
A
Project Report on

“Chat Bot using Natural Language Understanding”

Project submitted

In partial fulfilment of the requirements for the degree of

MASTER OF COMPUTER APPLICATION

By

SAIKAT BHATTACHARYA

Class Roll No: 001510503013

Exam Roll No: MCA186013

Registration No: 133675 of 2015 - 2016

Under the supervision of

DR. SUDIP KUMAR NASKAR

Department of Computer Science and

Engineering

Faculty of Engineering and Technology

Jadavpur University
Kolkata – 700 032

India

A
Project Report on

“Chat Bot using Natural Language Understanding”

Project submitted

In partial fulfilment of the requirements for the degree of

MASTER OF COMPUTER APPLICATION

By

SAIKAT BHATTACHARYA

Class Roll No: 001510503013

Exam Roll No: MCA186013

Registration No: 133675 of 2015 - 2016

Under the supervision of

DR. SUDIP KUMAR NASKAR

Department of Computer Science and Engineering

Faculty of Engineering and Technology

Jadavpur University
Kolkata – 700 032

India

Jadavpur University

Faculty of Engineering and Technology

Department of Computer Science & Engineering

TO WHOM IT MAY CONCERN

(Signature of the head of the department)

Prof. Ujjwal Maulik, Head of the department of

Computer Science and Engineering

(Signature of the project supervisor)

DR. Sudip Kumar Naskar

This is to clarify that the project entitled “Chat Bot using Natural

Language Understanding” has been completed by Saikat Bhattacharya.

This work is carried out under the supervision of Dr. Sudip Kumar

Naskar in partial fulfilment for the award of the degree of Master of

Computer Application of the department of Computer Science and

Engineering, Jadavpur University, during the session 2017-2018. The

project report has been approved as it satisfies the academic requirements

in respect of project work prescribed for the said degree.

(Signature of the Dean of the faculty)

Prof. Chiranjib Bhattacharjee, Dean, Faculty

Council of Engineering and Technology

Jadavpur University

Faculty of Engineering and Technology

Department of Computer Science & Engineering

CERTIFICATE OF APPROVAL

This is to clarify that the project entitled “Chat Bot using Natural

Language Understanding” has been completed by Saikat Bhattacharya.

This work is carried out under the supervision of Dr. Sudip Kumar

Naskar in partial fulfilment for the award of the degree of Master of

Computer Application of the department of Computer Science and

Engineering, Jadavpur University, during the session 2017-2018. The

project report has been approved as it satisfies the academic requirements

in respect of project work prescribed for the said degree.

(Signature of the internal examiner)

(Signature of the external examiner)

DECLARATION OF ORIGINALITY AND

COMPLIANCE OF ACADEMIC ETHICS

I hereby certify that I am the sole author of this thesis and that no part of

this thesis has been published or submitted for publication.

I certify that, to the best of my knowledge, my thesis does not infringe upon

anyone’s copyright nor violate any proprietary rights and that any ideas,

techniques, quotations, or any other material from the work of other people

included in my thesis, published or otherwise, are fully acknowledged in

accordance with the standard referencing practices.

I declare that this is a true copy of my thesis, including any final revisions,

and that this thesis has not been submitted for a higher degree to any other

University or Institution.

Candidate’s Name: Saikat Bhattacharya

Class Roll No: 001510503013

Exam Roll No: MCA186013

Project Title: Chat Bot using Natural Language Understanding

(Signature of the candidate)

Date: ___ / ___ / _____

Place: ______________

ACKNOWLEDGEMENTS

I would first like to thank my thesis advisor and also the project supervisor,

Dr. Sudip Kumar Naskar of the department of Computer Science and

Engineering of Jadavpur University. The door to his office was always

open whenever I ran into a trouble spot or had a question about my

research or writing. He consistently allowed this paper to be my own work

and steered me in the right direction whenever he thought I needed it.

I would also like to thank the experts who were involved in the validation

survey for this research project: Prof. Ujjwal Maulik, the Head of the

Department of Computer Science and Engineerin. Without his passionate

participation and input, the validation survey could not be successfully

conducted.

Finally, I must express my very profound gratitude to my parents and also

to my friends cum colleagues for providing me with unfailing support and

continuous encouragement throughout my years of study and through the

process of researching and writing this thesis. This accomplishment would

not be possible without them. Thank you.

Date: ___ / ___ / _____

Place: ______________

(Signature of the candidate)

ABSTRACT

Chatbots are poised to revolutionize User Interface design. Here’s a quick summary of what chatbots are

all about.

Chatbots, or conversational interfaces as they are also known, present a new way for individuals to

interact with computer systems. Traditionally, to get a question answered by a software program

involved using a search engine or filling out a form. A chatbot allows a user to simply ask questions in

the same manner that they would address a human. The most well-known chatbots currently are voice

chatbots: Alexa and Siri. However, chatbots are currently being adopted at a high rate on computer chat

platforms.

The technology at the core of the rise of the chatbot is natural language processing (“NLP”). Recent

advances in machine learning have greatly improved the accuracy and effectiveness of natural language

processing, making chatbots a viable option for many organizations. This improvement in NLP is firing

a great deal of additional research which should lead to continued improvement in the effectiveness of

chatbots in the years to come.

A simple chatbot can be created by loading an FAQ (frequently asked questions) into chatbot software.

The functionality of the chatbot can be improved by integrating it into the organization’s enterprise

software, allowing more personal questions to be answered, like “What is my balance?”, or “What is

the status of my order?”.

Most commercial chatbots are dependent on platforms created by the technology giants for their natural

language processing. These include Amazon Lex, Microsoft Cognitive Services, Google Cloud Natural

Language API, Facebook Deep Text, and IBM Watson. Platforms where chatbots are deployed include

Facebook Messenger, Skype, and Slack, among many others.

Table of contents

➢ INTRODUCTION……….…...…………………..…………….. 1 - 3
1. What are chatbots? ………………...………………………… 1

2. History of chatbots ………………...…………….…………… 1 - 2

3. How do chatbots work? …………...……….…….…............... 2

4. The potential of chatbots …………...…,……….……………. 3

➢ Chapter - 1: Creating and testing Bots……..………………... 4 - 11
1. Bot service ……………………..……….…………………….. 4 - 6

1.1. Log into Azure …...…………………………………..…..….............. 4

1.2. Create a new bot service ……………………..………….….............. 4 - 5

1.3. Test the bot ……………………………..………………….……….... 6

1.4. Bot settings overview …………..………………………….……….... 6

1.5. Bot management ……..……………………………………................ 6

2. App service settings ……………………………….…………. 6 - 8
2.1. MicrosoftAppID and MicrosoftAppPassword ……………............. 6

2.2. Edit a bot with online code editor …………………………............. 6 - 8

3. Create a Bot with the Bot Builder SDK for .NET …............. 8 - 11
3.1. Prerequisites ………………………………………………………… 8

3.2. Create the bot ……………………………………………………….. 8

3.3. Verify that the project references the latest version of the SDK 9

3.4. Explore the code …………………………………………………..… 9 - 10

3.5. Test the bot ..……………………………………………………..….. 10

3.6. Start the bot ……………………………………………………..…... 11

3.7. Start the emulator and connect the bot ……………………..……... 11

3.8. Test the bot code result ……………………………………..…......... 11

➢ Chapter - 2: Language Understanding (LUIS) …………….... 12 - 20
1. What is a LUIS app? …………………………………………. 12

1.1. Key LUIS concepts …………………………………………............... 12

1.2. Accessing LUIS ……………………………………………..…...…… 13

1.3. Author the LUIS model …………………………………..…............. 13

1.4. Identify Entities …………………………………………..………….. 13

1.5. Improve performance ……………………………………..………… 13

2. Create new app with intents …………………………..…...… 14 - 16
2.1. Simple app with intents ………………………………………….....… 14

2.2. Create a new app …………………………………………………….. 14 - 16

3. Create new app with intents and entities …………………..... 16 - 20

3.1. Simple app with intents and a simple entity ……………………….. 16

3.2. Create a new app …………………………………………………….. 16 - 20

➢ Chapter - 3: Key concepts in Bot Builder SDK ………………. 21 - 30
1. Connector ……………………………………………………… 21

2. Activity …………………………………………………………. 21

3. Dialog …………………………………………………………... 21

4. FormFlow ……………………………………………………… 21

5. State ……………………………………………………………. 21

6. Naming conventions …………………………………………... 21

7. Messages and Activities ………………………………………. 22 - 24
7.1. Activities overview …………………………………………………… 22

7.2. Add speech to messages …………………………………………….... 22 - 23

7.3. Add input hints to messages ………………………………………..... 24

8. Dialogs ………………………………………………………..... 25 - 30
8.1. Dialogs in the Bot Builder SDK for .NET ……………………...….... 25 - 26
8.2. Manage conversation flow ……………………………………...…..... 26 - 28
8.3. Scorable Dialogs ………………………………………………...…….. 28 - 30

➢ Chapter - 4: Including speech support in Bots ……………...... 31 - 33
1. How to change the auto-generated app password …………... 32 - 33

2. How to give speech input to the emulator …………………… 33

➢ Chapter - 5: App specifications ……………………………….. 34 - 43
1. Name of the app ……………………………………………….. 34

2. Functions ………………………………………………………. 34

3. Intents ………………………………………………………….. 34 - 35

4. Entities …………………………………………………………. 35 - 36

5. Utterances ……………………………………………………… 36 - 40

6. Adding Phrase lists ……………………………………………. 40

7. Testing ………………………………………………………….. 41

8. Publishing …………………………………………………….... 41 - 43

➢ Chapter – 6: App Responses …………………………………... 44 - 50
1. Intents extraction ……………………………………………… 45 - 48

2. Intents and entities extraction ………………………………… 49 - 50

➢ CONCLUSIONS …...………...………………………………….. 51

➢ REFERENCES ………………………………………………….. 52

Page 1

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

INTRODUCTION

1. What are chatbots?
A chatbot is a program that communicates with a user.

It is a layer on top of, or a gateway to, a service. Sometimes it is powered by machine learning (the

chatbot gets smarter the more the user interacts with it). Or, more commonly, it is driven using

intelligent rules (i.e. if the person says this, respond with that).

The services a chatbot can deliver are diverse. Important life-saving health messages, to check the

weather forecast or to purchase a new pair of shoes, and anything else in between.

The term chatbot is synonymous with text conversation but is growing quickly through voice

communication… “Alexa, what time is it?” (other voice-chatbots are available!)

