

1 | P a g e

A solution of object recognition for car datasets

using computer vision algorithms and

applications

Thesis Submitted to the Faculty of Engineering & Technology of Jadavpur

University in partial fulfillment of the requirement for the Degree of
 Master of Engineering in Software Engineering.

 SUBMITTED BY

Surya Pratap Kahar

CLASS ROLL NUMBER: 001711002009

EXAMINATION ROLL NUMBER: M4SWE19013

REGISTRATION NUMBER: 140968 of 2017-2018

UNDER THE SUPERVISION OF

Dr. SAIYED UMER

ASSISTANT PROFESSOR

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
ALIAH UNIVERSITY

&

UNDER THE GUIDENCE OF

Dr. BIBHAS CHANDRA DHARA

PROFESSOR

DEPARTMENT OF INFORMATION TECHNOLOGY
JADAVPUR UNIVERSITY

MAY 2019

2 | P a g e

CERTIFICATE OF SUBMISSION

I hereby recommended the thesis, entitled “A solution of object

recognition for car datasets using computer vision algorithms and

applications”, prepared under my supervision by Surya Pratap Kahar be

accepted in partial fulfillment of the requirements for the degree of Master

of Software Engineering from the Department of Information Technology

under Jadavpur University.

Signature of Supervisor

Dr. Saiyed Umer

Assistant Professor
Department of Computer Science Engineering

Aliah University

Signature of Guide

Dr. Bibhas Chandra Dhara

Professor
Dept. of Information Technology

Jadavpur University

Countersigned by:

Head of the Department Dean

Dr. Bhaskar Sardar
Faculty of Engineering & Technology

Dept. of Information Technology

Jadavpur University

Jadavpur University

3 | P a g e

DEPARTMENT OF INFORMATION TECHNOLOGY

JADAVPUR UNIVERSITY

CERTIFICATE OF APPROVAL

The thesis at instance is hereby approved as a creditable study of an

engineering subject carried out and presented in a manner of satisfactory

to warrant its acceptance as a prerequisite to the degree for which it has

been submitted. It is understood that by this approval the undersigned

does not necessarily endorse or approve any statement made, opinion

expressed or conclusion drawn therein, but approve this thesis for the

purpose for which it is submitted.

Signature of Supervisor

Dr. Saiyed Umer

Assistant Professor
Department of Computer Science Engineering

Aliah University

Signature of Examiner

Signature of Guide
Dr. Bibhas Chandra Dhara

Professor

Dept. of Information

Technology

Jadavpur University

4 | P a g e

Declaration of Originality and Compliance of

Academic Ethics

I hereby declare that this thesis contains literature survey and

original research work by me, as part of my Master of

Engineering in Software Engineering during academic

session 2017-2019.

All information in this document have been obtained and

presented in accordance with academic rules and ethical

conduct.

I also declare that, as required by these rules and conduct, I

have fully cited and referenced all material and results that are

not original to this work.

Name: Surya Pratap Kahar

Class Roll No.: 001711002009

Exam Roll No.: M4SWE19013

Registration No.: 140968 of 2017-2018

M.E. in Software Engineering

Jadavpur University

 Thesis Title: A solution of object recognition for car datasets using

computer vision algorithms and applications.

5 | P a g e

Acknowledgement

I would like to express my sincere gratitude to Jadavpur University for

providing a conductive environment which helped me to pursue my study

in the field of Master of Software Engineering. I am much obliged to be a

student of School of Information Technology Department.

I would like to thank distinguished Dr. Bibhas Chandra Dhara for his

valuable guidance and technical support in the accomplishment of my

thesis. I am indebted to him for giving his precious time and motivation

throughout the project.

Also, I would like to express my gratitude to my supervisor Dr. Saiyed

Umer for giving me great intellectual freedom to pursue my topic of

interest, for his immense patient and understanding and for guiding me

each and every step of the process with knowledge and wisdom.

In addition I would like to thank all my seniors and friends for their

resourceful advice during these days. Finally, I would also like to thank

all teaching and non-teaching staffs who contributed, without any

discrimination, to make this environment an excellent place for academic

purposes.

Our journey begins by the path shown by our parents. I will be in debt to

my parents who sacrificed and dedicated all these times to keep me in the

path of honesty and hard work, and also shown faith in me.

(Surya Pratap Kahar)
Class roll no.: 001711002009

Exam roll no.: M4SWE19013
Registration no.: 140968 of 2017-2019

M.E. in Software Engineering
Jadavpur University

 Kolkata

6 | P a g e

ABSTRACT

Image classification is one of the very important problems in computer vision. They possess huge

scope in healthcare, gaming, automobile, merged reality, security, social media platforms, visual

search engines etcetera. This problem has been found to be solved with very good accuracy using

deep learning techniques. Here, we have initially applied non-deep learning techniques (LBP,

SIFT, HOG) and then applied deep-learning techniques (VGG16, ResNet50, InceptionV3). The

deep-learning algorithms are trained on ImageNet dataset and then fine-tuned using training

images of our car dataset. The results for deep-learning are fairly and expectedly high. The

question which arises is, which algorithm solves this image classification problem in the best

possible way? We have tried to answer this question by giving a comparison of the results

obtained using different algorithms which have been applied to the same car dataset.

7 | P a g e

Contents
Topics Page No.

Chapter 1 Introduction 8

 1.1 Computer vision 8

 1.2 Image classification 9

 1.3 Object detection 10

 1.4 Face recognition 12

 1.5 ImageNet 13

Chapter 2 Literature survey 15

Chapter 3 Handcrafted features 23

 3.1 LBP 23

 3.2 HOG 25

 3.3 SIFT 30

Chapter 4 Classification algorithms 34

 4.1 SVM 34

 4.2 CNN 38

 4.3 Transfer Learning 51

 4.3.1 VGG16 52

 4.3.2 Resnet50 54

 4.3.3 InceptionV3 56

Chapter 5 Experimental results and discussions 58

 5.1 Data overview 58

 5.2 Problem definition 62

 5.3 Proposed methods and preprocessing 62

 5.2 Experimantal setup 62

 5.3 Results and discussions 63

Chapter 6 Conclusion and future scope 65

 References 66

8 | P a g e

 Chapter-1

Introduction

1.1 Computer vision

We humans use our eyes along with brain to see and visually sense the world around us.

Computer vision is the science that aims to provide the same capabilities of visual sense to

machines and computers as we humans possess. Computer vision is concerned with the

automatic extraction, analysis and understanding of useful information from a single image or a

sequence of images. It involves the development of a theoretical and algorithmic basis to achieve

automatic visual understanding [3].

Computer vision can be defined in many ways. Some of the formal textbook definitions are:

 The construction of explicit, meaningful descriptions of physical objects from images.

 Computing properties of the 3D world from one or more digital images.

 To make useful decisions about real physical objects and scenes based on sensed images.

After knowing computer vision, we should now understand why do we need to care about

studying computer vision. The best way to understand the importance of something is by

knowing it’s applications and its impact on human life. There are numerous applications of

computer vision. Some of these are as follows:

 Biometrics: Fingerprint, iris and face matching remains some common methods in

biometric identification.

 Forensics: Computer vision in combination with deep learning can be used to easily

identify suspects and potential breakers, thieves, terrorists etc.

 Face recognition: Snapchat and Facebook use face-detection algorithms to apply filters

and recognize us in pictures.

 Image retrieval: Google Images uses content-based queries to search relevant images. The

9 | P a g e

algorithms analyze the content in the query image and return results based on best-

matched content.

 Gaming and controls: A great commercial product in gaming that uses stereo vision is

Microsoft Kinect.

 Surveillance: Surveillance cameras are ubiquitous at public locations and are used to

detect suspicious behaviors.

 Smart cars: Vision remains the main source of information to detect traffic signs and

lights and other visual features.

 Gesture analysis: Making gestures in front of camera can make machines do many jobs

for us like from unlocking mobile phones to switching ON or OFF the home A.C. and

many more applications.

 Augmented reality: Computer vision quickly analyzes the terrain, surroundings and

ambience using a camera and can reproduce virtual figures fitting the terrain serving a

virtual purpose.

1.2 Image classification

Image classification is a technique which involves labeling an image based on the content of the

image. A fixed set of labels will be present out of which our model will have to predict the label

that is most suitable for a given query image. This is very different from how we humans see and

classify images as the machine will see it in a stream of numbers and so it makes this task of

predicting label challenging [1]. Images are nothing but matrix of numbers. The computer sees

the images from a totally different perspective than we human does. Humans are trained from the

very beginning of their life in order to classify different objects and living beings. Humans

continuously get their brains trained by experiencing and learning. So, humans can easily classify

the type of objects or living beings into different categories which they have already seen. The

same concept has been applied for machines but instead of having a brain and training it, we

have a model (analogous to human brain) which we train by feeding millions of images as well

as their labels and by doing so, we are actually training the model. The model in turn makes

10 | P a g e

decision surfaces or boundaries or applies some sort of classification mechanism which allows it

to accurately tell the class of an image if it is fed to it after training the model. If a totally new

type of image comes then it will be extremely difficult, not only for the machines but also for the

humans, to classify the new image.

Fig 1.1: Image classification

Humans learn from errors only if some source of correct information is available. Likewise,

machines also learn from errors as long as there is some source which says about the correct class

label. This step is involved in training a model using dataset.

1.3 Object detection

Object detection is a technique that deals with detecting instances of semantic objects of a

certain class (such as humans, buildings, or cars) in digital images and videos [2]. It basically

involves recognizing various sub images and drawing a bounding box around each recognized

sub image [1].

The task of object detection involves outputting bounding boxes and labels for individual objects.

