribu-
tions of the directed networks closely show that they can be represented as a composite
distribution. Visually observing the shape of the curves show that power law and log-
normal distributions are the two strongest candidates. A combination of these two
distributions with power law fitted to the tails of the distribution and lognormal fitted
to the body of the distribution can provide the best fit.

4.3.2 Local Clustering Coefficient Distribution

Fig. 4.8a and Fig. 4.8b represents the local clustering coefficient distribution of the
five OSNs that have been considered for this research. Since changing the direction of
edges in directed networks yield different neighbourhoods, the local clustering coeffi-
cient distribution for the in-degree networks have been represented in Fig. 4.8b. It can
be seen from Fig. 4.8a that in both the directed networks, almost all the nodes have lo-
cal clustering coefficient in the range of 0 to 0.1. However, for the undirected networks,
all ranges of local clustering coefficients have some nodes. The higher number of nodes
have low local clustering coefficient, and lower number of nodes have high local clus-
tering coefficient. However, for the case of the email network, there is an unlikely spike
between the range of 0.9 to 1 of the local clustering coefficient. This indicates that either
the email network has a lot of cliques or pseudo-cliques, or a high number of isolated
connected pairs of nodes.
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4.3.3 Structural Properties

There are multiple network structural properties that have been studied in literature.
An extensive set of structural properties have been selected for the purpose of this
paper. The selected properties encompass all the important features of an OSN. The
structural properties considered in this section for the empirical study includes -

1. Power Law Exponent

2. Connected Components

3. Diameter

4. Average Path Length

5. Density

6. Global Clustering Coefficient

7. Local Clustering Coefficient

8. Average Local Clustering Coefficient

9. Closeness Centrality

10. Betweenness Centrality

11. Eigenvector Centrality

12. Homophily

13. Assortativity

Power Law Exponent

The value of power law exponent(γ) generally lies in the range of 2 to 3 for OSNs. The
power law exponent values observed for the five OSNs under consideration show a
particular trend. The first thing to note that, since N4 and N5 are directed networks,
they can have two different degree distributions, one for the in-degree and the other
for the out-degree. Thus, for N4 and N5, the power law exponent for in-degree can be
presented as γin and that for out-degree distribution can be presented as γout.
Empirical study shows that the values of γ for all the networks are within the range
of 2 to 3, except the out-degree distribution of N4 and both in-degree and out-degree
distribution of N5. Facebook, Email and YouTube have power law exponent values of
2.4, 2.4, and 2.1 respectively. For Twitter and Google+, power law exponents are given
as γout = 2.9, γin = 4.7 and γout = 1.5, γin = 4.2 respectively. Thus, it can be assumed
that the OSNs follow power law with few exceptions Another important point to note is
the value of dmin, which is not always 0. The significance of dmin is that the distributions
follow the power law with the give value of γ for d(i) ≥ dmin where d(i) is the degree
of the ith node. Thus, if dmin is not equal to 0 or 1, that implies that parts of the network
may not strictly follow power law.
Thus, based on the values of γ and dmin, it can be concluded that the networks do not
strictly follow power law throughout the distribution.
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Connected Components

For directed networks, both the number of weakly connected components as well as
strongly connected components has to be considered. It can be seen from the results of
the empirical study that the number of strongly connected components of directed net-
works is almost the same as the number of nodes in the network. However, the number
of weakly connected components is less in directed networks. The number of strongly
connected and weakly connected components for Twitter are 1 and 4, 63, 245 and that
for Google+ are 4 and 23, 571 respectively. In comparison, the number of connected
components for undirected networks is much lower than the number of strongly con-
nected components but higher than the number of weakly connected components. The
number of connected components for Facebook, Email and YouTube are 144, 21, and
1065 respectively. Thus, it can be said that undirected networks have more well-formed
groups as compared to directed networks if each connected component is considered
as a group.

Diameter

The diameter of an OSN does not grow proportionally with the number of edges or
number of nodes in a network. In general, the diameter of a network has a small upper
bound. For disconnected networks, the diameter of the largest connected component
is considered as the diameter of the network. Multiple values have been stated for
diameter as the values presented in http://konect.uni-koblenz.de/networks did not
always match with the observed value. Thus, both values have been presented for a
complete picture. The diameter of Facebook, YouTube, Email, Twitter, and Google+
as calculated for the empirical study are 15, 12, 13, 8, and 8 respectively. However,
the values for diameter of Twitter and Google+ is 19 and 10 respectively as shown in
http://konect.uni-koblenz.de/networks. Thus, it can be seen from the empirical
study, that the value of diameter for both directed as well as undirected network is
below 20 in every case, irrespective of the size of the network.