The chatbot can talk to the user through different channels, such as Facebook Messenger, Siri, WeChat,

Telegram, SMS, Slack, Skype and many others.

Consumers spend lots of time using messaging applications (more than they spend on social media).

Therefore, messaging applications are currently the most popular way companies deliver chatbot

experiences to consumers.

Aside from buying shoes, here are a few more examples of companies using chatbots:

 Uber to book a taxi

 KLM to deliver flight information

 CNN to keep the user up-to-date with news content

 TechCrunch to keep the user up-to-date with techie content

 Pizza Hut to help the user order a pizza

 Sephora to provide beauty tips and a shopping experience

 Bank of America to connect customers and their finances

The possibilities are (almost) limitless.

So, from where did chatbots come?

2. The history of chatbots
It would not be fair to talk about the history of chatbots without mentioning Alan Turing and Joseph

Weizenbaum. These men imagined computers talking like humans and, in 1950, had the foresight to

develop a test to see if a person could distinguish human from machine: the Turing Test.

In 1966 a computer program called ELIZA was invented by Weizenbaum. It imitated the language of

a psychotherapist from only 200 lines of code. One can still talk with it here: Eliza.

https://en.wikipedia.org/wiki/Turing_test?utm_source=ubisend.com&utm_medium=blog-link&utm_campaign=ubisend
http://psych.fullerton.edu/mbirnbaum/psych101/Eliza.htm?utm_source=ubisend.com&utm_medium=blog-link&utm_campaign=ubisend

Page 2

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

The first move away from text chatbots occurred in 1988 when Rollo Carpenter started the

Jabberwacky project – a voice operated entertainment AI chatbot.

In the year 2000, Robert Hoffer from ActiveBuddy Inc. co-created the SmarterChild chatbot that used

AOL Instant Messenger and MSN Messenger to build a relationship with over 30 million users. The

chatbot provided access to news, weather, movie times and acted as a personal assistant using natural

language comprehension.

Microsoft Research has spent decades working on Natural Language Processing (NLP) to develop

their XiaoIce chatbot. With millions of followers in China, the chatbot can discern topic, sentiment

and more through back and forth conversation with its users.

Recent developments in technology have given chatbots more power in interpreting natural language

and machine learning, to both understand better, and learn over time.

Huge companies like Facebook, Apple, Google and Microsoft are contributing significant resources to

deliver interactions between consumers and machines with commercially-viable business models.

3. How do chatbots work?
There are broadly two variants of chatbots.

One follows a set of rules, flows, and triggers to respond to very specific commands. A simple example

might be a chatbot that tells the user the weather forecast for a location. A user might ask “weather

forecast London” and the chatbot would find the answer and respond. This type of chatbot is only as

smart as the developers who created it and thought of every eventuality of conversation.

The other variant uses machine learning to try to understand the sentiment and meaning of the language

used, to not rely on pre-planned commands. A user might ask “what’s been happening in London

lately?” and the chatbot might deliver the latest BBC News headlines for London. This type of chatbot

learns from all the conversations it has had to improve accuracy and understanding over time.

The use of natural, everyday language in their responses creates the illusion that chatbots are simple

creatures, but that could not be more wrong.

The complicated algorithms, analytics, optimisations, APIs, routeing, UX and everything behind the

scenes is a direct result of the hard work by thousands of individuals involved in computer

programming for the last 50 years.

Page 3

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

4. The potential of chatbots
The near-future potential is quite apparent. No longer will consumers have to trawl through websites

and search engines to find the information they need. Instead, they will be communicating with

intelligent chatbots at every stage.

 User – “Where is a good place to get coffee near me?

 Search Chatbot – “There are three coffee shops near you rated five stars on xxx website”.

 User – “Add the highest rated coffee shop chatbot to this chat”.

 Coffee Chatbot – “Hello, this is xxx bot, what’s up?”

 User – “Send directions to your shop and order a flat white”

 Coffee Chatbot – “No problem, directions are in your xxx map, do you want to pay using your

 xxx wallet?

 User – “Yes”

 Coffee Chatbot – “Ok, 3.99 has been paid, see you in 12 minutes. We have some delicious

 muffins just out of the oven too…”

 PA Chatbot – “Hi, I noticed you are going for coffee, it looks like it is raining outside, want me

 to order you a taxi rather than walk?”

 User – “Yes, leaving in 2 minutes”

 PA Chatbot – “Ok, your driver is called Sammy and the car registration is xxx, he will meet you

 outside.”

This type of chatbot interaction will be commonplace very soon.

Despite how impressive that sounds, it is done with technology that is still new. Communicating with

chatbots will not just stop at businesses and brands.

Soon we will be using chatbots to communicate with other machines and connected devices. The

internet of things (IoT) will connect everything to everything else. This is already happening with

Amazon Echo and Google products.

The PA chatbot will be connected to the user’s fridge and will notify him that his wife used up all the

milk, and he should get more on the way home from work or offer to order it on Amazon for him.

Alternatively, perhaps the PA chatbot noticed it is raining, opened the garage door and had his

autonomous car drive around the front to save him getting wet.

Chatbots, with the natural language and machine learning behind them, will lower our dependence on

screens to receive feedback from a machine. Children of the very near future will joke about how we

had screens on our phones and couldn’t just talk to the machines we use.

Page 4

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

CHAPTER - 1
Creating and testing Bots

Here, we are going to discuss step by step processes to successfully create a Bot Application and test

it using proper software. At first, we need to learn a few things.

1. Bot Service
Bot Service provides an integrated environment that is purpose-built for bot development, enabling

one to build, connect, test, deploy, and manage intelligent bots, all from one place. Bot Service

leverages the Bot Builder SDK with support for .NET and Node.js.

1.1. Log in to Azure
Log in to the Azure portal. https://portal.azure.com

1.2. Create a new bot service
1. Click the New button found on the upper left-hand corner of the Azure portal, then select AI +

Cognitive Services > Web App bot.

2. A new blade will open with information about the Web App Bot. Click the Create button to

start the bot creation process.

3. In the Bot Service blade, provide the requested information about the bot as specified in the table

below the image.

http://portal.azure.com/

Page 5

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

Setting Suggested

value

Description

Bot name The bot's display
name

The display name for the bot that appears in channels and
directories. This name can be changed at any time.

Subscription The user’s

subscription

Select the Azure subscription the user wants to use.

Resource Group myResourceGroup The user can create a new resource group or choose from
an existing one.

Location The default location Select the geographic location for the resource group. The

location choice can be any location listed, though it's

often best to choose a location closest to the customer.
The location cannot be changed once the bot is created.

Pricing tier F0 Select a pricing tier. The user may update the pricing tier

at any time.

App name A unique name The unique URL name of the bot. For example, if the user
names his/her bot myawesomebot, then the bot's URL

will be http://myawesomebot.azurewebsites.net . The

name must use alphanumeric and underscore characters
only. There is a 35character limit to this field. The App

name cannot be changed once the bot is created.

Bot template Basic Choose either C# or Node.js and select the Basic

template for this quick start, then click Select. The Basic
template creates an echo bot. Learn more about the

templates.

App service
plan/Location

The app service plan Select an app service plan location. The location choice
can be any location listed, though it's often best to choose

a location closest to the customer. (Not available for

Functions Bot.)

Azure Storage The Azure storage
account

The user can create a new data storage account or use an
existing one. By default, the bot will use Table Storage.

Application Insights On Decide if one wants to turn Application

Insights On or Off. If he/she selects On, he/she must also

specify a regional location. The location choice can be
any location listed, though it's often best to choose a

location closest to the customer.

Microsoft App ID

and password

Auto create App ID

and password

Use this option if one needs to manually enter a Microsoft

App ID and password. Otherwise, a new Microsoft App
ID and password will be created for him/her in the bot

creation process.

4. Click Create to create the service and deploy the bot to the cloud. This process may take several

minutes.

Confirm that the bot has been deployed by checking the Notifications. The notifications will change

from Deployment in progress... to Deployment succeeded. Click Go to resource button to open the

bot's resources blade.

https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-overview#resource-groups
https://docs.microsoft.com/en-us/azure/bot-service/bot-service-concept-templates
https://azure.microsoft.com/en-us/pricing/details/app-service/plans/
https://docs.microsoft.com/en-us/azure/storage/common/storage-introduction#table-storage
https://docs.microsoft.com/en-us/bot-framework/bot-service-manage-analytics
https://docs.microsoft.com/en-us/bot-framework/bot-service-manage-analytics

Page 6

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

1.3. Test the bot
Now that the bot is created, test it in Web Chat. Enter a message and the bot should respond.

1.4. Bot settings overview
In the Overview blade, the user can find high level information about his/her bot. For example, the

user can see his/her bot's Subscription ID, pricing tier, and Messaging endpoint.

1.5. Bot management
The user can find most of his/her bot's management options under the BOT

MANAGEMENT section. Below is a list of options to help the user manage his/her bot:

Option Description
Build The Build tab provides options for making changes to the bot. This option is not

available for Registration Only Bot.

Test in Web

Chat

Use the integrated Web Chat control to help the user quickly test the bot.

Analytics If analytics is turned on for the bot, the user can view the analytics data that
Application Insights has collected for the bot.

Channels Configure the channels the bot uses to communicate with users.

Settings Manage various bot profile settings such as display name, analytics, and messaging

endpoint.

Speech priming Manage the connections between the LUIS app and the Bing Speech service.

Bot Service
pricing

Manage the pricing tier for the bot service.

2. App service settings
The Application Settings blade contains detailed information about the bot, such as the bot's

environment, ID, Application Insights key, Microsoft App ID, and Microsoft App password.

2.1. MicrosoftAppID and MicrosoftAppPassword
The user can find the MicrosoftAppID and MicrosoftAppPassword for his/her bot in

the Application Settings blade.

2.2. Edit a bot with online code editor
The user can use the online code editor to build the bot without needing an IDE. This topic will show

how to open the bot code in the online code editor.

To edit a bot's source code in the online code editor, do the following for the specific type the user

has.

https://docs.microsoft.com/en-us/azure/bot-service/bot-service-manage-test-webchat

Page 7

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

 Web App Bot
1. Sign into the Azure portal and open the blade for the bot.

2. Under the BOT MANAGEMENT section, Click Build.

3. Click Open online code editor. This will open the bot's code in a new browser

window.Depending on the language of the bot, the file structure under

the WWWRoot directory will be different.

For example, if the user has a C# bot, the WWWRoot may look something like this:

If the user has a Node.js bot, the WWWRoot may look something like this:

1. Make code changes. For example, for C# bots, the user can start with

the Dialogs/EchoDialog.cs file. For Node.js bots, the user can start with the App.js file.

