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ABSTRACT 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Elliptic Curve Cryptography (ECC) has existed since the mid-1980s, but it is still 

looked on as the newcomer in the world of SSL, and has only begun to gain adoption 

in the past few years. ECC is a fundamentally different mathematical approach to 

encryption than the venerable RSA algorithm. An elliptic curve is an algebraic 

function (             ) which looks like a symmetrical curve parallel to the x 

axis when plotted. As with other forms of public key cryptography, ECC is based on 

a one-way property in which it is easy to perform a calculation but infeasible to 

reverse or invert the results of the calculation to find the original numbers. This 

elliptic curve has cardinality (curve order) by which we can calculate the point order 

of a point on the curve, this point order later uses in the cryptographic function. 
 

This thesis work focuses upon the detailed description of finding out the curve 

order of the elliptic curve using a much more efficient way using Schoof’s algorithm. 
 

The implementation of Schoof’s algorithms for finding the curve order of 

elliptic curve in ‘C’ is done by incorporating a special library called FLINT & MPFR 

Library which provides some features that gives faster processing for big integers. 

This library also includes the GMP library which supports the operation on big 

integers. 

 

Keywords: Cryptography, Elliptic Curves, Schoof’s Algorithm, Cardinality, Hasse’s 

Theorem, Division Polynomials. 
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INTRODUCTION 
 
 
 
 
 
 

 
 

1.1 Motivation 
 

Nowadays data security is the most important of our life. Securely transferring the 

data over the internet is necessity. Because many people are eavesdropping or 

literally hack the network to check your personal messages, confidential file, bank 

details etc. For all of these cryptography came into play. Cryptography gives our data 

integrity, confidentiality, non-repudiation & authentication. Cryptography mainly is 

of two types: Symmetric Key Cryptography & Asymmetric Key Cryptography. 

Symmetric key cryptography used only single key for encryption & decryption, their 

algorithm for encryption & decryption is just the reversed operation based on 

shifting, substitution, and permutation. On the other hand asymmetric key 

cryptography is a complex mathematical process by which the encryption and 

decryption is done, there are two keys private key & public key for each person. 

Public key is used to encrypt and Private Key is used to decrypt. Asymmetric key 

cryptography is more secure than Symmetric key cryptography but the computational 
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time factor comes into play, being uses of mathematical operation asymmetric use 

more time than symmetric. 

 

There is where our Elliptic curve cryptography (type of asymmetric key 

cryptography) comes into play. In 1985, Victor Miller and Neal Kobiltz proposed 

this cryptosystem based on elliptic curves, whose security relies on ECDLP (Elliptic 

curve discrete logarithmic problem). Now, Elliptic curve cryptography (ECC) can be 

applied to data-encryption and decryption, digital signatures, and key exchange 

procedures. ECC provides more security with less computational time and small key 

length. According to NIST (National Institute of Standards and Technology) Elliptic 

curve uses less key bit over RSA (Rivest-Shamir-Adelman) for providing same level 

of security. 

 

Now using Elliptic curve as an encryption system we have to find the curve order. 

There are two approaches to do that Naïve Approach, slow one merely a brute force 

type algorithm, and Advance Approach (using Schoof’s Algorithm) which is an 

efficient approach to calculate the point on elliptic curve. Schoof’s Algorithm is a 

deterministic polynomial time algorithm helps to find out the curve order to judge the 

difficulty of solving the discrete logarithm problem in the group of points on an 

elliptic curve. 

 

 

1.2 Focus 
 

The aim of this project is to gain knowledge of the implementation of Schoof’s 

Algorithm using the GMP, FLINT & MPFR library. Schoof’s Algorithm itself is a 

complex algorithm in terms of implementation. Schoof’s approach to computing the 

cardinality ⋕ Ε(𝔽𝑞) makes use of Hasse’s theorem on elliptic curves along with the 

Chinese remainder theorem and division polynomials. 

 

The mathematics involves divisor theory on elliptic curves and consists of 

number of theoretical and algebraic aspects. Many articles have appeared, often 

treating (part of) the subject from a different point of view, making different 

assumptions and using a different notation. We try to give an overview of currently 

known theory. 
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In order to deal with Schoof’s algorithm, we describe the Elliptic curve 

arithmetic. Then we briefly describe the application on Elliptic curve, comparison 

between RSA and Elliptic curve, Naïve approach to find the curve order. After that 

we discuss the Schoof’s Algorithm and its utility to reduce the time to finding the 

curve order. 

 

1.3 Organization 
 

The outline of the thesis is as follows: 

 

In Chapter 2, we state introductory part of the Elliptic curve. Then we will 

discover the arithmetic approaches associated with Elliptic curve. After that we 

will discuss about the application of Elliptic curve in cryptography. Then we will 

discuss over RSA and Elliptic curve’s comparison. Why finding curve order is 

necessary? 

 

In Chapter 3, we first state what we mean by finding curve order. Then we give a 

brief idea how to get the curve order and its different approaches. Then we 

describe we describe the Schoof’s Algorithm and give some analysis. 

 

In Chapter 4, we give some result and conclusion based on our thesis. How effect 

the Schoof’s Algorithm is? 

 

 

  

file:///C:/Users/ZEESHAN/Documents/Google%20Drive/Thesis%20Sample/thesis.doc%23page14
file:///C:/Users/ZEESHAN/Documents/Google%20Drive/Thesis%20Sample/thesis.doc%23page41
file:///C:/Users/ZEESHAN/Documents/Google%20Drive/Thesis%20Sample/thesis.doc%23page46
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ELLIPTIC CURVE 
 
 
 
 
 

 

 

 

 

 

2.1 Introduction 
 

An Elliptic curve is a curve given by equation of the form 

𝑦2  =  𝑥3  + 𝑎𝑥 + 𝑏  

There is also a requirement that the discriminant ∆ = 4𝐴3 + 27𝐵2 is nonzero. 

Equivalently, the polynomial 𝑥3  + 𝑎𝑥 + 𝑏 has distinct roots. This ensures that the 

curve is non-singular, i.e., its graph has no cusps or self-intersections. For reasons to 

be explained later, an extra point, 𝒪, has been tossed in that is “at infinity”, so 

Ε(𝑎, 𝑏) is the set   

Ε =  {(𝑥, 𝑦) ∶  𝑦2  =  𝑥3  + 𝑎𝑥 + 𝑏}  ∪ {𝒪} 

 

It is a curve that’s also naturally a group and group law is constructed 

geometrically. Elliptic curves have nothing to do with ellipses and it appears in many 

diverse areas of mathematics, ranging from number theory to complex analysis, and 
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from cryptography to mathematical physics. Elliptic curves can have points with 

coordinates in any field, such as𝔽𝑝, ℚ , ℝ  𝑜𝑟 ℂ. Elliptic curves with points in 𝔽𝑝 are 

finite groups. 

 

Elliptic curves have purely algebraic properties which are quite remarkable too. 

Most importantly, one can easily define an operation on the points of an elliptic 

curve that turns the whole curve into an abelian group. One can use geometry to 

make the points of an elliptic curve turn into a group. We can see and example below 

where we add two point using geometry only. 

 

If 𝑦2 = 𝑃(𝑥), where 𝑃 is any polynomial of degree three in 𝑥 with no repeated 

roots, the solution set is a non-singular plane curve of genus one, an elliptic curve. If 

𝑃 has degree four and is square-free this equation again describes a plane curve of 

genus one; however, it has no natural choice of identity element. More generally, any 

algebraic curve of genus one, for example from the intersection of two quadric 

surfaces embedded in three-dimensional projective space is called an elliptic curve, 

provided that it has at least one rational point to act as the identity. 

 

Elliptic curves are especially important in number theory, and constitute a major 

area of current research; for example, they were used in the proof, by Andrew Wiles, 

of Fermat's Last Theorem. They also find applications in elliptic curve cryptography 

(ECC) and integer factorization. 

 

Let 𝐾 denote a field and 𝐾 its algebraic closure. Throughout the report, we write 

𝐾∗ for 𝐾/{0}. 

 

Consider the homogeneous function over the projective plane ℙ2(𝐾) given by 

𝐹(𝑋, 𝑌, 𝑍) = 𝑌2𝑍 + 𝑎1𝑋𝑌𝑍 + 𝑎3𝑌𝑍2 − 𝑋3 − 𝑎2𝑋2𝑍 − 𝑎4𝑋𝑍2 −  𝑎6𝑍3, 

where 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6  ∈  𝐾. An elliptic curve 𝐸 is defined to be the set of solutions 

to 𝐹(𝑋, 𝑌, 𝑍)  =  0 in the projective plane ℙ2(𝐾), where points are equivalent to their 

multiples, i.e. (𝑋 ∶  𝑌 ∶  𝑍)  ∼  (𝜆𝑋 ∶  𝜆𝑌 ∶  𝜆𝑍) 𝑓𝑜𝑟 𝜆 ∈  𝐾. There is exactly one 

point in 𝐸 with 𝑍 =  0, namely (0 ∶  1 ∶  0), which we will call the point at infinity 

and denote by 𝒪. By convention, we require the curve to be non-singular, i.e. for all 
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points 𝑃 ∈  𝐸 the three partial derivatives 
𝜕𝐹

𝜕𝑋
  ,

𝜕𝐹

𝜕𝑌
 𝑎𝑛𝑑 

𝜕𝐹

𝜕𝑍
 are not all zero at 𝑃. For 

simplicity, we will use affine coordinates 𝑥 =  𝑋/𝑍 and 𝑦 =  𝑌/𝑍, and denote an 

elliptic curve by the (affine) Weierstrass equation 

𝐸 ∶  𝑦2 + 𝑎1𝑥𝑦 + 𝑎3𝑦 = 𝑥3  + 𝑎2𝑥2 + 𝑎4𝑥 +  𝑎6. 

