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ABSTRACT 

In this thesis, some unsupervised techniques for the task of Automatic Short Answer Grading (ASAG) 

have been explored. The task of ASAG involves scoring a student answer (SA) based on a given 

reference answer (RA). The RA and SA are provided as input to the method, after which the method 

computes the similarity between the two and then awards a similarity score to the SA based on how 

similar the SA is with RA. The corresponding question (Q) is also provided as input to the method but it 

is not necessary that it will be used when the SA is being evaluated. 

Corpus-based semantic similarity measures along with a set of triple matching rules are used here to find 

out the similarities between the RA and SA. The scoring of the SA is based on the criteria that if the SA is 

found more similar to the given RA, then a higher score will be awarded to it. 

 Four models are used for the task in hand, with each model having their own advantages as well 

as disadvantages. The first model tags the words in RA and SA with their corresponding Parts-of-Speech 

tags (for example NN for noun, VB for verb and so on) using (POS) tagging and performs matching 

between the words having equivalent tags (i.e. nouns are matched with nouns; verbs are matched with 

verbs and so on). The second model parses the RA and SA into a set of dependency triples and performs 

matching between the triples. The third model also generates dependency triples by parsing which is 

followed by matching the triples, with the difference being that the RA-SA triples are matched based on 

some predefined rules. The fourth and final model uses the concept of word to word matching between 

the RA and SA, with one word of RA being matched with one and only one word of SA. All four models 

have used gensim’s pre-trained Word2vec model on Google-news corpus and fastText model on English 

Wikipedia corpus.  

The proposed method has shown quite promising correlation values between scores generated by 

the method and those awarded by human scorers on a standard computer science dataset, which consists 

of 12 assignments where each assignment has different number of questions along with a single RA and 

multiple SA for each question. The dataset has been described in details in subsequent chapters. The 

correlation reached the peak value at 0.646 for a single assignment (assignment 4 with Word2vec model) 

and an overall correlation reaching the highest value at 0.805. 

 

 

Keywords: Automatic short answer grading, semantic similarity, dependency parser, POS tagger.   
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Chapter 1  

Introduction 

The task of Automatic Short Answer Grading (ASAG) involves scoring a student answer (SA) 

based on a given reference (model) answer (RA or MA). Optionally, scoring schemes may also be 

provided to indicate relative importance of different parts of the model answer. This is a complex natural 

language understanding task due to linguistic variations (same answer could be written in different ways), 

subjective nature of assessment (multiple possible correct answers or no correct answer) and lack of 

consistency in human rating (non-binary scoring on an ordinal scale within a range). Much prior ASAG 

work requires supervisors to grade key concepts and their variations using concept mapping or to grade a 

fraction of student answers to train supervised learning algorithms. 

Much work has already been done in the field of ASAG in recent years. These works can be 

mainly divided into two categories. The first one is supervised approach, in which the graders first grade a 

few students’ answers which in turn are used as training data for the classification algorithm. The second 

is unsupervised approach, in which text similarity approaches are used to compare model answer and 

students’ answers to assign suitable grades to the student answers. 

In this thesis, we present an unsupervised approach, which consists of four models that score the 

students’ responses individually. One thing to note is that the similarity score is calculated for the RA 

keeping SA as reference thus reversing their roles. This is done when the SA is more elaborate while the 

RA is compact. If the SA is compact while the RA is more elaborate, the similarity score of SA is 

calculated using RA as reference. This is done for all four models and the justification for this is provided 

later in details. The first model starts with Parts-Of-Speech (POS) tagging of RA as well as SA, after 

which one word having a certain POS tag from RA is matched with all the words of SA having equivalent 

POS tags (for example, a Noun from RA is matched with all Nouns from SA) and finally the maximum 

similarity score is taken. Such similarity score is obtained for every word of RA and finally an average of 

these scores is taken to compute the mark that is to be awarded to the student. The similarity scores are 

separately obtained using Word2vec model on Google-news corpus and fastText model on English 

Wikipedia corpus. Both mechanisms generate a 300-dimensional vector for a word that is fed into it. To 

compare two words, the words are fed into the model, the outputs of which are their corresponding 

vectors. Then the cosine value of the angle between the two vectors is calculated which gives a value 

between -1 and +1, which is their similarity score. These corpus-based similarity calculation models are 

used in all four models. 
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The second model parses the RA and SA into a number of dependency triples (a triple consists of 

three parts:  the relation, the governor word and the dependent word). Then the governor and dependent 

words of each triple from RA are matched with the governor and dependent words respectively of every 

triple from SA and finally the maximum similarity score is taken. Such similarity score is obtained for 

every triple of RA and finally an average of these scores is taken to compute the mark that is to be 

awarded to the student. The governor and dependent words are matched using the same Word2vec and 

fastText models used in Model 1. 

The third model is similar to the second model except only one difference. In this model, the 

triples are matched based on a set of pre-defined matching rules. Thus, unlike in previous model in this 

model, the relation part of the triple plays a significant role. This model also first parses the RA and SA 

into a set of dependency triples. Then the triples of RA are matched with the triples of SA following the 

conditions of Rules 1 to 5 (details of them are provided later). In other words, first it is checked whether 

the RA and SA triples satisfy rule 1 and if they do, then a similarity score is awarded to the corresponding 

RA triple as per rule 1. If they do not satisfy rule 1, then it is checked whether they satisfy rule 2 and if 

they do, then a similarity score is awarded to the corresponding RA triple as per rule 2, and so on up to 

rule 5. If an RA triple matches with more than one SA triple for any rule, then similarity score is 

calculated for every pair of RA triple and matching SA triple, and the highest score among them is 

assigned to the RA triple. Once every RA triple is scored, the average similarity score is computed by 

taking the average of the similarity scores of all RA triples over the number of RA triples, which is then 

used to calculate the marks that is to be awarded to the student. Stanford POS tagger and dependency 

parser are used for POS tagging and triple extraction respectively in all the three models. 

The fourth and final model arranges the words of RA and SA in a two-dimensional matrix, with 

the words in RA (or SA; whichever has less number of words) in rows and words of SA (or RA) in 

columns. Once done, similarity score of a pair of words (one taken from a row and the other from a 

column) is calculated. The words are matched using the same Word2vec and fastText models used in 

Model 1. Once all these scores are obtained, the highest score from the entire matrix is taken, after which 

the row and column to which the score belongs is struck off from being considered. Then the next highest 

score is considered, and the process is repeated until a similarity score from each of the rows is 

considered. Finally an average of these scores is taken over the number of rows to compute the mark that 

is to be awarded to the student answer. 

For evaluation, the correlation value between the obtained scores from the models with those 

awarded by human judges is calculated. Higher the correlation value between the obtained score and the 
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scores given by human judges, the more accurate is the method to assign grades to the student answers 

closely to the human judges. 
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Chapter 2  

Literature Survey 

Many approaches have already been proposed for the task of ASAG. A few of them have been 

discussed below. 

Gomma et al. [1] presented an unsupervised approach which uses the concept of text to text 

similarity. Different string-based and corpus-based similarity measures were tested separately and the 

results were then combined to obtain a final score. 

