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Chapter 1 
 

 

 

Introduction & Scope of the Thesis 

 

1.1 Introduction 

 

A control system can be thought of as any system where additional hardware is 

added to regulate the behaviour of a dynamic system. Control systems can 

either be open loop or closed loop. A closed loop system implies the use of 

feedback in the system. We will see that using feedback allows us more 

freedom to specify the desired output behaviour of the system. For continuously 

modulated control, a feedback controller is used to automatically control a 

process or operation. The control system compares the value or status of 

the process variable (PV) being controlled with the desired value or set 

point (SP), and applies the difference as a control signal to bring the process 

variable output of the plant to the same value as the set point. Control 

Engineering is concerned with techniques that are used to solve the following 

six problems in the most efficient manner possible.  

 

(a)The identification problem: to measure the variables and convert data for 

analysis.  

(b)The representation problem: to describe a system by an analytical form or 

mathematical model  

(c)The solution problem: to determine the above system model response.  

(d)The stability problem: general qualitative analysis of the system. 

(e)The Controller design problem: modification of an existing system or 

develop a new one.  

(f)The optimization problem:  from a variety of design to choose the best.  

 

In studying control systems, one must be able to model dynamic systems in 

mathematical terms and analyze their dynamic characteristics. A mathematical 

model of a dynamic system is defined as a set of equations that represents the 

dynamics of the system accurately, or at least fairly well. The mathematical 

model is not unique to a given system. A system may be represented in many 

different ways and, therefore, may have many mathematical models, depending 

on one’s perspective. The dynamics of many systems, whether they are 

https://en.wikipedia.org/wiki/Feedback_controller
https://en.wikipedia.org/wiki/Process_variable
https://en.wikipedia.org/wiki/Setpoint_(control_system)
https://en.wikipedia.org/wiki/Setpoint_(control_system)
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mechanical, electrical, thermal, economic, biological, and so on, may be 

described in terms of differential equations. Such differential equations may be 

obtained by using physical laws governing a particular system—for example, 

Newton’s laws for mechanical systems and Kirchhoff’s laws for electrical 

systems. We must always keep in mind that deriving reasonable mathematical 

models is the most important part of the entire analysis of control systems [1]. 

 

1.2 Process Control and Basic Terminology 

 

A collection of components that interact with one another and with their 

environment is known as system. A control system is a collection of 

components that is designed to drive a given system (plant) with a given input 

to a desired output [1].  

 

 

 

 

 

 

 

 

          

Fig 1.1: Process control block diagram with feedback loop 

In block diagrams of SISO systems, a solid line represents a single scalar signal. 

In MIMO systems, a single line may represent multiple signals. The circle in the 

figure represents a summing junction, which combines its inputs by addition or 

subtraction depending on the + and – signs next to each input. 

The contents of the dashed box in Fig 1.1 are the control system components. 

The controller inputs are the reference input (also called a set point) and the 

plant output signal (measured by the sensor), which is used as feedback. The 

controller output is the actuator signal that drives the plant. 

A block in a diagram can represent something as simple as a constant value that 

multiplies the block input, or as complex as a nonlinear system with unknown 

mathematical representation.  

Figure 1.2 is a block diagram of a simple linear feedback control system. Lower 

case characters identify the signals in this system. 

 r is the reference input, also called the set point. 

 e is the error signal, computed by subtracting the sensor measurement from 

the reference input. 

 y is the system output, which is measured and used as the feedback signal. 

Output 

Control System 

Feedback Signal 

- 

+ + Control 

Algorithm 
Actuator Plant 

Sensor 

Reference 

Input 
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The blocks in the diagram represent linear system components. Each block can 

represent dynamic behaviour with any degree of complexity as long as the 

requirement of linearity is satisfied. 

 Gc is the linear controller algorithm. 

 Gp is the linear plant model (including actuator dynamics.) 

 H is a linear model of the sensor, which can be modelled as a constant such as 

1 if the sensor dynamics are negligible. 

  

 

Fig 1.2: Linear feedback control system 

The fundamental rule of block diagram algebra states that the output of a block 

equals the block input multiplied by the block transfer function [2]. Applying 

this rule twice results in Eq. 1.1. In words, Eq. 1.1 says the system output y is 

the error signal e multiplied by the controller transfer function Gc, and then 

multiplied again by the plant transfer function Gp. 

y = (eGc)Gp                     (1.1) 

Block diagram algebra obeys the usual rules of algebra. Multiplication and 

addition are commutative, so the parentheses in Eq. 1.1 are unnecessary. The 

error signal e is the output of a summing junction subtracting the sensor 

measurement from the reference input r. The sensor measurement is the system 

output y multiplied by the sensor transfer function H. This relationship appears 

in Eq. 1.2. 

e = r - yH                           (1.2) 

Substituting Eq. 1.2 into Eq. 1.1 and rearranging algebraically results in Eq. 1.3. 
𝑦

𝑟
 = 

𝐺𝑐𝐺𝑝

1+𝐺𝑐𝐺𝑝𝐻 
                (1.3) 

Eq. 1.3 is a transfer function giving the ratio of the system output to its 

reference input. This form of system model is suitable for use in numerous 

control system analysis and design tasks. 
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Using the relation of Eq. 1.3, the entire system in Fig. 1.2 can be replaced by the 

equivalent system shown in Fig. 1.3. Remember, these manipulations are only 

valid when the components of the block diagram are all linear. 

 

Fig 1.3: Equivalent system to the system shown in Fig. 1.2. 

1.2.1 Process 

Any equipment that serves the targeted physical or chemical operation of the 

plant is termed as a process. Reactors, separators, exchangers, pressure vessels, 

tanks, etc. are examples of a process. Typically these processes are connected in 

a logical fashion and the output of one process becomes input to the other [3]. 

Any disturbance or malfunction of one process may affect other processes in the 

downstream side (and upstream too, in case recycle streams are used). Process 

variables are primarily pressure, temperature, flow rate, level, composition, etc. 

From the process control perspective, it is crucial to study how the changes in 

one process variable affect the other, so that an educated measure of control 

action on one variable can be taken in order to maintain the other [4]. 

1.2.2 Measuring Instruments or Sensors 

The success of any feedback control operation depends largely on accurate 

measurement of process variables through appropriate sensors. There are a large 

number of commercial sensors available in the market. They differ in their 

measuring principle(s) and or their construction characteristics [4].  

1.2.3 Controllers [4] 

A controller is basically a mathematical function block that reads the error 

between desired set point and the measured output and then computes the 

corrective action for the manipulated input that would steer process towards the 

desired set point. There are three basic types of feedback controllers which are 

widely used in the industry. 

• Proportional (P) controller 

• Proportional Integral (PI) controller 

• Proportional Integral Derivative (PID) controller 
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Fig 1.4: Physical Realization of PID Controller 

Let us discuss each one separately. 

1.2.3.1 Proportional Controllers 

The actuating output of a P controller is proportional to the error between the set 

point and process output. Higher the error, higher will be the control action. The 

control law is given as: 

 C(t) = Kc e(t) + Cs              (1.4) 

where Kc is called the gain of the controller and Cs is the bias signal. When error 

signal is zero (i.e., the process output reaches its desired set point), the control 

signal C(t) stabilizes at its bias value Cs. The deviation form of actuating signal 

is 

𝐶̅(t) = C(t) – Cs = Kc e(t)             (1.5) 

Hence the transfer function of the proportional controller is 

             (1.6) 

The proportional controller is also termed as “Gain” controller. Equivalent 

representation of proportional gain is proportional band. It is the amount of 
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change in error that will cause the control action to go from full OFF to full ON. 

The amount of change in error is calculated as a percentage of full-scale error, 

PB ( in %) =   
100

𝐾𝑐
 

           (1.7) 

e.g. consider a level controller acting on a tank where we measure the level 

from bottom to top as 0 to 100%. A control valve on the outlet of the tank 

maintains the level in the tank. The PB is defined as the range of level over 

which the control valve will go from fully closed to fully open.  

1.2.3.2 Proportional Integral Controllers 

The actuating output of a PI controller is given as:  

C(t) = Kc(e(t) +  
1

𝜏
 ∫ 𝑒(𝑡)𝑑𝑡

𝑡

0
) + Cs     (1.8) 

where  τ1 is the integral time constant (or the reset time) in minutes. 

The PI controller not only actuates on the basis of current error, e(t) but it also 

accounts for the history of all the past errors that has been encountered since the 

control action has started. From Eq.1.8, the transfer function of the PI controller 

is  

Gc = 
𝐶(𝑠)̅̅ ̅̅ ̅̅

𝑒(𝑠)
 = Kc (1 + 

1

𝜏𝑠
 ) 

(1.9) 

In industrial lingo, the PI Controller is also termed as “Gain-Preset” controller. 

At this point, it is worth explaining the significance of the term reset. Suppose 

the error between desired set point and process output changes by a constant 

step of magnitude e (t). The effect of integral term of Eqn. 1.8 after every τ 

minutes is given as  

Kc (
 1

 𝜏
∫ 𝑒(𝑡))

𝑡

0
= Kc (

 𝑒

 𝜏
∫ 𝑑𝑡

𝜏

0
) = Kc ( 

 𝑒

 𝜏
 τ) = Kc e   (2.0) 

In other words, the integral action repeats the response of the proportional 

action every τ   minutes and “resets” itself for an integral action. Sometimes the 

controllers are calibrated in terms of reciprocal of reset time, 1/ τ (repeats per 

minute). This is known as reset rate. 

The reset term causes the control action changing as long as there exists a non-

zero error in the system. Often this error cannot be eliminated quickly and given 

enough time, they produce larger values for integral terms. Such situation is 
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often observed when the system undergoes a large change in set point (say a 

positive change) and the integral term accumulates a significant error during the 

rise. This condition is termed as Integral Windup. The control action in turn 

keeps on increasing until it reaches the control valve saturation (i.e. control 

valve fully open or fully closed). Even if the error changes its sign (as the 

process output overshoots the desired set point), this accumulated error has to 

unwind completely before control action is reversed. Various measures can be 

taken to address the issue of integral windup such as: 

• Re-initializing the integral action to a desired value 

• Increasing the set point in a suitable ramp (rather than a single step jump) 

• Disabling the integral action until the process output enters the controllable 

region 

• Preventing the integral term from accumulating above or below pre-

determined bounds 

1.2.3.3 Proportional Integral Differential Controllers 

The actuating output of a PID controller is given as:  

C(t) = Kc(e(t) +  
1

𝜏
 ∫ 𝑒(𝑡)𝑑𝑡

𝑡

0
 + τD

𝑑𝑒(𝑡)

𝑑𝑡
 ) +Cs    (2.1) 

where τD is the derivative time constant (or the react time) in minutes. The PID 

controller not only actuates on the basis of current and past errors but it also 

anticipates the error in immediate future and applies an additional control action 

which is proportional to the current rate of change of error. Hence the transfer 

function of the PID controller is  

Gc = 
𝐶(𝑠)̅̅ ̅̅ ̅̅

𝑒(𝑠)
 = Kc (1 + 

1

𝜏𝑠
 + τDs )      (2.2) 

The PID Controller is also termed as “Gain-Reset-Preact” controller. 

The major drawback of a PID controller is that for a noisy response in a process, 

the controller can erroneously actuate a high derivative control action. 
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1.3 Performance Specifications 

One of the first steps in the control system development process is the definition 

of a suitable set of system performance specifications. Performance 

specifications guide the design process and provide the means for determining 

when a controller design is satisfactory. Controller performance specifications 

can be stated in both the time domain and in the frequency domain [5]. 

Time domain specifications usually relate to performance in response to a step 

change in the reference input. An example of such a step input is 

instantaneously changing the reference input from 0 to 1. Time domain 

specifications include, but are not limited to, the following parameters: 

 Rise time from 10% to 90% of the commanded value, tr. 

 Time to peak magnitude, tp. 

 Peak magnitude, Mp. This is often expressed as the peak percentage by which 

the output signal overshoots the step input command. 

 Settling time to within some fraction (such as 1%) of the step input command 

value, ts. 

Examples of these parameters appear in Fig. 1.5. This figure shows the response 

of a hypothetical plant plus controller to a step input command with an 

amplitude of one. The time axis zero location is the instant of application of the 

step input. 

 

Fig 1.5 Time Domain control system performance parameters 

The step response in Fig. 1.5 represents a system with a fair amount of 

overshoot (in terms of Mp) and oscillation before converging to the reference 
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input. Sometimes the step response has no overshoot at all. When no overshoot 

occurs, the tp parameter becomes meaningless and Mp is zero. 

Tracking error is the error in the output that remains after the input function has 

been applied for a long time and all transients have died out. It is common to 

specify the steady-state controller tracking error characteristics in response to 

different commanded input functions such as steps, ramps, and parabolas. 

Here are some example specifications of tracking error in response to different 

input functions: 

 Zero tracking error in response to a step input. 

 Less than ‘X’ tracking error magnitude in response to a ramp input, 

where X is some nonzero value. 

In addition to the time domain specifications discussed above, performance 

specifications can be specified in the frequency domain. The controller 

reference input is usually a low frequency signal, while noise in the sensor 

measurement used by the controller often contains high frequency components. 

It is normally desirable for the control system to suppress the high frequency 

components related to sensor noise while responding to changes in the reference 

input. Performance specifications capturing these low and high frequency 

requirements would look similar to these: 

 For sinusoidal reference input signals with frequencies below a cut-off point, 

the amplitude of the closed loop (plant plus controller) response must be 

within X% of the commanded amplitude. 

 For sinusoidal reference input signals with frequencies above a higher cut-off 

point, the amplitude of the closed loop response must be reduced by at 

least Y%. 

In other words, the frequency domain performance requirements given above 

say that the system response to expected changes in the reference input must be 

acceptable while simultaneously attenuating the effects of noise in the sensor 

measurement. Looked at in this way, the closed loop system exhibits the 

characteristics of a low pass filter. 

1.4 System Stability 

Stability is a critical issue throughout the control system design process. A 

stable controller produces appropriate responses to changes in the reference 

input. If the system stops responding properly to changes in the reference input 

and does something else instead, it has become unstable. 

Fig. 1.6 shows an example of unstable system behavior. The initial response to 

the step input overshoots the commanded value by a large amount. The 

response to that overshoot is an even larger overshoot in the other direction [6]. 
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This pattern continues, with increasing output amplitude over time. In a real 

system, an unstable oscillation like this grows in amplitude until some 

nonlinearity such as actuator saturation (or a system breakdown) limits the 

response. 

 

Fig 1.6: System with an unstable oscillatory response 

In addition to achieving a bare minimum degree of stability, a control system 

must possess a degree of robustness. A robust controller can tolerate limited 

changes to the parameters of the plant and its operating environment while 

continuing to provide satisfactory, stable performance. For example, an 

automotive cruise control must maintain the desired vehicle speed by adjusting 

the throttle position in response to changes in road grade (an environmental 

change.) The cruise control must also perform properly whether or not the 

vehicle is pulling a trailer (a change in system parameters). 

Determining the allowable ranges of system and environmental parameter 

changes is part of the controller specification and design process. To 

demonstrate robustness, the designer must evaluate controller stability under 

worst-case combinations of expected plant and environment parameter 

variations [6]. For each combination of parameter values, a robust controller 

must satisfy all of its performance requirements. 

When working with linear models of plants and controllers it is possible to 

precisely determine whether a particular plant and controller form a stable 

system. If no mathematical model for the plant exists, stability can only be 

evaluated by testing the plant and controller under a variety of operating 

conditions.  
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1.5 Control System Testing 

Testing is an integral part of the control system design process. Many of the 

design methods rely on the use of a linear plant model. Creating a linear model 

always involves approximation and simplification of the true plant behavior. 

The implementation of a controller using an embedded processor introduces 

nonlinear effects such as quantization. As a result, both the plant and the 

controller contain nonlinear effects that are not accounted for in a linear control 

system design. 

The ideal way to demonstrate correct operation of the nonlinear plant and 

controller over the full range of system behavior is by performing thorough 

testing with an actual plant. This type of system-level testing normally occurs 

late in the product development process when prototype hardware becomes 

available. Problems found at this stage of the development cycle tend to be very 

expensive to fix. 

Because of this, it is highly desirable to perform thorough testing at a much 

earlier stage of the development cycle [5]. Early testing enables discovery and 

repair of problems when they are relatively easy and inexpensive to fix. 

However, testing the controller early in the product development process may 

not be easy if a prototype plant does not exist on which to perform tests. 

System simulation provides a solution to this problem. A simulation containing 

detailed models of the plant and controller is extremely valuable for performing 

early-stage control system testing. This simulation should include all relevant 

nonlinear effects present in the actual plant and controller implementations. 

