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ABSTRACT

KEYWORDS: Universal Search; Reinforcement Learning; Positive and Negative

Reward; Graph Programming Language; Metasearcher Algorithm;

Probability; Message Passing Interface (MPI); Cart-pole Problem

solver.

We have designed a universal search-based problem solver using Graph Programming

for problems where for a given problem statement in the problem space, we can find out

the best probable and optimized method to reach the destination or goal state. For this

work, we have used levin’s search approach. Functional Graph Programming Language

is designed previously with some basic features. Here, in this work, we have introduced

some new functional inputs to implement some balancing problems (i.e. cartpole problem

in our case). To train the model we have used Reinforcement learning to help the agent

learn by trial and error method awarding positive reward for correct evaluation and

negative reward for wrong finding. The incremental learning concept is introduced to

update the program probability of each subgraph to utilize the reward concept. We have

also worked on stand alone machine as well as in distributed environment environment

to check it’s effectiveness in master slave architecture.We have used MPI (Message

Passing Interface) to approach the distributed environment so the performance could get

enhanced and achieved better time bound results in distributed methodology.
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CHAPTER 1

Introduction

Universal or Levin Search is an algorithm for solving inversion problems in asymp-

totically optimal way. Universal Search is the asymptotically fastest way of finding

a program that calculates a solution to a given problem, provided nothing is known

about the problem except that there is a fast way of verifying solutions (Schaul and

Schmidhuber, 2010). The algorithm has the property that the total time taken to find a

solution is O(t∗), where t∗ is the time used by fastest program p∗ to compute the solution.

The search time of the whole process is at most a constant factor larger than t∗; typically

this depends on the encoding length of p∗. The algorithm itself is very simple: It consists

in running all possible programs in parallel, such that the fraction of time allocated to

program p is 2−l(p), where l(p) is the size of the program.

AI problem can be entitled to a resource bounded prediction problem. In order to

maximize future expected rewards, the agent has to predict optimal actions in a given

environment (Paul and Bhaumik, communicated), (Legg and Hutter, 2007). Universal

search if combined with reinforcement learning can create an effective learning mecha-

nism for an agent. It guarantees asymptotic optimality in finding models for generating

optimal sequence of actions proportionate to rewards gained in a certain environment.

Reinforcement learning is about taking suitable action to maximize reward in a particular

situation. It is employed by various software and machines to find the best possible

path it should take in a specific situation. Incremental learning is a machine learning

paradigm where the learning process takes place whenever new example(s) or new

attribute(s) merge or must be deleted from dataset and the solutions already obtained are

only modified.

In case of universal search, to diminish the exponential factor the guiding probability

distribution in the sense mentioned by (Solomonoff, 2010) needs to be stored and

updated properly. Keeping this objective in mind a Functional Graph Programming

Language (FGPL) is designed, based on dataflow graph to be used by universal search for

solution program generation. Generated source code is represented as directed acyclic



computational graph. Representing program as a dataflow graph helps devising better

transfer learning process for transferring more meaningful information from one task to

another thereby reducing the complexity of subsequent related tasks.

There have been several dataflow graph based languages already developed for

practical purposes. One can follow the survey article by Johnston et. al. (Johnston et.

al. 2004) for a comparative study on many such languages. However most of these

languages were developed either with the intention of achieving implicit parallelization

of code or allowing programmer to graphically construct a program with ease or both.

For application in universal search we identified the necessity of following features in a

language. A language where programs can generate another program dynamically which

can be reused multiple times and called recursively. A language where programs can be

auto generated and stored by another application with ease and it is not expected that a

human coder will frequently write a program in this language. A simple but powerful

syntax to construct programs such that constructing every syntactically correct program

should be straightforward and generation of syntactically incorrect programs can be

easily avoided. But at the same time the language should be expressive enough to act

on wide variety of environments. A simple but powerful syntax to construct programs

such that constructing every syntactically correct program should be straightforward and

generation of syntactically incorrect programs can be easily avoided. But at the same

time the language should be expressive enough to act on wide variety of environments.

Reasoning about the programs can be done without much complications mainly to

handle the problem of over representation in the sense mentioned by Looks and (Looks

and Goertzel, 2009). The program constructs itself should have some added features like

storing and managing conditional probability distribution, interrupting programs based

on run time etc. To handle all these scenarios, a dataflow Functional Graph Programming

Language(FGPL) has been developed specifically to be used in universal search based

general problem solving agent. Hence featuring this FGPL to further levels and to test

invert pendulum problems such as cartpole problem by universal search based AI agent

or solver.
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CHAPTER 2

Literature Survey

Hutter’s HSearch algorithm combines Universal Search in program space with simultane-

ous search for proofs about time bounds on their runtime (Hutter, 2007). The algorithm

is asymptotically optimal, but replaces the multiplicative slowdown by an additive one.

It may be significantly faster than Universal Search for problems where the time taken

to verify solutions is nontrivial. The additive constant depends on the problem class,

however, and may still be huge. A way to dramatically reduce such constants in some

cases is a universal problem solver called the Godel Machine.

Functional programming paradigm eliminates usage of variables and mutable data,

thus preventing side effects. Bird and Wadler (Bird et al., 1998) provided a good intro-

duction to functional programming. In this paradigm every program is represented as

a composition of functions. Functions without side effect are much easier to compose,

evaluate and reason about. Due to explicit composition instead of implicit commu-

nication among functions every description of communication among functions is a

part of the program created which helps is easier composition of semantically correct

programs. In generate and test method where same functions might need to be reused

in multiple programs or multiple times in a same program, evaluation becomes easier

due to referential transparency where the function can be directly replaced by its output

value for same inputs. Implicit parallelism can be achieved among independent func-

tions. Unlike imperative programming, functional programming does not deal with state

transitions (Wadler, 1995). It is more like a declarative style of programming and works

by evaluating functions on arguments which often produces shorter codes compared

to imperative counterpart. This is clearly beneficial in universal search where problem

complexity is considered as proportional to solution size.



2.1 Related Concept

2.1.1 Universal Search

Universal search is devised by Leonid A. Levin (1973,1984)(Levin, 1973) related to

Levin Complexity, a computable, time bounded version of algorithmic complexity.

If there exists a program p, of length l(p) , that can solve the problem in time(p),

Universal Search will solve the problem in a time 2l(p)+1 + time(p) at most. This

exponential growth of computational cost in the algorithmic complexity l(p) of the

fastest solver makes practical applications of Universal Search problematic.

2.1.2 Algorithmic information theory (AIT)

It is the information theory of individual objects, using computer science, and concerns

itself with the relationship between computation, information, and randomness. The

information content or complexity of an object can be measured by the length of its

shortest description (Hutter, 2007).

“010101010101010101010101010101” is a string which has a short description of

“15 repetitions of 01” but “1100100001100001110111101110” has no such short descrip-

tion.

2.1.3 Algorithmic Kolmogorov Complexity (AC)

The Algorithmic “Kolmogorov” Complexity (AC) of a string is defined as the length of

the shortest program that computes or outputs where the program is run on some fixed

reference universal computer.

Kolmogorov defined the complexity of a string x as the length of its shortest descrip-

tion p on a universal Turing machine U

K(x) = min{l(p) : U(p) = x} (2.1)

A string is simple if it can be described by a short program, like “the string of one million

4



ones”, and is complex if there is no such short description, like for a random string

whose shortest description is specifying it bit-by-bit.

Kolmogorov complexity is a key concept in (algorithmic) information theory (Li and

Vitányi, 2013). An important property of K is that it is nearly independent of the choice

of U .

2.1.4 Algorithmic Solomonoff Probability (AP)

Solomonoff (1964) considered the probability that a universal computer outputs some

string when fed with a program chosen at random. This Algorithmic “Solomonoff”

Probability (AP) is key in addressing the old philosophical problem of induction in a

formal way. It is based on

• Occam’s razor (choose the simplest model consistent with the data),

• Epicurus’ principle of multiple explanations (keep all explanations consistent with
the data),

• Bayes’s Rule (transform the a priori distribution to a posterior distribution accord-
ing to the evidence, experimentally obtained data),

• Universal Turing machines (to compute, quantify and assign codes to all quantities
of interest), and

• Algorithmic complexity (to define what simplicity / complexity means).

Solomonoff defined the closely related universal a priori probability M(x) as the

probability that the output of a universal Turing machine U starts with x when provided

with fair coin flips on the input tape (Solomonoff, 1989). M can be used as a universal

sequence predictor that outperforms (in a certain sense) all other predictors.

2.1.5 Levin Complexity

Levin complexity of a string s can be defined as the minimum value of the sum of the

length of the program p that computes s and the logarithm of it’s runtime. We can test it

using Turing machine U . Levin complexity is useful for some programs which might

not halt and process might never get completed.

KtU(s) = min{|p|+ log t(p, s) : fU(p)=s} (2.2)

5



We can start testing all programs starting from lowest Levin complexity. This means

testing all programs with decreasing program probability. To have a time bound solution

even if some programs don’t halt they can be pre-empted when their run time exceeds

their time bound complexity measure. Total search time for a solution program p is

bounded by 2Kt(s) = 2|p|t(p, s).

2.1.6 Universal prefix Turing machine

A prefix Turing machine is one unidirectional input tape (read only), one unidirectional

output tape (write only), and some bidirectional work tapes (initially filled with zeros).

Turing machine T halts on input p with output x, and write T (p) = x if p is to the

left of the input head and x is to the left of the output head after T halts. The set of p

on which T halts forms a prefix code. Such codes p are called self-delimiting programs.