2. Save the changes. For C# bots that are on a Consumption plan and all Node.js bots, the bot

is automatically updated once the source code is saved by clicking the Save button. For C#

bots on an App service plan, open the Console blade and send the build.cmd command.

3. Switch back to Azure portal and click Test in Web Chat to test out the changes. If the user

already has the Web Chat open for this bot, click Start over to see the new changes.

http://portal.azure.com/

Page 8

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

 Functions Bot
1. Sign into the Azure portal and open the blade for the bot.

2. Under the BOT MANAGEMENT section, Click Build.

3. Click Open this bot in Azure Functions. This will open the bot with the Azure Functions UI.

4. Make code changes. For example, update the function's messages code. The screen shot below

shows the Messages code for a Node.js Functions Bot.

5. Save the code changes.

6. Switch back to Azure portal and click Test in Web Chat to test out the changes. If the user

already has the Web Chat open for this bot, click Start over to see the new changes.

3. Create a Bot with the Bot Builder SDK for .NET
The Bot Builder SDK for .NET is an easy-to-use framework for developing bots using Visual Studio

and Windows. The SDK leverages C# to provide a familiar way for .NET developers to create powerful

bots.

This tutorial walks the user through building a bot by using the Bot Application template and the Bot

Builder SDK for .NET, and then testing it with the Bot Framework Emulator.

3.1. Prerequisites
Get started by completing the following prerequisite tasks:

1. Install Visual Studio 2017 for Windows.

2. In Visual Studio, update all extensions to their latest versions.

3. Download the Bot Application, Bot Controller, and Bot Dialog .zip files. Install the project

template by copying Bot Application.zip to the Visual Studio 2017 project templates directory.

Install the item templates by copying Bot Controller.zip and Bot Dialog.zip to the Visual

Studio 2017 item templates directory.

3.2. Create the bot
Next, open Visual Studio and create a new C# project. Choose the Bot Application template for the

new project.

By using the Bot Application template, the user is creating a project that already contains all of the

components that are required to build a simple bot, including a reference to the Bot Builder SDK for

.NET, Microsoft.Bot.Builder .

http://portal.azure.com/
http://go.microsoft.com/fwlink/?linkID=747839
https://github.com/Microsoft/BotBuilder
https://www.visualstudio.com/downloads/
https://docs.microsoft.com/en-us/visualstudio/extensibility/how-to-update-a-visual-studio-extension
http://aka.ms/bf-bc-vstemplate
http://aka.ms/bf-bc-vscontrollertemplate
http://aka.ms/bf-bc-vsdialogtemplate

Page 9

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

3.3. Verify that the project references the latest version of the SDK
1. Right-click on the project and select Manage NuGet Packages.

2. In the Browse tab, type "Microsoft.Bot.Builder".

3. Locate the Microsoft.Bot.Builder package in the list of search results, and click the Update

button for that package.

4. Follow the prompts to accept the changes and update the package.

Thanks to the Bot Application template, the project contains all of the code that's necessary to create

the bot in this tutorial. The user won't actually need to write any additional code. However, before

we move on to testing the bot, take a quick look at some of the code that the Bot Application template

provided.

3.4. Explore the code
First, the Post method within Controllers\MessagesController.cs receives the message from the

user and invokes the root dialog.

[BotAuthentication]
public class MessagesController : ApiController
{

 /// <summary>
 /// POST: api/Messages
 /// Receive a message from a user and reply to it
 /// </summary>
 public async Task<HttpResponseMessage> Post([FromBody]Activity activity)
 {
 if (activity.Type == ActivityTypes.Message)
 {
 await Conversation.SendAsync(activity, () => new Dialogs.RootDialog());
 }
 else
 {
 HandleSystemMessage(activity);
 }
 var response = Request.CreateResponse(HttpStatusCode.OK);
 return response;
 }
 private Activity HandleSystemMessage(Activity message)
 {
 if (message.Type == ActivityTypes.DeleteUserData)
 {
 }
 else if (message.Type == ActivityTypes.ConversationUpdate)
 {
 }
 else if (message.Type == ActivityTypes.ContactRelationUpdate)
 {
 }
 else if (message.Type == ActivityTypes.Typing)
 {
 }
 return null;
 }
 }
 }

Page 10

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

The root dialog processes the message and generates a response. The MessageReceivedAsync

method within Dialogs\RootDialog.cs sends a reply that echoes back the user's message, prefixed

with the text 'the user sent' and ending in the text 'which was ## characters', where ## represents the

number of characters in the user's message.

[Serializable]
public class RootDialog : IDialog<object>
{

 public Task StartAsync(IDialogContext context)
 {
 context.Wait(MessageReceivedAsync);
 return Task.CompletedTask;
 }

 private async Task MessageReceivedAsync(IDialogContext context, IAwaitable<object> result)
 {
 var activity = await result as Activity;

 // calculate something for us to return
 int length = (activity.Text ?? string.Empty).Length;

 // return our reply to the user
 await context.PostAsync($"You sent {activity.Text} which was {length} characters");

 context.Wait(MessageReceivedAsync);
 }
 }

3.5. Test the bot
Next, test the bot by using the Bot Framework Emulator to see it in action. The emulator is a desktop

application that lets the user test and debug the bot on localhost or running remotely through a tunnel.

First, the user will need to download and install the emulator. After the download completes, launch

the executable and complete the installation process. The emulator looks like this:

https://docs.microsoft.com/en-us/azure/bot-service/bot-service-debug-emulator

Page 11

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

3.6. Start the bot
After installing the emulator, start the bot in Visual Studio by using a browser as the application host.

This Visual Studio screenshot shows that the bot will launch in Microsoft Edge when the run button

is clicked.

3.7. Start the emulator and connect the bot
At this point, the bot is running locally. Next, start the emulator and then connect to the bot in the

emulator:

1. Type http://localhost:port-number/api/messages into the address bar, where port-number

matches the port number shown in the browser where the application is running.

2. Click Connect. The user won't need to specify Microsoft App ID and Microsoft App

Password. The user can leave these fields blank for now. He/she will get this information later

when he/she registers his/her bot.

3.8. Test the bot code result
Now that the bot is running locally and is connected to the emulator, test the bot by typing a few

messages in the emulator. The user should see that the bot responds to each message he/she sends by

echoing back the message prefixed with the text 'You sent' and ending with the text 'which

was ##characters', where ## is the total number of characters in the message that the user sent.

End of chapter

When the user clicks the run button, Visual Studio will build the application, deploy it to localhost,

and launch the web browser to display the application's default.htm page. For example, here's the

application's default.htm page shown in Microsoft Edge:

https://docs.microsoft.com/en-us/azure/bot-service/bot-service-quickstart-registration

Page 12

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

CHAPTER - 2
Language Understanding (LUIS)

Language Understanding (LUIS) allows the application to understand what a person wants in their

own words. LUIS uses machine learning to allow developers to build applications that can receive user

input in natural language and extract meaning from it. A client application that converses with the user

can pass user input to a LUIS app and receive relevant, detailed information back.

Several Microsoft technologies work with LUIS:

 Bot Framework allows a chat bot to talk with a user via text input.

 Bing Speech API converts spoken language requests into text. Once converted to text, LUIS

processes the requests.

1. What is a LUIS app?
A LUIS app is a domain-specific language model designed by one and tailored to his/her needs. He/she

can start with a prebuilt domain model, build his/her own, or blend pieces of a prebuilt domain with

his/her own custom information.

A model starts with a list of general user intentions such as "Book Flight" or "Contact Help Desk".

Once the intentions are identified, one should supply example phrases called utterances for the intents.

Then he/she label the utterances with any specific details he/she wants LUIS to pull out of the

utterance.

Prebuilt domain models include all these pieces for him/her and are a great way to start using LUIS

quickly.

After the model is designed, trained, and published, it is ready to receive and process utterances. The

LUIS app receives the utterance as an HTTP request and responds with extracted user intentions. The

client application sends the utterance and receives LUIS's evaluation as a JSON object. The client app

can then take appropriate action.

1.1. Key LUIS concepts

 Intents: An intent represents actions the user wants to perform. The intent is a purpose or goal

expressed in a user's input, such as booking a flight, paying a bill, or finding a news article. The

users define and name intents that correspond to these actions. A travel app may define an intent

named "BookFlight."

 Utterances: An utterance is text input from the user that the app needs to understand. It may

be a sentence, like "Book a ticket to Paris", or a fragment of a sentence, like "Booking" or "Paris

flight." Utterances aren't always well-formed, and there can be many utterance variations for a

particular intent.

 Entities: An entity represents detailed information that is relevant in the utterance. For

example, in the utterance "Book a ticket to Paris", "Paris" is a location. By recognizing and

labeling the entities that are mentioned in the user’s utterance, LUIS helps the user choose the

specific action to take to answer a user's request.

Intent Sample User Utterance Entities
BookFlight "Book a flight to Seattle?" Seattle

Booking "Book me a flight ticket" Flight

Installation "I want to install Google Chrome" Google Chrome

https://docs.microsoft.com/bot-framework/
https://docs.microsoft.com/en-us/azure/cognitive-services/speech/index
https://docs.microsoft.com/en-us/azure/cognitive-services/LUIS/luis-how-to-use-prebuilt-domains
https://docs.microsoft.com/en-us/azure/cognitive-services/LUIS/add-intents
https://docs.microsoft.com/en-us/azure/cognitive-services/LUIS/add-example-utterances
https://docs.microsoft.com/en-us/azure/cognitive-services/LUIS/add-entities

Page 13

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

1.2. Accessing LUIS
LUIS has two ways to build a model: the Authoring REST-based APIs and the LUIS website. Both

methods give the user and his/her collaborators control of his/her LUIS model definition. The user

can use either the LUIS website or the Authoring APIs or a combination of both to build the model.

This management includes models, versions, collaborators, external APIs, testing, and training.

Once the model is built and published, the user pass the utterance to LUIS and receive the JSON

object results with the Endpoint REST-based APIs.

1.3. Author the LUIS model
Begin the LUIS model with the intents the client app can resolve. Intents are just names such as

"BookFlight" or "OrderPizza."

After an intent is identified, one needs sample utterances that he/she wants LUIS to map to his/her

intent such as "Buy a ticket to Seattle tomorrow". Then, label the parts of the utterance that are

relevant to his/her app domain as entities and set a type such as date or location.

Generally, an intent is used to trigger an action and an entity is used as a parameter to execute an

action.

