
Designing of Optimal position Control systems

using intelligent optimization techniques

By

Shreya Naskar

Class Roll No. - 001711103003

Reg. No. -140933 of 2017-18

Examination Roll No. – M4IEE19003

Thesis submitted in partial fulfilment of the requirement for the Degree of

Master of Technology

In the Department of Instrumentation and Electronics Engineering, Faculty of

Engineering & Technology

Under supervision of

Prof. Rajanikanta Mudi

Jadavpur University

Kolkata -700032

2019

i

Certificate of Recommendation

I hereby recommend that the thesis titled “Designing of Optimal position

Control systems using intelligent optimization techniques” carried out under

my supervision by Shreya Naskar (Registration no. 140933 of 2017-18) may be

accepted in partial fulfilment of the requirement for the degree of “Master of

Technology in Instrumentation & Electronics Engineering’ of Jadavpur

University.

...

(Prof. Rajanikanta Mudi)

Thesis Supervisor

Department of

Instrumentation & Electronics Engineering

Jadavpur University

Salt Lake Campus

Kolkata- 700098

... ..

 (Prof. Runu Banerjee Roy) (Prof. Chiranjib Bhattacharjee)

Head of Department Dean

Instrumentation & Electronics Faculty of Engineering and

Engineering Technology

Jadavpur University Jadavpur University

Kolkata- 700098 Kolkata- 700032

ii

Certificate of Approval
(*Only in case the thesis is approved)

The thesis at instance is hereby approved as a credible study of an Engineering

subject carried out and presented in a manner satisfactory to warrant its

acceptance as a prerequisite to the degree for which it has been submitted. It is

understood that by this approval the undersigned does not necessarily endorse

or approve any statement made, opinion expressed or conclusion drawn therein,

but approve this thesis for the purpose for which it is submitted.

------------------------------------- -------------------------------------

Signature of the examiner Signature of the supervisor

iii

Declaration of originality and compliance of academic ethics

I hereby declare that this thesis contains literature survey and original research

work by me, as a part of my Master of Technology in Instrumentation &

Electronics engineering studies.

All information in this document have been obtained and presented in

accordance with academic rules and ethical conduct.

I also declare that, as required by these rules and conduct, I have fully cited and

referenced all material and results that are not original to this work.

Name: Shreya Naskar

Roll Number: 001711103003

Thesis title: Designing of Optimal position Control systems using

intelligent optimization techniques

Signature with Date:

iv

Acknowledgement

I would like to thank a lot of people who gave me unending support and

inspiration from the beginning and without whose help this thesis and project

would not have been completed.

First and foremost, I would like to thank my guide Prof. Rajanikanta Mudi,

whose suggestions, guidance and encouragement have helped me immensely in

understanding the subject.

I would also like to thank all my classmates and the staffs of the department for

the constant support and help they provided me all the time.

 Regards

 Shreya Naskar

v

CONTENTS

Page No.

