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ABSTRACT

Recommender systems have become increasingly popular in recent years, and are utilised in a
variety of areas including movies, music, news, books, research articles, search queries,
social tags, and products in general. Recommender systems use Machine Learning techniques
and Data mining algorithms to predict what items should suggest to the users based on some
previous information related to the users and their relations to the items. It basically offers the
users a limited number of products and services which he/she would like to get among the
vast amount of all available items. The growth of information on the Internet as well as
number of visitors to websites is producing many choices to a customer, but many of those
are irrelevant to them. A Recommendation System filters this data and refers the filters data
to the users. A Recommendation system is totally based on its training data, the performing
algorithms and the recommending approach. There are many popular approaches like user
based collaborative filtering, item based collaborative filtering, content based filtering and
Hybrid models.

We have implemented three different architectures, item based, user based and factor
based hybrid models in order to build recommender system for artist. In order to cope up with
the huge amount of data, we have used Apache Mahout on top of Hadoop. Apache Mahout is
an open source framework, primarily used for creating scalable machine learning algorithms.
Using Mahout we can fasten the process. Mahout offers the coder a ready-to-use framework

for doing data mining tasks on large volumes of data.
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1. Introduction
The present attempt focuses on developing recommendation systems mostly used in the

digital domain. Majority of today’s E-Commerce sites like eBay, Amazon, Alibaba etc make
use of their proprietary recommendation algorithms in order to better serve the customers
with the products they are supposed to like. From business perspective recommendation
systems are typically used to enhance the business and increase the sale by helping users
discover items they might not have found by themselves and promote sales to potential
customers based on their previous selections over the other similar data. A good
recommendation system can provide customers with the most relevant products. This is a
highly-targeted approach which can generate high conversion rate and make it very effective
and smooth to do advertisements. So the problem we are trying to study here is that, how to
build effective recommendation systems that can predict products that customers like the
most and have the most potential to buy based on the research on some existing models and
algorithms like User Based Collaborative Filtering, Item Based Collaborative Filtering and
Hybrid Recommendation algorithm which is just combination of other algorithms. They can
be used to predict the rating for a product that a customer has never reviewed, based on the
data of all other users and their ratings in the system. We implement these three algorithms,
and then test them on Last.fm-360k-datasets to do comparisons and generate results. Which
have 17,000,000+ ratings and 360,000+ users. Our goal is to build a recommendation system
which recommend based on user activity, Item similarity and user profile. We use a Machine
learning framework of Apache called Mahout coupled with hadoop to analyse huge amount
data. There is another tsv dataset which contains the user profile of all the users like their
gender, age, country and their registration date. Such dataset has been further used in hybrid

model to improve the performance of the system.

1.1. Motivation

The tendency to use past data for business purpose for each industry and organisation is
increasing day by day. Today, around 2.5 Quintillion bytes of data has been created per day
and in future more data will be generated. Storing and accessing these data is a separate issue
but paper is all about accessing the data. We want to use the bigdata to implement a

recommendation system and making it better. There is a urgent demand in the industry for a



recommendation system. The recommendation system is new to the industry and industry
want researchers to look over it to make it better. The web sites like fast.fm, netflix, amazon’s
are gaining billions for their good recommendation system. Netflix have announced 1 million
for the recommendation system which can beat their own recommendation system. Actually
this is the main reason that people care about recommendation systems because it brings
money. Big web giants like Amazon, Netflix, Spotify and etc are investing huge money on
recommendation system. It is increase their profit by adding value to the customer. It’s saves
customer’s time and also engages him/her with the website. Apart from that researchers are
also interested in it because it’s a real Data science problem. It involves Statistics, Machine

Learning, and Software engineering.

1.2. Problem Statement

Here, we are going to build a Recommendation System using machine learning algorithms to
recommend artists to the last.fm users and predict their ratings. By adding some factor
models, we tried to improve the recommended output better. Recommendation system
stimulates the sales and increase profits. For our recommendation system, we decided to
choose the Last.fm-360k-users dataset which consists of 17,000,000 reviews and 360,000
users. Our recommendation system is not only for rating prediction for users but also it
explores the new possibilities. As per our problem, we assume that the users tend to like the
products that have a high preference value to the user. We will consider the preference score
ranges within 1 to 5. We have implemented several algorithms to predict the scores of each
product. The main objective of this project is to develop a music-artist recommendation
system. The system will determine the preferences to the artists for the users, based on the
analysis of the data generated by their past activity. First, we build some traditional systems
and then in hybrid model, we combine their results. Also, it has been taken into account that
we do not always want to hear the same artists or genres or favourite bands. Sometimes, a
listener needs to be surprised to enjoy a new discovery. In order to implement that, we use
some factor models with the hybrid system. The factor models are implemented to refer them
the artists which are generated based on traditional approaches but their predicted preference
value is not only based on the traditional system but also it depend on their gender, age and
location.

Now, let’s take an simple example to understand how does a recommender system

recommend.



Table -1: A simple example to understand recommender system

DATASET : RESULT :

Userld Artistld Rating
Recommendation result for User 2 :

RecommendedItem [item:3, value:4.5]

RecommendedItem [item:4, value:4.0]
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3, 03, 4.0
3, 04, 3.0
4, 00, 5.0
4, 01, 5.0
4, 02, 5.0
4, 03, 0.0
1.3. Challenges

1. The last.fm-360k-dataset is a large dataset containing 17 million ratings and 360k
users. To handle that huge data, we use hadoop’s Map Reduce framework.

2. The last.fm-360k-dataset contains user id and song as string attribute and number of
plays as integer value with no range. Since, the data model for Mahout’s
recommender has a specific format like long data type for user id and item id and

preference point as double. To resolve this situation, we use hash mapping with each




string user id and item id with a unique number and we normalize the number of plays

within a range.

3. Producing improved recommendation and handling many recommendations
efficiently is also a challenge but Mahout’s ready to use framework solve this case.

To address these issues, we have explored several collaborative filtering techniques
such as the user based approaches, item based approaches. Item based approach identifies the
relationship between items and indirectly computes recommendations for users based on
these relationships. The user based approach was also studied; it identifies relationships
between users with similar taste and computes recommendations based on these relationships.
The paper analyzes algorithms of user based and item based collaborative filtering techniques
for recommendation generation. Moreover, a simple experiment was conducted using a
Machine Learning framework of Mahout. We conclude by proposing our approach that might

enhance the quality of recommender systems.

1.4. Contributions

Recommendation systems are evolving with the time and getting better and better. Applying
approaches like user based CF, item based CF and user profile based model to build a
weighted hybrid recommendation system. Machine Learning algorithms of Mahout, a
framework of a hadoop has been used. This project is a combined application of machine
learning over Big Data. Also, it explores the Mahout framework whereas the hybrid system
copes up with some other criteria based on user’s profile. In this project we have analysed the

two traditional models and one hybrid model in brief.



2. Related Work

There are two main approaches for a recommendation system has been used. These are most
popular algorithms, i.e., the content-based filtering approach and the collaborative filtering
approach. Content-based filtering approach Based on the item profiles and user profile where
the relation between the user profile and item profiles are registered at the beginning. Based
on item profile the system finds the similar items and recommends only those similar items
that are highly relevant to the similar user profiles. Examples of such systems are
NewsWeeder [5], Infofinder [6], and News Dude [7].

On the other hand the collaborative filtering have two subtypes one is user based CF
other is item based CF these algorithms cluster the data according to the user based or item
based approach and group them as based on similarity measurement and recommend them
accordingly. This type of recommendation system is mentioned by surendra[8] and Hintone
[9]. Instead of computing the similarities between the item profiles and the user profiles the
collaborative approach computes the past experience of the user over the item. As described
above the purpose of the collaborative approach is to make recommendation among the users
in the same group, the recommendation of the Collaborative method depends on the users’
interests and the interests are derived from the users’ access histories.

Some websites even tracks the item web pages searched or viewed by the user and
those data taken account to derive preference value. Therefore, the users will never get a
recommendation of music objects belonging to the music groups they never accessed before
as per CB method. That is, the Collaborative method tends to provide expected and
interesting music objects for users. The purpose of the CF method is to provide unexpected
findings due to the information sharing between relevant users. To refer to the information
from other users, we group the users first. There are the technique proposed in [10] for user
grouping. Examples of such systems are Ringo [11] and Siteseer [12]. In the collaborative
filtering approach, the system may have a high possibility to recommend unexpected data
items by the nature of information sharing.