For example, a "BookFlight" intent could trigger an API call to an external service for booking a

plane ticket, which requires entities like the travel destination, date, and airline.

1.4. Identify Entities
Entity identification determines how successfully the end user gets the correct answer. LUIS provides

several ways to identify and categorize entities.

 Prebuilt Entities: LUIS has many prebuilt domain models including intents, utterances,

and prebuilt entities. One can use the prebuilt entities without having to use the intents and

utterances of the prebuilt model. The prebuilt entities save time.

 Custom Entities: LUIS gives several ways to identify one’s own custom entities including

simple entities, composite entities, list entities, regular expression entities, and hierarchical

entities.

 Phrases: LUIS provides phrase lists, which also help identify entities.

1.5. Improve performance
Once the application is published and real user utterances are entered, LUIS uses active learning to

improve identification. In the active learning process, LUIS provides real utterances that it is

relatively unsure of for one to review. He/she can label them according to intent and entities, retrain,

and republish.

This iterative process has tremendous advantages. LUIS knows what it is unsure of, and his/her help

leads to the maximum improvement in system performance. LUIS learns quicker and takes the

minimum amount of time and effort. LUIS is an active machine learning at its best.

https://aka.ms/luis-authoring-api
https://docs.microsoft.com/en-us/azure/cognitive-services/LUIS/luis-reference-regions
https://docs.microsoft.com/en-us/azure/cognitive-services/LUIS/luis-reference-regions
https://aka.ms/luis-endpoint-apis
https://docs.microsoft.com/en-us/azure/cognitive-services/LUIS/add-example-utterances
https://docs.microsoft.com/en-us/azure/cognitive-services/LUIS/label-suggested-utterances
https://docs.microsoft.com/en-us/azure/cognitive-services/LUIS/luis-concept-entity-types
https://docs.microsoft.com/en-us/azure/cognitive-services/LUIS/pre-builtentities
https://docs.microsoft.com/en-us/azure/cognitive-services/LUIS/luis-concept-entity-types
https://docs.microsoft.com/en-us/azure/cognitive-services/LUIS/luis-concept-feature
https://docs.microsoft.com/en-us/azure/cognitive-services/LUIS/publishapp#test-your-published-endpoint-in-a-browser
https://docs.microsoft.com/en-us/azure/cognitive-services/LUIS/label-suggested-utterances

Page 14

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

2. Create new app with intents

2.1. Simple app with intents
This simple app has two intentions. The first intent's purpose is to identify when a user wants store

information such as hours, and location. The second intent's purpose is to identify every other type

of utterance.

Once the type of utterance is identified, LUIS is done. The calling application or chat bot then takes

that identification and fulfils the request -- in whatever way the app or chat bot is designed to do.

2.2. Create a new app

1. Log in to the LUIS website. Make sure to log in to the region where the user needs the LUIS

endpoints published.

2. On the LUIS website, select Create new app.

3. In the pop-up dialog, enter the name MyStore .

4. When that process finishes, the app shows the Intents page with the None Intent.

https://docs.microsoft.com/en-us/azure/cognitive-services/LUIS/luis-reference-regions
https://docs.microsoft.com/en-us/azure/cognitive-services/LUIS/luis-reference-regions

Page 15

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

5. Select Create new intent. Enter the new intent name GetStoreInfo . This intent should be selected

any time a user wants information about the store such as what is sold, what hours it is open, and

how to contact.

By creating an intent, the user is creating a category of information that he/she wants to identify.

Giving the category a name allows any other application that uses the LUIS query results to use

that category name to find an appropriate answer. LUIS won't answer these questions, only

identify what type of information is being asked for in natural language.

6. Add seven utterances to the GetStoreInfo intent that is expected from a user to ask for, such as:

Example utterances
When do you open?

What are your hours?

Are you open right now?

What is your phone number?

Can someone call me please?

Where is your store?

How do I get to your store?

7. The LUIS app currently has no utterances for the None intent. It needs utterances that the user

doesn't want the app to answer, so it needs to have utterances in the None intent. Do not leave it

empty. Select Intents from the left panel. Select the None intent. Add three utterances that the

user might enter but are not relevant to the app. If the app is about the store, some good None

utterances are:

Example utterances
Cancel!

Good bye

What is going on?

In the LUIS-calling application, such as a chat bot, if LUIS returns the None intent for an

utterance, the bot can ask if the user wants to end the conversation. The bot can also give more

directions for continuing the conversation if the user doesn't want to end it.

8. In the top right side of the LUIS website, select the Train button.

Training is complete when one sees the green status bar at the top of the website confirming

success.

9. In the top right side of the LUIS website, select the Publish button. Select the Publish to product

slot. Publishing is complete when one sees the green status bar at the top of the website

confirming success.

10. On the Publish page, select the endpoint link at the bottom of the page. This action opens another

browser window with the endpoint URL in the address bar. Go to the end of the URL in the

address and enter When do you open next? . The last query string parameter is q , the

utterance query. This utterance is not the same as any of the example utterances in step 4 so it is

a good test and should return the GetStoreInfo utterances.

Page 16

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

 What has this LUIS app accomplished?
This app, with just two intents, identified a natural language query that is of the same intention but

worded differently.

The JSON result identifies the top scoring intent GetStoreInfo with a score of 0.984749258. All

scores are between 1 and 0, with the better score being close to 1. The None intent's score is

0.2040639, much closer to zero.

 Where is this LUIS data used?
LUIS is done with this request. The calling application, such as a chat bot, can take the top Scoring

Intent result and either find information (not stored in LUIS) to answer the question or can send the

user to the store's website page containing the information. There are other programmatic options for

the bot or calling application. LUIS doesn't do that work. LUIS only determines what the user's

intention is.

3. Create new app with intents and entities

3.1. Simple app with intents and a simple entity
This simple app has two intents and one entity . This app demonstrates how to pull data out of an

utterance. In the utterance, Send a message telling them to stop , the intent (primary data) is to send

a message and the simple entity (secondary data) is the content of the message, telling them to

stop .

When the intent and entities of the utterance are identified, LUIS is done. The calling application

or chat bot takes that identification and fulfils the request -- in whatever way the app or chat bot is

designed to do.

3.2. Create a new app
1. Log in to the LUIS website. Make sure to log into the region where the user needs the LUIS

endpoints published.

2. On the LUIS website, select Create new app.

3. In the pop-up dialog, enter the name MyCommunicator .

https://docs.microsoft.com/en-us/azure/cognitive-services/LUIS/luis-reference-regions
https://docs.microsoft.com/en-us/azure/cognitive-services/LUIS/luis-reference-regions

Page 17

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

 When that process finishes, the app shows the Intents page with the None Intent.

 Create a new intent
1. On the Intents page, select Create new intent.

2. Enter the new intent name SendMessage . This intent should be selected any time a user wants

to send a message.

By creating an intent, user is creating the primary category of information that he/she wants to

identify. Giving the category a name allows any other application that uses the LUIS query results

to use that category name to find an appropriate answer or take appropriate action. LUIS won't

answer these questions, only identify what type of information is being asked for in natural

language.

3. Add seven utterances to the SendMessage intent that one expects a user to ask for, such as:

Example utterances
Reply with I got your message, I will have the answer tomorrow

Send message of When will you be home?

Text that I am busy

Tell them that it needs to be done today

IM that I am driving and will respond later

Compose message to David that says When was that?

say greg hello

Page 18

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

 Add utterances to None intent
The LUIS app currently has no utterances for the None intent. It needs utterances that the user doesn't

want the app to answer, so it has to have utterances in the None intent. Do not leave it empty.

1. Select Intents from the left panel.

2. Select the None intent.

3. Add three utterances that the user might enter but are not relevant to the app. Some

good None utterances are:

Example utterances
Cancel!

Good bye

What is going on?

In the LUIS-calling application, such as a chat bot, if LUIS returns the None intent for an utterance,

the bot can ask if the user wants to end the conversation. The bot can also give more directions for

continuing the conversation if the user doesn't want to end it.

 Create a simple entity to extract message
1. Select Intents from the left menu.

2. Select SendMessage from the intents list.

3. In the utterance, Reply with I got your message, I will have the answer tomorrow , select the first

word of the message body, I , and the last word of the message body, tomorrow . All these words

are selected for the message and a drop-down menu appears with a text box at the top.

4. Enter the entity name Message in the text box.

Page 19

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

5. Select Create new entity in the drop-down menu. The purpose of the entity is to pull out the

text that is the body of the message. In this LUIS app, the text message is at the end of the

utterance, but the utterance can be any length, and the message can be any length.

6. In the pop-up window, the default entity type is Simple and the entity name is Message . Keep

these settings and select Done.

7. Now that the entity is created, and one utterance is labeled, label the rest of the utterances with

that entity. Select an utterance, then select the first and last word of a message. In the drop-down

menu, select the entity, Message . The message is now labeled in the entity. Continue to label

all message phrases in the remaining utterances.

The default view of the utterances is Entities view. Select the Entities view control above the

utterances. The Tokens view displays the utterance text.

Page 20

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

 Train the LUIS app
LUIS doesn't know about the changes to the intents and entities (the model), until it is trained.

1. In the top right side of the LUIS website, select the Train button.

2. Training is complete when the user sees the green status bar at the top of the website confirming

success.

 Publish the app to get the endpoint URL
In order to get a LUIS prediction in a chat bot or other application, the user needs to publish the app.

1. In the top right side of the LUIS website, select the Publish button.

2. Select the Publish to production slot.

3. Publishing is complete when the user sees the green status bar at the top of the website confirming

success.

 Query the endpoint with a different utterance
On the Publish page, select the endpoint link at the bottom of the page.

This action opens another browser window with the endpoint URL in the address bar. Go to the end

of the URL in the address and enter text I'm driving and will be 30 minutes late to the meeting . The

last querystring parameter is q , the utterance query. This utterance is not the same as any of the

labeled utterances so it is a good test and should return the SendMessage utterances.

 What has this LUIS app accomplished?
This app, with just two intents and one entity, identified a natural language query intention and

returned the message data.

The JSON result identifies the top scoring intent SendMessage with a score of 0.987501. All scores

are between 1 and 0, with the better score being close to 1. The None intent's score is 0.111048922,

much closer to zero.

The message data has a type, Message , as well as a value, i ' m driving and will be 30 minutes late

to the meeting . The chat bot now has enough information to determine the primary

action, SendMessage , and a parameter of that action, the text of the message.