 

Then the elliptic curve is the set of points (𝑥, 𝑦)  ∈  𝔸2(𝐾)  =  𝐾  × 𝐾 that satisfy 

the above equation, together with the extra point at infinity 𝒪. 𝐸 is said to be defined 

over 𝐾, denoted 𝐸/𝐾, if 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6  ∈  𝐾. Then 𝐾 is called the definition field. 

We denote by 𝐸(𝐾) the set of 𝐾- rational points, i.e. the points with both coordinates 

in 𝐾, together with 𝒪. Observe that by definition, we can write 𝐸 =  𝐸(𝐾). 

 

Two elliptic curves 𝐸1/𝐾, 𝐸2/𝐾 are isomorphic over 𝐾, denoted 𝐸1/𝐾 ≅  𝐸2/𝐾, 

if there exist 𝑢, 𝑟, 𝑠, 𝑡 ∈  𝐾, 𝑢 ≠  0, such that the admissible change of variables 

(𝑥, 𝑦)  →  (𝑢2𝑥 +  𝑟, 𝑢3𝑦 +  𝑢2𝑠𝑥 +  𝑡) 

 

transforms the equation of 𝐸1 into the equation of 𝐸2. We will generally be working 

with elliptic curves over a finite field 𝐾 =  𝔽𝑞 consisting of 𝑞 elements, where 𝑞 =

 𝑝𝑚 is a prime power. In this case, the algebraic closure of 𝐾 is given by 𝐾 =

 ⋃ 𝔽𝑞𝑖𝑖 ≥1 . If the characteristic 𝑝 of 𝐾 is greater than 3, then any curve defined over 𝐾 

is isomorphic with a curve of particularly simple form, namely: 

𝐸 ∶  𝑦2  =  𝑥3  +  𝑎𝑥 +  𝑏, 𝑎, 𝑏 ∈  𝐾 

 

where 4𝑎3  +  27𝑏2  ≠  0. Apart from the Weierstrass elliptic curve, there are 

various other forms of elliptic curves which are used for cryptographic purposes. 

Montgomery curve is a form of elliptic curve, different from the usual Weierstrass 

form, introduced by Peter L. Montgomery in 1987. A Montgomery curve equation 

over a finite field F is denoted by 

𝐵𝑦2  =  𝑥3  +  𝐴𝑥2  +  𝑥 

 

where 𝐴, 𝐵 ∈ 𝐹 and with 𝐵(𝐴2 − 4)  ≠  0. Another form of elliptic curve is that of 

twisted Edwards’s curves. The equation for twisted Edwards’s curves over a finite 

field 𝔽 is given as 
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𝑎𝑥2  +  𝑦2  =  1 +  𝑑𝑥2  +  𝑦2 

 

where 𝑎 and 𝑑 are distinct non-zero elements of 𝔽 . However, in our paper, we will 

mostly be stressing on Weierstrass elliptic curves for further discussions. 

 

An elliptic curve over real numbers may be defined as the set of points (𝑥, 𝑦) 

which satisfy an elliptic curve equation of the form: 

𝑦2 =  𝑥3 + 𝑎𝑥 + 𝑏, 𝑤ℎ𝑒𝑟𝑒 𝑥, 𝑦, 𝑎 & 𝑏 𝑎𝑟𝑒 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠  

Each choice of the numbers 𝑎 & 𝑏 yields a different elliptic curve. For example, 

𝑎 =  −4 & 𝑏 =   0.67 gives the elliptic curve with equation 𝑦2 =  𝑥3 − 4𝑥 + 0.7; 

the graph of this curve is shown below: 

Fig 2.1.1: Elliptic curve where a = -4 and b = 0.7 

If 𝑥3 + 𝑎𝑥 + 𝑏 contains no repeated factors, or equivalently if 4𝑎3 + 27𝑏2 is not 

0, then the elliptic curve 𝑦2  =  𝑥3 + 𝑎𝑥 + 𝑏 can be used to form a group. An elliptic 

curve group over real numbers consists of the points on the corresponding elliptic 

curve, together with a special point 𝒪 called the point at infinity. 

The finite field 𝔽𝑝 uses the numbers from 0 to 𝑝– 1, and computations end by 

taking the remainder on division by 𝑝. For example, in 𝔽23 the field is composed of 

integers from 0 to 22, and any operation within this field will result in an integer also 

between 0 and 22. 
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An elliptic curve with the underlying field of 𝔽𝑝 can be formed by choosing the 

variables 𝑎 and 𝑏 within the field of 𝔽𝑝. The elliptic curve includes all points (𝑥, 𝑦) 

which satisfy the elliptic curve equation modulo 𝑝 (where 𝑥 and 𝑦 are numbers in 

𝔽𝑝). For Elliptic Curves over 𝔽𝑝, we use a form of the Weierstrass Equation: 

𝑦² ≡  (𝑥³ +  𝑎𝑥 +  𝑏) 𝑚𝑜𝑑 𝑝 

If 𝑥³ +  𝑎𝑥 +  𝑏 contains no repeating factors (or, equivalently, if {(4𝑎³ +

 27𝑏²) 𝑚𝑜𝑑 𝑝}  ≠  0), then the elliptic curve can be used to form a group. There are 

finitely many points on such an elliptic curve. It should be noted the seemingly 

random spread of points for the elliptic curve over 𝔽𝑝. 

EXAMPLE OF AN ELLIPTIC CURVE GROUP OVER 𝔽𝑝 

As a very small example, an elliptic curve over the field 𝔽61 has been considered. 

With 𝑎 =  −1 and 𝑏 =  0, the elliptic curve equation is: 

𝑦² =  𝑥³ −  𝑥 

. 

The point (9,7) satisfies this equation since: 

𝑦² ≡  (𝑥3 −  𝑥) 𝑚𝑜𝑑 𝑝 

=>  49 𝑚𝑜𝑑 23 =  (729 −  9) 𝑚𝑜𝑑 23 

=>  49 𝑚𝑜𝑑 23 =  720 𝑚𝑜𝑑 23 

=>   0 =  0 

The 71 points which satisfy this equation are: (0, 0), (1, 0), (4, 11), (4, 50), (6, 

24), (6, 37), (8, 4), (8, 57), (9, 7), (9, 54), (10, 21), (10, 40), (11, 10), (11, 51), (13, 7), 

(13, 54), (14, 31), (14, 32), (15, 26), (15, 35), (17, 4), (17, 57), (18, 18), (18, 43), (22, 

16), (22, 45), (23, 26), (23, 35), (24, 21), (24, 40), (25, 17), (25, 44), (27, 21), (27, 

40), (28, 5), (28, 56), (33, 6), (33, 55), (34, 13), (34, 48), (36, 4), (36, 57), (37, 13), 

(37, 48), (38, 19), (38, 42), (39, 7), (39, 54), (43,15), (43, 46), (44, 17), (44, 44), (46, 

19), (46, 42), (47, 25), (47, 36), (48, 16), (48, 45), (50, 12), (50, 49), (51,13), (51, 48), 

(52, 16), (52, 45), (53, 17), (53, 44), (55, 20), (55, 41), (57, 1), (57, 60), (60, 0). These 

points may be graphed as below: 
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Fig 2.1.2: Affine points of elliptic curve 𝑦2 =  𝑥3 − 𝑥 over finite field 𝔽61 

There are two points for every 𝑥 value. Even though the graph seems random, 

there is still symmetry about 𝑦 =  31.5. In elliptic curves over real numbers, there 

exists a negative point for each point which is reflected on the x-axis. But, in the field 

of 𝔽61, the negative components in the y-values are taken modulo 61, resulting in a 

positive number as a difference from 61. Here, −𝑃 =  (𝑥𝑃, −𝑦𝑃 𝑚𝑜𝑑 61). It should 

be noted that these rules as well as the addition rules are exactly the same as those for 

elliptic curve groups over real numbers, with the exception that computations are 

performed using modulo 𝑝. 

 

2.2 Elliptic Curve Arithmetic 
 

2.2.1 Geometric Approach 

• 𝒪 serves as the additive identity: 

𝒪 =  −𝒪; for any point 𝑃 on the elliptic curve, 𝑃 +  𝒪 = 𝑃, where 𝑃 ≠  𝒪. 

• The negative of point 𝑃: 

If 𝑃 =  (𝑥, 𝑦), then the negative −𝑃 is the point with the same x-

coordinate but negative of the y-coordinate of 𝑃, i.e., 

−𝑃 =  −(𝑥, 𝑦)  =  (𝑥, −𝑦) 

It should be noted that for each point 𝑃 on an elliptic curve, the point −𝑃 is 

also on the Curve. 
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• Adding two distinct points: 

 

Fig 2.2.1: Adding two point using geometry in Elliptic curve 

 

Here 𝑃 𝑎𝑛𝑑 𝑄 are two points on Elliptic curve 𝐸. After drawing a line 𝐿 

through 𝑃 𝑎𝑛𝑑 𝑄. That line 𝐿 instersect curve 𝐸 in a third point 𝑅. If we 

draw a vertical line through 𝑅, it hits 𝐸 in another point. We define that 

point as the sum of  𝑃 𝑎𝑛𝑑 𝑄 𝑜𝑛 𝐸 to be the reflected point. We denote it 

by 𝑃 ⨁  𝑄 or just 𝑃 + 𝑄. 