Adams et al. [2] evaluated a variety of representative distributional semantics based approaches 

for the task of unsupervised grading and have proposed an asymmetric method based on aligning word 

vectors that exploits properties of grading tasks. Aligning word vectors means moving the word vectors 

of one document in the vector space so that they can become word vectors of another document. This 

method allows words to move to multiple other words when a mismatch in document size occurs. 

Alotaibi et al. [3] proposed a combination of different techniques to produce an approach for 

automatic short answer marking. In particular an integrated method was presented which uses Information 

Extraction (IE) and Machine Learning (ML) techniques. The result of the whole approach was to assign a 

mark depending on the percentage of correctness in the student's response not just classifying the resultant 

mark as correct or incorrect. 

Roy et al. [4] proposed a technique which was based on the intuition that student answers to a 

question, as a collection, are expected to share more commonalities than any random collection of text 

snippets. If these commonalities can be identified from student answers then the same could be used to 

score them. 

Sultan et al. [5] presented a fast and simple supervised method. From the given RA and SA,   a 

number of text similarity features were extracted and then combined with key grading-specific constructs. 

Pérez et al. [6] presented the working of a Computer-Assisted Assessment (CAA) system called 

Atenea. The evaluation process starts with tokenizing both SA and RA. After that individual scores are 

calculated by using Evaluating Responses with BLEU (ERB) and Latent Semantic Analysis (LSA) 

algorithms independently which are then combined to obtain a final score. 
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Bachman et al. [7] presented the working of a language assessment system called WebLAS (web-

based language assessment system). It takes the input (RA, elements, alternatives, score assignments) to 

create a scoring key, which then employs regular expressions (regexes) for pattern matching. The task of 

scoring is simply the process of matching the regexes with the elements in the student response to score 

each such element. 

Leacock et al. [8] presented the working of an automated short-answer marking engine called C-

rater. If a set consisting of all the possible correct student responses is considered, then the c-rater scoring 

engine operates as a paraphrase recognizer that identifies members of this set, i.e. it identifies whether the 

student response is a paraphrase of the correct concept or not. 

Basak et al. [11] presented a method that casts the ASAG task to an RTE task (Recognizing 

Textual Entailment), which determines whether the meaning of SA, or RA, is logically entailed by RA, or 

SA. The better the entailment between the RA-SA pair, the higher the score to be assigned to the SA. To 

determine the entailment, they have used the rules from one of their other works [12]. The matching rules 

were associated with numerical scores and the total score to be awarded was calculated in a well-specified 

manner. 
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Chapter 3  

The proposed method 

The proposed method consists of four models. Before going into the detailed description of those 

models, a brief description of the tools and libraries that have been used in the work are presented. 

3.1 Tools 

The tools used are described in the following subsection: 

 

3.1.1 Stanford Parser  

Parsing is the process of analyzing a string of symbols, either in natural language, computer 

language or data structures, conforming to the rules of a formal grammar. Parsing helps in analyzing the 

input text by associating additional grammar context to it. It also helps in identifying the subject, objects 

of interest, parts of speech information, etc. Applications can be built on it using this information to 

improve the results of their specific use case. Some of the applications where parsing is used are language 

prediction, translation, text similarity measurement, etc. 

 In machine translation and natural language processing systems, written text in human languages 

are parsed by computer programs, known as parsers. One such well known parser is Stanford Parser. It is 

a natural language parser which works out on the grammatical structure of sentences, for example, which 

group of words go together (as “phrases”) and which words is the subject or object of a verb. Probabilistic 

parsers use knowledge of language gained from hand-parsed sentences to try to produce the most likely 

analysis of new sentences. These statistical parsers still make some mistakes, but commonly work rather 

well. 

 The package
1
 which was used here as part of the task is a Java implementation of probabilistic 

natural language parsers, both highly optimized PCFG (Probabilistic Context-Free Grammar) and 

lexicalized dependency parsers, and a lexicalized PCFG parser. The lexicalized probabilistic parser 

implements a factored product model, with separate PCFG phrase structure and lexical dependency 

experts, whose preferences are combined by efficient exact inference, using an A* algorithm.  The 

software can also be used simply as an accurate unlexicalized stochastic context-free grammar parser. 

Either of these yields a good performance statistical parsing system.
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3.1.2 Gensim’s Word2Vec 

Word2Vec is a group of related models that are used to produce word embedding. These models 

are shallow, two-layer neural networks that are trained to reconstruct linguistic contexts of words. 

Word2Vec takes as its input a large corpus of text and produces a vector space which are usually of 

several hundred dimensions such that each unique word is assigned a unique vector in the vector space. 

Word vectors are positioned in the vector space in such a way that words with common context in the 

corpus are located in close proximity to one another. 

 Given enough data, usage and contexts, Word2Vec can make highly accurate guess about a 

word’s meaning based on past appearances. Those guesses can be used to establish a word’s association 

with other words (e.g. “Queen” is to “woman” then “King” is to what?), or cluster documents and classify 

them by topic. In ASAG systems, this can be used to cluster out the correct responses from the incorrect 

ones. 

 Once the vector representations of the words are obtained, different algorithms to measure the 

similarity between the words can be applied. One of the most commonly used methods is “cosine 

similarity” where the cosine value of the angle between the vectors corresponding to the two words is 

measured. A value of 0 signifies an angle of 90 degrees which implies that the words are not at all similar 

to each other. A value of 1 signifies an angle of 0 degrees which implies that the words are exactly same. 

A value between 0 and 1 represents the similarity between words with a value closer to 0 implying less 

similarity while a value closer to 1 represents more similarity. A Word2Vec comparison between Sweden 

and Sweden produces a value of 1 while between Sweden and Norway produce a value of 0.770617. 

 Word2Vec works like an auto-encoder in the sense that it is encoding each word to a vector and it 

does so by training words against other words that neighbour them in the input corpus. This can be done 

in two ways, either using context words to predict a target word (a method known as Continuous Bag-of-

Words or CBOW), or using a word to predict a target context, which is called skip-gram. CBOW is faster 

than skip-gram but skip-gram performs better when we are dealing with infrequent words. However skip-

gram produces more accurate results on large datasets. 

 The use of different model parameters and different corpus sizes can greatly affect the quality of a 

word2vec model. Accuracy can be improved in a number of ways, including the choice of model 

architecture (CBOW or Skip-Gram), increasing the size of the training data set, increasing the number of 

vector dimensions, and increasing the window size of words considered by the algorithm. Each of these 

improvements comes with the cost of increased computational complexity and therefore increased model 

generation time.  
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In models using large corpora and a high number of dimensions, the skip-gram model yields the 

highest overall accuracy, and consistently produces the highest accuracy on semantic relationships, as 

well as yielding the highest syntactic accuracy in most cases. However, the CBOW is less 

computationally expensive and yields similar accuracy results. 