End of chapter

Page 21

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

CHAPTER - 3
Key concepts in Bot Builder SDK

__

1. Connector

The Bot Framework Connector provides a single REST API that enables a bot to communicate across

multiple channels such as Skype, Email, Slack, and more. It facilitates communication between bot

and user by relaying messages from bot to channel and from channel to bot. In the Bot Builder SDK

for .NET, the Connector library enables access to the Connector.

2. Activity
The Connector uses an Activity object to pass information back and forth between bot and channel

(user). The most common type of activity is message, but there are other activity types that can be

used to communicate various types of information to a bot or channel.

3. Dialog
When a user creates a bot using the Bot Builder SDK for .NET, he/she can use dialogs to model a

conversation and manage conversation flow. A dialog can be composed of other dialogs to maximize

reuse, and a dialog context maintains the stack of dialogs that are active in the conversation at any

point in time. A conversation that comprises dialogs is portable across computers, which makes it

possible for the bot implementation to scale. In the Bot Builder SDK for .NET, the Builder library

enables the user to manage dialogs.

4. FormFlow
A user can use FormFlow within the Bot Builder SDK for .NET to streamline of building a bot that

collects information from the user. For example, a bot that takes sandwich orders must collect several

pieces of information from the user such as type of bread, choice of toppings, size, and so on. Given

basic guidelines, FormFlow can automatically generate the dialogs necessary to manage a guided

conversation like this.

5. State
The Bot Builder Framework enables the bot to store and retrieve state data that is associated with a

user, a conversation, or a specific user within the context of a specific conversation. State data can be

used for many purposes, such as determining where the prior conversation left off or simply greeting

a returning user by name. If one stores a user's preferences, he/she can use that information to

customize the conversation the next time he/she chats. For example, one might alert the user to a news

article about a topic that interests her or alert a user when an appointment becomes available. For

testing and prototyping purposes, one can use the Bot Builder Framework's in-memory data storage.

6. Naming conventions
The Bot Builder SDK for .NET library uses strongly-typed, Pascal-cased naming conventions.

However, the JSON messages that are transported back and forth over the wire use camel-case naming

conventions. For example, the C# property ReplyToId is serialized as replyToId in the JSON

message that's transported over the wire.

https://docs.microsoft.com/en-us/azure/bot-service/dotnet/bot-builder-dotnet-connector
https://docs.microsoft.com/en-us/dotnet/api/microsoft.bot.connector
https://docs.microsoft.com/en-us/azure/bot-service/dotnet/bot-builder-dotnet-concepts#connector
https://docs.microsoft.com/en-us/dotnet/api/microsoft.bot.connector.activity
https://docs.microsoft.com/en-us/azure/bot-service/dotnet/bot-builder-dotnet-dialogs
https://docs.microsoft.com/en-us/azure/bot-service/bot-service-design-conversation-flow#dialog-stack
https://docs.microsoft.com/en-us/azure/bot-service/bot-service-design-conversation-flow
https://docs.microsoft.com/en-us/dotnet/api/microsoft.bot.builder.dialogs
https://docs.microsoft.com/en-us/azure/bot-service/dotnet/bot-builder-dotnet-formflow

Page 22

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

7. Messages and Activities

7.1. Activities overview
The Connector uses an Activity object to pass information back and forth between bot and channel

(user). The most common type of activity is message, but there are other activity types that can be

used to communicate various types of information to a bot or channel.

 Activity types in the Bot Builder SDK for .NET
The following activity types are supported by the Bot Builder SDK for .NET.

Activity.Type Interface Description
message ImessageActivity Represents a communication between bot

and user.

conversationUpdate IconversationUpdateActivity Indicates that the bot was added to a

conversation, other members were added to
or removed from the conversation, or

conversation metadata has changed.

contactRelationUpdate IContactRelationUpdateActivity Indicates that the bot was added or removed
from a user's contact list.

typing ItypingActivity Indicates that the user or bot on the other

end of the conversation is compiling a

response.

ping n/a Represents an attempt to determine whether

a bot's endpoint is accessible.

deleteUserData n/a Indicates to a bot that a user has requested

that the bot delete any user data it may have
stored.

endOfConversation IendOfConversationActivity Indicates the end of a conversation.

event IeventActivity Represents a communication sent to a bot

that is not visible to the user.

invoke IinvokeActivity Represents a communication sent to a bot to

request that it perform a specific operation.

This activity type is reserved for internal use
by the Microsoft Bot Framework.

messageReaction ImessageReactionActivity Indicates that a user has reacted to an

existing activity. For example, a user clicks

the "Like" button on a message.

7.2. Add speech to messages
If one is building a bot for a speech-enabled channel such as Cortana, he/she can construct messages

that specify the text to be spoken by the bot. He/she can also attempt to influence the state of the

client's microphone by specifying an input hint to indicate whether the bot is accepting, expecting, or

ignoring user input.

 Specify text to be spoken by the bot
Using the Bot Builder SDK for .NET, there are multiple ways to specify the text to be spoken by the

bot on a speech-enabled channel.

One can set the Speak property of the message, call the IDialogContext.SayAsync() method, or

specify prompt options speak and retrySpeak when sending a message using a built-in prompt.

https://docs.microsoft.com/en-us/azure/bot-service/dotnet/bot-builder-dotnet-concepts#connector
https://docs.microsoft.com/en-us/dotnet/api/microsoft.bot.connector.activity
https://docs.microsoft.com/en-us/azure/bot-service/dotnet/bot-builder-dotnet-activities#message
https://docs.microsoft.com/en-us/azure/bot-service/dotnet/bot-builder-dotnet-activities#conversationupdate
https://docs.microsoft.com/en-us/azure/bot-service/dotnet/bot-builder-dotnet-activities#contactrelationupdate
https://docs.microsoft.com/en-us/azure/bot-service/dotnet/bot-builder-dotnet-activities#typing
https://docs.microsoft.com/en-us/azure/bot-service/dotnet/bot-builder-dotnet-activities#ping
https://docs.microsoft.com/en-us/azure/bot-service/dotnet/bot-builder-dotnet-activities#deleteuserdata
https://docs.microsoft.com/en-us/azure/bot-service/dotnet/bot-builder-dotnet-activities#endofconversation
https://docs.microsoft.com/en-us/azure/bot-service/dotnet/bot-builder-dotnet-activities#event
https://docs.microsoft.com/en-us/azure/bot-service/dotnet/bot-builder-dotnet-activities#invoke
https://docs.microsoft.com/en-us/azure/bot-service/dotnet/bot-builder-dotnet-activities#messagereaction
https://docs.microsoft.com/en-us/azure/bot-service/dotnet/bot-builder-dotnet-add-input-hints
https://docs.microsoft.com/en-us/dotnet/api/microsoft.bot.connector.imessageactivity

Page 23

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

 IMessageActivity.Speak
If one is creating a message and setting its individual properties, he/she can set the Speak property

of the message to specify the text to be spoken by the bot. The following code example creates a

message that specifies text to be displayed and text to be spoken and indicates that the bot

is accepting user input.

 Activity reply = activity.CreateReply("This is the text that will be displayed.");
 reply.Speak = "This is the text that will be spoken.";
 reply.InputHint = InputHints.AcceptingInput;
 await connector.Conversations.ReplyToActivityAsync(reply);

 IDialogContext.SayAsync()
If one is using dialogs, he/she can call the SayAsync() method to create and send a message that

specifies the text to be spoken, in addition to the text to be displayed and other options. The

following code example creates a message that specifies text to be displayed and text to be spoken.

await context.SayAsync(text: "Thank you for your order!", speak: "Thank you for your
order!");

 Prompt options
Using any of the built-in prompts, one can set the options speak and retrySpeak to specify the

text to be spoken by the bot. The following code example creates a prompt that specifies text to be

displayed, text to be spoken initially, and text to be spoken after waiting a while for user input. It

uses SSML formatting to indicate that the word "sure" should be spoken with a moderate amount

of emphasis.

 PromptDialog.Confirm(

Context: context,
Resume: AfterResetAsync,
promptOptions: new PromptOptions<string>(prompt: "Are you sure that you want
to cancel this transaction?", speak: "Are you <emphasis level=\"moderate\">
sure </emphasis> that you want to cancel this transaction?",retrySpeak: "Are
you <emphasis level=\"moderate\">sure</emphasis> that you want to cancel this
transaction?")
);

 Speech Synthesis Markup Language (SSML)
To specify text to be spoken by the bot, one can use either a plain text string or a string that is

formatted as Speech Synthesis Markup Language (SSML), an XML-based markup language that

enables him/her to control various characteristics of the bot's speech such as voice, rate, volume,

pronunciation, pitch, and more.

 Input hints
When one sends a message on a speech-enabled channel, one can attempt to influence the state of

the client's microphone by also including an input hint to indicate whether the bot is accepting,

expecting, or ignoring user input.

https://docs.microsoft.com/en-us/dotnet/api/microsoft.bot.connector.imessageactivity
https://docs.microsoft.com/en-us/azure/bot-service/dotnet/bot-builder-dotnet-add-input-hints
https://docs.microsoft.com/en-us/azure/bot-service/dotnet/bot-builder-dotnet-dialogs
https://docs.microsoft.com/en-us/azure/bot-service/dotnet/bot-builder-dotnet-text-to-speech#ssml

Page 24

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

7.3. Add input hints to messages
By specifying an input hint for a message, one can indicate whether his/her bot is accepting,

expecting, or ignoring user input after the message is delivered to the client. For many channels, this

enables clients to set the state of user input controls accordingly. For example, if a message's input

hint indicates that the bot is ignoring user input, the client may close the microphone and disable the

input box to prevent the user from providing input.

 Accepting input
To indicate that the bot is passively ready for input but is not awaiting a response from the user, set

the message's input hint to InputHints.AcceptingInput . On many channels, this will cause the client's

input box to be enabled and microphone to be closed, but still accessible to the user. For example,

Cortana will open the microphone to accept input from the user if the user holds down the microphone

button. The following code example creates a message that indicates the bot is accepting user input.

 Activity reply = activity.CreateReply("This is the text that will be displayed.");
 reply.Speak = "This is the text that will be spoken.";
 reply.InputHint = InputHints.AcceptingInput;

 Expecting input
To indicate that the bot is awaiting a response from the user, set the message's input hint

to InputHints.ExpectingInput . On many channels, this will cause the client's input box to be enabled

and microphone to be open. The following code example creates a message that indicates the bot is

expecting user input.