While the simulation model of the plant must necessarily be a simplified 

approximation of the actual system, it should be a much more authentic 

representation than the linear plant model used in the controller design. 

When using a simulation in a product development process, it is imperative to 

perform thorough simulation verification and validation [6]. 

 Verification demonstrates the simulation has been implemented correctly 

according to its design specifications. 

 Validation demonstrates that the simulation accurately represents the 

behaviour of the simulated system and its environment for the intended 

purposes of the simulation. 

The verification step is relevant for any software development process, and 

simply shows that the software performs as its designers intended. In simulation 

work, verification can occur in the early stages of a product development 

project. It is possible to perform verification for a simulation of a system that 

does not yet exist. This consists of making sure that the models used in the 

simulation are correctly implemented and produce the expected results. 
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Verification allows the construction and application of a simulation in the 

earliest phases of a product development project. 

Validation is a demonstration that the simulation models the embedded system 

and the real world operational environment with acceptable accuracy. A 

standard approach for validation is to use the results of system operational tests 

for comparison against simulation results. This involves running the simulation 

in a scenario that is identical to a test that was performed by the actual system in 

a real world environment. The results of the two tests are compared and the 

differences are analyzed to determine if they represent significant deviations 

between the simulation and the actual system. 

A drawback of this approach to validation is that it cannot happen until a 

complete system prototype is available. Even when a prototype does not exist, it 

may be possible to perform validation at an earlier project phase at the 

component and subsystem level. You can perform tests on those system 

elements in a laboratory environment and duplicate the tests with the 

simulation. Comparing the results of the two tests provides confidence in the 

validity of the component or subsystem model. 

1.6 Computer-Aided Control System Design 

The classical control system analysis and design methods were originally 

developed and have been implemented for years as techniques that rely on 

hand-drawn sketches. While this approach leads to a level of design intuition, it 

takes significant time and practice to develop the necessary skills. 

Since it intends to rapidly apply a variety of control system design techniques, 

automated approaches will be emphasized rather than manual methods [5]. 

Several software packages are commercially available that perform control 

system analysis and design functions as well as complete nonlinear system 

simulation.  

 MATLAB Control System Toolbox. This is a collection of algorithms that 

implement common control system analysis, design and modelling 

techniques. It covers classical design techniques as well as modern state-space 

methods. This is an add-on to the MATLAB product, which integrates 

mathematical computing, visualization, and a programming language to 

enable the development and application of sophisticated algorithms to large 

sets of data.  

Here we have used MATLAB, the Control System Toolbox, and other MATLAB 

add-on products to demonstrate a variety of control system modelling, design, 

and simulation techniques. These tools provide efficient, numerically robust 

algorithms to solve a variety of control system engineering problems. The 
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MATLAB environment also provides powerful graphics capabilities for 

displaying the results of control system analysis and simulation procedures. 

1.7 Method Based on Performance Criteria 

It is based on minimizing an appropriate performance criterion, either for 

optimum regularity or for optimum servo performance. Based on the minimum 

ITAE value, settings for PID Controllers are derived. These settings are expected 

to provide desirable performance for time delay to time constant ratio from 0.1 to 

1. In 1993 Zhuang and Atherton suggested PI and PID settings based on 

minimization of ISE, ISTE and ITAE [7]. For the process model, repeated 

optimization is carried out for different values of time delay to time constant 

ratio. 

The ISE criterion penalises large errors, while the ITAE criterion penalises error 

that persists for longer periods of time. In general, the ITAE criterion is the 

preferred criterion in practise, because it usually results in the most conservative 

controller settings [7]. By contrast, the ISE criterion provides the most aggressive 

setting, while the IAE criterion tends to produce controller settings that are 

between those for the ITAE and ISE criteria.  

In all the above tuning rules, the optimum controller settings are different for set 

point changes in comparison to those for step load disturbances. In general, the 

controller settings for set point changes are more conservative. The performance 

criteria for the controller chosen here is ITAE.  

1.8 Literature Survey 

Feedback control systems measure attributes of the system being controlled and 

use that information to determine the control actuator signal [7]. Feedback 

control provides superior performance compared to open loop control when 

environmental or system parameters change. The system to be controlled is 

called a plant.  

The two fundamental steps in control system design are: 

1. Specify the controller structure. 

2. Determine the value of the design parameters within that structure. 

The control system design process usually involves the iterative application of 

these two steps. In the first step, a candidate controller structure is selected. In 

the second step, a design method is used to determine suitable parameter values 

for that structure. If the resulting system performance is inadequate, the cycle is 

repeated with a new, usually more complex and controller structure. 

A block diagram of a plant and controller graphically represents the structure of 

a controller design and its interaction with the plant. It is possible to perform 
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algebraic operations on the components of a block diagram to reduce the 

diagram to a simpler form. 

Performance specifications guide the design process and provide the means for 

determining when controller performance is satisfactory. Controller 

performance specifications can be stated in both the time domain and the 

frequency domain. The PID controller is the most widely used control algorithm 

in the process industry, and that improvements in tuning PID controllers will 

have a significant practical impact. The objective of the study in [8] is to find a 

simple model based tuning rules that give insight into how the tuning depends 

on the process parameters based on very simple process information .These 

rules may then be used to assist in retuning the controller if, for example, the 

production rate is changed. Another related objective is that the rules should be 

so simple that they can be memorized. There has been previous work along 

these lines; most noteworthy the early paper by Ziegler and Nichols (1942), the 

IMC PID-tuning paper by Rivera, Morari and Skogestad (1986), and the book 

by Smith and Corripio (1985) [8]. The Ziegler-Nichols tunings result in a very 

good disturbance response for integrating processes [9].On the other hand, the 

IMC-tunings of Rivera et al. (1986) are known to result in poor disturbance 

response for integrating processes (e.g., Chien and Fruehauf (1990), Horn et al. 

(1996), but generally give very good responses for set point changes [9]. 

Derivative action is primarily recommended for a process with dominant second 

order dynamics. The derivative time is selected so as to cancel the second-

largest process time constant.  

1.9 Scope of the Thesis 

  

Our literature survey reveals that a lot of work has been done towards 

improving the performance of PD Controllers with increased robustness. In a 

broad sense, such development works on the controller tuning are mostly 

dependent on the process model. However, for a practical process it is very 

difficult to find its exact model, as a result, most of the theoretical developments 

have limitation from practical implementation point of view. 

 

Along with the mathematical complexity in finding out the appropriate process 

model, there is always a certain amount of uncertainty in model parameters. 

Model parameters are also changing with time due to natural phenomena like 

aging, scaling, erosion etc. So obtaining the desired performance from PD 

controller is not the only goal. Additionally it has to be robust enough to 

withstand the model uncertainties as well as process nonlinearities. At the same 

time, it is found that an optimally tuned controller is more prone to fragile. So 

depending on the area of application, there should be a compromise between 

optimality and robustness of selected parameters. 
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Soft computing tools like fuzzy logics, neural networks and different 

optimization techniques are also used by the researchers to obtain optimal 

settings of PD parameters. In such cases the engineers have tried to incorporate 

the human intelligence in the controller behaviour. Certain improvements are 

found in the controller performances on making them more intelligent but at the 

cost of higher computational complexity [10]. A controller designed to reduce 

the initial overshoot during set-point change usually fails to offer good load 

rejection behaviour. On the other hand, a controller with better load regulation 

cannot restrict the overshoot in the set point response. Although in some cases 

improvements in the process behaviour are observed during both set-point and 

load disturbance responses. 

 

 In our experimental purpose initially we have identified the process model by 

using Bump test method. Then the classical PD Controller has been designed 

for identified model satisfying some performance indices (here Percentage 

overshoot method). Then the optimal PD Controllers have been developed using 

different optimization techniques for the same identified process model. Then 

we have studied the performances of PD controller and optimized controllers 

through simulation experiments with identified model as well as real time 

experiments with actual process. For the optimization purpose we have chosen 

ITAE as objective functions, because they provide the overall improved 

performance, ITAE indicates improved set point and good load rejection 

respectively. 

 

In Chapter-2, we have presented the modelling and validation of the QUBE 

Servo 2 made by Quanser , Canada [11] and also calculated the PD parameters 

by Percentage overshoot method. The modelling of the Qube Servo 2 motor has 

been done by Bump test modelling method and the validation has been 

performed. According to the validation the first order process model has been 

derived on which the tuning of the PD parameters has been done. 

 

In chapter-3, we have presented the same thing as above for another Rotary 

Servo base unit (SRV02), made by Quanser, Canada [11]. 

 

In Chapter-4, the detailed description is presented for the Particle Swarm 

Optimization (PSO) based PD controllers with respect to ITAE. We compared 

the performance with already tuned conventional PD controllers of the 

identified model. Then the performance is tested with two plant models of 

QUBE Servo2 and SRV02 through simulation experiments with identified 

models as well as real time experiments with actual process. 

 

In Chapter-5, we have presented the detailed description of Moth Flame 

optimization (MFO) based PD Controllers with respect to the objective 
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function, ITAE. Initially we have tuned the conventional PD controllers and 

compared it with algorithm tuned PD Controllers. These controllers are then 

tested with two plant models through simulation experiments with identified 

models as well as real time experiments with actual process. 

 

In Chapter-6, the detailed description is presented for the Grey Wolf 

Optimization (GWO) based PD controllers with respect to ITAE. Initially we 

have found the conventional PD controllers manually based on percentage 

overshoot method and compared it with GWO algorithm based PD Controllers. 

Then the performance is tested with two plant models through simulation 

experiments with identified models as well as real time experiments with actual 

process. 

 

In Chapter-7, we have presented the Ant Lion Optimization (ALO) based PD 

Controllers with respect to the objective function, ITAE. Initially we have tuned 

the conventional PD controllers and compared with ALO algorithm based PD 

controllers. Then the performance is tested with two models through simulation 

experiments with identified models as well as real time experiments with actual 

process. 

 

In Chapter-8, all the outputs of PD controllers for different set of environment 

are compared. An effort to determine the best algorithm for the purpose of 

tuning controllers has been made in this chapter. 

 

In Chapter-9, first we have provided a brief summary of the present study. Then 

we have discussed the implementation issues of the four optimization 

techniques, Particle Swarm Optimization, Moth Flame optimization, Grey Wolf 

Optimization, Ant Lion Algorithm while designing optimal logic controllers in 

the last chapters. We have also tried to learn the future scopes for further 

improvement. 
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  Chapter 2 
 

Modelling, validation and Position control of Quanser QUBE-Servo 2 

 

 

2.1 Introduction  

 

Direct-current motors are used in a variety of applications. As discussed in the 

QUBE-Servo 2 User Manual [1], the QUBE-Servo 2 has a brushed DC motor 

that is connected to a PWM amplifier. Encoders are used here to measure 

angular position. There are many types of encoders but we have used here in 

this experiment the rotary incremental optical encoder, the angle they measure 

depends on the last position and when it was last powered. The Quanser QUBE-

Servo 2 is a direct-drive rotary servo system as shown in Fig. 2.1  

The resolution of the encoder:- In order to measure the total counts per 

revolution, we moved the disc to the 0 degree position marked on the QUBE-

Servo 2 and the controller is started and the disc rotates one full rotation. The 

encoder count reads 2048, which is in-line with the specifications given in the 

QUBE-Servo 2 User Manual [1]. The encoder resolution is 512 lines per 

revolution, but goes up to 2048 in quadrature mode (4 x 512 = 2048). To get a 

measurement in degrees we need a gain of 360 ◦/2048 cnts = 0.1758 ◦/cnts. 

 

 
Fig 2.1: Quanser QUBE-Servo2 System 
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2.2 First Principle Modelling 

 

The motor armature circuit schematic of QUBE-Servo 2 is shown in Fig 2.2 and 

the electrical and mechanical parameters are given in Table 2.1. The DC motor 

shaft is connected to the load hub. The hub is a metal disk used to mount the 

disk or rotary pendulum and has a moment of inertia of Jh. A disk load is 

attached to the output shaft with a moment of inertia of Jd. 

 
 

Fig 2.2: QUBE-Servo 2 DC motor and load 

 

The back-emf (electromotive) voltage eb(t) depends on the speed of the motor 

shaft, wm, and the back-emf constant of the motor, km. It opposes the current 

flow. The back emf voltage is given by: eb(t) = km ωm(t)   (2.21) 

 

Symbol Description Value 

DC Motor   

Rm Terminal 

resistance 

8.4Ω 

Kt Torque Constant 0.042N.m/A 

Km Motor back-emf 

constant 

0.042 V/(rad/s) 

Jm Rotor inertia 4.0 x106 kg:m2 

Jh Load hub inertia 0.6x106 kg.m2 

rh Load hub mass 0.0111 m 

mh Load hub mass 0.0106 kg 

Lm Rotor 

inductance 

1.16 mH 

Load Disk   

Md Mass of disk 

load 

0.053 kg 

rd Radius of disk 

load 

0.0248 m 

Table 2.1: QUBE-Servo 2 system parameters 

 



20 

 

Using Kirchhoff’s Voltage Law, we can write the following equation: 

𝑣𝑚(𝑡) − 𝑅𝑚 𝑖𝑚 (𝑡) − 𝐿𝑚
𝜕

𝜕𝑡 
𝑖𝑚 (𝑡) − 𝑘𝑚𝜔𝑚  (𝑡)  = 0                 (2.2.2) 

Since the motor inductance Lm is much less than its resistance, it can be ignored. 

Then, the equation becomes  𝑣m (𝑡) - 𝑅𝑚 𝑖𝑚 (𝑡) - 𝑘𝑚𝜔𝑚  (𝑡) =0                (2.2.3)     

Solving for im(t), the motor current can be found as: 

                im(t) = 
𝑣𝑚(𝑡) − 𝑘𝑚𝜔𝑚(𝑡)

𝑅𝑚
                                         (2.2.4) 

The motor shaft equation is expressed as Jeq ωm(t)  =  𝜏𝑚(𝑡)      (2.2.5) 

where Jeq is total moment of inertia acting on the motor shaft and τm is the 

applied torque from the DC motor. Based on the current applied, the torque is                     

                                          𝜏𝑚(𝑡) = 𝐾𝑚𝑖𝑚(𝑡)                                                   (2.2.6) 

The moment of inertia of a disk about its pivot, with mass m and radius r, is 

  J = (1/2) m r2                  (2.2.7) 

Based on the models, we have designed a model that applies a 1 - 3 V, 0.4 Hz 

square wave to the motor and reads the servo velocity using the encoder. 

 

 
Fig 2.3: Completed QUBE-Servo 2 Model subsystem. 

 

Based on the parameters given in the Table 2.1, we can calculate the total 

moment of inertia acting on the motor shaft which is the sum of the motor 

armature or rotor inertia Jm the hub inertia Jh and the disk inertia Jd. The 

equivalent moment of inertia is therefore 

Jeq = Jm + Jh + Jd       (2.2.8) 

The moment of inertia of the hub and disk load are: Jh =(1/2) mh  rh
2    

And Jd =(1/2)md  rd
2 .  

Therefore,  Jeq = 2.09 x 10-5 
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The QUARC controller and the model generated as in Fig 2.3 is run and 

obtained the response as in Fig 2.4. 

 

 
Fig 2.4: Motor Speed and Motor voltage of the QUBE-Servo2 and the model 

according to First principle modelling 

 

2.3 Bump test Modelling 

 

The bump test is a simple test based on the step response of a stable system. A 

step input is given to the system and its response is recorded. Considering a first 

order system given by the following transfer function: 
𝑌(𝑠)

𝑈(𝑠)
   =   

 𝐾

𝜏𝑠+1
 

The step input begins at time t0. The input signal has a minimum value of umin 

and a maximum value of umax. The resulting output signal is initially at y0. Once 

the step is applied, the output tries to follow it and eventually settles at its 

steady-state value yss. From the output and input signals, the steady-state gain is 

K = 
Δ𝑦

Δ𝑢
          (2.3.1) 
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where Δy = yss - y0 and Δu = umax - umin. The time constant of a system τ is 

defined as the time it takes the system to respond to the application of a step 

input to reach 63.2% of its steady-state value, i.e.  

t1 = t0 + τ     (2.3.2) 

where   y(t1) = 0.632Δy + y0 

Then, we can read the time t1 that corresponds to y (t1) from the response data. 

From Eq. (2.3.2), the model time constant can be found as: 

     τ = t1- t0       

 

 
Fig 2.5: Experimental set up for Quanser QUBE-Servo2 

 

Going back to the QUBE-Servo 2 system, the s-domain representation of a step 

input voltage with a time delay t0 is given by 

Vm(s) =        
𝐴𝑣

𝑠
 𝑒−𝑠𝑡0       (2.3.3) 

where Av is the amplitude of the step and t0 is the step time (i.e. the delay). 