There exists a universal prefix Turing machine U which simulates prefix Turing machine

Ti with input y′q if fed with input y′i′q, i.e.

U(y′i′q) = Ti(y
′q) ∀i, q (2.3)

where, x′ = 〈x〉 is a prefix code of x with l(x′) ≤ l(x) + 2 log l(x) +O(1),

U is the reference universal Turing machine,

prefix Kolmogorov complexity is defined as the shortest program p, for which the

universal prefix Turing machine U outputs x (given y)

K(x) := min{l(p) : U(p) = x} (2.4)

and

K(x|y) := min{l(p) : U(y′p) = x} (2.5)

2.1.7 Reinforcement Learning

Reinforcement learning is based on how to map situations to actions to maximize a

numerical reward signal. The learner is not told which actions to take, but instead must

discover which actions will gather them most rewards. The important part is actions

6



may affect not only the immediate reward but also the next situation and all subsequent

rewards.

Figure 2.1: Interaction between agent and environment in Reinforcement Learning.

• A learning agent must be able to sense the state of its environment to some extent
and must be able to take actions that affect the state. The agent also must have a
goal or goals relating to the state of the environment. Markov decision processes
are intended to include just the three aspects sensation, action, and goal in their
simplest possible forms without trivializing any of them. Any method that is
well suited to solving such problems we consider to be a reinforcement learning
method.

• Trial-and-error search and delayed reward are the two most important distin-
guishing features of reinforcement learning.

• Reinforcement learning takes the opposite tack, starting with a complete, inter-
active, goal-seeking agent. All reinforcement learning agents have explicit goals,
can sense aspects of their environments, and can choose actions to influence their
environments. Moreover, it is usually assumed from the beginning that the agent
has to operate despite significant uncertainty about the environment it faces.

• Reinforcement learning is part of a decades long trend within artificial intelligence
and machine learning toward greater integration with statistics, optimization,
and other mathematical subjects. For example, the ability of some reinforce-
ment learning methods to learn with parameterized approximators addresses the
classical “curse of dimensionality” in operations research and control theory.

• Formalizing the problem of reinforcement learning using ideas from dynamic deci-
sion systems theory known as Markov decision process (MDP). The environment
is typically formulated as a Markov decision process (MDP). The main difference
between the classical dynamic programming methods and reinforcement learning
algorithms is that the latter do not assume knowledge of an exact mathematical
model of the MDP and they target large MDPs where exact methods become
infeasible.

7



Figure 2.2: Supervised, Unsupervised and Reinforcement Learning.

• Reinforcement learning is considered as one of three machine learning paradigms,
alongside supervised and unsupervised learning (refer fig. 2.2).

Examples of Reinforcement Learning

A good way to understand reinforcement learning is to consider some of the examples

and possible applications that have guided its development.

• A master chess player makes a move. The choice is informed both by plan-
ning, anticipating possible replies and counter replies and by immediate, intuitive
judgements of the desirability particular positions and moves (Sutton et al., 1998).

• An adaptive controller adjusts parameters of a petroleum refinery’s operation in
real time. The controller optimizes the yield/cost/quality trade-off on the basis
of specified marginal costs without sticking strictly to the set points originally
suggested by engineers.

• A gazelle calf struggles to its feet minutes after being born. Half an hour later it is
running at 20 miles per hour.

• A mobile robot decides whether it should enter a new room in search of more trash
to collect or start trying to find its way back to its battery recharging station. It
makes its decision based on the current charge level of its battery and how quickly
and easily it has been able to find the recharger in the past.

Types of Reinforcement: Positive and Negative

Positive Reinforcement is defined as when an event, occurs due to a particular behaviour,

increases the strength and the frequency of the behaviour or it has a positive effect on

the behaviour.

Negative Reinforcement is defined as strengthening of a behaviour because a negative

condition is stopped or avoided.

8



Positive Reinforcement
Learning

Negative Reinforcement
Learning

Advantages
• Maximizes Performance

• Sustain Change for a long
period of time

• Increases behaviour

• Provide defiance to min-
imum standard of perfor-
mance

Disadvantages Too much Reinforcement can
lead to overload of states which
can diminish the results.

It only provides enough to meet
up the minimum behaviour.

Monte Carlo vs TD Learning methods

We have two ways of learning:

Monte Carlo Learning: When the episode ends (the agent reaches a “terminal state”),

the agent looks at the total cumulative reward to see how well it did. Rewards are only

received at the end of the game. Then, we start a new game with the added knowledge.

The agent makes better decisions with each iteration.

Temporal Difference (TD) Learning :Learning at each time step. TD Learning, on the

other hand, will not wait until the end of the episode to update the maximum expected

future reward estimation: it will update its value estimation V for the non-terminal states

St occurring at that experience. This method is called TD(0) or one step TD (update the

value function after any individual step). TD methods only wait until the next time step

to update the value estimates. At time t+ 1 they immediately form a TD target using the

observed reward Rt + 1 and the current estimate V (St + 1).

Deep Reinforcement Learning

Deep Reinforcement Learning introduces deep neural networks to solve Reinforcement

Learning problems, hence the name “deep”.

Various Practical applications of Reinforcement Learning

1. RL can be used in robotics for industrial automation.

2. RL can be used in machine learning and data processing.

3. RL can be used to create training systems that provide custom instruction and
materials according to the requirement of students.

9



2.1.8 Cartpole Problem

Cartpole, known also as an Inverted Pendulum, is a pendulum with a center of gravity

above its pivot point. It’s unstable, but can be controlled by moving the pivot point under

the center of mass. The goal is to keep the cartpole balanced by applying appropriate

forces to a pivot point. A pole is attached by an un-actuated joint to a cart, which moves

Figure 2.3: Cartpole schematic drawing. Violet square indicates a pivot point. Red and
green arrows show possible horizontal forces that can be applied to a pivot
point.

along a frictionless track. The system is controlled by applying a force of +1 or −1 to

the cart. The pendulum starts upright, and the goal is to prevent it from falling over. A

reward of +1 is provided for every time-step that the pole remains upright. The episode

ends when the pole is more than 15 degrees from vertical, or the cart moves more than

2.4 units from the center (Chan, 2016).

• The Cart-Pole world consists of a cart that moves along the horizontal axis and
a pole that is anchored on the cart. At every time step, you can observe its
position (x), velocity (xdot), angle (θ), and angular velocity (θdot). These are
the observable states of this world. At any state, the cart only has two possible
actions: move to the left or move to the right.

• In other words, the state-space of the Cart-Pole has four dimensions of continuous
values and the action-space has one dimension of two discrete values.

• In this environment, a reward is given as long as the pole is still somewhat upright
and the cart is still within the bound. An episode is over as soon as the pole falls
beyond a certain angle or the cart strays too far off to the left or right. The problem
is considered “solved” when it stays upright for over 195 time steps, 100 times
consecutively.
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Finding the optimal policy

A policy is simply the action that can be taken at a given state. Here, to find the policy

that can maximize reward or wanting to find the optimal policy for each possible state.

Q-Learning is a method of finding these optimal policies. Essentially, through trials-

and-errors, we can find a Q-value for each state-action pair. This Q-value represents

the desirability of an action given the current state. Over time, if the world is static, the

Q-values would converge and the optimal policy of a given state would be the action

with the largest Q-value.

Figure 2.4: Block diagram of Q∗ learning and Deep Q∗ learning.

2.1.9 Functional Graph Programming Language (FGPL)

One aspect of intelligence is, how well an agent can dampen the exponential factor

in the course of time by achieving experience on solving set of related problems in a

problem class (Erwig, 2001). In case of universal search, to dampen the exponential

factor the guiding probability distribution in the sense mentioned by R.J Solomonoff

(2010) needs to be stored and update properly. Effective reuse of previous successful

solutions as a whole or by part and pruning functionally equivalent programs can also

help in dampening the search space and thus the search time. Keeping this objective in

mind a FGPL is designed previously based on dataflow graph to be used by universal

search for solution program generation. We are working on it’s framework to add some

more features as per need to solve various problem statements in the problem domain

effectively.

11



Why FGPL?

There have been several dataflow graph based languages already developed for practical

purposes. There is the survey article by Johnston et. al. (Johnston et. al. 2004)

for a comparative study on many such languages. However most of these languages

were developed either with the intention of achieving implicit parallelization of code

or allowing programmer to graphically construct a program with ease or both. For

application in universal search we identified the necessity of following features in a

language.

• A language where programs can generate another program dynamically which can
be reused multiple times and called recursively.

• A language where programs can be autogenerated and stored by another applica-
tion and it is not expected that a human coder will frequently write a program in
this language.

• A simple but powerful syntax to construct programs such that constructing ev-
ery syntactically correct program should be straightforward and generation of
syntactically incorrect programs can be easily avoided.

• The language should be expressive enough to act on wide variety of environments.
Reasoning about the programs can be done without much complications mainly to
handle the problem of over representation.

• The program constructs itself should have some added features like storing and
managing conditional probability distribution, interrupting programs based on run
time etc.

Functional programming paradigm eliminates usage of variables and mutable

data, prevents side effects. Bird and Wadler (Bird et al., 1998) provided a good

introduction to functional programming. In this paradigm every program is represented

as a composition of functions. Functions without side effect are much easier to compose,

evaluate and reason about.

Due to explicit composition instead of implicit communication among functions

every description of communication among functions is a part of the program created

which helps is easier composition of semantically correct programs.

