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CHAPTER 1  
 

INTRODUCTION 

 As we know that, the world is growing faster like never before. Everyone is rushing for their 

ultimate goals. This thirst results into the development in almost every sector. Online business is one 

of them. We people, don’t have time to shop from market and this is not the end. We don't even have 

time to choose the object from the collection. This created the embryo of online shopping, which 

nowadays, has become a huge tree with tons of branches. 

 As the online market grows exponentially, it’s obvious that competition will enter in this field 

also. Now, owners of their respective sites need to attract their users by providing attractive facilities. 

Recommender Engines is one of the facilities given to users.  

 Recommender engine is the most immediately recognizable machine learning technique in 

use today. We have seen services or sites that attempt to recommend books or movies or articles 

based on our past actions. They try to infer tastes and preferences and identify unknown items that 

are of interest [1]. 

 Abstract Recommender Systems (RSs) are software tools and techniques providing 

suggestions for items to be of use to a user [2]. A recommender system is a technology that is 

deployed in the environment where items (products, movies, events, articles) are to be recommended 

to users (customers, visitors, app users, readers) or the opposite. Typically, there are many items 

and many users present in the environment making the problem hard and expensive to solve. Imagine 

a shop. Good merchant knows personal preferences of customers. Her/His high quality 

recommendations make customers satisfied and increase profits. In case of online marketing and 

shopping, personal recommendations can be generated by an artificial merchant: the recommender 

system . 

 This report presents an overview of recommendation systems and some examples of 

recommendation engines in Chapter 2. This report also contains details about different types of 

recommendation systems along with their advantages and disadvantages in Chapter 3. Here we have 

designed a basic model of simple recommendation system as well as collaborative filtering based 

recommender system on movie dataset. The details are discussed in Chapter 4. Chapter 5 concludes 

the work. 
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CHAPTER 2 
 

RELATED WORKS 
 

 Recommender system is defined as a decision making strategy for users under complex 

information environments. Also, recommender system was defined from the perspective of E-

commerce as a tool that helps users search through records of knowledge which is related to user’s 

interest and preference. Recommender system was defined as a means of assisting and augmenting 

the social process of using recommendations of others to make choices when there is no sufficient 

personal knowledge or experience of the alternatives. Recommender systems handle the problem of 

information overload that users normally encounter by providing them with personalized, exclusive 

content and service recommendations [6]. 

 Recommender systems have become increasingly popular in recent years, and are utilized in 

a variety of areas including movies, music, news, books, research articles, search queries, social 

tags, and products in general. There are also recommender systems for experts,
 
collaborators, jokes, 

restaurants, garments, financial services, life insurance, online dating and Twitter pages. 

 

2.1 Offline Recommendation Engines 

 In the external world, we can think of the people around us as recommendation engines. 

 

 Your family and friends as clothes recommendation engines: With the thousands of style 

options now available to us, we often rely on friends and family to recommend stores, styles 

and tell us what looks good on us. 
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 Your Professors as book recommendation engines: When want to research or better 

understand a concept, our Professors can lead us to the titles which best suit our needs 

 Your friends as movie recommendation engines: If you have friends who know your 

cinematic tastes well, you’re likely to trust their movie recommendations over a random 

stranger’s picks. 

All of these “offline recommenders” know something about you. They know your style, taste or area 

of study, and thus can make more informed decisions about what to recommendations would benefit 

you most. It is this personalisation- based on getting to “know” you- that online recommenders aim 

to emulate. 

2.2 Online Recommendation Engines 

 Facebook: “People You May Know” 

 
https://www.google.co.in/search?q=fb+people+you+may+know&rlz=1C1CHZL_enIN709IN709&source=lnms&tbm=isch&sa=X&ved=2ahUKEwidx

ovdyoTbAhUBNI8KHdrtAS0Q_AUoAnoECAEQBA&biw=1360&bih=672#imgrc=kcjL8JfQPuTyDM:  

Facebook  uses a recommender system to suggest Facebook users you may know offline. The system 

is trained on personal data, mutual friends, where you went to school, places of work and mutual 

networks (pages, groups, etc.), to learn who might be in your offline & offline network. 

 

 

https://www.google.co.in/search?q=fb+people+you+may+know&rlz=1C1CHZL_enIN709IN709&source=lnms&tbm=isch&sa=X&ved=2ahUKEwidxovdyoTbAhUBNI8KHdrtAS0Q_AUoAnoECAEQBA&biw=1360&bih=672#imgrc=kcjL8JfQPuTyDM
https://www.google.co.in/search?q=fb+people+you+may+know&rlz=1C1CHZL_enIN709IN709&source=lnms&tbm=isch&sa=X&ved=2ahUKEwidxovdyoTbAhUBNI8KHdrtAS0Q_AUoAnoECAEQBA&biw=1360&bih=672#imgrc=kcjL8JfQPuTyDM
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 Netflix: “Other Movies You Might Enjoy” 

 
https://www.google.co.in/search?q=netflix+other+movies+you+may+enjoy&rlz=1C1CHZL_enIN709IN709&source=lnms&tbm=isch&sa=X&ved=2a

hUKEwjqqqKPyoTbAhVGs48KHfzBBfgQ_AUoAnoECAAQBA&biw=1360&bih=672#imgrc=GCVkuG7FMBIjSM: 

When a user fills out his Taste Preferences or rate movies and TV shows, he is helping Netflix to 

filter through the thousands of selections to get a better idea of what this user might like to watch. 

Factors that Netflix algorithm uses to make such recommendations include: 

 The genre of movies and TV shows available 

 User’s streaming history, and previous ratings he has made. 

 The combined ratings of all Netflix members who have similar tastes in titles to this user. 

 LinkedIn: “Jobs You May be Interested In” 

 

https://www.google.co.in/search?q=linkedin+jobs+you+may+be+interested+in&rlz=1C1CHZL_enIN709IN709&source=lnms&tbm=isch&sa=X&ved

=2ahUKEwiQ7sGtyITbAhWHpo8KHQLhBbMQ_AUoA3oECAAQBQ&biw=1360&bih=672#imgdii=gUZeHKvIWRksiM:&imgrc=7hv_MQ9-

VolJ3M:  

https://www.google.co.in/search?q=netflix+other+movies+you+may+enjoy&rlz=1C1CHZL_enIN709IN709&source=lnms&tbm=isch&sa=X&ved=2ahUKEwjqqqKPyoTbAhVGs48KHfzBBfgQ_AUoAnoECAAQBA&biw=1360&bih=672#imgrc=GCVkuG7FMBIjSM
https://www.google.co.in/search?q=netflix+other+movies+you+may+enjoy&rlz=1C1CHZL_enIN709IN709&source=lnms&tbm=isch&sa=X&ved=2ahUKEwjqqqKPyoTbAhVGs48KHfzBBfgQ_AUoAnoECAAQBA&biw=1360&bih=672#imgrc=GCVkuG7FMBIjSM
http://dataconomy.com/tag/netflix/
https://www.google.co.in/search?q=linkedin+jobs+you+may+be+interested+in&rlz=1C1CHZL_enIN709IN709&source=lnms&tbm=isch&sa=X&ved=2ahUKEwiQ7sGtyITbAhWHpo8KHQLhBbMQ_AUoA3oECAAQBQ&biw=1360&bih=672#imgdii=gUZeHKvIWRksiM:&imgrc=7hv_MQ9-VolJ3M
https://www.google.co.in/search?q=linkedin+jobs+you+may+be+interested+in&rlz=1C1CHZL_enIN709IN709&source=lnms&tbm=isch&sa=X&ved=2ahUKEwiQ7sGtyITbAhWHpo8KHQLhBbMQ_AUoA3oECAAQBQ&biw=1360&bih=672#imgdii=gUZeHKvIWRksiM:&imgrc=7hv_MQ9-VolJ3M
https://www.google.co.in/search?q=linkedin+jobs+you+may+be+interested+in&rlz=1C1CHZL_enIN709IN709&source=lnms&tbm=isch&sa=X&ved=2ahUKEwiQ7sGtyITbAhWHpo8KHQLhBbMQ_AUoA3oECAAQBQ&biw=1360&bih=672#imgdii=gUZeHKvIWRksiM:&imgrc=7hv_MQ9-VolJ3M


[5] 
 

 The Jobs You May Be Interested In feature shows jobs posted on LinkedIn that match your 

profile in some way. These recommendations are based on the titles and descriptions in your 

previous experience, and the skills other users have “endorsed”. 