3.1.3 fastText  

fastText is a library for learning of word embeddings and text classification. It is created by 

Facebook’s AI Research (FAIR) lab, and is written in C++ with support of multiprocessing during 

training. The model allows us to create a supervised or unsupervised learning algorithm for obtaining 

vector representation of words. Like Word2Vec, fastText also supports training Continuous Bag-of-

Words (CBOW) or Skip-gram models using negative sampling, softmax or hierarchical softmax loss 

functions. 

 fastText is able to achieve really good performance in case of word representations and sentence 

classification, especially in the case of rare words by making use of character level information. It is 

achieved by representing each word as a bag of character n-grams in addition to the word itself. For 

example, if the word is “matter” with n=3 (a tri-gram), the fastText representations for the character n-

grams is <ma, mat, att, tte, ter and er>. The characters < and > are added as boundary symbols to 

distinguish the n-grams of a word from a word itself. For example, if the word “mat” is part of the 

vocabulary, it is represented as <mat>. This helps in preserving the meaning of shorter words that might 

show up as n-grams of other words (like in our example, mat showed up as an n-gram for the word 

matter). 

 The length of n-grams to be used can be controlled by a set of min (for minimum number of 

characters to be used) and max (for maximum number of characters to be used) flags. These two flags 

control the range of values to get n-grams. The model is considered to be a bag of words model because 

apart from the sliding window of n-gram selection, there is no internal structure of a word that is taken 

into account. In other words, as long as the characters fall under the sliding window, the order of the 

character n-grams does not matter. Even the n-gram embeddings can be completely turned off by setting 

the value of both flags to zero. This is useful in cases when the words in the model are not words for a 

particular language and character level n-grams would not make sense. 

 Now, while fastText supports multi-threading while training, reading the data on which training is 

to be performed is done by a single-thread. This will create a bottleneck if the input data is huge. The 

parsing and tokenization is done when the input data is read. fastText only supports reading input data 

from a file and not from standard input (stdin) like keyboard. During the reading phase, for each unique 
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word, four values are stored in a struct. These four values are word which is the string representation of 

the unique word, count which is the total count of the respective word in the input line, entry_type which 

is either word or label (used only for the supervised case), and subwords which is a vector of all the word 

n-grams of a particular word. These are also created when the input data is read, and passed on the 

training step. 

 Once the input and vectors are initialized, multiple training threads are started, the count of which 

can be set by using a thread argument. All these threads read from the input file, while updating the model 

with each input line that is read. An input line is truncated if a newline character is found or if the count 

of words that has been read reaches the maximum allowed line size, the default value being 1024. 

 The target vector for the loss function is computed by a normalized sum of all the input vectors. 

The input vectors are the vector representation of the original word, as well as all the n-grams of that 

word. The loss is computed which sets the weights for the forward pass, which propagate their way all the 

way back to the vectors for the input layer in the back propagation pass. This tuning of the input vector 

weights that happens during the back propagation pass is what allows the model to learn representations 

that maximize co occurrence similarity. The learning rate affects how much each particular instance 

affects the weights. 

Once the whole process is complete, the model input weights, hidden layer weights along with 

arguments passed in are saved in a file with .bin format. Another flag is also provided which controls 

whether a .vec file is also created which contains vectors for the hidden layer in the word2vec file format. 

This .vec file can be used if we are not interested in building and training our own model and wants to use 

a pre-trained one. 

Now that overviews of the tools that have been used are provided, the proposed methods with the 

detailed description of the models are introduced.  

3.2 The Method 

The method consists of four different models, each model scoring the students’ responses 

individually. The pre-processing steps for all four models are same, and are explained in the following 

subsection. 

3.2.1 Pre-processing Steps 

Before invoking the actual process of ASAG, all RA and SA are subjected to the pre-processing 

steps first, which include splitting words joined by a slash or hyphen (eg. “function/method” becomes 
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“function method” and “run-time” becomes “run time”) and removing unnecessary symbols (the dataset 

contains certain HTML tags which need to be removed). Certain punctuation symbols like “,”, “;”, ”.” 

were removed  as their absence did not impact the scores generated by the method, but their presence 

causes generation of unnecessary dependency triples in Models 2 and 3. After that both RA and SA are 

converted to lowercases. The reason is that both Word2vec as well as fastText produce different similarity 

score when the case is changed and compared to when the case is same. 

Once pre-processing is done, the actual method of ASAG is invoked. The four models are 

explained in the subsequent subsections. One important thing to note is that in the proposed models, we 

have shown that the SA is evaluated with reference to the RA in cases where SA was precise and concrete 

while RA was elaborate. However for some Q, it was found that the RA was concrete and stated as a gist, 

while the SA was elaborate containing extra piece of information. For such cases,  the roles of RA and SA 

were reversed, i.e.,  the RA was evaluated with reference to the SA. This is a part of the process in each of 

the four models and not a separate model  by itself, i.e., before the actual process begins; the length of RA 

and SA is checked and the decision is made as to whether SA will be scored based on RA or RA will be 

scored based on SA. This is applicable for all four models. 

3.2.2 Model 1 

The RA and SA are individually fed into Stanford POS-tagger [9] for Part-of-Speech (POS) 

tagging.  As output from this phase the RA and SA with each word tagged with their corresponding POS 

are generated (eg. An input of “at the main function” will give an output of “at/IN the/DT main/JJ 

function/NN”, where NN signifies singular noun, JJ signifies adjective, IN signifies preposition or 

subordinating conjunction and DT signifies determiner). 

       Once the POS tagging is done, the response matching and scoring mechanism process gets 

started. Each word belonging to a particular POS tag in RA is compared with every word in SA having an 

equivalent POS tag (eg. a word in RA with POS tag NN will be matched with every word in SA with 

equivalent POS tags of NN, NNS, NNP or NNPS) and the maximum similarity score is considered. The 

similarity score between a given pair of words is determined by gensim’s Word2vec model and fastText 

model separately, where a 300 dimension vector of the words are generated in both the models and the 

similarity score is obtained by measuring the cosine value of the angle between the two word vectors. 

       Once the maximum score is obtained for each word in RA or SA as required and justified 

previously, the overall similarity score is calculated by taking the average of all the maximum scores over 

the number of words in the RA. This overall similarity score is then multiplied by the full marks of the 

question to obtain the marks that is to be awarded to the SA. 
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 The above method can be stated in the form of an algorithm below:- 

Step 1: Perform necessary pre-processing steps. 

Step 2: Feed the RA and SA obtained after applying Step 1 into Stanford POS tagger individually to 

obtain RA and SA with each word tagged with their corresponding POS. 

Step 3: Take each word from RA with a POS tag and match it with every word from SA having 

equivalent POS tags. The similarity scores thus obtained are grouped together. 

Step 4: Once such groups are obtained for every word in RA, maximum scores from each group is 

considered. 

Step 5: Once the maximum scores are obtained, they are summed up and then averaged over the number 

of groups to obtain the overall similarity score. 

Step 6: The similarity score obtained in the above step is then multiplied with the full marks of the 

corresponding question to obtain the grade that is to be awarded to the SA. 

The above steps are repeated for every SA of every question in the whole assignment, where both RA and 

SA consist of more than one word. If RA and/or SA consists of only one word, the similarity score and 

the grade to be awarded is calculated in a special way, the details of which are provided later. 