The voltage-to-speed transfer function is 

     (2.3.4) 

where K is the model steady-state gain, Τ is the model time constant,  

Ωm(s) = L[ωm(t)] is the load gear rate, and 

Vm(s) = L[Vm(t)] is the applied motor voltage. 

If we substitute input in Eq. 2.3.3 into the system transfer function in Eq.(2.3.4), 

we get: 

Ωm(s) =   
 𝐾

(𝜏𝑠+1)

𝐴𝑣

𝑠
 𝑒−𝑠𝑡0      (2.3.5) 
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We can then find the QUBE-Servo 2 motor speed step response in the time 

domain ωm(t) by taking inverse Laplace of this equation 

ωm(t) = K Av (1 -  𝑒−(𝑡−𝑡0)/𝜏) + ωm(t0)    (2.3.6) 

noting the initial conditions ωm(0-) = ωm(t0). 

Based on the models designed in QUBE-Servo 2, we desire to design a model 

that applies a step of 2 V to the motor for 2.5 seconds and reads the servo 

velocity using the encoder. 

 
 

Fig 2.6: Motor Speed and Motor voltage of the QUBE-Servo 2 step response. 

 

From Fig 2.6, the measured initial and steady-state load shaft speeds are 

ωm(t0) = 0 rad/s and  

ωmss = 45.6132 rad/s and  

the input voltage amplitude is Av = 2.0 V 

Using the above Eq. 2.3.1 with the collected data from the Fig 2.6, the resulting 

steady-state gain is: K = 22.7 rad/(Vs) 

To find time of the first decay t1 = t0 + τ , the corresponding speed is measured. 

From Figure the time at the shaft speed  

ωm(t0 + τ ) = 28.33 rad/s  is t1 = 1.158 s 

The step start time is t0 = 1.0 s 

Given the step start time t0 and decay time t1 the time constant is 

τ = 0.158 s 

Therefore, voltage-to-speed transfer function of the identified model becomes 

   
𝛺𝑚(𝑠)

𝑉𝑚(𝑠)
 = 

22.7

0.158𝑠+1
      (2.3.7) 
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And the voltage-to-position transfer function is  

                      P(s) =  
𝜃𝑚(𝑠)

𝑉𝑚(𝑠)
 =  

22.7

𝑠(0.158𝑠+1)
                                (2.3.8) 

To check if the derived model parameters K and τ are correct, the Simulink 

diagram has been modified to include a Transfer Function block with the first-

order model. 

 
Fig 2.7:Motor Speed and Motor voltage of the QUBE-Servo2 and the model 

according to  Bump test modelling (Validation) 

 

The actual and model responses in Fig 2.7 match very closely. Given the model 

represents the actual system accurately, the parameters derived are correct. 

 

2.4 Position Control 

The QUBE-Servo 2 voltage-to-position transfer function is 

P(s) =
𝜃𝑚(𝑠)

𝑉𝑚(𝑠)
=

𝐾

𝑠(𝜏𝑠+1)
    (2.4.1)     

 

where K = 22.7 rad/(V-s) is the model steady-state gain, τ = 0.158 s is the model 

time constant, 𝜃m(s) is the motor or disk position, and Vm(s) is the applied motor 

voltage. The value of K and τ has been found by the Bumptest modelling 

experiment mentioned in Section 2.3. 

Proportional-Derivative (PD) controller is a distinct class of controller having a 

wide acceptance for industrial position control applications. Mostly, in 
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industrial automation processes where robots and manipulators are extensively 

used, any oscillation in arm movement is highly undesirable [1, 2]. At the same 

time, good responsiveness in its behaviour during achieving a new position and 

simultaneously improved load rejection is expected. To satisfy these 

requirements appropriate amount of damping (D action) should be present in 

control action and at the same time suitable amount of sensitivity (P action) 

should also be present in the controller behaviour [3]. So, to get the best result 

from servo motor based position control applications, integral component (I 

action) of PID controller is usually kept off as it provides oscillatory responses 

with large overshoots or undershoots for such integrating processes. A variation 

of the classical PD control will be used: the proportional-velocity control as 

illustrated in Fig 2.8. Here, only the negative velocity is fed back (i.e. not the 

velocity of the error) and a low-pass filter is used along with the derivative term 

to suppress measurement noise. The combination of a first order low-pass filter 

and the derivative term results in a high-pass filter H(s) which will be used 

instead of a direct derivative. 

 

 
 

Fig 2.8: Block diagram of PV control 

 

The proportional-velocity (PV) control has the following structure 

u= ( kp ( r(t) –  y(t) ) –  kd  �̇�(t) )     (2.4.2) 

where kp is the proportional gain, kd is the derivative (velocity) gain, r = 𝜃d(t) is 

the set point or reference motor /load angle, y = 𝜃m(t) is the measured load shaft 

angle, and u = Vm(t) is the control input (applied motor voltage). 

The closed-loop transfer function of the QUBE-Servo 2 is denoted 
𝑌(𝑠)

𝑅(𝑠)
 = 

𝜃𝑚(𝑠)

𝜃𝑑(𝑠)
 

 Assume all initial conditions are zero, i.e. 𝜃m(0-) = 0 and �̇�m(0-) = 0, taking the 

Laplace transform of Eq.(2.4.2) yields  

U(s) = (𝑘𝑝 ( 𝑅(𝑠) −  𝑌(𝑠)) − 𝑘𝑑𝑠 𝑌(𝑠))  (2.4.3) 
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which can be substituted into Eq. (2.4.1) to result in 

Y(s) = 
𝐾(𝑘𝑝 ( 𝑅(𝑠)− 𝑌(𝑠))−𝑘𝑑𝑠 𝑌(𝑠))

𝑠(𝜏𝑠+1)
 

Solving for Y (s)/R(s), we obtain the closed-loop expression 

 
𝑌(𝑠)

𝑅(𝑠)
 = 

𝐾𝑘𝑝

τ𝑠2 + (1+𝐾 𝑘𝑑)𝑠 + 𝐾𝑘𝑝
       (2.4.4) 

This is a second-order transfer function. By comparing the standard second-

order transfer function    
𝑌(𝑠)

𝑅(𝑠)
 = 

𝜔𝑛
2

𝑠2+2ξωn+𝜔𝑛
2  
                 (2.4.5) 

The characteristic equation of the QUBE-Servo2 closed-loop transfer function 

in Eq. (2.4.4) is:  τ𝑠2 + (1 + 𝐾 𝑘𝑑)𝑠 + 𝐾𝑘𝑝 = 0 and can be re-structured into the 

form   𝑠2 + 
(1+𝐾 𝑘𝑑)𝑠

𝜏
 + 

𝐾𝑘𝑝

τ
 = 0 

Equating this with the standard second order system Eq. (2.4.5) gives the 

expressions      
𝐾𝑘𝑝

τ
 = 𝜔𝑛

2      and     
(1+𝐾 𝑘𝑑)𝑠

𝜏
  = 2ξωn 

Solving for kp and kd to obtain the control gain equations  

kp = 
𝜔𝑛

2

𝜏
     (2.4.6) 

and  kd = 
2ξωn− 1

𝐾
       (2.4.7) 

For the response to have a peak time of 0.15 s and a percentage overshoot of  

5 %, the natural frequency and damping ratio needed are  

ωn = 28.9321 rad/s and ξ = 0.6903. 

Using the model parameters given above and the desired natural frequency with 

Eq.(2.4.6) generates the proportional control gain 

kp = 5.8263 V/rad 

Similarly, the derivative control gain is obtained by substituting the model 

parameters given above with the damping ratio specification into Eq.(2.4.7) 

kd = 0.2340 V/(rad/s) 

When these gains are used with the PD controller, the position response of the 

load gear on a QUBE-Servo 2 with a disk load should satisfy the specifications. 

The motor voltage and the position response of both the QUBE-Servo 2 and the 

designed model has been plotted in the following Fig 2.9 
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Fig 2.9: Motor Speed and Motor voltage of the QUBE-Servo2 and the model 

according to  PD Control 

 
 QUBE-Servo2 Model 

Rise Time (ms) 70.762 64.010 

%Overshoot -0.122 0.117 

Peak Time(sec) 0.178 0.136 

ITAE 0.01074 0.01135 

IAE 0.06353 0.06633 

ISE 0.03474 0.03891 

Table 2.2: Performance table for PD Controller of QUBE-Servo2 and the 

designed model 

 

The response satisfies the overshoot since the magnitude of the measured 

percent overshoot is less than 5 %. However, the measured peak time in Table 
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2.2 surpasses 0.15 s in the case of QUBE-Servo2, the response is slower. The 

QUBE-Servo 2 model response from the transfer function is ideal, and thus, has 

no steady state error. The QUBE-Servo 2 response is expected to have a small 

steady state error due to friction, which has not been modelled. To improve the 

response time (i.e. decrease the peak time), we can increase the proportional 

gain. Thus in order to get tuned result we have implemented various 

optimization technique. For the optimization purpose we have chosen ITAE as 

objective functions because they provide the overall improved performance, 

ITAE indicates improved set point response and good load rejection 

respectively. 
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Chapter 3 
 

 

Modelling, validation and position control of Quanser SRV02 Rotary Servo 

Base unit 

 

3.1 Introduction 

 

The Quanser SRV02 rotary servo plant, pictured in Fig 3.1, consists of a DC 

motor that is enclosed in a solid aluminium frame and equipped with a planetary 

gearbox. The motor has its own internal gearbox that drives external gears. The 

SRV02 is equipped with three sensors: potentiometer, encoder, and tachometer. 

The potentiometer and encoder sensors measure the angular position of the load 

gear and the tachometer can be used to measure its velocity. 

 

 
Fig 3.1: Quanser SRV02 system 
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Table 3.1 lists and characterizes the main parameters associated with the 

SRV02. Some of these are used in the mathematical model. 

 

Symbol Description Value 

Vnom Motor nominal input voltage 6.0 V 

Rm  Motor armature resistance 2.6 Ω 

Lm Motor armature inductance 0.18 mH 

kt Motor current-torque constant 7.68 x 10-3 N-

m/A 

km Motor back-emf constant 7.68x10-3 

V/(rad/s) 

Kg High-gear total gear ratio 70 

 High-gear total gear ratio 14 

ηm Motor efficiency 0.69 

ηg Gearbox efficiency 0.90 

Jm,rotor Rotor moment of inertia 3.90 x10-7 kg-m2 

Jtach Tachometer moment of inertia 7.06 x10-8 kg-m2 

Jeq High-gear equivalent moment of inertia without 

external load 

2.087 x10-3 kg-

m2 

 Low-gear equivalent moment of inertia without 

external load 

9.785 x10-5 kg-

m2 

Beq High-gear Equivalent viscous damping 

coefficient 

0.015 N-

m/(rad/s) 

mb Mass of bar load 0.038 kg 

Lb Length of bar load 0.1525 m 

md Mass of disc load 0.04 kg 

rd Radius of disc load 0.05 m 

mmax Maximum load mass 5 kg 

fmax Maximum input voltage frequency 50 Hz 

Imax Maximum input current 1 A 

wmax Maximum motor speed 628.3 rad/s 

Table 3.1: Main SRV02 Specifications 

 

3.2 First Principle Modeling 

 

3.2.1 Electrical Equations 
 

The DC motor armature circuit schematic and gear train is illustrated in Fig 3.2. 

As specified Rm is the motor resistance, Lm is the inductance, and km is the back-

emf constant. 
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Fig 3.2: SRV02 DC motor armature circuit and gear train 

 

The back-emf (electromotive) voltage eb(t) depends on the speed of the motor 

shaft, ωm(t), and the back-emf constant of the motor, km. It opposes the current 

flow. The back emf voltage is given by: eb(t) = km ωm(t)                              (3.2.1) 

Using Kirchhoff’s Voltage Law, we can write the following equation: 

 𝑣𝑚(𝑡) − 𝑅𝑚 𝑖𝑚 (𝑡) − 𝐿𝑚
𝜕

𝜕𝑡 
𝑖𝑚 (𝑡) − 𝑘𝑚𝜔𝑚  (𝑡)  = 0                 (3.2.2) 

Since the motor inductance Lm is much less than its resistance, it can be ignored. 

Then, the equation becomes 𝑣m (𝑡) - 𝑅𝑚 𝑖𝑚 (𝑡) - 𝑘𝑚𝜔𝑚  (𝑡) =0                (3.2.3)     

Solving for Im(t), the motor current can be found as: 

                im(t) = 
𝑣𝑚(𝑡) − 𝑘𝑚𝜔𝑚(𝑡)

𝑅𝑚
                                         (3.2.4) 

 

3.2.2 Mechanical Equations 

The equation of motion describing the speed of the load shaft, ωl, with respect 

to the applied motor torque, 𝜏 m, is developed. Since the SRV02 is a one degree-

of-freedom rotary system, Newton's Second Law of Motion can be written as: 

J .α = 𝜏 

where J is the moment of inertia of the body (about its center of mass), α is the 

angular acceleration of the system, and 𝜏 is the sum of the torques being applied 

to the body. As illustrated in Fig 3.2, the SRV02 gear train along with the 

viscous friction acting on the motor shaft, Bm, and the load shaft Bl are 

considered. The load equation of motion is 

   Jl 
𝜕

𝜕𝑡
𝜔𝑙(𝑡) + Bl ωl (t) = τl (t)       (3.2.5) 

where Jl is the moment of inertia of the load and ωl is the total torque applied on 

the load. The load inertia includes the inertia from the gear train and from any 
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external loads attached, e.g. disc or bar. The motor shaft equation is expressed 

as:   Jm 
𝜕

𝜕𝑡
𝜔𝑚(𝑡) + Bm ωm(t) + τml (t)  = τm(t)     (3.2.6) 

where Jm is the motor shaft moment of inertia and 𝜏𝑚𝑙 is the resulting torque 

acting on the motor shaft from the load torque. The torque at the load shaft from 

an applied motor torque can be written as: 

                                𝜏𝑙(t)  = ηgKg 𝜏𝑚𝑙(t)                                           (3.2.7) 
where Kg is the gear ratio and ηg is the gearbox efficiency. The planetary 

gearbox that is directly mounted on the SRV02 motor is represented by the N1 

and N2 gears in Fig 3.1 and has a gear ratio of 

Kgi = N2/N1      (3.2.8) 
This is the internal gear box ratio. The motor gear N3 and the load gear N4 are 

directly meshed together and are visible from the outside. These gears comprise 

the external gear box which has an associated gear ratio of 

Kge = N4/N3      (3.2.9) 
The gear ratio of the SRV02 gear train is then given by: 

Kg = KgeKgi       (3.2.10) 
Thus, the torque seen at the motor shaft through the gears can be expressed as: 

τml (t)  = 
𝜏𝑙(𝑡)

𝜂𝑔𝐾𝑔
       (3.2.11) 

Intuitively, the motor shaft must rotate Kg times for the output shaft to rotate one 

revolution: θm (t) = Kg θl (t)         (3.2.12) 

 

We can find the relationship between the angular speed of the motor shaft, ωm, 

and the angular speed of the load shaft, ωl by taking the time derivative: 

ωm(t) = Kgωl(t)                 (3.2.13) 
The differential equation that describes the motion of the load shaft with respect 

to an applied motor torque is as follows: 

JmKg
𝜕

𝜕𝑡
𝜔𝑙  (t) + Bm Kg 𝜔𝑙  (t) + Jl 

𝜕

  𝜕𝑡
𝜔𝑙 (𝑡)+𝐵𝑙 𝐾𝑔 𝜔𝑙 (𝑡)

𝜂𝑔𝐾𝑔
  = τm (t) (3.2.14) 

Collecting the coefficients in terms of the load shaft velocity and acceleration 

gives 

 (𝜂𝑔𝐾𝑔
2𝐽𝑀 + 𝐽𝑙)

𝜕

𝜕𝑡
𝜔𝑙(𝑡) + (𝜂𝑔𝐾𝑔

2𝐵𝑚 + 𝐵𝑙)𝜔𝑙(𝑡) =  𝜂𝑔𝐾𝑔𝜔𝑚(𝑡)        (3.2.15)     

Defining the following terms: 

                                          𝐽𝑒𝑞 = 𝜂𝑔𝐾𝑔
2𝐽𝑚 + 𝐽𝑙                         (3.2.16) 

                                         𝐵𝑒𝑞 = 𝜂𝑔𝐾𝑔
2𝐵𝑚 + 𝐵𝑙                         (3.2.17) 

simplifies the equation as: 

                               𝐽𝑒𝑞
𝜕

𝜕𝑡
𝜔𝑙(𝑡) +  𝐵𝑒𝑞𝜔𝑙(𝑡) =  𝜂𝑔𝐾𝑔τm (t)                    (3.2.18) 
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3.2.3 Combining the Electrical and Mechanical Equations 

 

In this section the electrical equation derived and the mechanical equation are 

brought together to get an expression that represents the load shaft speed in 

terms of the applied motor voltage. 

