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CHAPTER 1 

INTRODUCTION 

 

 

1.1. Image segmentation:  

 

The image segmentation is referred to as one of the most important process of image processing. 

It is the technique where an image is divided or partitioned into disjoint parts which have similar 

features and properties, called segments. The main aim of segmentation is simplification which 

is nothing but representing an image into meaningful and easily analyzable way depending upon 

its intensity, color and texture [1]. Segmentation has two objectives. The first one is to 

decompose the image into parts for further analysis. The second one is to perform a change of 

representation. Image segmentation is the most important task in medical image analysis [2] and 

is often the first and the most critical step in many clinical applications. 

 

1.2. Brain MR image segmentation: 

 

 In brain MR (magnetic resonance) image analysis, image segmentation is commonly used for 

measuring and visualizing the brain’s anatomical structures, for analyzing brain changes, 

delineating pathological regions, and for surgical planning and image guided intervention. This 

diversity of image processing application has led to development of various segmentation 

techniques of different accuracy and degree of complexity [3]. 
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2D-images:  

 

 

 

 

 

 

An image can be defined as a function I (i, j) in 2D space where i = 0,………, M-1, j = 1,……., 

N-1 denote spatial coordinates. The values of the function I (i, j) is the intensity values and 

typically represented by a grey value {0, ……., 255} in MR (magnetic resonance) image of the 

brain. 

Every image consists of a finite set of image elements, called pixels in 2D-space. Each image 

element is uniquely specified by its intensity value and its coordinates, (i, j) for pixels where i is 

the image row number and j is the column number [3]. 

 

    

 (i, j)   

    

    

 

In the case of brain MR (magnetic resonance) image elements are typically classified into three 

main tissue types: cerebrospinal fluid (CSF), grey matter (GM), white matter (WM) [4]. Most of 

the image segmentation methods are focused on 2D-images. 

 

1.3. Types of segmentation methods:  

 

There are a lot of algorithms for segmentation of medical images such as, MR images used 

popularly in the past. Intensity thresholding, region-based segmentation, edge-based  
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Fig. 1: 2D-MR brain image 



segmentation and classification-based segmentation are such techniques which have been used 

regularly for segmenting MR images [5-7]. 

The grey level histogram of the image is considered as the threshold level in Intensity 

thresholding. The disadvantage of intensity thresholding method is to determine the optimal 

threshold. On the other hand, another disadvantage of intensity thresholding is spatial uncertainty 

as the pixel location information is ignored [8]. 

In the edge-based segmentation technique, interrupted or scattered contour lines are created 

around an object of interest using some edge detection algorithms. Therefore, these contour lines 

joined based on some similarity criteria to detect the object of region of interest (ROI). However, 

these methods are computationally expensive for obtaining hole free representation of the 

objects. The region based segmentation methods extend the thresholding by integrating it with 

connectivity by means of an intensity similarity measure. The main aim of these above 

mentioned methods is to get connected regions based on homogeneity criteria of neighbourhood 

pixels. These are sensitive to noise [9] and less suitable for medical image segmentation. 

In classification-based segmentation method, the fuzzy C-means (FCM) clustering algorithm 

[10], is more effective than other hard clustering methods, like k-means algorithm etc. The FCM 

algorithm is more reasonable in real applications because it allows pixels to have relation with 

multiple clusters with varying degree of memberships. FCM is no doubt a very popular 

unsupervised clustering method, but it has some serious disadvantages due to consideration of 

the image spatial information. It has another drawback of local optimal solution due to poor 

initialization. Many modified fuzzy clustering approaches have been reported in the past for 

making the FCM algorithm more robust to noise and outliers for image segmentation [11-27]. 

Pedrycz [11] introduced a conditional fuzzy C-means based clustering method guided by an 

auxiliary or conditional variable. The method reveals a structure within a family of patterns by 

considering their vicinity in a feature space along with the similarity of the values assumed by a 

certain conditional variable. Mohamed et al. [13] modified the FCM algorithm through the 

incorporation of the spatial information. They introduced the spatial information into the 

computation of similarity measure. The similarity measure is modified to drag a pixel closure to 

the cluster center if it is in homogeneous region. The drawbacks of this algorithm are its 

sensitivity to the non-descriptive initial centers and its massively computational loads. 
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Ahmed et al. [14] introduced the local grey level information by modifying the objective 

function with another similarity measure for bias field estimation and segmentation of MRI data. 

This method is also expensive in terms of computational time. Many researchers subsequently 

modified the objective functions and develop several robust FCM variants for image 

segmentation [15-22]. These algorithms are shown to have better performances than the standard 

FCM algorithm. However, some of these methods depend on a fixed spatial factor which needs 

to be adjusted according to the real applications. In order to overcome the problem of over-

smoothed edges, causes due to use of larger spatial window, adaptive selection mechanisms of 

the spatial parameters have been proposed [23-25]. The performances of these methods are 

superior and are able to reduce partly the blurring effects which arise due to use of filtering and 

larger spatial window. Another major contribution with spatial information into the FCM 

membership function was suggested by Chuang et al. [26], known as sFCM algorithm. The 

spatial function is the summation of the membership function in the neighborhood of each pixel 

under consideration. It represents the probability for a pixel to belong into a particular cluster. 

This spatial function is incorporated into a weighted membership function. The advantages of 

this method are; it yields regions more homogeneous than those of other methods and it removes 

the noisy spots and partly reduces the spurious blobs. 

Recently, Qiu et al. [27] suggested a novel algorithm for fuzzy segmentation by introducing two 

fuzzifiers and a spatial constraint in the membership function. Benaichouche et al. [28] presented 

another improvement of the FCM clustering algorithm using particle swarm optimization (PSO) 

initialization, Mahalanobis distance and post segmentation correction. The first step introduced 

PSO initialization to overcome the of the solution in local minima, the second step was 

concerned with the integration of the spatial grey level information and the Mahalanobis distance 

and the final step refined the segmentation results by reallocating the potentially misclassified 

pixels. Kannan et al. [29] introduced a class of robust non-Euclidean distance measure for the 

objective function to enhance the robustness of the original FCM clustering algorithm and to 

reduce noise and outliers. Liao et al. [30] proposed a fast spatial constrained fuzzy kernel FCM 

(FKFCM) algorithm for MR brain image segmentation. The FKFCM algorithm first transforms 

the pixel intensities into a higher dimensional space using a kernel trick and then performs 

classification on the transformed data. 
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 Selvathi et al. [31] presented a modified version of spatial FCM algorithm to classify the pixels. 

Adhikari et al. [32] presented a method for MRI brain image segmentation by incorporating 

intensity inhomogeneity (IIH) and spatial information by using probabilistic FCM algorithm. The 

method works in two steps. First, it estimates the intensity inhomogeneity by fusing Gaussian 

surfaces and subsequently generates the IIH-corrected image. In the second step, it classifies the 

pixels of the IIH-corrected image by a probabilistic FCM algorithm.  

Most of the methods discussed so far suffer heavily due to presence of noise and another 

additional multiplicative noise factor called intensity inhomogeneity (IIH) or bias field in the MR 

medical images. The IIH usually refers to the slow, non-anatomic intensity variations of the same 

tissue over the image domain and causes due to imperfection of the image acquisition devices, 

eddy current, poor magnetic field and patient movement etc. 

 

1.3. Proposed method:  

 

In our proposed method we incorporate Shannon entropy with conventional FCM algorithm that 

can effectively segment MR brain images with the presence of noise and intensity 

inhomogeneity (IIH). Entropy is involved as the dissimilarity among the pixels in the regions 

along the edges is very high. 
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CHAPTER 2 

PROPOSED ENTROPY-BASED FUZZY CLUSTERING 

ALGORITHM FOR BRAIN MR IMAGE 

SEGMENTATION METHOD 

 

Entropy has first introduced in thermodynamics developing an information theoretical concept 

which is closely connected to the internal energy of the system. It has significant application in 

physics, information theory, mathematics and other branches of science and engineering [33]. 

Entropy is the measure of degree of uncertainty that can be used to characterize the texture of the 

input image. 

Entropy is formulated as follows [34]: 

 

− ∑𝑝𝑖  ×  log 𝑝𝑖     (2.1) 

 

where 𝑝𝑖 is the probability of a given symbol. 

There are different kinds of entropies with significant applications. Now, some of them are 

discussed in the following: 

a) Shannon entropy: 

Shannon entropy provides an absolute limit on the best possible lossless compression of a 

signal under constraint. Shannon entropy is denoted by 𝐻𝑠(𝑃𝑚1 𝑚2) and defined as  

 

𝐻𝑠(𝑃𝑚1 𝑚2) =  − ∑ ∑ 𝑝𝑚1 𝑚2 log 𝑝𝑚1 𝑚2𝑚2𝑚1    (2.2) 

 

where pm1, pm2 are probability density functions in 2-D random variable [35]. 

 

b) Renyi entropy:  

It generalizes the Shannon entropy. This entropy is also important in quantum information 

where it can be used as a measure of entanglement. It is defined as the entropy of the order of 

α, where α ≥ 0 and α ≠ 1, is constructed as 
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𝐻𝑟(𝑝𝑚1 𝑚2) =  
1

1− 𝛼
 log∑ ∑ (𝑝𝑚1 𝑚2)

𝛼
𝑚2𝑚1    (2.3) 

Sadek et al. [36] suggested an efficient and fast entropy based method for noisy cell image 

segmentation based on generalized α - entropy by measuring the maximum structural 

information of image and locating the optimal threshold desired by segmentation. They 

mentioned that chief advantages of their proposed method are its high rapidity and its 

tolerance to presence of noise in the image. 