Some systems use both contend-based and collaborative filtering approaches which
exploit both ratings and content information. Like recommendation system discussed in [4]
which depart from the traditional social-filtering approach by framing the problem as one of
classification, rather than artifact rating. However, it differs from content based filtering
methods in that social information, i.e. other users’ ratings, will be used in the inductive

learning process. For example, Tapestry [13] and GroupLens [14] allow users to comment on



Netnews and group users by computing the similarities of their ratings of newsgroups. In
addition, for the process of recommendation, users have to specify their profiles and describe
the features of data items which they are interested in. The user interests are derived from the
types, the actors, and the scenarios of items that the user accessed in the past. The users are
also required to specify the satisfactory degrees of the accessed items. With respect to items,
users who specify similar satisfactory degrees will be grouped together for collaborative
recommendation.

Similarly, the Personalized Television system [15] provides a personalized list of
recommended programs. The FAB system [3] analyzes the accessed web pages to derive the
user profiles and compares the user profiles to group users for collaborative recommendation.

Now Mahout is an open source machine learning library from Apache. Using Mahout
we can combine the traditional algorithms. Mahout is written in Java and primarily focused
on recommendation engines, clustering, and classification. Its core algorithms are

implemented on top of Hadoop so that it can scale on large datasets [20].



3. Dataset Preparation
The recommendation websites stores the data generated per day. It stores the details of the

user like their age, gender, country etc and along with the data related to user’ relationship
with content .The websites usually stores these data which is supposed to be used for

recommendation.

3.1. Data Source

Last.fm is a music website, founded in the United Kingdom in 2002. Using a music
recommender system called "Audioscrobbler", invented by Richard Jones. Last.fm builds a
detailed profile of each user's musical taste by recording details of the tracks the user listens
to, either from Internet radio stations, or the user's computer or many portable music devices.
This information is transferred ("scrobbled") to Last.fm's database either via the music player
itself (including, among others Spotity, Deezer, Tidal, and MusicBee) or via a plug-in
installed into the user's music player. The data is then displayed on the user's profile page and
compiled to create reference pages for individual artists as er wiki description [21]. T have
chosen last.fm-360k-dataset. I have downloaded the data set contained in a tar file from
Last.fm Dataset - UPF[22]. The detailed information about the tar file is given below:
. Files:

usershal-artmbid-artname-plays.tsv (MD5: be672526eb7¢69495¢27ad27803148f1)

usershal-profile.tsv (MD5: 51159d4edf6a92cb96f87768aa2be678)

mbox_shalsum.py (MD5: feb3485eace85f3ba62e324839e6ab39)

. Data Statistics:

File usershal-artmbid-artname-plays.tsv:

Total Lines: 17,559,530
Unique Users: 359,347
Artists with MBID: 186,642
Artists without MBID: 107,373

. Data Format:

The data is formatted one entry per line as follows (tab separated "\t"):



File usershal-artmbid-artname-plays.tsv:

user-mboxshal \t musicbrainz-artist-id \t artist-name \t plays

File usershal-profile.tsv:
user-mboxshal \t gender (m|flempty) \t age (intlempty) \t country (strlempty) \t signup
(date|empty)

. Example:
usershal-artmbid-artname-plays.tsv:
000063d3felcf2ba248b9e3c3f0334845a27a6be \t a3cb23fc-acd3-4ce0-8136-
leSaa6al8432 \t u2 \t 31

usershal-profile.tsv

000063d3felcf2ba248b9e3c¢310334845a27a6be \t m \t 19 \t Mexico \t Apr 28, 2008

There is two main files ‘usershal-artmbid-artname-plays.tsv’ and ‘usershal-
profile.tsv’. As we know from the above mentioned information that ‘usershal-artmbid-
artname-plays.tsv’ is the main file which contains the main file which has the data based on
previous user-Item relation i.e. users past experiences. The other one is the data set based on
user’s profile. Our final goal is to build a hybrid recommendation system which performs
better than the traditional systems. CF recommender does not require the user profiles. It only

needs the user-Item relationships to compute the recommendation algorithm.

3.2. Pre-processing of Data

Now usershal-artmbid-artname-plays.tsv dataset contains four tab separated columns as
mentioned above:
“user-mboxshal \t musicbrainz-artist-id \t artist-name \t plays”

We pre-process the data in the following steps.

1. The ‘usershal-artmbid-artname-plays.tsv’ data set contains user id, artist id, artist name or

plays. There may be some incomplete information like any of user id, artist id, artist name or



plays is missing. We simply discard those rating information and consider the remaining. So,
if all the four attributes are not available then we will simply discard that rating by applying a

filter condition over the data set we do that.

2. Preference point is a number which gives a value to the item for a user that how much
he/she likes it. Since we have any preference value but the number of plays of an artist is
available. For a user if number of hits or plays for a song is higher than that of the other song
then its preference point will be high. So, we can define a preference value which is based on
a user’s number of plays but every user’s liking should be rate in a same range of interval.
Because some user listen music frequently and some user listen music often. Let us take an
example :- a user listen music frequently but listen a particular song a certain number of
times and some other user listen that song same number of times but this user is less
interested in music so he usually less frequent to the website. But does not mean that the 1st
user like the song same the 2nd user. Because 2nd users’ listening percentage to that song is
more than that of Ist user so, we can assume that the 2nd user likes the song more than first
singer. So, we can solve this problem by normalize the number of plays and derive a
preference value out of it which ranges in an interval say 1 to 5 per user which will be based
on the listening percentage. l.e. the artist he/she listens most is the item with the highest
rating say 5 and the artist he/she listens least is the item with lowest rating. l.e. if the number
of plays is high then that item is a highly preferable item for the user and if it is less listened
artist then it is less preferable to the user. Let a and b are the number of highest and lowest
number plays respectively of a user among his/her all past listened artists. Now suppose X is
the number of plays for any random artist then the rating generating function for that artist
will be:

Rate(x) =1 +ﬁ * 4

This value ranges from 1 to 5.

3. The user-mboxshal is a unique identifier of users, is a 40 character string, musicbrainz-
artist-id is a unique identifier for Artists, is a 36 character string, artist-name is a character
string and number of plays is an integer which count the number of times the artist is hit by
the user. But this data set should be model in a meaningful format which can be identified by
the Mahout framework. As per Mahout framework the data model for input data should be a
csv file whose first attribute should be user id and data type must be long and the second

attribute is item-id and this is also a long data type and third data type is a double data type
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which is called the preference id and all should be formatted in comma separated format like
example-1 dataset. So, we need to process the data in such a way that 17,000,000 ratings
converted to the csv format. To do that I have used hash map and which maps the string to a
long data type and compute preference value from the number of plays and keep the mapping
until the recommendation is done. l.e. unique integers for per user-mboxshal and
musicbrainz-artist-id will be generated and a new data set will be formed with those new
integer ids. With the new data set recommendation will be done and end of the
recommendation, in the result set it maps back the String id’s or artist name by using the hash
map .We built a StringTolnt class to handle this mapping.

The data set is huge and tough to handle it we use hadoop’s Map Reduce technique. I
have used a hadoop’s single node cluster if we can increase the number of node in future then
we can test the recommending time is being reduced or not and if reduce then by how much.
This mapper takes the first attribute i.e. the user id as the key and the remaining as value and
at reducer phase it compute the necessary values for each key.