This differs from the classification / localization task by applying classification and localization

11 | P a g e

to many objects instead of just a single dominant object. We only have 2 classes of object

classification, which means object bounding boxes and non-object bounding boxes. For example,

in car detection, we have to detect all cars in a given image with their bounding boxes. Every

object has its own set of special features that helps in classifying the class, for example, all

circles are round. In this example, roundness of the circle is it’s special feature. Similarly, when

looking for squares, objects that are perpendicular at corners and have equal side lengths are

needed. A similar approach is used for face identification where eyes, nose, and lips can be found

and features like skin color and distance between eyes can be found.

Fig 1.2: Object detection

Methods for object detection are generally categorized into either machine learning-based

approaches or deep learning-based approaches. For Machine Learning approaches, it becomes

necessary to first define features using one of the methods below, then using a technique such as

support vector machine (SVM) to do the classification. On the other hand, deep learning

techniques that are able to do end-to-end object detection without specifically defining features,

and are typically based on convolutional neural networks (CNN).

12 | P a g e

Machine-learning based approaches:-

 Viola–Jones object detection framework based on Haar features

 Scale-invariant feature transform (SIFT)

 Histogram of oriented gradients (HOG) features

Deep-learning approaches:-

 Region Proposals (R-CNN, Fast R-CNN, Faster R-CNN)

 Single Shot MultiBox Detector (SSD)

 You Only Look Once (YOLO)

Object detection has become an essential in this modern world and has wide range of uses in

computer vision task. Some of the applications are as follows:-

 Face Detection

 Face Recognition

 Video object co-segmentation

1.4 Face recognition

Facial recognition is a category of biometric software that maps an individual's facial features

mathematically and stores the data as a faceprint. The software uses deep learning algorithms to

compare a live capture or digital image to the stored faceprint in order to verify an individual's

identity.

High quality cameras in mobile devices have made facial recognition a viable and easy option

for authentication as well as identification. For example, Apple’s iphone X and many other

phones include Face ID technology that lets users unlock their phones with a faceprint mapped

by the phone's camera. The software of the phone is designed with 3-D modeling to resist being

spoofed by photos or masks, captures and compares over 30,000 variables. Even the purchases

can be authenticated using Face ID with, for example, Apple Pay. The same technique can also

be used for iTunes, App store and iBook store. Apple encrypts and stores faceprint data in the

cloud, but authentication takes place directly on the device.

13 | P a g e

Now a simple question arises. How does a simple facial recognition application works? The

facial recognition software identifies 80 nodal points on a human face. Nodal points here means

end points which are used to measure variables of a person’s face, such as the length or width of

the nose, the depth of the eye sockets and the shape of the cheekbones. The system works by

capturing data for nodal points on a digital image of an individual’s face and storing the resulting

data as a faceprint. The faceprint is then used as a basis for comparison with data captured from

faces in an image or video.

Even though the facial recognition system only uses 80 nodal points, it can quickly and

accurately identify target individuals under favorable conditions. However, if the subject’s face

is partially obscured or in profile rather than facing forward, or if the light is insufficient, this

type of software is less reliable.

Let us now see some of the uses of facial recognition technology in order to understand the

importance of facial recognition. Some of the applications are as follows:-

 They are used in Biometrics in order to record attendance of students or employees.

 Facial recognition are also used ass payments methods by companies like Amazon,

MasterCard and Alibaba.

 Facial recognition is used to identify museum doppelgangers by matching a real person's

faceprint with portrait's faceprint. This is applied in Google Arts & Culture application.

 We can take a picture of an individual and -- within seconds -- return the individual's

name, date of birth and social security number (Person Identification). This has been

developed by a research team at Carnegie Mellon University. This is a proof-of-concept

iPhone application.

 Facial Recognition is used to identify criminals using a deep learning model which

identifies whether the person in question has any past criminal records or not. This

technique is also used to detect wanted persons.

1.5 ImageNet

The ImageNet project, which is a large visual database, is designed for use in visual object

recognition software research. It consists of 14 million images which have all been hand-

annotated by the project to indicate what objects are being pictured. At least one million of these

14 | P a g e

images, bounding boxes have also been provided. Number of categories in ImageNet is more

than 20,000 with a typical category, such as “baloon” or “strawberry” containing hundreds of

images. The database for the annotations is freely available directly from ImageNet. However,

the actual images are not owned by ImageNet. Since 2010, the ImageNet project runs an annual

contest named ILSVRC (ImageNet Large Scale Visual Recognition Challenge). In this contest,

software programs compete in order to correctly classify and detect objects and scenes.

This database was presented for the first time as a poster at the 2009 Conference on Computer

Vision and Pattern Recognition (CVPR) in Florida by researchers from the computer Science

department at Princeton University. The primary researchers and inventors of ImageNet include

Stanford University computer science professor and researcher Fei-Fei Li.

ImageNet crowdsources its annotation process. Image-level annotations indicate the presence or

absence of an object class in an image, such as "there are balloons in this image" or "there are no

balloons in this image". Object-level annotations provide a bounding box around the (visible part

of the) indicated object. ImageNet uses a variant of the WordNet schema to categorize objects,

augmented with 120 categories of dog breeds to showcase fine-grained classification. ImageNet

was the world’s largest academic user of Mechanical Turk. The average worker identified 50

images per minute.

The question which now comes to our mind is why should we care about ImageNet? Why is

ImageNet important? The ImageNet project is inspired by a growing sentiment in the image and

vision research field – the need for more data. Ever since the birth of the digital era and the

availability of web-scale data exchanges, researchers in these fields have been working hard to

design more and more sophisticated algorithms to index, retrieve, organize and annotate

multimedia data. But good research needs good resource. To tackle these problem in large-scale,

it would be tremendously helpful to researchers if there exists a large-scale image database. This

was the motivation for putting together ImageNet. The inventors of ImageNet had hoped that it

will become a useful resource to our research community, as well as anyone whose research and

education would benefit from using a large image database.

15 | P a g e

Chapter-2

Literature Survey

In 2018, Simon, Shlens and Le [4] tried to find the answer to the question, “do better ImageNet

models transfer better?”. The cornerstone of computer vision is transfer learning. An implicit

hypothesis which we make is that those models tend to perform better on most of the vision tasks

that performs better on ImageNet. In this paper, they compared the performance of 16

classification networks on 12 image classification datasets. It was found that, on two small fine-

grained image classification datasets, the benefits of pretraining using ImageNet was minimal

which indicates that the learned features from ImageNet do not transfer well to fine-grained

tasks. The results of their work shows that ImageNet architectures generalize well across datasets

but ImageNet features seems to be less general as was hypothesized before.

In 2015, He, Zhang, Ren and Sun [5], proposed a paper which speaks about surpassing human-

level performance on ImageNet classification. They showcased two aspects. In first aspect, they

proposed a Parametric Rectified Linear Unit (PReLU) that generalizes the traditional rectified

unit. PreLU had an advantage that it could do model fitting and with nearly zero extra

computational cost and very little chance of overfitting. In second aspect, they derived a robust

initialization method that basically considered the rectifier nonlinearities. This method enabled

them to train very deep rectified models directly from scratch and also to investigate deeper and

wider network architectures. Based on these two aspects, they had achieved a 4.94% top-5 test

error on the ImageNet 2012 classification dataset. This was a very good improvement of 26%

relative improvement over the ILSVRC 2014 winner. Their result was the first one to even

surpass the reported human-level performance of 5.1% on this dataset.

In 2017 You, Gitman and Ginsburg [6], proposed and showed that the most natural way to

speed-up the training process of very large networks is by using data-parallelism on multiple

GPUs.In order to scale this stochastic gradient based methods to more number of processors, one

need to increase the batch size to make full use of the computational power of each GPU.

Currently, we use the state-of-the-art method of manipulating the learning rate which is

16 | P a g e

proportional to the batch size.They showed that by controlling the LR during the training

process, we can efficiently use large batch size in ImageNet training. The found that the

optimization difficulty leads to the accuracy loss for large-batch training. Only using the existing

methods like linear scaling and warmup scheme are not enough to complicated application. They

also determined that changing the network structure like adding batch normalization can help

improve the accuracy, but adding only the batch normalization is not enough. They also

proposed LARS(Layerwise Adaptive Rate Scaling), which uses different LRs for different layers

based on the norm of their weights and the norm of the gradient. They found out LARS to be

highly efficient on their experiment.

In 2018, He, Girshick and Dollar [7], proposed a paper where they reported competitive results

on object detection and instance segmentation on the COCO dataset using standard models

trained from random initialization. The results were seemed to be comparable and even better

than the ImageNet pre-training counterparts even when using the hyper-parameters of th baseline

system (Mask R-CNN) which were optimized for fine-tuning pretrained models. This was done

for the sole exception of increasing the number of training iterations so the randomly initialized

models may converge. They found out that even training from random initialization is

surprisingly robust and their results even held when using only 10% of the training data, for

wider and deeper models and for multiple tasks and metrics. Experiments performed by them

showed that ImageNet pre-training speeds up convergence early in training, but it does not

necessarily provide regularization or improve final target task accuracy.

In 2016, Simon, Rodner and Denzler [8], proposed a paper where they showcased a new set of

pretrained models with popular state-of-the-art architectures for the caffe framework.

Convolutional neural networks (CNN) which are pretrained on ImageNet are the backbone of

most state-of-the-art approaches. This paper basically focused on batch-normalization-variants of

AlexNet and VGG19 as well as residual networks. They were able to reproduce the ImageNet

results of residual networks. All their models out-performed the previous pre-trained models.