 

c) Harvrda – Charvel: 

This entropy is used for statistical physics and modified by Dracozy. This can be defined as 

the function of α and can be represented as the following mathematical form 

 

𝐻ℎ𝑐 (𝑝𝑚1 𝑚2) =  
1

2𝛼−1  ∑ ∑ 𝑝𝑚1 𝑚2
𝛼

𝑚2 − 1𝑚1    (2.4) 

 

d) Kapur entropy: 

This entropy is denoted by 𝐻𝑘(𝑝𝑚1 𝑚2) of order of α and type β, is represented as [37]: 

 

𝐻𝑘(𝑝𝑚1 𝑚2) =  (
∑ ∑ 𝑝𝑚1,   𝑚2

𝛼+𝛽−1
𝑚2𝑚1

∑ ∑ 𝑝𝑚1,   𝑚2
𝛽

𝑚2𝑚1

) (21−𝛼 − 1)−1   (2.5) 

 

e) Vajda entropy: 

It is special case of Kapur entropy where β = 1 is taken and Vajda measures 𝐻𝑣(𝑝𝑚1 𝑚2), it is 

preferred over Kapur’s entropy as its calculations are faster and is defined as: 

 

𝐻𝑣(𝑝𝑚1,   𝑚2) =  (
∑ ∑ 𝑝𝑚1,   𝑚2

𝛼
𝑚2𝑚1

∑ ∑ 𝑝𝑚1,   𝑚2𝑚2𝑚1
− 1) (21−𝛼 −   1)−1  (2.6) 

 

As MR images are sensitive to noise [9] and intensity inhomogeneity, it is very difficult to 

achieve effective result. So, to detect diseased regions in MR images, it is necessary to segment 

the image into different tissue regions (CSF, GM, WM) accurately. To improve the robustness of  
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the conventional FCM algorithm we incorporate Shannon entropy in our proposed method. As 

entropy is proportional to uncertainty, our goal is to minimize the entropy to obtain better 

segmented output. 

The proposed method allows to partition the image pixels by calculating the centers of clusters, 

vi and the membership matrix, U through minimizing the following objective function, J with 

respect to these cluster centers and membership values in an iterative manner. 

 

J = ∑ ∑ [𝛼 𝜇𝑖𝑘
𝑚 (1 − 𝑒

− 
‖𝑥𝑘− 𝑣𝑖‖

2

2𝜎𝑖
2

) + (1 −  𝛼)𝑝𝑖𝑘
𝑚  𝑒

− 
‖𝑥𝑘− 𝑣𝑖‖

2

2𝜎𝑖
2

]𝑁
𝑘=1

𝐶
𝑖=1  

− ∑ ∑ 𝑝𝑖𝑘  ln(𝑝𝑖𝑘) − 𝑁
𝑘=1

𝐶
𝑖=1   (2.7) 

 

where C is the total number of clusters, N is the number of patterns, α is a parameter (> 0), m is 

the fuzzifier ( > 1) and in our proposed method it is set to 1.75, μik is the degree of fuzzy 

membership of pixel xk in the i
th

 cluster, ‖∗‖ is any norm expressing the similarity between any 

measured data and the center, λ1 is Lagrange multiplier and             − ∑ ∑ 𝑝𝑖𝑘  ln(𝑝𝑖𝑘) 
𝑁
𝑘=1

𝐶
𝑖=1  is 

the Shannon entropy. 

 

Minimizing the objective function (2.7) with respect to the constraint    ∑ 𝜇𝑖𝑘
𝐶
𝑖=1 = 1, we obtain  

 

𝜕

𝜕𝜇𝑖𝑘
(𝐽) = 0      (2.8) 

𝜕

𝜕𝑣𝑖
(𝐽) = 0      (2.9) 

 

Differentiating the equation (2.7) partially with respect to μik, we get the following equation: 

 

𝜕

𝜕𝜇𝑖𝑘
(𝐽) =  𝛼 𝑚 𝜇𝑖𝑘

𝑚−1  (1 − 𝑒
− 

‖𝑥𝑘− 𝑣𝑖‖
2

2𝜎𝑖
2

) − 𝜆1  (2.10) 
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From equation (2.8) and (2.10), we get 

 

𝛼 𝑚 𝜇𝑖𝑘
𝑚−1  (1 − 𝑒

− 
‖𝑥𝑘− 𝑣𝑖‖

2

2𝜎𝑖
2

) − 𝜆1 = 0 

Or, 𝜇𝑖𝑘 = 

[
 
 
 
 
 
 

𝜆1

𝛼 𝑚 

(

 
 

1− 𝑒
− 

‖𝑥𝑘− 𝑣𝑖‖
2

2𝜎𝑖
2

)

 
 

]
 
 
 
 
 
 

1

𝑚−1

    (2.11) 

 

Using ∑ 𝜇𝑙𝑘 = 1𝐶
𝑙=1 , we get  

 

∑

[
 
 
 
 
 

𝜆1

𝛼 𝑚 (1 − 𝑒
− 

‖𝑥𝑘− 𝑣𝑖‖
2

2𝜎𝑖
2

 )
]
 
 
 
 
 

1
𝑚−1

𝐶

𝑙=1

= 1 

Or, [
𝜆1

𝛼 𝑚
]

1
𝑚−1

= 
1

∑

[
 
 
 
 
 
 
 
 

1

(

  
 

1−𝑒

− 
‖𝑥𝑘− 𝑣𝑖‖

2

2𝜎𝑖
2

 

)

  
 

]
 
 
 
 
 
 
 
 

1
𝑚−1

𝐶
𝑙=1

   (2.12) 

 

From (2.11) and (2.12), we get  

𝜇𝑖𝑘 = 
1

[
 
 
 
 
 
 
 
 

1−𝑒

− 
‖𝑥𝑘− 𝑣𝑖‖

2

2𝜎𝑖
2

∑

(

  
 

1−𝑒

− 
‖𝑥𝑘− 𝑣𝑖‖

2

2𝜎𝑖
2

)

  
 𝐶

𝑙=1

]
 
 
 
 
 
 
 
 

1
𝑚−1

       (2.13) 

9 



Similarly, deriving equation (2.7) partially with respect to vi, we get the following equation: 

 

𝜕

𝜕𝑣𝑖
(𝐽) =  − ∑ 𝛼 𝜇𝑖𝑘

𝑚𝑁
𝑘=1  𝑒

− 
‖𝑥𝑘− 𝑣𝑖‖

2

2𝜎𝑖
2

    
‖𝑥𝑘− 𝑣𝑖‖

𝜎𝑖
2  + ∑ (1 −  𝛼) 𝑁

𝑘=1  𝑝𝑖𝑘
𝑚 𝑒

− 
‖𝑥𝑘− 𝑣𝑖‖

2

2𝜎𝑖
2

  
‖𝑥𝑘− 𝑣𝑖‖

𝜎𝑖
2  (2.14) 

 

From (2.9) and (2.14), we get 

 

∑[𝛼  𝜇𝑖𝑘
𝑚 − (1 −  𝛼) 𝑝𝑖𝑘

𝑚 ] 𝑒
− 

‖𝑥𝑘− 𝑣𝑖‖
2

2𝜎𝑖
2

     ‖𝑥𝑘 − 𝑣𝑖‖ 

𝑁

𝑘=1

= 0 

 

Or, 𝑣𝑖 = 
∑ [𝛼  𝜇𝑖𝑘

𝑚−(1− 𝛼) 𝑝𝑖𝑘
𝑚]  𝑒

− 
‖𝑥𝑘− 𝑣𝑖‖

2

2𝜎𝑖
2

   𝑥𝑘  𝑁
𝑘=1

∑ [𝛼  𝜇𝑖𝑘
𝑚−(1− 𝛼) 𝑝𝑖𝑘

𝑚]  𝑒
− 

‖𝑥𝑘− 𝑣𝑖‖
2

2𝜎𝑖
2

     𝑁
𝑘=1

    (2.15) 

 

We now introduce two different ways to calculate the pik as follows: 

 

2.a) Method 1: pik is derived from the objective function (2.7). 

2.b) Method 2: pik is calculated depending on the local neighbourhood of a pixel xk  taken as 

center. 

 

2.a) Method 1: 

 

For the first case, minimizing the objective function (2.7) with the constraint    ∑ 𝜇𝑖𝑘
𝐶
𝑖=1 = 1, we 

obtain 

 

𝜕

𝜕𝑝𝑖𝑘
(𝐽) = 0      (2.16) 
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Differentiating equation (2.7) partially with respect to pik, we get  

 

𝜕

𝜕𝑝𝑖𝑘
(𝐽) =  (1 −  𝛼) 𝑚 𝑝𝑖𝑘

𝑚−1  𝑒
− 

‖𝑥𝑘− 𝑣𝑖‖
2

2𝜎𝑖
2

 −  ln(𝑝𝑖𝑘)  − 1 (2.17) 

 

From (2.16) and (2.17), we have 

 

(1 −  𝛼) 𝑚 𝑝𝑖𝑘
𝑚−1  𝑒

− 
‖𝑥𝑘− 𝑣𝑖‖

2

2𝜎𝑖
2

 −  ln(𝑝𝑖𝑘)  − 1 = 0 

 

Or, ln(𝑝𝑖𝑘) =  (1 −  𝛼) 𝑚 𝑝𝑖𝑘
𝑚−1  𝑒

− 
‖𝑥𝑘− 𝑣𝑖‖

2

2𝜎𝑖
2

 − 1 

 

𝑝𝑖𝑘  =  𝑒[
 
 
 
 

(1− 𝛼) 𝑚 𝑝𝑖𝑘
𝑚−1  𝑒

− 
‖𝑥𝑘− 𝑣𝑖‖

2

2𝜎𝑖
2

 −1

]
 
 
 
 

     (2.18) 

 

This (2.18) is the final expression for 𝑝𝑖𝑘 derived from the objective function (2.7). 