3.2.3 Model 2 

The RA and SA are fed into Stanford Parser [9] one by one and are parsed into a number of 

dependency triples. Once the dependency triples are obtained, each triple of RA is compared with every 

triple of the SA, except for the triple with relation as root, and the maximum matching score is considered 

to be taken. The reason for excluding the root triple is that root is an extra relation generated just for the 

purpose of presenting the word on which the parse tree is rooted from and has no other significance. Its 

absence does not impact the score but its presence is found to lower the overall similarity score, as the 

governor part of the root relation, which is ROOT, produces a very low score when compared with the 

governor nodes of other triples, thus lowering the similarity score, which in turn lowers the overall score. 

The matching score is obtained by comparing the governor word pairs of the RA and SA triples 

and the dependent word pairs of the RA and SA triples and then finally averaging the sum of the two 

scores. The same gensim’s Word2vec model and fastText model used in model 1 are also used here to 

determine the similarity score between the corresponding pairs of words of the RA-SA triples. 
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Once the maximum score is obtained for each triple of RA, the overall similarity score is 

calculated by taking the average of all the maximum scores over the number of triples of the RA. This 

overall similarity score is then multiplied by the full marks of the question to obtain the marks that is to 

be awarded to the SA. 

The above method is described in the form of an algorithm below:- 

Step 1: Perform necessary pre-processing steps. 

Step 2: Feed the RA and SA obtained after applying Step 1 into Stanford Parser to convert them into a set 

of triples of the form R(G,D) from both RA and SA. Here R signifies the Relation part, G signifies the 

Governor part and D signifies the Dependent part. 

Step 3: Take each triple from RA and match it with each triple of SA by matching their corresponding 

governor (G) parts and dependent (D) parts, irrespective of the relations (R) parts. The similarity score 

obtained are grouped together, i.e. the similarity score obtained when each triple from SA is matched with 

one triple from RA are put in one group from which the highest similarity score will be considered. For 

example, if one triple from RA is matched with three triples from SA, three similarity scores will be 

obtained, one for each triple in SA. These three scores are put in one group and the highest of them all is 

taken into consideration when the average similarity score is being calculated. Such groups are generated 

for every triple in RA. 

Step 4: Once such groups are obtained for every triple of RA, maximum scores from each group is 

considered. 

Step 5: Once the maximum scores are obtained, they are summed up and then averaged over the number 

of triples in RA to obtain the overall similarity score. 

Step 6: The similarity score obtained in the above step is then multiplied with the full marks of the 

corresponding question to obtain the grade that is to be awarded to the SA. 

The above steps are repeated for every SA of every question in the whole assignment, where both RA and 

SA consist of more than one word. If RA and/or SA consists of only one word, the similarity score and 

the grade to be awarded is calculated in a special way, the details of which are provided later. 

3.2.4 Model 3 

Similar to Model 2, this model also parses the RA and SA into a set of dependency triples by 

subjecting each of them individually into Stanford dependency parser. 
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       Once the dependency parsing phase is over, the actual process of matching and scoring starts. 

However unlike in Model 2, here the matching operations between the RA-SA triples are performed 

based on a set of predefined rules [12]. For simplified notation, let us consider that the triples generated 

from RA are of the form RR(GR, DR), where RR signifies the relation, GR is the governor and DR is the 

dependent. Similarly triples generated from SA are of the form RS(GS, DS), where RS signifies the relation, 

GS is the governor and DS is the dependent. Here too the root triple is ignored, the reason being same as 

that given in Model 2. 

 The rules are described here in details and are as follows: 

3.2.4.1. Rule 1 If the SA triple RS(GS, DS) completely matches with the RA triple RR(GR, DR), i.e., RS 

matches with RR, GS matches with GR, and DS matches with DR, then a complete matching score of 1 is 

assigned to the RA triple. Fig. 1 below illustrates this matching rule. 

 

Fig. 1. Matching rule 1 

3.2.4.2. Rule 2 If the nodes DS and GS of SA triple completely match with the nodes GR and DR 

respectively of a RA triple but the relations RS and RR do not match, then if the relation RR belongs to the 

set {amod, rcmod, ccomp, advcl}, while the relation RS belongs to the set which matches the conditions 

given in Table 1, then a full score of 1 is assigned to the RA triple. Fig. 2 below illustrates this matching 

rule. 
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Table 1 (based on rules defined in [12]) 

RR (Relation from RA triple) Equivalent RS (Relation from SA triple) 

amod  dobj, nsubjpass, nsubj, nn, amod 

rcmod nsubj, agent, nsubjpass 

ccomp nsubj 

advcl nsubjpass 

 

 

Fig. 2. Matching rule 2 

3.2.4.3. Rule 3 If the nodes GS and DS of SA triple match with the nodes GR and DR respectively of the 

RA triple but the relations RS and RR do not match, then for the conditions given in Table 2, a full score 

of 1 is assigned to the RA triple. Fig. 3 below illustrates this matching rule. 

Table 2 (based on rules defined in [12]) 

RR (Relation from RA 

triple) 

Equivalent RS (Relation 

from SA triple) 

Appos nsubj, dobj, nn, dep, 

tmod, rcmod, conj_and 

Rcmod infmod, appos, partmod 

Prep nsubjpass 

Xsubj dobj 
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Fig. 3. Matching rule 3 

3.2.4.4. Rule 4 If the relation RS exactly matches with the relation RR and either nodes GS and GR 

matches exactly or nodes DS and DR matches exactly then the nodes GS and GR are compared with each 

other to obtain their similarity score. Similarly the nodes DS and DR are compared to obtain the similarity 

score between them. Then the average of these two scores is taken, which gives the score that is to be 

assigned to this RA triple. Fig. 4(a) and Fig. 4(b) below illustrate both parts of this matching rule. 

 

Fig. 4(a). Matching rule 4 (Governor matches) 

 

Fig. 4(b). Matching rule 4 (Dependency matches) 

 

3.2.4.5. Rule 5 There are some relations that, although seem to be less important and insignificant, 

cannot be ruled out and need to be considered. These relations are as follows 

{aux, auxpass, cop, det, expl, mark, nn, prt, predet, cc} 

If these relations are ignored, it results in generating lower score. Therefore they should also be 

considered. The words GS and GR are compared with the words DS and DR respectively to obtain their 
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similarity score.  The average of these two scores is taken which gives the score that is to be assigned to 

this RA triple.  

This only happens if there is at least one triple in both RA and SA which have the relation 

belonging to the above set. In other words, if there is one triple in RA and one triple in SA with any of the 

above relation, then their governors and dependents are matched and averaged to obtain the similarity 

score to be assigned to RA. If there are two or more triples in RA with any of the above relation but only 

one triple in SA with any of the above relation, then each of the triples in RA is matched with the one 

triple in SA and the obtained similarity score is assigned to the RA triple. If there is one triple in RA with 

any of the above relation and two or more relations in SA with any of the above relation, then the one 

triple in RA is matched with all such triples in SA and the maximum similarity score is taken from them 

and assigned to the RA triple. 