 Amazon: “Customers Who Bought This Item Also Bought…” 

 

https://www.google.co.in/search?q=amazon+customers+who+bought+this+also+bought&rlz=1C1CHZL_enIN709IN709&source=lnms&tbm=isch&sa

=X&ved=2ahUKEwjs7ZH7yITbAhXIL48KHYYND2IQ_AUoAXoECAAQAw&biw=1360&bih=672#imgrc=c6H03SOnYdLECM:  

 Amazon’s algorithm crunches data on all of its millions of customer baskets, to figure out 

which items are frequently bought together. This can lead to huge returns- for example, if a user is 

buying an electrical item, and sees a recommendation for the cables or batteries it requires beneath it, 

the user is very likely to purchase both the core product and the accessories from Amazon [11]. 

 

 

 

 

 

 

 

 

 

 

 

https://www.google.co.in/search?q=amazon+customers+who+bought+this+also+bought&rlz=1C1CHZL_enIN709IN709&source=lnms&tbm=isch&sa=X&ved=2ahUKEwjs7ZH7yITbAhXIL48KHYYND2IQ_AUoAXoECAAQAw&biw=1360&bih=672#imgrc=c6H03SOnYdLECM
https://www.google.co.in/search?q=amazon+customers+who+bought+this+also+bought&rlz=1C1CHZL_enIN709IN709&source=lnms&tbm=isch&sa=X&ved=2ahUKEwjs7ZH7yITbAhXIL48KHYYND2IQ_AUoAXoECAAQAw&biw=1360&bih=672#imgrc=c6H03SOnYdLECM
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CHAPTER 3 
 

RECOMMENDER SYSTEM BASICS CONCEPT 
 

 Recommender systems are information filtering tools that are used to predict the rating for 

users and items, predominantly from big data to recommend their likes. Movie recommendation 

systems provide a mechanism to assist users in classifying users with similar interests. This makes 

recommender systems essentially a central part of websites and e-commerce applications. 

In this project we propose a movie recommendation system, where user specific interests are taken 

into account, to determine recommendations. 

A Recommendation System is composed of two modules: a database and a filtering technique. The 

database is responsible for storing the information about users, items and the associated ratings. The 

filtering technique is implemented by an algorithm. 

There are three important types of recommender systems: 

 Collaborative Filtering 

 Content based Filtering 

 Hybrid Filtering 

 

 
    

      https://www.sciencedirect.com/science/article/pii/S1110866515000341  

 

https://www.sciencedirect.com/science/article/pii/S1110866515000341
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3.1 COLLABORATIVE FILTERING 

 Collaborative filtering methods are based on collecting and analyzing a large amount of 

information on users’ behaviours, activities or preferences and predicting what users will like based 

on their similarity to other users. A key advantage of the collaborative filtering approach is that it 

does not rely on machine analyzable content and therefore it is capable of accurately recommending 

complex items such as movies without requiring an “understanding” of the item itself. Many 

algorithms have been used in measuring user similarity or item similarity in recommender systems. 

For example, the k-nearest neighbour (k-NN) approach and the Pearson Correlation [11]. 

 

https://www.google.co.in/search?q=image+of+content+based+filtering&rlz=1C1CHZL_enIN709IN709&tbm=isch&source=iu&ictx=1&fir=hUs6sCIA

zL5QRM%253A%252Cn_V7nX1sPBGkFM%252C_&usg=__Exn5uiVnNwZNvhkfFuYCSk77rE%3D&sa=X&ved=2ahUKEwiOuffht5LbAhWJQY8

KHcGdAiIQ9QEwAnoECAEQMA#imgdii=_1ELzd__EjY4VM:&imgrc=hUs6sCIAzL5QRM:  

 For each user, recommender systems recommend items based on how similar users liked the 

item. Let's say Alice and Bob have similar interests in video games. Alice recently played and 

enjoyed the game Legend of Zelda: Breathe of the Wild. Bob has not played this game, but because 

the system has learned that Alice and Bob have similar tastes, it recommends this game to Bob. In 

addition to user similarity, recommender systems can also perform collaborative filtering using item 

similarity ("Users who liked this item also liked X") [10]. 

 WHY COLLABORATIVE  FILTERING? 

 The main difference between collaborative filtering and content-based filtering is conceptual. 

Where content-based filtering is built around the attributes of a given object, collaborative filtering 

relies on the behavior of users. This approach has some distinct advantages over content-based 

filtering: 

https://www.google.co.in/search?q=image+of+content+based+filtering&rlz=1C1CHZL_enIN709IN709&tbm=isch&source=iu&ictx=1&fir=hUs6sCIAzL5QRM%253A%252Cn_V7nX1sPBGkFM%252C_&usg=__Exn5uiVnNwZNvhkfFuYCSk77rE%3D&sa=X&ved=2ahUKEwiOuffht5LbAhWJQY8KHcGdAiIQ9QEwAnoECAEQMA#imgdii=_1ELzd__EjY4VM:&imgrc=hUs6sCIAzL5QRM
https://www.google.co.in/search?q=image+of+content+based+filtering&rlz=1C1CHZL_enIN709IN709&tbm=isch&source=iu&ictx=1&fir=hUs6sCIAzL5QRM%253A%252Cn_V7nX1sPBGkFM%252C_&usg=__Exn5uiVnNwZNvhkfFuYCSk77rE%3D&sa=X&ved=2ahUKEwiOuffht5LbAhWJQY8KHcGdAiIQ9QEwAnoECAEQMA#imgdii=_1ELzd__EjY4VM:&imgrc=hUs6sCIAzL5QRM
https://www.google.co.in/search?q=image+of+content+based+filtering&rlz=1C1CHZL_enIN709IN709&tbm=isch&source=iu&ictx=1&fir=hUs6sCIAzL5QRM%253A%252Cn_V7nX1sPBGkFM%252C_&usg=__Exn5uiVnNwZNvhkfFuYCSk77rE%3D&sa=X&ved=2ahUKEwiOuffht5LbAhWJQY8KHcGdAiIQ9QEwAnoECAEQMA#imgdii=_1ELzd__EjY4VM:&imgrc=hUs6sCIAzL5QRM
http://www.zelda.com/breath-of-the-wild/


[8] 
 

 It benefits from large user bases. Simply put, the more people are using the service, the 

better your recommendations will become, without doing additional development work or 

relying on subject area expertise. 

 It’s flexible across different domains. Collaborative filtering approaches are well suited to 

highly diverse sets of items. Where content-based filters rely on metadata, collaborative 

filtering is based on real-life activity, allowing it to make connections between seemingly 

disparate items (like say, an outboard motor and a fishing rod) that nonetheless might be 

relevant to some set of users (in this case, people who like to fish). 

 It produces more serendipitous recommendations. When it comes to recommendations, 

accuracy isn’t always the highest priority. Content-based filtering approaches tend to show 

users items that are very similar to items they’ve already liked, which can lead to filter bubble 

problems. By contrast, most users have interests that span different subsets, which in theory 

can result in more diverse (and interesting) recommendations. 