 

2.b) Method 2: 

In the second case, we considered the following expression to calculate the entropy in the local 

neighbourhood of a pixel xk  taken as center. 

 

𝑝𝑖𝑘 = 
𝑒

− 
‖𝑥𝑘̅̅ ̅̅ − 𝑣𝑖‖

2

2𝜎𝑖
2

∑ 𝑒

− 
‖𝑥𝑘̅̅ ̅̅ − 𝑣𝑗‖

2

2𝜎𝑗
2

𝐶
𝑗=1

      (2.19) 

 

In the above mentioned equation, 𝑥𝑘̅̅ ̅ =  
1

𝑁𝑘
∑ 𝑥𝑗

𝑁𝑘
𝑗=1  and 𝑁𝑘 is considered as the 3×3 local 

neighbourhood of a pixel xk taken as center. 
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CHAPTER 3 

EXPERIMENTAL RESULTS 

 

 

The performance of the proposed method is evaluated first on the BrainWeb [38], IBSR [39] 

simulated T1-weighted, next on BrainWeb simulated T2-weighted and later on real-patient MR 

images of human brain in qualitatively and quantitatively manner both. For comparative study, 

the FCM, FGFCM [24], sFCM [26], ASIFC [25], PFCM methods are included. 

The performance of the proposed method is first examined without varying the receptive field of 

the Gaussian function and then varying the receptive field of the Gaussian function respectively. 

 

3.1 Without Varying Receptive Field of Gaussian Function: 

Here, we consider a suitable value for the receptive field of the Gaussian function in the 

expression of pik to get superior result in our proposed method. 

 

3.1.1 Simulated MR brain images: 

 

The BrainWeb simulated T1-weighted and T2-weighted MR images of human brain are obtained 

from the McConnell Brain Imaging Centre of the Montreal Neurological Institute, McGill 

University [40]. Ten different combinations of both simulated T1 and T2 data volumes have 

been gathered where T1-weighted data volumes contain 81 images each and T2-weighted data 

volumes contain 51 images each. In both the image volumes the CSF, GM and WM regions are 

well distinguished. The image volumes include the images of the following combinations 

respectively: 

1% noise, 20% inhomogeneity; 1% noise, 40% inhomogeneity; 3% noise, 20% inhomogeneity; 

3% noise, 40% inhomogeneity; 5% noise, 20% inhomogeneity; 5% noise, 40% inhomogeneity; 

7% noise, 20% inhomogeneity; 7% noise, 40% inhomogeneity; 9% noise, 20% inhomogeneity; 

9% noise, 40% inhomogeneity. The image resolutions are 181 x 217 x 181 voxels and sized 1 

mm x 1 mm x 1 mm. 
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3.1.1.1 Qualitative evaluation 

Here, we present the qualitative outputs of the proposed method. The qualitative 

evaluations are very useful on the target application, as these give us the type and quality of the 

images, the weaknesses of the segmentation algorithm, and the results of the individual steps of a 

method. This section involves segmentation result of different tissue regions, like cerebrospinal 

fluid (CSF), grey matter (GM), white matter (WM) and total segmented result of the original MR 

brain image. The performance of the proposed method has been examined at different 

combinations of noise and intensity inhomogeneity on the T1-weighted and T2-weighted 

simulated MR brain image volumes. Fig. 2 shows the qualitative results of segmentation of 

BrainWeb T1-weighted image (slice 96, Fig. 2(a)), with 9% noise and 40% inhomogeneity. Fig 

2(b) - (e) give the segmented regions of the original image, CSF, GM, and WM respectively by 

method 1. Fig 2(f) – (i) give the segmented regions of the original image, CSF, GM, and WM 

respectively by method 2. Fig. 3 shows the qualitative results of segmentation of BrainWeb T2-

weighted image (slice 100, Fig. 3(a)), with 9% noise and 40% inhomogeneity. Fig 3(b) - (e) give 

the segmented regions of the original image, CSF, GM, and WM respectively by method 1. Fig 

3(f) – (i) give the segmented regions of the original image, CSF, GM, and WM respectively by 

method 2. Fig. 4 shows the qualitative results of segmentation of IBSR T1-weighted image (slice 

149, Fig. 4(a)), volume 5. Fig 4(b) - (e) give the segmented regions of the original image, CSF, 

GM, and WM respectively by method 1. Fig 4(f) – (i) give the segmented regions of the original 

image, CSF, GM, and WM respectively by method 2. 
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Fig 2: Qualitative segmented results of the original image, CSF, GM, and WM (from left 

to right) by the proposed methods on BrainWeb T1-weighted MR image with 9% noise 

and 40% inhomogeneity (a). (b) – (e): method 1; (f) – (i): method 2. 
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Fig 3: Qualitative segmented results of the original image, CSF, GM, and WM (from left 

to right) by the proposed methods on BrainWeb T2-weighted MR image with 9% noise 

and 40% inhomogeneity (a). (b) – (e): method 1; (f) – (i): method 2. 
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(e) 

Fig 4: Qualitative segmented results of the original image, CSF, GM, and WM (from left to right) 

by the proposed methods on IBSR T1-weighted MR image of volume 05 (a). (b) – (e): method 1; 

(f) – (i): method 2. 



3.1.1.2 Quantitative evaluation 

  For comparative study quantitative evaluation is essential. We have presented three types 

of quantitative evaluation based on (i) cluster validity functions, (ii) segmentation accuracy and 

(iii) tissue segmentation accuracy. The cluster validity functions are presented in terms of (i) 

partition coefficient, (ii) partition entropy and (iii) similarity index. To reduce the influence of 

the selected images, results are provided as the average values of 81 images (slice 50 – slice 130) 

from each volume of the simulated T1 weighted MR brain images and 51 images (slice 50 – slice 

100) from each volume of the simulated T2-weighted MR brain images. 

 

3.1.1.2.1 Cluster validity functions: 

 

(a) Partition coefficient (Vpc): Partition coefficient is one of the most important indicators of 

fuzzy partition and provides best performance with less fuzziness when the value of Vpc takes its 

optimal value as 1, with higher values being “better”. It can be represented as follows [25, 27, 

41]: 

 

Vpc = 
∑ ∑ 𝜇𝑖𝑘

2𝑁
𝑘=1

𝐶
𝑖=1

𝑁
     (3.1) 

 

In Fig. 5 comparative results in terms of Vpc for the proposed method 1 and method 2 over 10 

BrainWeb T1-weighted MR brain image volumes with different combination of noise and 

inhomogeneity are shown. In Fig. 6 comparative results in terms of Vpc for the proposed method 

1 and method 2 over 10 BrainWeb T2-weighted MR brain image volumes with different 

combination of noise and inhomogeneity are shown. Similarly, in Fig. 7 Vpc for the proposed 

method 1 and method 2 is compared over 3 IBSR T1-weighted MR brain image volumes. 
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Fig. 5: Comparative study in terms of Vpc for the proposed method 1 and method 2 over 10 

BrainWeb T1-weighted MR brain image volumes with different combination of noise and 

inhomogeneity. 

 

 

 

Fig. 6: Comparative study in terms of Vpc for the proposed method 1 and method 2 over 10 

BrainWeb T2-weighted MR brain image volumes with different combination of noise and 

inhomogeneity. 
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Fig. 7: Comparative study in terms of Vpc for the proposed method 1 and method 2 over 3 IBSR 

T1-weighted MR brain image volumes. 

 

(b) Partition entropy (Vpe): Partition entropy is another important indicator of fuzzy partition. To 

achieve best clustering the value of Vpe should be minimal and its value is 0, with lower values 

being “better”. It can be stated as follows [25, 27, 42]: 

 

Vpe = 
− ∑ ∑ [𝜇𝑖𝑘   log𝜇𝑖𝑘]𝑁

𝑘=1
𝐶
𝑖=1

𝑁
    (3.2) 

 

In Fig. 8 comparative results in terms of Vpe for the proposed method 1 and method 2 over 10 

BrainWeb T1-weighted MR brain image volumes with different combination of noise and 

inhomogeneity are shown. In Fig. 9 comparative results in terms of Vpe for the proposed method 

1 and method 2 over 10 BrainWeb T2-weighted MR brain image volumes with different 

combination of noise and inhomogeneity are shown. Similarly, in Fig. 10 Vpe for the proposed 

method 1 and method 2 is compared over 3 IBSR T1-weighted MR brain image volumes. 
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Fig. 8: Comparative study in terms of Vpe for the proposed method 1 and method 2 over 10 

BrainWeb T1-weighted MR brain image volumes with different combination of noise and 

inhomogeneity. 