If it so happens that either only RA or SA contains such triples with the relation part belonging to 

the above relation set, then the triples are ignored and not considered for calculation of the similarity 

score. The reason is that there is no triple in the SA (considering that RA contains the triple with any of 

the above relations) with a relation equivalent to the ones in the above set. For example, RA contains a 

triple of the form det(method-2,a-1) while SA does not contains any triples with any of the above 

relations, but say a triple of the form conj:and(push-1, pop-3) then the two triples will not be compared as 

the relations “det” and “conj:and” are not equivalent. 

       If an RA triple matches with multiple SA triples, then the maximum of all the maximum scores is 

considered and assigned to this triple. Once a score is assigned to each RA triple, the overall similarity 

score is calculated by taking the average of all the maximum scores over the number of triples in the RA. 

This overall similarity score is then multiplied by the full marks of the question to obtain the marks that is 

to be awarded to the SA. 

The above method is described in the form of an algorithm below:- 

Step 1: Perform necessary pre-processing steps. 

Step 2: Feed the RA and SA obtained after applying Step 1 into Stanford Parser one by one which 

converts them into a set of triplets of the form R(G,D) from both RA and SA. Here R signifies the 

Relation part, G signifies the Governor part and D signifies the Dependent part. 

Step 3: Take each triple from RA and SA and perform the sub-steps 3.(i) to 3.(v) given below: 

Step 3(i): If the RA and SA triples satisfy Rule 1, then assign a similarity score of 1 to the RA triple. 
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Step 3(ii): If the RA and SA triples satisfy Rule 2, then assign a similarity score of 1 to the RA triple. 

Step 3(iii): If the RA and SA triples satisfy Rule 3, then assign a similarity score of 1 to the RA triple. 

Step 3(iv): If the RA and SA triples satisfy Rule 4, then the average of the similarity scores of the 

Governor parts and the Dependent parts is assigned to the RA triple. 

Step 3(v): If the RA and SA triples satisfy Rule 5, then the average of the similarity scores of the 

Governor parts and the Dependent parts is assigned to the RA triple. 

The similarity score obtained in the above sub-steps are grouped together on the basis of each RA triple. 

Step 4: Once such groups are obtained for every triple in RA, maximum scores from each group is 

obtained. 

Step 5: Once the maximum scores are obtained, they are summed up and then averaged over the number 

of groups to obtain the overall similarity score. 

Step 6: The similarity score obtained in the above step is then multiplied with the full marks of the 

corresponding question to obtain the grade that is to be awarded to the SA. 

The above steps are repeated for every SA of every question in the whole assignment, where both RA and 

SA consist of more than one word. If RA and/or SA consists of only one word, the similarity score and 

the grade to be awarded is calculated in a special way, the details of which are provided later. 

3.2.5 Model 4 

The words of the RA and SA are arranged in the form of a two-dimensional matrix. Which of the 

RA or SA words will be arranged in the rows or columns depends on the length or the number of words in 

the answer. If the RA contains lesser number of words than the SA, its words will be arranged row-wise 

while those of SA will be arranged column-wise, and vice versa. 

       After the arrangement of the words, each word from a row is matched with every word in the 

columns to obtain a similarity score. The same gensim’s Word2vec model and fastText model used in 

model 1 are also used here to obtain the similarity score. 

        Next the scoring mechanism starts by taking the highest similarity score from the overall matrix, 

and then striking out the corresponding row and column. For example, a maximum score of say 0.98 is 

obtained at row 2 and column 3 of the matrix. Then this score is taken into consideration and it is made 

sure that none of the other scores belonging to row 2 and column 3 will be considered in the next 
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iteration. This is done to make sure that one word from RA is matched to one and only one word of SA.  

The next maximum score from the rest of the matrix barring the ones contained in the stricken out row 

and column is obtained and the corresponding row and column are struck off. The entire process is 

repeated until the maximum scores for every row is taken into account. 

      Finally an average of these scores is taken over the number of rows to obtain an overall similarity 

score, which is then multiplied by the full marks carried by the question to obtain the marks that is to be 

awarded to the SA. The idea of considering the maximum similarity score is based on n-queen's problem 

of greedy approach, where the target is to maximize the score that is to be awarded to the SA. 

The above method is described in the form of an algorithm below:- 

Step 1: Perform necessary pre-processing steps. 

Step 2: Arrange the words from RA (or SA depending on which has fewer words) in rows. Similarly 

arrange the words from SA (or RA) in columns. We will obtain a two-dimensional matrix. 

Step 3: Obtain similarity scores between each pair of words, one taken from a row and other from a 

column and store it in the two-dimensional matrix. 

Step 4: Repeat the sub-steps 4.(i) and 4.(ii) until maximum score for every row is obtained:- 

Step 4(i): Obtain the maximum score from the overall matrix. 

Step 4(ii): Once obtained, strike off the row and column to which this score belongs. Once struck off, any 

score in that row and column will no more be considered while finding the next highest score. 

Step 5: Once the maximum scores are obtained for every row, they are summed up and then averaged 

over the number of rows to obtain the overall similarity score. 

Step 6: The similarity score obtained in the above step is then multiplied with the full marks of the 

corresponding question to obtain the grade that is to be awarded to the SA. 

The above steps are repeated for every SA of every question in the whole assignment, where both RA and 

SA consist of more than one word. If RA and/or SA consists of only one word, the similarity score and 

the grade to be awarded is calculated in a special way, the details of which are provided later. 

       Apart from the four models, a separate mechanism was included for scoring in special cases in 

which RA or SA consists of only a single word. For example, for certain questions, the RA is simply 

“push” whereas the SA contains the word “push” or one of its synonyms along with some extra 
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information. For such cases, this single word in RA (or SA if the role of SA and RA are reversed) is 

compared with every word in SA, or RA, and the maximum similarity score is taken and used to calculate 

the score that is to be awarded to the SA in consideration. The point to be noted here is that this is not a 

separate model; rather this is part of all the four models and is used only for the special case mentioned 

here. 

The above method is described in the form of an algorithm below:- 

Step 1: Perform necessary pre-processing steps. 

Step 2: The single word in RA (or SA) is matched with every word in SA (or RA) and the maximum 

similarity score is taken. 

Step 3: The similarity score obtained in the above step is then multiplied with the full marks of the 

corresponding question to obtain the grade that is to be awarded to the SA. 

The above steps are repeated for every SA of every question in the whole assignment, where the RA or 

SA or both consists of only one word. 
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Chapter 4  

Simulation 

Consider the following example of Q-RA-SA triple taken from the dataset*: 

Q: What are the two main functions defined by a stack? 

RA: push and pop 

SA: pop and push 

The working is only shown with Word2vec. The approach is same when using fastText and so its 

working is not shown. 

4.1 Model 1 

Individual words along with their corresponding POS tags for both RA and SA are shown in Table 3. 

Table 3 (words with POS tags) 

Words in RA POS tags Words in SA POS tags 

push NN pop NN 

and CC and CC 

pop NN push NN 

 

The scores obtained when the model is run with Word2vec are shown in Table 4. 