 It can capture more nuance around items. Even a highly detailed content-based filtering 

system will only capture some of the features of a given item. By relying on actual human 

experience, collaborative filtering can sometimes recommend items that have a greater 

affinity with one another than a strict comparison of their attributes would suggest. 

 TWO METHODS : USER - ITEM  VS  ITEM - ITEM 

 There are two approaches to collaborative filtering, one based on items, the other on users. 

Item-item collaborative filtering was originally developed by Amazon and draws inferences about 

the relationship between different items based on which items are purchased together. The more 

often two items (say, peanut butter and jelly) appear in the same shopping cart or user history, the 

“closer” they’re said to be to one another. So, when someone comes and adds peanut butter to their 

cart, the algorithm will suggest things that are close, like jelly or white bread, over things that aren’t, 

like motor oil. 

 User-item filtering takes a slightly different approach. Here, rather than calculating the 

distance between items, we calculate the distance between users based on their ratings (or likes, or 

whatever metric applies). When coming up with recommendations for a particular user, we then look 

at the users that are closest to them and then suggest items those users also liked but that our user 

hasn’t interacted with yet. So, if you’ve watched and liked a certain number of videos on Facebook, 

Facebook can look at other users who liked those same videos and recommend one that they also 

liked but which you might not have seen yet. 

 The important point here is that in both the examples above, the system has no idea why any 

of these items are related to one another, it only knows that they either show up in the same basket 

together, or that they’re liked by people with similar preferences. In some cases, though, this can be a 

feature rather than a shortcoming, especially in cases where the items to be filtered are extremely 

heterogeneous, as in online retailers or social networks. (Note: This can also lead to some 

unanticipated situations, as when Amazon’s algorithm began unintentionally suggesting drug 

paraphernalia to users who bought a particular scale.) 

https://www.cs.umd.edu/~samir/498/Amazon-Recommendations.pdf
https://www.theatlantic.com/technology/archive/2014/04/the-unintentional-amazon-guide-to-dealing-drugs/360636/
https://www.theatlantic.com/technology/archive/2014/04/the-unintentional-amazon-guide-to-dealing-drugs/360636/
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 CHALLENGES OF COLLABORATIVE FILTERING 

 Complexity and expense. Collaborative filtering algorithms can run into scalability 

problems when the number of users and items gets too high (think in tens of millions of users 

and hundreds of thousands of items), especially when recommendations need to be generated 

in real-time online. Potential solution: This is where distributed clusters of machines running 

Hadoop or Spark come in handy. Depending on your project, it may also be possible to 

calculate relationships offline overnight by way of batch processing, which makes serving 

recommendations much quicker even if they’re no longer being updated in real-time. 

 Data sparsity. Many user signals are ambiguous. Just watching a video doesn’t tell YouTube 

whether you liked that particular video or not, and just eating at a restaurant doesn’t tell Yelp 

whether you liked it or not. That’s why ratings are so important in collaborative-filtering 

systems. But users don’t rate every item they interact with, and many users don’t rate 

anything at all. Potential solution: Depending on the nature of the data, there may be proxy 

measures that can be used. Another common technique is to assume that missing reviews are 

equivalent to average reviews, though this is a very strong assumption in most cases. 

 The “cold start” problem. As we’ve seen, collaborative-filtering can be a powerful way of 

recommending items based on user history, but what if there is no user history? This is called 

the “cold start” problem, and it can apply both to new items and to new users. Items with lots 

of history get recommended a lot, while those without never make it into the recommendation 

engine, resulting in a positive feedback loop. At the same time, new users have no history and 

thus the system doesn’t have any good recommendations. Potential solution: Onboarding 

processes can learn basic info to jump-start user preferences, importing social network 

contacts [12]. 
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3.2 CONTENT BASED FILTERING  

 Content-based filtering methods are based on a description of the item and a profile of the 

user’s preference. In a content-based recommendation system, keywords are used to describe the 

items; beside, a user profile is built to indicate the type of item this user likes. In other words, these 

algorithms try to recommend items that are similar to those that a user liked in the past (or is 

examining in the present). In particular, various candidate items are compared with items previously 

rated by the user and the best-matching items are recommended. This approach has its roots in 

information retrieval and information filtering research [11]. 

 
https://www.google.co.in/search?q=image+of+content+based+filtering&rlz=1C1CHZL_enIN709IN709&tbm=isch&source=iu&ictx=1&fir=hUs6sCIAzL5QRM

%253A%252Cn_V7nX1sPBGkFM%252C_&usg=__Exn5uiVnNwZNvhkfFuYCSk77rE%3D&sa=X&ved=2ahUKEwiOuffht5LbAhWJQY8KHcGdAiIQ9QEw

AnoECAEQMA#imgrc=hUs6sCIAzL5QRM:  

 

  If companies have detailed metadata about each of your items, they can recommend items 

with similar metadata tags. For example, let's say I watch the show Bojack Horseman on Netflix. 

This show may have metadata tags of "Animated", "Comedy", and "Adult", so Netflix recommends 

other shows with these metadata tags, such as Family Guy. [10] 

 WHY CONTENT-BASED FILTERING? 

Collaborative filtering may be the state of the art when it comes to machine learning and 

recommender systems, but content-based filtering still has a number of advantages, especially in 

certain circumstances. 

 Results tend to be highly relevant. Because content-based recommendations rely on 

characteristics of objects themselves, they are likely to be highly relevant to a user’s interests. 

https://www.google.co.in/search?q=image+of+content+based+filtering&rlz=1C1CHZL_enIN709IN709&tbm=isch&source=iu&ictx=1&fir=hUs6sCIAzL5QRM%253A%252Cn_V7nX1sPBGkFM%252C_&usg=__Exn5uiVnNwZNvhkfFuYCSk77rE%3D&sa=X&ved=2ahUKEwiOuffht5LbAhWJQY8KHcGdAiIQ9QEwAnoECAEQMA#imgrc=hUs6sCIAzL5QRM
https://www.google.co.in/search?q=image+of+content+based+filtering&rlz=1C1CHZL_enIN709IN709&tbm=isch&source=iu&ictx=1&fir=hUs6sCIAzL5QRM%253A%252Cn_V7nX1sPBGkFM%252C_&usg=__Exn5uiVnNwZNvhkfFuYCSk77rE%3D&sa=X&ved=2ahUKEwiOuffht5LbAhWJQY8KHcGdAiIQ9QEwAnoECAEQMA#imgrc=hUs6sCIAzL5QRM
https://www.google.co.in/search?q=image+of+content+based+filtering&rlz=1C1CHZL_enIN709IN709&tbm=isch&source=iu&ictx=1&fir=hUs6sCIAzL5QRM%253A%252Cn_V7nX1sPBGkFM%252C_&usg=__Exn5uiVnNwZNvhkfFuYCSk77rE%3D&sa=X&ved=2ahUKEwiOuffht5LbAhWJQY8KHcGdAiIQ9QEwAnoECAEQMA#imgrc=hUs6sCIAzL5QRM
http://www.imdb.com/title/tt3398228/
http://www.imdb.com/title/tt0182576/
https://www.upwork.com/hiring/data/machine-learning-intro/
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This makes them especially valuable for organizations with massive libraries of a single type 

of content (think subscription and streaming media services). 

 Recommendations are transparent. Another advantage is that the process by which any 

recommendation is generated can be made transparent, which may increase users’ trust in 

their recommendations or allow them to tweak them. With collaborative-filtering, the process 

is more of a black box–the algorithm and users alike may not really understand why they’re 

seeing the recommendations that are offered. 

 Users can get started more quickly. Content-based filtering avoids the cold-start problem 

that often bedevils collaborative-filtering techniques. While the system still needs some initial 

inputs from users to start making recommendations, the quality of those early 

recommendations is likely to be much higher than with a system that only becomes robust 

after millions of data points have been added and correlated. 