In generate and test method where same functions might need to be reused in

multiple programs or multiple times in a same program, evaluation becomes easier due

to referential transparency where the function can be directly replaced by its output

value for same inputs.
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Implicit parallelism can be achieved among independent functions. Unlike imper-

ative programming, functional programming does not deal with state transitions. It is

more like a declarative style of programming and works by evaluating functions on

arguments which often produces shorter codes compared to imperative counterpart (Hu

et. al. 2015). This is clearly beneficial in universal search where problem complexity is

considered as proportional to solution size.

To implement universal search a metasearcher can be created which generates

and tests program in the newly proposed language FGPL. It searches for a solution

program for a given problem environment in the program space. To dampen the

growth rate of search space, type compatibility checking is done before extension of a

program and program pruning is applied based on functional equivalence of programs.

2.1.10 Message Passing Interface (MPI) for Distributed

environment

Message passing is a programming paradigm used widely on parallel computer architec-

tures and networks of workstations. One of the attractions of the paradigm is that it will

not be made obsolete by architectures combining the shared- and distributed-memory

views, or by increases in network speeds.

Why MPI?

We have trained a model providing some small goals to check their time taken to reach

by trial and error method in an individual machine. Now for huge dataset or problem

statement we need to try distributed environment engaging master slave architecture to

reduce time and improve performance.

MPI Basics

Although MPI is a complex and multifaceted system, we can solve a wide range of

problems using just six of its functions, which initiate and terminate a computation,

identify processes, and send and receive messages:

MPI_INIT(): Initiate an MPI computation.

MPI_FINALIZE(): Terminate and shut down a computation.

MPI_COMM_SIZE(comm,size): Determine number of processes in a computation.
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MPI_COMM_RANK(comm, pid): Determine the process identifier of the current

process.

MPI_SEND(buf, count, datatype, dest, tag, comm): Send a message.

MPI_RECV(buf, count, datatype, source, tag, comm, status): Re-

ceive a message.

MPI Python implementations include: pyMPI, mpi4py, pypar, MYMPI and the MPI

submodule in ScientificPython. pyMPI is notable because it is a variant python interpreter,

while pypar, MYMPI, and ScientificPython’s module are import modules. They make it

the coder’s job to decide where the call to MPI_INIT belongs.

2.2 Related Work

The Optimal Ordered Problem Solver (OOPS) incrementally searches a space of pro-

grams that may reuse programs solving previously encountered problems. OOPS was

able to learn universal solvers for the Tower of Hanoi puzzle in a relatively short time, a

problem that the other learning algorithms have repeatedly failed to solve. In a probabilis-

tic variant of Universal Search called Probabilistic Search uses a language with a small

but general instruction set to generate neural networks with exceptional generalization

properties.

Levin search has optimal order of complexity (total search time equals to the time to

execute and verify the solution multiplied by a constant factor) yet the constant factor

associated with it is exponential in nature with respect to solution size. Thus Levin

search is practically effective only if there is a shorter implementation of the solution is

available (Paul and Bhaumik, 2016). Hutter search (Hutter, 2002) combines Universal

search in program space (solution implementation) with simultaneous search for proofs

and optimally distributes resources between execution of provably correct programs and

enumeration of all proofs. It has been able to reduce the constant multiplicative factor

drastically but introduced an additive constant which still may be a large one.

Schmidhuber made a practical implementation of a probabilistic version of Levin

search for the first time. The probabilistic search algorithm randomly generates programs

written in a general assembler-like programming language based on sequences of integers

(Schmidhuber, 2004). Each program computes a solution candidate which is tested on
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the training data. While generating and testing programs, candidates with low Levin

complexity are preferred over high Levin complexity. An incremental version of the

Levin search called as Adaptive Levin search uses experiences collected from solutions

of previous problems to adaptively modify Levin search by modifying underlying

probability distributions of solution programs. Whenever Levin search finds a solution

program for a given problem the probabilities of its corresponding instructions are

increased proportionately. Thereafter for subsequent related problems the Levin search

runs with the modified probability distribution. This is called as bias shifts or changes in

learner’s policy.

Making Universal Search Practical

The more domain knowledge we have, the more we can shape or restrict the space of

programs we need to search. Here we make Universal Search practically useful by devis-

ing a domain-specific language that encodes plausible (according to prior knowledge)

programs by relatively few bits, thus reducing the slowdown factor to an acceptable size.

Dropping assumptions

Universal Search makes a number of assumptions about the language L. We will keep

the assumption that L is a prefix-free binary code, and drop the following ones:

• L is Turing-complete.

• Every encoding corresponds to a valid program.

• L is infinite.

This does not mean that the opposites of those assumptions are true, only that they

are not necessarily true (L is still allowed to be infinite or Turing-complete). Thus, for

Practical Universal Search (PUnS), L can encode an arbitrary set of programs, all of

which can be domain-specific.

Marcus Hutter made a serious attempt in solving the problem of AGI by combining

Solomonoffs theory of universal induction and decision theory (Hutter M. 2003). Hutter’s

AIXI framework is a complete theoretical definition of an AI agent in the sense that

it can optimally act in any environment given infinite computational resources. A

reinforcement learning agent with some utility function can plan its actions to maximize

its future expected reward in an environment with known probability distribution. AIXI

can optimally deal with these environments by using Solomonoff’s universal prior
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probability as the distribution for environments. The problem of uncomputibility of the

Solomonoff’s prior was overcome by using a resource bounded version of it (bounded

by time t and space l). The modified framework is named as AIXItl whose computation

time is bounded by t · 2l .

Schmidhuber made an efficient practical implementation of universal search for

solving an ordered set of problems (Schmidhuber 2004) known as Optimal Ordered

Problem Solver(OOPS). It employs incremental learning and tries to reuse solutions

found in earlier problems to solve later problems and in the course of doing so it tries

to find the most general solution solving all the ordered set of tasks. For solving the

nth task, it uses half of the search time in extending and testing the previous successful

programs and other half in testing fresh programs with arbitrary beginnings. OOPS

was able to solve Towers of Hanoi with 30 disks which is unsolvable by traditional

reinforcement learners. OOPS can provide possible speedup for a series of related tasks

and not for a single task. It works in resettable environment only.

Godel machine (Schmidhuber 2003, 2007) is a self-referential, self-improving op-

timal problem solver originally proposed by Jurgen Schmidhuber. The system starts

with an initial problem-solving code which interacts with the environment and a proof

searcher. Employing a variant of universal search, the proof searcher searches for proofs

which states that a rewrite of the problem-solving code and/or the proof searcher itself is

beneficial in terms of some utility function. If such proofs are found the self-rewrite is

applied. A probable implementation roadmap was given using continuous passing style

(CPS) of programming and meta-circular evaluators (Thórisson et al., 2014).

To alleviate the problem of combinatorial explosion in program space for universal

search a conceptual program representation scheme was proposed by Moshe Looks and

Ben Goertzel (Looks and Goertzel, 2009). A normal form program representation was

presented with several transformation rules to alleviate the problem of over representation.

Maximizing correlation between syntactic and sematic distance among programs will

help minimizing chaotic execution and managing resource variance. It is claimed that the

proposed program representation and transformations increases the correlation between

syntactic and semantic distance.

Some of the difficulties in the design of graph algorithms can be overcome by using

a functional language. Burton and Yang (Burton and Yang, 1990) using a lazy functional
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language represent their graphs by heaps. The heaps are implemented with balanced

binary trees. The heaps are also used for holding visited markings on vertices, which

leads to having logarithmic time graph traversal. One drawback of this is that each

function must take a heap and return an updated heap. Kashiwagi and Wise (Kashiwagi

and Wise, 1991)’express their graph algorithms in Haskell. To overcome the problem of

requiring side effects they present graph algorithms as the fixed point of a set of recursive

equations. The recursive equations are derived directly from the formal specification of

the problem.

Dataflow graph based programming has been a major research topic around 70s.

A dataflow application is then a composition of processing blocks, with one or more

initial source blocks and one or more ending blocks, linked by a directed edge. SISAL

(Burns and Gaudiot, 2002), (Feo et al., 1990)) is a functional programming language

with Pascal like syntax and based on dataflow graph. Source codes are translated to

executable dataflow graphs with the intent of achieving implicit parallelism over multiple

parallel paths across the generated program graph. GPL (Graphical Programming

Language) (Davis et. al. 1981) was one of the earliest practical visual dataflow graph

based programming language where program can be designed directly as a graph. Each

node in the graph can be an atomic node or can be a subgraph. Prograph (Cox et.

al. 1989) is another graphical programming language based on dataflow graph and

object-oriented programming. The methods of objects are defined as dataflow diagrams

(Johnston et. al. 2004). Tensorflow (Abadi et. al. 2016) is a dataflow graph based

computation model which follows an imperative style of programming. It is being used

in machine learning research with a focus on training on deep neural networks. Its power

lies in parallelizing computation over multicore CPUs and general-purpose GPUs.
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CHAPTER 3

Background

3.1 Functional Graph Programming Language (FGPL)

Graphs are a fundamental data structure in computer science because a lot of problems

can be modelled with them. Graphs are used to model the relationships among a

collection of objects that provide a direct, intuitive and mathematically precise way of

describing complex structures. FGPL can be described as an accumulation of operators in

terms of nodes and edges to perform operations provided by the environment. The nodes

are primitive functions which needs to be connected through edges (another primitive

function) to employ the functionality of a DAG(directed acyclic graph).

3.1.1 Nodes in FGPL

The nodes are capable of storing composite functions(both conceptual data and computa-

tional information). Nodes can have fixed number of input and output ports. Function

of input data decides the order of input port. Each port consists of one connection only.