Table 4 (scores obtained with Word2vec) 

 pop(NN) and(CC) push(NN) 

push(NN) 0.185 - 1.0 

and(CC) - 1.0 - 

pop(NN) 1.0 - 0.185 

 

It is to be noted that since the length of SA is equal to RA, their roles have been kept as it is and 

SA is evaluated with respect to RA. 
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      Now “and” from SA only matches one word “and” in RA with similarity score of 1.0, so this 

score is considered. For “push” from SA, there are two matching words in RA with similarity scores of 

1.0 and 0.185 among which 1.0 is maximum of the three, so this score is considered. For “pop” from SA 

also, there are two matching words in RA with similarity scores of 1.0 and 0.185 among which 1.0 is 

maximum of the three, so this score is considered. 

 Now that all similarity scores are obtained, the average similarity score is calculated as: 

Score(Word2vec) = (1.0+1.0+1.0)/3=1.0 

      Since the full mark of this Q is 5, the grade that is to be awarded to this SA is calculated as: 

Grade(Word2vec)=1.0*5=5.0 

The two human graders have awarded scores of 5 and 5 respectively to this response, and the obtained 

score of 5.0, is same as the scores awarded by the human judges. 

4.2 Model 2 

The RA and SA dependency triples of the above Q-RA-SA triple are provided in Table 5. 

Table 5 (RA and SA dependency triples) 

RA triples SA triples 

1: root(ROOT-0, push-1) 

2: cc(push-1, and-2) 

3: conj:and(push-1, pop-3) 

1: root(ROOT-0, pop-3) 

1: root(ROOT-0, pop-1) 

2: cc(pop-1, and-2) 

3: conj:and(pop-1, push-3) 

1: root(ROOT-0, push-3) 

 

The matched token pairs, their similarity scores and the average similarity scores are provided in Table 6. 
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Table 6 (Assignment of scores) 

Tokens being 

matched 

Similarity 

Score 

Average Score 

(score to be 

assigned to the 

triple) 

push→pop 0.185 
0.593 

and→and 1.0 

push→pop 0.185 
0.110 

and→push 0.034 

---- ---- ---- 

push→pop 0.185 
0.116 

pop→and 0.047 

push→pop 0.185 
0.185 

pop→push 0.185 

 

       In Table 6, the first four rows are put in one group (group 1) while the next four rows are put in 

another group (group 2). The reason is that the first group consists of similarity scores obtained when 

triple 2 of SA is matched with all two triples of RA, and the next group consists of similarity scores 

obtained when triple 3 of SA is matched with all two triples of RA. The “root” triples are not considered 

for the reasons described previously. The maximum score from group 1 is 0.593 while the maximum 

score from group 2 is 0.185. 

       Once the grouping is done, the overall average similarity score is calculated as 

Score(Word2vec) = (0.593+0.185)/2 = 0.389, 

and the grade to be awarded to the SA is 

Grade(Word2vec)=0.389*5=1.9 

The two human graders have awarded scores of 5 and 5 respectively to this response, and the obtained 

score of 1.9, is far from the scores awarded by the human judges. The reason is that this model is simply 

comparing the governors and dependents of the RA and SA triples without considering any other things. 

4.2 Model 3 

The RA and SA dependency triples of the Q-RA-SA triple are provided in Table 7, while the matched 

token pairs, the rule based on which they are matched, their similarity scores and the average similarity 

scores are provided in Table 8. 
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Table 7 (RA and SA dependency triples) 

RA triples SA triples 

1: root(ROOT-0, push-1) 

2: cc(push-1, and-2) 

3: conj:and(push-1, pop-3) 

1: root(ROOT-0, pop-3) 

1: root(ROOT-0, pop-1) 

2: cc(pop-1, and-2) 

3: conj:and(pop-1, push-3) 

1: root(ROOT-0, push-3) 

 

Table 8 (Assignment of scores) 

Tokens being 

matched 

MR SS AS 

push→pop 
5 

0.185 
0.593 

and→and 1.0 

----  ---- ---- 

push→push 
2 

1.0 
1.0 

pop→pop 1.0 

 

Here, MR signifies the matching rule number, SS signifies the similarity score of the tokens being 

matched and AS signifies the average of the similarity scores between the corresponding governors and 

dependents of RA and SA, which is the score that to be assigned to the triple. 

       Here every triple of RA is getting matched to only one triple of SA, so obtaining maximum score 

for each triple of RA is not required since there is only one. 

       The overall average similarity score is calculated as 

Score(Word2vec) = (0.593+1.0)/2 = 0.797, 

and the grade to be awarded is 

Grade(Word2vec)=0.797*5=3.985=4.0(rounded off to one decimal place) 

The two human graders have awarded scores of 5 and 5 respectively to this response, and the obtained 

score of 4.0, is significantly closer to the scores awarded by the human judges. 

 It can be observed that score significantly improved once the rules are applied during the 

matching process. This proves the effectiveness of Model 3 as compared to Model 2, even though both 

models are using the concept of triple matching. 
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4.4 Model 4 

At first the RA-SA words are arranged in the form of a 2 dimensional matrix. If the RA contains less 

number of words than SA, then RA words are arranged in the rows while the SA words are arranged in 

the columns. Similarly if the SA contains less number of words than RA, then SA words are arranged in 

the rows while the RA words are arranged in the columns. Once this arrangement is done, the similarity 

scores are calculated and arranged in a similar 2 dimensional matrix. 

The scores obtained when the model is run with Word2vec are arranged in the form of a two-dimensional 

matrix and is shown in Table 9. The approach is same when using fastText with the difference being in 

the similarity scores and the overall score and so its working is not shown here. 

Table 9 (scores obtained with Word2vec) 

 pop and push 

push 0.185 0.034 1.0 

and 0.047 1.0 0.034 

pop 1.0 0.047 0.185 

 

The algorithm to find the highest similarity score starts at row 0 and column 2. Since it contains the 

overall highest score with value 1.0, it is taken and the row 0 and column 2 are struck off. The updated 

matrix is shown in Table 10. 

Table 10 (updated after first iteration) 

 pop and push 

push - - - 

and 0.047 1.0 - 

pop 1.0 0.047 - 

       In the next iteration the next highest score is taken, which is again 1.0 at row 1 and column 1, so 

it is taken and the corresponding row and column are struck off. 

       In the next and final iteration the next highest score from the remaining matrix is taken, which is 

again 1.0 at row 2 and column 0, so it is taken and the corresponding row and column are struck off. 

       Since all rows have been considered the algorithm stops and the average similarity score is 

calculated as 
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Score(Word2vec) = (1.0+1.0+1.0)/3=1.0 

and the grade to be awarded is, 

Grade(Word2vec)=1.0*5=5.0 

The two human graders have awarded scores of 5 and 5 respectively to this response, and the obtained 

score of 5.0, is same as the scores awarded by the human judges. 
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Chapter 5  

Experiments and Results 

       Experiments were carried out for all four of the models on a standard computer science dataset 

consisting of questions, reference answers and student responses taken from an undergraduate computer 

science course [10]. Table 11 presents a summary of the dataset used here for the experimental purpose. 