 New items can be recommended immediately. Related to the cold-start problem, another 

issue with collaborative-filtering is that new objects added to the library will have few (if 

any) interactions, which means they won’t be recommended very often. Unlike collaborative-

filtering systems, content-based recommenders don’t require other users to interact with an 

object before it starts recommending it. 

It’s technically easier to implement. Compared to the sophisticated math involved in building a 

collaborative-filtering system, the data science behind a content-based system is relatively 

straightforward. The real work, as we’ve seen is in assigning the attributes in the first place. 

 CHALLENGES OF CONTENT – BASED  FILTERING 

 Lack of novelty and diversity. Relevance is important, but it’s not all .If you watched and 

liked Star Wars, the odds are pretty good that you’ll also like The Empire Strikes Back, but 

you probably don’t need a recommendation engine to tell you that. It’s also important for a 

recommendation engine to come up with results that are novel (that is, stuff the user wasn’t 

expecting) and diverse (that is, stuff that represents a broad selection of their interests). 

 Scalability is a challenge. As we’ve seen, the key requirement when it comes to content-

based filtering is exceptional domain-specific knowledge. Hiring subject-matter experts can 

be a labor-intensive and expensive process, making it impractical for many businesses who 

are just trying to build an MVP. Furthermore, manual tagging of attributes has to continue as 

new content is added. 

 Attributes may be incorrectly or inconsistently applied. Content-based recommendations 

are only as good as the subject-matter experts who are tagging items. When you have 

hundreds of thousands (or millions) of items, it can be a challenge to ensure attributes are 

applied consistently or accurately [13]. 

 

 

 

 

 



[12] 
 

3.3 HYBRID FILTERING 

 Recent research has demonstrated that a hybrid approach, combining collaborative filtering 

and content-based filtering could be more effective in some cases. Hybrid approaches can be 

implemented in several ways, by making content-based and collaborative-based predictions 

separately and then combining them, by adding content-based capabilities to a collaborative-based 

approach (and vice versa), or by unifying the approaches into one model. Several studies empirically 

compare the performance of the hybrid with the pure collaborative and content-based methods and 

demonstrate that the hybrid methods can provide more accurate recommendations than pure 

approaches. These methods can also be used to overcome some of the common problems in 

recommendation systems such as cold start and the sparsity problem. 

 

http://dataconomy.com/2015/03/an-introduction-to-recommendation-engines/  

 Netflix is a good example of a hybrid system. They make recommendations by comparing the 

watching and searching habits of similar users (i.e. collaborative filtering) as well as by offering 

movies that share characteristics with films that a user has rated highly (content-based filtering). [11] 

 

 

 

 

http://dataconomy.com/netflixs-vision-future-personalising-channels-shows/
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CHAPTER 4 

DESIGN AND IMPLENTATION OF A RECOMMENDER 

SYSTEM FOR MOVIE 

4.1 DATA SET 

 We will be using the MovieLens dataset [5] for recommendation. It has been collected by the 

Group Lens research project at the University of Minnesota. The characteristics of the MovieLens 

100K dataset are as follows: 

 100,000 ratings (1-5) from 943 users on 1682 movies. 

 Each user has rated at least 20 movies. 

 Simple demographic info for the uses(age, gender, occupation.zip) 

 Genre information of movies. 

This data is loaded into python. There are many files in ml-100k.zip file which we used. We loaded 

three important files. There is also a recommendation to read the readme document which gives a lot 

of information about difference files. 

4.1.1 USERS :-  

 There are 943 rows as there are 943 users and 5 columns for 5 features for each namely their 

unique user_id, age, sex, occupation, zip_code. 

<class 'pandas.core.frame.DataFrame'> 

RangeIndex: 943 entries, 0 to 942 

Data columns (total 5 columns): 

user id       943 non-null int64 

age           943 non-null int64 

gender        943 non-null object 

occupation    943 non-null object 

zip code      943 non-null object 

dtypes: int64(2), object(3) 

memory usage: 36.9+ KB 

None 
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4.1.2 RATINGS :- 

 There are 100000 ratings as there are 100K ratings for different users and movie 

combinations. Also each ratings has a timestamp associated with it. 

<class 'pandas.core.frame.DataFrame'> 

RangeIndex: 100000 entries, 0 to 99999 

Data columns (total 4 columns): 

user id      100000 non-null int64 

movie id     100000 non-null int64 

rating       100000 non-null int64 

timestamp    100000 non-null int64 

dtypes: int64(4) 

memory usage: 3.1 MB 

None 

4.1.3 ITEMS :- 

 This dataset contains attributes of 1682 movies. There are 24 columns out of which 19 

specify the genre of a particular movie. The last 19 columns are for each genre and a value of 1 

denotes that movie belongs to that genre and 0 otherwise. 

<class 'pandas.core.frame.DataFrame'> 

Int64Index: 1682 entries, 1 to 1682 

Data columns (total 24 columns): 

movie id              1682 non-null object 

movie title           1681 non-null object 

release date          0 non-null float64 

video release date    1679 non-null object 

IMDb URL              1682 non-null int64 

unknown               1682 non-null int64 

Action                1682 non-null int64 

Adventure             1682 non-null int64 

Animation             1682 non-null int64 

Childrens             1682 non-null int64 

Comedy                1682 non-null int64 
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Crime                 1682 non-null int64 

Documentary           1682 non-null int64 

Drama                 1682 non-null int64 

Fantasy               1682 non-null int64 

Film-Noir             1682 non-null int64 

Horror                1682 non-null int64 

Musical               1682 non-null int64 

Mystery               1682 non-null int64 

Romance               1682 non-null int64 

Sci-Fi                1682 non-null int64 

Thriller              1682 non-null int64 

War                   1682 non-null int64 

Western               1682 non-null object 

dtypes: float64(1), int64(19), object(4) 

memory usage: 328.5+ KB 

None 

We also created a dataset by searching directors name of each movie in the internet, where we can 

see the name of directors of every movie. So in that dataset we have 25 columns where the last 

column is the names of movie directors. 
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4.2. IMPLEMENTATION 

 We have implemented movie recommendation system in python. We have used various 

library functions. We have used panda and used the scikit-learn library to split the dataset into testing 

and training.  

 We have used panda which is an open source, BSD-licensed library providing high-

performance, easy-to-use data structures and data analysis tools for the Python programming 

language. 

 We have used NumPy which is the fundamental package for scientific computing with 

Python. 

 Also we have used codecs which defines a set of base classes which define the interface and 

can also be used to easily write your (? our) own codecs for use in Python. 

 We have used standard operators as functions. For example, operator.add(x, y) is 

equivalent to the expression x+y. Many function names are those used for special methods, 

without the double underscores. For backward compatibility, many of these have a variant 

with the double underscores kept. The variants without the double underscores are preferred 

for clarity. 

 We have also used importlib. The purpose this package is two-fold. One is to provide the 

implementation of the import statement (and thus, by extension, the __import__() function) 

in Python source code.  This provides an implementation of import which is portable to any 

Python interpreter. This also provides an implementation which is easier to comprehend than 

one implemented in a programming language other than Python. Two, the components to 

implement import are exposed in this package, making it easier for users to create their own 

customised objects (known genericlly as an importer) to participate in the import process. 

 We have also imported Scripy.parse which is SciPy 2-D sparse matrix package for numeric 

data. 

 

 

 

 

 

 

 

 

 

 

 

http://scikit-learn.org/stable/
https://www.python.org/
https://docs.python.org/3/reference/simple_stmts.html#import
https://docs.python.org/3/reference/simple_stmts.html#import
https://docs.python.org/3/glossary.html#term-importer
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4.3 WORK FLOW AND RESULTS 

   

4.3.1 SIMPLE RECOMMENDATION:- 

 It is a generalized recommendation to every user, based on movie popularity and/or genre. 