Multiple connection in a single port can’t be considered. Now these nodes create an

hierarchy of parent-child relationship by establishing proper connection.

Figure 3.1: Graphical representation of function f with 2 input arguments of type A and
B. Output type is C.



3.1.2 Edges in FGPL

An edge can be parameter causing connection between nodes in FGPL. In case of

directed graph, an edge transmits the data from source node to the destination node.

There is a condition for edge formation i.e. no self loop should get formed. The port type

signature is updated after execution of the node based on the type of the data available at

the port. Edges should be one directional and can be more than one between two nodes.

Figure 3.2: Representation of function composition of two functions in FGPL.

3.1.3 Integrating Monadic functions in FGPL

Interaction with the external environment always causes side effects. I/O monads allow

these side effects without any hamper. In universal search all generated programs will

start with an initial node which returns a “world” object and other I/O monads must

to interact with this external environment. Thus, every program eventually becomes a

monadic function. Every function in a program by default will be memorized and there

will be no necessity of referring to the memo table from an FGPL program. This will

not prevent side effect, but it will keep the side effect out of the FGPL program.

3.1.4 Data types of FGPL

There are 6 primitive types allowed in the system. Namely number, string, boolean, node,

graph and null. There are 3 compound types available in FGPL. Namely product, sum,

and function type.

Product Type

Product type is a created by ordered combination of other primitive or compound types.

Product type can be created by parallel combination of functions. In FGPL, Product type
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can be described as the dangling output edges having same or different functions with

same or different output types.

Figure 3.3: Construction of a product data type in FGPL.

Function Type

Function is a method which maps elements of a given type A to elements of type B

where A represents the domain and B represents the range type of the function. A

function of type f : A → B can be written as BA which denotes there can be BA

different maps from A to B. If input type of function f is A× B and output type is C.

Function type will be represented by the following notation. f : A×B → C or cA×B.

Sum Type

Sum type is represented by combining functions parallelly whose output type is same

but input type can be different. They can be joined together using a conditional function,

namely Gaurd. Figure 3.5 represents combination of A and B sum type.

Figure 3.4: Representation of a sum data type in FGPL.
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3.1.5 Functions of FGPL

1. initGraph: whole number→ graph. initGraph is the constructor of graph data
type in FGPL. This can initialize a program graph. InitGraph function is used to
label the newly created program graph.

evaluate(initGraph(a)) = {grapha|a /∈ A, undefined otherwise} (3.1)

where, grapha = empty graph with label a and A = set of all graphs.

2. addNode: (whole number, node, *whole number)→ graph. This function adds a
newly created node object in an existing program graph. It takes multiple argu-
ments. The first argument refers to an existing program graph to which the node
needs to be added. The second argument is a node object which needs to be added.
Rest of the arguments are optional and can be variable.

evaluate(addNode(a, node, ∗b)) = {graph′a|a ∈ G ∧ b ∈ Na,

undefined otherwise}
(3.2)

where, G = set of graph labels of all existing graphs, Na = set of node labels of
all nodes in grapha, grapha = graph identified by label a and graph′a = modified
graph after adding node in grapha.

3. Node: (whole number, string, {A})→node. The Node function creates a node
type which can be added into a program graph. It takes two mandatory arguments
and one optional argument.

evaluate(Node(a, f, {b}))
= {nodefa|a /∈ A ∧ f = ‘constant′ ∧ b ∈ AnyType,

nodefa|a /∈ A ∧ f ∈ {‘Sensor′, ‘Actuator′},
nodefa|a /∈ A ∧ f ∈ F ∧ b ∈ φ,
undefined otherwise}

(3.3)

4. getSubgraph: (whole number, whole number)→ graph. The function returns the
subgraph of a graph by starting from a node and recursively finds all parent nodes
until initial node is reached. It takes 2 arguments. The first argument denotes the
graph label and the second denotes the node label of a specific node in the graph.

evaluate(getSubgraph(a, b)) = {graphab|a ∈ a ∧ b ∈ aB,
undefined otherwise}

(3.4)

where, grapha,b =subgraph of grapha and terminal node label b, aB =set of all
node labels of grapha and A =set of all graph labels.

5. evalGraph: graph→ A. The evalGraph function executes terminal node in a pro-
gram graph. Due to lazy evaluation scheme once a specific node is executed it
calls its parents on data requirement which results in execution of its parent nodes.
This continues until the initial node is reached or data is already available in a
specific node.

evaluate
(
evalGraph(graphf )

)
= evaluate(graphf ) (3.5)
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3.1.6 I/O monads

• initWorld: null→(world). The initWorld function initializes an environment.
This function takes no input argument and returns an initial world object. Every
valid program graph should start with this node and this is used only once in a
program.

evaluate(initWorld) = (world) (3.6)

• SensorA : (world)→(A,world). The SensorA function reads some data from the
environment as world object. It takes world object and returns a specific type
modified world. The SensorA function sends read request to world object for
some data of type A. A Sensor node can be a child node of initWorld node or an
Actuator node only.

evaluate(SensorA ◦ f) = read(evaluate(f)) (3.7)

• ActuatorA : (A,world)→(world). The ActuatorA function takes a monadic type
with a specific type A with world object. Actuator sends a write request to
the world object to apply some action on the world object. Only a Sensor or a
Goalchecker node can be child node of an Actuator node.

evaluate(ActuatorA ◦ f) = write(evaluate(f)) (3.8)

• Goalchecker : (world)→(boolean,world). This function checks if the goal is
reached or not in the world object. The function takes world object and returns a
boolean type which will contain True if goal is reached else False.

evaluate(Goalchecker ◦ f) = checkgoal(evaluate(f)) (3.9)

3.1.7 First order node functions

• Identity : A→A. Identity is a primitive function which takes any type as input
and returns the same type as output. In FGPL, this functions is used where the
inputs of multiple function need to be joined.

Identity ◦ f = f ◦ Identity = f (3.10)

• Constanta : A→a. Constant function takes any type as input but returns a constant
value as output.

evaluate(Constanta ◦ f) = (a, evaluate(f)[world]) (3.11)
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• Add : number×number→number. Add is a primitive function which takes a prod-
uct type of two numbers as input and produces a number type as output. It performs
addition on inputs and gives the result as output. Equivalence rules are stated
as below where best_version denotes the world object with highest local version
number.

evaluate(Add ◦ (f × g))
= (plus(evaluate(f)[data], evaluate(g)[data]),

best_version(evaluate(g)[world], evaluate(f)[world]))
(3.12)

• Subtract : number×number→number. Subtract function takes product type of
two numbers and returns a number type as output. It subtracts the second number
in the product type from the first number.

evaluate(Subtract ◦ (f × g))
= (minus(evaluate(f)[data], evaluate(g)[data]),

best_version(evaluate(g)[world], evaluate(f)[world]))
(3.13)

• Multiply : number×number→number. Multiply function takes product type of
two numbers and returns a number type as output. This operate as multiplication
operation on two input numbers.

evaluate(Multiply ◦ (f × g))
= (multiply(evaluate(f)[data], evaluate(g)[data]),

best_version(evaluate(g)[world], evaluate(f)[world]))
(3.14)

• Divide : number×number→number. Divide function takes product type of two
numbers and returns a number type as output. It divides the second number in the
product type from the first number.

evaluate(Divide ◦ (f × g))
= (divide(evaluate(f)[data], evaluate(g)[data]),

best_version(evaluate(g)[world], evaluate(f)[world]))
(3.15)

• Gaurd : boolean×A×A→A. The Gaurd function, a conditional function in
FGPL, takes a polymorphic product type of three elements as input. The first
element must be a boolean and other two can be of any type, but they should be of
same type so as the output type. If the boolean value is True it passes the second
element else passes the third element.

evaluate
(
gaurd ◦ (f × g × h)

)
= evaluate

(
(g + h) ◦ f

)
=


(
g′[data], best_version(f ′[world], g′[world]|f ′[data])

)
= True(

h′[data], best_version(f ′[world], h′[world]|f ′[data])
)
= False

(3.16)

where, g′ = evaluate(g), h′ = evaluate(h) and f ′ = evaluate(f).
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• Equal : AnyType×AnyType→boolean. Equal takes a polymorphic product type
of two elements as input(any type) and returns a boolean type as output. It returns
either True or False.

evaluate(equal ◦ (f × g))
= (equal(evaluate(f)[data], evaluate(g)[data]),

best_version(evaluate(g)[world], evaluate(f)[world]))
(3.17)

• Greater : number×number→boolean. Greater function takes a product type of
numbers as input and returns True if the first number is greater than second else
returns False.

evaluate(Greater ◦ (f × g))
= (greater(evaluate(f)[data], evaluate(g)[data]),

best_version(evaluate(g)[world], evaluate(f)[world]))
(3.18)

• Conjunct : boolean×boolean→boolean. Conjunct function acts like logical AND.
It takes a product type of two boolean. It returns true if both the input arguments
are True else it returns False.

evaluate(Conjunct ◦ (f × g))
= (and(evaluate(f)[data], evaluate(g)[data]),

best_version(evaluate(g)[world], evaluate(f)[world]))
(3.19)

• Disjunct : boolean×boolean→boolean. Disjunct function acts like logical OR.
It takes a product type of two boolean and returns True if either of the input
arguments are True, else it returns False.

evaluate(Disjunct ◦ (f × g))
= (or(evaluate(f)[data], evaluate(g)[data]),

best_version(evaluate(g)[world], evaluate(f)[world]))
(3.20)

• Negate : boolean→boolean. This function acts like logical NOT. It takes a
Boolean type and returns a boolean type.

evaluate(Negate ◦ f) = (not(evaluate(f)[data]), evaluate(f)[world])
(3.21)
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3.1.8 Higher order node functions

• Apply : function×A×B→C. Apply function takes a product type of three ele-
ments. The first element is a function type and the next two elements is of any
type but type compatible with the input type of the function received as the first
element. If the input function takes two arguments then the function is evaluated
on both of its arguments and Apply returns result of function evaluation. If the
input function takes more than two arguments, then a partially evaluated function
is returned by the Apply function.