In 2017, You, Zhang, Demmel and Keutzer [9], proposed a paper where they showed how to

perform 100-epoch ImageNet training with AlexNet in just 24 minutes. Generally, finishing 90-

epoch ImageNet-1k training with ResNet-50 on a NVIDIA M40 GPU takes 14 days. The number

of total single precision operations is 10
18

 on doing this training. In 2017, the world’s fastest

17 | P a g e

supercomputer could do a total of 2*10
17

 single precision operations per second. This meant that

if we could somehow make use of it’s full potential then we could do the training in just 5

seconds. However, the current bottleneck for fast Deep Neural Network (DNN) training is at the

algorithmic level. If the batch size is small then we cannot make use of many processors.

Therefore, for large-scale DNN training, we focus on using large-batch data-parallelism

synchronous SGD without even losing accuracy in fixed number of epochs. The LARS algorithm

enabled them to scale the batch size to an extremely large scale. They reported finishing the 100-

epoch ImageNet training on AlexNet in just 24 minutes (which is the world record!).

In 2012, Krizhevsky, Sutskever and Hinton [10], proposed a paper where they trained a

large,deep convolutional neural network to classify 1.2 million high-resolution images in the

ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, they had

achieved top-1 and top-5 error rates of 37.5% and 17% respectively, which is considered to be

even better than the previous state-of-the-art. The neural network had 60 million parameters and

650000 neurons and it consisted of five convolutional layers. Some of them were followed by a

max-pooling layers and three fully-connected layers with a final 1000-way softmax. In order to

make their training faster, they used non-saturating neurons and a very efficient GPU

implementation of convolution operation. They even employed a very recently developed

regularization method called “dropout” that proved to be very effective in reducing overfitting in

a fully-connected layers. The results of this paper shows that a large, deep convolutional neural

network is capable of achieving extremely good results on a very highly challenging dataset

using purely supervised learning.

In 2016, Hentschel, Wiradarma and Sack [11], proposed a paper on fine tuning CNNs

(Convolutional Neural Networks) with scarce training data. Deep CNNs are shown to outperform

previous state-of-the-art approaches for image classification. The success is said to be because of

the availability of large labeled training sets such as those provided by ImageNet benchmarking

initiative. CNNs have failed to learn descriptive features when training data is very small or

scarce. Recent work and experiments shows that supervised pre-training on external data

followed by domain-specific fine-tuning yields a very significant improvement in performance

when external data and target domain show similar visual characteristics. This paper analyzes the

performance of different types of feature representations for classification of paintings into art

18 | P a g e

epochs. They evaluated the impact of training set sizes on convolutional neural networks (CNNs)

trained with and without external data. The obtained model was compared to linear models based

on Improved Fisher Encodings. The results shown by them shows the superior performance of

fine-tuned CNNs but they propose Fisher Encodings in cases or scenarios where training data is

limited.

In 2015, Reyes, Juan and Camargo [12], published a paper on fine-tuning Deep Convolutional

Networks for plant recognition. This paper described the participation of the ECOUAN team in

the LifeCLEF 2015 challenge, where they had used a deep learning technique in which the

complete system was learned even hand-engineered components. They had pre-trained a

convolutional neural network using 1.8 million images and had used a fine-tuning technique in

order to transfer the learned capabilities of recognition from general domains to specific domain

challenges (in this case, the plant identification task). The accuracy obtained by this method of

classification even outperformed the previous best method which was proposed in 2014. They

even proposed a future work where they plan to evaluate deeper architectures of the

convolutional neural networks (CNNs) and some domain specific adaptations so as to improve

the performance of these algorithms in terms of classification to even a greater extent.

In 2015, Yanai and Kawano [13], proposed a paper on food image recognition using deep

convolutional neural network (DCNNs) with pre-training and fine-tuning. In this paper, they

examined the effectiveness of deep convolutional neural networks (DCNNs) for recognition of

food pictures. Food recognition is considered to be a relatively harder problem than conventional

image recognition tasks as it requires fine-grained visual recognition. They tackled this problem

by using a combination of DCNN-related techniques such as pre-training the model with large-

scale ImageNet data, fine-tuning the model and finally activation feature extraction from the pre-

trained DCNN model. From their experiments, they concluded that the fine-tuned DCNN which

was pre-trained using 2000 categories in the ImageNet which included 1000 food-related

categories was considerably the best method which achieved a whooping78.77% as the top-1

accuracy for UECFOOD100 and 67.57% for UEC-FOOD256. These were the best accuracy till

date of this paper. They also applied the food classifier which employed the best combination of

the DCNN techniques to twitter photograph data. They achieved very good improvement on food

data mining in terms of number of food photos as well as accuracy. They also found that DCNN

19 | P a g e

was very suitable for large-scale image data because it takes only 0.03 seconds to classify one

food picture with GPU.

In 2018, Howard and Ruder [14] published their work on universal language model fine-

tuning(ULMFiT) for text classification. The ULMFiT is an effective transfer learning method

that we can apply to any of the tasks in NLP. Inductive transfer learning has greatly impacted the

area of computer vision. The method proposed in this paper greatly outperforms the state-of-the-

art on six text classification tasks. It reduced error by 1824% on most of the datasets and with

only 100 labelled examples, it matches the performance of training from scratch on 100x more

data. This is a huge leap in terms of improvement in performance and accuracy.

In 2004, Foody, Giles and Mathur [15], proposed a paper which showed a way towards

intelligent training of supervised image classifications. In order to achieve a complete description

of each class in feature space, a large training set is typically needed. For classification using

SVM (support vector machine), only the training samples that are support vectors are required

(which lies on part of the edge of the class distribution in feature space). The rest of the training

samples have no contribution to the model training effectively. If we can somehow intelligently

identify the regions where the support vectors will be present then we can sample out entire data

to just include those regions of maximum probability (where support vectors are present) and

then we can train using newly sampled smaller dataset which takes less time as well as reduces

complexities. This is known as intelligent training using samples of training data. Applying this

method on classification of agricultural crops from multispectral satellite sensor data, only 25%

of the original training data was sampled for actually training SVM and the accuracy of crop

classification using this method came out to be 92.5% (good accuracy). This was repeated by

limiting the training on sample acquisition of only regions of specific soil type and the accuracy

in this case came out to be near perfect (approx 99.99%) which is tremendously good

considering we sampled the data to make our training job easier. Their paper illustrates the

potential to use this method of sampling the most useful training samples to allow efficient and

accurate image classification using SVM.

In 1999, Chapelle, Haffner and Vapnik [16], proposed their work on using SVM for histogram-

based image classification. Traditional classification methods and approaches don’t give good

perfomance in image classification tasks because of the high dimensionality of feature space.

20 | P a g e

Their paper shows that support vector machines (SVMs) can work very well and give good

performance in terms of accuracy on difficult image classification problems where the only

features present are high dimensional histograms. They showed that it is possible to push the

classification performance which are obtained on image histograms to a pretty high level having

error rates as low as just 11% for the classification of 14 corel categories and 16% for a more

generic set of objects. The only thing which was known during this process was that the input

was some sort of color histogram or discrete density and nothing else was known about the task.

They found that the extremely good performance was due to very good generalization ability of

SVM’s in high-dimensional spaces to the use of heavy-tailed RBF kernels.

In 2015, Ross Girshick [17] published his work at Microsoft research which was based on a fast

region-based convolutional network method (Fast R-CNN) for object detection. Fast R-CNN is a

technique which builds on previous work to efficiently classify the object proposals using the

method of deep convolutional networks. The Fast R-CNN employs many innovations in order to

increase training and testing speed while also increasing the detection accuracy. Fast R-CNN

trains the very deep VGG16 network which is 9 times faster than R-CNN, is 213 times faster at

test-time, and achieves a higher mAP on PASCAL VOC 2012. Fast R-CNNs are faster to train as

well as test and are also very accurate. Fast R-CNN is implemented in Python and C++ (using

Caffe). Fast R-CNN is a clean and fast update to R-CNN and SPPnet. The Fast R-CNNs gives

state-of-the-art detection results.

In 2015, Rothe, Timofte and Gool [18], proposed a paper on deep expectation of apparent age

from a single image. In their paper, they tried to estimate the apparent age in a given bunch of

still face images using the technique of deep learning. They had used convolutional neural

networks which made use of VGG-16 architechture[13] and are pre-trained on ImageNet for the

purpose of image classification. There are only a limited number of apparent age annotated

images. They explored the benefits of finetuning over crawled internet face images with

available age. Crawler ran over 0.5 million images of celebrities from IMDB to Wikipedia and

many other sites. This was the largest public dataset in order to do age prediction till date of

writing their paper. They posed the age regression problem as a deep classification problem

which was followed by a softmax classifier. The given method, Deep Expectation (DEX) of

apparent age, first detects the face in the given test image and then it extracts the CNN

21 | P a g e

predictions using an ensemble of 20 networks on the cropped face. The CNNs of the given

method (DEX) was finetuned on the crawled images and then on the given images having

apparent age annotations. Explicit face landmarks are not used by DEX. The DEX discussed in

this paper is the winner (1
st
 place) of thhe ChaLearn LAP 2015 challenge on apparent age

estimation with 115 registered teams which significantly out-performed the human reference.

In 2017, Akiba, Suzuki and Fukuda [19], proposed their work on extremely large minibatch SGD

(Stochastic Gradient Descent) which included training ResNet-50 on ImageNet in 15 minutes.

They showed that training ResNet-50 on ImageNet for 90 epochs can be achieved in 15 minutes

with 1024 Tesla P100 GPUs. It was made possible by using a large minibatch size of 32,000.

They employed several techniques such as RMSprop warm-up, batch normalization without

moving averages, and a slow-start learning rate schedule. The paper also describes hardware

details and system softwares used to achieve the given performance. The resultant top-1 score,

after training on 90 epochs using 1024 GPUs, on the validation images was 74.94%+-0.09.