The basic idea behind this system is that movies that are more popular and critically acclaimed will 

have a higher probability of being liked by the average audience. IMDB Top 250 is an example of 

this system. 

The dataset has three CSV files named u.data, u.user, u.item. 

 

 25 most rated movies 

 

WORKFLOW: 
 

i. Merge 3 dataset (movies , ratings , user)  

ii. Name it lens 

iii. Count number of times a movie is rated by users from lens 

iv. Print top 25 most rated movie of the dataset lens 

 

OUTPUT: 

                 --*--25 MOST RATED MOVIES ARE --*-- 
Star Wars (1977)                             583 
Contact (1997)                               509 
Fargo (1996)                                 508 
Return of the Jedi (1983)                    507 
Liar Liar (1997)                             485 
English Patient, The (1996)                  481 
Scream (1996)                                478 
Toy Story (1995)                             452 
Air Force One (1997)                         431 
Independence Day (ID4) (1996)                429 
Raiders of the Lost Ark (1981)               420 
Godfather, The (1972)                        413 
Pulp Fiction (1994)                          394 
Twelve Monkeys (1995)                        392 
Silence of the Lambs, The (1991)             390 
Jerry Maguire (1996)                         384 
Chasing Amy (1997)                           379 
Rock, The (1996)                             378 
Empire Strikes Back, The (1980)              367 
Star Trek: First Contact (1996)              365 
Back to the Future (1985)                    350 
Titanic (1997)                               350 
Mission: Impossible (1996)                   344 
Fugitive, The (1993)                         336 
Indiana Jones and the Last Crusade (1989)    331 
Name: title, dtype: int64   

 

 

 



[18] 
 

 

 Highly rated movies 
 

WORKFLOW: 

 

i. Group the movies by movie title from the dataset lens 

ii. Evaluate mean [mean is average of a list of values] of each movie 

iii. Store it as a dataset named movie_stats 

iv. Sort the dataset movie_stats in descending order 

v. Print head of this dataset 

OUTPUT: 

  --*--HIGHLY RATED MOVIES--*-- 

                                           rating      

                                             size mean 

title                                                  

They Made Me a Criminal (1939)                  1  5.0 

Marlene Dietrich: Shadow and Light (1996)       1  5.0 

Saint of Fort Washington, The (1993)            2  5.0 

Someone Else's America (1995)                   1  5.0 

Star Kid (1997)                                 3  5.0 

 

 Movies rated at least 100 times 
 

WORKFLOW 

 

i. Count the number of times a movie is rated on the dataset movie_stats 

ii. Pick up those movies whose count in greater than or equal to 100 

iii.  Save these movie names in the dataset named atleast_100 

iv. Find mean rating of the movies mentioned in the data set atleast_100 

v. Sort them in descending order 

vi. Print the head of the dataset 

 

OUTPUT 

                 --*-- MOVIES RATED ATLEAST 100 TIMES --*-- 
                                       rating           
                                         size      mean 
title                                                   
Close Shave, A (1995)                     112  4.491071 
Schindler's List (1993)                   298  4.466443 
Wrong Trousers, The (1993)                118  4.466102 
Casablanca (1942)                         243  4.456790 
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Shawshank Redemption, The (1994)          283  4.445230 
Rear Window (1954)                        209  4.387560 
Usual Suspects, The (1995)                267  4.385768 
Star Wars (1977)                          583  4.358491 
12 Angry Men (1957)                       125  4.344000 
Citizen Kane (1941)                       198  4.292929 
To Kill a Mockingbird (1962)              219  4.292237 
One Flew Over the Cuckoo's Nest (1975)    264  4.291667 
Silence of the Lambs, The (1991)          390  4.289744 
North by Northwest (1959)                 179  4.284916 
Godfather, The (1972)                     413  4.283293 

 

 Age group wise mean rating of movies 
 

WORKFLOW 

 

i. Create labels to name bins [bin is numeric variable converted into categorical variable] 

ii. Split users into eight bins of ten years [0-9, 10-19, 20-29, etc] 

iii. Create the bin to be exclusive of the max age in the bin 

iv. Sort the dataset lens in descending order  

v. Store top 50 movies in another dataset named most_50 

vi. Find mean rating across the age group on the dataset most_50 

vii. Show this data as a table 

OUTPUT 

                --*-- AGEGROUP WISE MEAN RATING --*-- 
age_group                          0-9     10-19     20-29     30-39  \ 
title                                                                   
E.T. the Extra-Terrestrial (1982)  0.0  3.680000  3.609091  3.806818    
Empire Strikes Back, The (1980)    4.0  4.642857  4.311688  4.052083    
English Patient, The (1996)        5.0  3.739130  3.571429  3.621849    
Fargo (1996)                       0.0  3.937500  4.010471  4.230769    
Forrest Gump (1994)                5.0  4.047619  3.785714  3.861702    
Fugitive, The (1993)               0.0  4.320000  3.969925  3.981481    
Full Monty, The (1997)             0.0  3.421053  4.056818  3.933333    
Godfather, The (1972)              0.0  4.400000  4.345070  4.412844    
Groundhog Day (1993)               0.0  3.476190  3.798246  3.786667    
Independence Day (ID4) (1996)      0.0  3.595238  3.291429  3.389381    
  
age_group                             40-49     50-59     60-69     70-79   
title                                                                       
E.T. the Extra-Terrestrial (1982)  4.160000  4.368421  4.375000  0.000000   
Empire Strikes Back, The (1980)    4.100000  3.909091  4.250000  5.000000   
English Patient, The (1996)        3.634615  3.774648  3.904762  4.500000   
Fargo (1996)                       4.294118  4.442308  4.000000  4.333333   
Forrest Gump (1994)                3.847826  4.000000  3.800000  0.000000   
Fugitive, The (1993)               4.190476  4.240000  3.666667  0.000000   
Full Monty, The (1997)             3.714286  4.146341  4.166667  3.500000   
Godfather, The (1972)              3.929412  4.463415  4.125000  0.000000   
Groundhog Day (1993)               3.851064  3.571429  3.571429  4.000000   
Independence Day (ID4) (1996)      3.718750  3.888889  2.750000  0.000000   
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 Men and women most disagree on 
 

WORKFLOW 

 

i. Select average ratings of each movies rated by female and male separately 

ii. Find difference between average ratings of male and female 

iii. Print head of this dataset 

OUTPUT 

                --*-- MEN AND WOMEN MOST DISAGREE ON --*-- 
sex                                F         M      diff 
movie_id title                                           
1        Toy Story (1995)   3.789916  3.909910  0.119994 
2        GoldenEye (1995)   3.368421  3.178571 -0.189850 
3        Four Rooms (1995)  2.687500  3.108108  0.420608 
4        Get Shorty (1995)  3.400000  3.591463  0.191463 
5        Copycat (1995)     3.772727  3.140625 -0.632102 

 

 Finding mean rating of a particular movie 
 

WORKFLOW 

 

i. Import data files [u.item, u.user, u.data] onto data frames [item, users, data] 

ii. Create a merged data frames [by merging item, users, data] based on similar column 

iii. Name it df 

iv. Group the movies based on  their title 

v. Name it ratings total 

vi. Take the mean rating of each movie using the mean function 

vii. Name it ratings_mean 

viii. Convert ratings_total into data frame 

ix. Print the top 5 mean rated movie 

x. Take as input the name of a movie 

xi. Print the mean rating of that particular movie from ratings_total 

WORKFLOW 

        rating                movie title  total ratings 
1398  4.358491           Star Wars (1977)            583 
333   3.803536             Contact (1997)            509 
498   4.155512               Fargo (1996)            508 
1234  4.007890  Return of the Jedi (1983)            507 
860   3.156701           Liar Liar (1997)            485 
  