Apply ◦ (f × g × h) =


f ′ ◦ (g × h), if |args(f ′)| ≥ 2

f ′ ◦ g, if |args(f ′)| = 1

f ′, if |args(f ′)| = 0

(3.22)

where, f ′ = evaluate(f) and |args(f ′)| =number of arguments of f ′.

• Lambdagraph : A→function. Lambdagraph function takes input of any type. In
FGPL it will return the complete subgraph ending with the parent node of the
Lambdagraph function. The initial nodes are replaced by Identity function node
which is considered as the initial node of the returned program subgraph. All the
child nodes of the initial Identity node should have same input type. Input type
of the initial Identity node is set as the input type of its child nodes. Consecutive
composition of Lambdagraph is not allowed in FGPL.

evaluate(Lambdagraph ◦ f ◦ g)

=

{
(f, world0)|g ∈ {SensorA ◦ initWorld, goalchecker ◦ initWorld}
undefined| otherwise

(3.23)

• Recurse : function×function×A→B. The Recurse function takes a product type
as input of which the first two elements are function type and the third element
can be of any type. The Recurse function implements the looping logic using
recursion. The first argument is a function which is applied on the third argument
recursively until the stopping condition is met. The function for checking the
stopping condition is received as second argument. The Recurse function helps
generating short programs for repetitive operations.

Recurse ◦ (f × g × h)

=


evaluate(f) ◦ evaluate(h)| evaluate(g) = ConstantTrue ◦ i
invalid| evaluate(g) = ConstantFalse ◦ i
evaluate(f)| evaluate(f) = ConstantK ∧ evaluate(g) 6= ConstantFalse ◦ i
Gaurd ◦ (k × h××Recurse ◦ (f × g × Apply ◦ (f × l × l)))|otherwise

(3.24)

where, k = Apply ◦ (g × h× h) and l = Gaurd(k × h× h).
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3.2 FGPL for Universal Search

With the help of all these functionality, FGPL can be made effective for universal search

platforms. The main difficulty with FGPL is that the subgraphs created in each step

by depth first search might be reachable via different edges. Whereas the restriction

here is to visit a node only once. To make the job easier there comes the concept of

assigning program probability for each program. Now a particular phase time is allocated

for each program. Within this time bound FGPL should find it’s goal based on this

program probability. So program probability(conditional probability) helps to decide

a solution path will exists or will be aborted. Default probability is assigned to all

newly created edges initially. A node can store two set of probability values. One set

contains the probabilities of all possible distinct type of edges and the other set contains

the distinct factored probabilities (set of distinct objects) of the program between the

given node and the initial node.

Advantage of using dataflow graph as language model for universal search Data flow

graphs are good at capturing independence among different functions based on data flow.

This independence condition actually helps improving transfer learning which evidently

helps in reducing complexity of the later task between the solution strings.

3.3 Incremental Learning

Incremental learning is the process of gaining mutual information by solving related

sequence of tasks which would help solving later related tasks by reducing the search

space. Incremental learning in universal search is implemented by updating conditional

probability distribution of function nodes based on some rewards received. It has

been designed problem-solving agent in a reinforcement learning setting. The agent

will be exposed to a series of problems with increasing difficulty. Solving a task will

generate a positive reward. The objective is to maximize the total future expected reward.

Incremental learning is achieved by updating the conditional probability distribution

based on gradient ascent mechanism thereby maximizing future expected rewards.

27



3.4 The Metasearcher

The metasearcher of the agent is responsible for implementing universal search and

searches for solution in the FGPL program space for a given problem environment.

The metasearcher is outside of FGPL and it starts with initializing a phase variable, a

phase limit, a list of available FGPL functions to be used for program generation and

an initial FGPL graph object if it is not supplied as input. In absence of incremental

learning a new graph object is created with the node initWorld added as initial node.

Thereafter the search proceeds in phases by generating and executing unique programs

in FGPL. Programs are generated by adding and connecting all possible nodes with

all possible combinations of successfully executed nodes present in the graph object

after satisfying type compatibility. Redundant programs are eventually deleted. All the

programs generated gets connected to the same search graph. In each phase, a fraction of

phase value is allotted as runtime to a program, proportional to its program probability.

Terminal nodes of programs are marked as failed which raises an error during execution.

Once the goal is reached the search process stops and the terminal node corresponding

to the solution program along with the complete search graph is returned.

Results

The agent is experimented in a maze problem.

1. The Sensor monad sends a read request to the maze environment. If the next cell
along the current direction of the agent is blocked, then the environment returns
True else False.

2. The Actuator monad sends an action request to the environment with a parameter.
If the parameter is 1 the agent moves one step forward along its current direction,
If 2 then it turns left, if 3 it turns right.

3. The Goalchecker sends read request to the environment to check if the goal is
reached or not and the environment responds in boolean. If the current state of the
agent matches with the goal state given by the environment, it returns True else
returns False.

4. Here, [1,0] represents south, [0, 1] represents east, [-1, 0] represents north, [0, -1]
represents west.
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Figure 3.5: A 20X20 maze. 1 is blocked and 0 is opened cell.

These configurations can be considered as the initial bias given to the agent based on the

domain knowledge. The agent is given an initial state [1, 1, [1,0]] and goal state [20, 20,

[1, 0]] in the environment. Metasearcher is run up to phase 65536 once with equivalent

program pruning and once without it. Learning rate is chosen as 0.5.

Training initial state goal state initial program probability final program probability iteration
Training 1 [1,1,[1,0]] [2,1,[1,0]] 0.0666666 0.2222222 1
Training 2 [1,1,[1,0]] [10,1,[1,0]] 0.000514403 0.001036283 9
Training 3 [1,1,[1,0]] [2,2,[0,1]] 0.000233863 0.000852707 1
Training 4 [1,1,[1,0]] [2,2,[1,0]] 2.84E-05 0.016610265 7

Table 3.1: Training sequence for the metasearcher.

Task initial state goal state initial program probability final program probability unbiased program probability
Test 1 [1,1,[1,0]] [10,10,[1,0]] 5.83E-05 6.13E-05 1.1429891305E-08
Test 2 [1,1,[1,0]] [20,20,[1,0]] 6.13E-05 6.43E-05 1.1429891305E-08

Table 3.2: Test sequence for the metasearcher
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Fig. 3.9 shows the solution programs drawn from the training sequence and the

test sequence. The complexity of each program graph increases as per shown below.

Reaching goal or destination for each task helped increasing the probability of each

edges in the solution. This helped in increasing the probability of the solution as a whole

for the test tasks and eventually reduce the search space and time.

Figure 3.6: Solution program for training using FGPL

The node names in Fig. 3.9 carries meaning explained above. The first graph is simplest

among the three. It can be described for maze environment that the world object is found

by initWorld node and it can be followed by sensor which takes the data as well as the

object from environment through it’s parent node. The sensor is connected with the

constant node. The one directional edges confirm the connection. The value of constant

node is inherited to the actuator node which is the goal state for the program graph.

In 2nd case the value in actuator is checked by the goalchecker to send the third input

of recurse node as a True/False condition. And both the lambdagraph acts in port no. 1

and 2 to send the operational value as input. When the boolean satisfies then it reaches
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the goal.

For the 3rd graph value of constant node is generating at different level. All the

values are evaluated by sensor and streamed by actuator. Hence the child node waits for

the parent node to generate and the parent node connects with all of it’s children node.

No duplicate data is entertained in FGPL. Program paths must be unique in the program

space. Redundancy can hamper the performance of the agent.

So it can be seen that solution path does not depend on the problem size (maze

dimensions). Due to usage of recursion without any hardcoded stopping condition in the

solution program the same program can be used as solution for other maze problems if

same pattern exists in those solutions irrespective of the dimension of the maze.

Thus, for a 1000 X 1000 maze with exactly similar pattern and similar extended

problem (initial state = [1,1,[1,0]], goal state = [1000,1000,[1,0]]) as the current one,

the solution program will also be same as the current one (though the runtime of the

solution program will be greater than the current one due to longer solution path). This

shows the capability of the FGPL language in creating small solutions for problems with

excessively large state space.
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CHAPTER 4

Problem Statement

The problem statement of our work aims to design a problem solver using above men-

tioned FGPL and data flow diagram to solve universal search problems in the problem

space. We need to solve such problems in optimized way by training the model we

designed using reinforcement learning, so that the model can remember the paths that it

experienced previously as well as explore the paths which are yet to be experienced by

trial and error process. While testing, the goal or destination must be reached through

best probable path. We have taken cartpole problem or inverted pendulum problem as

sample program to solve in an individual machine as well as in distributed framework to

verify effectiveness of FGPL framework in different environment, to establish a master-

slave architecture to divide the heavy computational workload among all the processors

used and to improve the time difference and performance graph.