After all the pre-processing part the data set transformed in to a new dataset in
hadoop’s output file named as ‘part-00000°. We store that file in a separate space and the
recommendation will done on this file. It’s a csv file with three attributes and comma
separated. This is the specific file format for Mahout’s recommendation system. I have

provided screen of the data sets before pre-processing [fig-1] and after pre-processing [fig-2].
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00000c28921829a808ac09c00daf10bc3cq4e223b 6b335658-22c8-485d-93de-0bc29a1d0349 judas priest 198
00000c289a1829aB08acO9cOBdal10bc3cde223b €995a379-60b9-464b-bd97-a7e2de@751d3 rob zombie 198
Mo0000c289a1829aB808ac09c00dafiobe3c4e223b e0ab57c6-7bal-4dca-b3se-faedchc269el the bosshoss 189
00000c289a1829a808acB9cO0dafi6bec3cde223b c7423e0c-ab3e-4ab4-beld-cdff5a0d3062 blue Oyster cult 185
00000c28931829a808ac09c00daf10bc3c4e223b 0fb62639-4143-443b-8779-6867a1d08230 sandra nasic 183
60080c289a1829a888ac09cOBdaf10bc3cde223b 144ef525-85e9-40c3-8335-02c32d0861F3 john mayer 182
el SR A S Aol e T e G e e s e e St S il TR
— = Plain Text * Tabwidth:8 Ln302398,Col26 +  INS

Raw Dataset [fig-1]



11
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4. System Design

Let us understand a user-item rating matrix in order to understand CF Recommender systems.
It is an n x m matrix where n users rated m items. Here, each of the cells corresponds to the
rating given to item ‘i’ by the user ‘x’. i.e each row represent the rating vector corresponding
to a user. This user rating matrix is typically sparse, as most users do not rate most of the
items. Thus, the goal of the present system is to recommend those unrated cells .i.e. those
items which are not reviewed by the user. The user under current consideration is referred as
the active user. The three models are given below :

1. User Based Collaborative Filtering (CF)

2. Item Based Collaborative Filtering (CF)

3. Hybrid approaches: These methods combine both collaborative based approaches

along with the factor models based on user profiles.
The basic architectural design of the recommendation systems implemented in Mahout [1] is

given in [fig-3].

Java/Jl2EE
application

I X
Recommender

MNeighborhood

Correlation

Preference
Inferrer

DataModel

Data Store

Mahout Architecture [fig-3]
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4.1. Mahout Framework

Apache Mahout is a distributed linear algebra framework implemented on java and
coupled with hadoop to boost up machine learning algorithms. It focused primarily on the
areas of collaborative filtering, clustering and classification. Many of the implementations
use the Apache hadoop platform. Mahout also provides Java libraries for common maths
operations (focused on linear algebra and statistics) and primitive Java collections. Mahout is
a work in progress. The number of implemented algorithms has grown quickly, but various
algorithms are still missing [21]. Still, it is a powerful tool in research field to deal with
machine learning. Mahout is providing in-built ready to use basic machine learning
algorithms.

Weakness of Mahout includes poor visualization and less support for scientific
libraries compared to Spark for Python and what Python has inherited from R. Mahout has a

lot of dependencies which can be a drag if one is simply using it for Spark jobs.

4.2. User Based Recommendation

User based recommendation is a type of collaborative filtering where user-based
algorithm produces recommendation list for the user according to the view of other users with
similar taste. Underlying concept is, if the ratings of some items rated by some users are
similar, the rating of other items rated by these users will also be similar. Refer to the
previous example-1 we make table-2.

Table-2 : User based approach

ItemID (ArtistiD)

UserlD 00 01 02 03 04 05 06

1 10 Y 20 V{501 [5.0) 5.0\ | (NAY|/NA
2 10 [ l2o0 |l 50| Ina [[Inal|]5.0]]] 25
3 NA | (25 || 5.0 [| {40 Il 30| [NAJ[INA

4 5.0 5.0 5.0 0.0 NA | NA NA
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Now let us look at the ratings among user-1, user-2 and user-3. Since for most of the
cases their ratings are similar, we can put them in a same group. If we want to refer some
item to user-2, then it must be item-03 and item-04 because of high rating from user-1 and
user-3.

There are some metric functions in Mahout which measures the similarity measures
between the users and based on that value it group the users. Based on a threshold value it
will allow other user to be in same neighbourhood. Collaborative Filtering algorithm that uses
a threshold value to determine the neighbourhood is discussed here. The algorithm can be
summarized in the following steps:

e Find the similarity value between the users. This similarity metric is Pearson

correlation similarity according to our problem.

S(x,y) = =) TR

(1)
Jz?=1<r<xi>—F®)2z;;l(r(yi)—F@)z

e Select n active users that have the highest similarity up to a threshold value.

e Find the items which are not reviewed by the user x yet and reviewed by most
of other users among n users.

e Compute a predicted rating, from the top similarity. Let x is the current user, y
is any of the similar users and i is the item then formula for prediction for user

x over item i will be:

2y=1(r(y)=r())*S(xy)

P(x,1) =
x,i) =rx) + T

-2

Where r(x) and r(y) is the mean rating of user x and user y respectively.
r(x;) and r(y;) are rating of user y and user x over item i respectively.
S(x,y) is the similarity between user x and usery.
Since, Mahout has in-built ready to use functions and classes for recommendation. So,
we don’t need to work hard for coding part. The recommendation system is implemented in

Java and computes 20 recommendations for particular user.

4.3. Item Based Recommendation

Item based recommendation is another type of collaborative filtering. The idea is the
ratings of some items rated by some users are similar. The rating by the other users to those

items will also be similar, i.e. if some user rates some items with similar rating then these
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items will be similar kind of item. We again refer to the previous example-1 and make the
user item rating matrix table (table-3) to understand the concept.

Table-3 : Item based approach

ltemID {ArtistiD)

UserlD 00 o1 02 03 04 05 06
1 1.0 2.0 E.u 5.0 5.0_] NA NA

2 10 | 20 En NA NEE 50 | 45

3 NA 25 E.D 4.0 3. E] NA NA

4 5.0 50 |[5.0 0.0 | NA]| NA | NA

Now let us look at the ratings among item-02, item-03 and item-04. Since for most of
the cases their ratings are similar, we can put them in a same group. If we want to refer to
some item user-2 then it must be item-03 and item-04 because they are in a same group with
item-02.

The metric functions in Mahout is used to measure the similarity measures between
the items and based on the rating by the user. Collaborative Filtering does not need a
threshold value for neighbourhood. The algorithm can be summarized in the following steps:
e Find the similarity value between the items. This similarity metric is Pearson
correlation similarity according to our problem.
S(i,{) = YR=1(r(xi)=r(x) (r(x;)-r(x))
B (G =TG0)2 B (1 (3) TGO

.(3)

e Select active users that have the highest similarity.

e Find the items which are not reviewed by the user x yet and reviewed by most
of other users among n users.

e Compute a prediction, from the top similarity. Let x is the user and i is the
item then formula for prediction for user x over item i will be:

2z (r(x)-r(9) =S ()

P(x,1) = r(1)
(x,i) =r(1) + YB_SGD)

Ney

Where r(x) and r(y) is the mean rating of user x and user y respectively.

r(x;) and r(y;) is rating of user y and user x over item i respectively.
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S(i,j) is the similarity between item i and item j.
Now, we can proceed to our main goal, the hybrid model. This model combines both the

recommendations above and user profile to recommend better.

4.4. Hybrid Recommendation

This Hybrid recommendation system is a combination of the recommendation systems
mentioned above and also it associates the measurement of the user profile data. There are 7
types of hybrid recommendation systems: weighted, switching, mixed, feature combination,
feature augmentation, cascade, and meta-level.

This recommendation system is a type of mix-weighted hybrid recommendation
together with the factor models based on user profile data. We combine some the
recommendation from user based CF and some from item based CF and combine them and
then we put them in a single list. Then divide their Preference value in some parts.

e P, :70% preference value based on their collaborative algorithms.
e P, :10% preference value based on their gender based model.

e P53 :10% preference value will based on their age

e P, :10% preference value will be based on their location.

Now after data cleaning all the parts are same but after that we combine all the
approaches on the pre-processed dataset like previous examples we find the similarity

between two users or items based on that similarity.

4.4.1. Gender Based Factor Model

To optimize our recommendation system we use user profile data; underlying concept being,
if an artist is famous among a particular gender then it is obvious that the artist is highly
preferable to that gender. For example Justin Bieber is famous among girls or ladies then he
is highly preferable to a female user.

Let, i is an artist and u; are the users who have already reviewed i .Let x is an active user then
according to x, the preference value of the artist i will be say P»(x, i). Let total male count is

M and total female count is F. and the song is preferred by f female user and m male users.

m=*100

Then female percentage is and male percentage is who performed the artist.
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fx100

f*M
Case 1: If the user is female, then her preference will be high if Hag5s = oF > 1 and
M

f+*M
Preference will be low if — <1
mx*F

f+M
m#F ’

We call it advantage ratio over gender, I =

mxF
f+*M

Case 2: Similarly, for a male user it will be r =

Then for our recommendation system the preference value should be in between [0,1].
So, we define a function which maps r in a range [0,1].