The dataset consists of a total of 12 assignments containing different number (9 assignments have 7 

questions, 1 has 4 and 2 have 10) of questions. Each question (Q) is provided with a reference answer 

(RA) as well as a set of student answers (SA). The number of questions as well as the number of student 

responses for each question and for each assignment is provided in the Table 5. Each student response is 

evaluated by two human scorers and the average of their scores is also provided. 

Table 11 (Statistics of the dataset being used) 

Assignment 

No. 

No. Of 

Questions (Q) 

No. of SA 

per Q 

Total no. 

of SA 

1 7 29 203 

2 7 30 210 

3 7 31 217 

4 7 30 210 

5 4 28 112 

6 7 26 182 

7 7 26 182 

8 7 27 189 

9 7 27 189 

10 7 24 168 

11 10 30 300 

12 10 28 280 

Total 87 - 2442 

 

       The performances of all four models were tested on the 12 assignments and the scores produced 

by the method are compared with the scores of both the examiners as well as their average to come up 

with the correlation values which are provided in the Table 12 and Table 13. Table 13 presents the scores 

obtained using Word2vec trained on Google-News corpus
2
, while Table 14 presents the scores obtained 

using fastText trained on Wikipedia articles. Each of the tables shows the scores using all the four 

models. Ex1 and Ex2 indicate the correlation values between the scores generated by the method and the 

scores awarded by Examiner 1 and Examiner 2 respectively. Avg indicates the correlation values between 

the scores generated by the method and the average scores of the two examiners.  
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As observed from the tables, Model 4 exhibits the best performance, with a correlation value of 0.646, for 

Assignment 4 with Word2vec on Google-News corpus. On the other hand, Models 1, 2 and 3 all exhibit 

best performances, with correlation values of 0.625, 0.612 and 0.601, for Assignments 1, 6 and 6 

respectively with fastText on English Wikipedia corpus
3
. The overall correlation score over the entire 

assignment was also computed and it reaches the highest value of 0.805 for Model 4 with Word2vec on 

Google-News corpus.  

Table 12 (Scores with Word2Vec on Google-News Corpus) 

Assign- 

ment 

  
Model 1 

  

  
Model 2 

  

  
Model 3 

  

  
Model 4 

  
Ex 1 Ex 2 Avg Ex 1 Ex 2 Avg Ex 1 Ex 2 Avg Ex 1 Ex 2 Avg 

1 0.557 0.565 0.608 0.486 0.483 0.525 0.325 0.373 0.377 0.555 0.554 0.602 

2 0.218 0.393 0.319 0.208 0.371 0.302 0.041 0.188 0.113 0.224 0.396 0.324 

3 0.416 0.426 0.475 0.171 0.137 0.179 0.045 0.045 0.051 0.297 0.211 0.299 

4 0.468 0.576 0.546 0.246 0.149 0.227 0.239 0.149 0.223 0.534 0.646 0.619 

5 0.548 0.357 0.539 0.025 0.022 0.027 0.032 0.017 0.03 0.532 0.415 0.552 

6 0.426 0.426 0.579 0.252 0.41 0.374 0.241 0.405 0.365 0.323 0.475 0.453 

7 0.375 0.497 0.468 0.064 -0.082 0.002 0.072 -0.075 0.009 0.353 0.437 0.427 

8 0.419 0.425 0.463 0.289 0.356 0.341 0.312 0.376 0.365 0.32 0.259 0.331 

9 0.421 0.334 0.427 0.408 0.379 0.432 0.411 0.38 0.434 0.521 0.424 0.531 

10 0.423 0.383 0.438 0.135 -0.008 0.1 0.139 -0.008 0.103 0.294 0.252 0.3 

11 0.374 0.434 0.425 0.224 0.274 0.26 0.219 0.265 0.252 0.358 0.486 0.429 

12 0.386 0.438 0.425 0.136 0.168 0.146 0.156 0.187 0.169 0.239 0.269 0.251 

Overall 0.652 0.785 0.448 0.358 0.41 0.204 0.395 0.466 0.221 0.639 0.805 0.4 
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Table 13 (Scores with fastText on Wikipedia Corpus) 

Assign- 

ment 

  
Model 1 

  

  
Model 2 

  

  
Model 3 

  

  
Model 4 

  
Ex 1 Ex 2 Avg Ex 1 Ex 2 Avg Ex 1 Ex 2 Avg Ex 1 Ex 2 Avg 

1 0.625 0.582 0.656 0.487 0.483 0.527 0.483 0.477 0.521 0.632 0.594 0.666 

2 0.253 0.371 0.33 0.238 0.412 0.34 0.222 0.397 0.324 0.351 0.478 0.442 

3 0.434 0.416 0.484 0.409 0.313 0.422 0.395 0.315 0.413 0.429 0.347 0.451 

4 0.524 0.472 0.545 0.327 0.279 0.334 0.319 0.269 0.325 0.535 0.496 0.561 

5 0.398 0.346 0.427 0.111 0.087 0.116 0.109 0.068 0.106 0.471 0.444 0.519 

6 0.356 0.593 0.536 0.331 0.612 0.529 0.325 0.601 0.52 0.368 0.624 0.559 

7 0.421 0.539 0.518 0.323 0.358 0.37 0.309 0.357 0.361 0.386 0.503 0.478 

8 0.443 0.429 0.482 0.295 0.234 0.303 0.329 0.281 0.346 0.364 0.342 0.393 

9 0.244 0.167 0.239 0.155 0.113 0.154 0.154 0.112 0.153 0.223 0.162 0.221 

10 0.46 0.402 0.472 0.409 0.34 0.414 0.408 0.339 0.413 0.491 0.429 0.503 

11 0.559 0.561 0.612 0.487 0.542 0.547 0.479 0.531 0.537 0.558 0.577 0.615 

12 0.456 0.459 0.488 0.281 0.223 0.267 0.294 0.238 0.282 0.398 0.377 0.414 

Overall 0.686 0.783 0.461 0.611 0.717 0.336 0.609 0.713 0.335 0.687 0.801 0.456 

 

 

Fig. 5 (Comparison of Correlation using Word2Vec) 
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Fig. 6 (Comparison of Correlation using fastText) 

 

Fig. 5 and Fig. 6 present the comparison of correlation values for all the four Models using 

Word2Vec and fastText based similarity measures respectively. Only the Avg of the scores awarded by 

the two Examiners Ex1 and Ex2 has been considered for graphical representation. From Fig. 5 and Fig. 6 

it is observed that except for Assignment 9, all four models perform better when using fastText with 

Wikipedia instead of Google-News corpus. The reason is that fastText can even build vectors for words 

that are not in the corpus being used by using the vectors for the components that makes up the unknown 

word. It does so by breaking up the word into n-gram characters (the value of n is decided by the fastText 

algorithm and not by us), and then using the vector representations of these n-gram components to build 

the vector for the word. Hence presence of words such as Enqueue, which has significance in computer 

science terminology but not in plain English, will not negatively affect the score generated for the SA 

containing it. 
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       Another point to be observed is that the correlation values for Assignments 5 and 7 are lower for 

Models 2 and 3 when Word2vec is used as compared to when fastText is used. The reason is the different 

working principles of Word2vec and fastText. Word2vec uses the whole word to generate its 

corresponding vector, while fastText breaks down the word into a group of n-grams, then generates 

vectors for these individual n-grams and then finally adds them up to come up with a vector for the 

original word. Therefore when a word that is not present in the corpus is supplied to Word2vec model, it 

generates an erroneous resultant vector which results in generation of a lower score when the word is 

compared with any other word.  