 

 

 

Fig. 9: Comparative study in terms of Vpe for the proposed method 1 and method 2 over 10 

BrainWeb T2-weighted MR brain image volumes with different combination of noise and 

inhomogeneity. 
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Fig. 10: Comparative study in terms of Vpe for the proposed method 1 and method 2 over 3 IBSR 

T1-weighted MR brain image volumes. 

 

(c) Similarity index (𝞺): Let for an image with C clusters, if Ai and Bi represent the sets of pixels 

belonging to cluster i in the segmented image and in “ground truth” image, respectively, then the 

similarity index 𝞺 is defined as follows [4]: 

 

𝞺 = 
1

𝐶
∑

2  |𝐴𝑖 ∩ 𝐵𝑖|

|𝐴𝑖 |+ |𝐵𝑖|
𝑐
𝑖=1  × 100%    (3.3) 

 

The value of similarity index is ranged in [0, 1] and the optimal clustering result is achieved 

when 𝞺 = 1, with higher value being “better”. It is a very efficient validity measurement as it 

compares the segmentation results with the ground truth. Noise and inhomogeneity free image is 

considered here as the ground truth image. In Fig. 11 comparative results in terms of 𝞺 for the 

proposed method 1 and method 2 over 10 BrainWeb T1-weighted MR brain image volumes with 

different combination of noise and inhomogeneity are shown. In Fig. 12 comparative results in 

terms of 𝞺 for the proposed method 1 and method 2 over 10 BrainWeb T2-weighted MR brain 

image volumes with different combination of noise and inhomogeneity are shown. Similarly, in 

Fig. 13 𝞺 for the proposed method 1 and method 2 is compared over 3 IBSR T1-weighted MR 

brain image volumes. 
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Fig. 11: Comparative study in terms of 𝞺 for the proposed method 1 and method 2 over 10 

BrainWeb T1-weighted MR brain image volumes with different combination of noise and 

inhomogeneity. 

 

 

 

Fig. 12: Comparative study in terms of 𝞺 for the proposed method 1 and method 2 over 10 

BrainWeb T2-weighted MR brain image volumes with different combination of noise and 

inhomogeneity. 
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Fig.13: Comparative study in terms of 𝞺 for the proposed method 1 and method 2 over 3 IBSR 

T1-weighted MR brain image volumes. 

 

3.1.1.2.2. Segmentation accuracy (SA):  

The SA is defined as the sum of the correctly classified pixels divided by the sum of the total 

number of pixels of the clustered image. The SA can be represented as follows [4]: 

 

𝑆𝐴 =  
𝑐𝑎𝑟𝑑(𝐴𝑗 ∩ 𝐶𝑗)

𝑐𝑎𝑟𝑑( 𝐶𝑗)
      (3.4) 

 

In the above mentioned expression, Aj is the set of pixels belonging to the j
th

 cluster found by the 

proposed method, Cj is the set of pixels of the j
th 

 cluster in the ground truth image. For an ideal 

result, the value of SA will be 1, with higher values being “better”. Table 1 describes the 

comparative performance of different segmentation algorithms in terms of segmentation 

accuracy on the 10 BrainWeb T1-weighted MR brain image volumes with different combination 

of noise and intensity inhomogeneity. Table 2 describes the comparative performance of 

different segmentation algorithms in terms of segmentation accuracy on the 3 IBSR T1-weighted 

MR brain image volumes. Similarly, in Table 3 the comparative performance of proposed 

methods in terms of segmentation accuracy on the 10 BrainWeb T2-weighted MR brain image 

volumes with different combination of noise and intensity inhomogeneity is shown. 
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Table 1: 

Comparative performance of different segmentation algorithms in terms of segmentation 

accuracy on the BrainWeb T1-weighted MR brain image volumes with different combination of 

noise and intensity inhomogeneity. 

 

Volumes 

( Noise% 

- IIH% )  

Tissue 

Regions 

Segmentation Accuracy ( SA )   

   

FCM FGFC

M 

sFCM ASIFC PFCM Method 

1 

Standard 

deviation 

Method 

2 

Standard 

deviation 

           

1 – 20 CSF 

GM 

WM 

0.956 

0.922 

0.966 

0.938 

0.895 

0.977 

0.966 

0.938 

0.975 

0.969 

0.942 

0.978 

0.961 

0.935 

0.976 

0.925 

0.941 

0.972 

±0.016 

±0.012 

±0.009 

0.924 

0.929 

0.980 

±0.014 

±0.014 

±0.004 

1 – 40 CSF 

GM 

WM 

0.938 

0.874 

0.918 

0.917 

0.853 

0.959 

0.944 

0.931 

0.968 

0.947 

0.934 

0.973 

0.950 

0.875 

0.940 

0.926 

0.927 

0.940 

±0.016 

±0.016 

±0.009 

0.924 

0.912 

0.953 

±0.013 

±0.018 

±0.007 

3 – 20 CSF 

GM 

WM 

0.930 

0.865 

0.907 

0.906 

0.848 

0.951 

0.938 

0.927 

0.956 

0.942 

0.931 

0.960 

0.949 

0.907 

0.974 

0.928 

0.936 

0.966 

±0.015 

±0.013 

±0.012 

0.928 

0.922 

0.977 

±0.012 

±0.014 

±0.004 

3 – 40 CSF 

GM 

WM 

0.910 

0.849 

0.898 

0.893 

0.835 

0.944 

0.921 

0.922 

0.947 

0.926 

0.924 

0.952 

0.925 

0.850 

0.937 

0.927 

0.923 

0.934 

±0.014 

±0.016 

±0.012 

0.925 

0.906 

0.950 

±0.012 

±0.017 

±0.007 

5 – 20 CSF 

GM 

WM 

0.881 

0.834 

0.848 

0.861 

0.828 

0.941 

0.907 

0.916 

0.938 

0.911 

0.919 

0.946 

0.907 

0.879 

0.959 

0.921 

0.927 

0.955 

±0.014 

±0.013 

±0.019 

0.919 

0.910 

0.971 

±0.014 

±0.013 

±0.004 

5 – 40 CSF 

GM 

WM 

0.837 

0.825 

0.840 

0.832 

0.821 

0.916 

0.861 

0.909 

0.926 

0.867 

0.911 

0.933 

0.875 

0.837 

0.925 

0.919 

0.914 

0.920 

±0.015 

±0.017 

±0.021 

0.915 

0.896 

0.945 

±0.015 

±0.015 

±0.007 

7 – 20 CSF 

GM 

WM 

0.819 

0.818 

0.829 

0.816 

0.801 

0.909 

0.852 

0.902 

0.912 

0.859 

0.907 

0.918 

0.836 

0.815 

0.949 

0.902 

0.910 

0.943 

±0.018 

±0.015 

±0.023 

0.897 

0.891 

0.963 

±0.018 

±0.013 

±0.006 

7 – 40 CSF 

GM 

WM 

0.807 

0.782 

0.795 

0.795 

0.792 

0.906 

0.849 

0.895 

0.903 

0.852 

0.989 

0.908 

0.817 

0.772 

0.926 

0.901 

0.901 

0.902 

±0.019 

±0.020 

±0.029 

0.893 

0.879 

0.935 

±0.019 

±0.016 

±0.007 

9 – 20 CSF 

GM 

WM 

0.753 

0.755 

0.781 

0.739 

0.736 

0.873 

0.827 

0.871 

0.897 

0.836 

0.875 

0.901 

0.777 

0.762 

0.932 

0.870 

0.892 

0.918 

±0.025 

±0.020 

±0.037 

0.856 

0.868 

0.950 

±0.018 

±0.015 

±0.010 

9 - 40 CSF 

GM 

WM 

0.742 

0.742 

0.765 

0.731 

0.725 

0.876 

0.824 

0.862 

0.873 

0.829 

0.868 

0.880 

0.753 

0.737 

0.914 

0.868 

0.879 

0.842 

±0.029 

±0.022 

±0.172 

0.851 

0.855 

0.921 

±0.019 

±0.016 

±0.009 
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Table 2: 

Comparative performance of different segmentation algorithms in terms of segmentation 

accuracy on the IBSR T1-weighted MR brain image volumes. 

 

 

Volumes Tissue 

Regions 

Segmentation Accuracy ( SA )   

FCM FGFCM sFCM ASIFC PFCM Method 

1 

Standard 

deviation 

Method 

2 

Standard 

deviation 

           

Vol  1 CSF 

GM 

WM 

0.767 

0.629 

0.950 

0.752 

0.613 

0.948 

0.832 

0.693 

0.947 

0.837 

0.696 

0.958 

0.726 

0.620 

0.955 

0.846 

0.672 

0.889 

±0.052 

±0.059 

±0.020 

0.901 

0.678 

0.891 

±0.047 

±0.049 

±0.026 

Vol 2 CSF 

GM 

WM 

0.756 

0.748 

0.944 

0.745 

0.729 

0.951 

0.778 

0.786 

0.949 

0.782 

0.793 

0.956 

0.737 

0.732 

0.954 

0.801 

0.768 

0.909 

±0.124 

±0.064 

±0.013 

0.831 

0.756 

0.906 

±0.113 

±0.059 

±0.014 

Vol 5 CSF 

GM 

WM 

0.623 

0.753 

0.632 

0.611 

0.749 

0.758 

0.631 

0.827 

0.753 

0.636 

0.831 

0.778 

0.611 

0.799 

0.775 

0.716 

0.751 

0.921 

±0.075 

±0.058 

±0.017 

0.793 

0.718 

0.909 

±0.063 

±0.051 

±0.019 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25 



Table 3: 

Comparative performance of proposed algorithms in terms of segmentation accuracy on the 

BrainWeb T2-weighted MR brain image volumes with different combination of noise and 

intensity inhomogeneity. 