Average Path Length

The value of average path length generally lies between the range of 4 to 6 for OSNs.
Thus, the average path length does not grow proportionally with the number of nodes
or number of edges. The average path lengths for the five OSNs, as observed from
the empirical study, for both the directed as well as undirected networks is below 6, as
predicted. The average path length for Facebook, YouTube, Email, Twitter, and Google+
are 4.28, 4.26, 3.39, 4.59, and 3.95 respectively.

Density

Online social networks, in general, are supposed to be sparse. This is because, the
sizes of the networks are huge, and the demographic variety exhibited in the network
is unbounded. People from different geographical location, different ages, different
socio-economic backgrounds, different interests and so on are all members of the OSNs.
However, generally, people in OSNs connect to similar people, and thus, forms groups
or clusters. Therefore, the number of connections over dissimilarities is very low. As a

http://konect.uni-koblenz.de/networks
http://konect.uni-koblenz.de/networks
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result, the density in the small groups or clusters of familiar or similar people is high,
but the inter-cluster density is very low. Also, the sizes of the clusters are considerably
smaller than the size of the network. Therefore, in general, the density of an OSN is
low.
The density for Facebook, YouTube, Email, Twitter, and Google+ are 0.0004, 0.0008,
0.0006, 0.00004, and 0.00007 respectively. The empirical study shows that the density of
the OSNs is low, as predicted. However, the density of directed networks is in general
lower than the density of the undirected network, by order of 10−1 or more. This is
partially because the possible number in directed networks is twice that of undirected
networks. Thus, even if the number of vertices and edges present in the directed net-
work and undirected network is the same, the density of the directed network would
be half that of the undirected network.

Global Clustering Coefficient

Global Clustering Coefficient of a network measures the presence of a particular mi-
crostructure, namely, a triangle, in the network. More specifically, GCC finds the ratio
of triangles to triplets. A higher value of GCC indicates that most of the triplets are tri-
angles. Triangle is the simplest representation of common neighbours, and thus, signify
the formation of groups. Therefore, it can be anticipated that the value of GCC would
be low for OSNs because OSNs have small groups and in general is sparse.
The global clustering coefficient for Facebook, YouTube, Email, Twitter, and Google+
are 0.1477, 0.0795, 0.0853, 0.0001, and 0.0008 respectively. It can be seen from the empir-
ical study, that the value of GCC for the five OSNs considered for this research is low.
However, the GCC of directed networks is lower than the GCC of undirected networks,
by order of 10−2 or more. So, in directed networks, the presence of paths of length 2 is
higher than the presence of cycles of length 3. Thus, the formation of groups is higher
in the undirected network as compared to directed networks. This is partially because
of the nature of the relationships and partially because of the purpose of the networks
that have been considered.

Average Local Clustering Coefficient

The average local clustering coefficient of the network provides a general idea of the
denseness of the network. ALCC measures how dense the local neighbourhood of a
node is, for every node in the network. As the number of nodes in an OSN is high, and
not all nodes are of the same importance, it can be predicted that the value of ALCC of
a network should be low. For directed networks, since the neighbourhood of the nodes
change with a change in the direction of the edge, the value of ALCC is different for in-
degree distribution and out-degree distribution, which has been presented as ALCCin
and ALCCout respectively.
The average local clustering coefficient for Facebook, YouTube, and Email are 0.2210,
0.1367, 0.49610 respectively. The average local clustering coefficient of Twitter and
Google+ are ALCCout = 0.000002, ALCCin = 0.0053, and ALCCout = 0.000009, ALCCin =
0.0549 respectively. The observed values show that, as predicted, the value of ALCC is
low for all the OSNs. However, the value of ALCC for directed networks is an order
of 10−1 or more less than the value of ALCC for undirected networks. Thus, it can be
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said that group formation is less in directed networks as compared to undirected net-
works as the neighbours of a node are not connected amongst themselves in directed
networks.

Closeness Centrality

The closeness centrality value gives an idea of how closely connected a node is with
the other nodes in the same connected component. So a higher closeness centrality
value for a node means its average distance from all its connected nodes is low, that
is, it is close to all its connected nodes. The values considered for the empirical study
are the average closeness centrality for the OSN. The average closeness centrality of
Facebook, YouTube, Email, Twitter, and Google+ as calculated for the empirical study
are 0.2332, 0.2347, 0.2132, 0.0006, and 0.0006 respectively. It can be seen that undirected
networks have a higher average closeness centrality compared to directed networks.
This is indicative of closely knit groups in the undirected networks.