The motor torque is proportional to the voltage applied and is described as 

𝛵m(t) = ηmktIm(t)                            (3.2.19) 
where kt is the current-torque constant (N.m/A), ηmis the motor efficiency, and 

Im is the armature current. We can express the motor torque with respect to the 

input voltage Vm(t) and load shaft speed ωl(t) by substituting the motor armature 

current into the current-torque relationship is as follows: 

                              τm (t) = 
𝜂𝑚𝑘𝑡(𝑉𝑚(𝑡) − 𝑘𝑚𝜔𝑚(𝑡))

𝑅𝑚
                     (3.2.20)    

After substituting we can express this in terms of Vm and ωl,  

                          τm(t)=   
  𝜂𝑚𝑘𝑡(𝑉𝑚(𝑡) − 𝑘𝑚𝐾𝑔𝜔𝑙(𝑡))

𝑅𝑚
                       (3.2.21)    

  𝐽𝑒𝑞
𝜕

𝜕𝑡
𝜔𝑙(𝑡) + 𝐵𝑒𝑞𝜔𝑙(𝑡) = 𝜂𝑚𝜂𝑔𝐾𝑔𝑘𝑡 

(𝑉𝑚(𝑡) − 𝑘𝑚𝐾𝑔𝜔𝑙(𝑡))

𝑅𝑚
             (3.2.22)  

After collecting the terms, the equation becomes  

 𝐽𝑒𝑞
𝜕

𝜕𝑡
𝜔𝑙(𝑡) + (

𝑘𝑚𝜂𝑔𝐾𝑔
2𝜂𝑚𝑘𝑡

𝑅𝑚
+ 𝐵𝑒𝑞)𝜔𝑙(𝑡) = 𝜂𝑚𝜂𝑔𝐾𝑔𝑘𝑡

𝑉𝑚(𝑡)

𝑅𝑚
 (3.2.23) 

This equation can be re-written as: 

  𝐽𝑒𝑞
𝜕

𝜕𝑡
𝜔𝑙(𝑡) + 𝐵𝑒𝑞𝜔𝑙(𝑡) = 𝐴𝑚𝑉𝑚(𝑡)                                                      (3.2.24) 

 

where the equivalent damping term is given by: 

                        𝐵𝑒𝑞,𝑣 =
𝑘𝑚𝜂𝑚𝜂𝑔𝐾𝑔

2𝑘𝑡+ 𝐵𝑒𝑞𝑅𝑚

𝑅𝑚
                                        (3.2.24a) 

and the actuator gain equals 

                        𝐴𝑚 = 
𝜂𝑚𝜂𝑔𝐾𝐺

2𝑘𝑡

𝑅𝑚
                                                    (3.2.24b) 

Taking the Laplace transform of the equation and assuming ωl(0-) = 0 gives 

                      𝐽𝑒𝑞𝑠𝜔𝑙(𝑠) +  𝐵𝑒𝑞,𝑣𝜔𝑙(𝑠) =  𝐴𝑚𝑉𝑚(𝑠) 

Solving for 
𝜔𝑙(𝑠)

𝑉𝑚(𝑠)
 gives the plant transfer function of the load shaft speed as a 

function of the motor input voltage: 

                     
𝜔𝑙(𝑠)

𝑉𝑚(𝑠)
= 

𝐴𝑚

𝐽𝑒𝑞𝑠+ 𝐵𝑒𝑞,𝑣
                                            (3.2.25)   

The time constant parameter is 𝜏 =   

𝐽𝑒𝑞

𝐵𝑒𝑞,𝑣
                                                   (3.2.26) 

And the steady state gain is K=  
𝐴𝑚

𝐵𝑒𝑞,𝑣
                                                                          (3.2.27) 
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The equivalent viscous damping parameter Beq= 0.015Nms/rad (in the high-gear 

configuration). Substituting all the specifications into the above equation gives 

Beq,v = 0.0844N m s / rad 

Evaluating the actuator gain expression with the SRV02 parameters gives 

Am = 0.129 N m/V 

The moment of inertia about the motor shaft equals Jm = Jtach + Jm,rotor  

Evaluating the above expression with the parameters outlined in gives 

Jm = 4.606251061 x 10-7 kg m2 

The formula to calculate the moment of inertia of a disc is 

Jdisc = 𝑚𝑟
2 /2 where m is the mass and r is the radius.  

the external load moment of inertia equals 

Jl,ext = 5.00 x 10-5 kg m2 

Assuming the gears are discs and using the parameters given in Table 3.1, the 

moment of inertia of the 24-tooth, 72-tooth, and 120-tooth gears are 

J24 = 1.01 x 10-7 kg m2 

J72 = 5.44 x10-6 kg m2 

and 

J120 = 4.18 x 10-5 kg m2 

The total moment of inertia from the gears is 

Jg = J24(120/24)2 + 2J72 + J120 

which equals Jg = 5.52 x 10-5 kg m2  

Using Jl = Jg + Jl,ext, the total load moment of inertia is 

Jl = 1.05x 10-4 kg m2 

Using Equations found above with the gear train and motor specifications listed 

in Table 3.1 and the load inertia, the equivalent moment of inertia acting on the 

SRV02 motor shaft is 

Jeq = 0.00214 kg m2 

The steady-state gain using the above equation is K = 1.53 rad/(V s) 

and the model time constant is 𝛵 = 0.0253 s 

 

Hence, the voltage-to-position transfer function is                      

P(s) =  
𝜃𝑚(𝑠)

𝑉𝑚(𝑠)
 =  

1.53

𝑠(0.0253𝑠+1)
    (3.2.28) 

 

3.3 Bump test Modelling  

 

The bump test is a simple test based on the step response of a stable system. A 

step input is given to the system and its response is recorded. Considering a first 

order system given by the following transfer function: 

                         
𝑌(𝑠)

 𝑈(𝑠)
   =   

 𝐾

𝜏𝑠+1
                                                

(3.3.1) 
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The step input begins at time t0. The input signal has a minimum value of umin 

and a maximum value of umax. The resulting output signal is initially at y0. Once 

the step is applied, the output tries to follow it and eventually settles at its 

steady-state value yss. From the output and input signals, the steady-state gain is   

K = 
𝛥𝑦

𝛥𝑢
                                                                            (3.3.2) 

where Δy = yss - y0 and Δu = umax - umin. The time constant of a system 𝛵 is 

defined as the time it takes the system to respond to the application of a step 

input to reach 63.2% of its steady-state value, i.e.  

       t1 = t0 + 𝜏                                 (3.3.3) 

where   y(t1) = 0.632Δy + y0 

Then, we can read the time t1 that corresponds to y(t1) from the response data . 

From this, the model time constant can be found as: 

𝜏 = t1- t0 

 

 
Fig 3.3: Experimental set up for Quanser SRV02 system 

 

Going back to the Quanser SRV02 system, the s-domain representation of a step 

input voltage with a time delay t0 is given by 

Vm(s) =  
𝐴𝑣

𝑠
 𝑒−𝑠𝑡0                                    (3.3.4) 

where 𝐴𝑣 is the amplitude of the step and 𝑡0 is the step time (i.e. the delay). 

The voltage-to-speed transfer function is 

            
𝛺𝑚(𝑠)

𝑉𝑚(𝑠)
= 

𝐾

𝜏𝑠+1
                                           (3.3.5) 

where K is the model steady-state gain, τ is the model time constant, 

 Ωm(s) = L[wm(t)] is the load gear rate, and 
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Vm(s) = L[vm(t)] is the applied motor voltage. 

If we substitute input in Eq. 3.3.4 into the system transfer function in Eq. 3.3.5, 

we get: 

Ωm(s) =   
 𝐾

(𝜏𝑠+1)

𝐴𝑣

𝑠
 𝑒−𝑠𝑡0     (3.3.6) 

We can then find the SRV02 motor speed step response in the time domain 

ωm(t) by taking inverse Laplace of this equation 

ωm(t) = K Av (1 -  𝑒−(𝑡−𝑡0)/𝜏) + ωm(t0)    (3.3.7) 

noting the initial conditions ωm(0-) = ωm(t0). 

Based on the models designed in SRV02, we desire to design a model that 

applies a step of 2 V to the motor for 2.5 seconds and reads the servo velocity 

using the encoder.In this method, a step input is given to the SRV02 and the 

corresponding load shaft response is recorded. Using the saved response, the 

model parameters can then be found. We have found the steady state value as 

K=2.61 rad/(V s) and the model time constant 𝜏 = 0.039s. 

  
Fig 3.4: Motor Speed and Motor voltage of the SRV02 step response 

 

From the Fig. 3.4, the measured initial and steady-state load shaft speeds are 

ωl(t0) = 0 rad/s and  

ωlss = 5.2366 rad/s and the input voltage amplitude is Av = 2V 

Using the equation K = 
𝜔𝑙𝑠𝑠−𝜔𝑙(𝑡0) 

𝐴𝑣
 with the collected data from the Fig 3.4, the 

resulting steady-state gain is: K = 2.6183rad/(V.s) 
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To find time of the first decay t1 = t0 +𝜏 , the corresponding speed measurement 

is found. From Figure the time at the shaft speed  

ωm(t0 + τ ) = 3.9012 rad/s 

is t1 = 1.2890 s 

The step start time is t0 = 1.2500 s 

Given the step start time t0 and decay time t1 the time constant is 

𝜏 = 0.0390 s 

Therefore, voltage-to-speed transfer function of the identified model becomes  

                                      
 𝛺𝑚(𝑠)

𝑉𝑚(𝑠)
  =  

2.61

0.039𝑠+1
                                  (3.3.8) 

And the voltage-to-position transfer function is 

P(s) =   
 𝜃𝑚(𝑠)

𝑉𝑚(𝑠)
  =  

2.61

𝑠(0.039𝑠+1)
                                (3.3.9) 

 

 

3.4 Model Validation 

To check if the model parameters K and τ derived from bumptest modelling and 

nominal value calculation are correct, the Simulink diagram has been modified 

to include a Transfer Function block with the first-order model . 

 
Fig 3.5: Nominal value and Bump test Model comparison with SRV02 response 

 

Both the nominal response model parameters represent the SRV02 well. The 

transient is represented more accurately with the nominal method. The 

parameters derived using the bump test method do not represent the SRV02. As 

shown in the plot of Fig 3.5, the simulated steady-state value is higher than the 

measured speed. 
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3.5 SRV02 Position Control  

 

The SRV 02 voltage-to-position transfer function as considered is  

P(s) =   
 𝜃𝑚(𝑠)

𝑉𝑚(𝑠)
  =  

1.53

𝑠(0.0253𝑠+1)
   (3.5.1) 

The desired time-domain specifications for controlling the position of the 

SRV02 load shaft are: 

ess = 0 

tp = 0.20 s and 

PO = 5.0 % 

Thus, when tracking the load shaft reference, the transient response should have 

a peak time less than or equal to 0.20 seconds, an overshoot less than or equal to 

5 %, and the steady-state response should have no error. 

The proportional-velocity (PV) control has the following structure 

u= ( kp ( r(t) –  y(t) ) –  kd  �̇�(t) )        (3.5.2) 

where kp is the proportional gain, kd is the derivative (velocity) gain, r = 𝜃d (t) is 

the set point or reference motor or load angle, y = 𝜃m(t) is the measured load 

shaft angle, and u = Vm(t) is the control input (applied motor voltage). 

The closed-loop transfer function of the QUBE-Servo 2 is denoted 
𝑌(𝑠)

𝑅(𝑠)
 = 

𝜃𝑚(𝑠)

𝜃𝑑(𝑠)
 

 Assume all initial conditions are zero, i.e. 𝜃m(0-) = 0 and �̇�m(0-) = 0, taking the 

Laplace transform of Eq.(3.5.2) yields  

U(s) = (𝑘𝑝 ( 𝑅(𝑠) −  𝑌(𝑠)) − 𝑘𝑑𝑠 𝑌(𝑠))               (3.5.3) 
which can be substituted into Eq. (3.3.1) to result in 

Y(s) = 
𝐾(𝑘𝑝 ( 𝑅(𝑠)− 𝑌(𝑠))−𝑘𝑑𝑠 𝑌(𝑠))

𝑠(𝜏𝑠+1)
 

Solving for Y (s)/R(s), we obtain the closed-loop expression 

 
𝑌(𝑠)

𝑅(𝑠)
 = 

𝐾𝑘𝑝

τ𝑠2 + (1+𝐾 𝑘𝑑)𝑠 + 𝐾𝑘𝑝
       (3.5.4) 

This is a second-order transfer function. By comparing the standard second-

order transfer function    
𝑌(𝑠)

𝑅(𝑠)
 = 

𝜔𝑛
2

𝑠2+2ξωn+𝜔𝑛
2  
                 (3.5.5) 

The characteristic equation of the SRV 02 closed-loop transfer function in Eq. 

(3.5.4) is:  τ𝑠2 + (1 + 𝐾 𝑘𝑑)𝑠 + 𝐾𝑘𝑝 = 0 and can be re-structured into the form   

𝑠2 + 
(1+𝐾 𝑘𝑑)𝑠

𝜏
 + 

𝐾𝑘𝑝

τ
 = 0. Equating this with the standard second order 

system Eq. (3.5.5) gives the expressions   
𝐾𝑘𝑝

τ
 = 𝜔𝑛

2  and     
(1+𝐾 𝑘𝑑)𝑠

𝜏
  = 2ξωn 

Solving for kp and kd to obtain the control gain equations, 

we get kp= 
𝜔𝑛

2

𝜏
          (3.5.6) 

and kd = 
2ξωn− 1

𝐾
            (3.5.7) 
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For the response to have a peak time of 0.15 s and a percentage overshoot of  

5 %, the natural frequency and damping ratio needed are ωn = 21.7 rad/s and  

ξ = 0.6903. 

Using the model parameters given above and the desired natural frequency with 

Eq. 3.5.6, generates the proportional control gain 

kp = 7.83 V/rad 

Similarly, the derivative control gain is obtained by substituting the model 

parameters given above with the damping ratio specification into Eq. 3.5.7  

kd = 0.156 V/(rad/s) 

When these gains are used with the PD controller, the position response of the 

load gear on SRV02 with a disk load should satisfy the specifications. The 

motor voltage and the position response of both the SRV02 and the designed 

model has been plotted in the following Fig 3.6 

 

 
Fig 3.6: Motor Speed and Motor voltage of the SRV02 and the identified model 

according to  PD Control 
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 SRV02 Model 

Rise Time (ms) 72.083 78.132 

%Overshoot 7.484 8.717 

Peak Time(sec) 0.166 0.202 

ITAE 0.06585 0.03135 

IAE 0.07305 0.04871 

ISE 0.01021 0.01033 

  

Table 3.2: Performance table for PD Controller of SRV02 system and the 

designed model 

 

The magnitude of the measured percent overshoot is slightly more than 5 %. 

However, the measured peak time in Table 3.2 surpasses 0.15 s in the case of 

identified model of SRV02; the response is slower, while that of SRV02 is 

nearly 0.15s. The SRV02 response from the transfer function is ideal, and thus, 

has no steady state error. To increase the response time (i.e. decrease the peak 

time), we can increase the proportional gain. Thus in order to get tuned result 

we have implemented various optimization technique. For the optimization 

purpose we have chosen ITAE as objective functions because they provide the 

overall improved performance, ITAE indicates improved set point response and 

good load rejection respectively. 

 

 

 

 

 

 

 

Reference: 

 

[1]  Documentation for the USER MANUAL QUBE-Servo 2. Quanser, 

Ontario, Canada, 2016. 
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Chapter 4 

 

 

Optimal PD Controller using Particle Swarm Optimization (PSO) 

 

 

4.1 Introduction 

 

Particle swarm optimization (PSO) algorithm is a stochastic optimization 

technique based on swarm, which was proposed by Eberhart and Kennedy 

(1995) and Kennedy and Eberhart (1995). PSO algorithm simulates animal’s 

social behaviour, including insects, herds, birds and fishes. These swarms 

conform a cooperative way to find food, and each member in the swarms keeps 

changing the search pattern according to the learning experiences of its own and 

other members. Main design idea of the PSO algorithm is closely related to two 

researches: One is evolutionary algorithm, just like evolutionary algorithm; PSO 

also uses a swarm mode which makes it to simultaneously search large region in 

the solution space of the optimized objective function.[1] The other is artificial 

life, namely it studies the artificial systems with life characteristics. In studying 

the behaviour of social animals with the artificial life theory, for how to 

construct the swarm artificial life systems with cooperative behaviour by 

computer, Millonas proposed five basic principles (van den Bergh 2001):[3] 

 

(1) Proximity: the swarm should be able to carry out simple space and time 

computations.  