 

Volumes ( Noise% - 

IIH% ) 

Tissue Regions Segmentation Accuracy ( SA )   

Method 1 Standard 

deviation 

Method 2 Standard 

deviation 

      

1 – 20 CSF 

GM 

WM 

0.986 

0.796 

0.954 

±0.014 

±0.015 

±0.022 

0.994 

0.813 

0.962 

±0.002 

±0.015 

±0.022 

1 – 40 CSF 

GM 

WM 

0.988 

0.802 

0.935 

±0.006 

±0.022 

±0.032 

0.989 

0.807 

0.944 

±0.003 

±0.023 

±0.031 

3 – 20 CSF 

GM 

WM 

0.994 

0.791 

0.943 

±0.002 

±0.016 

±0.028 

0.992 

0.800 

0.954 

±0.003 

±0.016 

±0.026 

3 – 40 CSF 

GM  

WM 

0.987 

0.794 

0.934 

±0.004 

±0.022 

±0.032 

0.985 

0.787 

0.945 

±0.004 

±0.025 

±0.029 

5 – 20 CSF 

GM 

WM 

0.989 

0.775 

0.934 

±0.003 

±0.018 

±0.027 

0.986 

0.765 

0.949 

±0.004 

±0.021 

±0.023 

5 – 40 CSF 

GM 

WM 

0.978 

0.759 

0.935 

±0.007 

±0.024 

±0.025 

0.974 

0.739 

0.948 

±0.006 

±0.027 

±0.021 

7 – 20 CSF 

GM 

WM 

0.982 

0.729 

0.922 

±0.005 

±0.013 

±0.021 

0.976 

0.705 

0.941 

±0.005 

±0.013 

±0.016 

7 – 40 CSF 

GM 

WM 

0.965 

0.700 

0.931 

±0.011 

±0.015 

±0.016 

0.961 

0.674 

0.944 

±0.011 

±0.018 

±0.013 

9 – 20 CSF 

GM 

WM 

0.967 

0.669 

0.901 

±0.009 

±0.014 

±0.014 

0.961 

0.639 

0.916 

±0.009 

±0.020 

±0.012 

9 - 40 CSF 

GM 

WM 

0.913 

0.573 

0.931 

±0.033 

±0.060 

±0.011 

0.909 

0.548 

0.932 

±0.035 

±0.065 

±0.013 
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3.1.1.2.3. Tissue segmentation accuracy (TSA):  

The TSA is defined as follows [4]: 

 

𝑇𝑆𝐴 =  
2𝑁𝐶𝑇𝐾

𝑁𝐶𝐼𝑇𝐾+ 𝑁𝐺𝑇𝐾
     (3.5) 

 

In the above definition, 𝑁𝐶𝑇𝐾 denotes the number of pixels that are correctly assigned to tissue k 

by a the proposed method. 𝑁𝐶𝐼𝑇𝐾 is the total number of pixels assigned to tissue k and 𝑁𝐺𝑇𝐾 is 

the number of pixels belonging to the tissue k in the ground truth. For an ideal result, TSA will 

be 1, with higher values being “better”. Table 4 describes the comparative performance of 

different segmentation algorithms in terms of tissue segmentation accuracy on the 10 BrainWeb 

T1-weighted MR brain image volumes with different combination of noise and intensity 

inhomogeneity. Table 5 describes the comparative performance of different segmentation 

algorithms in terms of tissue segmentation accuracy on the 3 IBSR T1-weighted MR brain image 

volumes. Similarly, in Table 6 the comparative performance of proposed methods in terms of 

tissue segmentation accuracy on the 10 BrainWeb T2-weighted MR brain image volumes with 

different combination of noise and intensity inhomogeneity is shown. 
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Table 4: 

Comparative performance of different segmentation algorithms in terms of tissue segmentation 

accuracy on the BrainWeb T1-weighted MR brain image volumes with different combination of 

noise and intensity inhomogeneity. 

 

Volumes 

( Noise% 

- IIH% ) 

Tissue 

Regions 

Tissue Segmentation Accuracy ( TSA )   

FCM FGFC

M 

sFCM ASIFC PFCM Method 

1 

Standard 

deviation 

Method 

2 

Standard 

deviation 

1 – 20 CSF 

GM 

WM 

0.463 

0.724 

0.741 

0.465 

0.720 

0.738 

0.652 

0.845 

0.853 

0.668 

0.862 

0.873 

0.452 

0.720 

0.741 

0.569 

0.829 

0.865 

±0.046 

±0.017 

±0.055 

0.571 

0.826 

0.859 

±0.049 

±0.017 

±0.060 

1 – 40 CSF 

GM 

WM 

0.458 

0.719 

0.738 

0.462 

0.715 

0.731 

0.645 

0.837 

0.851 

0.657 

0.848 

0.862 

0,427 

0.691 

0.729 

0.565 

0.811 

0.851 

±0.046 

±0.017 

±0.050 

0.568 

0.807 

0.846 

±0.050 

±0.018 

±0.057 

3 – 20 CSF 

GM 

WM 

0.451 

0.717 

0.735 

0.458 

0.711 

0.731 

0.633 

0.831 

0.847 

0.642 

0.843 

0.858 

0.451 

0.710 

0.730 

0.578 

0.828 

0.863 

±0.046 

±0.017 

±0.055 

0.581 

0.824 

0.857 

±0.049 

±0.017 

±0.060 

3 – 40 CSF 

GM 

WM 

0.442 

0.698 

0.724 

0.447 

0.691 

0.719 

0.623 

0.825 

0.842 

0.639 

0.836 

0.854 

0.424 

0.684 

0.720 

0.573 

0.810 

0.850 

±0.047 

±0.017 

±0.051 

0.576 

0.806 

0.845 

±0.049 

±0.017 

±0.057 

5 – 20 CSF 

GM 

WM 

0.439 

0.693 

0.716 

0.442 

0.689 

0.714 

0.615 

0.817 

0.839 

0.623 

0.829 

0.846 

0.494 

0.690 

0.717 

0.580 

0.823 

0.857 

±0.048 

±0.016 

±0.057 

0.584 

0.820 

0.853 

±0.050 

±0.016 

±0.061 

5 – 40 CSF 

GM 

WM 

0.419 

0.678 

0.714 

0.426 

0.673 

0.712 

0.609 

0.811 

0.831 

0.618 

0.825 

0.842 

0.414 

0.672 

0.711 

0.575 

0.806 

0.845 

±0.050 

±0.016 

±0.054 

0.579 

0.805 

0.842 

±0.051 

±0.016 

±0.057 

7 – 20 CSF 

GM 

WM 

0.417 

0.660 

0.694 

0.421 

0.654 

0.691 

0.602 

0.795 

0.822 

0.611 

0.816 

0.835 

0.418 

0.651 

0.690 

0.576 

0.813 

0.850 

±0.051 

±0.015 

±0.059 

0.579 

0.810 

0.844 

±0.052 

±0.016 

±0.064 

7 – 40 CSF 

GM 

WM 

0.390 

0.645 

0.693 

0.392 

0.637 

0.689 

0.592 

0.778 

0.815 

0.601 

0.792 

0.829 

0.397 

0.629 

0.684 

0.568 

0.795 

0.837 

±0.052 

±0.017 

±0.056 

0.572 

0.794 

0.835 

±0.052 

±0.017 

±0.059 

9 – 20 CSF 

GM 

WM 

0.377 

0.621 

0.666 

0.381 

0.613 

0.664 

0.558 

0.762 

0.808 

0.579 

0.786 

0.824 

0.366 

0.605 

0.660 

0.559 

0.799 

0.837 

±0.054 

±0.016 

±0.063 

0.561 

0.797 

0.834 

±0.050 

±0.016 

±0.065 

9 - 40 CSF 

GM 

WM 

0.361 

0.610 

0.671 

0.372 

0.605 

0.670 

0.552 

0.751 

0.792 

0.571 

0.769 

0.817 

0.358 

0.590 

0.662 

0.548 

0.776 

0.799 

±0.057 

±0.022 

±0.160 

0.552 

0.781 

0.825 

±0.051 

±0.016 

±0.062 
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Table 5: 

Comparative performance of different segmentation algorithms in terms of tissue segmentation 

accuracy on the IBSR T1-weighted MR brain image volumes. 

 

Volumes Tissue 

Regions 

Tissue Segmentation Accuracy ( TSA )   

FCM FGFCM sFCM ASIFC PFCM Method 

1 

Standard 

deviation 

Method 

2 

Standard 

deviation 

           

Vol  1 CSF 

GM 

WM 

0.534 

0.622 

0.664 

0.537 

0.619 

0.657 

0.601 

0.412 

0.476 

0.620 

0.738 

0.779 

0.633 

0.608 

0.650 

0.359 

0.765 

0.854 

±0.092 

±0.042 

±0.042 

0.354 

0.770 

0.876 

±0.093 

±0.036 

±0.046 

Vol 2 CSF 

GM 

WM 

0.630 

0.651 

0.707 

0.633 

0.642 

0.689 

0.711 

0.724 

0.721 

0.731 

0.758 

0.740 

0.629 

0.640 

0.701 

0.366 

0.822 

0.893 

±0.086 

±0.036 

±0.044 

0.362 

0.814 

0.894 

±0.083 

±0.033 

±0.043 

Vol 5 CSF 

GM 

WM 

0.528 

0.646 

0.621 

0.538 

0.632 

0.618 

0.543 

0.710 

0.653 

0.562 

0.731 

0.689 

0.569 

0.733 

0.681 

0.346 

0.814 

0.884 

±0.053 

±0.038 

±0.054 

0.333 

0.792 

0.884 

±0.053 

±0.033 

±0.053 
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Table 6: 

Comparative performance of proposed algorithms in terms of tissue segmentation accuracy on 

the BrainWeb T2-weighted MR brain image volumes with different combination of noise and 

intensity inhomogeneity. 