In 2017, Xia, Xu and Nan [20], proposed a paper on inception-v3 for flower classification.

Flower classification is a very important subject in the field of Botany. A classifier having high

accuracy will bring a lot of ease and fun to everyone’s life and work. The background of the

flowers are very complex due to which the similarity between the different species of flowers as

well as the differences between the same species of flowers pose a difficult challenge in the

recognition of flower images. The traditional method of flower classification is basically based

on three features, namely: color, shape and texture. This classification requires people to select

features for classification, and the accuracy is not high. Their paper made use of Inception-v3

model of TensorFlow platform. Transfer learning technology is required to retrain the flower

category datasets, which can greatly improve the accuracy of flower classification. The

classification accuracy of the given model are 95% on Oxford-17 flower dataset and 94% on

Oxford-102 flower dataset, which is higher that other methods used for the given purpose of

flower classification.

In 2016, Hassannejad, Matrella, Munari and others [21], proposed a paper on food image

recognition using very deep convolutional networks which evaluated the effectiveness in

classifying food images of a deep-learning approach based on the specifications of Google’s

image recognition architecture Inception. This architecture is a deep convolutional neural

22 | P a g e

network (DCNN) having a depth of 54 layers. They fine-tuned this architecture for classifying

food images from three well known food image datasets : ETH Food-101, UEC FOOD 100, and

UEC FOOD 256. They achieved top-1 accuracy of 88.28%, 81.45% and 76.17% and top-5

accuracy as 96.88%, 97,.27% and 92.58% on the given 3 datasets. The results obtained in this

experiment significantly improved the best published results obtained on the same datasets and it

also required less computation power because the number of parameters and the computational

complexity are much smaller. The evaluation result suggests that the model benefits from new

building blocks called “Inception modules”.

In 2017, Perez and Wang [22], published their work on the effectiveness of data augmentation in

image classification using deep learning. In their paper, they explored and comapred many

different solutions to the problem of data augmentation in image classification. Works already

done before this paper has demonstrated the effectiveness of data augmentation through simple

techniques like cropping, rotating and flipping input images. They artificially constrain the

access to the data to a small subset of the ImageNet dataset, and then compared each data

augmentation technique one by one. They experimented with GANs to generate images of

different styles. They also proposed a method in order to design neural net so as to learn

augmentations that best improve the classifier (they are called as neural augmentation). The

successes and shortcomings of this methods are discussed on different datasets in this paper as

well.

23 | P a g e

Chapter-3

Handcrafted Features

3.1 LBP

Local binary pattern (LBP) [36] is a simple yet very efficient texture operator which labels the

pixels of an image by thresholding the neighborhood of each pixel and considers the result as a

binary number. LBP has been used in computer vision for a wide range of applications like:-

 face recognition

 facial expression recognition

 pedestrian detection

 remote sensing and texture classification

 building powerful visual object detection systems

In the most common approach, each 3*3 window in a given image is processed in order to

extract an LBP code. We need to threshold the center pixel of that window with the surrounding

pixels (using either mean or median or actual center pixel, as thresholds). The steps involved in

the overall process is as follows:-

1. Threshold the values in a neighborhood (in chosen image window) with the chosen

threshold placing 1 where the value is greater or equal than the threshold and 0 otherwise.

2. Multiplying the resulting binary map with a predefined mask (usually incremental powers

of two).

3. Sum the values to obtain an 8-bit LBP Code.

Fig 3.1: LBP code generation

24 | P a g e

Now, the next step (in order to build LBP based descriptor) requires dividing the LBP-based

image into k blocks of w width and w height pixels (e.g. 2*4, 4*4). Now local image descriptors

are build by getting the local histogram generated for each block of the given image. Now, all the

local histograms are concatenated together to form a single global histogram. Now, the individual

LBP code contains information at the pixel-level, the local histograms contains information on a

regional level and the concatenated regional histograms contain a global description. The global

histogram approach effectively expresses information in these three levels. The resulting

histogram encodes both local and global characteristics in a compact representation which makes

it more robust to object pose and illumination variations. We are actually just taking the relative

values in LBP calculation therefore if image block is illuminated then values in each cell of block

will increase otherwise will decrease in low light, but everyone will increase or decrease together

and so the relative effect will still be zero. Therefore, LBP is not affected by illumination

conditions. This is a very important feature of LBP.

Fig 3.2: LBP: Histogram generation

Each local histogram measures the occurrence of each of the 256 possible LBP codes in the

block. Below picture shows face description using LBP.

Fig 3.3: Face description with local binary patterns

25 | P a g e

3.2 HOG

The histogram of oriented gradients (HOG)[39] is a feature descriptor used in computer vision

and image processing for the purpose of object detection. A feature descriptor [38] is a

representation of an image or an image patch that simplifies the image by extracting useful

information and throwing away extraneous information. This technique counts the occurrences of

gradient orientation in localized portions of an image.

Let us now see the steps described below in order to understand how to calculate histogram of

oriented gradients (HOG).

 Preprocessing: A given image may be of any size. We analyze patches at multiple scales

at many image locations. The only constraint which should be fulfilled is that the patches

being considered should have a fixed aspect ratio. If aspect ratio is 1:2 then resolution can

be 100*200 or 128*256 etc. The picture shown below has a resolution of 720*475. We

have selected a patch of 100*200 of a runner in yellow dress (3
rd

 from left). The patch is

cropped out of the image and then resized to 64*128.

Fig 3.4: Preprocessing an image

 Calculate the gradient images: To calculate HOG descriptor, we need to first calculate the

horizontal and vertical gradients. This is done by filtering the image by using the kernels

26 | P a g e

as shown below.

Fig 3.5: Kernels for HOG calculation

Magnitude and direction of gradient can be found using the following formula:-

22

yx ggg ,
x

y

g

g
arctan

The figure below shows the gradients.

Fig 3.6: Left : Absolute value of x-gradient. Center : Absolute value of y-gradient. Right :

Magnitude of gradient.

We can notice that x-gradient fires on vertical lines and y-gradient fires on horizontal lines.

Whenever there is a sharp intensity change then the gradient fires otherwise if region is smooth it

doesn’t fire. At every pixel, the gradient has a magnitude and a direction. For color images, the

27 | P a g e

gradients of the three channels are evaluated. The magnitude of gradient at a pixel is the

maximum of the magnitude of gradients of the three channels, and the angle is the angle

corresponding to the maximum gradient.

Calculate HOG in 8*8 cells: One of the important reasons to use a feature descriptor to describe

a patch of an image is that it provides a compact representation. An 8×8 image patch contains

8x8x3 = 192 pixel values. The gradient of this patch contains 2 values (magnitude and direction)

per pixel which adds up to 8x8x2 = 128 numbers. Individual gradients may have noise, but a

histogram over 8×8 patch makes the representation much less sensitive to noise. Why have we

taken 8*8 only and not say 32*32? It is a design choice informed by the scale of features we are

looking for. HOG was used for pedestrian detection initially. 8×8 cells in a photo of a pedestrian

scaled to 64×128 are big enough to capture interesting features (e.g. the face, the top of the head

etc.). The histogram is essentially a vector of 9 bins corresponding to angles 0, 20, 40…160. Let

us look at one 8*8 patch in the image and see how the gradients look.

Fig 3.7 : 8*8 cells of HOG

28 | P a g e

Fig 3.8: Center : The RGB patch and gradients represented using arrows. Right : The

gradients in the same patch represented as numbers

The image in the middle overlaid with arrows shows the gradient. The arrow shows the

direction of gradient and the arrow length shows the magnitude of gradient. We can

notice that direction of arrows points to the direction of change of intensity and the

magnitude shows how big the difference is. The figure to the right shows raw number for

both magnitude and direction of gradients. The angles are between 0 to 180 degrees

instead of 0 to 360 degrees because these are unsigned gradients and so negative and

positive gradients are represented using same number. Empirically it has been shown that

unsigned gradients work better than signed gradients for pedestrian detection.

Now, we will create histogram of gradients in these 8*8 cells using the 9 bins. The figure

illustrates the process. We are looking at magnitude and direction of our 8*8 cell from

our image. Now, we start scanning the gradient direction matrix and keep adding the

corresponding magnitude values to corresponding bin. The addition to bin is weighted

and so if gradient direction = 15 and gradient magnitude = 20 then we will add 15 to bin

20 and add 5 to bin 0 (weighted distribution). The bins wrap around and so 0 and 180

degrees are the same.

29 | P a g e

Fig 3.9: Filling 9-bins using gradient magnitude and direction

The contribution of all the pixels in the 8*8 cells is added up to create the 9-bin

histogram. The histogram looks as shown below.

Fig 3.10: Histogram of our 8*8 patch

 16*16 block normalization: We already created histogram based on gradient of image.

The problem is that, gradients of image are sensitive to overall lighting condition. If we

say decrease the lighting then the image gets darker, gradient value will reduce

30 | P a g e

proportionally and so histogram values will proportionally decrease. Ideally, we would

like to make our descriptor independent of lighting condition. For this reason we

normalize our histogram. We take L2 norm of a vector and divide each element of the

vector by its L2 norm and the resulting vector is the normalized vector. Our normalized

version will be independent of lighting condition.

 Calculate the HOG feature vector: We calculate the feature vector for the entire image

patch. The smaller vectors are concatenated into one giant vector. SO, the dimensionality

of vector will increase. Lets say we have each 16×16 block which is represented by a

36×1 vector. So when we concatenate them all into one gaint vector we obtain a 36×105

= 3780 dimensional vector.