 

• Adding two vertically opposite points: 

Fig 2.2.2: Adding two vertically opposite point in Elliptic curve 

 

Here 𝑃 𝑎𝑛𝑑 𝑄 are two points on Elliptic curve 𝐸. Where 𝑄 =  −𝑃, means 

𝑄 is point on elliptic curve exactly vertically opposite to the point 𝑃. As 

we see there is no intersection point on elliptic curve after connecting the 

two points. The line goes to the infinity point, 𝒪. We denote it by 

𝑃 ⨁  𝑄 =  𝒪. 
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• Doubling a point: 

Fig 2.2.3: Doubling a point in Elliptic curve 

 

Here we have only a single point 𝑃. In which we have to add itself or to double it 

up. If we join the point we know we get a tangent type line 𝐿, which intersect the 

elliptic curve at a specific point 𝑅. After drawing a vertical line from 𝑅, we will 

get the actual point which we called as 2𝑃. 

 

• Doubling a point 𝑃 where 𝑦𝑃 = 0: 

Fig 2.2.4: Doubling a point at 𝑦𝑃 = 0 

As we see in Fig 2.2.4, even after the drawing a vertically line, it never intersect 

the elliptic curve. This line goes to 𝒪 (𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦). So if 𝑦𝑃 = 0, doubling a point 

gives us  𝒪. It means 2𝑃 =  𝒪. But 3𝑃 = 2𝑃 +  𝑃 = 𝑃 and 4𝑃 =  2(2𝑃) =  𝒪. 

 

2.2.2 Algebraic Approach 

Although the previous geometric descriptions of elliptic curves provide an 

excellent method of illustrating elliptic curve arithmetic, it is not a practical way to 

implement arithmetic computations. Algebraic formulae are constructed to efficiently 

compute the geometric arithmetic. 

Let, 𝑃 =  (𝑥𝑃, 𝑦𝑃), 𝑄 =  (𝑥𝑄 , 𝑦𝑄), 𝑃 + 𝑄 =  𝑅 =  (𝑥𝑅 , 𝑦𝑅) be the points on an 

Elliptic Curve and 𝜆=Slope of the line connecting 𝑃 and 𝑄. 

• Adding two points: 

i. When 𝑃 ≠ 𝑄: 
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a. If 𝑃 =  −𝑄, then 𝑅 is point at infinity or 𝑅 =  𝒪 

b. If 𝑃 ≠  −𝑄, then 𝑥𝑅 = 𝑙2 −  𝑥𝑃 −  𝑥𝑄 and 𝑦𝑅 = 𝑙2(𝑥𝑃 −  𝑥𝑅) −  𝑦𝑃 

Where 𝑙 = (𝑦𝑃 −  𝑦𝑅)/(𝑥𝑃 −  𝑥𝑄).  

 

ii. When 𝑃 = 𝑄: 

 

a. If 𝑦𝑃 = 0, then 𝑅 is point at infinity or 𝑅 =  𝒪 

b. If 𝑦𝑃 ≠ 0, then 𝑥𝑅 = 𝑙2 −  2𝑥𝑃 and 𝑦𝑅 = 𝑙2(𝑥𝑃 −  𝑥𝑅) −  𝑦𝑃 

Where 𝑙 = (3𝑥𝑃
2 +  𝑎)/2𝑦𝑃. 

 

• Adding operations: 

 

To define the elliptic curve group, an operation, called addition, denoted by +, 

has to be defined for the set 𝐸(𝑎, 𝑏), where 𝑎 and 𝑏 satisfy the equation 𝑦2 =

 𝑥3 + 𝑎𝑥 + 𝑏. Any two points on an elliptic curve when added together will 

result in a third point on the same curve. Sum of two points, say 𝑃 and 𝑄, on 

an elliptic curve is defined as the reflected point, denoted by 𝑃 + 𝑄. 

 

It is assumed that there is an extra imaginary point 𝒪 on the elliptic curve, 

also known as the identity element or the point at infinity. This point has no 

specific (𝑥, 𝑦) coordinates, but one might imagine that its location is infinitely 

high above the curve where all vertical lines converge. 𝒪 can be considered as 

a point on every vertical line. 

 

PROPERTIES OF THE ADDITION OPERATION 

1. Closure: If (𝑃, 𝑄)  ∈ 𝐸, then (𝑃 + 𝑄)  ∈ 𝐸. 

2. Associative: 𝑃 + (𝑄 + 𝑅) =  (𝑃 + 𝑄) + 𝑅, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑃, 𝑄, 𝑅 ∈ 𝐸. 

3. Identity Element: 𝑃 + 𝑂 =  𝑂 + 𝑃 =  𝑃 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑃 ∈ 𝐸. 

4. Inverse Element: 𝑃 + (−𝑃)  =  (−𝑃) + 𝑃 =  𝑂 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑃 ∈ 𝐸. 

5. Commutative: 𝑃 + 𝑄 =  𝑄 + 𝑃 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑃, 𝑄 ∈ 𝐸. 

 

The addition operation makes the points on 𝐸 into a commutative or an abelian group. 
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2.3 Application on Cryptography 
 

Elliptic curves are applicable for encryption, digital signatures, pseudo-random 

generators and other tasks. They are also used in several integer factorization 

algorithms that have applications in cryptography, such as Lenstra elliptic curve 

factorization. 

 

An elliptic curve E over the finite field (or Galois Field) GF is defined by the 

following equation, known as the Weierstrass equation for elliptic curves in 

nonhomogeneous form : 

𝑦2 + 𝑎1𝑥𝑦 + 𝑎3𝑦 = 𝑥3 − 𝑎2𝑥2 − 𝑎4𝑥 −  𝑎6, 

where 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6  ∈  𝐺𝐹 and ∆ ≠ 0 , being ∆ the discriminant of 𝐸 calculated 

in the following way : 

∆ =  −𝑑2
2𝑑8 − 8𝑑4

3 − 27𝑑6
2 + 9𝑑2𝑑4𝑑6, 

being 𝑑2 =  𝑎1
2 + 4𝑎2, 𝑑4 = 2𝑎4 +  𝑎1𝑎3, 𝑑6 = 𝑎3

2  +  4𝑎6, and finally 𝑑8 =  𝑎1
2𝑎6 +

4𝑎2𝑎6 −  𝑎1𝑎3𝑎4 + 𝑎2𝑎3
2 −  𝑎4

2. 

 

Condition ∆ ≠ 0 assures that the curve is non-singular, and thus there are no 

curve points with two or more different tangent lines. 

 

The homogeneous form of the Weierstrass equation is 

𝑌2𝑍 + 𝑎1𝑋𝑌𝑍 + 𝑎3𝑌𝑍2 = 𝑋3 + 𝑎2𝑋2𝑍 + 𝑎4𝑋𝑍2 +  𝑎6𝑍3, 

and this implies the existence of a special point which can only be interpreted in 

the projective plane: the point at infinity 𝒪. This point is paramount in the usage of 

elliptic curves in cryptography, as it is the identity element that, together with the rest 

of the points of the elliptic curve and the addition operator (which allows to add two 

points of the elliptic curve, 𝑃 and 𝑄, in order to generate another point, 𝑅 = 𝑃 + 𝑄), 

characterizes the elliptic curve with the mathematical structure of an abelian group.   

 

When the same point is added several times to itself in the abelian group defined 

by an elliptic curve, the addition operator is transformed into the scalar 

multiplication, which in practice allows to multiply an elliptic curve point 𝑃 by a 

positive integer n in order to produce another elliptic curve point, 𝑆 = 𝑛 · 𝑃. 
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The number of points of an elliptic curve (concept also known as the cardinal or 

the order of the curve) is represented as #𝐸. In contrast, the order of a point 𝑃 that 

belongs to an elliptic curve 𝐸 is the smaller integer n that produces the result 𝑛 · 𝑃 =

𝒪. 

 

From a cryptographic point of view, not every elliptic curve is useful. 

Cryptographers are interested in elliptic curves that form cyclic abelian groups, and 

also in elliptic curves with cyclic subgroups, so that the cofactor is a small number 

(e.g. 2, 4, etc.). As a consequence of Lagrange’s theorem (which states that for any 

finite group 𝑀, the order of every subgroup 𝑁 of 𝑀 divides the order of 𝑀), the order 

of the generator (i.e. the elliptic curve point that generates all the points of the cyclic 

subgroup) always divides the order of the elliptic curve (which not necessarily is a 

prime number). Two types of finite fields 𝐺𝐹(𝑞), with 𝑞 =  𝑝𝑚 elements, are used 

in ECC: prime finite fields 𝐺𝐹(𝑝) (where 𝑝 is an odd prime and 𝑚 =  1) and binary 

finite fields 𝐺𝐹(2𝑚) (where 𝑝 =  2 and m can be any integer greater than 1). When 

working with finite fields, using the proper change of variables it is possible to 

simplify the Weierstrass equation, obtaining new equations less general (they are 

adapted to specific finite fields) but easier to manage.  If the characteristic of the 

finite field is 2, then 𝐺𝐹(𝑞) = 𝐺𝐹(2𝑚). If 𝑎1 ≠ 0 , the equation  

𝑦2 + 𝑎1𝑥𝑦 + 𝑎3𝑦 = 𝑥3 − 𝑎2𝑥2 − 𝑎4𝑥 − 𝑎6 can be reduced to the form 

𝑦2 + 𝑥𝑦 = 𝑥3 + 𝑎𝑥2 + 𝑏 

where the discriminant is ∆ = 𝑏. 