Eigenvector Centrality

Eigenvector centrality assigns importance to a node depending on the importance of
nodes connected to it. Thus, if a node i is connected to important nodes, node i can also
be considered as important. This measure can be significant in other applications such
as information propagation. The eigenvector centralities observed for the five OSNs
have been considered in the empirical study are the average eigenvector centralities.
The average eigenvetor centrality of Facebook, YouTube, Email, Twitter, and Google+
as calculated for the empirical study are 0.0010, 0.0022, 0.0015, 0.0002, and 0.0033 re-
spectively. It can be seen that the eigenvector centralities are similar for all the OSNs.

Betweenness Centrality

The betweenness centrality of a node measures what ratio of paths pass through that
node, that is, the node falls between how many paths in the network. A higher be-
tweenness centrality means a higher number of paths pass through that node. The ob-
served values for betweenness centrality for the five OSNs considered in the empirical
study are the average betweenness centrality for the network. The average between-
ness centrality of Facebook, YouTube, Email, Twitter, and Google+ as calculated for the
empirical study are 0.0001, 0.0002, 0.0001, 0.0000001, and 0.0000002 respectively. It can
be seen that the average betweenness centrality for the directed network in order of
10−2 lower than that of undirected networks.

Homophily

Depending on the type of relationship of the network and the purpose of the network,
the homophily value of an OSN will vary. For this research, the OSNs have been di-
vided into clusters or groups using an algorithm proposed by Sen et. al.[45]. The clus-
tering is done based on the local clustering coefficient values and the average local
clustering coefficient value for the network. As the neighbourhood of a node changes
with a change in the direction of the edge, the value for local clustering coefficient and
average local clustering coefficient changes. As a result, the value of homophily also
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changes. The average homophily value for in-degree distribution is presented as hin,
and that of the out-degree distribution is presented as hout.
The average homophily of Facebook, YouTube, and Email are 0.5870, 0.6400, and 0.8237
respectively. The average homophily for Twitter and Google+ are hout = 0.0018, hin =
0.0012 and hout = 0.0027, hin = 0.0021 respectively. The observed values of average
homophily inspire a few critical observations. Firstly, it can be observed that the ho-
mophily of directed networks in order of 10−1 lower than the homophily of undirected
networks. Thus, it can be said that groups with similar local clustering coefficients are
not connected in directed networks. It can also be seen that there is a huge variation
in the value of average homophily even for the undirected networks. This is partially
because of the nature of the relationship and the purpose of the network.

Assortativity

The three possible levels of assortativity are - assortative, neutral, and disassortative. In
assortative networks, that is, networks with assortativity value closer to 1, nodes with
similar degrees are adjacent, and nodes with dissimilar degrees are not adjacent. In dis-
assortative networks, that is, networks with assortativity value closer to -1, nodes with
dissimilar degrees are adjacent, and nodes with similar degrees are not adjacent. In
neutral networks, that is, networks with assortativity value close to 0, either both sim-
ilar and dissimilar degree nodes are connected, or neither dissimilar nor similar nodes
are connected. Therefore, depending on the nature of the relationship and the purpose
of the network, the assortativity values of the OSN will differ. For directed networks,
the assortativity of in-degree and out-degree networks have been represented as rin and
rout respectively.
The assortativity value of Facebook, YouTube, and Email are 0.1770, −0.0752, and
−0.1108 respectively. The average homophily for Twitter and Google+ are rout = −0.8812, rin =
−0.0534 and rout = −0.3887, rin = 0.0551 respectively. The assortativity values ob-
served for the five OSNs considered for this research lie within a small range of values
close to 0. It can be observed that most of the networks behave close to neutral, with N1
being slightly assortative and out-degree of N4 being highly disassortative.