(2) Quality: the swarm should be able to sense the quality change in the 

environment and response it.  

(3) Diverse response: the swarm should not limit its way to get the resources 

in a narrow scope.  

(4) Stability: the swarm should not change its behaviour mode with every 

environmental change. 

(5) Adaptability: the swarm should change its behaviour mode when this 

change is worthy. 

 

In PSO, particles can update their positions and velocities according to the 

environment change, namely it meets the requirements of proximity and quality. 

In addition, the swarm in PSO does not limit its movement but continuously 

search the optimal solution in the possible solution space. Particles in PSO can 
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keep their stable movement in the search space, while change their movement 

mode to adapt the change in the environment. So particle swarm systems meet 

the above five principles. 

 

Proposed in 1995 by J. Kennedy an R.Eberhart, the article “Particle Swarm 

Optimization” [1] became very popular due to its continuous optimization 

process allowing variations to multi targets and more. Consisting in the constant 

search of best solution, the method moves the particles (in this case represented 

as a (x,y) position) with a certain velocity calculated in every iteration. [5] Each 

particle’s movement has the influence of his own the best known position and 

also the best known position in the space-search. The final result expected is that 

the particle swarm converge to the best solution. It’s important to mention that 

PSO doesn’t use Gradient Descent, so it can be used to non linear problems once 

it doesn’t require that the problem have to be differentiable. 

 

 

4.2 Particle Swarm Algorithm Flowchart [8] 
 
The following flowchart gives a relatively complete presentation of the PSO 

algorithm. In the continuous space coordinate system, mathematically, the PSO 

can be described as follows. 

Assume that swarm size is N, each particle’s position vector in D-dimensional 

space is Xi = (xi1, xi2, ··· , xid , ··· , xi D), 

Velocity vector is Vi = (vi1, vi2, ··· , vid , ··· , vi D),  

Individual’s optimal position (i.e., the optimal position that the particle has 

experienced) is Pi = (pi1, pi2, ··· , pid , ··· , pi D),  

Swarm’s optimal position (i.e., the optimal position that any individual in this 

swarm has experienced) is represented as Pg = (pg1, pg2, ··· , pgd , ··· , pgD).  

Without loss of generality, taking the minimizing problem as the example, in 

the initial version of the PSO algorithm, update formula of the individual’s 

optimal position is: 

 

 pd i,t+1 =    xd i,t+1,  if f (Xi,t+1) < f (Pi,t)                   (4.1) 

         pd i,t ,    otherwise  
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Fig4.1:  Flow diagram illustrating the particle swarm optimization algorithm. 

 
The swarm’s optimal position is that of all the individual’s optimal positions. 

Update formula of velocity and position is denoted as follows, respectively: 

 

vd i,t+1 = vd i,t + c1 ∗ rand ∗ (pd i,t − xd i,t) + c2 ∗ rand ∗ (pd g,t − xd i,t)          (4.2) 

 

 xd i,t+1 = xd i,t + vd i,t+1                           (4.3) 

Since the initial version of PSO was not very effective in optimization problem, 

a modified PSO algorithm (Shi and Eberhart 1998) appeared soon after the 

initial algorithm was proposed. Inertia weight was introduced to the velocity 

update formula, and the new velocity update formula became: 

vd i,t+1 = w ∗ vd i,t + c1 ∗ rand ∗ (pd i,t − xd i,t) + c2 ∗ rand ∗ (pd g,t − xd i,t)          (4.4) 

 

Although this modified algorithm has almost the same complexity as the initial 

version, it has greatly improved the algorithm performance; therefore, it has 

START 

Swarm Initialization 

Particle fitness evaluating 

Calculating the individual 

historical optimal position 

Updating particle velocity and position 

according to the velocity and position 

updating equation 

Satisfying the 

ending condition 

END 

Yes 

No 
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achieved extensive applications. Generally, the modified algorithm is called 

canonical PSO algorithm, and the initial version is called original PSO 

algorithm. 

PSO algorithm has two versions, called global version and local version, 

respectively. In the global version, two extremes that the particles track are the 

optimal position pbest of its own and the optimal position gbest of the swarm. 

Accordingly, in local version, aside from tracking its own optimal position 

pbest, the particle does not track the swarm optimal position gbest, instead it 

tracks all particles’ optimal position nbest in its topology neighbourhood. For 

the local version, the velocity update became Eq. (4.5), where pi was the 

optimal position in the local neighbourhood. 

Analyzing the velocity update formula from a sociological perspective, we can 

see that in this update formula, the first part is the influence of the particle’s 

previous velocity. It means that the particle has confidence on its current 

moving state and conducts inertial moving according to its own velocity, so 

parameter ω is called inertia weight. The second part depends on the distance 

between the particle’s current position and its own optimal position, called the 

“cognitive” item. It means particle’s own thinking, i.e., particle’s move 

resulting from its own experience. Therefore, parameter c1 is called cognitive 

learning factor (also called cognitive acceleration factor). The third part relies 

on the distance between the particle’s current position and the global (or local) 

optimal position in the swarm, called “social” factor. It means the information 

share and cooperation among the particles, namely particle’s moving coming 

from other particles’ experience in the swarm. It simulates the move of good 

particle through the cognition, so the parameter c2 is called social learning factor 

(also called social acceleration factor). 

 
4.3 Objective function of the Particle Swarm Algorithm 

 

Here, minimization of integral-time-absolute-error (ITAE) is defined as the 

objective function (performance index or fitness function). The ITAE is 

calculated as: 

 

ITAE = ∫ 𝑡 ∗ |𝑒(𝑡)|𝑑𝑡
𝑡

0
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4.4 Particle Swarm Algorithm Parameters 

 

Population Size 50 

No. Of iterations 100 

Inertia coefficient 0.9 

Personal acceleration coefficient 0.12 

Global/social acceleration 

coefficient 

1.2 

Damping ration of inertia 

coefficient 

0.99 

Range of Variables 0-200% of initial 

parameters 

 

Table 4.1: Particle Swarm Algorithm Parameters 

 

4.5 Steps of PSO Algorithm 

The pseudo code of the PSO algorithm is stated as follows: 
FOR each particle i 
   FOR each dimension d 
       Initialize position xid randomly within permissible range 
       Initialize velocity vid randomly within permissible range 
    End FOR 
End FOR 

Iteration k=1 
DO 
    FOR each particle i 
 Calculate fitness value 
 IF the fitness value is better than p_bestid in history 
   Set the current fitness value as the p_bestid 
 End IF 
    End FOR  
Choose the particle having the best fitness value as the g_bestd 
FOR each particle i 
   FOR each dimension d 
 Calculate velocity according to the equation 

Vid(k+1)=w*vid(k)+c1*rand1(pid-xid)+c2*rand2(pgd-xid) 
 Update particle position according to the equation 
 Xid(K+1)=xid(k)+vid(k+1) 
    End FOR 
End FOR 
K=k+1 
WHILE maximum iterations or minimum error criteria are not attained 
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At first, in the for loops, we have initialized the particles’ positions with a 

random uniform distribution within a permissible range for all its dimensions. 

After that, for each particle, it calculates its fitness value and compared with his 

own best position (The p_best value is the best position of that specific particle 

has ever been) and then it chooses the best position of all particles in g_best. Let 

us take a closer look to the equation that defines the velocity of the next iteration 

of a particle dimension [7]:  

 Vᵢ (k+1) is the next iteration velocity, w is an inertial parameter. This 

parameter affects the movement propagation given by the last velocity value. 

 c₁ and c₂ are acceleration coefficients. c₁ value gives the importance of 

personal best value and c₂ is the importance of social best value. 

 pᵢ is the best individual position and pg is the best position of all particles. In 

the equation, is measured the distance of each of these parameters to the 

particle’s actual position. 

 rand₁ and rand₂ are random numbers where 0 ≤ rand ≤ 1 and they control the 

influence of each value: Social and individual as shown in the next Fig 4.2.  

 

                  

Fig 4.2: Illustration of velocity and position updates in PSO Algorithm 

 

After that is calculated the new particle’s position until the number of iterations 

specified or an error criteria be reached.  
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A typical Convergence plot of the objective function vs. Iteration is shown 

below: 

Fig 4.3: Convergence Curve for QUBE-Servo2 

 

4.6 Results  

For simulation and performance study the process transfer function of the 

identified model and the process itself of both QUBE-Servo2and SRV02 are 

being considered. 

For QUBE-Servo2, the voltage-to-position transfer function is  

P(s) = 
𝜃𝑚(𝑠)

𝑉𝑚(𝑠)
 = 

22.7

𝑠(0.158𝑠+1)
 

For Rotary Servo Base unit SRV02, the voltage-to-position transfer function is 

P(s) = 
𝜃𝑚(𝑠)

𝑉𝑚(𝑠)
 = 

1.53

𝑠(0.0253𝑠+1)
 

 

We have derived the close loop response characteristics for the identified process 

model by using different controllers. For detailed comparison, in addition to the 

response characteristics, several performance indices, such as percentage 

overshoot (%OS),rise time (Tr), settling time(Ts), integral absolute error (IAE), 

integral time absolute error (ITAE), integral square error (ISE) are calculated for 

each controller. Performance of PSO-PD is compared with the corresponding PD 
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controller. Simpson’s1/3rd rule is used for numerical integration. The detailed 

performance analysis is discussed next.

 
Fig 4.4: Responses of Motor Speed of  PD and PSO based controllers of the 

QUBE-Servo2identified model and its corresponding Motor voltage  
 

Objective 

Function 

QUBE Servo 2 Model 

Characteristics 

PSO PD 

 

 

 

 

ITAE 

Rise Time (ms) 80.448 64.010 

%Overshoot 1.065 0.117 

Peak Time(sec) 0.174 0.136 

ITAE 0.01374 0.01135 

IAE 0.08029 0.06633 

ISE 0.04684 0.03891 

Table 4.2: Performance Table of Controllers of QUBE-Servo2Model 
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Fig 4.5: Responses of Motor Speed of  PD and PSO based controllers of the 

QUBE-Servo2 and its corresponding Motor voltage 

 

Objective 

Function 

QUBE Servo 2 

Characteristics 

PSO PD 

 

 

 

 

ITAE 

Rise Time (ms) 92.731 70.762 

%Overshoot 0.198 -0.122 

Peak Time(sec) 0.216 0.178 

ITAE 0.01827 0.01074 

IAE 0.08607 0.06353 

ISE 0.043 0.03474 

Table 4.3: Performance Table of Controllers of QUBE-Servo2 
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Fig 4.6: Responses of Motor Speed of  PD and PSO based controllers of the 

Rotary servo base SRV02 identified model and its corresponding Motor voltage 

 

Objective Function Rotary servo base 

SRV02 model 

Characteristics 

PSO PD 

 

 

 

 

ITAE 

Rise Time (ms) 182.415 78.132 

%Overshoot 0.501 8.717 

Peak Time(sec) 1.498 0.202 

ITAE 0.02266 0.03135 

IAE 0.04901 0.04871 

ISE 0.008904 0.01033 

Table 4.4: Performance Table of Controllers of Rotary servo base SRV02 

model 
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Fig 4.7: Responses of Motor Speed of  PD and PSO based controllers of the 

Rotary servo base SRV02 and its corresponding Motor voltage 
 

Objective Function Rotary servo base 

SRV02 Characteristics 

PSO PD 

 

 

 

 

ITAE 

Rise Time (ms) 182.415 72.083 

%Overshoot 0.501 7.484 

Peak Time(sec) 1.498 0.166 

ITAE 0.02266 0.06585 

IAE 0.04901 0.07305 

ISE 0.008904 0.01021 

Table 4.5: Performance Table of Controllers of Rotary servo base SRV02  
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4.7 Conclusion 

 

Here, we have explored the possibility of performance enhancement of position 

control by Particle Swarm Optimization technique. From the simulation results 

we observed that the actual process model of QUBE-Servo2 and rotary servo 

base unit SRV02 produces good result due to set point changes as well as load 

disturbances.  
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Chapter 5 
 

 

Optimal PD Controller using Moth Flame Optimization (MFO) 

 

5.1 Introduction 

 

Optimization refers to the process of finding the best possible solution for a 

particular problem. As the complexity of problems increases, over the last few 

decades, the need for new optimization techniques becomes evident more than 

before. Mathematical optimization techniques used to be the only tools for 

optimizing problems before the proposal of heuristic optimization techniques. 

Mathematical optimization methods are mostly deterministic that suffer from 

one major problem: local optima entrapment. Some of them such as gradient-

based algorithms require derivation of the search space as well. This makes 

them highly inefficient in solving real problems. Moth-Flame Optimization 

(MFO) algorithm was proposed in 2016 [1] by Seyedali Mirjalili, as one of the 

seminal attempt to simulate the navigation of moths in computer and propose an 

optimization algorithm. This algorithm has been widely used in science and 

industry. 

 

5.2. Inspiration 

 

Moths are fancy insects, which are highly similar to the family of butterflies. 

Basically, there are over 160,000 various species of this insect in nature. They 

have two main milestones in their lifetime: larvae and adult. The larva is 

converted to moth by cocoons. The most interesting fact about moths is their 

special navigation methods in night. They have been evolved to fly in night 

using the moon light. They utilized a mechanism called transverse orientation 

for navigation. In this method, a moth flies by maintaining a fixed angle with 

respect to the moon, a very effective mechanism for travelling long distances in 

a straight path [2]. Since the moon is far away from the moth, this mechanism 

guarantees flying in straight line. The same navigation method can be done by 

humans. Suppose that the moon is in the south side of the sky and a human 

wants to go the east. If he keeps moon of his left side when walking, he would 

be able to move toward the east on a straight line.  

Despite the effectiveness of transverse orientation, we usually observe that 

moths fly spirally around the lights. In fact, moths are tricked by artificial lights 

https://en.wikiversity.org/wiki/Moth_flame_optimization#cite_note-1
https://en.wikiversity.org/wiki/Moth_flame_optimization#cite_note-2
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and show such behaviours. This is due to the inefficiency of the transverse 

orientation, in which it is only helpful for moving in straight line when the light 

source is very far. When moths see a human-made artificial light, they try to 

maintain a similar angle with the light to fly in straight line. Since such a light is 

extremely close compared to the moon, however, maintaining a similar angle to 

the light source causes a useless or deadly spiral fly path for moths [3]. It may 

be observed in Fig. 5.1 that the moth eventually converges towards the light. 

This behavior is modeled mathematically to propose an optimizer called Moth-

Flame Optimization (MFO) algorithm in the following subsection. 

   

                                
Fig 5.1: Spiral flying path around close light source [1] 

 

5.3 MFO algorithm [1] 

In the MFO algorithm, it is assumed that the candidate solutions are moths and 

the problem’s variables are the position of moths in the space. Therefore, the 

moths can fly in 1-D, 2-D, 3-D, or hyper dimensional space with changing their 

position vectors. Since the MFO algorithm is a population-based algorithm, the 

set of moths is represented in a matrix as follows: 

M = [

𝑚1,1 ⋯ 𝑚1,𝑑

⋮ ⋱ ⋮
𝑚𝑛,1 ⋯ 𝑚𝑛,𝑑

] 

Where n is the number of moths and d is the number of variables 

(dimension).For all the moths, we also assume that there is an array for storing 

the corresponding fitness values as follows: 

https://en.wikiversity.org/wiki/Moth_flame_optimization#cite_note-3
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OM = [

OM1

OM2

⋮
OMn

] ; where n is the number of moths. 

The fitness value is the return value of the fitness (objective) function for each 

moth. The position vector (first row in the matrix M for instance) of each moth 

is passed to the fitness function and the output of the fitness function is assigned 

to the corresponding moth as its fitness value (OM1 in the matrix OM for 

instance). Another key component in the proposed algorithm are flames. A 

matrix similar to the moth matrix is considered as follows: 

 

F = [

𝐹1,1 𝐹1,2 … 𝐹1,𝑑

𝐹2,1 𝐹2,2 ⋯ 𝐹2,𝑑

⋮ … ⋱ ⋮
𝐹𝑛,1 𝐹𝑛,2 ⋯ 𝐹𝑛,𝑑

] 

 

where n is the number of moths and d is the number of variables (dimension). 

It may be seen in the above equation that the dimensions of M and F arrays are 

equal. For the flames, it is also assumed that there is an array for storing the 

corresponding fitness values as follows: 

OF = [

OF1

OF2

⋮
OFn

] ; where n is the number of moths. 

The moths are actual search agents that move around the search space, whereas 

flames are the best position of moths that obtains so far. Therefore, each moth 

searches around a flag (flame) and updates it in case of finding a better solution. 