 

If 𝑎1 = 0, that equation is transformed into 

𝑦2 + 𝑐𝑦 = 𝑥3 + 𝑎𝑥 + 𝑏 

where the discriminant is ∆ = 𝑐4. 

 

Moreover, if the characteristic of the finite field is 3, then two cases appear. If 

𝑎1
2  ≠  −𝑎2, that equation is reduced to 

𝑦2 = 𝑥3 + 𝑎𝑥2 + 𝑏, 

where the discriminant is ∆ = 𝑎3𝑏. 
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In contrast, if 𝑎1
2 =  −𝑎2, that equation is reduced to 

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏, 

where the discriminant is ∆ = −𝑎3. 

 

Finally, if the characteristic of 𝐺𝐹(𝑞) is neither 2 nor 3, using the proper change 

of variables that equation can be transformed into 

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏, 

where the discriminant is ∆ = −16(4𝑎3 +  27𝑏2). 

 

The set of parameters to be used in any ECC implementation depends on the 

underlying finite field. When the field is 𝐺𝐹(𝑝), the set of parameters that define the 

curve is (𝑝, 𝑎, 𝑏, 𝐺, 𝑛, ℎ), whereas if the finite field is 𝐺𝐹(2𝑚), the set of parameters 

is (𝑚, 𝑓(𝑥), 𝑎, 𝑏, 𝐺, 𝑛, ℎ). The meaning of each element in both sets is the following: 

• 𝑝 is the prime number that characterizes the finite field 𝐺𝐹(𝑝). 

• 𝑚 is the integer number specifying the finite field 𝐺𝐹(2𝑚). 

• 𝑓(𝑥) is the irreducible polynomial of grade m defining 𝐺𝐹(2𝑚). 

• 𝑎 and 𝑏 are the elements of the finite field 𝐺𝐹(𝑞) taking part in all equations. 

• 𝐺 = (𝐺𝑥, 𝐺𝑦) is the point of the curve that will be used as a generator of the 

points representing public keys. 

• 𝑛 is the prime number whose value represents the order of the point 𝐺 (i.e. 𝑛 ·

𝐺 = 𝒪).  

• ℎ is the cofactor of the curve, computed as ℎ = #𝐸/𝑛, where 𝑛 is the order of 

the generator 𝐺.  

 

 

2.3.1 Elliptic Curve Diffie Hellman 

Elliptic Curve Diffie Hellman (ECDH) is an anonymous key agreement protocol 

that allows two parties, each having an elliptic curve public–private key pair, to 

establish a shared secret over an insecure channel. This shared secret may be directly 

used as a key, or to derive another key. The key, or the derived key, can then be used 

to encrypt subsequent communications using a symmetric-key cipher. It is a variant 

of the Diffie–Hellman protocol using elliptic-curve cryptography. 

 



16 
 

The main objective of key exchange protocols is to put in contact two or more 

entities communicating through an open and insecure channel, sharing a secret key 

that will provide data confidentiality and integrity to any information exchanged 

using that channel. 

 

The following example will illustrate how a key establishment is made. Suppose 

Alice wants to establish a shared key with Bob, but the only channel available for 

them may be eavesdropped by a third party. Initially, the domain parameters (that is, 

(𝑝, 𝑎, 𝑏, 𝐺, 𝑛, ℎ) in the prime case or (𝑚, 𝑓(𝑥), 𝑎, 𝑏, 𝐺, 𝑛, ℎ) in the binary case) must 

be agreed upon. Also, each party must have a key pair suitable for elliptic curve 

cryptography, consisting of a private key 𝑑 (a randomly selected integer in the 

interval [1, 𝑛 − 1] and a public key represented by a point 𝑄 (where 𝑄 =  𝑑𝐺, that 

is, the result of adding 𝐺 to itself 𝑑 times). Let Alice's key pair be (𝑑𝐴, 𝑄𝐴) and Bob's 

key pair be (𝑑𝐵, 𝑄𝐵). Each party must know the other party's public key prior to 

execution of the protocol. 

 

Alice computes point (𝑥𝑘, 𝑦𝑘) =  𝑑𝐴𝑄𝐵. Bob computes point (𝑥𝑘, 𝑦𝑘) =  𝑑𝐵𝑄𝐴. 

The shared secret is 𝑥𝑘 (the 𝑥 coordinate of the point). Most standardized protocols 

based on ECDH derive a symmetric key from 𝑥𝑘 using some hash-based key 

derivation function. 

 

The shared secret calculated by both parties is equal, because 

𝑑𝐴𝑄𝐵 =  𝑑𝐴𝑑𝐵𝐺 = 𝑑𝐵𝑑𝐴𝐺 =  𝑑𝐵𝑄𝐴 

. 

The only information about her private key that Alice initially exposes is her 

public key. So, no party other than Alice can determine Alice's private key, unless 

that party can solve the elliptic curve discrete logarithm problem. Bob's private key is 

similarly secure. No party other than Alice or Bob can compute the shared secret, 

unless that party can solve the elliptic curve Diffie–Hellman problem. 
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2.3.2 Elliptic Curve Digital Signature 

Elliptic Curve Digital Signature Algorithm (ECDSA) offers a variant of the 

Digital Signature Algorithm (DSA) which uses elliptic curve cryptography. As with 

elliptic-curve cryptography in general, the bit size of the public key believed to be 

needed for ECDSA is about twice the size of the security level, in bits. For example, 

at a security level of 80 bits (meaning an attacker requires a maximum of about 280 

operations to find the private key) the size of an ECDSA public key would be 160 

bits, whereas the size of a DSA public key is at least 1024 bits. On the other hand, 

the signature size is the same for both DSA and ECDSA: approximately 4𝑡 bits, 

where 𝑡 is the security level measured in bits, that is, about 320 bits for a security 

level of 80 bits. 

 

SIGNATURE GENERATION ALGORITHM 

Suppose Alice wants to send a signed message to Bob. Initially, they must agree 

on the curve parameters (𝐸, 𝐺, 𝑛). In addition to the field and equation of the curve, 

we need 𝐺, a base point of prime order on the curve; 𝑛 is the multiplicative order of 

the point 𝐺. 

 

The order 𝑛 of the base point 𝐺 must be prime. Indeed, we assume that every 

nonzero element of the ring ℤ/𝑛ℤ  are invertible, so that ℤ/𝑛ℤ must be a field. It 

implies that 𝑛 must be prime. 

 

Alice creates a key pair, consisting of a private key integer 𝑑𝐴, randomly selected 

in the interval [1, 𝑛 − 1]; and a public key curve point 𝑄𝐴 =  𝑑𝐴 × 𝐺. We use ×  to 

denote elliptic curve point multiplication by a scalar. 

 

For Alice to sign a message 𝑚, she follows these steps: 

 

1. Calculate 𝑒 = 𝐻𝐴𝑆𝐻(𝑚). (Here HASH is a cryptographic hash function, 

such as SHA-2, with the output converted to an integer.) 

2. Let 𝑧 be the 𝐿𝑛, leftmost bits of 𝑒, where 𝐿𝑛 is the bit length of the group 

order 𝑛. (Note that 𝑧 can be greater than 𝑛 but not longer) 

3. Select a cryptographically secure random integer 𝑘 from [1, 𝑛 − 1]. 
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4. Calculate the curve point (𝑥1, 𝑦1) = 𝑘 ×  𝐺. 

5. Calculate 𝑟 = 𝑥1 𝑚𝑜𝑑  𝑛. If 𝑟 = 0, go back to step 3. 

6. Calculate 𝑠 = 𝑘−1 (𝑧 + 𝑟𝑑𝐴) 𝑚𝑜𝑑 𝑛. If 𝑠 = 0, go back to step 3. 

7. The signature is the pair (𝑟, 𝑠). (And  (𝑟, −𝑠 𝑚𝑜𝑑 𝑛) is also a valid 

signature.) 

 

As the standard notes, it is not only required for 𝑘 to be secret, but it is also 

crucial to select different 𝑘 for different signatures, otherwise the equation in step 6 

can be solved for 𝑑𝐴, the private key: Given two signatures (𝑟, 𝑠) and (𝑟, 𝑠′), 

employing the same unknown 𝑘 for different known messages 𝑚 and 𝑚′, an attacker 

can calculate 𝑧 and 𝑧′, and since 𝑠 − 𝑠′ = 𝑘−1(𝑧 − 𝑧′) (all operations in this 

paragraph are done modulo 𝑛) the attacker can find 𝑘 =
𝑧−𝑧′

𝑠−𝑠′
. Since 𝑠 = 𝑘−1(𝑧 +

𝑟𝑑𝐴), the attacker can now calculate the private key 𝑑𝐴 =
𝑠𝑘−𝑧

𝑟
. 

 

 

SIGNATURE VERIFICATION ALGORITHM 

For Bob to authenticate Alice's signature, he must have a copy of her public-key 

curve point 𝑄𝐴. Bob can verify 𝑄𝐴 is a valid curve point as follows: 

 

1. Check that 𝑄𝐴 is not equal to the identity element 𝒪, and its coordinates 

are otherwise valid 

2. Check that 𝑄𝐴 lies on the curve 

3. Check that 𝑛 × 𝑄𝐴 =  𝒪 

 

After that, Bob follows these steps: 

 

1. Verify that 𝑟 and 𝑠 are integers in [1, 𝑛 − 1]. If not, the signature is 

invalid. 

2. Calculate 𝑒 = 𝐻𝐴𝑆𝐻(𝑚), where HASH is the same function used in the 

signature generation. 