CHAPTER 5

Proposed Work and Solution Statement

5.1 Proposed Framework

1. We have implemented the whole work in python3 using openai Gym library. Gym
library is a collection of test problems − environments − where we have used
reinforcement learning or trial and error methodology. Gym makes no assumption
of the intelligent agent’s structure.
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Installation of Gym has been done using pip install gym command.
2.

import gym
env = gym.make(’CartPole-v0’)
env.reset()
for _ in range(1000):

env.render()
env.step(env.action_space.sample()) # take random action

env.close()

Here env.step() function returns 4 values, which are: observation, reward, done,
info.

3. We have implemented our FGPL in this gym environment to train the model
which can interact with environment just by applying positive reward on correct
evaluation and punishing negative reward for wrong evaluation.

4. For testing FGPL in this framework we have executed small test programs to get
the output and draw the graph in R studio for visualization purpose.

5. We have designed the cartpole problem using FGPL property and have trained our
model to return the correct graph while testing.

6. We have used metasearcher algorithm which starts with initializing a phase vari-
able, a phase limit, a list of available FGPL functions to be used for program
generation and an initial FGPL graph object if it is not supplied as input.

7. Programs are generated by adding and connecting all possible nodes with all
possible combinations of successfully executed nodes present in the graph object
after satisfying type compatibility.

8. We have also worked on distributed approach to increase the performance. To
communicate with multiple server we have used MPI technique.



9. Here in master slave architecture of MPI small subgraphs will be generated in
each slave machine after reaching their respective goals.

10. All the small subgraphs will be gathered back to the master computer to make a
complete graph in FGPL. So the communication establishment is the key to such
architecture.

We have first tested for nth AP term program using FGPL in python3 and visualized

the graph in R studio. This is a small program where 1st term and common difference is

given to find out nth AP term. We have also implemented the recursive version of this

using recurse function.

Figure 5.1: Output of the nth AP term is 46.

And here is the graph flow of the above problem using Rstudio.

Figure 5.2: Nth term of AP series in graphical representation using FGPL.
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Figure 5.3: Recursive function Representation for finding Nth AP term In FGPL.

We have implemented few new monadic functions apart from the existing functions as

an extension of our work. We have implemented List operation and related functions

like Head, Tail, Nil, Fmap, Zipping, and Aggregate and Power.

• Head: list -> list. Head function takes a list as input and returns the first element
or head element as output in form of list.

evaluate(head([a0, a1, a2, a3])) = (evaluate[a0][data]),

version(evaluate[a0][world]).

(5.1)

• Tail: list -> list. Tail function takes a list as input and returns the rest of the element
except head as output in form of list.

evaluate(tail([a0, a1, a2, a3]))

= (evaluate[a1, a2, a3][data]), best_version
(evaluate[a1, a2, a3][world]).

(5.2)

• A -> list. Nil takes any data type as input and returns empty list as output.

evaluate(nil(A)) = (evaluate[][data]), bestversion(evaluate[][world]) (5.3)

• Fmap: function X list -> list. Fmap takes polymorphic product type of 2 elements
as input. The first element of the product type should be function type and the next
element needs to be a list type. This function implements the function operation
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given in input port 1, to each of the elements of input list and perform individual
operation. So, the output of fmap function will be always a list.

evaluate(fmap(f ◦ [a0, a1, a2, a3]) =
(evaluate(f ◦ [a0])[data], evaluate(f ◦ [a1])[data],
evaluate(f ◦ [a2])[data], evaluate(f ◦ [a3])[data]),
best_version(evaluate(f ◦ [a0]))[world], evaluate(f ◦ [a1])[world],
evaluate(f ◦ [a2])[world], evaluate(f ◦ [a3])[world]).

(5.4)

• Zipping: function X list X list -> list. Zipping takes polymorphic product type of
3 elements as input. The first element of the product type should be function type
and the next two input elements should be of list type. This function implements
the function operation given in i/p port 1, to both the lists in sequence. So, it
returns a list as output.

evaluate(zipping(f ◦ ([a0, a1, a2, a3] ◦ [b0, b1, b2, b3])) =
(evaluate(f ◦ [a0, b0])[data], evaluate(f ◦ [a1, b1])[data],
evaluate(f ◦ [a2, b2])[data], evaluate(f ◦ [a3, b3])[data]),
best_version(evaluate(f ◦ [a0, b0]))[world], evaluate(f ◦ [a1, b1])[world],
evaluate(f ◦ [a2, b2])[world], evaluate(f ◦ [a3, b3])[world]).

(5.5)

• Aggregate: function X list -> any. Aggregate takes polymorphic product type of
2 elements as input. The first element of the product type should be function type
and the next input needs to be of list type. And the output can be of any type.

evaluate(aggregate(f ◦ [a0, a1, a2, a3]) =
(evaluate(f ◦ [a0, a1, a2, a3])[data],
best_version(evaluate(f ◦ [a0, a1, a2, a3]))[world].

(5.6)

• Cons: any X list -> any. Cons takes polymorphic product type of 2 elements as
input. The first element of the product type should be any type and the next input
would be of list type. In this function appending of the list is done at 0th position.

evaluate(cons(x ◦ [a0, a1, a2, a3]) =
(evaluate([a0, a1, a2, a3])[data].append(x)[data],

best_version(evaluate([a0, a1, a2, a3])[world].
(5.7)

Here we have tried showing the internal representation of the nodes (graphical

representation) we have added i.e fmap, zipping and aggregate for cartpole problem we

want to solve.
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Figure 5.4: Representation of fmap function and it’s graphical connectivity.

Figure 5.5: Representation of zipping function and it’s graphical connectivity.

Figure 5.6: Representation of aggregate function and it’s graphical connectivity.
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Here a short test program output for checking the o/p and graph by fmap, zipping

and aggregate is attached.

Figure 5.7: Output of a test program with fmap, zipping and aggregate function imple-
mented.

Figure 5.8: Graphical representation of a test program with fmap, zipping and aggregate
node implemented combinedly.
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5.2 Proposed Solution

Now we have all the functionality available to draw the graph of cartpole problem in

FGPL. With the help of the I/O monads, First order node functions and higher order bode

functions, as discussed previously, the data types and newly implemented functions we

are going to propose a solution graph for Cartpole problem. Cartpole problem solution

graph that we have designed in FGPL and after all the inclusion of functions the correct

graph could be drawn in Rstudio. The graph is attached below.

Figure 5.9: Cartpole problem in graphical representation using FGPL.

Use of MPI: MPI (Message Passing Interface )is needed for connecting more than 1

computers simultaneously to establish master slave architecture. The basic need is to

divide the workload in all the processors where the sender or master computer will send

some information to other slave or receiver computers and will get all the responses back

to the master accordingly. Here we have first established the MPI connection in python

in 6 machines (24 processors) and tested if they are working successfully or not.
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CHAPTER 6

Results and Discussion

Here we have attempted Universal search problems to be solved using reinforcement

learning by training an agent or model with some particular labelled data and making it

intelligent enough to interact with the environment. The problem statement is tested for

standalone machine as well as distributed environment. The performance of distributed

system is clearly better as the computational load is scattered into all the processors

of all the machines we have engaged. One master computer is sending the job request

to each and every slave machines. They will receive request and proceed to find the

solution graph and will finish the alloted task it is given to do. After completion each

slave machine send their solution subgraphs back to the master. In this case three points

are important.

• If a parent node has more than one child node and all the child nodes are generated
in different subgraphs then there must be only once the parent node can be gener-
ated. There must no be duplicate nodes for each subgraph. One node shouldn’t be
replicated multiple times to increase space and time complexity.

• If a child node has more than one parent node then both the parent node should
get generated before the child node gets executed. All the predecessor nodes must
be present to create the next successor node.

• All the possible combinations should be present to create all the possible subgraphs
for generating the optimal probable solution. So the least probable path will also
be there in the problem space but to avoid computational deficiency we must
reduce that edge’s probability. So no active pruning is considered.

Here are few data, screenshot of output and constructed view of the graphs are

attached as a part of result data of the experiment.

For the cartpole problem we run the metasearcher algorithm, it starts with initializing

a phase variable, a phase limit, a list of available FGPL functions to be used for program

generation and an initial FGPL graph object if it is not supplied as input. The search

proceeds in phases by generating and executing unique programs in FGPL. Programs are

generated by adding and connecting all possible nodes with all possible combinations of

successfully executed nodes present in the graph object after satisfying type compatibility.



Nodes which creates syntactically redundant programs are eventually deleted. Here I

have shown images for constant, head node, fmap node, divide node, and their respective

output while running the metasearcher algorithm.

Figure 6.1: Goal reached for constant value given as 1 and the subgraph created attached.

Figure 6.2: Goal reached for head function and the subgraph created attached.
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Figure 6.3: Goal reached for divide function given data as 0.5 and the subgraph created
attached.
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Figure 6.4: Goal reached for fmap function given input list as [0,0,0,0] and the subgraph
created attached.
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Figure 6.5: Goal reached for fmap function given input list as [0.5,0.5,0.5,0.5] and the
subgraph created attached.
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Explanation:

• 1st node of connection between environment and agent is ‘initworld’. Then comes
‘sensor’. Now from the first line of execution by importing metasearcher code to
run in jupyter notebook we can see the observation state values such as
[-0.0050493, -0.03577726, -0.03201057, -0.2926659] which is the head value of
the data in the sensor.

• Now we have added ‘constant’ 1 and 2 in the subgraph.

• Next we have passed data 0.5 in the metasearcher’s argument that can perform
the ‘divide’ property between 1 and 2 and creates total 5 nodes, initWorld, sensor,
constant1, constant2, divide.