Let preference value based on gender will be determined by the following function.

r2

1+r2

Pz(X, 1) =

P, :[0,00) —[0,1], It’s a bijective mapping

The value lies between 0 to 1 and for a neutral case, it will give 0.5 [fig-6].

5 ; 2 ; : : :

P; Graph [fig-4]

4.4.2. Country Based Factor Model

In our recommendation system we use user’s location data. Here the concept is if a artist is
famous in some country then it is much likely that an user belonging to that country would
prefer that artist. For example, being famous in India, Arijit Singh is most likely to be
preferred by an Indian user.

Let, i is an artist and w; are the users who have already reviewed u;.Let x is an active user then

according to x the preference value of the artist i will be say P;3(x,i). Let count of users from
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all countries is T and count of users from user x’s country among all users is C. Count of

users among u; is t and count of users among u; is ¢.
100

Then percentage users from the country of the user x among all users is and

. ¢x100
Percentage users from the country of the user x among u, is — Then,

Cc*100

*T
Her preference will be high if wss = i*c>1 and
T
. .~ cxT
Preference will be low if oc <1
cxT

We call it advantage ratio over country, = e

Then for our recommendation system the preference value based on country will be

determined by the following function.

2

Pa(xi) = 1+r?

This value is lie between 0 to 1 an for a neutral case it will give 0.5 [fig-6]

4.4.3. Age Based Factor Model

The concept behind incorporating user’s age in our recommendation system is, if an artist is
famous among a certain age group then that artist is highly preferable to a user from that age
group. So, if the variance of difference between the ages of the users who prefer that item and
the current user is smaller, then the artist is highly preferred by the person.

Let, i is an artist and u; are the users who have already reviewed and let their age is 1,,. Let x is
an active user then according to x the the preference value of the artist i will be say P4(x.a).

let x’s age is |,

D= = Zioo(h =

- n_oo_
l=2u'—nlu,llsthemean

Then the coefficient of variant say, v =

v lies between 0 to 1 and it is minimum when variation of ages is less i.e. for that case it’s a
highly preferable item. On the other hand if v is near to 1 then this is less preferable item.
Then for our recommendation system the preference value based on country will be

determined by the following function:
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P3(x,i) =1-v.

This value also lies between 0 to 1.

The main algorithm can be summarized in the following steps which combines all the
functions together:

e Find the similarity value between the users and similarity between items using
the similarity metric mentioned above (1) and (3).

e Using the traditional recommenders (user based CB and user based CF)
compute the recommend item and merge them.

e Compute a predicted using equation (2) and (3) respectively say it’s R.
Preference will be depend on this rating then P1 will be 40% of R.
i.e. P1=R*0.7

e Using the gender based factor model find the preference value based on user’s
gender say it’s P,.

e Using the country based factor model find the preference value based on
user’s country say it’s Ps.

e Using the age based factor model find the preference value based on user’s
age say it’s Py.

e Now calculate the new predicted Rating of user X over item i.

R(x,a)=W*P+W,*P,+W;3*P3+W,*P,

Where W, W,, W3 and WF, are the weightage.

W;=3.5, W»=0.5, W3=0.5 and W,4=0.5

0<P,Pp,P5,Ps<1

So 0 <R(x,a) < 5.

e Now calculate the new predicted rating of user x over item i. Sort it based on

this predicted rating and recommend them best among them.
We have also evaluated the recommendation system above. For that we have created another
evaluator class. Mahout provide us these various features to create, implement and test the
results so, it reduces the effort and complex algorithms to implement. Because all in there in

Mabhout.
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4.5. Evaluator Model

Mahout provide us various evaluators which we can employ upon our recommendation
systems and verity the results. We use IRStaticticsEvaluator to evaluate our Recommendation
system it takes a small percentage for training and recommend based on that and calculates
that value is how much correct. To evaluate that, we are going to measure the precision,

recall and f1 score.

Where ,

|[{relevant documents}n{retrieved document}|

recision =
p |[{retrieved document}]|

|{relevant documents}n{retrieved document}|

recall =
|[{relevant documents}|
2xprecision#*recall
f1 score = —2——
precision+recall

Here mahout takes a percentage of the data model for training purpose and fill the
remaining cells of the user-item rating matrix using recommending algorithm. Now, it finds
the some difference measurement of the actual ratings and recommended ratings. Then the

evaluator model calculates these above mentioned parameters according to their definition.



5. Evaluation

21

The experiments regarding the recommendation systems, their results and analysis on their

result set are discussed in this section.

5.1. Experiment and Results

We have run our three recommendation systems over the 17,000,000 ratings and we observe

the different recommendations recommended by these three recommendation engines for a

particular user. The output consists 20 artist and their predicted ratings provided by the

different recommendation systems.

The user id is: 00000c289a1829a808ac09c00daf10bc3c4e223b

Table-4: Recommended result for an user by all three recommender systems

User based Recommender

Item Based Recommender

Hybrid Recommender

Artist Ratings | Artist ratings | Artist ratings
messiah j & the 5.0 the stone roses 5.0 richard Elliot 4.7121
expert

ion storm 4.8691 | deep insight 5.0 Jazzmasters 4.6394
steinar albrigtsen 4.6045 | der plan 5.0 Cartola 4.5940
joaquin phoenix & 4.5824 | bill evans 5.0 ana cafas 4.5798
reese witherspoon

d.batistatos 4.4402 | fefe Dobson 5.0 Gojira 4.5726
dumonde aka deleon | 4.4293 | Silverstein 5.0 Acidman 4.5530
and jamx

femme fatale 43571 |r.em. 5.0 louis prima 4.5449
kerbenok 4.2243 | Clawfinger 5.0 Avril 4.5420
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the apostles 4.1774 | the go! Team 5.0 Am 4.5318
dab (digital analog 4.1538 | laura branigan 5.0 entombed 4.5313
band)
ross parsley 4.1098 | marissa nadler 5.0 the adolescents 4.5003
david rovics 4.1079 | why? 5.0 Nico 4.4919
druhé trava 4.0957 | Brujeria 5.0 Paulinho da viola | 4.4850
shael riley 4.0909 | lars winnerbéck 5.0 everette harp 4.4809
static revenger 4.0565 | amanda rogers 5.0 arvo part 4.4778
schola hungarica 4.0360 | Dredg 5.0 lee ryan 4.4776
Tanzmuzik 4.0294 | pink Floyd 5.0 dire straits 4.4668
yellow blackbird 3.9802 [ white denim 5.0 Inmigrantes 4.4665
tom novy feat. 3.9686 | Atmosphere 5.0 junior senior 4.4508
abigail bailey
woods of ypres 3.9466 | Festival 5.0 the paul 4.4410
butterfield blues
band

Here we can see that the rating of item based system and user based system is comparatively

higher than the hybrid system. But this does not mean that hybrid system works poor.

Because the rating is a predicted value and that depends on the rating function.

In order to evaluate the recommendation performance of our traditional systems and

to assess the performance contribution of its hybrid model, we used the Mahout’s evaluator

function. It is not possible to calculate the same by Mahout for the hybrid system because

there are too many post calculations. Since the hybrid model is the combination of these two

models so we can look the precision and recall value of the traditional systems:
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Evaluation result for User based system:

Precision: 0.08805031446540884

Recall: 0.08720930232558138

F1 Measure: 0.08762779052785313

Evaluation result for Item based system:

Precision: 0.0

Recall: 0.0
Here Precision and Recall value is very small because we have used a very small percentage
of the data set for training i.e. 0.05%. If we could use more nodes of the hadoop cluster we

could have used more training data and expect a good precision and recall value.

5.2. Comparative Analysis

Look at the recommendations for user based CF recommendation systems the rating ranges
from 5.0 and 3.9466 and Item based system’s predicted rating is constant, 5.0. The ratings
from hybrid system are ranges from 4.7121 to 4.441. Here the user based recommendation
rating ranges more than the hybrid model. So, we can say that the recommended items are
more closely clustered for hybrid system. On the the other hand the if we compare the item
based CF result and hybrid model then we can see that the item based CF recommendation
results does not have variation for rating it always rate the items the same it’s a backdrop for
this item based system.

Also the recommended items are different from each other. That’s because the hybrid
models not only combines the results of two systems it also combines the factor models

which results to change of preference value.

5.3. Error Analysis

We have found some errors regarding our recommender systems. Firstly, the time taken by
the system to recommend is very high. The user based approach takes around 10-15 minutes
to recommend an user, The item based recommender takes around 5-10 minutes to
recommend an user and the hybrid system takes 15-20 minutes to recommend an user.