WRITE A MOVIE NAME : Toy Story (1995) 
Toy Story (1995) 
        rating       movie title  total ratings 
1523  3.878319  Toy Story (1995)            452 
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 Finding mean rating of a particular  movie genre 
 

WORKFLOW 

 

i. Import data files [u.item, u.user, u.data] onto data frames [movies, users, ratings] 

ii. Create one merged Data Frame [by merging movies, ratings, users] 

iii. Name it lens 

iv. Reshape data frames by melting (Wide to long) selecting only needed fields 

v. Name it mdf 

vi. Filter for value=1 and the needed columns 

vii. Run a pivoted aggregation on mdf 

viii. Name it df 

ix. Print first 5 elements of df 

x. Take input genre name 

xi. Print the mean ratings of movies that belongs to that particular genre 

OUTPUT 

genre 
Action        3.518712 
Adventure     3.527568 
Animation     3.578192 
Children's    3.372353 
Comedy        3.449725 
dtype: float64 
 
ENTER A GENERE : Fantasy 
3.27630383397 

 

 Finding top rated movies of a director 

 

WORKFLOW 

 

i. Set work directory to where the data is located 

ii. Name the column headers for the datasets [u.item, u,user, u,data] 

iii. Import the data files onto data frames 

iv. Take input a director name 

v. Print the name of those movies whose director name is equals to the input data 

  

OUTPUT 

 

WRITE A DIRECTOR NAME : Martin Campbell 
      movie id       movie title release date  video release date  \ 
1            2  GoldenEye (1995)  01-Jan-1995                 NaN    
1415      1416  No Escape (1994)  01-Jan-1994                 NaN    
 
                                               IMDb URL  unknown  Action  \ 
1     http://us.imdb.com/M/title-exact?GoldenEye%20(...        0       1    
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1415  http://us.imdb.com/M/title-exact?No%20Escape%2...        0       1    
 
      Adventure  Animation  Childrens       ...         Film-Noir  Horror  \ 
1             1          0          0       ...                 0       0    
1415          0          0          0       ...                 0       0    
 
      Musical  Mystery  Romance   Sci-Fi  Thriller  War  Western  \ 
1           0        0         0       0         1    0        0    
1415        0        0         0       1         0    0        0    
 
             Director   
1     Martin Campbell   
1415  Martin Campbell   
 
[2 rows x 25 columns] 
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4.3.2 MEMORY BASED COLABORATIVE FILTERING :- 

 Memory-based algorithms are easy to implement and produce reasonable prediction quality. 
This Collaborative Filtering approaches can be divided into two main sections: user-item 

filtering and item-item filtering. A user-item filtering takes a particular user, find users that are 

similar to that user based on similarity of ratings, and recommend items that those similar users 

liked. In contrast, item-item filtering will take an item, find users who liked that item, and find other 

items that those users or similar users also liked. It takes items and outputs other items as 

recommendations [18]. 

 Item-Item Collaborative Filtering: “Users who liked this item also liked …” 

 User-Item Collaborative Filtering: “Users who are similar to you also liked …” 

 In both cases, we create a user-item matrix which we build from the entire dataset. Since we 

have split the data into testing and training we will need to create two 943 ×× 1682 matrices. The 

training matrix contains 75% of the ratings and the testing matrix contains 25% of the ratings. 

Example of user-item matrix: 

 
 https://cambridgespark.com/content/tutorials/implementing-your-own-recommender-systems-in-Python/index.html  

 After building the user-item matrix we calculate the similarity and create a similarity matrix. 

 The similarity values between items in Item-Item Collaborative Filtering are measured by 

observing all the users who have rated both items. 

 
         https://cambridgespark.com/content/tutorials/implementing-your-own-recommender-systems-in-Python/index.html  

https://cambridgespark.com/content/tutorials/implementing-your-own-recommender-systems-in-Python/index.html
https://cambridgespark.com/content/tutorials/implementing-your-own-recommender-systems-in-Python/index.html
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 For User-Item Collaborative Filtering the similarity values between users are measured by 

observing all the items that are rated by both users. 

 
    https://cambridgespark.com/content/tutorials/implementing-your-own-recommender-systems-in-Python/index.html  

 A distance metric commonly used in recommender systems is cosine similarity, where the 

ratings are seen as vectors in n-dimensional space and the similarity is calculated based on the angle 

between these vectors. Cosine similarity for users a and m can be calculated using the formula 

below, where you take dot product of the user vector Uk and the user vector Ua and divide it by 

multiplication of the Euclidean lengths of the vectors. 

 

To calculate similarity between items m and b you use the formula: 

 
Now we can make a prediction by applying following formula for user-based Collaborative Filtering: 

 
 We can look at the similarity between users k and a as weights that are multiplied by the 

ratings of a similar user a (corrected for the average rating of that user). We need to normalize it so 

https://cambridgespark.com/content/tutorials/implementing-your-own-recommender-systems-in-Python/index.html
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that the ratings stay between 1 and 5 and, as a final step, sum the average ratings for the user that we 

are trying to predict [18]. 

 The idea here is that some users may tend always to give high or low ratings to all movies. 

The relative difference in the ratings that these users give is more important than the absolute values. 

To give an example: suppose, user k gives 4 stars to his favourite movies and 3 stars to all other good 

movies. Suppose now that another user t rates movies that he/she likes with 5 stars, and the movies 

he/she fell asleep over with 3 stars. These two users could have a very similar taste but treat the 

rating system differently. 

 When making a prediction for item-based CF we don't need to correct for users average 

rating since query user itself is used to do predictions. 

 
 The most popular metric used to evaluate accuracy of predicted ratings is Root Mean Squared 

Error (RMSE). [18] 

 
WORK FLOW 

 

i. Read u.data file  

ii. Convert it into dataframe named df  

iii. Split the dataset into training and test dataset where percentage of test example (test_size) is 

0.25 

iv. Create two user-item matrices one for training another for testing 

v. Calculate the cosine similarity of the train data (user_similarity, item_similarity) 

vi. Make prediction for item-based CF using formulae(user_prediction, item_prediction) 

vii. Evaluate accuracy of user-based CF and item-based CF using MSE function  

 

OUTPUT 

 
User-based CF RMSE: 3.1278912151704135 
Item-based CF RMSE: 3.4562654942596227 
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4.3.3 MODEL BASED COLABORATIVE FILTERING 

 Model-based Collaborative Filtering is based on matrix factorization (MF) which has 

received greater exposure, mainly as an unsupervised learning method for latent variable 

decomposition and dimensionality reduction. Matrix factorization is widely used for recommender 

systems where it can deal better with scalability and sparsity than Memory-based Collaborative 

Filtering. The goal of MF is to learn the latent preferences of users and the latent attributes of items 

from known ratings (learn features that describe the characteristics of ratings) to then predict the 

unknown ratings through the dot product of the latent features of users and items. When you have a 

very sparse matrix, with a lot of dimensions, by doing matrix factorization you can restructure the 

user-item matrix into low-rank structure, and you can represent the matrix by the multiplication of 

two low-rank matrices, where the rows contain the latent vector. You fit this matrix to approximate 

your original matrix, as closely as possible, by multiplying the low-rank matrices together, which 

fills in the entries missing in the original matrix [9]. 

 A well-known matrix factorization method is Singular value decomposition (SVD). 

Collaborative Filtering can be formulated by approximating a matrix X by using singular value 

decomposition. The general equation can be expressed as follows:  

 

    X=UxSxVT  

Given an mxn matrix X: 

 U is an mxr orthogonal matrix 

 S is an rxr diagonal matrix with non-negative real numbers on the diagonal 

 VT is an rxn orthogonal matrix 

Elements on the diagnoal in S are known as singular values of X. 