3.3 SIFT

Matching features across different images is a common problem in computer vision. When all

images are similar in nature (same scale, orientation etc), simple corner detections can work. But

when we have images of different scales and rotations, we need to use the scale invariant feature

transformation (SIFT)[41]. The scale-invariant feature transform (SIFT) is a feature detection

algorithm in computer vision to detect and describe local features in images[40].

Why do we even care about using SIFT? SIFT is not only scale invariant but we can change the

following and still get good results:-

 Scale

 Rotation

 Illumination

 Viewpoint

Let us take an example and understand what we really want to do with SIFT. Let us take some

target images (which we want SIFT to find) as shown on next page.

31 | P a g e

Fig 3.11: Target object Images

We want to find the target objects in a scene which is shown below.

Fig 3.12: Image on which SIFT has to be applied

The result is shown below.

32 | P a g e

Fig 3.13: Image after applying SIFT

Having seen the work of SIFT, let us now understand the SIFT algorithm. SIFT has a lot of

things going on and become quite confusing and therefore, the sift algorithm will be explained

into multiple parts. Let us look at the outline of SIFT algorithm part by part.

 Constructing a scale space: This is the initial step. We create internal representations of

the original image to ensure scale invariance. This can be done by generating “scale

space”.

 LoG approximation: The Laplacian of Gaussian is great for finding interesting points (or

key points) in an image. But it's computationally expensive. So we cheat and approximate

it using the representation created earlier.

 Finding Keypoints: With the super fast approximation speed, we now try to find key

points. These are nothing but maxima and minima in the difference of Gaussian image

which we calculate in previous step.

 Get rid of bad keypoints: Edges and low contrast regions are bad keypoints. Eliminating

these makes the algorithm efficient and robust. A technique similar to the Harris Corner

Detector can be used.

 Assigning an orientation to the keypoints: An orientation is calculated for each key point. Any

33 | P a g e

further calculations are done relative to this orientation. This effectively cancels out the effect of

orientation, making it rotation invariant.

 Generate SIFT features: Finally, with scale and rotation invariance in place, one more

representation is generated. This helps uniquely identify features. Lets say we have

50,000 features. With this representation, we can easily identify the feature we a're

looking for (say, a particular eye, or a sign board). This was an overview of the entire

algorithm.

After we run through the algorithm, we will have SIFT features of our image. Once we have

these features, we can do whatever we want using it. We can track images, detect and also

identify objects. This algorithm is patented and hence only good enough for academic purposes.

Some of the applications of SIFT are:-

 Object recognition

 Robotic mapping and navigation

 Image stitching

 3D modeling

 Gesture recognition

 Video tracking

 Individual identification of wildlife

 Match moving

34 | P a g e

Chapter-4

Classification Techniques

4.1 Support Vector Machine (SVM)

Support vector machines (SVMs), also known as support-vector networks[26], are supervised

learning models with associated learning algorithms that analyze data used for classification and

regression analysis. A support vector machine can be thought of as a discriminative classifier[27]

formally defined by a separating hyperplane. In other words, given labeled data, like in

supervised learning, the algorithm outputs an optimal hyperplane which categorizes new query

points. In two dimentional space this hyperplane is a line dividing a plane in two parts wherein

each class is present in either side.

Suppose we want to do binary classification task then how can we decide on a separating

hyperplane. Take an example dataset as shown below. How can we draw a separating

hyperplane?

Fig 4.1: Binary class dataset in 2D

We might think of a strategy to separate these binary class points by using a straight line as

shown in figure on next page.

35 | P a g e

Fig 4.2: Straight line dividing dataset in two classes

This straight line does a fair job in diving the class into two parts so that if any query points

comes from say test dataset then according to its position on 2D plane, it will either be classified

as negative class or a positive class by the straight line. Therefore, we can say that our given

straight line is working as expected. But now the question comes, we can draw many different

parallel and non-parallel lines separating the classes, but how do we decide on which straight line

to consider as our target line(in 2D) or plane(in 3D) or hyperplane(in nD)? This is decided by

making use of support vectors as shown in the figure below.

Fig 4.3: Calculating optimal plane for SVM

We connect the boundary points in negative class by a straight line and take another straight line

which is parallel to first line and now connect the boundary positive points. Now we calculate the

distance between these lines and then calculate the perpendicular to the distance line(i.e. the line

perpendicular to both these boundary lines). The new line is exactly halfway between between

36 | P a g e

the boundary lines and this calculated line serves as the optimal hyperplane for the support vector

machine(SVM).

The advantage of choosing the optimal hyperplane instead of just any straight line dividing these

classes is that it reduces the chances of making error on future unseen data. This is because this

optimal line is the one which is equally farthest from the positive class as well as negative class.

Now if any data point comes and falls between our optimal line or plane and the negative class

then that point will be classified to be negative and vice-versa. If we take just any line other than

the optimal line then the given data point may also have got classified as positive point if the

assumed line is closer to negative dataset and many points may incorrectly get classified as

negative point if the assumed line is closer to positive dataset. Therefore, we can conclude that

optimal line or plane or hyperplane does the best job of classification for support vector machine

(SVM).

If we have different type of dataset (as shown in figure below) which cannot be directly

classified by using a straight line or plane or hyperplane then what do we do?

Fig 4.4 : Can we draw separating line on this dataset?

This doesn’t seem to be possible to be divide using a line or plane but the truth is, we can still

divide the classes here using a straight line but this cannot be directly done. What we need to do

is, we need to first apply something known as feature transformation. We add one more

dimension as we call it z-axis. Lets assume value of points on z plane, w = x² + y². In this case

we can manipulate it as distance of point from z-origin. Now if we plot in z-axis, a clear

separation is visible and a line can be drawn .

37 | P a g e

Fig 4.5: Plot of ZY axis (a separation can be made here)

When we transform back this line to original plane, it maps to circular boundary as shown in

image E. These transformations are called kernels. The learning of the hyperplane in linear SVM

is done by transforming the problem using some linear algebra. This is where the kernel plays

role. We can see that feature engineering is a great mathematical tool in order to process datasets

and make them suitable for SVMs. Feature engineering is the most important aspect of a data

scientist in machine learning.

Fig 4.5: Transforming back to x-y plane, a line transforms to circle.

SVMs is very popular due to its simplicity, ease of use and wide applications. Some of the

applications of SVMs are as mentioned below:-

 SVMs are helpful in text and hypertext categorization, as their application can

significantly reduce the need for labeled training instances in both the standard inductive

and transductive settings. Some methods for shallow semantic parsing are based on

support vector machines.

38 | P a g e

 Classification of images can also be performed using SVMs. Experimental results show

that SVMs achieve significantly higher search accuracy than traditional query refinement

schemes after just three to four rounds of relevance feedback. This is also true for image

segmentation systems, including those using a modified version SVM that uses the

privileged approach.

 Hand-written characters can be recognized using SVM.

 The SVM algorithm has been widely applied in the biological and other sciences. They

have been used to classify proteins with up to 90% of the compounds classified correctly.

Permutation tests based on SVM weights have been suggested as a mechanism for

interpretation of SVM models. Support-vector machine weights have also been used to

interpret SVM models in the past. Posthoc interpretation of support-vector machine

models in order to identify features used by the model to make predictions is a relatively

new area of research with special significance in the biological sciences.

We discussed all about linear SVMs and they are of two types as follows:-

 Hard-margin SVM

 Soft-margin SVM

In few words we can say that SVMs are simple and easy to use yet very powerful classification

machine.

4.2 Convolutional Neural Network

Artificial Intelligence has been witnessing a monumental growth in bridging the gap between the

capabilities of humans and machines[28]. Researchers and enthusiasts, both in the similar

manner, work on numerous aspects of the field to make amazing things happen. One of such

very important domain is Computer Vision. The prime agenda of this field is to enable machines

to view the world as we as human beings do, perceive and feel it in a similar way and even use

the knowledge for a variety of tasks such as Image & Video recognition, Image Analysis &

Classification, Media Recreation, Recommendation Systems, Natural Language Processing

(NLP) and many others. The development and advancements in Computer Vision using Deep

Learning has been constructed and perfected with time. This has been done primarily over one

particular algorithm known as the Convolutional Neural Network.

39 | P a g e

Convolutional neural networks (CNNs), just like neural networks, are made up of tiny units

called neurons (just like the ones in our brains) having learnable weights and biases. Each neuron

recieves many inputs, calculates the weighted sum over them and then it passes it through an

activation function and finally responds with an output. The entire convolutional network has a

loss function. Let us now understand about neurons.

In order to understand neural networks in depth, we need to first look at how does neurons work.

The neurons of CNN are assumed to be analogous to our human brain neurons and therefore, the

entire network build out of these millions of tiny neurons forming a network structure mimics

our human brain and so tries to give intelligent outputs.

Fig 4.6: A brain neuron

Our human brain uses a very large interconnected network of neurons for processing information

and to model the world around us. The neurons makes use of tiny structures called dendrites in

order to collect inputs from other neurons. The neurons calculates the weighted sum of all the

inputs and if it crosses a given threshold margin then that neuron fires. This fired signal is sent to

other connected neurons by making use of axons (like a pipe or wire). Now, the next question

which arises is, how do we model artificial neurons? The figure[31] given below shows a neuron

connected with n other neurons and therefore, it receives n inputs (x1, x2, …..xN). This

configuration is called a perceptron.

40 | P a g e

Fig 4.7: Model of an artificial neuron

The inputs(x1, x2, …..xN) as well as the weights (w1, w2,…..wN) are real numbers and can be

either positive or negative. We can in the figure that the perceptron consists of weights,

summation processor, an activation function and a threshold processor (also known as bias). All

the given inputs are weighted individually and then they are added together and only after that

they are passed into the activation function. Among the different types of activation functions

available, one of the simplest is the step function. A step function outputs 1 if the input is above

threshold, otherwise outputs 0. Other popular activation function is sigmoid.