• Next comes fmap1 which is basically the head data each of which is multiplied
by 0 and returns [0, 0, 0, 0]. So we have given this data in metasearcher to satisfy
‘fmap1’.

• For fmap2, as per cartpole fig 27, 0.5 needs to be added to [0, 0, 0, 0] so it will
return [0.5, 0.5, 0.5, 0.5]. So we have given this data in metasearcher to satisfy
‘fmap2’.

Now the next step that is ‘zipping’ node could not be evaluated in this way. The main

reason behind this can be computational complexity. Now upto fmap2 we have done

some forced training to reach the goal within some limited phase value. If we don’t

do any biased training and as mentioned in the explanation above, we try to train the

model then it takes much more time due to computational overhead. And we are unable

to reach the goals as smoothly as expected.

Here is some data to attach as a proof of forced learning. Because if the probability

of a particular node is increased then the next successor node will be reached early. That

is why we needed to increase the probability.
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Figure 6.6: increased probability of divide and fmap by forced training.

Now as ‘fmap2’ is depended on both ‘divide’ and ‘fmap1’ so the increment of

probabilities helped accelerating to reach ‘fmap2’.

Figure 6.7: Fmap2 function generation after forced training
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But after reaching fmap2 we realized the issue of over-fitting while working on

zipping. We have incremented the probability of the particular path so high that the model

is unable to evaluate other possible paths. In this case the the constant -multiplication

node could never be generated so we could never reach to zipping node.

For this issue to overcome we started training the model in a parallel way so that all

the paths in a particular level should get trained simultaneously so that possibility of any

path should not get decreased so much that the goal can’t be generated. In this method

we have again trained the model and got such data.

Figure 6.8: Subgraph created by parallel training
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Figure 6.9: Parallel training to generate nodes.

Still the issue persisted as by parallel force training too the phase value is too high

[ 10−9] to meet the goal for zipping. So due to computational restrictions we were not

able to generate the whole program graph but methodically we were correct to solve it.
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Now to check whether we can work it on distributed environment or not we took the

help of MPI (Message Passing Interface)

Here in our experiment 172.16.5.33 is the master computer and 34, 35, 36, 37, 38

are the other slave computers. There is a hostfile created in master computer naming

hosts.txt and all the IP addresses of other machines are written in the file. Here is the

command for mpi communication within the processors in standalone machine

Mpiexec -n 4 python -m mpi4py file.py

And to communicate with multiple computer and multiple processors, the below

mentioned command should be executed in master computer. (i.e 172.16.5.33 in our

case)

Mpiexec -n 8 -npernode 2 –hostfile hosts.txt python -m mpi4py file.py

Here the connection between master and slave computers are established. And the

screenshots are attached.

Figure 6.10: connection between master and slave computers are established
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Here is the cartpole problem where all the processors of total 6 machines are used

and code is executed until the goal is reached and it returns true. Pole will be dislodged

and episode will end.

Figure 6.11: Cartpole problem code is run in MPI to reach the goal

Now the metasearcher algorithm is updated to run different test problems where

reward is given if correct subgraph is made in the slave computers and gathering all

the subgraphs back in master computer by MPIcomm.Send() and MPIcomm.receive()

messages to reach the destinations. The screenshots of all the output given for input data

and the graphs created after reaching the goals are attached here.
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Figure 6.12: Goal reached for add, multiply, constant function using metasearcher algo-
rithm using MPI environment and subgraph are created.
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So in this experiment we have done

• Implemented list operator so that we can take the observation state of cartpole as
a list and the environment can be connected through sensor to have this data to
reach goal.

• We have added fmap, zipping, aggregate, head, tail etc all the relevant functionality.

• We have designed the model of cartpole problem in FGPL using graph flow
paradigm.

• We have implemented small arithmetic operations changing the reward values in
standalone as well as distributed environment to compare the data when the goal
is reached.

• We have tried learning the cartpole problem to a model so that when we provide
the test data, it can accordingly draw the whole graph that we have designed
previously.

• We worked on comparing the time and performance enhancement of the cartpole
problem using normal python code in single machine running the metasearcher
algorithm as well as in distributed system in MPI communication system.

• Through the initWorld() we have taken [[x1, x2, x3, x4], Boolean,Reward] ini-
tial state value of cartpole from the environment. Where x1is position of the cart,
x2is the velocity of the cart, x3 angle of the pole, x4 velocity of the pole. Whenever
for a particular state value and reward the pole is not dislodged then it will return
false and as soon as it is disbalanced, it will return boolean true and the episode
will end and goal will be reached.

• Thus we have worked on developing the whole graph of cartpole problem.
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Here are 2 tables of time taken in distributed system(WITH MPI) and stanalone

system(WITHOUT MPI) to reach the goal for some small arithmatic operations(eg:

addition, multiply, divide) using metasearcher algorithm for distributed environment

and metasearcher algorithm for non-distributed environment respectively. The table is

adjusted in increasing order of reward.

Reward Time taken without MPI (second) Maximum Phase value
2 0.9301 50000000
3 69.17 50000000
4 376.82 50000000
5 369.77 50000000

Table 6.1: WITHOUT MPI

Reward Time taken with MPI (second) Maximum Phase value
2 0.594 50000000
3 45.8280 50000000
4 156.24 50000000
5 156.80 50000000

Table 6.2: WITH MPI
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CHAPTER 7

Conclusion and Future Work

We have done our experiment in python to test the effectiveness of FGPL in this cartpole

problem. And we have been successfully implemented incremental learning concept

using program probability of the subgraphs created in each level. We have also suc-

cessfully established distributed environment and are able to communicate through

all the machines using proper master slave architecture. We have obvious enhanced

performance results for some short arithmetical problems. But as cartpole problem is

being too computationally heavy in stand alone machines that to reach the particular

phase value for meeting the goal we had to forcefully increment program probabilities

of possible program path. This tends to over-fitting issue and we could not view the

complete graph at a stretch without biased training. This was the limitation of our work.

We have thus come up with a solution of parallel training for the model such that the

probability of any particular problem path should neither get too much decreased , nor

too much increased to avoid over-fitting. However we need to improve FGPL framework

further. FGPL should be capable of self- generation, self-modification or self-evaluating

codes. We need to test the model for different problem and challenges so that we can

make the language more flexible and more effective.





APPENDIX A

Code snippets

Finding Nth Term Of An AP Series

import cProfile

import sys

sys.path.append("./FGPL/UIPS-master/UIPS-master")

from metasearcher_new import *

from graph_draw import *

a=int(input("Enter first term = "))

d=int(input("Enter common difference = "))

n=int(input("Enter n = "))

k=initGraph(1)

i0=Node(1,’initWorld’)

s1=Node(2,’sensor’,’number’)

c1=Node(5,’constant’,a)

c2=Node(7,’constant’,d)

c3=Node(9,’constant’,n-1)

#c3=Node(11,’constant’,4)

mul=Node(12,’multiply’)

addition=Node(13,’add’)

addNode(1,s1,1)

addNode(1,c1,2)

addNode(1,c2,2)

addNode(1,c3,2)

addNode(1,mul,7,9)

addNode(1,addition,5,12)

print(evalGraph(k))

draw_graph(k)



Recursive approach to find Nth Term Of An AP Series

import cProfile

import sys

sys.path.append("./FGPL/UIPS-master/UIPS-master")

from metasearcher_new import *

from graph_draw import *

k=initGraph(1)

i=Node(1,’initWorld’)

s1=Node(2,’sensor’,’number’)

#s1.funct()

#s1.data = 0

c1=Node(3,’constant’,1)

c2=Node(4,’constant’,45)

c3=Node(5,’constant’,2)

less=Node(7,’greater’)

addition=Node(8,’add’)

l1=Node(9,’lambdagraph’)

l2=Node(10,’lambdagraph’)

r=Node(11,’recurse’)

addNode(1,s1,1)

addNode(1,c1,2)

addNode(1,c2,2)

addNode(1,c3,2)

addNode(1,addition,5,2)

addNode(1,less,2,4)

addNode(1,l1,8)

addNode(1,l2,7)

addNode(1,r,9,10,3)

print(evalGraph(k))

draw_graph(k)
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Implementation of head operator in function class

class head(node):

# Node class for head function

def __init__(self,label, *links):

node.__init__(self,label,’head’,1,{’function’:{’input’:

[’list’],’output’:[’any’]}},links)

#super().update_program_expression(’head’,None)

def funct(self):

super().funct()

temp_list = self.links[0].funct()

if self.data == None:

link1_in = self.links[0].funct()

if not isinstance(link1_in[’data’],list):

raise Exception (’Invalid Input Type for head’)

try:

self.data = link1_in[’data’][0]

except IndexError:

self.data = None

self.world = link1_in[’world’]

self.world_version = self.links[0].world_version

update_node_type(self)

super().update_program_expression(’head’,self.data)

return {’data’:pickle.loads(pickle.dumps(self.data,-1)),

’world’:self.world}
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Implementation of tail operator in function class

class tail(node):

# Node class for tail function

def __init__(self,label, *links):

node.__init__(self,label,’tail’,1,

{’function’:{’input’:[’list’],’output’:[’list’]}},links)

#super().update_program_expression(’tail’,None)

def funct(self):

super().funct()

list_var = self.links[0].funct()

if self.data == None:

link1_in = self.links[0].funct()

temp_list = link1_in[’data’]

if not isinstance(temp_list,list):

raise Exception (’Invalid Input Type tail’)

self.data = temp_list[1:len(temp_list)]

self.world = link1_in[’world’]

self.world_version = self.links[0].world_version

#update_node_type(self)

super().update_program_expression(’tail’,self.data)

return {’data’:pickle.loads(pickle.dumps(self.data,-1)),

’world’:self.world}
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Implementation of nil operator in function class

class nil(node):