Matrix X can be factorized to U, S and V. The U matrix represents the feature vectors 

corresponding to the users in the hidden feature space and the V matrix represents the feature vectors 

corresponding to the items in the hidden feature space. 

 

 
 https://cambridgespark.com/content/tutorials/implementing-your-own-recommender-systems-in-Python/index.html  

 

Now we can make a prediction by taking dot product of U, S and VT.    

https://cambridgespark.com/content/tutorials/implementing-your-own-recommender-systems-in-Python/index.html
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                   https://cambridgespark.com/content/tutorials/implementing-your-own-recommender-systems-in-Python/index.html  

 

  Just as its name suggest matrix factorization is to, obviously, factorize a matrix, i.e. to find 

out two (or more) matrices such that when you multiply them you will get back the original matrix. 

 matrix factorization can be used to discover latent features underlying the interactions between two 

different kinds of entities. (Of course, you can consider more than two kinds of entities and you will 

be dealing with tensor factorization, which would be more complicated.) And one obvious 

application is to predict ratings in collaborative filtering. 

 In a recommendation system such as Netflix or MovieLens , there is a group of users and a 

set of items (movies for the above two systems). Given that each users have rated some items in the 

system, we would like to predict how the users would rate the items that they have not yet rated, such 

that we can make recommendations to the users. In this case, all the information we have about the 

existing ratings can be represented in a matrix. Assume now we have 5 users and 10 items, and 

ratings are integers ranging from 1 to 5, the matrix may look something like this (a hyphen means 

that the user has not yet rated the movie): 

 

  

 Hence, the task of predicting the missing ratings can be considered as filling in the blanks 

(the hyphens in the matrix) such that the values would be consistent with the existing ratings in the 

matrix. 

 

D1 D2 D3 D4 

U1 5 3 - 1 

U2 4 - - 1 

U3 1 1 - 5 

U4 1 - - 4 

U5 - 1 5 4 

https://cambridgespark.com/content/tutorials/implementing-your-own-recommender-systems-in-Python/index.html
http://www.netflix.com/
http://movielens.umn.edu/
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 The intuition behind using matrix factorization to solve this problem is that there should be 

some latent features that determine how a user rates an item. For example, two users would give high 

ratings to a certain movie if they both like the actors/actresses of the movie, or if the movie is an 

action movie, which is a genre preferred by both users. Hence, if we can discover these latent 

features, we should be able to predict a rating with respect to a certain user and a certain item, 

because the features associated with the user should match with the features associated with the item. 

 In trying to discover the different features, we also make the assumption that the number of 

features would be smaller than the number of users and the number of items. It should not be 

difficult to understand this assumption because clearly it would not be reasonable to assume that 

each user is associated with a unique feature (although this is not impossible). And anyway if this is 

the case there would be no point in making recommendations, because each of these users would not 

be interested in the items rated by other users. Similarly, the same argument applies to the items [9]. 

 

 MATHEMATICS OF MATRIX FACTORIZATION 

 

 Having discussed the intuition behind matrix factorization, we can now go on to work on the 

mathematics. Firstly, we have a set  of users, and a set  of items. Let R of size |U|X|D|  be the 

matrix that contains all the ratings that the users have assigned to the items. Also, we assume that we 

would like to discover $K$ latent features. Our task, then, is to find two matrices P 

(a |U|XK matrix) and Q (a |D|XK matrix) such that their product approximates R 

     
 In this way, each row of  would represent the strength of the associations between a user 

and the features. Similarly, each row of  would represent the strength of the associations between 

an item and the features. To get the prediction of a rating of an item dj by Ui , we can calculate the 

dot product of the two vectors corresponding to Ui and dj : 

 

     
 

 Now, we have to find a way to obtain  and . One way to approach this problem is the first 

initialize the two matrices with some values, calculate how `different’ their product is to , and then 

try to minimize this difference iteratively. Such a method is called gradient descent, aiming at 

finding a local minimum of the difference [9]. 

 The difference here, usually called the error between the estimated rating and the real rating, 

can be calculated by the following equation for each user-item pair: 

 

    
 

 Here we consider the squared error because the estimated rating can be either higher or lower 

than the real rating. 
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  To minimize the error, we have to know in which direction we have to modify the values 

of pik and qkj. In other words, we need to know the gradient at the current values, and therefore we 

differentiate the above equation with respect to these two variables separately: 
 

     

    

 Having obtained the gradient, we can now formulate the update rules for both pik and qkj : 
 

    

    

 Here, α is a constant whose value determines the rate of approaching the minimum. Usually 

we will choose a small value for α, say 0.0002. This is because if we make too large a step towards 

the minimum we may run into the risk of missing the minimum and end up oscillating around the 

minimum. 

 we are not really trying to come up with P and Q such that we can reproduce R exactly.  

Instead, we will only try to minimise the errors of the observed user-item pairs. In other words, if we 

let T be a set of tuples, each of which is in the form of  (ui,dj,rij), such that  contains all the 

observed user-item pairs together with the associated ratings, we are only trying to minimise 

every eij for (ui,dj,rij)εT. (In other words, T is our set of training data.) As for the rest of the 

unknowns, we will be able to determine their values once the associations between the users, items 

and features have been learnt. 

Using the above update rules, we can then iteratively perform the operation until the error converges 

to its minimum. We can check the overall error as calculated using the following equation and 

determine when we should stop the process [9]. 

 

  
 

 

 REGULARIZATION 
 

 The above algorithm is a very basic algorithm for factorizing a matrix. There are a lot of 

methods to make things look more complicated. A common extension to this basic algorithm is to 

introduce regularization to avoid overfitting. This is done by adding a parameter β and modify the 

squared error as follows: 

 

  
 

 

 In other words, the new parameter β is used to control the magnitudes of the user-feature and 

item-feature vectors such that P and Q would give a good approximation of  without having to 
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contain large numbers. In practice, β is set to some values in the range of 0.02. The new update rules 

for this squared error can be obtained by a procedure similar to the one described above. The new 

update rules are as follows [9]. 

 

   

   
 

WORK FLOW of finding root meansquare error 

 

i. Read in the file which contains the full dataset 

ii. Split the dataset into training (train_data_matrix) and test (test_data_matrix) dataset where 

percentage of test example (test_size) is 0.25 

iii. Find sparsity level of movie lens dataset 

iv. Choose k=20 

v. Find SVD components (s,u,vt) from test matrix 

vi. Make a prediction (X_predict) by taking dot product of s,u,vt  

vii. Calculate root mean square value between X_predict and test_data_matrix 

 

OUTPUT 

 
The sparsity level of MovieLens100K is 93.7% 
User-based CF MSE: 2.710957747278451 

 

WORK FLOW of Matrix Factorization 

 

i. Build movie dicitionary (movies_dict) with line no as numpy movie id, its actual movie id as 

the key 

ii. Read data from ratings file where each line of i/p file represents one tag applied to one movie 

by one user, which has the following format: user Id, movie Id, tag, timestamp 

iii. Return a numpy array named numpy_arr 

iv. Create P an initial matrix of dimension N x K, where is n is no of users and k is hidden latent 

features 

v. Create Q an initial matrix of dimension M x K, where M is no of movies and K is hidden 

latent features 

vi. Initialize steps variable which is the maximum number of steps to perform the optimisation, 

hard coding the values 

vii. Initialize alpha variable the learning rate, hard coding the values 

viii. Initialize beta variable the regularization parameter, hard coding the values 

ix. For each user, each item calculate the error of the element, second norm of P and Q for 

regularization, sum of norms 

x. Compute the gradient from the error of each user, each item 

xi. Compute total error 

xii. Predict numpy array of users and movie ratings 
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WORK FLOW of Recommendation 