Let us take an example where input1(x1) = 0.6, input2(x2) = 1.0 and weight1(w1) = 0.5 and

weight2(w2) = 0.8. Let threshold be 1.0 . Let us now find out whether the given inputs to a

neuron makes it fire. Weighing the inputs and adding them together gives:-

x1w1 + x2w2 = (0.6 x 0.5) + (1 x 0.8) = 1.1

Since the total input is higher than given threshold, therefore the given neuron will fire.

Now how do we train these perceptrons? Let us first understand how do we train our brain’s

perceptrons. Lets take an example and understand how do we try teaching a child in order to

recognize a bus. We will definitely show her examples and will say that it is a bus and that one is

not a bus. This is repeated until the child learns the concept of what a bus exactly is. Now if any

new things are seen by that trained child then we would expect him to differentiate that new

object whether it is a bus or not. This is the same idea as we have behind perceptron. In

perceptrons, input vectors from a given training set are fed to the perceptron sequentially and the

weights are continuously modified according to the given equation.

41 | P a g e

W(i) = W(i) + a*(T-A)*P(i) ; where a is learning rate, W is weight.

W: Weight

P: Input vector

T: Correct output or label.

A: Perceptron output

When we complete an entire pass of input training vectors without encountering an error then we

can say that our perceptron has learnt the target concept. Now, after training, if we give any

random input vector or a query point from test dataset then it should give the correct output of

class label.

What is the perceptron actually doing? It is basically adding all the inputs and then dividing them

into just 2 categories, one that causes it to fire and the other which doesn’t. So, it can be thought

of as drawing a line (equation shown below) and separating points on either side of the line.

Therefore, the entire data is divided into just 2 categories.

w1x1 + w2x2 = t, where t is the threshold.

The weight and thresholds can be anything, that is just a line across 2 dimensional input space.

Along with the benefits of perceptrons, they too have some disadvantages and failure cases. The

input points that can separated using a line are called linearly separable. If the points or vectors

are not linearly separable then learning of perceptrons will never reach a point where it can

classify all the vectors correctly.The most famous problem on which this linear separation

doesn’t work is the boolean XOR problem. These are also known as non-separable vectors.

We can even train out neural network in multiple layers[31]. This is the most common and

popular method. In this case (as shown in diagram on next page), each input from the given input

layer is fed into each node of hidden layer. There may be multiple hidden layers and any number

of nodes per layer. The output of last hidden layer is fed as input to the output layer. By using

our learning algorithm, we should be able to tune not only the weights between output layer and

hidden layer but also between input layer and hidden layer.

42 | P a g e

Fig 4.8: A multi-layered neural network

Convolutional Neural Networks operate over volume. Unlike the neural networks, in which the

input is in the form of a vector, in this case input is multi-channeled image. The figure on next

page shows an example of RGB image (which is assumed to be an input image).

Fig 4.9: Example of a RGB image (input image)

We will now take a 5*5*3 filter and slide it over the complete image. Along the way, keep

calculating the dot product between the filter and chunks of the input image.

43 | P a g e

Fig 4.10: This is how it looks

For every dot product that we take, the result will always be a scalar value. Now, the figure on

the next page shows the conculution of a 5*5*3 filter over 32*32*3 image. The outcome will be

28*28*1 because we will have only 28*28 unique postitions when we slide 5*5*3 filter over

32*32*3 image.

Fig 4.11: Resultant figure

Convolution layer is the basic and main building block of convolutional neural network. The

convolution layer comprises of a set of many independent filters (6 in the figure below).

44 | P a g e

Fig 4.12: Convolution layer

Each of these filters is independently convolved with the given image and therefore, we end up

with 6 feature maps of shape 28*28*1. If we have a number of convolution layers present in a

sequence then what happens?

Fig 4.13: Convolution layers in sequence

These filters are randomly initialized and they become our parameters which will be learned by

the network subsequently.

Let us now look at aan example of a trained network.

45 | P a g e

Fig 4.14: Filters in a trained network

Let us have a look at the filters in the very first layer (these filters are of 5*5*3 dimension). They

have tuned themselves by using back propagation and have become blobs of colored pieces and

edges. As we move deeper to other convolution layers, the filters are doing dot products to the

input of the previous convolution layers. So, they are taking the smaller coloured pieces or edges

and making larger pieces out of them.

CNNs have a couple of concepts called parameter sharing and local connectivity. Parameter

sharing is nothing but sharing of weights by all neurons in a particular feature map. Local

connectivity is the concept of each neural connected only to a subset of the input image (unlike a

neural network where all the neurons are fully connected). This makes the computation process

more efficient by reducing the number of parameters in the entire system.

A pooling layer is another building block of a convolutional neural network (CNN).

46 | P a g e

Fig 4.15: Pooling

The purpose of pooling is to progressively reduce the spatial size of the representation in order to

reduce the amount of parameters and computation in the network. Pooling layer operates on each

feature layer independently. The most common approach which is used in pooling is max

pooling.

In max pooling, we scan the 2*2 area (in our case as shown in figure) and take the maximum

value in a cell from that area and fill it in a single cell representation. The objective behind doing

this is to down-sample an input representation (it may be an image, hidden-layer output matrix

etcetra), which reduces the dimensionality which in turn allows for assumptions to be made about

features contained in the sub-regions binned.

Fig 4.16: Max Pooling

47 | P a g e

The benefits of max pooling is concentrated in the following area:-

 It helps with the over-fitting problem by providing an abstracted form of representation.

 It reduces computational cost as it reduces the number of parameters to learn and it also

provides a basic translation invariance to the internal representation.

Max pooling is done by applying a max filter to non-overlapping sub-regions of the initial

representation.

 Fig 4.17: Typical architecture of CNN

Rectified Linear Unit (ReLU) is basically a non linearity which is applied to neural networks. FC

means the fully connected layer of neurons at the end of CNN. Neurons in a fully connected

layer have full connections to all activations in the previous layer, as seen in regular Neural

Networks and work in a similar way.

48 | P a g e

Fig 4.18: ReLU function

Our brain receives a huge amount of data out of which it separates the important data and

unimportant data. In the similar way, neural networks also need some mechanism which can

segregate the important and useful information from the non-useful information. This segregation

is done by activation functions in machine learning. Therefore, activation functions can be

thought of like a filter of data. They basically decide whether a neuron should be activated or not.

Whether the information that the neuron is receiving is relevant for the given information or

should it be ignored.

Some of the activation functions used in CNN[32] are as follows:-

 Linear activation function

 Nonlinear activation function

a) Sigmoid or Logistic Activation function.

b) Tanh or hyperbolic tangent activation function

c) ReLU (Rectified linear unit) activation function

49 | P a g e

 Fig 4.19: Linear activation function

Fig 4.20: Nonlinear activation function

50 | P a g e

 Fig 4.21: Sigmoid or Logistic Activation function.

 Fig 4.22: Tanh or hyperbolic tangent activation function

51 | P a g e

Advantage of CNN:-

 Very high accuracy.

Disadvantage of CNN:-

 High computational cost.

 Very slow to train (due to high computations).

 Huge amount of data is needed for training the CNN model.

Convolutional neural network (CNN) is one of the most widely used deep learning technique for

machine learning purpose throughout the globe.

4.3 Transfer Learning

Transfer learning is a machine learning method where a model developed for a task is reused as

the starting point for a model on a second task. Transfer learning and domain adaptation refer to

the situation where what has been learned in one setting, is exploited to improve generalization

in another setting. Transfer learning is the improvement of learning in a new task through the

transfer of knowledge from a related task that has already been learned. It is currently very

popular in the field of Deep Learning because it enables us to train Deep Neural Networks with

comparatively little data. This is very useful since most real-world problems typically do not

have millions of labeled data points to train such complex models.

In our experiment, we have taken three types of methods :-

 VGG-16

 ResNet 50

 Inception-V3

These all are pre-trained on ImageNet dataset. We are using this model and then training it

further (fine-tuning) using our own dataset in order take the benefits of deep neural network. The

picture on next page shows an old classifier which was built on a dataset was again fine-tuned

using some other dataset in order to form a new classifier. This new classifier is built with the

intention of taking the benefits of deep neural networks as well as taking the benefit of the model

52 | P a g e

being pre-trained on old dataset of related data so as to perform better on a given specific

condition.

Fig 4.23: Old-classifier is trained/fine-tuned using new dataset to form new classifier

4.3.1 VGG-16

VGG16 [33] is a convolutional neural network (CNN) model which was proposed by K.

Simonyan and A. Zisserman from the University of Oxford in the paper “Very Deep

Convolutional Networks for Large-Scale Image Recognition”. This model achieves 92.7% top-5

test accuracy in ImageNet (it is a dataset containing more than 14 million images belonging to

1000 classes). It was one of the famous model submitted to ILSVRC-2014. It replaces large

kernel-sized filters of AlexNet and hence makes an improvement over AlexNet (11 and 5 in the

first and second convolutional layer, respectively) with multiple 3×3 kernel-sized filters one after

another. VGG16 was trained for weeks and was using NVIDIA Titan Black GPU’s.