With this mechanism, a moth never loses its best solution.  

The MFO algorithm is a three-tuple that approximates the global optimal of the 

optimization problems and defined as follows: 

MFO = (I, P, T)         

I is a function that generates a random population of moths and corresponding 

fitness values. The methodical model of this function is as follows: 

I : φ = {M,OM}       

The P function, which is the main function, moves the moths around the search 

space. This function received the matrix of M and returns its updated one 

eventually. 

P : M = M            

The T function returns true if the termination criterion is satisfied and false if 

the termination criterion is not satisfied: 

T : M = {true; false}      
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With I,P, and T, the general framework of the MFO algorithm is defined as 

follows: 

M = I(); 

while T(M) is equal to false 

M = P(M); 

End 

The function I have to generate initial solutions and calculate the objective 

function values. Any random distribution can be used in this function. The 

following method is utilized as the default: 

for i = 1: n 

for j = 1: d 

M(i, j) = (ub(i) _ lb(i)) ⁄ rand() + lb(i); 

end 

end 

OM = Fitness Function (M); 

As can be seen, there are two other arrays called ub and lb. These matrixes 

define the upper and lower bounds of the variables as follows: 

ub =[ub1, ub2, ub3, . . ., ubn]           

where ub(i)  indicates the upper bound of the i-th variable. 

lb =[lb1, lb2,lb3, . . . , lbn]               

where lb(i)  indicates the lower bound of the i-th variable. 

After the initialization, the P function is iteratively run until the T function 

returns true. The P function is the main function that moves the moths around 

the search space. As mentioned above the inspiration of this algorithm is the 

transverse orientation. In order to mathematically model this behaviour, the 

position of each moth is updated with respect to a flame using the following 

equation: 

Mi = S(Mi,Fj)          

where Mi indicate the i-th moth, Fj indicates the j-th flame, and S is the spiral 

function. The exploration of the search space around the best locations obtained 

so far is guaranteed with this method due to the following reasons: 

  Moths update their positions in hyper spheres around the best solutions 

obtained so far. 

 The sequence of flames is changed based on the best solutions in each 

iteration, and the moths are required to update their positions with respect 

to the updated flames. Therefore, the position updating of moths may 

occur around different flames, a mechanism that causes sudden 

movement of moths in the search space and promotes exploration. 

Another concern here is that the position updating of moths with respect to n 

different locations in the search space may degrade the exploitation of the best 

promising solutions. To resolve this concern, an adaptive mechanism is 

proposed for the number of flames. Fig. 5.2 shows that how the number of 
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flames is decreased adaptively over the course of iterations. The following 

formula is utilized in this regard: 

flame no  = round (N-l*(N-1)/T) .....(a)        

      

                              
Fig 5.2: Number of flame is decreased adaptively over the course of iterations 

 

where l is the current number of iteration, N is the maximum number of flames, 

and T indicates the maximum number of iterations. Fig. 5.2 shows that there is 

N number of flames in the initial steps of iterations. However, the moths update 

their positions only with respect to the best flame in the final steps of iterations. 

The gradual decrement in number of flames balances exploration and 

exploitation of the search space.  

 

5.4 Objective function of the Moth Flame Algorithm 

 

Here, minimization of integral-time-absolute-error (ITAE) is defined as the 

objective function (performance index or fitness function). The ITAE is 

calculated as: 

 

ITAE = ∫ 𝑡 ∗ |𝑒(𝑡)|𝑑𝑡
𝑡

0
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5.5 Moth Flame Algorithm Parameters 

 

Search agent No. 30 

No. Of iterations 100 

Dimension (No. Of 

Variables) 

2 

Range of Variables 0-200% of 

initial 

parameters 

 

Table 5.1: Moth Flame Algorithm Parameters 

  

5.6 Steps of MFO Algorithm [1] 

 

After all, the general steps of the P function are as follows. 
 Update flame no using Eq. (a) 
OM = Fitness Function (M); 
if iteration == 1 
F = sort(M); 
OF = sort(OM); 
else 
F = sort(Mt_1, Mt); 
OF = sort(Mt_1, Mt); 
end 
for i = 1: n 
for j = 1: d 
Update r and t 
Calculate D with respect to the corresponding moth 
Update M(i,j) using with respect to the corresponding moth 
end 
end 
 

As discussed above, the P function is executed until the function returns true. 

After termination of the P function, the best moth is returned as the best 

obtained approximation of the optimum. 
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5.7 Results: 

For simulation and performance study the process transfer function of the 

identified model and the process itself of both QUBE-Servo2and SRV02 are 

being considered. 

For QUBE-Servo2, the voltage-to-position transfer function is  

P(s) = 
𝜃𝑚(𝑠)

𝑉𝑚(𝑠)
 = 

22.7

𝑠(0.158𝑠+1)
 

 

For Rotary Servo Base unit SRV02, the voltage-to-position transfer function is 

P(s) = 
𝜃𝑚(𝑠)

𝑉𝑚(𝑠)
 = 

1.53

𝑠(0.0253𝑠+1)
 

 

We have observed the close loop response characteristics for the identified 

process model by using different controllers. For detailed comparison, in 

addition to the response characteristics, several performance indices, such as 

percentage overshoot (%OS),rise time (Tr), settling time (Ts), integral absolute 

error (IAE), integral time absolute error (ITAE), integral square error (ISE) are 

calculated for each controller. Performance of MFO-PD is compared with the 

corresponding PD controller. Simpson’s1/3rd rule is used for numerical 

integration. The detailed performance analysis is discussed next. 
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Fig 5.3: Responses of Motor Speed of  PD and MFO based controllers of the QUBE-

Servo2 identified model and its corresponding Motor voltage  

 

Objective 

Function 

QUBE-Servo2 Model 

Characteristics 

MFO PD 

 

 

 

 

ITAE 

Rise Time (ms) 80.423 64.010 

%Overshoot 1.058 0.117 

Peak Time(sec) 0.174 0.136 

ITAE 0.01373 0.01135 

IAE 0.08026 0.06633 

ISE 0.04682 0.03891 
 

 

Table 5.2: Performance Table of Controllers of QUBE-Servo2 Model 
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Fig 5.4: Responses of Motor Speed of  PD and MFO based controllers of the 

QUBE-Servo2and its corresponding Motor voltage  

 

Objective 

Function 

QUBE-Servo2 

Characteristics 

MFO PD 

 

 

 

 

ITAE 

Rise Time (ms) 97.072 70.762 

%Overshoot -0.931 -0.122 

Peak Time(sec) 0.202 0.178 

ITAE 0.01883 0.01074 

IAE 0.08601 0.06353 

ISE 0.04284 0.03474 

Table 5.3: Performance Table of Controllers of QUBE-Servo2 
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Fig 5.5: Responses of Motor Speed of  PD and MFO based controllers of the 

Rotary servo base SRV02 identified model and its corresponding Motor voltage  
 

Objective 

Function 

Rotary servo base 

SRV02 model 

Characteristics 

MFO PD 

 

 

 

 

ITAE 

Rise Time (ms) 170.96 78.132 

%Overshoot 0.503 8.717 

Peak Time(sec) 0.12 0.202 

ITAE 0.02668 0.03135 

IAE 0.05342 0.04871 

ISE 0.01055 0.01033 

Table 5.4: Performance Table of Controllers of Rotary servo base SRV02 

model 



63 

 

 
Fig 5.6: Responses of Motor Speed of  PD and MFO based controllers of the 

Rotary servo base SRV02 and its corresponding Motor voltage 
 

Objective Function Rotary servo base 

SRV02 Characteristics 

MFO PD 

 

 

 

 

ITAE 

Rise Time (ms) 122.722 72.083 

%Overshoot -0.631 7.484 

Peak Time(sec) 0.357 0.166 

ITAE 0.08878 0.06585 

IAE 0.08879 0.07305 

ISE 0.01103 0.01021 

Table 5.5: Performance Table of Controllers of Rotary servo base SRV02  
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5.8 Conclusion 

 

Here, we have explored the possibility of performance enhancement of servo 

position control by Moth Flame Optimization technique. From the simulation 

results we observed that the actual process model of QUBE Servo and rotary 

servo base unit produces good result due to set point changes as well as load 

disturbances. In tables, results for the best optimized variables Kp and Kd are 

shown. A typical Convergence plot of the objective function vs. Iteration is 

shown below: 

                                                                                  
 
 

 
Fig 5.7: Convergence curve for QUBE-Servo2 
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Chapter 6 
 

 

Optimal PD Controller using Grey Wolf optimization (GWO) 

 

6.1 Introduction 

 

The GWO algorithm mimics the leadership hierarchy and hunting mechanism 

of gray wolves in nature proposed by Mirjalili et al. in 2014.[1] Four types of 

grey wolves such as alpha, beta, delta, and omega are employed for simulating 

the leadership hierarchy. In addition, three main steps of hunting, searching for 

prey, encircling prey, and attacking prey, are implemented to perform 

optimization. Meta-heuristic optimization techniques have become very popular 

over the last two decades. Surprisingly, some of them such as Genetic 

Algorithm (GA) [1], Ant Colony Optimization (ACO) [2], and Particle Swarm 

Optimization (PSO) [3] are fairly well-known among not only computer 

scientists but also scientists from different fields. In addition to the huge number 

of theoretical works, such optimization techniques have been applied in various 

fields of study. There are four main reasons behind this. They are: simplicity, 

flexibility, derivation- free mechanism, and local optima avoidance. The 

inspirations are typically related to physical phenomena, animals’ behaviours, 

or evolutionary concepts. The simplicity allows the scientists to simulate 

different natural concepts, propose new meta-heuristics, hybridize two or more 

meta-heuristics, or improve the current meta-heuristics. Secondly, flexibility 

refers to the applicability of meta-heuristics to different problems without any 

special changes in the structure of the algorithm. The optimization process starts 

with random solution(s), and there is no need to calculate the derivative of 

search spaces to find the optimum. This makes meta-heuristics highly suitable 

for real problems with expensive or unknown derivative information. The 

search space of real problems is usually unknown and very complex with a 

massive number of local optima, so meta-heuristics are good options for 

optimizing these challenging real problems. 

6.2 Inspiration [2] 

Grey wolf (Canis lupus) belongs to Canidae family. Grey wolves are considered 

as apex predators, meaning that they are at the top of the food chain. Grey 

wolves mostly prefer to live in a pack. The group size is 5-12 on average. Of 

particular interest is that they have a very strict social dominant hierarchy. 

The leaders are a male and female, called alphas. The alpha is mostly 

responsible for making decisions about hunting, sleeping place, time to wake, 

and so on. The alpha’s decisions are dictated to the pack. However, some kind 

of democratic behaviour has also been observed, in which an alpha follows the 

other wolves in the pack. In gatherings, the entire pack acknowledges the alpha 

https://en.wikipedia.org/wiki/gray_wolves
https://en.wikiversity.org/wiki/Algorithm_models/Grey_Wolf_Optimizer#cite_note-1
https://en.wikipedia.org/wiki/Canis_lupus


68 

 

by holding their tails down. The alpha wolf is also called the dominant wolf 

since his/her orders should be followed by the pack [5]. The alpha wolves are 

only allowed to mate in the pack. Interestingly, the alpha is not necessarily the 

strongest member of the pack but the best in terms of managing the pack. This 

shows that the organization and discipline of a pack is much more important 

than its strength. 

The second level in the hierarchy of grey wolves is beta. The betas are 

subordinate wolves that help the alpha in decision-making or other pack 

activities. The beta wolf can be either male or female, and he/she is probably the 

best candidate to be the alpha in case one of the alpha wolves passes away or 

becomes very old. The beta wolf should respect the alpha, but commands the 

other lower-level wolves as well. It plays the role of an adviser to the alpha and 

discipliner for the pack. The beta reinforces the alpha's commands throughout 

the pack and gives feedback to the alpha. 

The lowest ranking grey wolf is omega. The omega plays the role of scapegoat. 

Omega wolves always have to submit to all the other dominant wolves. They 

are the last wolves that are allowed to eat. It may seem the omega is not an 

important individual in the pack, but it has been observed that the whole pack 

face internal fighting and problems in case of losing the omega. This is due to 

the venting of violence and frustration of all wolves by the omega(s). This 

assists satisfying the entire pack and maintaining the dominance structure. In 

some cases the omega is also the babysitters in the pack. 

If a wolf is not an alpha, beta, or omega, he/she is called subordinate (or delta in 

some references). Delta wolves have to submit to alphas and betas, but they 

dominate the omega. Scouts, sentinels, elders, hunters, and caretakers belong to 

this category. Scouts are responsible for watching the boundaries of the territory 

and warning the pack in case of any danger. Sentinels protect and guarantee the 

safety of the pack. Elders are the experienced wolves who used to be alpha or 

beta. Hunters help the alphas and betas when hunting prey and providing food 

for the pack. Finally, the caretakers are responsible for caring for the weak, ill, 

and wounded wolves in the pack. 

 

In addition to the social hierarchy of wolves, group hunting is another 

interesting social behaviour of grey wolves. According to Muro et al [6] the 

main phases of gray wolf hunting are as follows: 

 Tracking, chasing, and approaching the prey 

 Pursuing, encircling, and harassing the prey until it stops moving 

 Attack towards the prey 

In this work this hunting technique and the social hierarchy of grey wolves are 

mathematically modelled in order to design GWO and perform optimization. 

https://en.wikiversity.org/wiki/Algorithm_models/Grey_Wolf_Optimizer#cite_note-ref1-2
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6.3 Mathematical Model [7] 

The hunting technique and the social hierarchy of grey wolves are 

mathematically modeled in order to design GWO and perform optimization. 

The proposed mathematical models of the social hierarchy, tracking, encircling, 

and attacking prey are as follows: 

6.3.1 Social hierarchy 

In order to mathematically model the social hierarchy of wolves when designing 

GWO, we consider the fittest solution as the alpha (α). Consequently, the 

second and third best solutions are named beta (β) and delta (δ) respectively. 

The rest of the candidate solutions are assumed to be omega (ω). In the GWO 

algorithm the hunting (optimization) is guided by α, β, and δ. The ω wolves 

follow these three wolves as shown in Fig 6.1. 

 

Fig.6.1: Hierarchy of grey wolf (dominance decreases from top down) 

6.3.2 Encircling prey 

As mentioned above, grey wolves encircle prey during the hunt. In order to 

mathematically model encircling behaviour the following equations are 

proposed: 

�⃗⃗�  = |𝐶  . 𝑋 p(t) - 𝑋 (t) | 

𝑋 (t+1) = 𝑋 p(t) - 𝐴  . �⃗⃗�  

where t  indicates the current iteration, 𝐴   and  𝐶   are coefficient vectors , 𝑋 p is 

the position vector of the prey, and 𝑋  indicates the position vector of a grey 

wolf. 

The vectors  𝐴  and  𝐶  are calculated as follows: 

𝐴   = 2𝑎 ⃗⃗⃗   𝑟1⃗⃗⃗   -  𝑎 ⃗⃗⃗   

𝐶   = 2. 𝑟2⃗⃗  ⃗   

Where components of 𝑎    are linearly decreased from 2 to 0 over the course of 

iterations and  𝑟1⃗⃗⃗  , 𝑟2⃗⃗  ⃗ are random vectors in [0,1]. 

With the above equations, a grey wolf in the position of (X,Y) can update its 

position according to the position of the prey (X*,Y*). Different places around 
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the best agent can be reached with respect to the current position by adjusting 

the value of 𝐴    and 𝐶    vectors.  

6.3.3 Hunting 

 

Fig 6.2: Updating position of gray wolves in GWO 

Grey wolves have the ability to recognize the location of prey and encircle 

them. The hunt is usually guided by the alpha. The beta and delta might also 

participate in hunting occasionally. However, in an abstract search space we 

have no idea about the location of the optimum (prey). In order to 

mathematically simulate the hunting behaviour of grey wolves, we suppose that 

the alpha (best candidate solution) beta and delta have better knowledge about 

the potential location of prey. Therefore, we save the first three best solutions 

obtained so far and oblige the other search agents (including the omegas) to 

update their positions according to the position of the best search agent. The 

following formulas are proposed in this regard. 

�⃗⃗� α= |𝐶 1. 𝑋  α (t) - 𝑋  | 

�⃗⃗� β= |𝐶 2. 𝑋  β (t) - 𝑋  | 

�⃗⃗� γ= |𝐶 3. 𝑋  γ (t) - 𝑋  | 

𝑋  1= 𝑋  α - 𝐴 1.( �⃗⃗� α) 

𝑋  2= 𝑋  β - 𝐴 2.( �⃗⃗�  β) 

𝑋  3= 𝑋  γ - 𝐴 3.( �⃗⃗�  γ) 

https://en.wikipedia.org/wiki/gray_wolves
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𝑋 (𝑡 + 1) =(𝑋  1+𝑋  2+𝑋  3) /3 

 

With these equations, a search agent updates its position according to alpha, 

beta, and delta in a n dimensional search space. In addition, the final position 

would be in a random place within a circle which is defined by the positions of 

alpha, beta, and delta in the search space. In other words alpha, beta, and delta 

estimate the position of the prey, and other wolves updates their positions 

randomly around the prey. 