4.3.4 Analysis

It can be seen that observing the similarities and differences in the individual network
structural properties is not enough. Although minor inferences about the structure of
the networks can be inferred from these individual observations, it is not possible to
analyse the overall structure of the network and the micro-stuctures of the network
from these alone. For example, density, global clustering coefficient and average local
clustering coefficient are all measures of network denseness. However, they can over-
look important small structures present in the network. For example, in a network,
there might be multiple small groups with high density or average local clustering
coefficient. However, as the sizes of these small groups or clusters are many orders
smaller than the size of the network, the presence of these structures cannot be inferred
from the values of density of the network, global clustering coefficient or average local
clustering coefficient alone.
Similarly, the variance in values of power law exponent, the values of dmin and γ all hint
that the OSNs do not strictly follow power law. Also, the CDF plot of the degree distri-
butions of the OSNs also hints at deviations from the power law. However, combining
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the values of power law exponent(γ) and dmin along with the CDF plots of degree dis-
tributions of the OSN provides strong support that the OSNs do not strictly follow the
power law.
Multiple inferences can be made about the network structure and micro-structures by
collectively observing the values obtained for the multiple network structural proper-
ties. The value of Closeness Centrality, Density, GCC, ALCC, Homophily and Assor-
tativity all show that undirected networks have more well-formed groups compared
to directed networks. GCC shows that directed networks have more paths than cycles,
disassortative/neutral nature of directed networks show that nodes with dissimilar de-
grees are connected. Therefore, it can be inferred that in directed networks, star-like
structures are present with a high degree node at the centre. This inference is sup-
ported by the degree distribution of the directed networks as well. Similarly, closeness
centrality, density, GCC and average local clustering coefficient of undirected networks
are higher compared to directed networks. Assortativity and average homophily of
undirected networks are also higher than directed networks. Thus, it can be inferred
that undirected networks have small clique-like structures. This inference is supported
by the degree distribution and local clustering coefficient distribution of the undirected
networks. Also, considering the values of local clustering coefficient distribution, aver-
age local clustering coefficient, global clustering coefficient, density and homophily, it
can be induced that the email network has a high number of well-connected cliques or
pseudo-cliques.

4.4 Summary

This chapter provides an extensive empirical study of the network structural properties
for the five OSNs that have been considered for this thesis. The results of the empirical
study are recorded and analysed. The significance of the observed values have been
explained in contrast to the expected values. The significance of the network structural
properties in identifying the structure and microstructure of the network has also been
highlighted. The results of the empirical study provides the basis for the categorisation
of OSNs proposed in the next chapter.
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Chapter 5

Proposed Categorisation of OSNs

The results of the empirical study shows that different OSNs vary with respect to their
network structural properties. Based on the this, it can be inferred that the network
structure and microstructures are different for different OSNs. From the empirical
study it can also be seen that two network properties, homophily and assortativity, are
sufficient for defining a categorisation of OSNs. This chapter proposes a categorisation
of OSNs based on network structural properties. Fig. 5.1 represents the categorisation

FIGURE 5.1: Categorisation of OSNs

obtained for the OSNs based on the observed values for different structural properties
of the OSNs. As can be seen from Fig. 5.1, only two of the structural properties, namely,
homophily and assortativity, were used for the categorisation. However, a similar cat-
egorisation can be obtained using a combination of other structural properties as well.
Those categorisations have not been considered for this research as the categorisation
represented in Fig. 5.1 is sufficient for the purpose of discussion.
The five OSNs that have been considered for this thesis have been categorised in four
different categories. The categories are - Low Homophily-Neutral, Low Homophily-
Disassortative, High homophily-Assortative and High homophily-Neutral. Detailed
description and analyses of these networks have been provided below.
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5.1 Low Homophily

5.1.1 Assortative

Low homophily signifies that the networks have less connection between nodes of sim-
ilar clustering coefficients. Assortative networks are those where nodes with a similar
degree are connected, and nodes with a dissimilar degree are disconnected. Thus, these
two observations are contradictory and cannot co-occur. Therefore, no networks fall
into this category.

5.1.2 Neutral

Neutral networks are those where either nodes with both similar and dissimilar degrees
are connected, or neither nodes with similar nor dissimilar degrees are connected. Low
homophily also indicates that the number of connection between nodes is low. Thus,
it can be concluded that networks falling in this category have low density and low
clustering coefficients as well. Examples of such networks are the in-degree and out-
degree distribution of the directed networks Twitter and Google+. In these networks,
as no particular shapes can be discovered.

5.1.3 Disassortative

Disassortative networks are those where nodes with a dissimilar degree are connected,
and nodes with a similar degree are disconnected. Low homophily indicates that the
nodes with similar clustering coefficients are not connected. Thus, it can be concluded
that networks falling in this category will have very low density and clustering coef-
ficients. Examples of such networks are the out-degree and out-degree distribution of
the directed networks Twitter and Google+. In these networks, star-like structures are
predominant as nodes with a dissimilar degree are connected, and the overall number
of edges is meagre.