 

i. Read the rating file for the missing 

ii. Get the mapping between movie names, actual movie id and numpy movie id 

iii. Build predicted numpy movie id from the saved predicted matrix of user and movie ratings 

iv. Create a dictionary of unrated movies for each user 

v. Recommend top 25 unrated movies based on their the predicted score 

 

OUTPUT 

 
Top 25 movies recommendation for the user 1 
Letters from Iwo Jima (2006) with Movie rating value 9.360346877845387 
Eddie Murphy Raw (1987) with Movie rating value 9.236018165660075 
Dear Wendy (2005) with Movie rating value 9.203698523462286 
Talking About Sex (1994) with Movie rating value 8.956160676896394 
Love! Valour! Compassion! (1997) with Movie rating value 8.947410581308626 
Brave (2012) with Movie rating value 8.934428106940143 
Wild at Heart (1990) with Movie rating value 8.929597840739088 
Taking Chance (2009) with Movie rating value 8.865345347150067 
Wonderland (1999) with Movie rating value 8.858284085776976 
Goldfinger (1964) with Movie rating value 8.85507043606452 
Advantageous (2015) with Movie rating value 8.841811638780884 
Hurt Locker  The (2008) with Movie rating value 8.827438714746878 
Character (Karakter) (1997) with Movie rating value 8.814686428454374 
Man from Elysian Fields  The (2001) with Movie rating value 8.804616845028592 
Elite Squad (Tropa de Elite) (2007) with Movie rating value 8.800233480476749 
Andalusian Dog  An (Chien andalou  Un) (1929) with Movie rating value 8.782505251474689 
All About the Benjamins (2002) with Movie rating value 8.773890359394672 
Tortilla Soup (2001) with Movie rating value 8.758542219008639 
Irma la Douce (1963) with Movie rating value 8.745150922721505 
Lion in Winter  The (1968) with Movie rating value 8.73719699262219 
Mystery Science Theater 3000: The Movie (1996) with Movie rating value 
8.730271624625018 
Buried (2010) with Movie rating value 8.710702189343554 
Ride the High Country (1962) with Movie rating value 8.709931728714334 
Ice Harvest  The (2005) with Movie rating value 8.700350486013615 
Musketeer  The (2001) with Movie rating value 8.666684616297236 
 
 
Top 25 movies recommendation for the user 2 
Star Maker  The (Uomo delle stelle  L') (1995) with Movie rating value 10.13880104020052 
Haunting  The (1999) with Movie rating value 10.09639976129478 
Dersu Uzala (1975) with Movie rating value 9.986568480207652 
Gran Torino (2008) with Movie rating value 9.633308061739772 
Dot the I (2003) with Movie rating value 9.593458722493194 
Love! Valour! Compassion! (1997) with Movie rating value 9.578484363839507 
Repulsion (1965) with Movie rating value 9.525752185140883 
No Country for Old Men (2007) with Movie rating value 9.489700718703212 
Steam: The Turkish Bath (Hamam) (1997) with Movie rating value 9.464359147721858 
Insurgent (2015) with Movie rating value 9.455806020643394 
Great Santini  The (1979) with Movie rating value 9.431101171056332 
Bloodsport 2 (a.k.a. Bloodsport II: The Next Kumite) (1996) with Movie rating value 
9.427678213008964 
Dear Wendy (2005) with Movie rating value 9.322087684615997 
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Factotum (2005) with Movie rating value 9.312970454745962 
To Catch a Thief (1955) with Movie rating value 9.25597696293851 
Collapse (2009) with Movie rating value 9.20992322565514 
Darkness (2002) with Movie rating value 9.177683020889742 
Sword in the Stone  The (1963) with Movie rating value 9.16489314214196 
Upstream Color (2013) with Movie rating value 9.136938290335344 
Taking Chance (2009) with Movie rating value 9.113214062168026 
Green Hornet  The (2011) with Movie rating value 9.107034466975747 
Herbie Rides Again (1974) with Movie rating value 9.100971983950002 
Dog Day Afternoon (1975) with Movie rating value 9.094729114359401 
Midnight Cowboy (1969) with Movie rating value 9.088105650764051 
Shower (Xizao) (1999) with Movie rating value 9.081735532919996  
 
 
Top 25 movies recommendation for the user 3 
Talking About Sex (1994) with Movie rating value 10.204998351509273 
Suriyothai (a.k.a. Legend of Suriyothai  The) (2001) with Movie rating value 
9.947882319852024 
Everyone Says I Love You (1996) with Movie rating value 9.865275533587132 
Can't Buy Me Love (1987) with Movie rating value 9.856880582067522 
Safe Conduct (Laissez-Passer) (2002) with Movie rating value 9.784257297830154 
Death in Brunswick (1991) with Movie rating value 9.784003891609235 
Poison Ivy II (1996) with Movie rating value 9.72720674424106 
Low Life (1994) with Movie rating value 9.721290686061655 
Jules and Jim (Jules et Jim) (1961) with Movie rating value 9.67255094340262 
Making Plans for Lena (Non ma fille  tu n'iras pas danser) (2009) with Movie rating value 
9.617833833089582 
Forbidden Planet (1956) with Movie rating value 9.59833795485311 
Lion in Winter  The (1968) with Movie rating value 9.490113114953642 
Vertigo (1958) with Movie rating value 9.489959791757553 
Eddie Murphy Raw (1987) with Movie rating value 9.478330514789848 
Wild at Heart (1990) with Movie rating value 9.462678235822004 
Trip to the Moon  A (Voyage dans la lune  Le) (1902) with Movie rating value 
9.413287809691331 
Sentinel  The (2006) with Movie rating value 9.39122760646115 
Great Santini  The (1979) with Movie rating value 9.357351563700892 
Evita (1996) with Movie rating value 9.332073442188022 
Letters from Iwo Jima (2006) with Movie rating value 9.326944306809107 
Alice in Wonderland (1951) with Movie rating value 9.321912754319111 
No Country for Old Men (2007) with Movie rating value 9.318230556471313 
Joe Kidd (1972) with Movie rating value 9.311247251165236 
Wonderland (1999) with Movie rating value 9.288325162517323 
Buried (2010) with Movie rating value 9.280888142401098 
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CHAPTER 5 
 

CONCLUDING REMARKS 

 Here we traversed through the process of making a basic recommendation engine in python. 

We stated by understanding the fundamentals of recommendations. Then we went on to load the 

Movie lens data set for the purpose of experimentation. 

 Subsequently we made a first model as a simple popularity model in which the most popular 

movies are recommended for users. They can also find mean rating of a particular movie or search 

for top rated movies of particular genre or search for the movies by director name. But this lacked 

personalization. So we made another model based on collaborative filtering and content based 

collaborative filtering. 

 We found that the root means square error is less in model based filtering (2.71) than both 

user based collaborative filtering (3.12) and item based collaborative filtering  (3.45). The important 

aspect is that the Collaborative Filtering model uses data (user_id, movie_id, rating) to learn the 

latent features. If there is little amount of data available model-based CF model will predict poorly, 

since it will be more difficult to learn the latent features. 

 Models that use both ratings and content features are called Hybrid Recommender 

Systems where both Collaborative Filtering and Content-based Models are combined. Hybrid 

recommender systems usually show higher accuracy than Collaborative Filtering or Content-based 

Models on their own: they are capable to address the cold-start problem better since if there is no 

ratings for a user or an item, one could use the metadata from the user or item to make a prediction. 

 We would like to propose another type of recommendation algorithm where factors like 

ratings, type of movie watched, age, occupation can be used to group users into "clusters" with 

similar viewing habits. A customer can belong to multiple clusters. Based on the cluster, we can then 

identify the movie characteristics that would be most appealing to the user. And we can recommend 

the user the top rated movie within that cluster. 
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