# Node class for nil function

def __init__(self,label,*links):

node.__init__(self,label,’nil’,1,

{’function’:{’input’:[’any’],’output’:[’list’]}},links)

#super().update_program_expression(’nil’,None)

def funct(self):

super().funct()

if self.data == None:

link1_in = self.links[0].funct()

self.data = []

self.world = link1_in[’world’]

#self.world_version = self.world.version

self.world_version = self.links[0].world_version

#update_node_type(self)

super().update_program_expression(’nil’,self.data)

return {’data’:pickle.loads(pickle.dumps(self.data,-1)),

’world’:self.world}

Implementation of cons operator in function class

class cons(node):

# Node class for cons function

def __init__(self,label, *links):

node.__init__(self,label,’cons’,2,

{’function’:{’input’:[’any’,’list’],

’output’:[’list’]}},links)

#super().update_program_expression(’cons’,None)

def funct(self):

super().funct()

if self.data == None:

link1_in = self.links[1].funct()

#if not isinstance(link1_in[’data’],list):
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# raise Exception (’Invalid Input Type for cons’)

link2_in = self.links[0].funct()

link1_in[’data’].insert(0,link2_in[’data’])

self.data = link1_in[’data’]

self.world = link1_in[’world’]

self.world_version =

max(self.links[0].world_version,self.links[1].world_version)

#update_node_type(self)

super().update_program_expression(’cons’,self.data)

return {’data’:pickle.loads(pickle.dumps(self.data,-1)),

’world’:self.world}
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Implementation of fmap operator in function class

class fmap(node):

def __init__(self,label, *links):

node.__init__(self,label,’fmap’,2,

{’function’:{’input’:[’function’,’list’],

’output’:[’list’]}},links)

#super().update_program_expression(’fmap’,None)

def funct(self):

global globalvars

#print(str(self.links[1].program_expression[’data’]))

super().funct()

node_list_dict ={}

if self.data == None:

self.g = Graph(globalvars.graph_label)

node_list_dict[1] = identity(globalvars.node_label)

node_list_dict[2] = identity(globalvars.node_label)

node_list_dict[3] = head(globalvars.node_label)

node_list_dict[4] = nil(globalvars.node_label)

node_list_dict[5] = apply(globalvars.node_label)

node_list_dict[6] = tail(globalvars.node_label)

node_list_dict[7] = equal(globalvars.node_label)

node_list_dict[8] = fmap(globalvars.node_label)

node_list_dict[9] = cons(globalvars.node_label)

node_list_dict[10] = gaurd(globalvars.node_label)

for node_i in node_list_dict.values():

node_i.update_exp = 0

self.g.add_node(node_list_dict[1])

self.g.add_node(node_list_dict[2])

self.g.add_node(node_list_dict[3],node_list_dict[2])

self.g.add_node(node_list_dict[4],node_list_dict[2])

self.g.add_node(node_list_dict[5],node_list_dict[1],

65



node_list_dict[3])

self.g.add_node(node_list_dict[6],node_list_dict[2])

self.g.add_node(node_list_dict[7],node_list_dict[2],

node_list_dict[4])

self.g.add_node(node_list_dict[8],node_list_dict[1],

node_list_dict[6])

self.g.add_node(node_list_dict[9],node_list_dict[5],

node_list_dict[8])

self.g.add_node(node_list_dict[10],node_list_dict[7],

node_list_dict[6],node_list_dict[9])

self.g.glinks = self.links

for i in range(len(self.links)):

self.g.initialnodes[i].links = (self.links[i],)

output = self.g.terminalnodes[0].funct()

self.data = output[’data’]

self.world = output[’world’]

super().update_program_expression(’fmap’,self.data)

del(node_list_dict)

del(output)

self.world_version =

self.g.terminalnodes[0].world_version

#self.world.version

return {’data’:pickle.loads(pickle.dumps(self.data,-1)),

’world’:self.world}
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Implementation of zipping operator in function class

class zipping(node):

def __init__(self,label, *links):

node.__init__(self,label,’zipping’,3,

{’function’:{’input’:[’function’,’list’,’list’],

’output’:[’list’]}},links)

def funct(self):

global globalvars

super().funct()

node_list_dict ={}

if self.data == None:

self.g = Graph(globalvars.graph_label)

node_list_dict[1] = identity(globalvars.node_label)

node_list_dict[2] = identity(globalvars.node_label)

node_list_dict[3] = identity(globalvars.node_label)

node_list_dict[4] = head(globalvars.node_label)

node_list_dict[5] = tail(globalvars.node_label)

node_list_dict[6] = nil(globalvars.node_label)

node_list_dict[7] = head(globalvars.node_label)

node_list_dict[8] = tail(globalvars.node_label)

node_list_dict[9] = apply(globalvars.node_label)

node_list_dict[10] = zipping(globalvars.node_label)

node_list_dict[11] = equal(globalvars.node_label)

node_list_dict[12] = cons(globalvars.node_label)

node_list_dict[13] = gaurd(globalvars.node_label)

for node_i in node_list_dict.values():

node_i.update_exp = 0

self.g.add_node(node_list_dict[1])

self.g.add_node(node_list_dict[2])

self.g.add_node(node_list_dict[3])
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self.g.add_node(node_list_dict[4],node_list_dict[2])

self.g.add_node(node_list_dict[5],node_list_dict[2])

self.g.add_node(node_list_dict[6],node_list_dict[2])

self.g.add_node(node_list_dict[7],node_list_dict[3])

self.g.add_node(node_list_dict[8],node_list_dict[3])

self.g.add_node(node_list_dict[9],node_list_dict[1],

node_list_dict[4],node_list_dict[7])

self.g.add_node(node_list_dict[10],node_list_dict[1],

node_list_dict[5],node_list_dict[8])

self.g.add_node(node_list_dict[11],node_list_dict[2],

node_list_dict[6])

self.g.add_node(node_list_dict[12],node_list_dict[9],

node_list_dict[10])

self.g.add_node(node_list_dict[13],node_list_dict[11],

node_list_dict[6],node_list_dict[12])

self.g.glinks = self.links

for i in range(len(self.links)):

self.g.initialnodes[i].links = (self.links[i],)

output = self.g.terminalnodes[0].funct()

self.data = output[’data’]

self.world = output[’world’]

#self.program_expression =

self.g.terminalnodes[0].program_expression

super().update_program_expression(’recurse’,self.data)

del(node_list_dict)

del(output)

self.world_version =

self.g.terminalnodes[0].world_version

#self.world.version

return {’data’:pickle.loads(pickle.dumps(self.data,-1)),

’world’:self.world}
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Implementation of aggregate operator in function class

class aggregate(node):

def __init__(self,label, *links):

node.__init__(self,label,’aggregate’,2,

{’function’:{’input’:[’function’,’list’],

’output’:[’any’]}},links)

#super().update_program_expression(’aggregate’,None)

def funct(self):

global globalvars

#print(str(self.links[1].program_expression[’data’]))

super().funct()

node_list_dict ={}

if self.data == None:

self.g = Graph(globalvars.graph_label)

node_list_dict[1] = identity(globalvars.node_label) #1

node_list_dict[2] = identity(globalvars.node_label) #2

node_list_dict[3] = head(globalvars.node_label) #5

node_list_dict[4] = nil(globalvars.node_label)

node_list_dict[5] = apply(globalvars.node_label) #4

node_list_dict[6] = tail(globalvars.node_label) #6

node_list_dict[7] = aggregate(globalvars.node_label) #7

node_list_dict[8] = equal(globalvars.node_label)

#node_list_dict[9] = apply(globalvars.node_label)

node_list_dict[10] = gaurd(globalvars.node_label) #8

for node_i in node_list_dict.values():

node_i.update_exp = 0

self.g.add_node(node_list_dict[1])

self.g.add_node(node_list_dict[2])

self.g.add_node(node_list_dict[3],node_list_dict[2])

self.g.add_node(node_list_dict[4],node_list_dict[2])

#self.g.add_node(node_list_dict[5],node_list_dict[1],

node_list_dict[3])
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self.g.add_node(node_list_dict[6],node_list_dict[2])

self.g.add_node(node_list_dict[7],node_list_dict[1],

node_list_dict[6])

self.g.add_node(node_list_dict[8],node_list_dict[6],

node_list_dict[4])

self.g.add_node(node_list_dict[5],node_list_dict[1],

node_list_dict[3],node_list_dict[7])

self.g.add_node(node_list_dict[10],node_list_dict[8],

node_list_dict[3],node_list_dict[5])

self.g.glinks = self.links

#print(self.links)

for i in range(len(self.links)):

self.g.initialnodes[i].links = (self.links[i],)

#print(self.g.terminalnodes[0].update_exp)

#globalvars.recurse_temp_obj.append(self.g.nodes)

output = self.g.terminalnodes[0].funct()

self.data = output[’data’]

self.world = output[’world’]

#self.program_expression =

self.g.terminalnodes[0].program_expression

super().update_program_expression(’aggregate’,self.data)

del(node_list_dict)

del(output)

self.world_version =

self.g.terminalnodes[0].world_version

#self.world.version

update_node_type(self)

return {’data’:pickle.loads(pickle.dumps(self.data,-1)),

’world’:self.world}
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