This is not the case with fastText, as even if the input word is not present in its corpus, it still 

breaks down the word into a group of n-grams where the n-grams might be present for some other words 

in the corpus and thus can be used to generate a vector for this word. For example the pair of words (n, 

array) when checked with Word2vec generates a similarity score of 0.010 while for the same fastText 

generates a score of 0.231. If such word pairs occur frequently, it will lower the overall similarity score, 

which in turn will lower the grade to be awarded to the student answer. Such cases are found in much 

more quantity in Assignments 5 and 7 compared to the rest of the assignments of the underlying dataset. 
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Chapter 6  

Error Analysis 

       Even though our Models generate scores quite close to that of the human scores, there are some 

exceptional cases where they generate low scores. One such case is given below, which is taken from 

Assignment 8: 

Q: What operations would you need to perform to find a given element on a stack? 

RA: Pop all the elements and store them on another stack until the element is found, then push back all 

the elements on the original stack. 

SA: StackPush() StackPop() StackIsEmpty() 

       Here the student has answered the question by giving the operations that needs to be performed in 

terms of function names. Now a human scorer easily understands this, but the method requires a little bit 

of context to understand this concept. Such cases can be handled in two ways. The first way is to feed the 

context in which a word or expression is used. In the example provided, the context will be that 

“StackPush” signifies a function which performs the operation of pushing an element onto a stack. This 

context can then be used by the models to understand the actual meaning of the response and not treat it 

as random text with no meaning. The second way is for the models to understand the response by itself 

without the use of any context provided separately along with the response. This can be achieved by 

building a knowledge base (KB) of such cases so that the models can consult the KB when they encounter 

such responses. This will lead to the introduction of the concept of Machine Learning, which is not 

preferred as the KB will be huge and will only grow as and when such new cases are encountered. 

 The following simulation will shed some light on why such cases will produce a lower score. The 

RA and SA are fed into Model 1 and the working is shown below: 

Individual words along with their corresponding POS tags for both RA and SA are shown in Table 14. 
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Table 14 (words with POS tags) 

Words in RA POS tags Words in SA POS tags 

pop NN stackpush JJ 

all PDT stackpop NN 

the DT stackisempty NN 

elements NNS - - 

and CC - - 

store VBP - - 

them PRP - - 

on IN - - 

another DT - - 

stack VBP - - 

until IN - - 

element NN - - 

is VBZ - - 

found VBN - - 

then RB - - 

push VB - - 

back RB - - 

original JJ   
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The scores obtained when the model is run with Word2vec are shown in Table 15. 

Table 15 (scores obtained with Word2vec) 

Word in SA 
Word in RA with 

equivalent POS 
Similarity Score 

Maximum Score taken 

into consideration 

stackpush(JJ) original(JJ) -0.073 -0.073 

stackpop(NN) pop(NN) 0.047 

0.047 stackpop(NN) elements(NNS) 0.006 

stackpop(NN) element(NN) -0.073 

stackisempty(NN) pop(NN) 0.047 

0.047 stackisempty(NN) elements(NNS) 0.006 

stackisempty(NN) element(NN) -0.073 

 

It is to be noted that since the length of SA is lesser than RA, their roles have been reversed and 

RA is evaluated with respect to SA. Also there are many words in RA having POS tags that are not 

equivalent to the POS tags of the words in SA, and so they are not shown in the above tables as they 

won’t be matched. 

Now “stackpush” from SA only matches one word in RA with similarity score of -0.073, so this 

score is considered. For “stackpop” from SA, there are three matching words in RA with similarity scores 

of 0.047, 0.006 and -0.073 among which 0.047 is maximum of the three, so this score is considered. For 

“stackisempty” from SA also, there are three matching words in RA with similarity scores of 0.047, 0.006 

and -0.073 among which 0.047 is maximum of the three, so this score is considered.  

      Now that all similarity scores are obtained, the average similarity score is calculated as: 

Score(Word2vec) = (0.047+0.047-0.073)/3=0.007 

      Since the full mark of this Q is 5, the grade that is to be awarded to this SA is calculated as: 

Grade(Word2vec)=0.007*5=0.035, which when rounded off to one decimal place gives a value of 0. 
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The two human graders have awarded scores of 2 and 4 respectively to this response, but one of the 

models has awarded it a score of 0. So the method failed to score this response correctly, and though it 

might be said that the obtained score is close to one awarded by first human scorer, it is nowhere close to 

the one awarded by the second human scorer. 
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Chapter 7  

Conclusions and Future Work 

As evident with the correlation values between the scores obtained by the proposed method and 

the scores awarded by the examiners, all four of our models have proven to be quite efficient in assigning 

scores to the student answers sufficiently close to the scores awarded by the human examiners. Given a 

reference answer (RA), our models assign a similarity score (in the range [0, 1]) to the student answer 

(SA), which is then scaled up with reference to the full marks assigned to the question (Q). 

Experiments were carried out on all four of our models on a standard ASAG dataset and the 

correlation values  between the obtained scores and those awarded by the human examiners reveals that 

the proposed models can competently award the students responses with scores sufficiently close to that 

of the human examiners. 

In some cases, it was observed that the RA has conveyed the answer in very few words, i.e. in a 

gist, while the student has conveyed almost the same answer with more words by providing some extra 

information, which may or may not be related to the provided answer (RA). In such cases, if the SA is 

evaluated with respect to the corresponding RA, this extra piece of information may not get matched to 

that given in the RA, resulting in assignment of a lower score to the SA than it should have been awarded. 

Thus, for such cases reversing the role of RA and SA, i.e. evaluating the RA with respect to the SA, is 

found to be effective as the models generate fairly high scores nearer to those awarded by the human 

examiners. However, for such cases an assumption was made that the extra piece of information provided 

by the student is correct, and therefore the provision of penalising the student response for extra 

information which is incorrect or irrelevant is currently out of the scope of the proposed method. 

In future,  some advance mechanisms will be augmented to find out whether the extra piece of 

information is incorrect or not in relevance to the context of the answer, which will help us with the 

decision of penalising the student answer or not. 

Apart from the rules that have been used in  the models for the purpose of matching the  RA and 

SA, the efficiency of the proposed models is upper bounded by the semantic similarity scores produced 

by the corpus-based similarity measures word2vec and fastText. The similarity scores returned by these 

similarity modules play an important role in assigning scores nearer to the human graders.  Incorrect 

scores produced by them can adversely impact the performance of the models. 
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There are several RA and SA in the dataset having spelling errors. For a fair judgement, we have 

evaluated the performance of the models without correcting those errors in the dataset. In future, we will 

try to add spell checker to get rid of these errors, which should improve the performance of the method to 

some extent. 
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