 Activity reply = activity.CreateReply("This is the text that will be displayed.");
 reply.Speak = "This is the text that will be spoken.";
 reply.InputHint = InputHints.ExpectingInput;

 Ignoring input
To indicate that the bot is not ready to receive input from the user, set the message's input hint

to InputHints.IgnorningInput . On many channels, this will cause the client's input box to be disabled

and microphone to be closed. The following code example creates a message that indicates the bot is

ignoring user input.

 Activity reply = activity.CreateReply("This is the text that will be displayed.");
 reply.Speak = "This is the text that will be spoken.";
 reply.InputHint = InputHints.IgnoringInput;

 Default values for input hint
If one does not set the input hint for a message, the Bot Builder SDK will automatically set it for the

user by using this logic:

 If the bot sends a prompt, the input hint for the message will specify that the bot is expecting

input.

 If the bot sends single message, the input hint for the message will specify that the bot is accepting

input.

 If the bot sends a series of consecutive messages, the input hint for all but the final message in

the series will specify that the bot is ignoring input, and the input hint for the final message in the

series will specify that the bot is accepting input.

Page 25

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

8. Dialogs
8.1. Dialogs in the Bot Builder SDK for .NET

When one creates a bot using the Bot Builder SDK for .NET, he/she can use dialogs to model a

conversation and manage conversation flow. Each dialog is an abstraction that encapsulates its own

state in a C# class that implements IDialog . A dialog can be composed with other dialogs to

maximize reuse, and a dialog context maintains the stack of dialogs that are active in the

conversation at any point in time.

A conversation that comprises dialogs is portable across computers, which makes it possible for the

bot implementation to scale. When one uses dialogs in the Bot Builder SDK for .NET, conversation

state (the dialog stack and the state of each dialog in the stack) is automatically stored to his/her

choice of state data storage. This enables the bot's service code to be stateless, much like a web

application that does not need to store session state in web server memory.

Consider this echo bot example, which describes how to change the bot that uses dialogs to exchange

messages with the user.

 MessagesController.cs
In the Bot Builder SDK for .NET, the Builder library enables one to implement dialogs. To access

the relevant classes, import the Dialogs namespace.

using Microsoft.Bot.Builder.Dialogs;

 Next, add this EchoDialog class to MessagesController.cs to represent the conversation.

 [Serializable]
 public class EchoDialog : IDialog<object>
 {
 public async Task StartAsync(IDialogContext context)
 {
 context.Wait(MessageReceivedAsync);
 }

 public async Task MessageReceivedAsync(IDialogContext context, IAwaitable<IMessageActivity>
 argument)
 {
 var message = await argument;
 await context.PostAsync("You said: " + message.Text);
 context.Wait(MessageReceivedAsync);
 }
 }

 Then, wire the EchoDialog class to the Post method by calling the Conversation.SendAsync

 method.

 public virtual async Task<HttpResponseMessage> Post([FromBody] Activity activity)
 {
 // Check if activity is of type message
 if (activity != null && activity.GetActivityType() == ActivityTypes.Message)
 {
 await Conversation.SendAsync(activity, () => new EchoDialog());
 }
 else
 {
 HandleSystemMessage(activity);
 }
 return new HttpResponseMessage(System.Net.HttpStatusCode.Accepted);
 }

https://docs.microsoft.com/en-us/azure/bot-service/bot-service-design-conversation-flow
https://docs.microsoft.com/en-us/azure/bot-service/bot-service-design-conversation-flow#dialog-stack
https://docs.microsoft.com/en-us/azure/bot-service/dotnet/bot-builder-dotnet-state
https://docs.microsoft.com/en-us/dotnet/api/microsoft.bot.builder.dialogs

Page 26

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

 Implementation details
The Post method is marked async because Bot Builder uses the C# facilities for handling

asynchronous communication. It returns a Task object, which represents the task that is responsible

for sending replies to the passed-in message. If there is an exception, the Task that is returned by the

method will contain the exception information.

The Conversation.SendAsync method is key to implementing dialogs with the Bot Builder SDK for

.NET. It follows the dependency inversion principle and performs these steps:

1. Instantiates the required components

2. Deserializes the conversation state (the dialog stack and the state of each dialog in the stack)

from IBotDataStore

3. Resumes the conversation process where the bot suspended and waits for a message

4. Sends the replies

5. Serializes the updated conversation state and saves it back to IBotDataStore

When the conversation first starts, the dialog does not contain state,

so Conversation.SendAsync constructs EchoDialog and calls its StartAsync method.

The StartAsync method calls IDialogContext.Wait with the continuation delegate to specify the

method that should be called when a new message is received (MessageReceivedAsync).

The MessageReceivedAsync method waits for a message, posts a response, and waits for the next

message. Every time IDialogContext.Wait is called, the bot enters a suspended state and can be

restarted on any computer that receives the message.

A bot that's created by using the code samples above will reply to each message that the user sends by

simply echoing back the user's message prefixed with the text 'You said: '. Because the bot is created

using dialogs, it can evolve to support more complex conversations without having to explicitly

manage state.

8.2. Manage Conversation flow

 Manage conversation flow with dialogs
This diagram shows the screen flow of a traditional application compared to the dialog flow of a bot.

In a traditional application, everything begins with the main screen. The main screen invokes

the new order screen. The new order screen remains in control until it either closes or invokes other

screens. If the new order screen closes, the user is returned to the main screen.

https://en.wikipedia.org/wiki/Dependency_inversion_principle

Page 27

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

In a bot, everything begins with the root dialog. The root dialog invokes the new order dialog. At

that point, the new order dialog takes control of the conversation and remains in control until it either

closes or invokes other dialogs. If the new order dialog closes, control of the conversation is returned

back to the root dialog.

This article describes how to model this conversation flow by using dialogs and the Bot Builder SDK

for .NET.

 Invoke the root dialog
First, the bot controller invokes the "root dialog". The following example shows how to wire the basic

HTTP GET call to a controller and then invoke the root dialog.

public class MessagesController : ApiController
{
 public async Task<HttpResponseMessage> Post([FromBody]Activity activity)
 {
 // Redirect to the root dialog.
 await Conversation.SendAsync(activity, () => new RootDialog());
 ...
 }
}

 Invoke the 'New Order' dialog
Next, the root dialog invokes the 'New Order' dialog.

[Serializable]
public class RootDialog : IDialog<object>
{
 public async Task StartAsync(IDialogContext context)
 {
 // Root dialog initiates and waits for the next message from the user.
 // When a message arrives, call MessageReceivedAsync.
 context.Wait(this.MessageReceivedAsync);
 }

 public virtual async Task MessageReceivedAsync(IDialogContext context,
IAwaitable<IMessageActivity> result)
 {
 var message = await result; // We've got a message!
 if (message.Text.ToLower().Contains("order"))
 {
 // User said 'order', so invoke the New Order Dialog and wait for it to finish.
 // Then, call ResumeAfterNewOrderDialog.
 await context.Forward(new NewOrderDialog(), this.ResumeAfterNewOrderDialog, message,
CancellationToken.None);
 }
 // User typed something else; for simplicity, ignore this input and wait for the next
message.
 context.Wait(this.MessageReceivedAsync);
 }

 private async Task ResumeAfterNewOrderDialog(IDialogContext context, IAwaitable<string>
result)
 {
 // Store the value that NewOrderDialog returned.
 // (At this point, new order dialog has finished and returned some value to use within the
root dialog.)
 var resultFromNewOrder = await result;

 await context.PostAsync($"New order dialog just told me this: {resultFromNewOrder}");

 // Again, wait for the next message from the user.
 context.Wait(this.MessageReceivedAsync);
 }
}

https://docs.microsoft.com/en-us/azure/bot-service/dotnet/bot-builder-dotnet-dialogs

Page 28

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

 Dialog lifecycle
When a dialog is invoked, it takes control of the conversation flow. Every new message will be

subject to processing by that dialog until it either closes or redirects to another dialog.

In C#, one can use context.Wait() to specify the callback to invoke the next time the user sends a

message. To close a dialog and remove it from the stack (thereby sending the user back to the prior

dialog in the stack), use context.Done() . One must end every dialog method

with context.Wait() , context.Fail() , context.Done() , or some redirection directive such

as context.Forward() or context.Call() . A dialog method that does not end with one of these will

result in an error (because the framework does not know what action to take the next time the user

sends a message).

8.3. Scorable Dialogs
 Global message handlers using scorables

Users attempt to access certain functionality within a bot by using words like "help," "cancel," or

"start over" in the middle of a conversation when the bot is expecting a different response. One can

design the bot to gracefully handle such requests using scorable dialogs.

Scorable dialogs monitor all incoming messages and determine whether a message is actionable in

some way. Messages that are scorable are assigned a score between [0 – 1] by each scorable dialog.

The scorable dialog that determines the highest score is added to the top of the dialog stack and then

hands the response to the user. After the scorable dialog completes execution, the conversation

continues from where it left off.

Scorables enable one to create more flexible conversations by allowing the users to 'interrupt' the

normal conversation flow one finds in regular dialogs.

 Create a scorable dialog

First, define a new dialog. The following code uses a dialog that is derived from the IDialog

interface.

public class SampleDialog : IDialog<object>
{

 public async Task StartAsync(IDialogContext context)
 {
 await context.PostAsync("This is a Sample Dialog which is Scorable. Reply with anything to
 return to the prior dialog.");

 context.Wait(this.MessageReceived);
 }

 private async Task MessageReceived(IDialogContext context, IAwaitable<IMessageActivity>
 result)
 {
 var message = await result;

 if ((message.Text != null) && (message.Text.Trim().Length > 0))
 {
 context.Done<object>(null);
 }
 else
 {
 context.Fail(new Exception("Message was not a string or was an empty string."));
 }
 }
 }

https://docs.microsoft.com/en-us/azure/bot-service/dotnet/bot-builder-dotnet-dialogs

Page 29

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

To make a scorable dialog, create a class that inherits from the ScorableBase abstract class. The

following code shows a SampleScorable class.

using Microsoft.Bot.Builder.Dialogs;
using Microsoft.Bot.Builder.Dialogs.Internals;
using Microsoft.Bot.Builder.Internals.Fibers;
using Microsoft.Bot.Builder.Scorables.Internals;

public class SampleScorable : ScorableBase<IActivity, string, double>
{
 private readonly IDialogTask task;

 public SampleScorable(IDialogTask task)
 {
 SetField.NotNull(out this.task, nameof(task), task);
 }
}

The ScorableBase abstract class inherits from the IScorable interface. One will need to implement

the following IScorable methods in the class:

 PrepareAsync is the first method that is called in the scorable instance. It accepts incoming

message activity, analyzes and sets the dialog's state, which is passed to all the other methods of

the IScorable interface.