53 | P a g e

Fig 4.24: VGG-16 architecture

Fig 4.25: VGG-16 layered architecture

The conv1 layer gets an input of fixed size which is an RGB image of size 224 x 224. The image

is passed through a stack of convolutional (conv.) layers, where the filters were used with a very

small receptive field: 3×3 (which is the smallest size to capture the notion of left/right, up/down,

center).In one of the configurations, it also utilizes 1×1 convolution filters, which can be seen as

a linear transformation of the input channels (followed by non-linearity). The convolution stride

is fixed to 1 pixel; the spatial padding of conv. layer input is such that the spatial resolution is

preserved after convolution, i.e. the padding is 1-pixel for 3×3 conv. layers. Spatial pooling is

carried out by five max-pooling layers, which follow some of the conv. layers (not all the conv.

layers are followed by max-pooling). Max-pooling is performed over a 2×2 pixel window, with

54 | P a g e

stride 2.

Three Fully-Connected (FC) layers follow a stack of convolutional layers (which has a different

depth in different architectures): the first two have 4096 channels each, the third performs 1000-

way ILSVRC classification and thus contains 1000 channels (one for each class). The final layer

is the soft-max layer. The configuration of the fully connected layers is the same in all networks.

All hidden layers are equipped with the rectification (ReLU) non-linearity. It is also noted that

none of the networks (except for one) contain Local Response Normalisation (LRN), such

normalization does not improve the performance on the ILSVRC dataset, but leads to increased

memory consumption and computation time.

There are two major drawbacks of VGGNet:-

 It is very slow to train.

 The network architecture weights themselves are quite large.

Due to the depth and number of fully-connected nodes, VGG is tiresome to deploy. VGG-16

outperforms the previous generation models by a significant margin. The VGG16 result is also

competing for the classification task winner (GoogLeNet with 6.7% error) and substantially

outperforms the ILSVRC-2013 winning submission Clarifai, which achieved 11.2% with

external training data and 11.7% without it.

4.3.2 Resnt50

ResNet is a short name for Residual Network. As the name of the network indicates, the new

terminology that this network introduces is residual learning.

What is the need for Residual Learning? Deep convolutional neural networks (DCNNs) have led

to a series of breakthroughs for image classification. Many other visual recognition tasks have

also greatly benefited from very deep models. So, over the years there is a trend to go more

deeper, to solve more complex tasks and to also increase or improve the classification or

recognition accuracy. But, as we go deeper; the training of neural network becomes difficult and

also the accuracy starts saturating and then degrades also. Residual Learning tries to solve both

these problems.

55 | P a g e

Fig 4.27: Residual learning: a building block

What is Residual Learning? In general, in a deep convolutional neural network, several layers are

stacked and are trained to the task at hand. The network learns several low/mid/high level

features at the end of its layers. In residual learning, instead of trying to learn some features, we

try to learn some residual.

Residual can be simply understood as subtraction of feature learned from input of that layer.

ResNet does this using shortcut connections (directly connecting input of nth layer to some

(n+x)
th

 layer. It has proved that training this form of networks is easier than training simple deep

convolutional neural networks and also the problem of degrading accuracy is resolved. This is

the fundamental concept of ResNet. ResNet50 is a 50 layer Residual Network. There are other

variants like ResNet101 and ResNet152 also.

Seeing all the above mentioned points, can we say ResNet is successful? ResNet won the 1
st

place in the ILSVRC 2015 classification competition with top-5 error rate of just 3.57% using an

ensemble model. ResNet also won the 1st place in ILSVRC and COCO 2015 competition in

ImageNet Detection, ImageNet localization, Coco detection and Coco segmentation. On

replacing VGG-16 layers in Faster R-CNN with ResNet-101, researchers observed a relative

improvements of 28%. ResNet can have efficiently trained networks with 100 layers and 1000

layers as well.

ResNet faces a problem when deeper networks starts converging, a degradation problem has

been exposed: with the network depth increasing, accuracy gets saturated and then degrades

rapidly.

56 | P a g e

Fig 4.28: ResNet-50 architecture

3.3.3 Inception-v3

There are 4 versions of Inception. Inception-v3 [34] is one of them. The Inception deep

convolutional architecture was introduced as GoogLeNet in the paper (Szegedy et al. 2015a),

here named Inception-v1. Later the Inception architecture was refined in various ways, first by

the introduction of batch normalization (Inception-v2) and later by additional factorization ideas

in the third iteration which is referred to as Inception-v3.

Inception-v3 with 42 layers deep learning network exhibits lower error rate made it become the

1
st
 runner up for image classification in ILSVRC 2015. Inception-v3 [35] is a widely-used image

recognition model that has been shown to attain greater than 78.1% accuracy on the ImageNet

dataset.

57 | P a g e

 Fig 4.29: Comaprision of error rate in ILSVRC 2015 for ResNet and Inception-v3

The model is the pinnacle of many ideas developed by multiple researchers over the years. The

model itself is made up of symmetric and asymmetric building blocks, including convolutions,

average pooling, max pooling, concats, dropouts, and fully connected layers. Batchnorm is used

extensively throughout the model and applied to activation inputs. Loss is computed via

Softmax.

Fig 4.30: Inception-v3 architecture

58 | P a g e

Chapter-5

Experimental results and discussions

5.1 Data Overview:

Car dataset: This dataset [42] contains a total of 16,185 images of different companies, model

and year of manufacture of car. These images are distributed into 196 classes of cars. Classes are

typically at the level of “make, model, year” (example, “BMW, M3 Coupe, 2012). The entire

dataset is approximately divided into a 50-50 split. The train dataset has 8,144 images while the

test dataset has 8,041 images.

Table 5.1: Car dataset

Total number of images 16,185

Number of classes 196

Number of train dataset images 8,144

Number of test dataset images 8,041

59 | P a g e

Fig 5.1: Car-196 dataset sample

60 | P a g e

Special BMW-10 dataset: This is a smaller dataset [42] having a total of 512 images of

BMW cars only. This dataset has 10 different classes of BMW cars. The entire dataset is divided

approximately into a 50-50 split where train data has a total of 254 images while test data has a

total of 258 images.

Table 5.2: Special BMW-10 dataset

Total number of images 512

Number of classes 10

Number of train dataset images 254

Number of test dataset images 258

61 | P a g e

Fig 5.2: Special BMW-10 dataset sample

62 | P a g e

5.2 Problem definition

We are given a dataset of images of cars belonging to different classes. We split the dataset into

train as well as test dataset dataset using 50-50 split. Now, we have trained out model on training

dataset and then we have tried to predict the class lablels of the car images from testing dataset.

We then calculated the prediction accuracy and hence defined the performance of our model on

our given dataset. This is a typical image classification problem.

5.3 Proposed methods and preprocessing

The handcrafted methods which we applied are LBP, SIFT and HOG. For applying the

handcrafted features on our dataset, we have first cropped the images using annotation points

available and then we have converted the images to gray images. Cropping the images using

annotation points helped us focus only on the area of interest in the images.

In order to run VGG16 and Resnet50 on our dataset, the images had to be resized to 224*224*3

(height, width, channels) shape. We had to reshape the images to 299*299*3 (height, width,

channels) for running InceptionV3 on our dataset.

5.4 Experimental setup

Hardware System Configuration:

Processor: Intel(R) Xeon(R) CPU E5-2609 v4

Speed: CPU 1.70 GHz

Number of processors: 2

Number of cores: 8

RAM: 128 GB

Hard Disk: 500 GB (SSD)

 Software System Configuration:

Operating System: Windows 10 Pro

System Type: 64-bit Operating System

Processor: x64-based processor

Numerical Computing Environment: MATLAB, Python

Version: MATLAB R2017a, PYTHON 3.5.6

63 | P a g e

5.5 Result and discussion

Table 5.3: Result for handcrafted features of car dataset

Feature Accuracy

SIFT 31.00 %

HOG 39.95 %

LBP 32.12 %

Table 5.4: Result for handcrafted features on special BMW-10 dataset

Feature Accuracy

SIFT 45.01 %

HOG 42.18 %

LBP 44.92 %

Table 5.5: Result for CNN features on CAR-196 dataset

Model Accuracy

VGG16 92.12 %

Resnet50 93.21 %

InceptionV3 93.33 %

Table 5.6: Result for CNN features on special BMW-10 dataset

Model Accuracy

VGG16 85.12 %

Resnet50 91.20 %

InceptionV3 91.24%

The result obtained using handcrafted features are far less accurate as compared to the CNN

models. This is expected as the handcrafted features are using only the provided trained dataset

64 | P a g e

and then trying to predict the resulting class labels on the test dataset images. The training images

are very low in number and so the result too will not be as good as our own expectations. This

dataset is more challenging because of the fact that we are actually identifying between similar

looking cars, which one belongs to what company and model. The problem would have been

much simpler if were required to classify if the given image is of a car. But we have different set

of problem altogether, which is challenging as well. Therefore the result is around 91 % .

If we apply CNN model directly on our dataset then since our dataset has very low number of

images, we will not be harnessing the benefits of deep neural networks. In order to take the

maximum advantage of the CNN algorithms, the CNN models (VGG16, Resnet50, InceptionV3)

are pre-trained using the ImageNet dataset (which has a very large collection of 1000 classes of

images). After this, we are training these pre-trained models with our own training dataset. By

doing this, we are applying fine-tuning strategy and trying to reap the benefits of transfer

learning. The pre-trained models alongwith the training dataset creates a deep neural network and

hence enhances the classification accuracy to a great extent.

We have used the softmax layer as last layer in our classification task using CNN models (deepl

learning). This softmax gives a probability distribution of a given image over all possible classes

and then selects the predicted class as the one having the highest probability score (max voting

technique). The softmax is very commonly used for multi-class classification problem.