6.3.4 Attacking prey (exploitation) 

As mentioned above the grey wolves finish the hunt by attacking the prey when 

it stops moving. In order to mathematically model approaching the prey we 

decrease the value of  𝑎  . Note that the fluctuation range of 𝐴   is also decreased 

by  𝑎⃗⃗⃗    . In other words 𝐴    is a random value in the interval [-2a, 2a] where a is 

decreased from 2 to 0 over the course of iterations. When random values 

of 𝐴    are in [-1, 1], the next position of a search agent can be in any position 

between its current position and the position of the prey. 

With the operators proposed so far, the GWO algorithm allows its search agents 

to update their position based on the location of the alpha, beta, and delta; and 

attack towards the prey. However, the GWO algorithm is prone to stagnation in 

local solutions with these operators. It is true that the encircling mechanism 

proposed shows exploration to some extent, but GWO needs more operators to 

emphasize exploration. 

6.3.5 Search for prey (exploration) 

Grey wolves mostly search according to the position of the alpha, beta, and 

delta. They diverge from each other to search for prey and converge to attack 

prey. In order to mathematically model divergence, we utilize 𝐴    with random 

values greater than 1 or less than -1 to oblige the search agent to diverge from 

the prey. This emphasizes exploration and allows the GWO algorithm to search 

globally. |A|>1 forces the grey wolves to diverge from the prey to hopefully find 

a fitter prey. Another component of GWO that favors exploration is 𝐶  , which 

contains random values in [0, 2]. This component provides random weights for 

prey in order to stochastically emphasize (C>1) or de-emphasize (C<1) the 

effect of prey in defining the distance in Equation (3.1). This assists GWO to 

show a more random behaviour throughout optimization, favoring exploration 

and local optima avoidance. It is worth mentioning here that C is not linearly 

decreased in contrast to A. We deliberately require C to provide random values 

at all times in order to emphasize exploration not only during initial iterations 

but also final iterations. This component is very helpful in case of local optima 

stagnation, especially in the final iterations. 
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The C vector can be also considered as the effect of obstacles to approaching 

prey in nature. Generally speaking, the obstacles in nature appear in the hunting 

paths of wolves and in fact prevent them from quickly and conveniently 

approaching prey. This is exactly what the vector C does. Depending on the 

position of a wolf, it can randomly give the prey a weight and make it harder 

and farther to reach for wolves, or vice versa. 

To sum up, the search process starts with creating a random population of grey 

wolves (candidate solutions) in the GWO algorithm. Over the course of 

iterations, alpha, beta, and delta wolves estimate the probable position of the 

prey. Each candidate solution updates its distance from the prey. The parameter 

a is decreased from 2 to 0 in order to emphasize exploration and exploitation, 

respectively. Candidate solutions tend to diverge from the prey when |𝐴   | 

>1  and converge towards the prey when |𝐴   |<1. Finally, the GWO algorithm is 

terminated by the satisfaction of an end criterion. 

6.4 Objective function of the Grey Wolf Algorithm 

 

Here, minimization of integral-time-absolute-error (ITAE) is defined as the 

objective function (performance index or fitness function). The ITAE is 

calculated as: 

ITAE = ∫ 𝑡 ∗ |𝑒(𝑡)|𝑑𝑡
𝑡

0
 

 

6.5 Grey Wolf Algorithm Parameters 

 

Search agent No. 30 

No. Of iterations 100 

Dimension (No. Of 

Variables) 

2 

Range of Variables 0-200% of 

initial 

parameters 

 

Table 6.1: Grey Wolf Algorithm Parameters 
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6.6 Steps of GWO Algorithm [5] 

 

The GWO Algorithm: 

Initialize the grey wolf population Xi (i = 1, 2, ..., n) 

Initialize 𝑎  , 𝐴  , and  𝐶   

Calculate the fitness of each search agent 

𝑋  α =the best search agent 

𝑋  β  =the second best search agent 

𝑋  γ  =the third best search agent 

while (t < Max number of iterations) 

for each search agent 

Update the position of the current search agent by above equations 

end for 

Update 𝑎⃗⃗⃗   ,  𝐴⃗⃗  ⃗ and  𝐶⃗⃗  ⃗  

Calculate the fitness of all search agents 

Update 𝑋  α , 𝑋  β   , and 𝑋  γ   

t=t+1 

end while 

return 𝑋  α  

To see how GWO is theoretically able to solve optimization problems, some 

points may be noted: 

 The proposed social hierarchy assists GWO to save the best solutions 

obtained so far over the course of iteration 

 The proposed encircling mechanism defines a circle-shaped neighbourhood 

around the solutions which can be extended to higher dimensions as a hyper-

sphere 

 The random parameters A and C assist candidate solutions to have hyper-

spheres with different random radii 

 The proposed hunting method allows candidate solutions to locate the 

probable position of the prey 
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 Exploration and exploitation are guaranteed by the adaptive values of a and 

A 

 The adaptive values of parameters a and A allow GWO to smoothly 

transition between exploration and exploitation 

 With decreasing A, half of the iterations are devoted to exploration (|A|≥1) 

and the other half are dedicated to exploitation (|A|<1) 

 The GWO has only two main parameters to be adjusted (a and C) 

 

 

6.7 Results: 

For simulation and performance study the process transfer function of the 

identified model and the process itself of both QUBE-Servo2 and SRV02 are 

being considered. 

For QUBE Servo 2, the voltage-to-position transfer function is 

P(s) = 
𝜃𝑚(𝑠)

𝑉𝑚(𝑠)
 = 

22.7

𝑠(0.158𝑠+1)
 

For Rotary Servo Base unit SRV02, the voltage-to-position transfer function is 

P(s) = 
𝜃𝑚(𝑠)

𝑉𝑚(𝑠)
 = 

1.53

𝑠(0.0253𝑠+1)
 

 

We have studied the close loop response characteristics for the identified process 

model by using different controllers. For detailed comparison, in addition to the 

response characteristics, several performance indices, such as percentage 

overshoot (%OS),rise time(Tr), settling time(Ts), integral absolute error (IAE), 

integral time absolute error (ITAE), integral square error (ISE) are calculated for 

each controller. Performance of GWO-PD is compared with the corresponding 

PD controller. Simpson’s1/3rd rule is used for numerical integration. The detailed 

performance analysis for various types of process is discussed next. 
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Fig6.3: Responses of  Motor Speed of PD and GWO based controllers of the QUBE-

Servo2 identified model and its corresponding Motor voltage 

 

Objective 

Function 

QUBE-Servo2 Model 

Characteristics 

GWO PD 

 

 

 

 

ITAE 

Rise Time (ms) 77.313 64.010 

%Overshoot 1.950 0.117 

Peak Time(sec) 0.160 0.136 

ITAE 0.0143 0.01135 

IAE 0.08085 0.06633 

ISE 0.04667 0.03891 

Table 6.2: Performance Table of Controllers of QUBE-Servo2 Model 
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Fig6.4: Responses of  Motor Speed of PD and GWO based controllers of the QUBE-

Servo2 and its corresponding Motor Voltage 

 

Objective 

Function 

QUBE Servo 2 

Characteristics 

GWO PD 

 

 

 

 

ITAE 

Rise Time (ms) 88.115 70.762 

%Overshoot -0.629 -0.122 

Peak Time(sec) 0.204 0.178 

ITAE 0.01924 0.01074 

IAE 0.08581 0.06353 

ISE 0.04255 0.03474 

Table 6.3: Performance Table of Controllers of QUBE-Servo2 
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Fig 6.5:Responses of  Motor Speed of PD and GWO based controllers of the Rotary 

servo base SRV02 identified model and its corresponding Motor voltage 

 

Objective Function Rotary servo base 

SRV02 model 

Characteristics 

GWO PD 

 

 

 

 

ITAE 

Rise Time (ms) 68.126 78.132 

%Overshoot 4.737 8.717 

Peak Time(sec) 0.142 0.202 

ITAE 0.01551 0.03135 

IAE 0.02996 0.04871 

ISE 0.0006471 0.01033 

Table 6.4: Performance Table of Controllers of Rotary servo base SRV02 

model 
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Fig 6.6: Response of Motor Speed of PD and GWO based controllers of the Rotary 

servo base SRV02 and its corresponding motor voltage 
 

Objective Function Rotary servo base 

SRV02 Characteristics 

GWO PD 

 

 

 

 

ITAE 

Rise Time (ms) 49.506 72.083 

%Overshoot 7.060 7.484 

Peak Time(sec) 0.122 0.166 

ITAE 0.04351 0.06585 

IAE 0.004536 0.07305 

ISE 0.006419 0.01021 

 

Table 6.5: Performance Table of Controllers of Rotary servo base SRV02  
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6.8 Conclusion 

 

Here, we have explored the possibility of performance enhancement of position 

control by Grey Wolf Optimization technique. From the simulation results we 

observed that the actual process model of QUBE Servo and rotary servo base 

unit produces good result due to set point changes as well as load disturbances. 

In tables, results for the best optimized variables Kp and Kd are shown. A typical 

Convergence plot of the objective function vs. Iteration is shown below: 

 
 

 
Fig6.7:  Convergence curve for  QUBE-Servo2 
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Chapter 7 
 

 

Optimal PD Controller using Ant Lion Optimization (ALO)  

 

7.1 Introduction 

 

In recent years metaheuristic algorithms have been used as primary techniques 

for obtaining the optimal solutions of real engineering design optimization 

problems [1–3]. Such algorithms mostly benefit from stochastic operators [4] 

that make them distinct from deterministic approaches. A deterministic 

algorithm [5–7] reliably determines the same answer for a given problem with a 

similar initial starting point. However, this behaviour results in local optima 

entrapment, which can be considered as a disadvantage for deterministic 

optimization techniques [8]. Stochastic optimization (metaheuristic) algorithms 

[9] refer to the family of algorithms with stochastic operators including 

evolutionary algorithms [10]. Randomness is the main characteristic of 

stochastic algorithms [11]. This means that they utilize random operators when 

seeking for global optima in search spaces. Evolutionary algorithms search for 

the global optimum in a search space by creating one or more random solutions 

for a given problem [13]. This set is called the set of candidate solutions. The 

set of candidates is then improved iteratively until the satisfaction of a 

terminating condition. The improvement can be considered as finding a more 

accurate approximation of the global optimum than the initial random guesses. 

This mechanism brings evolutionary algorithms several intrinsic advantages: 

problem independency, derivation independency, local optima avoidance, and 

simplicity. Problem and derivation independencies originate from the 

consideration of problems as a black box. Evolutionary algorithms only utilize 

the problem formulation for evaluating the set of candidate solutions. The main 

process of optimization is done completely independent from the problem and 

based on the provided inputs and received outputs. Therefore, the nature of the 

problem is not a concern, yet the representation is the key step when utilizing 

evolutionary algorithms. This is the same reason why evolutionary algorithms 

do not need to derivate the problem for obtaining its global optimum. 
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7.2 Inspiration [15] 

 

Antlions (doodlebugs) belong to the Myrmeleontidae family and Neuroptera 

order (net-winged insects). The lifecycle of antlions includes two main phases: 

larvae and adult. A natural total lifespan can take up to 3 years, which mostly 

occurs in larvae (only 3–5 weeks for adulthood). Antlions undergo 

metamorphosis in a cocoon to become adult. They mostly hunt in larvae and the 

adulthood period is for reproduction. 

 

 
Fig 7.1: Antlion trap 

 

Their names originate from their unique hunting behaviour and their favourite 

prey. An antlion larvae digs a cone-shaped pit in sand by moving along a 

circular path and throwing out sands with its massive jaw. Fig. 7.1 shows 

several cone-shaped pits with different sizes. After digging the trap, the larvae 

hides underneath the bottom of the cone and waits for insects (preferably ant) to 

be trapped in the pit as illustrated in Fig 7.1. The edge of the cone is sharp 

enough for insects to fall to the bottom of the trap easily. Once the antlion 

realizes that a prey is in the trap, it tries to catch it. However, insects usually are 

not caught immediately and try to escape from the trap. In this case, antlions 

intelligently throw sands towards to edge of the pit to slide the prey into the 

bottom of the pit. When a prey is caught into the jaw, it is pulled under the soil 

and consumed. After consuming the prey, antlions throw the leftovers outside 

the pit and amend the pit for the next hunt. 

 

The main inspiration of the ALO algorithm comes from the foraging behaviour 

of antlion’s larvae. In the next subsection the behaviour of antlions and their 

prey in nature is first modelled mathematically. An optimization algorithm is 

then proposed based on the mathematical model. 
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7.3 Operations used in antlion algorithm: [15] 

 

7.3.1. Random walks of ants 

 

The ALO algorithm mimics interaction between antlions and ants in the trap. To 

model such interactions, ants are required to move over the search space, and 

antlions are allowed to hunt them and become fitter using traps. Since ants 

move stochastically in nature when searching for food, a random walk is chosen 

for modelling ants’ movement. Ants update their positions with random walk at 

every step of optimization. Since every search space has a boundary (range of 

variable), however, the equation cannot be directly used for updating position of 

ants. In order to keep the random walks inside the search space, they are 

normalized using the following equation (min–max normalization): 

𝑋𝑖  
𝑡  = (𝑋𝑖  

𝑡  - ai) - (di - 𝑐𝑖  
𝑡 ) / (𝑑𝑖  

𝑡   – ai)               (7.1) 

where ai is the minimum of random walk of i-th variable, di is the maximum of 

random walk in i-th variable, 𝑐𝑖  
𝑡  is the minimum of i-th variable at t-th iteration, 

and 𝑑𝑖  
𝑡 indicates the maximum of i-th variable at t-th iteration 

 

7.3.2. Trapping in antlion’s pits 

 

As discussed above, random walks of ants are affected by antlions’ traps. In 

order to mathematically model this assumption, the following equations are 

proposed: 

𝑐𝑖  
𝑡 = 𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑡  

𝑗
 + ct                      (7.2) 

𝑑𝑖  
𝑡  = 𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑡  

𝑗
+ dt                  (7.3) 

 

where ct  is the minimum of all variables at t-th iteration, dt   indicates the vector 

including the maximum of all variables at t-th iteration, 𝑐𝑖  
𝑡 is the minimum of all 

variables for i-th ant, 𝑑𝑖  
𝑡  is the maximum of all variables for i-th ant, and 

𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑡  
𝑗

 shows the position of the selected j-th antlion at t-th iteration. 

 

7.3.3. Building trap 

In order to model the antlions’s hunting capability, a roulette wheel is 

employed. The ants are assumed to be trapped in only one selected antlion. The 

ALO algorithm is required to utilize a roulette wheel operator for selecting 

antlions based of their fitness during optimization. This mechanism gives high 

chances to the fitter antlions for catching ants. 

 

7.3.4. Sliding ants towards antlion 

 

With the mechanisms proposed so far, antlions are able to build traps 

proportional to their fitness and ants are required to move randomly. However, 
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antlions shoot sands outwards the centre of the pit once they realize that an ant 

is in the trap. This behaviour slides down the trapped ant that is trying to escape. 

For mathematically modelling this behaviour, the radius of ants’s random walks 

hyper-sphere is decreased adaptively. The following equations are proposed in 

this regard: 

ct= ct /I                   (7.4) 

dt= dt /I                    (7.5) 

where I is a ratio, ct is the minimum of all variables at t-th iteration, and dt 

indicates the vector including the maximum of all variables at t-th iteration. In 

Eq. (7.4) and (7.5), I = 10w t/T where t is the current iteration, T is the 

maximum number of iterations, and w is a constant defined based on the current 

iteration (w = 2 when t > 0.1T, w = 3 when t > 0.5T, w = 4 when t > 0.75T, w = 

5 when t > 0.9T, and w = 6 when t > 0.95T). Basically, the constant w can 

adjust the accuracy level of exploitation. 

 

7.3.5. Catching prey and re-building the pit 

 

The final stage of hunt is when an ant reaches the bottom of the pit and is 

caught in the antlion’s jaw. After this stage, the antlion pulls the ant inside the 

sand and consumes its body. For mimicking this process, it is assumed that 

catching prey occur when ants becomes fitter (goes inside sand) than its 

corresponding antlion. An antlion is then required to update its position to the 

latest position of the hunted ant to enhance its chance of catching new prey. The 

following equation is proposed in this regard: 

𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗  
𝑡  = 𝐴𝑛𝑡𝑗  

𝑡  ; if f (𝐴𝑛𝑡𝑗  
𝑡  ) > f(𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗  

𝑡 )                  (7.6) 

where t shows the current iteration, 𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗  
𝑡  shows the position of selected j-th 

antlion at t-th iteration, and 𝐴𝑛𝑡𝑗  
𝑡 indicates the position of i-th ant at t-th 

iteration. 