5.2 High Homophily

5.2.1 Assortative

Both high homophily and assortative signify that nodes with a similar degree and sim-
ilar clustering coefficients are connected. Thus, it can be inferred that in networks of
this type, the density and clustering coefficients will also be high. Examples of such
networks would be Facebook. In this category of networks, the presence of pseudo-
cliques is predominant. Because it is assortative, nodes with a similar degree are con-
nected, and the high density and clustering coefficients indicate the number of edges
in this category of networks is comparatively higher than the other categories, which
suggests the presence of pseudo-cliques.
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5.2.2 Neutral

High homophily indicates that nodes with similar clustering coefficients are grouped.
Neutral networks, on the other hand, suggest that either nodes with both similar and
dissimilar degrees are connected, or neither nodes with similar nor dissimilar degrees
are connected. Thus, it can be said that networks falling in this category has average
density and moderate clustering coefficients. Examples of such networks would be the
Enron Email network and the YouTube network. Although these two networks have
been grouped, they are mildly different concerning their clustering coefficients. The
email network has higher average local clustering coefficient, higher global clustering
coefficient and a higher number of nodes with local clustering coefficients in the range
of 0.9 to 1. The YouTube network also has a lower number of connected components.
However, the email network has a lower density than the YouTube network. Thus, it
can be concluded that the Email network has a higher number of connected sub-graphs
with a low number of nodes as compared to the YouTube network.

5.2.3 Disassortative

High homophily signifies that in the network, nodes with similar clustering coefficients
are connected and grouped. Disassortative networks are those where nodes with a sim-
ilar degree are disconnected, and nodes with a dissimilar degree are connected. Thus,
these two observations are contradictory and cannot co-occur. Therefore, no networks
fall into this category.

5.3 Summary

This chapter proposes a categorisation of OSNs based on the network structural prop-
erties. The five OSNs considered for categorisation in the previous chapter have been
categorised into four categories. The expected network structure, microstructure and
behaviour of the different categories of OSNs, as proposed in this chapter, has been
explained. The next chapter concludes the thesis with remarks and future scope of
research in related and relevant domains.
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Chapter 6

Concluding Remarks and Future
Direction

6.1 Conclusion

Online social networks have become a major part of the day-to-day life in modern so-
ciety. User engagement is high on OSNs, and it results in the generation of much data.
The user behaviour on OSNs is highly indicative of their behaviour in the real world.
Just by studying the nature and structure of relationships on the OSNs, many infer-
ences can be made about a user and the network as a whole. Thus, OSNs are no longer
just a platform for connecting and communicating, but it is also a platform for mar-
keting agencies and companies to showcase their products and services. OSNs have
also gained popularity for participatory sensing, as a citizen reporting platform and for
organising mass movements. Thus, OSNs have evolved into something much bigger
than what they were initially envisioned as.
Under these circumstances, it is important to study the OSNs in details. There is a huge
number of OSNs, many of which are very popular. They differ in purpose, nature and
structure. Therefore, studying one OSN and generalising the results to all other OSNs
is not feasible. Also, studying all OSNs individually is not feasible either.
Thus, it is important to categorise the OSNs and study the categories separately. If the
categorisation is efficient, this provides a method of understanding the structure of a
large number of OSNs without having to study each property in depth for each of the
networks.
Based on the values of different structural properties, it is evident that the different
OSNs are not similar with respect to network structure and microstructures. In-depth
analysis of the similarities and differences in the structural properties of the OSNs yield
the categorisation that has been represented in Section 5. The categorisation has been
justified in the same section. It can, thus, be seen that it is a valid categorisation of OSNs
based on structural properties.

6.2 Future Work

Proper categorisation of the OSNs opens up a wide array of research opportunities.
This categorisation can be compared with other categorisations done previously, based
on one or more of the structural properties, or based on the nature and purpose of the
network. Similarities and differences in the categorisations can be analysed to get a
better understanding of the networks.
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The categorisation can be used to study different network phenomena for the different
categories of the OSNs. Such phenomena may include the growth patterns for the dif-
ferent categories of the OSNs, the information diffusion and rumour blocking patterns
for the different categories of OSNs and so on. Based on the results of these studies,
new and improved category specific network models can also be designed.
The field of Online Social Network Analysis is still in its nascent stages, and a lot of
open research problems are still present in this field of study. Proper categorisation of
the OSNs can lead to significant progress in relevant research areas through a better
understanding of the OSNs.
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