 

Volumes ( Noise% - 

IIH% ) 

Tissue Regions Tissue Segmentation Accuracy ( TSA )   

Method 1                  Standard 

                                 deviation 

Method 2 Standard 

deviation 

     

1 – 20 CSF 

GM 

WM 

0.573 

0.781 

0.706 

±0.029 

±0.017 

±0.113 

0.604 

0.788 

0.704 

±0.032 

±0.019 

±0.111 

1 – 40 CSF 

GM 

WM 

0.617 

0.773 

0.684 

±0.029 

±0.018 

±0.115 

0.638 

0.775 

0.684 

±0.031 

±0.020 

±0.113 

3 – 20 CSF 

GM 

WM 

0.591 

0.771 

0.702 

±0.030 

±0.017 

±0.113 

0.617 

0.775 

0.700 

±0.033 

±0.019 

±0.111 

3 – 40 CSF 

GM 

WM 

0.638 

0.763 

0.684 

±0.028 

±0.019 

±0.113 

0.652 

0.761 

0.682 

±0.030 

±0.022 

±0.111 

5 – 20 CSF 

GM 

WM 

0.623 

0.750 

0.687 

±0.031 

±0.020 

±0.112 

0.642 

0.747 

0.684 

±0.033 

±0.023 

±0.110 

5 – 40 CSF 

GM 

WM 

0.663 

0.736 

0.671 

±0.027 

±0.022 

±0.111 

0.673 

0.728 

0.668 

±0.027 

±0.025 

±0.109 

7 – 20 CSF 

GM 

WM 

0.643 

0.713 

0.663 

±0.030 

±0.020 

±0.114 

0.658 

0.704 

0.659 

±0.029 

±0.020 

±0.114 

7 – 40 CSF 

GM 

WM 

0.680 

0.694 

0.649 

±0.027 

±0.018 

±0.114 

0.688 

0.681 

0.645 

±0.027 

±0.019 

±0.116 

9 – 20 CSF 

GM 

WM 

0.661 

0.666 

0.631 

±0.028 

±0.017 

±0.115 

0.673 

0.651 

0.627 

±0.028 

±0.017 

±0.118 

9 - 40 CSF 

GM 

WM 

0.722 

0.601 

0.605 

±0.028 

±0.042 

±0.130 

0.724 

0.585 

0.600 

±0.027 

±0.048 

±0.132 
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3.1.2 Real-patient MR images: 

 

We have examined the performance of the proposed method on an image volume consisting of 

51 real-patient MR image data, which are collected from the Advanced Medical Research 

Institute (AMRI) Hospital, Kolkata, India. As the ground truth of segmentation for real-patient 

MR images is not usually available, thereby the performance of the proposed method on the real-

patient MR data is evaluated first qualitatively and later quantitatively in terms of cluster validity 

functions. 

 

3.1.2.1. Qualitative evaluation 

 

Fig. 14 shows the qualitative results of segmentation of T1-weighted real-patient MR brain 

image (Fig. 14(a)) by the proposed methods. Fig. 14(b)-(e) show the segmented regions of the 

original image, CSF, GM, and WM, respectively by the proposed method 1; Fig. 14(f)-(i) show 

the segmented regions of the original image, CSF, GM, and WM, respectively by the proposed 

method 2. Fig. 15 shows the qualitative results of segmentation of T2-weighted real-patient MR 

brain image (Fig. 15(a)) by the proposed methods. Fig. 15(b)-(e) show the segmented regions of 

the original image, CSF, GM, and WM, respectively by the proposed method 1; Fig. 15(f)-(i) 

show the segmented regions of the original image, CSF, GM, and WM, respectively by the 

proposed method 2. 
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Fig. 14: Qualitative segmented results of the original image, CSF, GM, and WM (from left to 

right) by the proposed methods on T1-weighted real patient MR image (a). (b) – (e): method 1; 

(f) – (i): method 2. 
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Fig. 15: Qualitative segmented results of the original image, CSF, GM, and WM (from left to right) 

by the proposed methods onT2-weighted real patient MR image (a). (b) – (e): method 1; (f) – (i): 

method 2. 

 



3.1.2.2. Quantitative evaluation 

 

Table 7 shows the average Vpc and Vpe values from the three T1-weighted real-patient MR brain 

image volumes for the method 1 and method 2. Fig. 16 and Fig. 17 show the average Vpc and Vpe 

values from the three T2-weighted real-patient MR brain image volumes for the method 1 and 

method 2. 

 

Table 7: 

Comparative study for different segmentation algorithms of Vpc and Vpe on three T1-weighted 

real patient volumes. 

 

Volume Method Vpc Standard 

deviation 

Vpe Standard 

deviation 

Real patient 1 FCM 

FGFCM 

sFCM 

ASIFC 

PFCM 

Method 1 

Method 2 

0.791 

0.811 

0.835 

0.897 

0.905 

0.912 

0.909 

 

 

 

 

 

±0.015 

±0.019 

0.253 

0.159 

0.074 

0.056 

0.053 

0.191 

0.195 

 

 

 

 

 

±0.027 

±0.034 

Real patient 2 FCM 

FGFCM 

sFCM 

ASIFC 

PFCM 

Method 1 

Method 2 

0.870 

0.893 

0.907 

0.922 

0.935 

0.901 

0.917 

 

 

 

 

 

±0.008 

±0.018 

0.273 

0.193 

0.178 

0.143 

0.112 

0.211 

0.175 

 

 

 

 

 

±0.019 

±0.039 

Real patient 3 FCM 

FGFCM 

sFCM 

ASIFC 

PFCM 

Method 1 

Method 2 

0.705 

0.815 

0.886 

0.911 

0.924 

0.907 

0.913 

 

 

 

 

 

±0.012 

±0.012 

0.558 

0.329 

0.294 

0.206 

0.137 

0.190 

0.180 

 

 

 

 

 

±0.024 

±0.023 
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Fig. 16: Comparative study for the two proposed algorithms of Vpc on three T2-weighted real 

patient volumes. 

 

 

 

Fig. 17: Comparative study for the two proposed algorithms of Vpe on three T2-weighted real 

patient volumes. 
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3.2: Varying Receptive Field of the Gaussian Function: 

Entropy is involved as the dissimilarity among the pixels in the regions along the edges is very 

high. So, to calculate the entropy in a local neighbourhood, a threshold value is empirically 

determined for the expression pik . If the variance among the pixels in a 5×5 neighbourhood is 

greater than the threshold, then we take the receptive field 40 times than the original one. 

Otherwise, it remains the same.  

The performance of the proposed method is examined on the same above mentioned databases. 

 

3.2.1. Simulated MR brain images: 

 

3.2.1.1 Qualitative evaluation: 

Here, we present the qualitative outputs of the modified proposed method. The 

performance of the modified proposed method has been examined at different combinations of 

noise and intensity inhomogeneity on the T1-weighted simulated MR brain image volumes. Fig. 

18 shows the qualitative results of segmentation of BrainWeb T1-weighted image (slice 96, Fig. 

18(a)), with 9% noise and 40% inhomogeneity. Fig 18(b) - (e) give the segmented regions of the 

original image, CSF, GM, and WM respectively by method 1 modified. Fig 18(f) – (i) give the 

segmented regions of the original image, CSF, GM, and WM respectively by method 2 modified. 

Fig. 19 shows the qualitative results of segmentation of IBSR T1-weighted image (slice 149, Fig. 

19(a)), volume 5. Fig 19(b) - (e) give the segmented regions of the original image, CSF, GM, and 

WM respectively by method 1 modified. Fig 19(f) – (i) give the segmented regions of the 

original image, CSF, GM, and WM respectively by method 2 modified. 
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Fig. 18: Qualitative segmented results of the original image, CSF, GM, and WM (from left 

to right) by the proposed methods on BrainWeb T1-weighted MR image with 9% noise and 

40% inhomogeneity (a). (b) – (e): method 1 modified; (f) – (i): method 2 modified. 
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Fig. 19: Qualitative segmented results of the original image, CSF, GM, and WM (from left to right) 

by the proposed methods on IBSR T1-weighted MR image of volume 05 (a). (b) – (e): method 1 

modified; (f) – (i): method 2 modified. 

 



3.2.1.2 Quantitative evaluation 

  For comparative study quantitative evaluation is essential. We have presented three types 

of quantitative evaluation based on (i) cluster validity functions, (ii) segmentation accuracy and 

(iii) tissue segmentation accuracy. The cluster validity functions are presented in terms of (i) 

partition coefficient, (ii) partition entropy and (iii) similarity index. To reduce the influence of 

the selected images, results are provided as the average values of 81 images (slice 50 – slice 130) 

from each volume of the simulated T1 weighted MR brain images. 