3. Let 𝑧 be the 𝐿𝑛 leftmost bits of 𝑒. 

4. Calculate 𝑢1 = 𝑧𝑠−1 𝑚𝑜𝑑 𝑛  and 𝑢2 = 𝑟𝑠−1 𝑚𝑜𝑑 𝑛. 
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5. Calculate the curve point (𝑥1, 𝑦1) = 𝑢1 ×  𝐺 + 𝑢2 ×  𝑄𝐴. If (𝑥1, 𝑦1) = 𝒪 

then the signature is invalid. 

6. The signature is valid if 𝑟 ≡ 𝑥1 𝑚𝑜𝑑 𝑛, invalid otherwise. 

 

Note that an efficient implementation would compute inverse 𝑠−1 𝑚𝑜𝑑 𝑛 only 

once. Also, using Shamir's trick, a sum of two scalar multiplications 𝑢1 ×  𝐺 +

𝑢2 × 𝑄𝐴 can be calculated faster than two scalar multiplications done independently. 

 

 

2.3.3 Elliptic Curve Integrated encryption scheme 

The most extended encryption and decryption scheme based on ECC is the 

Elliptic Curve Integrated Encryption Scheme (ECIES). This scheme is a variant of 

the ElGamal scheme proposed by Abdalla, Bellare, and Rogaway in “DHAES: An 

encryption scheme based on the Diffie-Hellman problem”, submission to IEEE 

P1363a, 1998. 

 

As its name properly indicates, ECIES is an integrated encryption scheme which 

uses the following functions:  

• Key Agreement (KA): Function used for the generation of a shared secret by 

two parties. 

• Key Derivation Function (KDF): Mechanism that produces a set of keys from 

keying material and some optional parameters. 

• Encryption (ENC): Symmetric encryption algorithm. 

• Message Authentication Code (MAC): Data used in order to authenticate 

messages. 

• Hash (HASH): Digest function, used within the KDF and the MAC functions. 

 

ENCRYPTION PROCESS 

 In order to describe the steps that must be taken in order to encrypt a clear 

message, we will follow the tradition and will assume that Alice wants to send a 

message to Bob. In that scenario, Alice’s ephemeral private and public keys will be 

represented as 𝑢 and 𝑈, respectively. Similarly, we will refer to Bob‘s private and 

public keys as 𝑣 and 𝑉, respectively.  In ECC, private keys are elements of the finite 
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field, either 𝐺𝐹(𝑝) or 𝐺𝐹(2𝑚), whilst public keys are points belonging to the elliptic 

curve and calculated as the product of the private key and the generator 𝐺 of the 

elliptic curve. The steps (shown in Fig. 2.3.1) that Alice must complete are the 

following: 

1) Alice must create an ephemeral key pair consisting in the finite field 

element 𝑢 and the elliptic curve point 𝑈 = 𝑢 · 𝐺. That key pair should be 

generated pseudo randomly exclusively for the current process. 

 

2) After the ephemeral keys 𝑢 and 𝑈 are generated, Alice will use the Key 

Agreement function, KA, in order to create a shared secret value, which is 

the result of the scalar multiplication 𝑢 · 𝑉, considering as input values 

Alice's ephemeral private key 𝑢 and Bob's public key 𝑉. 

 

 

3) Then, Alice must take the shared secret value 𝑢 · 𝑉 and optionally other 

parameters (e.g. the binary representation of the ephemeral public key 𝑈) as 

input data for the Key Derivation Function, KDF. The output of this 

function is the concatenation of the symmetric encryption key, 𝑘𝐸𝑁𝐶, and 

the MAC key, 𝑘𝑀𝐴𝐶 . 

 

4) With the element 𝑘𝐸𝑁𝐶 and the clear message, 𝑚, Alice will use the 

symmetric encryption algorithm, ENC, in order to produce the encrypted 

message, 𝑐. 

 

 

5) Taking the encrypted message 𝑐, 𝑘𝑀𝐴𝐶  and optionally other parameters, 

such as a text string previously agreed by both parties, Alice must use the 

selected MAC function in order to produce a 𝑡𝑎𝑔. 

 

6) Finally, Alice will take the temporary public key 𝑈, the tag, and the 

encrypted message 𝑐, and will send the cryptogram (𝑈||𝑡𝑎𝑔||𝑐) consisting 

of those three concatenated elements to Bob. 
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Fig 2.3.1: ECIES encryption functional diagram 

 

 

DECRYPTION PROCESS 

Regarding the decryption process, the steps that Bob must perform (shown in Fig. 

2.3.2) are the following: 

 

1) After receiving the cryptogram (𝑈||𝑡𝑎𝑔||𝑐) from Alice, Bob must retrieve 

the ephemeral public key 𝑈, the 𝑡𝑎𝑔, and the encrypted message 𝑐, so he 

can deal with those elements separately. 

 

2) Using the retrieved ephemeral public key, 𝑈, and his own private key, 𝑣, 

Bob will multiply both elements in order to produce the shared secret value 

𝑣 · 𝑈, as the result of this computation is the same that the product 𝑢 · 𝑉, 

which is the core of the Diffie-Hellman procedure. 
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3) Taking as input the shared secret value 𝑣 · 𝑈 and the same optional 

parameters that Alice used, Bob must produce the same encryption and 

MAC keys by means of the KDF procedure. 

 

4) With the MAC key 𝑘𝑀𝐴𝐶 , the encrypted message 𝑐, and the same optional 

parameters used by Alice, Bob will first compute the element tag*, and 

then he will compare its value with the tag that he received as part of the 

cryptogram. If the values are different, Bob must reject the cryptogram due 

to a failure in MAC verification procedure. 

 

5) If the tag value generated by Bob is the correct one, then he will continue 

the process by deciphering the encrypted message 𝑐 using the symmetric 

ENC algorithm and 𝑘𝐸𝑁𝐶. At the end of the decryption process, Bob will be 

able to access the plaintext that Alice intended to send him. 

 
Fig 2.3.2: ECIES decryption functional diagram 
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2.4 Comparison over RSA 

 
RSA – Rivest-Shamir-Adleman 

• Well established. RSA was first described in the seventies, and it is well understood 

and used for secure data transmission. It lasted spectacularly as an encryption scheme 

for decades in which public key is used to encrypt the information while the private 

key is used to decrypt the information. 

 

• RSA is based on the difficulty of factoring large integers. Factoring large integers 

in order to identify prime numbers is processor-intensive, and hence has been very 

effective as a defense until now. But it comes with overhead: slow key generation, 

maximum consumption of computer resources, for instance. 

 

• Scalability is not optimal. This is a significant flaw at a time when we know that the 

proliferation of internet-linked devices – the Internet of Things – will put demands 

on a system that’s already expected to be obsolete by 2030. RSA is vulnerable 

against quantum computers and brute force attack, hence a new algorithm is required, 

which can offer a better performance for a specified security level. 

 

• Very fast, very simple encryption. RSA encryption is based on simple principles, 

and in the right environment can run faster than ECC. RSA might not be scalable, but 

in certain situations, for instance, for internal organizations, it may be faster. In RSA, 

the reliability and security devolves on the level of difficulty of integer factorization. 

 

ECC – Elliptic Curve Cryptography 

• Need Special Adjustment. Depending on your audience and your ability to maintain 

your systems for legacy equipment, you might need to implement ECC encryption in 

an environment that is not prepared for it. There is a way to set up called hybrid SSL 

that allows implementation of ECC cryptography on RSA trusted root keys, for that, 

you will have to discuss this with your CA and hosting provider. 

 

• Relies on detecting the separate logarithm of a random elliptic curve. The ECC 

algorithm works on Elliptic Curve Discrete Logarithm Problem (ECDLP) that is hard 

to crack for hackers. There is no known solution to the mathematical problem posed 

by the equation that produces the elliptical curve in a graph, and so the only solution 

is to try random numbers. However, each bit size provides more options than RSA, 

making it hard that the brute force approach is unlikely to succeed. 
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• Shorter keys in ECC encryption are as strong as long keys for RSA. This results 

in much less network overhead, allowing faster performance and a better customer or 

user experience. It also means that in the long term, there is more room for growth, 

because each additional bit gives more options than each additional bit in RSA. That 

also means a slower growth in bit size over time, which makes it more scalable, 

potentially, for the Internet of Things. 

 

• Smaller certificate size. Again, the amount of information necessary to exchange for 

validation is significantly less than RAS, lowering network overhead and increasing 

performance, which provides an improved user or customer experience. It also 

improves scalability by providing an environment in which increased traffic can be 

handled by the server because of the lower overhead, without changing the 

infrastructure. 

 

• Low on CPU consumption and memory usage. For both client and server, this is 

an improved experience, streamlining the connection and simplifying the process. 

ECC consumes less computing power and battery resource. RSA certificate can hold 

450 requests per second with 150 millisecond average response time where ECC 

requires only 75 milliseconds for responding to the same amount of requests per 

second. ECC has great response time when it communicates for server to desktop. 

 

• Hybrid SSL for ECC to work. For some organizations, it is necessary that a 

website works successfully with older equipment, and in that case, each organization 

must consider a technique of hybrid certificates that allows an ECC algorithm to 

support even on RSA trusted root certificate. 