protected override async Task<string> PrepareAsync(IActivity item, CancellationToken token)
{

 // TODO: insert your code here
}

 GetScore will only trigger if HasScore returns true. One will provision the logic in this method

to determine the score for a message between 0 - 1.

protected override double GetScore(IActivity item, string state)
{

 // TODO: insert your code here
}

 In the PostAsync method, define core actions to be performed for the scorable class. All scorable

dialogs will monitor incoming messages, and assign scores to valid messages based on the

scorables' GetScore method. The scorable class which determines the highest score (between 0 -

1.0) will then trigger that scorable's PostAsync method.

protected override Task PostAsync(IActivity item, string state, CancellationToken token)
{

 //TODO: insert your code here
}

 DoneAsync is called after the scoring process is complete. Use this method to dispose of any

scoped resources.

protected override Task DoneAsync(IActivity item, string state, CancellationToken token)
{

 //TODO: insert your code here
 }

Page 30

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

 Create a module to register the IScorable service

Next, define a Module that will register the SampleScorable class as a component. This will

provision the IScorable service.

public class GlobalMessageHandlersBotModule : Module
{

 protected override void Load(ContainerBuilder builder)
 {
 base.Load(builder);

 builder
 .Register(c => new SampleScorable(c.Resolve<IDialogTask>()))
 .As<IScorable<IActivity, double>>()
 .InstancePerLifetimeScope();
 }
}

 Register the module

The last step in the process is to apply the SampleScorable to the bot's Conversation Container. This

will register the scorable service within the Bot Framework's message handling pipeline. The

following code shows to update the Conversation.Container within the bot app's initialization

in Global.asax.cs

public class WebApiApplication : System.Web.HttpApplication
{

 protected void Application_Start()
 {
 this.RegisterBotModules();
 GlobalConfiguration.Configure(WebApiConfig.Register);
 }

 private void RegisterBotModules()
 {
 var builder = new ContainerBuilder();
 builder.RegisterModule(new ReflectionSurrogateModule());

 //Register the module within the Conversation container
 builder.RegisterModule<GlobalMessageHandlersBotModule>();

 builder.Update(Conversation.Container);
 }
 }

End of chapter

Page 31

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

CHAPTER - 4
Including Speech Support in Bots

In the previous chapter, we created the app using LUIS. On this chapter, we are going to give speech

support to the existing app by registering our bot in Microsoft Azure Portal by creating a ‘Web App

Bot’.

When we are done creating the Web App Bot, we receive a Microsoft App ID and Microsoft App

Password, and these two can be found in the ‘Application Settings’ option.

We can also find more three important fields, they are:

1. LuisAPIKey: It is the luis subscription key.

2. LuisAppId: It is the luis app id to which this web app bot is linked.

3. LuisAPIHostName: It is the region where the app is published.

Now, the bot is registered with the given ID and Password, so we can also use speech now. We just

need to give the ID and Password to the emulator fields when we run the app and then we can give

speech as inputs.

The app ID and app Password are auto-generated. But the password can be changed. Now, we are

going to see how to do it.

Page 32

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

1. How to change the auto-generated app password
The Microsoft App Password is automatically generated. But one can also change the auto-generated

password, but it will randomly regenerate if one wants to change it.

In order to change the password,

1. Click on the ‘Settings’ option, then under the ‘Configuration’ menu, click on the ‘Manage’ button

situated beside the Microsoft App ID.

2. A page will open, where all the information of the app will be displayed along with the password.

In this page, under the ‘Application Secrets’ menu, select the option ‘Generate New Password’.

3. After clicking on the button, a small alert box will be opened carrying the new password along

with a message “New password generated”. But the password will be shown only once, so the

password must be copied as soon as it is created and paste it in the ‘Microsoft App Password’ field.

Page 33

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

There it is, the app is successfully registered with an app ID and app Password. So, now, text as well

as speech will work.

2. How to give speech input to the emulator
Now that we know how to include speech to our bot, we need to know how we can give speech input

to the running app in the emulator.

To give speech input, one just needs to give the correct app credentials in the Microsoft App ID and

Microsoft App Password fields in the emulator and click on the speech icon situated at the lower-right

corner of the emulator, and then wait a little, after 2/3 seconds, the emulator will prompt us that it is

listening, then just start talking, the words will automatically be transformed into their text equivalents

and we will be able to see the message we just sent when we stop talking.

End of chapter

Page 34

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

CHAPTER - 5
App Specifications

The app is just a demo of how the LUIS works and depending on the intents and entities, how the Bot

responses back to the user.

1. Name of the app: HelperApp.

2. Functions
This app has four main functions. They are:

1. This app helps to book tickets of movie, flight, or railway.

2. This app helps to shop online in online shopping stores.

3. This app helps to change or reset the passwords of different platforms.

4. This app helps to install different softwares.

In order to create this app, I have logged into my profile and created an app named ‘HelperApp’.

3. Intents
I have created four main intents, they are:

1. Booking

2. Installation

3. PassChange

4. Shopping

Booking: This intent is used to guide the user to book movie, flight or railway tickets.

Installation: This intent is used to search the software the user wants to install.

Passchange: This intent is used to guide the user how to change or reset the passwords of different

platforms.

Shopping: This intent is used to help the user to shop online in different online stores like flipkart,

amazon, etc.

Page 35

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

To make the app more interactive, I have created some basic intents which is often very likely to occur

depending on the user’s behaviour. They are:

1. Greet

2. BidBye

3. ThanksGiving

4. Help

Greet: This intent is used to greet the user with some randomly generated responses so that the user

feels like he/she is having a conversation with another human.

Bidbye: This intent is used to bid bye to the user when the user wants nothing more from the bot. Its

purpose is the same as the intent Greet.

ThanksGiving: This intent is used to welcome the user when the user shows gratitude to the bot.

Here, also some randomly generated responses come into play. Purpose is same as Greet and Bidbye.

Help: This intent is used to help the user at any time to remind them of what the bot can do and its

limitations.

None: This is the default intent. It is triggered whenever the user utterances do not match with any

other intents.

4. Entities
I have created four entities. They are:

1. BookingOption

2. PasswordOption

3. ShoppingSite

4. Software

 BookingOption: It is the object the user wants to book tickets for.

Values: Movie, Flight, and Railway.

 PasswordOption: It is the platform in which the password needs to be changed.

Values: Gmail account, Facebook account, Github, Skype, System, etc.

 ShoppingSite: It is the shopping site in which the user wants to shop.

Values: flipkart, amazon, myntra, jabong, etc.

 Software: It is the software the user wants to install.

Values: Google Chrome, Microsoft Visual Studio, etc.

Page 36

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

5. Utterances
There are plenty of utterances for each of the intents and these utterances have entities within them.

 Functional Intents

 Booking
There are plenty of utterances for this intent. The entity ‘BookingOption’ is used in the utterances. It

recognizes whether any user wants to book movie, flight, or railway tickets.

Page 37

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

 Installation
There are plenty of utterances for this intent. The entity ‘Software’ is used in the utterances to

recognize the name of the software the user wants.

 Passchange
There are plenty of utterances as well for this intent. The entity ‘PasswordOption’ is used in the

utterances to get the platform in which the user wants to change or reset the password.

Page 38

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

 Shopping
There are plenty of utterances for this intent as well. The entity ‘ShoppingSite’ is used in the utterances

to get the online shopping site in which the user wants to shop online.

 Non-functional Intents

 Greet
Some basic utterances are used in this intent. There is no entity for this intent.

Page 39

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

 BidBye
Some basic utterances are used in this intent. There is no entity for this intent.

 ThanksGiving
Some basic utterances are used in this intent. There is no entity for this intent.

 Help
Some basic utterances are used in this intent. There is no entity for this intent.

Page 40

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

 Default Intent

 None
This is the default intent. We do not have to add any utterances here. But sometimes, to improve

performance, some utterances can be added to this intent. The utterances should be completely

different from the utterances used in other intents and should not have any link with the app functions.

6. Adding Phrase lists
Phrase lists are added in any app to give the user permission to use different synonyms of the words

used in the utterances instead of the words themselves. This improves the app performance.

 Phrase lists
I have created some phrase lists. They are given below:

These phrases are interchangeable. So, if one uses any of these words instead of the word with which

the app is trained, then the same action will take place. So that’s how it makes our app more interactive

and responsive.

Page 41

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

7. Testing
Now, the app can be tested. In the upper right corner, there is a ‘Test’ Button to test the app. This is

shown below:

8. Publishing
In order to use the app, we have to publish it to a particular region. In the lower right side, there is a

URL, which contains the LUIS app ID and also the LUIS subscription key. This is shown below:

When we click on the URL, a page will be opened with a blank response page, which is the response

of the app without any query. The URL and the response are shown below:

Page 42

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

 URL
The URL is shown below:

 Response without query
The response without any query is shown below:

 {"query":null,"intents":[],"entities":[]}

The URL consists of an element named ‘q’, this stands for the query. We can enter any query to see

the generated response. This is shown below:

 Response with query
When any query is entered after the element ‘q’, then the response will change according to the

query. this is shown below:

{
 "query": "i want to install google chrome",
 "topScoringIntent": {
 "intent": "Installation",
 "score": 0.9596489
 },
 "intents": [
 {
 "intent": "Installation",
 "score": 0.9596489
 },
 {
 "intent": "Shopping",
 "score": 0.0127906939
 },
 {
 "intent": "Booking",
 "score": 0.0101504466
 },
 {
 "intent": "PassChange",
 "score": 0.00532666361
 },
 {
 "intent": "BidBye",
 "score": 0.004148946
 },
 {
 “intent”: “None”,
 “score”: 0.00397643
 },
 {
 “intent”: “ThanksGiving”,
 “score”: 0.00257727085
 },
 {
 “intent”: “Help”,
 “score”: 0.002468674
 },
 {
 “intent”: “Greet”,
 “score”: 0.000668771158
 }
],

https://westus.api.cognitive.microsoft.com/luis/v2.0/apps/4f2b93f7-9c6a-4e65-a70c-23f8c151aa8b
?subscription-key= 9a353943d75b4e5689cd9a2dc3ab50c8 &verbose=true&timezoneOffset=0&q=

https://westus.api.cognitive.microsoft.com/luis/v2.0/apps/4f2b93f7-9c6a-4e65-a70c-23f8c151aa8b%20?subscription-key=%209a353943d75b4e5689cd9a2dc3ab50c8%20&verbose=true&timezoneOffset=0&q=
https://westus.api.cognitive.microsoft.com/luis/v2.0/apps/4f2b93f7-9c6a-4e65-a70c-23f8c151aa8b%20?subscription-key=%209a353943d75b4e5689cd9a2dc3ab50c8%20&verbose=true&timezoneOffset=0&q=

Page 43

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

 “entities”: [
 {
 “entity”: “google chrome”,
 “type”: “Software”,
 “startIndex”: 18,
 “endIndex”: 30,
 “score”: 0.93492496
 }
]
}

As it is seen from the above example that the top scoring intent and the top scoring entity is present in

the list at the top most position, so that particular intent and entity are triggered against the entered

query without any doubt.