 

7.3.6. Elitism 

 

Elitism is an important characteristic of evolutionary algorithms that allows 

them to maintain the best solution(s) obtained at any stage of optimization 

process. In this study the best antlion obtained so far in each iteration is saved 

and considered as elite. Since the elite is the fittest antlion, it should be able to 

affect the movements of all the ants during iterations. Therefore, it is assumed 

that every ant randomly walks around a selected antlion by the roulette wheel 

and the elite simultaneously as follows: 

𝐴𝑛𝑡𝑗  
𝑡

  =   
𝑅𝐴  

𝑡 + 𝑅𝐸  
𝑡

2
                     (7.7) 
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where 𝑅𝐴  
𝑡  is the random walk around the antlion selected by the roulette wheel 

at t-th iteration, 𝑅𝐸  
𝑡  is the random walk around the elite at t-th iteration, and 

𝐴𝑛𝑡𝑗  
𝑡  indicates the position of i-th ant at t-th iteration. 

 

7.4 Objective function of the Ant Lion Algorithm 

 

Here, minimization of integral-time-absolute-error (ITAE) is defined as the 

objective function (performance index or fitness function). The ITAE is 

calculated as: 

 

ITAE = ∫ 𝑡 ∗ |𝑒(𝑡)|𝑑𝑡
𝑡

0
 

 

7.5 Ant Lion Algorithm Parameters 

 

 

Search agent No. 30 

No. Of iterations 100 

Dimension (No. Of 

Variables) 

2 

Range of Variables 0-200% of  

initial 

parameters 

 

Table 7.1: Ant Lion Algorithm Parameters 

  

7.6 Steps of ALO Algorithm [15] 

 

The pseudo codes the ALO algorithm is defined as follows: 

 
Initialize the first population of ants and antlions randomly 
Calculate the fitness of ants and antlions 
Find the best antlions and assume it as the elite (determined optimum) 
while the end criterion is not satisfied 
for every ant 
Select an antlion using Roulette wheel 
Update c and d using equations Eqs. (7.4) and (7.5) 
Create a random walk and normalize it using Eqs. (7.1) and 
Update the position of ant using (7.7) 
end for 
Calculate the fitness of all ants 
Replace an antlion with its corresponding ant it if becomes 
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fitter (Eq. (7.6)) 
Update elite if an antlion becomes fitter than the elite 
end while 
Return elite 

 

7.7 Results: 

For simulation and performance study the process transfer function of the 

identified model and the process itself of both QUBE-Servo2 and SRV02 are 

being considered. 

For QUBE Servo 2, the voltage-to-position transfer function is 

P(s) = 
𝜃𝑚(𝑠)

𝑉𝑚(𝑠)
 = 

22.7

𝑠(0.158𝑠+1)
 

For Rotary Servo Base unit SRV02, the voltage-to-position transfer function is 

P(s) = 
𝜃𝑚(𝑠)

𝑉𝑚(𝑠)
 = 

1.53

𝑠(0.0253𝑠+1)
 

 

We have derived the close loop response characteristics for the identified process 

model by using different controllers. For detailed comparison, in addition to the 

response characteristics, several performance indices, such as percentage 

overshoot (%OS), rise time (Tr), settling time (Ts), integral absolute error (IAE), 

integral time absolute error (ITAE), integral square error (ISE) are calculated for 

each controller. Performance of ALO-PD is being compared with the 

corresponding PD controller. Simpson’s1/3rd rule is used for numerical 

integration. The detailed performance analysis is discussed next. 
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Fig7.2: Responses of Motor Speed of PD and ALO based controllers of the QUBE-

Servo2 identified model and its corresponding Motor voltage  

 

 

Objective 

Function 

QUBE Servo 2 Model 

Characteristics 

ALO PD 

 

 

 

 

ITAE 

Rise Time (ms) 75.016 64.010 

%Overshoot 1.515 0.117 

Peak Time(sec) 0.164 0.136 

ITAE 0.0131 0.01135 

IAE 0.07664 0.06633 

ISE 0.4475 0.03891 

 

Table 7.2: Performance Table of Controllers of QUBE-Servo2 Model 
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Fig7.3: Responses of Motor Speed of PD and ALO based controllers of the QUBE-

Servo2 and its corresponding Motor voltage 

 
Objective 

Function 

QUBE Servo 2 

Characteristics 

ALO PD 

 

 

 

 

ITAE 

Rise Time (ms) 81.948 70.762 

%Overshoot 0.575 -0.122 

Peak Time(sec) 0.214 0.178 

ITAE 0.01524 0.01074 

IAE 0.07984 0.06353 

ISE 0.04007 0.03474 

Table 7.3: Performance Table of Controllers of QUBE-Servo2  
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Table 7.4: Performance Table of Controllers of Rotary servo base SRV02 

Model 

 
Fig 7.4: Responses of Motor Speed of PD and ALO based controllers of the 

Rotary servo base SRV02 identified model and its corresponding Motor voltage 

                                                                                                                                                                                                                                                          
Objective 

Function 

Rotary servo base 

SRV02 model 

Characteristics 

ALO PD 

 

 

 

 

ITAE 

Rise Time (ms) 70.635 78.132 

%Overshoot 3.644 8.717 

Peak Time(sec) 0.148 0.202 

ITAE 0.01507 0.03135 

IAE 0.02973 0.04871 

ISE 0.006483 0.01033 
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Fig 7.5: Responses of Motor Speed of PD and ALO based controllers of the Rotary 

servo base SRV02 and its corresponding Motor voltage 
 

Objective Function Rotary servo base 

SRV02 Characteristics 

ALO PD 

 

 

 

 

ITAE 

Rise Time (ms) 61.830 72.083 

%Overshoot 4.737 7.484 

Peak Time(sec) 0.119 0.166 

ITAE 0.03994 0.06585 

IAE 0.04498 0.07305 

ISE 0.006462 0.01021 

Table 7.5: Performance Table of Controllers of Rotary servo base SRV02 
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7.8 Conclusion 

 

Here, we have explored the possibility of performance enhancement of position 

control by Grey Wolf Optimization technique. From the simulation results we 

observed that the actual process model of QUBE-Servo2 and rotary servo base 

unit SRV02 produces good result due to set point changes as well as load 

disturbances. In tables, results for the best optimized variables Kp and Kd are 

shown. A typical Convergence plot of the objective function vs. Iteration is 

shown below: 

 
 

 

 
Fig 7.6: Convergence curve for QUBE-Servo2 motor 
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Chapter 8 
 

Comparative Result Analysis of Different Algorithms 

 

8.1 Introduction 

 

In this thesis, the tuning of the PD Controller is made by different Algorithms, 

namely a) Particle Swarm Optimization [Chapter 4], b) Moth Flame 

Optimization [Chapter 5], c) Grey Wolf Optimization [Chapter 6] and d) Ant 

Lion Optimization [Chapter 7]. Here the comparative study of these algorithms 

over the manually tuned controller has been observed. But it was also noticed 

that one out of these four algorithms outperforms the other algorithms. Here all 

the four algorithms are compared simultaneously for actual process and 

identified model of both the QUBE-Servo2 and Rotary Servo Base SRV02. 

 

8.2 Parameters for different algorithm 

 

8.2.1 Computer Environment 

 

All these algorithms are executed on the same environment i.e. same computer 

with no other bulk process running in the background (other than necessary 

background Operating System & Matlab). Matlab R2016a has been used for all 

these simulation. 

 

8.2.2 Algorithm Parameters 

 

Population Size:  30 

Maximum iteration:  100 

Objective Function: ITAE 

No. Decision variables:  2 

 

8.3 Overall Performance 

 

Responses of the first order integrating identified model of QUBE-Servo2 and 

SRV02 for the position control have been observed under Particle Swarm 

optimization (PSO), Moth Flame Optimization (MFO), Grey Wolf optimization 

(GWO) and Ant Lion Optimization (ALO). Responses for QUBE-Servo2 under 

these four algorithms have been shown in Fig 8.1 and Fig 8.2.The responses for 

Rotary base servo SRV02 under these four algorithms have been shown in Fig 

8.3 and Fig 8.4 .The performance indices of the processes for different 

controllers are given in Table 8.1 – Table 8.4 .Performance analysis reveals that 

all these four algorithms based controllers are capable of providing acceptable 
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and improved performance during both set point change and load disturbance. 

Responses of the identified model and actual process of QUBE-Servo2 and 

SRV02 for four algorithms have been shown as follows. 

 

Fig 8.1: Responses of PSO-PD vs MFO-PD vs GWO-PD vs ALO-PD for the 

identified model of QUBE-Servo 2 

 

Objective 

Function 

QUBE Servo2 

identified model 

Characteristics 

PSO MFO GWO ALO 

 

 

 

 

ITAE 

Rise Time (ms) 182.415 80.423 77.313 75.016 

%Overshoot 0.501 1.058 1.950 1.515 

Peak Time(sec) 1.498 0.174 0.160 0.164 

ITAE 0.02266 0.01373 0.0143 0.0131 

IAE 0.04901 0.08026 0.08085 0.07664 

ISE 0.008904 0.04682 0.04667 0.4475 

Table 8.1: Performance Comparison of QUBE Servo2 identified model 

Responses of the identified model of QUBE Servo2 under PSO-PD, MFO-PD, 

GWO-PD and ALO-PD has been shown in Fig 8.1.The performance indices of 

the process for different controllers are listed in Table 8.1. All optimized 

controllers perform in a better way. The detail analysis reveals that for the 

position control or PD control of the identified model of this servo motor, Ant 
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lion and Particle Swarm optimized controller shows better performance as they 

produce lower integral-time-absolute error. The percentage overshoot of particle 

swarm optimized controller is the least among all the four other controllers but 

the response is much slower in this case. 

 
Fig 8.2: Responses of PSO-PD vs MFO-PD vs GWO-PD vs ALO-PD for the 

QUBE Servo 2  

Objective 

Function 

QUBE Servo2 

Characteristics 

PSO MFO GWO ALO 

 

 

 

 

ITAE 

Rise Time (ms) 92.731 97.072 88.115 81.948 

%Overshoot 0.198 -0.931 -0.629 0.575 

Peak Time(sec) 0.216 0.202 0.204 0.214 

ITAE 0.01827 0.01883 0.01924 0.01524 

IAE 0.08607 0.08601 0.08581 0.07984 

ISE 0.043 0.04284 0.04255 0.04007 

Table 8.2: Performance Comparison of QUBE Servo2  
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Responses of the identified model of QUBE Servo2 under PSO-PD, MFO-PD, 

GWO-PD and ALO-PD have been shown in Fig 8.2.The performance indices of 

the process for different controllers are provided in Table 8.2. All the optimized 

controllers perform in a better way. The detail study reveals that for the position 

control or PD control of the identified model of this servo motor, Ant lion has 

the best performance as it reduces the integral-time-absolute error to the least as 

well as  the percentage overshoot and also the response is the fastest with this 

type of controller. The proposed AL tuning of PD controller is designed towards 

achieving improved set point tracking along with better load rejection for servo 

motor based position control System. Thus, the performance of the position 

control under the Ant Lion algorithm outperforms the other.  

 

 
Fig 8.3: Responses of PSO-PD vs MFO-PD vs GWO-PD vs ALO-PD for the 

identified model of Rotary Base servo SRV02  
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Objective 

Function 

Rotary servo 

SRV02 

identified 

model 

Characteristics 

PSO MFO GWO ALO 

 

 

 

 

ITAE 

Rise Time (ms) 92.731 170.96 68.126 70.635 

%Overshoot 0.198 0.503 4.737 3.644 

Peak Time(sec) 0.216 0.12 0.142 0.148 

ITAE 0.01827 0.02668 0.01551 0.01507 

IAE 0.08607 0.05342 0.02996 0.02973 

ISE 0.043 0.01055 0.0006471 0.006483 

 

Table 8.3: Performance Comparison of Rotary Servo SRV02 identified model  

 

Responses of the identified model of SRV02 under PSO-PD, MFO-PD, GWO-

PD and ALO-PD have been shown in Fig 8.3.The performance indices of the 

process for different controllers are listed in Table 8.3. All optimized controllers 

perform in a better way. The detail analysis reveals that for the position control 

of the identified model of this servo motor, Ant lion optimized controller has the 

best performance as it reduces the integral-time-absolute error to the least 

among all the other four controllers and also the response is much faster. The 

percentage overshoot of particle swarm optimized controller is the least among 

all the four other controllers but the response is much slower in this case. 
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Fig 8.4: Responses of PSO-PD vs MFO-PD vs GWO-PD vs ALO-PD of Rotary 

Base servo SRV02  

 

Objective 

Function 

Rotary servo 

SRV02 

Characteristics 

PSO MFO GWO ALO 

 

 

 

 

ITAE 

Rise Time (ms) 182.415 122.722 49.506 61.830 

%Overshoot 0.501 -0.631 7.060 4.737 

Peak Time(sec) 1.498 0.357 0.122 0.119 

ITAE 0.02266 0.08878 0.04351 0.03994 

IAE 0.04901 0.08879 0.004536 0.04498 

ISE 0.008904 0.01103 0.006419 0.006462 

Table 8.4: Performance Comparison of Rotary Servo SRV02  

 

The comparative analysis reveals that Ant lion optimized controller has the best 

performance as it achieves improved set point tracking along with better load 

rejection and also its response is much faster. Note that the percentage 

ALO 

PSO 

GWO 

MFO 
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overshoots of particle swarm optimized controllers and grey wolf optimized 

controllers are smaller than the others as depicted in the Fig 8.4. 

 

 
Fig 8.5: Comparison of Convergence Curve for different algorithms 

  

In Fig 8.5, typical convergence curves for the same objective function i.e. first 

order integrating process is shown. A PD controller is optimized by all these 

four algorithms. From the Convergence curve, we can observe that Ant Lion 

algorithm converges very fast almost within 20 iterations. While Particle Swarm 

algorithm and Moth Flame algorithm converge around 35 iterations. And note 

that Grey Wolf Algorithm takes longer time to converge and also this algorithm 

converges at a higher value. 

So, it can be concluded that ‘Ant Lion Algorithm’ is the best for tuning or 

optimizing controller for servo position control. Particle Swarm optimization 

also performed well. 
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Chapter 9 
 

Conclusion & Future Scope 

 

9.1 Conclusion 

  

We have incorporated four optimization techniques – Particle Swarm 

Optimization (PSO), Moth Flame optimization (MFO), Grey wolf optimization 

(GWO) and Ant Lion Optimization (ALO) on an already developed position 

controller of the Qube Servo and rotary base servo motor by using empirical 

relations with a view a) to overcome its empirical and percentage overshoot 

method of choosing appropriate tuneable parameters and b) achieving its 

optimal performance. Here the two tuneable parameters of the PD controller 

have been optimized by PSO, MFO, GWO and ALO for two given processes. 

The derived optimal controllers are tested through extensive simulation 

experiments, even with the application of load disturbance at a particular time, 

for checking the robustness. Performances of the optimal controllers PSO-PD, 

MFO-PD, GWO-PD, and ALO-PD have been compared. The detailed 

performance analysis revealed that all algorithms provide significantly 

improved performance in set point tracking along with better load rejection for 

servo motor based position control System as the initial PD Controller. 

 

 

9.2 Future Scope 

 

In this study we have used four different optimization algorithms to optimize 

the parameters of both the processes of QUBE Servo 2 motor and rotary based 

servo SRV02 motor. These algorithms are taken on the basis of their 

convergence rate and run time. Initially we used some empirical relations and 

expert knowledge to tune the parameters i.e. Kp and Kd of the PD controller for 

the position control. While developing PSO-PD, MFO-PD, GWO-PD, and 

ALO-PD, we have considered the range of variables i.e. Kp & Kd to be in the 

range of 0-200% of the initial variables. Therefore by increasing the range of 

the variables we may further improve the performance. Here we consider only 

ITAE as the objective function. The performance of the controller may be 

improved if we consider other performance criteria to be optimized 

simultaneously e.g. IAE, IAE+ITAE or total variation as the objective 



102 

 

functions. For future aspect we may study the stability of the process when the 

controller is optimized by the algorithm used. We have studied the robustness of 

the controller by application of the load disturbance at a particular time for each 

process. Finally the performance can be improved by using different 

optimization algorithms or some other techniques like using machine learning, 

neural network etc. 
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