 

Minimum size (bits) of Public keys Key Size Ratio 

Security (bits) RSA ECC ECC to RSA 

80 1024 160-223 1:6 

112 2048 224-255 1:9 

128 3072 256-383 1:12 

192 7680 384-511 1:20 

256 15360 512+ 1:30 

Keys in ECC are significantly shorter than in other cryptosystems such as RSA. A shorter 

key implies easier data management, lower hardware requirements (in terms of buffers, 

memory, data storage, etc.), less bandwidth when transmitting the keys over a network, and 

longer battery life in devices where it is important, such as mobile phones. 
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2.5 Finding Curve Order 

 
The number of points on an elliptic curve is defined as the cardinality of the set of 

pairs of points that lie in the finite field 𝔽𝑝 over which the elliptic curve is defined, 

and which satisfy the equation of the elliptic curve, plus an additional point to 

represent the point at infinity. The order of the elliptic curve plays an important role 

in the selection of the curve for cryptographic uses. 

 

Many of the cryptographic standards select a secure curve based on the curve 

statistics provided by the curve order. One of the most common requirements is that 

the order of the curve defined under a finite field 𝔽𝑝 not be a product of small 

primes. It is usually preferred that the group order be a multiple of large primes or 

that the group order at least contain a large prime of the order of at least 2160.  
 
In Elliptic curve cryptography, the curve order is very important because using 

the curve we solve most of the problem in Diffie Hellman, Digital Signature and 

Encryption & Decryption scheme. It is also used to find out the point order of a 

point. Curve order is nothing but just number of points on the Elliptic curve which 

satisfy the elliptic curve equation. 

 

There are several approaches to the problem. Beginning with the naive approach, 

we trace the developments up to Schoof's definitive work on the subject. There are 

three type of approach to finding the curve order: 

 

1) Naïve Approach 

2)   Advance Approach 

3)  Schoof’s Algorithm 
 

Several algorithms make use of the fact that groups of the form 𝐸(𝔽𝑝) are subject to an 

important theorem due to Hasse, that bounds the number of points to be considered. The 

Hasse's theorem states that if E is an elliptic curve over the finite field 𝔽𝑝, then the 

cardinality of 𝐸(𝔽𝑝) satisfies 

||𝐸(𝔽𝑝)| − (𝑞 + 1)| ≤  2√𝑞 
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3 
  

VARIOUS APPROACHES FOR 
FINDING CURVE ORDER 

 
 
 
 
 

 

 

 

 

 

3.1 Naïve Approach 
 

The naive approach to counting points, which is the least sophisticated, involves 

running through all the elements of the field 𝔽𝑞 and testing which ones satisfy the 

Weierstrass form of the elliptic curve 

𝑦2 = 𝑥3 + 𝐴𝑥 + 𝐵 

Example 

Let 𝐸 be the curve 𝑦2  =  𝑥3  +  𝑥 +  1 over 𝔽5. To count points on 𝐸, we make a list of 

the possible values of 𝑥, then of the quadratic residues of 𝑥 𝑚𝑜𝑑 5 (for lookup purpose 

only), then of 𝑥3  +  𝑥 +  1 𝑚𝑜𝑑 5, then of 𝑦 of 𝑥3  +  𝑥 +  1 𝑚𝑜𝑑 5. This yields the points 

on 𝐸. 
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𝒙 𝒙𝟐 𝒙𝟑 + 𝒙 + 𝟏 𝒚 Points 

0 0 1 1,4 (0,1), (0,4) 

1 1 3 _ _ 

2 4 1 1,4 (2,1), (2,4) 

3 4 1 1,4 (3,1), (3,4) 

4 1 4 2,3 (4,2), (4,3) 

 

E.g. the last row is computed as follows: If you insert 𝑥 =  4 in the equation 𝑦2  =

 𝑥3  +  𝑥 +  1 you get 4 as result (3rd column). This result can be achieved if 𝑦 = 2,3 

(Quadratic residues can be looked up in the 2nd column). So the points for the last row are 

(4,2), (4,3). 

 

Therefore, 𝐸(𝔽5) has cardinality of 9: the 8 points listed before and the point at infinity. 

 

This algorithm requires running time 𝑂(𝑞), because all the values of 𝑥 ∈ 𝔽𝑞 must be 

considered. This is the simplest form of the point counting algorithm, but with a complexity 

of 𝑂(𝑞), it is not efficient for large values of 𝑞. For a field 𝔽𝑞 having an extremely large 

characteristic 𝑞, the iteration of the loop is formidable. If we were to consider counting 

points on a cryptographic curve, the calculations would be in the magnitude of 2160 and 

above, which would be impossible to perform within reasonable time. It is obvious that it is 

not feasible to count points on curves defined over large finite fields using this algorithm. 

 

 

3.2 Advance Approach 
 

Talking about the advance approach it means it takes less time from the former 

naive approach to counting points. There is an algorithm which we called as Baby-

step giant-step which counts the point in 𝑂(√𝑞4 ) time. 

 

We pick an element 𝑃 = (𝑥, 𝑦)  ∈  𝐸(𝔽𝑞) by selecting random values of 𝑥 until 

𝑥3 + 𝐴𝑥 + 𝐵 is a square in 𝔽𝑞 and then computing the square root of this value in order to 

get 𝑦. Hasse's theorem tells us that |𝐸(𝔽𝑞)| lies in the interval (𝑞 + 1 − 2√𝑞, 𝑞 + 1 + 2√𝑞). 

Thus, by Lagrange's theorem, finding a unique 𝑀 lying in this interval and satisfying 𝑀𝑃 =

𝒪, results in finding the cardinality of 𝐸(𝔽𝑞). The algorithm fails if there exist two integers 
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𝑀 and 𝑀′ in the interval such that 𝑀𝑃 = 𝑀′𝑃 = 𝒪. In such a case it usually suffices to 

repeat the algorithm with another randomly chosen point in 𝐸(𝔽𝑞). 

 

Trying all values of 𝑀 in order to find the one that satisfies 𝑀𝑃 = 𝒪 takes around 4√𝑞 

steps. However, by applying the baby-step giant-step algorithm to 𝐸(𝔽𝑞), we are able to 

speed this up to around 4√𝑞4  steps. The algorithm is as follows. 

 

1. Choose 𝑚 integer, 𝑚 > √𝑞4  

2. FOR{ 𝑗 = 0 𝑡𝑜 𝑚} DO  

3.     𝑃𝑗 ⟵  𝑗𝑃 

4. END FOR 

5. 𝐿 ⟵ 1 

6. 𝑄 ⟵ (𝑞 + 1)𝑃 

7. REPEAT compute the points 𝑄 + 𝑘(2𝑚𝑃) 

8. UNTIL ∃𝑗: 𝑄 + 𝑘(2𝑚𝑃) = ± 𝑃𝑗    \\the 𝑥-coordinates are compared 

9. 𝑀 ←  𝑞 + 1 + 2𝑚𝑘 ∓  𝑗        \\note 𝑀𝑃 = 𝒪 

10. Factor 𝑀. Let 𝑝1, … , 𝑝𝑟 be the distinct prime factors of 𝑀. 

11. WHILE 𝑖 ≤  𝑟 DO 

12.  IF 
𝑀

𝑝𝑖
𝑃 = 𝒪 

13.         THEN 𝑀 ←
𝑀

𝑝𝑖
 

14.         ELSE 𝑖 ← 𝑖 + 1  

15.     ENDIF 

16. ENDWHILE 

17. 𝐿 ←  𝑙𝑐𝑚(𝐿, 𝑀)         \\note 𝑀 is the order of the point 𝑃 

18. WHILE 𝐿 divides more than one integer 𝑁 in (𝑞 + 1 − 2√𝑞, 𝑞 + 1 + 2√𝑞) 

19.     DO choose a new point 𝑃 and go to 1. 

20. ENDWHILE 

21. RETURN 𝑁         \\it is the cardinality of 𝐸(𝔽𝑞) 

 

One drawback of this method is that there is a need for too much memory when the 

group becomes large. In order to address this, it might be more efficient to store only the 𝑥 

coordinates of the points 𝑗𝑃 (along with the corresponding integer 𝑗). However, this leads to 

an extra scalar multiplication in order to choose between −𝑗 and +𝑗. 
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3.3 Schoof’s Algorithm 

 
Schoof's algorithm is an efficient algorithm to count points on elliptic curves over 

finite fields. The algorithm has applications in elliptic curve cryptography where it is 

important to know the number of points to judge the difficulty of solving the discrete 

logarithm problem in the group of points on an elliptic curve. 

 

The algorithm was published by René Schoof in 1985 and it was a theoretical 

breakthrough, as it was the first deterministic polynomial time algorithm for counting 

points on elliptic curves. Before Schoof's algorithm, approaches to counting points 

on elliptic curves such as the naive and baby-step giant-step algorithms were, for the 

most part, tedious and had an exponential running time. 

 

Schoof’s algorithm uses division polynomials and Hasses’s theorem, along with 

the Chinese remainder theorem. Using this algorithm it reduces the time taken for 

calculating the curve order. 

 

When generating curves for elliptic curve cipher systems, the order of the group 

of points is important. The main method for generating these curves depends on the 

point counting problem. We require, at least, for the group to be divisible by a large 

prime factor. By large we mean at least 160 bits in length. 

 

Being able to randomly choose an elliptic curve over large finite fields is 

important in elliptic curve cryptosystems. The point counting problem, the problem 

of determining the number of points on this curve, is important. In some elliptic 

curve cipher systems, the order does not need to be known, but its security depends 

upon the order having large prime factors. The following algorithm is one technique 

which has become the basis of most current efficient schemes for counting points on 

an elliptic curve. 
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4 
  

SCHOOF’S ALGORITHM 
 
 
 
 
 

 

 

 

 

 

4.1 INTRODUCTION 
 

A theoretical breakthrough for the problem of computing the cardinality of groups 

of the type 𝐸(𝔽𝑞) was achieved by René Schoof, who, in 1985, published the first 

deterministic polynomial time algorithm. Central to Schoof's algorithm are the use of 

division polynomials and Hasse's theorem, along with the Chinese remainder 

theorem. 