Reason of this problem is maybe we are using a huge data set to train the engine. The dataset



24

size is 1.7GB and contains 17,000,000+ rating. In future it can be resolved by utilizing
hadoop with multinode cluster.

Also, the predicted rating computed by item based recommendation is 5.0. The reason
is not clear but it might be mahout’s framework related problem. We need to explore mahout
more to resolve this matter.

The evaluator model built to evaluate the recommender systems is working properly
for user based system but for item based problem it gave no value. Maybe it’s also an error of
the system. Apart from that the evaluator models consumes along time to evaluate the
recommenders. Because of having too much post calculations we are not able to evaluate the
hybrid system.

The out of memory error is most encounter error while evaluating the system. This
happened because of low java heap space in operating system. This can be solving with a

better high performance system.
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6. Conclusion and Future Work
We have built three recommender system one follows user based collaborative filtering

approach, one follows item based recommendation approach and the last one follows hybrid
model. The hybrid model combines the results from user based and item based approach and
also associates some factor model based on user profile to improve the recommendation
mechanism. These three factor models are based on user’s age, gender and country. We have
recommended a user by all three recommendation system and also checked the results and
compared the recommendations by all three systems.

In future we can improve the system by assigning more nodes to the system. Since,
the system takes a bit time to compute the results, more nodes to hadoop can help out this
situation. Also, we can add more recommendation models to the hybrid system which and
improve the performance. Also we can search for some item profile based data to implement

a content based model.



26

References
[1] https://Mahout.apache.org.

[2] http://www.last.fm.

[3] Balabanovi¢é, M. and Shoham, Y., 1997. Fab: content-based, collaborative
recommendation. Communications of the ACM, 40(3), pp.66-72.

[4] Basu C, Hirsh H, Cohen W. Recommendation as classification: Using social and content-
based information in recommendation. InAaai/iaai 1998 Jul 26 (pp. 714-720).

[5] Lang, K., 1995. Newsweeder: Learning to filter netnews. In Machine Learning
Proceedings 1995 (pp. 331-339).

[6] Krulwich, B. and Burkey, C., 1996, March. Learning user information interests through
extraction of semantically significant phrases. In Proceedings of the AAAI spring symposium
on machine learning in information access (Vol. 25, No. 27, p. 110).

[7] Billsus, D. and Pazzani, M.J., 1999. A hybrid user model for news story classification. In
UMO99 User Modeling (pp. 99-108). Springer, Vienna.

[8] Babu, M.S.P. and Kumar, B.R.S., 2011. An implementation of the user-based
collaborative filtering algorithm. International Journal of Computer Science and Information
Technologies, 2(3), pp.1283-86.

[9] Salakhutdinov, R., Mnih, A. and Hinton, G., 2007, June. Restricted Boltzmann machines
for collaborative filtering. In Proceedings of the 24th international conference on Machine
learning (pp. 791-798). ACM

[10] Wu, Y.H., Chen, Y.C. and Chen, A.L., 2001. Enabling personalized recommendation on
the web based on user interests and behaviors. In Research Issues in Data Engineering, 2001.
Proceedings. Eleventh International Workshop on (pp. 17-24). IEEE.

[11] Shardanand, U. and Maes, P., 1995, May. Social information filtering: algorithms for
automating “word of mouth”. In Proceedings of the SIGCHI conference on Human factors in
computing systems (pp. 210-217). ACM Press/Addison-Wesley Publishing Co..

[12] Rucker, J. and Polanco, M.J., 1997. Siteseer: personalized navigation for the Web.
Communications of the ACM, 40(3), pp.73-76.

[13] Goldberg, D., Nichols, D., Oki, B.M. and Terry, D., 1992. Using collaborative filtering
to weave an information tapestry. Communications of the ACM, 35(12), pp.61-70.
[14]Konstan, J.A., Miller, B.N., Maltz, D., Herlocker, J.L., Gordon, L.R. and Riedl, J., 1997.
GroupLens: applying collaborative filtering to Usenet news. Communications of the ACM,

40(3), pp.77-87.



27

[15]Cotter, P. and Smyth, B., 2000. A personalized television listing service.
Communications of the ACM, 43(8), pp.107-111.

[16] “Spark,” available at http://spark-project.org/.

[17]J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and G. Fox, “Twister: a
runtime for iterative mapreduce,” in Proceedings of the 19th ACM International Symposium
on High Performance Distributed Computing, 2010, pp. 810-818.

[18] Uitdenbogerd, A. L. and Justin Zobel, “Manipulation of Music For Melody Matching,”
Proceedings of the sixth ACM international conference on Multimedia, 1998, Pages 235 —
240

[19] Mao, J. and Jain, A.K., 1992. Texture classification and segmentation using
multiresolution simultaneous autoregressive models. Pattern recognition, 25(2), pp.173-188
[20] Walunj, Sachin, Sadafale, Kishor. 2013. “An online recommendation system for e-
commerce based on apache Mahout framework.” Proceedings of the 2013 annual conference
on Computers and people research, ACM (2013): 153—158.

[21]https://en.wikipedia.org.

[22]http://www.dtic.upf.edu.
[23]http://gnalist.com/questions/5329048/Mahout-vs-spark.



28

Appendix A

Pre-Installations:

1.

Linux OS (4 GB RAM, Core-i3 Processor)
OpenSSH server

. Java

2
3
4.
5
6

Hadoop

. Mahout
. Eclipse

The set of pre installations and configuration for this project is given below.

Openssh server Installation:

OpenSSH is a free open source set of computer programs used to provide secure and

encrypted communication over a computer network by wusing the ssh protocol.

Now we install OpenSSH Server on machine.

# apt-get install openssh-server

We can use this backup file for further configuration in future use. Now we edit this

sshd_config file using any text editor and do following changes in the file :

1. Since SSH users use very weak password so it is very easy for online attackers to
hack into the server. So it is better to use SSH key instead of a password. If you'll
always be able to log in to your computer with an SSH key, you should disable
password authentication altogether. So we need to find 'Password Authentication' and

change it from 'Password Authentication yes' to 'Password Authentication no'.

2. Allow your users who can use ssh. Add these lines (excluding the inverted
commas) at the end of the file to allow the particular user ( In this document we allow
user 'suto') :

"AllowUsers suto

PermitRootLogin no
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PubkeyAuthentication yes"

3.If you want to record all log informations like failed log in details etc. Find
"Loglevel' and Change 'LogLevel INFO' to 'LogLevel VERBOSE'.
Now save the file and restart the SSH to apply the current changes.

#systemctl restart ssh

After restarting SSH we need to generate SSH keys for user 'suto' and Since hadoop
requires password each time it interacts with its nodes each time. To get rid of this job
we will create RSA key without password by the following command:

$ ssh-keygen -t rsa

Now we need to enable SSH access to the local machine by adding it to the knowing

key list & test ssh.

$ cat ./.ssh/id rsa.pub >> ./.ssh/authorized keys
§ chmod 600 ~/.ssh/authorized_keys

Now we can test SSH by the following command.

$ ssh localhost

Java Installation:

The following commands to add java repository and installing Java.

§ add-apt-repository ppa:webupdSteam/java
$ sudo apt-get update
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$ apt-get install oracle-java8-installer

Now you can check again Java is properly installed or not using ‘javac’ or ‘java -version’

command.

Hadoop Installation:

Now the environment is set for installing hadoop 2.x. In this document we will install
hadoop-2.7.3. We download the tar file from following website:
Go to Hadoop website

"hitp.//www.apache.org/dyn/closer.cgi/hadoop/common/"

Go to Download directory from terminal and run the command for extracting the tar file.
$ sudo tar -xzvf hadoop-2.7.3.tar.gz

Then move the extracted content into Hadoop folder which is under usr/local/hadoop
directory and make this directory available for the hadoop user account. Here our hadoop

user is ‘suto’ so we make ‘suto’ owner of this directory :

§ sudo mv hadoop-2.7.3 /usr/local/hadoop

§ sudo chown -R suto /usr/local/hadoop

Update the java using the following command :

§ update-alternatives --config java

Now we need to edit ‘~/.bashrc’ file using any text editor ( gedit, nano .etc.) to configure
hadoop variables .java home variables and setting up PATH variables by adding the
following lines at the end of the file. Since we are using ‘java-8-oracle’ so our JAVA_ HOME

must be set to that path where ‘java-8-oracle’ resides and set HADOOP_HOME to the path



where hadoop resides :

export JAVA_HOME=/usr/lib/jvm/java-8-oracle

export HADOOP _HOME=/usr/local/hadoop

export PATH=$PATH:SHADOOP_HOME/bin

export PATH=$PATH:SHADOOP_HOME/sbin

export HIDOOP_MAPRED HOME=$HADOOP_HOME

export HAIDOOP_COMMON_HOME=8HADOOP_HOME

export HADOOP_HDFS HOME=SHADOOP HOME

export YARN _HOME=$HADOOP_HOME

export HAIDOOP_COMMON _LIB_NATIVE DIR=SHADOOP_ HOME/lib/native
export HADOOP_OPTS="-Djava.library.path=SHADOOP_HOME/lib"

Now apply all the changes into the current running system.