End of chapter

Page 44

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

CHAPTER - 6
App Responses

We will now see the bot running in action. In order to run it, we have to use the Bot Framework

Emulator and give the corresponding Microsoft App Id and Microsoft App Password and click on

‘Connect’.

After clicking the ‘Connect’ button, we can start our chatting. If one wants to give input through

speech, the he/she needs to press the speech icon located in the lower-right side of the emulator and

then simply say whatever he/she wants, the speech will automatically be translated to text and will be

displayed in the box as it is while giving normal text input.

Page 45

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

1. Intents extraction
In this case, there will be no entities in the user entered utterances.

 Booking
For this intent, the bot will ask the user what ticket he/she wants.

As it is seen, the bot asks the user to select one option, and when the user selects one option, the

corresponding link is displayed and after clicking on the link, we can go and do our job.

Page 46

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

 Shopping
For this intent, the bot will ask the user which portal he/she is looking for.

As it is seen, the bot asks to choose an option and when the user chooses one option, the corresponding

link is opened and after clicking on the link, the link is opened.

Page 47

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

 PassChange
For this intent, the bot will ask the user which platform he/she wants to change the password of.

As it is seen the user asks the user to choose one option, and when the user chooses one option, the

corresponding information is shown to the user.

Page 48

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

 Installation
For this intent, the bot will ask the user which software he/she wants to install.

As it is seen the bot asks the user to select one option, and when the user selects one option, the

corresponding search link is given, after clicking on this link, the user can download the required

software.

Page 49

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

2. Intents and Entities extraction
In this case, there will be entities in the user entered utterances.

 Booking

As it is seen that the word ‘movie’ is recognized as an entity. So the bot extracts that intent and

directly shows the link without asking the options.

 Shopping

As it is seen the word ‘flipkart’ is recognized as an entity. So the bot extracts it and directly shows

the link.

Page 50

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

 PassChange

As it is seen that the word ‘system’ is recognized as an entity. So the bot extracts the entity and

directly show the information corresponding to it.

 Installation

As it is seen that the word ‘microsoft office’ is recognized as an entity. So the bot extracts it and

shows the link.

End of chapter

Page 51

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

CONCLUSIONS

 Why is now the time of the chatbots?
In early 2015, people started using messaging applications more than they use social networks.

This is a significant shift and a huge turning point in how consumers consume information. Up until

2015, to market a business online, one would use social networks – as this is where his/her consumers

were. Now, there is a better place to concentrate resources (Tweet this).

Businesses that seize opportunity are the ones that follow consumers the fastest.

Think back to 5 or so year ago.

“There’s an app for that” – said everyone.

Now it is probably too late for a business to create an app, similar functionality can probably be better

delivered elsewhere. I certainly do not think any sane person would form an app-building start-up.

It is not just consumer trends.

Another contributing factor is the commercial opportunity, and therefore, interest from large (wealthy)

companies. The platforms that enable the delivery of chatbot experiences are opening up to larger

audiences and more innovative ways of creating an ROI and user interaction are being rapidly

developed.

It is the culmination of the consumer behaviour (moving to messaging apps) and the technology being

ready, along with a greater cultural shift in consumer behaviour.

People have been using messaging apps (and SMS) to talk with friends and family for long enough to

feel confident in using the same practices to communicate with a business. This coincides with

businesses now having the tools and technology to effectively communicate through the apps in a way

consumers require.

 Are chatbots the future?
A question definitely comes in this context, that is “Are chatbots the future?”.

Well the answer depends on the Organization requirements. Many organizations use bots instead of

humans as they are faster and more responsive than humans, but to be honest a bot can never replace

humans in all aspects because they run through programs, and no matter how good the code is, there

will always be some flaw in the code as we can never achieve perfect machine learning.

Chatbot technology will adapt to us and creating personal chatbots will be as easy as changing the

settings on one’s Facebook account, or adding an inbox filter to one’s email. It will know one’s

surroundings, his/her personal history, his/her culture and language. It will become useful in ways we

cannot yet comprehend or imagine.

http://www.businessinsider.com/the-messaging-app-report-2015-11?IR=T?utm_source=ubisend.com&utm_medium=blog-link&utm_campaign=ubisend

Page 52

CHAT BOT USING NATURAL LANGUAGE UNDERSTANDING

REFERENCES

[1] ABSTRACT:

 https://chatbotslife.com/a-chatbot-abstract-1cd002e7a480

[2] INTRODUCTION:

 https://blog.ubisend.com/discover-chatbots/what-is-a-chatbot-introduction

[3] Chapter - 1: Creating and testing Bots (Azure Bot Service Documentation):

 https://docs.microsoft.com/en-us/azure/bot service/?view=azure-bot-service-3.0

[4] Chapter - 2: Language Understanding (LUIS) (LUIS Service Documentation):

 https://docs.microsoft.com/en-us/azure/cognitive-services/LUIS/Home

[5] Chapter - 3: Key concepts in Bot Builder SDK:

 https://docs.microsoft.com/en-us/azure/bot-service/dotnet/bot-builder-dotnet-concepts?view=azure-bot-service-3.0

[6] CONCLUSIONS:

 https://blog.ubisend.com/discover-chatbots/what-is-a-chatbot-introduction

[7] C# tutorial:

 https://www.tutorialspoint.com/csharp/index.htm

[8] C# fundamentals:

 Svetlin Nakov, Veselin Kolev & Co. FUNDAMENTALS OF COMPUTER PROGRAMMING WITH C#

 Andrew Stellman, Head First C#

[9] Bot repositories:

 https://github.com

 https://bitbucket.org

https://blog.ubisend.com/discover-chatbots/what-is-a-chatbot-introduction
https://docs.microsoft.com/en-us/azure/bot%20service/?view=azure-bot-service-3.0
https://docs.microsoft.com/en-us/azure/cognitive-services/LUIS/Home
https://docs.microsoft.com/en-us/azure/bot-service/dotnet/bot-builder-dotnet-concepts?view=azure-bot-service-3.0
https://blog.ubisend.com/discover-chatbots/what-is-a-chatbot-introduction
https://www.tutorialspoint.com/csharp/index.htm
https://github.com/

	1. What are chatbots?
	2. The history of chatbots
	3. How do chatbots work?
	4. The potential of chatbots
	1.1. Log in to Azure
	Log in to the Azure portal. https://portal.azure.com
	1.2. Create a new bot service
	1. Click the New button found on the upper left-hand corner of the Azure portal, then select AI + Cognitive Services > Web App bot.
	1.3. Test the bot
	Now that the bot is created, test it in Web Chat. Enter a message and the bot should respond.
	1.4. Bot settings overview
	In the Overview blade, the user can find high level information about his/her bot. For example, the
	user can see his/her bot's Subscription ID, pricing tier, and Messaging endpoint.
	1.5. Bot management
	The user can find most of his/her bot's management options under the BOT MANAGEMENT section. Below is a list of options to help the user manage his/her bot:
	2. App service settings
	The Application Settings blade contains detailed information about the bot, such as the bot's environment, ID, Application Insights key, Microsoft App ID, and Microsoft App password.
	2.1. MicrosoftAppID and MicrosoftAppPassword

	2.2. Edit a bot with online code editor
	The user can use the online code editor to build the bot without needing an IDE. This topic will show how to open the bot code in the online code editor.
	 Web App Bot
	 Functions Bot

	3. Create a Bot with the Bot Builder SDK for .NET
	3.1. Prerequisites
	3.2. Create the bot
	First, the Post method within Controllers\MessagesController.cs receives the message from the user and invokes the root dialog.
	3.5. Test the bot
	3.6. Start the bot
	3.7. Start the emulator and connect the bot
	3.8. Test the bot code result

	1. What is a LUIS app?
	1.1. Key LUIS concepts
	1.2. Accessing LUIS
	1.3. Author the LUIS model
	1.4. Identify Entities
	Entity identification determines how successfully the end user gets the correct answer. LUIS provides several ways to identify and categorize entities.

	1.5. Improve performance

	2.1. Simple app with intents
	 What has this LUIS app accomplished?
	 Where is this LUIS data used?

	3.1. Simple app with intents and a simple entity
	This simple app has two intents and one entity . This app demonstrates how to pull data out of an utterance. In the utterance, Send a message telling them to stop, the intent (primary data) is to send a message and the simple entity (secondary data) i...
	3.2. Create a new app
	 Create a new intent
	 Add utterances to None intent
	 Create a simple entity to extract message
	 Train the LUIS app
	 Publish the app to get the endpoint URL
	 Query the endpoint with a different utterance
	 What has this LUIS app accomplished?
	2. Activity
	3. Dialog
	4. FormFlow
	5. State
	6. Naming conventions

	7. Messages and Activities
	7.1. Activities overview
	 Activity types in the Bot Builder SDK for .NET

	7.2. Add speech to messages
	 Specify text to be spoken by the bot
	 IMessageActivity.Speak
	 IDialogContext.SayAsync()
	 Prompt options

	 Speech Synthesis Markup Language (SSML)
	 Input hints

	7.3. Add input hints to messages
	By specifying an input hint for a message, one can indicate whether his/her bot is accepting, expecting, or ignoring user input after the message is delivered to the client. For many channels, this enables clients to set the state of user input contro...
	 Accepting input
	 Expecting input
	 Ignoring input
	 Default values for input hint

	8.1. Dialogs in the Bot Builder SDK for .NET
	 MessagesController.cs
	 Implementation details

	 Manage conversation flow with dialogs
	 Invoke the root dialog
	 Invoke the 'New Order' dialog
	 Dialog lifecycle

	 Global message handlers using scorables
	Users attempt to access certain functionality within a bot by using words like "help," "cancel," or "start over" in the middle of a conversation when the bot is expecting a different response. One can design the bot to gracefully handle such requests ...
	 Create a scorable dialog
	 Create a module to register the IScorable service
	 Register the module
	 Why is now the time of the chatbots?