 

Schoof's insight exploits the fact that, by Hasse's theorem, there is a finite range 

of possible values for |𝐸(𝔽𝑞)|. It suffices to compute |𝐸(𝔽𝑞)| modulo an integer 𝑁 >

4√𝑞. This is achieved by computing |𝐸(𝔽𝑞)| modulo primes ℓ1, . . . , ℓ𝑠 whose product 

exceeds 4√𝑞, and then applying the Chinese remainder theorem. The key to the 

algorithm is using the division polynomial 𝜓𝑙 to efficiently compute |𝐸(𝔽𝑞)| modulo 

ℓ. 
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The running time of Schoof's Algorithm is polynomial in 𝑛 = log 𝑞, with an 

asymptotic complexity of 𝑂(𝑛2𝑀(𝑛3)/ log 𝑛) = 𝑂(𝑛5+𝑜(1)), where 𝑀(𝑛) denotes 

the complexity of integer multiplication. Its space complexity is 𝑂(𝑛3). 

 

 

4.2 Algorithm 
 

Let 𝐸 be an elliptic curve defined over the finite field 𝔽𝑞, where 𝑞 = 𝑝𝑛 for 𝑝 a prime 

and 𝑛 an integer ≥ 1. Over a field of characteristic ≠ 2,3 an elliptic curve can be given 

by a (short) Weierstrass equation 

𝑦2 = 𝑥3 + 𝐴𝑥 + 𝐵 
with 𝐴, 𝐵 ∈ 𝔽𝑞. The set of points defined over 𝔽𝑞 consists of the solutions (𝑎, 𝑏) ∈ 𝔽𝑞

2  

satisfying the curve equation and a point at infinity 𝒪. Using the group law on elliptic 

curves restricted to this set one can see that this set 𝐸(𝔽𝑞) forms an abelian group, with 

𝒪 acting as the zero element. In order to count points on an elliptic curve, we compute 

the cardinality of 𝐸(𝔽𝑞). Schoof's approach to computing the cardinality #𝐸(𝔽𝑞) makes 

use of Hasse's theorem on elliptic curves along with the Chinese remainder theorem and 

division polynomials. 
 

 

 

HASSE’S THEOREM 

Hasse's theorem states that if 𝐸(𝔽𝑞) is an elliptic curve over the finite field 𝔽𝑞, then 

#𝐸(𝔽𝑞) satisfies 

|𝑞 + 1 −  #𝐸(𝔽𝑞)| ≤  2√𝑞 

This powerful result, given by Hasse in 1934, simplifies our problem by narrowing down 

#𝐸(𝔽𝑞) to a finite (albeit large) set of possibilities. Defining 𝑡 to be 𝑞 + 1 − #𝐸(𝔽𝑞), and 

making use of this result, we now have that computing the value of  𝑡 modulo 𝑁 where 𝑁 >

4√𝑞, is sufficient for determining 𝑡, and thus #𝐸(𝔽𝑞). While there is no efficient way to 

compute 𝑡 (𝑚𝑜𝑑  𝑁) directly for general 𝑁, it is possible to compute 𝑡(𝑚𝑜𝑑  𝑙) for 𝑙 a small 

prime, rather efficiently. We choose  𝑆 = {𝑙1, 𝑙2, . . . , 𝑙𝑟} to be a set of distinct primes such 

that ∏ 𝑙𝑖 = 𝑁 > 4√𝑞. Given 𝑡(𝑚𝑜𝑑  𝑙𝑖) for all 𝑙𝑖 ∈ 𝑆, the Chinese remainder theorem allows 

us to compute 𝑡(𝑚𝑜𝑑  𝑁). 

 

In order to compute 𝑡(𝑚𝑜𝑑  𝑙) for a prime 𝑙 ≠  𝑝, we make use of the theory of the 

Frobenius endomorphism ∅ and division polynomials. Note that considering primes 𝑙 ≠  𝑝 is 

no loss since we can always pick a bigger prime to take its place to ensure the product is big 
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enough. In any case Schoof's algorithm is most frequently used in addressing the case 𝑞 = 𝑝 

since there are more efficient, so called 𝑝 adic algorithms for small-characteristic fields. 

 

DIVISIONAL POLYNOMIALS 

Division polynomials provide a way to calculate multiples of points on elliptic curves 

and to study the fields generated by torsion points. They play a central role in the study of 

counting points on elliptic curves in Schoof's algorithm. 

 

The set of division polynomials is a sequence of polynomials in ℤ[𝑥, 𝑦, 𝐴, 𝐵] with 

𝑥, 𝑦, 𝐴, 𝐵 free variables that is recursively defined by: 

 

𝜓0 = 0  

𝜓1 = 1  

𝜓2 = 2𝑦  

𝜓3 = 3𝑥3 + 6𝐴𝑥2 + 12𝐵𝑥 − 𝐴2  

𝜓4 = 4𝑦(𝑥6 + 5𝐴𝑥4 + 20𝐵𝑥3 − 5𝐴2𝑥2 − 4𝐴𝐵𝑥 − 8𝐵2 − 𝐴3)  

⋮  

𝜓2𝑚+1 = 𝜓𝑚+2𝜓𝑚
3 − 𝜓𝑚−1𝜓𝑚+1

3   𝑓𝑜𝑟 𝑚 ≥ 2  

𝜓2𝑚 = (
𝜓𝑚

2𝑦
) . (𝜓𝑚+2𝜓𝑚−1

2 − 𝜓𝑚−2𝜓𝑚+1
2 )  𝑓𝑜𝑟 𝑚 ≥ 3  

This polynomial 𝜓𝑛 is called the 𝑛𝑡ℎ division polynomial. Which we will use in Schoof’s 

algorithm. 

 

Divisional polynomial properties are: 

• In practice, one sets 𝑦2 = 𝑥2 + 𝐴𝑥 + 𝐵, and then 𝜓2𝑚+1 ∈ ℤ[𝑥, 𝐴, 𝐵] and 

𝜓2𝑚 ∈ 2𝑦ℤ[𝑥, 𝐴, 𝐵]. 

• The division polynomials form a generic elliptic divisibility sequence over the 

ring ℚ[𝑥, 𝑦, 𝐴, 𝐵]/(𝑦2 − 𝑥3 − 𝐴𝑥 − 𝐵). 

• If an elliptic curve 𝐸 is given in the Weierstrass form 𝑦2 = 𝑥3 + 𝐴𝑥 + 𝐵 over 

some field 𝐾, i.e. 𝐴, 𝐵 ∈  𝐾, one can use these values of 𝐴, 𝐵 and consider the 

division polynomials in the coordinate ring of  𝐸. The roots of 𝜓2𝑛+1 are the 𝑥-

coordinates of the points of 𝐸[2𝑛 + 1]\𝒪, where 𝐸[2𝑛 + 1] is the (2𝑛 +

1)𝑡ℎ torsion subgroup of 𝐸. Similarly, the roots of 𝜓2𝑛/2𝑦 are the 𝑥-coordinates 

of the points of 𝐸[2𝑛]\𝐸[2]. 
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• Given a point 𝑃 = (𝑥𝑃 , 𝑦𝑃) on the elliptic curve 𝐸: 𝑦2 = 𝑥3 + 𝐴𝑥 + 𝐵 over some 

field 𝐾, we can express the coordinates of the nth multiple of 𝑃 in terms of 

division polynomials: 

𝑛𝑃 = (
𝜙𝑛(𝑥)

𝜓𝑛
2(𝑥)

,
𝜔𝑛(𝑥, 𝑦)

𝜓𝑛
3(𝑥, 𝑦)

) = (𝑥 −
𝜓𝑛−1𝜓𝑛+1

𝜓𝑛
2(𝑥)

,
𝜓2𝑛(𝑥, 𝑦)

2𝜓𝑛
4(𝑥)

) 

where 𝜙𝑛 and 𝜔𝑛 are defined by: 

𝜙𝑛 = 𝑥𝜓𝑛
2 − 𝜓𝑛+1𝜓𝑛−1 

𝜔𝑛 =
𝜓𝑛+2𝜓𝑛−1

2 − 𝜓𝑛−2𝜓𝑛+1
2

4𝑦
 

Using the relation between 𝜓2𝑚 and 𝜓2𝑚+1, along with the equation of the curve, the 

functions 𝜓𝑛
2, 

𝜓2𝑛

𝑦
, 𝜓2𝑛+1 , 𝜙𝑛are all in 𝐾[𝑥]. 

 

Let 𝑝 > 3 be prime and let be 𝐸: 𝑦2 = 𝑥3 + 𝐴𝑥 + 𝐵 an elliptic curve over the finite field 

𝔽𝑝, i.e., 𝐴, 𝐵 ∈  𝔽𝑝. The ℓ-torsion group of 𝐸 over 𝔽̅𝑞 is isomorphic to ℤ/ℓ × ℤ /ℓ  if ℓ ≠ 𝑝, 

and to ℤ/ℓ  or {0} if ℓ = 𝑝. Hence the degree of 𝜓𝑙 is equal to either 
1

2
(𝑙2 − 1),

1

2
(𝑙 − 1), or 

0. 

 

René Schoof observed that working modulo the ℓth division polynomial allows one to 

work with all ℓ-torsion points simultaneously. This is heavily used in Schoof's algorithm for 

counting points on elliptic curves. 