$ source ~/.bashrc

The directory /usr/local/hadoop/etc/hadoop contains configuration files. Open ‘hadoop-
env.sh’ in a text editor and set ‘JAVA_HOME" variable by adding the line below. This
specifies the java installation that will be used by Hadoop.

§ cd /usr/local/hadoop/etc/hadoop

§ nano hadoop-env.sh

Now find ‘JAVA_HOME’ and set the following line :
export JAVA_HOME=/usr/lib/jvm/java-8-oracle

save and exit.

Editing the XML Based Hadoop Configuration Files :
All the Hadoop configuration files reside under ust/local/hadoop/etc/hadoop.

$ cd /usr/local/hadoop/etc/hadoop
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Now you can check out all the xml files by ‘Is’ command. We are going to edit xml based

configuration files:

1. Edit ‘core-site.xml’ by the following command and add the following texts between the

configuration tags:

$ sudo gedit core-site.xml

<property>

<name>fs.default FS</name>
<value>hdfs://localhost: 9000</value>
</property>

save and exit.

2. Edit “yarn-site.xml’ by the following command and add the following texts between the

configuration tags:

$ sudo gedit yarn-site.xml

<property=

<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>

</property>

<property=
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.Shuffle Handler</value>

</property>

save and exit.

3. Make a copy of ‘mapred.site.xml.template* with a name ‘mapred.site.xml’ and edit

‘mapred-site.xml’ by the following command and add the following texts between the
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configuration tags:

$ sudo cp mapred.site.xml.template mapred-site.xml

$ sudo gedit mapred-site.xml

<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>

</property>

save and exit.

4. The “hdfs-site.xml’ is used to specify the namenode and datanode directories by the
following command and add the following texts between the configuration tags to specify the

directory paths:

$ sudo gedit hdfs-site.xml

<property>

<name>dfs.replication</name>

<value>1</value>

</property>

<property>

<name>dfs.namenode.name.dir</name>
<value>file.:/usr/local/hadoop/hadoop _data/hdfs/namenode</value>
</property>

<property>

<name>dfs.datanode.data.dir</name>
<value>file:/usr/local/hadoop/hadoop_store/hdfs/datanode</value>
</property>

save and exit.

Now run following commands to make directory of data node and name node.

$ sudo mkdir -p /usr/local/hadoop/hadoop _data/hdfs/namenode
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§ sudo mkdir -p /usr/local/hadoop/hadoop _data/hdfs/datanode

Test Hadoop:

Format the file system by running Adfs namenode -format to initialize the file system.
$hdfs namenode -format

Start the single node cluster by start-dfs.sh and start-yarn.sh or we can use start-all.sh

$ start-dfs.sh
$ start-yarn.sh

we can check by jps command that all the hadoop daemons are running or not.

Eclipse Installation:

Downloading Eclipse :

We need eclipse to develop java programs so we need eclipse for java developers.

To download it go to this page: https://eclipse.org/downloads/eclipse-packages/ and

download eclipse for Linux 64bit OS and select Eclipse IDE for Java developers. Extract the
tar file.

Downloading hadoop Eclipse plug-in :

Hadoop Eclipse Plug-in provides tools to ease the experience of Mapreduce on Hadoop.
Hadoop eclipse plug-in is used to associate all the hadoop accessories with eclipse. It
supports to create Mapreduce and Driver classes. Also helps eclipse to browse and interacts

with hdfs, submitting jobs and monitoring on their execution. To download it go to this web
page:

https://github.com/Ravi-Shekhar/hadoop-eclipse-plugin/blob/master/release/hadoop-eclipse-

plugin-2.6.0.jar

After downloading the plug-in.jar file copy that file and paste this file in the folder
‘/eclipse/plugins’.

Setting DFS Location

Select the Mapreduce locations TAB at the bottom of the screen[fig-4]. Right click on blank

space and select "New Hadoop Location".



e Give Location name e.g. "master”.

e Give host name e.g. "localhost".

e Give Port number Map Reduce master= 9001 and DFS master = 9000

[Fig-4]

TNEELLTEELTS

Mahout Installation:

Installing Maven in Eclipse:

1.

N

Open Eclipse -> Help -> Install new software

In text box paste this URL - http.//download.eclipse.org/technology/m2e/releases/
Click add -> type the name [Example: m2eclipse] -> OK

Click on check box of Maven Integration for Eclipse .

Restart the Eclipse

Maven Setup for Mahout :

Create new maven project and all the related libraries.

Edit pom.xml file

Add the Dependency inside dependencies.

<groupld>com.predictionmarket</groupld>

<artifactld> HybridRecommendation</artifactld>

<version>0.0.1-SNAPSHOT</version>

<packaging>jar</packaging>

<name>HybridRecommendation</name>

<url>http://maven.apache.org</url>

<properties>

35



<project.build.source Encoding>UTF-8</project.build.sourceEncoding>
</properties>
<dependencies>
<dependency>
<groupld>org.apache. Mahout</groupld>
<artifactld>Mahout-core</artifactld>
<version>(0.9</version>
<exclusions>
<exclusion>
<groupld>org.apache.hadoop</groupld>
<artifactld>hadoop-core</artifactld>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupld>junit</groupld>
<artifactld>junit</artifactld>
<version>3.8.1</version>
<scope>test</scope>
</dependency>
<dependency>
<groupld>org.apache.hadoop</groupld>
<artifactld>hadoop-hdfs</artifactld>
<version>2.7.3</version>
</dependency>
<dependency>
<groupld>org.apache.hadoop</groupld>
<artifactld>hadoop-common</artifactld>

<version>2.7.3</version>



</dependency>

<dependency>
<groupld>org.apache.hadoop</groupld>
<artifactld>hadoop-mapreduce-client-jobclient</artifactld>
<version>2.7.3</version>

</dependency>

<dependency>
<groupld>org.apache.hadoop</groupld>
<artifactld>hadoop-client</artifactld>
<version>2.7.3</version>

</dependency>

</dependencies>
</project>

Save and close the file
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Appendix B

All the codes regarding the projects are discussed below. For the first phase we discard the

data and mapp the strings with a unique integer as discussed above.

StringTolnt.java

public class StringTolnt {
private Map<String, Integer> map;

private int counter = 1;

public StringTolnt() {
map = new HashMap<String, Integer>();

public int toInt(String s) {
Integer i = map.get(s);
if 1 ==null) {
map.put(s, counter);
1= counter;
++counter;

b

return i;

}

public int count()

{

return map.keySet().size();

public String toStr( int I) {
for (String o : map.keySet()) {
if (map.get(o).equals(l)) {

return o;



}

return null;

MyRecommendationEngine:

class MyRecommendationEngine{
static StringTolnt s=new StringTolnt();
static StringTolnt s1=new StringTolnt();
static StringTolnt s2=new StringTolnt();
public static class Map extends Mapper<LongWritable, Text, Text, Text > {

public void map(LongWritable key, Text value, Context context )
throws IOException, InterruptedException {

String line = value.toString();

String str[]=line.split("\t");

if(str.length==4){
String val=str[1]+","+str[3]+","+str[2];
Text valT=new Text();
valT.set(val);

context.write(new Text(str[0]),valT);

public static class Reduce extends Reducer<Text, Text,

Text, Text> {

public void reduce(Text key, Iterable<Text> values,
Context context) throws [OException, InterruptedException {
ArrayList<Integer> obj = new ArrayList<Integer>();