 

3.2.1.2.1 Cluster validity functions: 

 

(a) Partition coefficient (Vpc): 

In Fig. 20 comparative results in terms of Vpc for the proposed method 1 modified and method 2 

modified over 10 BrainWeb T1-weighted MR brain image volumes with different combination 

of noise and inhomogeneity are shown. Similarly, in Fig. 21 Vpc for the proposed method 1 

modified and method 2 modified is compared over three IBSR T1-weighted MR brain image 

volumes. 

 

 

Fig. 20: Comparative study in terms of Vpc for the proposed method 1 modified and method 2 

modified over 10 BrainWeb T1-weighted MR brain image volumes with different combination 

of noise and inhomogeneity. 
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Fig. 21: Comparative study in terms of Vpc for the proposed method 1 modified and method 2 

modified over 3 IBSR T1-weighted MR brain image volumes. 

 

(b) Partition entropy (Vpe): 

In Fig. 22 comparative results in terms of Vpe for the proposed method 1 modified and method 2 

modified over 10 BrainWeb T1-weighted MR brain image volumes with different combination 

of noise and inhomogeneity are shown. Similarly, in Fig. 23 Vpe for the proposed method 1 

modified and method 2 modified is compared over three IBSR T1-weighted MR brain image 

volumes. 

 

 

Fig. 22: Comparative study in terms of Vpe for the proposed method 1 modified and method 2 

modified over 10 BrainWeb T1-weighted MR brain image volumes with different combination 

of noise and inhomogeneity 
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Fig. 23: Comparative study in terms of Vpe for the proposed method 1 modified and method 2 

modified over 3 IBSR T1-weighted MR brain image volumes. 

 

(c) Similarity index (𝞺):  

In Fig. 24 comparative results in terms of 𝞺 for the proposed method 1 modified and method 2 

modified over 10 BrainWeb T1-weighted MR brain image volumes with different combination 

of noise and inhomogeneity are shown. Similarly, in Fig. 25 𝞺 for the proposed method 1 

modified and method 2 modified is compared over three IBSR T1-weighted MR brain image 

volumes. 

 

 

Fig. 24: Comparative study in terms of 𝞺 for the proposed method 1 modified and method 2 

modified over 10 BrainWeb T1-weighted MR brain image volumes with different combination 

of noise and inhomogeneity. 
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Fig. 25: Comparative study in terms of 𝞺 for the proposed method 1 modified and method 2 

modified over 3 IBSR T1-weighted MR brain image volumes. 

 

 

3.2.1.2.2. Segmentation accuracy (SA):  

Table 8 describes the comparative performance of different segmentation algorithms in terms of 

segmentation accuracy on the 10 BrainWeb T1-weighted MR brain image volumes with different 

combination of noise and intensity inhomogeneity. Similarly, Table 9 describes the comparative 

performance of different segmentation algorithms in terms of segmentation accuracy on the 3 

IBSR T1-weighted MR brain image volumes. 
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Table 8: 

Comparative performance of different segmentation algorithms in terms of segmentation 

accuracy on the BrainWeb T1-weighted MR brain image volumes with different combination of 

noise and intensity inhomogeneity. 

 

Volumes 

( Noise% 

- IIH% )  

Tissue 

Regions 

Segmentation Accuracy ( SA )   

   

FCM FGFCM sFCM ASIFC PFCM Method 

1 

modified 

Standard 

deviation 

Method 

2 

modified 

Standard 

deviation 

           

1 – 20 CSF 

GM 

WM 

0.956 

0.922 

0.966 

0.938 

0.895 

0.977 

0.966 

0.938 

0.975 

0.969 

0.942 

0.978 

0.961 

0.935 

0.976 

0.924 

0.943 

0.971 

±0.017 

±0.012 

±0.008 

0.914 

0.928 

0.981 

±0.016 

±0.016 

±0.004 

1 – 40 CSF 

GM 

WM 

0.938 

0.874 

0.918 

0.917 

0.853 

0.959 

0.944 

0.931 

0.968 

0.947 

0.934 

0.973 

0.950 

0.875 

0.940 

0.924 

0.930 

0.938 

±0.016 

±0.015 

±0.008 

0.913 

0.913 

0.955 

±0.015 

±0.019 

±0.009 

3 – 20 CSF 

GM 

WM 

0.930 

0.865 

0.907 

0.906 

0.848 

0.951 

0.938 

0.927 

0.956 

0.942 

0.931 

0.960 

0.949 

0.907 

0.974 

0.926 

0.939 

0.965 

±0.016 

±0.012 

±0.012 

0.915 

0.923 

0.979 

±0.015 

±0.015 

±0.004 

3 – 40 CSF 

GM 

WM 

0.910 

0.849 

0.898 

0.893 

0.835 

0.944 

0.921 

0.922 

0.947 

0.926 

0.924 

0.952 

0.925 

0.850 

0.937 

0.925 

0.926 

0.932 

±0.015 

±0.015 

±0.011 

0.913 

0.908 

0.953 

±0.014 

±0.019 

±0.008 

5 – 20 CSF 

GM 

WM 

0.881 

0.834 

0.848 

0.861 

0.828 

0.941 

0.907 

0.916 

0.938 

0.911 

0.919 

0.946 

0.907 

0.879 

0.959 

0.920 

0.930 

0.954 

±0.015 

±0.012 

±0.018 

0.909 

0.915 

0.973 

±0.015 

±0.015 

±0.004 

5 – 40 CSF 

GM 

WM 

0.837 

0.825 

0.840 

0.832 

0.821 

0.916 

0.861 

0.909 

0.926 

0.867 

0.911 

0.933 

0.875 

0.837 

0.925 

0.919 

0.919 

0.919 

±0.014 

±0.016 

±0.019 

0.908 

0.904 

0.948 

±0.015 

±0.017 

±0.008 

7 – 20 CSF 

GM 

WM 

0.819 

0.818 

0.829 

0.816 

0.801 

0.909 

0.852 

0.902 

0.912 

0.859 

0.907 

0.918 

0.836 

0.815 

0.949 

0.903 

0.915 

0.942 

±0.016 

±0.014 

±0.023 

0.894 

0.900 

0.966 

±0.016 

±0.015 

±0.005 

7 – 40 CSF 

GM 

WM 

0.807 

0.782 

0.795 

0.795 

0.792 

0.906 

0.849 

0.895 

0.903 

0.852 

0.989 

0.908 

0.817 

0.772 

0.926 

0.902 

0.907 

0.901 

±0.018 

±0.018 

±0.028 

0.892 

0.890 

0.940 

±0.017 

±0.018 

±0.009 

9 – 20 CSF 

GM 

WM 

0.753 

0.755 

0.781 

0.739 

0.736 

0.873 

0.827 

0.871 

0.897 

0.836 

0.875 

0.901 

0.777 

0.762 

0.932 

0.876 

0.899 

0.917 

±0.021 

±0.019 

±0.040 

0.868 

0.884 

0.955 

±0.017 

±0.016 

±0.008 

9 - 40 CSF 

GM 

WM 

0.742 

0.742 

0.765 

0.731 

0.725 

0.876 

0.824 

0.862 

0.873 

0.829 

0.868 

0.880 

0.753 

0.737 

0.914 

0.874 

0.887 

0.827 

±0.025 

±0.021 

±0.215 

0.868 

0.875 

0.929 

±0.019 

±0.018 

±0.008 
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Table 9: 

Comparative performance of different segmentation algorithms in terms of segmentation 

accuracy on the IBSR T1-weighted MR brain image volumes. 

 

Volumes Tissue 

Regions 

Segmentation Accuracy ( SA )   

FCM FGFCM sFCM ASIFC PFCM Method 

1 

modified 

Standard 

deviation 

Method 

2 

modified 

Standard 

deviation 

           

Vol  1 CSF 

GM 

WM 

0.767 

0.629 

0.950 

0.752 

0.613 

0.948 

0.832 

0.693 

0.947 

0.837 

0.696 

0.958 

0.726 

0.620 

0.955 

0.842 

0.680 

0.886 

±0.023 

±0.051 

±0.017 

0.911 

0.677 

0.884 

±0.044 

±0.054 

±0.025 

Vol 2 CSF 

GM 

WM 

0.756 

0.748 

0.944 

0.745 

0.729 

0.951 

0.778 

0.786 

0.949 

0.782 

0.793 

0.956 

0.737 

0.732 

0.954 

0.805 

0.770 

0.907 

±0.122 

±0.064 

±0.013 

0.847 

0.762 

0.894 

±0.103 

±0.063 

±0.014 

Vol 5 CSF 

GM 

WM 

0.623 

0.753 

0.632 

0.611 

0.749 

0.758 

0.631 

0.827 

0.753 

0.636 

0.831 

0.778 

0.611 

0.799 

0.775 

0.722 

0.746 

0.917 

±0.076 

±0.057 

±0.018 

0.831 

0.700 

0.888 

±0.063 

±0.049 

±0.016 

 

 

3.2.1.2.3. Tissue segmentation accuracy (TSA):  

Table 10 describes the comparative performance of different segmentation algorithms in terms of 

tissue segmentation accuracy on the 10 BrainWeb T1-weighted MR brain image volumes with 

different combination of noise and intensity inhomogeneity. Table 11 describes the comparative 

performance of different segmentation algorithms in terms of tissue segmentation accuracy on 

the 3 IBSR T1-weighted MR brain image volumes. 
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Table 10: 

Comparative performance of different segmentation algorithms in terms of tissue segmentation 

accuracy on the BrainWeb T1-weighted MR brain image volumes with different combination of 

noise and intensity inhomogeneity. 