65 | P a g e

Chapter-7

Conclusion and future scope

Image classification has a wide range of applications in current age and so it becomes a very

important problem to solve and improve upon. We tried to solve this problem using a larger car

dataset having 196 classes and a smaller special BMW-10 dataset. We first used the handcrafted

features to classify our test images and later applied the CNN models on the given dataset. The

results shows the power of the more recent deep learning algorithms. The deep learning

algorithms clearly outperforms the classic handcrafted features by a huge margin. The deep

learning algorithms makes use of deep neural networks and using the pre-trained CNN models

on ImageNet dataset which was fine tuned using our car dataset, it did a really good job at our

classification job even though it took high training time and a large number of computations.

Therefore, we can conclude that CNN using pre-trained models are very good for image

classification using small dataset (transfer learning).

Even though we have tried to classify our dataset using the state-of-the-art deep learning

algorithms, still we don’t have mind blowing results. Our accuracy is around 93% but CNN

models are known to perform extremely well in producing accuracy very close to 99.99 %. This

will be a tremendous achievement on the given classification problem using our dataset. The

algorithm took a lot of time to train and a large number of computations as well.

In our future work, we can try to find the best fitting CNN classification algorithm which will

greatly improve the accuracy of classification task as well as take lower number of computations

in order to make this classification process faster.

66 | P a g e

REFERENCES

[1]https://medium.com/deep-dimension/an-analysis-on-computer-vision-problems-

6c68d56030c3

[2] Thomas, Alexander, Vittorio Ferrar, Bastian Leibe, Tinne Tuytelaars, Bernt Schiel, and Luc

Van Gool. "Towards multi-view object class detection." In 2006 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR'06), vol. 2, pp. 1589-1596.

IEEE, 2006.

[3] http://www.bmva.org/visionoverview

[4] Kornblith, Simon, Jonathon Shlens, and Quoc V. Le. "Do better imagenet models transfer

better?." arXiv preprint arXiv:1805.08974 (2018).

[5] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Delving deep into rectifiers:

Surpassing human-level performance on imagenet classification." In Proceedings of the IEEE

international conference on computer vision, pp. 1026-1034. 2015.

[6] You, Yang, Igor Gitman, and Boris Ginsburg. "Scaling sgd batch size to 32k for imagenet

training." arXiv preprint arXiv:1708.03888 6 (2017).

[7] He, Kaiming, Ross Girshick, and Piotr Dollár. "Rethinking imagenet pre-training." arXiv

preprint arXiv:1811.08883 (2018).

[8] Simon, Marcel, Erik Rodner, and Joachim Denzler. "Imagenet pre-trained models with batch

normalization." arXiv preprint arXiv:1612.01452 (2016).

[9] You, Yang, Zhao Zhang, Cho-Jui Hsieh, James Demmel, and Kurt Keutzer. "100-epoch

imagenet training with alexnet in 24 minutes." ArXiv e-prints (2017).

[10] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton. "Imagenet classification with

deep convolutional neural networks." In Advances in neural information processing systems, pp.

1097-1105. 2012.

[11] Hentschel, Christian, Timur Pratama Wiradarma, and Harald Sack. "Fine tuning CNNS with

scarce training data—Adapting ImageNet to art epoch classification." In 2016 IEEE International

Conference on Image Processing (ICIP), pp. 3693-3697. IEEE, 2016.

[12] Reyes, Angie K., Juan C. Caicedo, and Jorge E. Camargo. "Fine-tuning Deep Convolutional

Networks for Plant Recognition." CLEF (Working Notes) 1391 (2015).

https://en.wikipedia.org/wiki/Object_detection
https://en.wikipedia.org/wiki/Object_detection
https://en.wikipedia.org/wiki/Object_detection
https://en.wikipedia.org/wiki/Object_detection
http://www.bmva.org/visionoverview

67 | P a g e

[13] Yanai, Keiji, and Yoshiyuki Kawano. "Food image recognition using deep convolutional

network with pre-training and fine-tuning." In 2015 IEEE International Conference on

Multimedia & Expo Workshops (ICMEW), pp. 1-6. IEEE, 2015.

[14] Howard, Jeremy, and Sebastian Ruder. "Universal language model fine-tuning for text

classification." arXiv preprint arXiv:1801.06146 (2018).

[15] Foody, Giles M., and Ajay Mathur. "Toward intelligent training of supervised image

classifications: directing training data acquisition for SVM classification." Remote Sensing of

Environment 93, no. 1-2 (2004): 107-117.

[16] Chapelle, Olivier, Patrick Haffner, and Vladimir N. Vapnik. "Support vector machines for

histogram-based image classification." IEEE transactions on Neural Networks 10, no. 5 (1999):

1055-1064.

[17] Girshick, Ross. "Fast r-cnn." In Proceedings of the IEEE international conference on

computer vision, pp. 1440-1448. 2015.

[18] Rothe, Rasmus, Radu Timofte, and Luc Van Gool. "Dex: Deep expectation of apparent age

from a single image." In Proceedings of the IEEE International Conference on Computer Vision

Workshops, pp. 10-15. 2015.

[19] Akiba, Takuya, Shuji Suzuki, and Keisuke Fukuda. "Extremely large minibatch SGD:

training resnet-50 on imagenet in 15 minutes." arXiv preprint arXiv:1711.04325 (2017).

[20] Xia, Xiaoling, Cui Xu, and Bing Nan. "Inception-v3 for flower classification." In 2017 2nd

International Conference on Image, Vision and Computing (ICIVC), pp. 783-787. IEEE, 2017.

[21] Hassannejad, Hamid, Guido Matrella, Paolo Ciampolini, Ilaria De Munari, Monica

Mordonini, and Stefano Cagnoni. "Food image recognition using very deep convolutional

networks." In Proceedings of the 2nd International Workshop on Multimedia Assisted Dietary

Management, pp. 41-49. ACM, 2016.

[22] Perez, Luis, and Jason Wang. "The effectiveness of data augmentation in image

classification using deep learning." arXiv preprint arXiv:1712.04621 (2017).

[23]https://heartbeat.fritz.ai/the-5-computer-vision-techniques-that-will-change-how-you-see-

the-world-1ee19334354b

[24] https://searchenterpriseai.techtarget.com/definition/facial-recognition

[25] Deng, Jia, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. "Imagenet: A large-

scale hierarchical image database." In 2009 IEEE conference on computer vision and pattern

recognition, pp. 248-255. Ieee, 2009.

https://searchenterpriseai.techtarget.com/definition/facial-recognition

68 | P a g e

[26] Joachims, Thorsten. Making large-scale SVM learning practical. No. 1998, 28. Technical

report, SFB 475: Komplexitätsreduktion in Multivariaten Datenstrukturen, Universität

Dortmund, 1998.

[27]https://medium.com/machine-learning-101/chapter-2-svm-support-vector-machine-theory-

f0812effc72

[28] Sharif Razavian, Ali, Hossein Azizpour, Josephine Sullivan, and Stefan Carlsson. "CNN

features off-the-shelf: an astounding baseline for recognition." In Proceedings of the IEEE

conference on computer vision and pattern recognition workshops, pp. 806-813. 2014.

[29]https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-

the-eli5-way-3bd2b1164a53

[30] Yin, Wenpeng, Katharina Kann, Mo Yu, and Hinrich Schütze. "Comparative study of cnn

and rnn for natural language processing." arXiv preprint arXiv:1702.01923 (2017).

[31]https://medium.com/technologymadeeasy/for-dummies-the-introduction-to-neural-networks-

we-all-need-part-2-1218d5dc043

[32] Jain, Anil K., Jianchang Mao, and K. M. Mohiuddin. "Artificial neural networks: A

tutorial." Computer 3 (1996): 31-44.

[33] Zhang, Xiangyu, Jianhua Zou, Kaiming He, and Jian Sun. "Accelerating very deep

convolutional networks for classification and detection." IEEE transactions on pattern analysis

and machine intelligence 38, no. 10 (2015): 1943-1955.

[34]https://medium.com/@sh.tsang/review-inception-v3-1st-runner-up-image-classification-in-

ilsvrc-2015-17915421f77c

[35] Xia, Xiaoling, Cui Xu, and Bing Nan. "Inception-v3 for flower classification." In 2017 2nd

International Conference on Image, Vision and Computing (ICIVC), pp. 783-787. IEEE, 2017.

[36] Wang, Xiaoyu, Tony X. Han, and Shuicheng Yan. "An HOG-LBP human detector with

partial occlusion handling." In 2009 IEEE 12th international conference on computer vision, pp.

32-39. IEEE, 2009.

[37] Ahonen, Timo, Abdenour Hadid, and Matti Pietikainen. "Face description with local binary

patterns: Application to face recognition." IEEE Transactions on Pattern Analysis & Machine

Intelligence 12 (2006): 2037-2041.

[38] https://www.learnopencv.com/histogram-of-oriented-gradients/

https://www.learnopencv.com/histogram-of-oriented-gradients/

69 | P a g e

[39] Dalal, Navneet, and Bill Triggs. "Histograms of oriented gradients for human detection." In

international Conference on computer vision & Pattern Recognition (CVPR'05), vol. 1, pp. 886-

893. IEEE Computer Society, 2005.

[40] Mortensen, Eric N., Hongli Deng, and Linda Shapiro. "A SIFT descriptor with global

context." In 2005 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition (CVPR'05), vol. 1, pp. 184-190. IEEE, 2005.

[41] http://aishack.in/tutorials/sift-scale-invariant-feature-transform-introduction/

[42] Krause, Jonathan, Michael Stark, Jia Deng, and Li Fei-Fei. "3d object representations for

fine-grained categorization." In Proceedings of the IEEE International Conference on Computer

Vision Workshops, pp. 554-561. 2013.

http://aishack.in/tutorials/sift-scale-invariant-feature-transform-introduction/