Iterator<Text> values1=values.iterator();
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ArrayList<Text> cache=new ArrayList<Text>();
while( values1.hasNext()) {
Text val=valuesl.next();

String str[]=val.toString().split(".,");

try{
obj.add((Integer.parselnt(str[1])));
cache.add(new Text(val));
}catch(Exception e){
System.out.println(e);
j

b

int dif=Collections.max(obj)-Collections.min(obj);
long size=cache.size();
for (int 1= 0; i < size ; ++i){
Text val=cache.get(i);
double rate;
String str[]=val.toString().split(",");
try{
if(dif==0)
rate=2.5;
else{
rate=1-+(((float)Integer.parselnt(str[1]) -
(float)Collections.min(obj))/dif)*4;
b
Integer k=s.toInt(key.toString());
Integer k1=s1.tolnt(str[0]);
s2.tolnt(str[2]);
context.write(new Text(k+","+k1+","+rate),new Text("")):
}
catch(Exception e){

System.out.println(e);
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public static void RecomanderFile(String user) throws TasteException, IOException
{
Int userid=s1.toInt(user);
PrintWriter pw = new PrintWriter(new File("user_song"));
pw.write("\n"+i+". Recommendation for User "+s.toStr((int)i)+" :\n");
List <RecommendedItem>recommendations = App.recom(userid);
for (RecommendedItem recommendation : recommendations) {
pw.write("Recommended Artist
:"+s2.toStr((int)recommendation.getltemID())+"  Predicted
Rating:"+recommendation.getValue()+"\n");
b
System.out.println("STOP RECOMMENDATION");

pw.close();

}

public static void main(String|[] args) throws Exception {
Configuration conf = new Configuration();
(@SuppressWarnings("deprecation")
Job job = new Job(conf, "categories");
job.setJarByClass(MyRecommendationEngine.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
job.setMapperClass(Map.class);

job.setReducerClass(Reduce.class);

job.setInputFormatClass(TextInputFormat.class);

job.setOutputFormatClass(TextOutputFormat.class);



FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
Path out=new Path(args[1]);
out.getFileSystem(conf).delete(out);
job.waitForCompletion(true);

RecomanderFile();
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Here the RecommenderFile(String) recommend the user and take argument user’s mboxshal

id. It recommend based on the App.recom(int);

Here I user three type of recommendation system in side App classes.

User Based Collaborative filtering

public class App
{
public static List <RecommendedItem> recom(int UserID ) throws IOException,

TasteException{

DataModel model = new FileDataModel(new File("data/part-r-00000"));

UserSimilarity similarity = new PearsonCorrelationSimilarity(model);

UserNeighborhood neighborhood = new ThresholdUserNeighborhood(0.1,
similarity, model);

UserBasedRecommender recommender = new
GenericUserBasedRecommender(model, neighborhood, similarity);

List <RecommendedItem>recommendations =
recommender.recommend(UserlD,20);

return recommendations;

Item Based Collaborative Filtering:

public class App
{
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public static List <RecommendedItem> recom(int UserID ) throws IOException,

TasteException

{

DataModel model = new FileDataModel(new File("data/part-r-00000"));

ItemSimilarity similarity = new PearsonCorrelationSimilarity(model);

ItemBasedRecommender recommender = new
GenericltemBasedRecommender(model, similarity);

List <RecommendedItem>recommendations =
recommender.recommend(UserID,20);

return recommendations;

In our final model i.e. the hybrid mode is consists of many parts one of the parts is the
App.java which combines the user based and item based suggestions and along with that
there are three factor models which is build based some mathematical calculations discussed
above in detail.
Hybrid recommendation engine:
public class App
{
private static GenderBasedDataModel sModel = null;
private static AgeBasedDataModel aModel = null;
private static CountryBasedModel cModel = null;
private static DataModel model = null;
private static String GenderBasedModelPath = "data/store2/usershal-profile.tsv";
private static String AgeBasedModelPath = "data/store2/usershal-profile.tsv";
private static String CountryBasedModelPath = "data/store2/usershal-profile.tsv";
private static String DataModelPath = "data/store1/part-r-00000";
public static void Init(StringTolnt s) throws TasteException, [OException{
try {
sModel = new GenderBasedDataModel(GenderBasedModelPath,s);
} catch (IOException e) {



System.out.println("Gender Based Data not available. Skipping this

data.");
j
try {
aModel = new AgeBasedDataModel(AgeBasedModelPath,s);
} catch (IOException e) {
System.out.println("Gender Based Data not available. Skipping this
data.");
b
try {
cModel = new CountryBasedModel(CountryBasedModelPath,s);
} catch (IOException e) {
System.out.println("Gender Based Data not available. Skipping this
data.");
j
try {
model = new FileDataModel(new File(DataModelPath));
} catch (IOException e) {
System.out.println("Data is not available. Exiting...");
System.exit(1);
b
b

public static ArrayList<StringBuilder> recom(int UserID) throws IOException,
TasteException{
UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
ItemSimilarity similarity] = new PearsonCorrelationSimilarity(model);
UserNeighborhood neighborhood = new ThresholdUserNeighborhood(0.1,
similarity, model);
UserBasedRecommender recommender = new

GenericUserBasedRecommender(model, neighborhood, similarity);
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ItemBasedRecommender recommender] = new

GenericltemBasedRecommender(model, similarityl);

List <RecommendedItem>recommendations =

recommender.recommend(UserID,100);

List <Recommendedltem>recommendations] =

recommender1.recommend(UserID,100);

Map<RecommendedItem, Double> itemWeights = new

HashMap<RecommendedItem, Double>();

double max=0;
for(RecommendedItem r : recommendations){
if(max< (double)r.getValue())
max=(double)r.getValue();
j
for(RecommendedItem r : recommendations){
itemWeights.put(r, ((double)r.getValue()*5.0/max)*0.7);
j
for(RecommendedItem r : recommendations1){
itemWeights.put(r, (double)r.getValue()*0.7);
j
factorModels(UserID, itemWeights);
Set<Entry<RecommendedItem, Double>> entrySet = item Weights.entrySet();

List<Entry<Recommendedltem, Double>> entryList = new

ArrayList<Entry<RecommendedItem, Double>>(entrySet);

Double>>(){

Collections.sort(entryList, new Comparator<Entry<RecommendedItem,

@Override

public int compare(Entry<Recommendedltem, Double> o1,

Entry<Recommendedltem, Double> 02)

{
return o2.getValue().compareTo(o1.getValue());

$)s
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ArrayList<StringBuilder> res=new ArrayList<StringBuilder>();
for(int i=0; i<20; i++){
StringBuilder sb=new StringBuilder();
sb.append(entryList.get(i).getKey().getltemID());
sb.append(',");
sb.append(entryList.get(i).getValue());
res.add(sb);
System.out.println(sb+"\n");

}

return res;

private static void factorModels(int userID, Map<RecommendedItem, Double>
weights) throws TasteException {
for(RecommendedItem r : weights.keySet()){
if(sModel != null) {
PreferenceArray preferences =
model.getPreferencesForltem(r.getltemID());
factorGenderModel(userID, weights, r, preferences);
j
PreferenceArray preferencesForltem =
model.getPreferencesForltem(r.getltemID());
if(aModel != null){

factorAgeModel(userID,weights, r, preferencesForltem);

J
if(cModel != null)
{
factorCountryModel(userID,weights, r, preferencesForltem);
J
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private static void factorCountryModel(int userID, Map<RecommendedItem,

Double> weights, RecommendedItem r, PreferenceArray preferences) {

int tcount=0;

int ucount=0;

double pcr=0;

double pref=0;

double ucc=cModel.getUserCountryCount(userID);//user country count

double acc=cModel.getAllCountryCount();//all country count

double acr=ucc/acc;//all country ratio

double advr=0;

for(Preference p : preferences)

{

tcount++;

if(cModel.getCountryByUserID(p.getUserID()).equals(cModel.getCountryByUserID(userID)
)

ucount++;

per=((double)ucount)/tcount;
advr=pcr/acr;
pref=(advr*advr/(1.0+advr*advr));
weights.put(r, weights.get(r) +pref*.5);

private static void factorGenderModel(int userID, Map<RecommendedItem,
Double> weights, RecommendedItem r, PreferenceArray preferences) {
int mgender = 0;
int fgender = 0;
double pref = 0;
double advr=0,mr=0,{r=0;
int tmc=sModel.getMaleGendercount();
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int tfc=sModel.getFemaleGendercount();

for(Preference p : preferences)