 

Volumes 

( Noise% 

- IIH% ) 

Tissue 

Regions 

Tissue Segmentation Accuracy ( TSA )   

FCM FGFC

M 

sFCM ASIFC PFCM Method 

1 

modified 

Standard 

deviation 

Method 

2 

modified 

Standard 

deviation 

1 – 20 CSF 

GM 

WM 

0.463 

0.724 

0.741 

0.465 

0.720 

0.738 

0.652 

0.845 

0.853 

0.668 

0.862 

0.873 

0.452 

0.720 

0.741 

0.568 

0.829 

0.865 

±0.046 

±0.016 

±0.055 

0.566 

0.822 

0.857 

±0.050 

±0.017 

±0.064 

1 – 40 CSF 

GM 

WM 

0.458 

0.719 

0.738 

0.462 

0.715 

0.731 

0.645 

0.837 

0.851 

0.657 

0.848 

0.862 

0,427 

0.691 

0.729 

0.563 

0.811 

0.851 

±0.046 

±0.017 

±0.051 

0.562 

0.804 

0.844 

±0.051 

±0.018 

±0.061 

3 – 20 CSF 

GM 

WM 

0.451 

0.717 

0.735 

0.458 

0.711 

0.731 

0.633 

0.831 

0.847 

0.642 

0.843 

0.858 

0.451 

0.710 

0.730 

0.576 

0.828 

0.863 

±0.046 

±0.017 

±0.055 

0.575 

0.821 

0.855 

±0.050 

±0.017 

±0.065 

3 – 40 CSF 

GM 

WM 

0.442 

0.698 

0.724 

0.447 

0.691 

0.719 

0.623 

0.825 

0.842 

0.639 

0.836 

0.854 

0.424 

0.684 

0.720 

0.571 

0.810 

0.850 

±0.047 

±0.017 

±0.051 

0.570 

0.803 

0.842 

±0.051 

±0.018 

±0.062 

5 – 20 CSF 

GM 

WM 

0.439 

0.693 

0.716 

0.442 

0.689 

0.714 

0.615 

0.817 

0.839 

0.623 

0.829 

0.846 

0.494 

0.690 

0.717 

0.578 

0.823 

0.858 

±0.047 

±0.016 

±0.057 

0.578 

0.816 

0.850 

±0.050 

±0.016 

±0.065 

5 – 40 CSF 

GM 

WM 

0.419 

0.678 

0.714 

0.426 

0.673 

0.712 

0.609 

0.811 

0.831 

0.618 

0.825 

0.842 

0.414 

0.672 

0.711 

0.573 

0.806 

0.845 

±0.049 

±0.016 

±0.054 

0.575 

0.802 

0.840 

±0.051 

±0.017 

±0.061 

7 – 20 CSF 

GM 

WM 

0.417 

0.660 

0.694 

0.421 

0.654 

0.691 

0.602 

0.795 

0.822 

0.611 

0.816 

0.835 

0.418 

0.651 

0.690 

0.575 

0.813 

0.850 

±0.049 

±0.016 

±0.059 

0.577 

0.806 

0.842 

±0.050 

±0.016 

±0.066 

7 – 40 CSF 

GM 

WM 

0.390 

0.645 

0.693 

0.392 

0.637 

0.689 

0.592 

0.778 

0.815 

0.601 

0.792 

0.829 

0.397 

0.629 

0.684 

0.568 

0.796 

0.836 

±0.050 

±0.017 

±0.056 

0.571 

0.792 

0.832 

±0.051 

±0.017 

±0.063 

9 – 20 CSF 

GM 

WM 

0.377 

0.621 

0.666 

0.381 

0.613 

0.664 

0.558 

0.762 

0.808 

0.579 

0.786 

0.824 

0.366 

0.605 

0.660 

0.561 

0.800 

0.837 

±0.052 

±0.017 

±0.064 

0.567 

0.794 

0.832 

±0.050 

±0.017 

±0.067 

9 - 40 CSF 

GM 

WM 

0.361 

0.610 

0.671 

0.372 

0.605 

0.670 

0.552 

0.751 

0.792 

0.571 

0.769 

0.817 

0.358 

0.590 

0.662 

0.551 

0.776 

0.783 

±0.055 

±0.025 

±0.206 

0.562 

0.781 

0.823 

±0.051 

±0.017 

±0.064 
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Table 11: 

Comparative performance of different segmentation algorithms in terms of tissue segmentation 

accuracy on the IBSR T1-weighted MR brain image volumes. 

 

Volumes Tissue 

Regions 

Tissue Segmentation Accuracy ( TSA )   

FCM FGFCM sFCM ASIFC PFCM Method 

1 

modified 

Standard 

deviation 

Method 

2 

modified 

Standard 

deviation 

           

Vol  1 CSF 

GM 

WM 

0.534 

0.622 

0.664 

0.537 

0.619 

0.657 

0.601 

0.412 

0.476 

0.620 

0.738 

0.779 

0.633 

0.608 

0.650 

0.389 

0.770 

0.852 

±0.074 

±0.036 

±0.029 

0.349 

0.767 

0.876 

±0.094 

±0.039 

±0.045 

Vol 2 CSF 

GM 

WM 

0.630 

0.651 

0.707 

0.633 

0.642 

0.689 

0.711 

0.724 

0.721 

0.731 

0.758 

0.740 

0.629 

0.640 

0.701 

0.366 

0.822 

0.893 

±0.086 

±0.035 

±0.043 

0.360 

0.814 

0.894 

±0.083 

±0.034 

±0.041 

Vol 5 CSF 

GM 

WM 

0.528 

0.646 

0.621 

0.538 

0.632 

0.618 

0.543 

0.710 

0.653 

0.562 

0.731 

0.689 

0.569 

0.733 

0.681 

0.340 

0.811 

0.881 

±0.051 

±0.037 

±0.054 

0.318 

0.773 

0.881 

±0.054 

±0.030 

±0.051 

 

 

3.2.2 Real-patient MR images: 

 

3.2.2.1. Qualitative evaluation 

 

Fig. 26 shows the qualitative results of segmentation of T1-weighted real-patient MR brain 

image (Fig. 26(a)) by the proposed methods. Fig. 26(b)-(e) show the segmented regions of the 

original image, CSF, GM, and WM, respectively by the proposed method 1 modified; Fig. 26(f)-

(i) show the segmented regions of the original image, CSF, GM, and WM, respectively by the 

proposed method 2 modified. 
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Fig. 26: : Qualitative segmented results of the original image, CSF, GM, and WM (from left 

to right) by the proposed methods onT1-weighted real patient MR image (a). (b) – (e): method 

1 modified; (f) – (i): method 2 modified. 

 



3.2.2.2. Quantitative evaluation 

 

Table 12 shows the average Vpc and Vpe values from the three T1-weighted real-patient MR brain 

image volumes for the method 1 modified and method 2 modified. 

 

Table 12: 

Comparative study for different segmentation algorithms of Vpc and Vpe on three T1-weighted 

real patient volumes. 

 

Volume Method Vpc Standard 

deviation 

Vpe Standard 

deviation 

Real patient 1 FCM 

FGFCM 

sFCM 

ASIFC 

PFCM 

Method 1 modified 

Method 2 modified 

0.791 

0.811 

0.835 

0.897 

0.905 

0.911 

0.904 

 

 

 

 

 

±0.015 

±0.025 

0.253 

0.159 

0.074 

0.056 

0.053 

0.191 

0.167 

 

 

 

 

 

±0.027 

±0.047 

Real patient 2 FCM 

FGFCM 

sFCM 

ASIFC 

PFCM 

Method 1 modified 

Method 2 modified 

0.870 

0.893 

0.907 

0.922 

0.935 

0.913 

0.921 

 

 

 

 

 

±0.017 

±0.024 

0.273 

0.193 

0.178 

0.143 

0.112 

0.186 

0.167 

 

 

 

 

 

±0.038 

±0.046 

Real patient 3 FCM 

FGFCM 

sFCM 

ASIFC 

PFCM 

Method 1 modified 

Method 2 modified 

0.705 

0.815 

0.886 

0.911 

0.924 

0.908 

0.912 

 

 

 

 

 

±0.012 

±0.012 

0.558 

0.329 

0.294 

0.206 

0.137 

0.190 

0.183 

 

 

 

 

 

±0.023 

±0.024 
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CHAPTER 4 

CONCLUSION 

 

 

In this project, an “Entropy-based Fuzzy Clustering Algorithm for Brain MR Image 

Segmentation” has been presented. This method involves Shannon entropy to improve the 

robustness to the noise and intensity inhomogeneity. This proposed method is examined on ten 

volumes of simulated T1-weighted brain MR images each one having 81 images and another ten 

volumes of simulated T2-weighted brain MR images each having 51 images. Finally, for real 

world application the proposed method is tested on three real patient brain MR image volumes 

both in qualitative and quantitative manner. The experimental results are compared to the FCM, 

FGFCM, sFCM, PFCM, ASIFC algorithms. The experimental results show that the method 1 

provides superior segmentation results than the method 2 in our proposed methods. Furthermore, 

the method 1 modified is more tolerant to noise and intensity inhomogeneity than the method 1. 

The advantage of this proposed method is that it can produce superior segmentation results even 

in presence of noise and intensity inhomogeneity in MRI data. 
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