 

 

 

 

 

 

Main Algorithm 

Input: 

        1. An elliptic curve 𝐸 = 𝑦2 − 𝑥3 − 𝐴𝑥 − 𝐵. 

        2. An integer 𝑞 for a finite field 𝔽𝑞 with 𝑞 = 𝑝𝑏 , 𝑏 ≥  1. 

    Output: 

        The number of points of E over 𝔽𝑞 
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    Choose a set of odd primes 𝑆 not containing 𝑝 such that  𝑁 = ∏ 𝑙𝑙∈𝑆 > 4√𝑞. 

    Put 𝒕𝟐 = 𝟎 if 𝒈𝒄𝒅(𝒙𝒒 − 𝒙, 𝒙𝟑 + 𝑨𝒙 + 𝑩) ≠  𝟏, else 𝒕𝟐 = 𝟏. 

    Compute the division polynomial 𝜓𝑙.  

    All computations in the loop below are performed in the ring 

𝔽𝑞[𝑥, 𝑦]/(𝑦2 − 𝑥3 − 𝐴𝑥 − 𝐵, 𝜓𝑙) 

. 

    For 𝑙 ∈  𝑆 do: 

        Let 𝑞̅ be the unique integer such that 𝑞 ≡ 𝑞̅ 𝑚𝑜𝑑 𝑙 and |𝑞̅| < 𝑙/2. 

        Compute (𝑥𝑞 , 𝑦𝑞), (𝑥𝑞2
, 𝑦𝑞2

) and (𝑥𝑞̅ , 𝑦𝑞̅).    

        If 𝑥𝑞2
 ≠ 𝑥𝑞̅  then 

            Compute (𝑋, 𝑌). 

            for 1 ≤ 𝑡̅ ≤  (𝑙 − 1)/2 do: 

                if 𝑋 = 𝑥𝑡̅
𝑞

 then 

                    if Y= 𝑦𝑡̅
𝑞
 then 

                        𝑡𝑙 = 𝑡̅; 

                    else 

                        𝑡𝑙 = −𝑡̅. 

        else if 𝑞 is a square modulo 𝑙 then 

            compute 𝑤 with 𝑞 ≡  𝓌2 𝑚𝑜𝑑 𝑙  

            compute 𝓌(𝑥𝑞 , 𝑦𝑞)  

            if 𝓌(𝑥𝑞 , 𝑦𝑞) =  (𝑥𝑞2
, 𝑦𝑞2

) then 

                𝑡𝑙 = 2𝓌 

            else if 𝓌(𝑥𝑞 , 𝑦𝑞) =  (𝑥𝑞2
, −𝑦𝑞2

) then 

                𝑡𝑙 = −2𝓌 

            else 

                𝑡𝑙 = 0 

        else 

            𝑡𝑙 = 0 

    Use the Chinese Remainder Theorem to compute 𝑡 modulo 𝑁 

        from the equations 𝑡 ≡ 𝑡𝑙𝑚𝑜𝑑 𝑙, where 𝑙 ∈ 𝑆. 

    Output 𝑞 + 1 − 𝑡 
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4.3 Analysis 
 

For our example curve 𝐸: 𝑦2 =  𝑥3 + 46 𝑥 + 74 over 𝔽97, Schoof's algorithm 

produces the following results. First, since ⌈4√𝑞⌉ =  40, we need a product of small 

primes at least this large so the algorithm selects the primes {2, 5, 7} with ∏ 𝑙𝑖 =  70.  

 

Also 9 <  √97  <  10, so Hasse's theorem gives 79 ≤  # 𝐸(𝔽𝑞) ≤  117. 

 

The next step is to compute 𝑡(𝑚𝑜𝑑 2).  For this step we find 

𝑥𝑝 (𝑚𝑜𝑑 𝑥3  + 𝑎𝑥 + 𝑏) =  47 + 60𝑥 + 30𝑥2  and 

 gcd (𝑥𝑝  −  𝑥, 𝑥3  + 𝑎𝑥 + 𝑏) =  40 +  𝑥  

 

Since the gcd is not equal to 1, 𝐸[2] is not empty so 𝑡 ≡  0 (𝑚𝑜𝑑 2). 

 

 Next we test 𝜙𝑃
2 𝑃 = ±𝑘𝑃 𝑓𝑜𝑟 𝑘 ≡  𝑝(𝑚𝑜𝑑 5) and we find  

𝑓[5] = 23 + 67𝑥 + 11𝑥2  + 38𝑥3  + 77𝑥4  + 43𝑥5  +  93𝑥6  + 26𝑥7  + 47𝑥8  

+ 87𝑥9  + 39𝑥10  + 5𝑥12𝑝16

=  7 + 91𝑥 + 40𝑥2  + 24𝑥3  + 81𝑥4  + 69𝑥5  +  43𝑥6  + 45𝑥7  

+ 39𝑥8  + 14𝑥9  + 30𝑥10  + 79𝑥11  

 

𝑔𝑐𝑑(𝑝16, 𝑓𝑙) =  1. Hence, there is no point in 𝐸[5] satisfying  𝜙𝑃
2 𝑃 = ±𝑘𝑃 so we 

proceed to case two. 

 

Next we test 𝜙𝑃
2 𝑃 = 𝜏𝜙𝑃 until we find for 𝜏 = 2 that 

 

 𝑝19𝑥 ≡  0 (𝑚𝑜𝑑 𝑓𝑙 , 𝑝) and 

 𝑔𝑐𝑑(𝑝19𝑥, 𝑓𝑙) =  23 + 67𝑥 + 11𝑥2  + 38𝑥3  + 77𝑥4  + 43𝑥5  +  93𝑥6  +

26𝑥7  + 47𝑥8  + 87𝑥9  + 39𝑥10  + 5𝑥12. 

 

Since the gcd is not equal to 1, we know that 𝜏 = ±2 so we compute 

 

𝑝19𝑦  = 39 + 52𝑥 + 48𝑥22 + 33𝑥3  + 91𝑥4  + 3𝑥5  +  23𝑥6  + 59𝑥7  + 16𝑥8  

+ 37𝑥9  + 33𝑥10  + 74𝑥11 
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 𝑔𝑐𝑑(𝑝19𝑦, 𝑓𝑙) =  1.  

 

Since this gcd is 1, there is no point in 𝐸[5] satisfying  𝜙𝑃
2 𝑃 = 𝜏𝜙𝑃, so we must 

have 𝑡 ≡ 2 (𝑚𝑜𝑑 5) ≡  3 (𝑚𝑜𝑑 5).  Similarly, for 𝑙 =  7 we find at 𝜏 = 3 that 

𝑔𝑐𝑑(𝑝19𝑥, 𝑓7) ≠  1 and 𝑔𝑐𝑑(𝑝19𝑥, 𝑓7) =  1 so that 𝑡 ≡ 2 (𝑚𝑜𝑑 7) ≡  3 (𝑚𝑜𝑑 7).  

Thus we have the following set of simultaneous congruence. 

𝑡 ≡ 0 (𝑚𝑜𝑑 2), 𝑡 ≡ 3 (𝑚𝑜𝑑 5), 𝑡 ≡ 4 (𝑚𝑜𝑑 7) 

 

Using the Chinese Remainder theorem we find that the smallest positive integer 

satisfying this set of congruences is 𝑡 =  18.  Since 𝑝 + 1 − 𝑡 =  80 and 80 is 

within Hasse's bounds we can conclude #𝐸(𝔽𝑝) =  80. 

 

 

4.4 Result and Conclusion 
 

Schoof's method, as here implemented, has primarily educational value.  This is 

so for several reasons. The practicality of the algorithm is greatly limited by the 

quadratic growth of the degree of the division polynomials.  For example, for an 

elliptic curve over 𝔽𝑝 where 𝑝 have 200 digits, we must perform modular polynomial 

arithmetic using the 55th division polynomial, which produces intermediate products 

of degree greater than 9 × 106.  Our implementation is believed to be correct for all 

cases based on cross testing against an algorithm employing the Baby-Step, Giant-

Step method to determine random EC point orders.  Performance was enhanced by 

replacing 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙𝑀𝑜𝑑[𝑃, 𝑄, 𝑝] with 

𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟[𝑃, 𝑄, 𝑥, 𝑀𝑜𝑑𝑢𝑙𝑢𝑠 →  𝑝] and by significant code factoring 

to reduce redundant computations. On the other hand, the major advantage of our 

implementation is as an exploration tool.  All of the algorithms we implemented are 

well-documented, and rely only on low-level functions with GMP, MPFR & FLINT, 

making the operation of the algorithms transparent and open to experimentation. 
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5 
  

CONCLUSION AND  
FURTHER STUDY 

 
 
 
 
 

 

 

 

 

 
 

This thesis has barely touched the vast and rich mathematical theory of elliptic 

curves. And even in the small stream of cryptography, we have merely skimmed the 

surface of the subject. In the vaster realm of mathematics, the theory of elliptic 

curves appears and reappears in contexts too numerous to list, ranging from Hasse’s 

Theorem to division polynomial to Schoof’s algorithm and beyond. The annotated 

bibliography includes a few references to assist you in learning more about the 

number theory and cryptographic applications of elliptic curves. 

 

We can further reduce the complexity using Schoof-Elkies-Atkin algorithm. The 

improvements due to Elkies and Atkin, called the SEA algorithm, reduce to nearly linear 

growth the degree of certain divisors of the division polynomials which we can use in their 

place, making the method applicable to elliptic curves of with cryptographic utility. 
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