{
if(p.getValue() > 0)

{

if(sModel.getGenderTypeByUserID(p.getUserID()).equalsignoreCase("m"))

{
mgender++;
j
else
if(sModel.getGenderTypeByUserID(p.getUserID()).equalsignoreCase("f"))
{
fgender++;
j

}

mr=(double)mgender/tmc;
fr=(double)fgender/tfc;
if(sModel.getGenderTypeByUserID(userID).equalsignoreCase("f"))

{
if(tfc==0||mr==0)
weights.put(r, weights.get(r) +pref*.5);
else{
advr=((double)fr)/(mr);
pref=(advr*advr/(1.0+advr*advr));
weights.put(r, weights.get(r) +pref*.5);
j
j
else if(sModel.getGenderTypeByUserID(userID).equalsignoreCase("m"))
{

if(tmc==0||fr==0)
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weights.put(r, weights.get(r) +pref*.5);
else{

advr=((double)mr)/(fr);

pref=(advr*advr/(1.0+advr*advr));

weights.put(r, weights.get(r) +pref*.5);

j
Now here are the codes for the three factor modelspart of the hybrid system:

Gender Based Model:
public class GenderBasedDataModel {

private String path;

private Map<Long, UserGender> modelData;

public GenderBasedDataModel(String path, StringTolnt s) throws IOException

{
File file = new File(path);

if(!file.exists() || file.isDirectory())

{
throw new FileNotFoundException(file.toString());
j
else
{
this.path = path;
j
modelData = new HashMap<Long, UserGender>();
buildModel(s);

private void buildModel(StringTolnt s) throws IOException

{
try(CSVReader reader = new CSVReader(new FileReader(path), "\t"))
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{
String[] line;
while ((line = reader.readNext()) != null) {
if (line.length >=4) {
if (line[1].equals("m")||line[1].equals("t")) {
long id = s.tolnt(line[0]);
modelData.put(id, new UserGender(line[1]));

public String getGenderTypeByUserID(long id)

{
if(modelData.containsKey(id))
{
return modelData.get(id).getGender();
}
return "undef™;
}

public int getMaleGendercount()
{
Set<Long> all = modelData.keySet();
int count=0;
for(long i:all)
{
if(getGenderTypeByUserID(i) != null){
if(getGenderTypeByUserID(i).equalsignoreCase("m")){

count++;



}

return count;

public int getFemaleGendercount()

{

Set<Long> all = modelData.keySet();
int count=0;
for(long i:all)
{
if(getGenderTypeByUserID(i) != null){
if(getGenderTypeByUserID(i).equalsignoreCase("f")){

count++;

}

return count;

private class UserGender

{

private String gender;
public UserGender( String gender)
{

this.gender = gender;

public String getGender() {
return gender;
j
public void setGender(String gender) {

this.gender = gender;
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private static void factorAgeModel(int userID, Map<RecommendedItem, Double>
weights, Recommendedltem r, PreferenceArray preferences) {

int uage = aModel.getAgeTypeByUserID(userID);

int page = 0;

int difage=0;

int count=0;

double sum=0,sum1=0;

double var=0;

double cov=0;

double mean=0;

double pref=0;

if(luage==-1){
System.out.println(userID+"age"+pref+"|"+(weights.get(r) +pref*.5));
weights.put(r, weights.get(r) + .25);
return ;

}

for(Preference p : preferences)

{

page=aModel.getAgeTypeByUserID(p.getUserID());
if(page==-1)
continue;
difage=uage-page;
sum=sum+(difage*difage);
suml=suml+page;

count++;
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// System.out.println("CU"+userID+"|"+uage+"

VU"+p.getUserID()+"|"+page+"|"+difage+"|"+sum1/count+"|"+Math.sqrt(sum/count));

var=Math.sqrt(sum/count);

mean=sum/count;

cov=var/mean;

pref=1-cov;

System.out.println(userID+"age"+pref+"|"+(weights.get(r) +pref*.5));
weights.put(r, weights.get(r) + pref*.5);

Country Based Model:

public class CountryBasedModel {
private String path;
private Map<Long, UserCountry> modelData;
public CountryBasedModel(String path, StringTolnt s) throws IOException
{
File file = new File(path);
if(!file.exists() || file.isDirectory())

{
throw new FileNotFoundException(file.toString());
j
else
{
this.path = path;
j
modelData = new HashMap<Long, UserCountry>();
buildModel(s);



private void buildModel(StringTolInt s) throws IOException

{
try(CSVReader reader = new CSVReader(new FileReader(path), "\t"))
{
String[] line;
while ((line = reader.readNext()) != null) {
if (line.length >= 4 && !line[3].equals("")) {
long id = s.tolnt(line[0]);
modelData.put(id, new UserCountry(line[3]));
j
j
j
b
public int getUserCountryCount(long UserID)
{

Set<Long> all = modelData.keySet();
int count=0;
for(long i:all)
{
if(getCountryByUserID(i) != null){
if(getCountryByUserID(i).equalsIgnoreCase(getCountryByUserID(UserID))){

count++;
y
J

J

return count;
j
public int getAllCountryCount()
{

Set<Long> all = modelData.keySet();
int count=0;

for(long i:all)
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if(getCountryByUserID(i) != null){

count++;

}

return count;

public String getCountryByUserID(long id)

{
if(modelData.containsKey(id))

{
return modelData.get(id).getCountry();

}

return "undef™;

private class UserCountry

{
private String con;
public UserCountry( String con)
{

this.con = con;

public String getCountry() {
return con;
}
public void setCountry(String con) {

this.con = con;
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}
Age Based Factor Model:

public class AgeBasedDataModel {

private String path;
private Map<Long, UserAge> modelData;
public AgeBasedDataModel(String path, StringTolnt s) throws IOException
{
File file = new File(path);
if(!file.exists() || file.isDirectory())

{
throw new FileNotFoundException(file.toString());
j
else
{
this.path = path;
j

modelData = new HashMap<Long, UserAge>();
System.out.println("here1");

buildModel(s);

private void buildModel(StringTolInt s) throws IOException

{
try(CSVReader reader = new CSVReader(new FileReader(path), "\t"))

{
String[] line;
while ((line = reader.readNext()) != null) {
if (line.length >= 4 && !line[2].equals("")) {
try{

int age=Integer.parselnt(line[2]);
long id = s.tolnt(line[0]);
if(age>=0&&age<=100)
modelData.put(id, new UserAge(age));



}catch(NumberFormatException e)

{

System.out.println(e);

public int getAgeTypeByUserID(long id)

{

if(modelData.containsKey(id))

{

return modelData.get(id).getAge();
j
return -1;

private class UserAge

{

private int Age;
public UserAge( int age2)
{

this.Age = age2;

public int getAge() {
return Age;

j

public void setAge(int Age) {
this.Age = Age;
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We use [RStaticticsEvaluator to evaluate our Recommendation system and also we compute

Precision, Recall and F1, the Evaluation class is given below :

Recommendation Evaluator:

public class EvaluateRecommender {

public static void main(String[] args) throws 10Exception, TasteException {
DataModel model = new FileDataModel(new File("data/part-r-00000"));
RecommenderIRStatsEvaluator evaluator = new
GenericRecommenderIRStats Evaluator(),
RecommenderBuilder builder = new MyRecommenderBuilder(),
IRStatistics result=evaluator.evaluate (builder, null, model, null, 5,
GenericRecommenderIRStats Evaluator. CHOOSE _THRESHOLD, 0.0005);
PrintWriter pw = new PrintWriter(new File("EvaluationRecommender")),
pw.write("START EVALUATION"+"\n");
pw.write("Precision :"+result.getPrecision()+"\n");
pw.write("Recall :"+result.getRecall()+"\n");
pw.write("F1 Measure"+result. getF'l Measure()+"\n");
System.out.printin("STOP EVALUATION"),
pw.close();

Here

evaluate(RecommenderBuilder recommenderBuilder, DataModelBuilder dataModelBuilder,
DataModel dataModel, IDRescorer rescorer, int at, double relevance Threshold, double
evaluation Percentage) is to evaluate the system. The "at" value, as in "precision at 5". For

example, this would mean precision evaluated by removing the top 5 preferences for a user



and then finding the percentage of those 5 items included in the top 5 recommendations for

that user.
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