Chapter 1: Introduction & Scope of the thesis 1-17

1.1 Introduction 1

1.2 Process Control and Basic Terminology 2

1.2.1 Process 4

1.2.2 Measuring Instruments or Sensors 4

1.2.3 Controllers 4

 1.2.3.1 Proportional Controllers 5

1.2.3.2 Proportional Integral Controllers 6

1.2.3.3 Proportional Integral Differential

 Controllers 7

1.3 Performance Specifications 8

 1.4 System Stability 9

 1.5 Control System Testing 11

 1.6 Computer-Aided Control System Design 12

 1.7 Method Based on Performance Criteria 13

 1.8 Literature Survey 13

 1.8 Scope of the Thesis 14

vi

 References 17

Chapter 2: Modelling, validation and Position control of

 QUBE Servo 2 18-28

 2.1 Introduction 18

2.2 First Principle Modelling 19

2.3 Bump test Modelling 21

2.4 Position Control 24

References 28

Chapter 3: Modelling, validation and position control of

 Quanser SRV02 Rotary Servo Base unit 29-40

 3.1 Introduction 29

 3.2 First Principle Modeling 30

3.2.1 Electrical Equations 30

3.2.2 Mechanical Equations 31

3.2.3 Combining the Electrical and Mechanical

Equations 33

3.3 Bump test Modelling 34

 3.4 Model Validation 37

 3.5 SRV02 Position Control 38

 References 40

Chapter 4: Optimal PD Controller using

Particle Swarm Optimization (PSO) 41-52

 4.1 Introduction 41

 4.2 Particle Swarm Algorithm Flowchart 42

vii

 4.3 Objective function of the Particle Swarm Algorithm 44

 4.4 Particle Swarm Algorithm Parameters 45

 4.5 Steps of PSO Algorithm 45

4.6 Results 47

4.7 Conclusion 52

References 52

Chapter 5: Optimal PD Controller using

Moth Flame Optimization (MFO) 53-66

5.1 Introduction 53

5.2. Inspiration 53

5.3 MFO algorithm 54

5.4 Objective function of the Moth Flame Algorithm 57

5.5 Moth Flame Algorithm Parameters 58

5.6 Steps of MFO Algorithm 58

5.7 Results 59

5.8 Conclusion 64

References 64

Chapter 6: Optimal PD Controller using

Grey Wolf optimization (GWO) 67-80

 6.1 Introduction 67

6.2 Inspiration 67

6.3 Mathematical Model 69

viii

 6.3.1 Social hierarchy 69

6.3.2 Encircling prey 69

 6.3.3 Hunting 70

 6.3.4 Attacking prey (exploitation) 71

 6.3.5 Search for prey (exploration) 71

6.4 Objective function of the Grey Wolf Algorithm 72

6.5 Grey Wolf Algorithm Parameters 72

6.6 Steps of GWO Algorithm 73

6.7 Results 74

6.8 Conclusion 79

References 79

Chapter 7: Optimal PD Controller using

 Ant Lion Optimization (ALO) 81-92

7.1 Introduction 81

7.2 Inspiration 82

7.3 Operations used in ant lion algorithm

7.3.1. Random walks of ants 83

 7.3.2. Trapping in ant lion’s pits 83

 7.3.3. Building trap 83

ix

 7.3.4. Sliding ants towards ant lion 83

 7.3.5. Catching prey and re-building the pit 84

 7.3.6. Elitism 84

 7.4 Objective function of the Ant Lion Algorithm 85

 7.5 Ant Lion Algorithm Parameters 85

 7.6 Steps of ALO Algorithm 85

 7.7 Results 86

7.8 Conclusion 91

References 92

Chapter 8: Comparative Result Analysis of Different Algorithms 94-100

 8.1 Introduction 94

 8.2 Parameters for different algorithm

8.2.1 Computer Environment 94

8.2.2 Algorithm Parameters 94

8.3 Overall Performance 94

Chapter 9: Conclusion & Future Scope 101-102

 9.1 Conclusion 101

 9.2 Future Scope 101

x

LIST OF FIGURES

Sl. No. Title Page No.

Fig 1.1 Process control block diagram with feedback loop 2

Fig 1.2 Linear feedback control system 3

Fig 1.3 Equivalent system to the system shown in Fig. 1.2 4

Fig 1.4 Physical Realization of PID Controller 5

Fig 1.5 Time domain control system performance parameters 8

Fig 1.6 System with an unstable oscillatory response 10

Fig 2.1 Quanser QUBE-Servo2 System 18

Fig 2.2 QUBE-Servo 2 DC motor and load 19

Fig 2.3 Completed QUBE-Servo 2 Model subsystem 20

Fig 2.4 Motor Speed and Motor voltage of the QUBE-Servo2

 and the model according to First principle modelling 21

Fig 2.5 Experimental set up for Quanser QUBE-Servo2 22

Fig 2.6 Motor Speed and Motor voltage of the QUBE-Servo 2

step response 23

Fig 2.7 Motor Speed and Motor voltage of the QUBE –Servo2

and the model according to Bump test modelling (Validation) 24

Fig 2.8 Block diagram of PV control 25

Fig 2.9 Motor Speed and Motor voltage of the QUBE –Servo2

and the model according to PD Control 27

Fig 3.1 Quanser SRV02 system 29

xi

Fig 3.2 SRV02 DC motor armature circuit and gear train 31

Fig 3.3 Experimental set up for Quanser SRV02 system 35

Fig 3.4 Motor Speed and Motor voltage of the SRV02

step response 36

Fig 3.5 Nominal value and Bump test Model comparison with

SRV02 response 37

Fig 3.6 Motor Speed and Motor voltage of the SRV02 and

 the identified model according to PD Control 39

Fig 4.1 Flow diagram illustrating the particle swarm

optimization algorithm 43

Fig 4.2 Illustration of velocity and position updates in PSO

Algorithm 46

Fig 4.3 Convergence Curve for QUBE-Servo2 47

Fig 4.4 Responses of Motor Speed of PD and PSO based controllers of the

QUBE-Servo2 identified model and its corresponding Motor

voltage 48

Fig 4.5 Responses of Motor Speed of PD and PSO based controllers of the

QUBE-Servo2 and its corresponding Motor voltage 49

Fig 4.6 Responses of Motor Speed of PD and PSO based controllers of the

Rotary servo base SRV02 identified model and its corresponding

Motor voltage 50

Fig 4.7 Responses of Motor Speed of PD and PSO based controllers of the

Rotary servo base SRV02 and its corresponding Motor voltage 51

Fig 5.1 Spiral flying path around close light source 54

Fig 5.2 Number of flame is decreased adaptively over the

course of iterations 57

xii

Fig 5.3 Responses of Motor Speed of PD and MFO based controllers of

the QUBE-Servo2 identified model and its corresponding Motor

voltage 60

Fig 5.4 Responses of Motor Speed of PD and MFO based controllers of

the QUBE-Servo2 and its corresponding Motor voltage 61

Fig 5.5 Responses of Motor Speed of PD and MFO based controllers of

the Rotary servo base SRV02 identified model and its

corresponding Motor voltage 62

Fig 5.6 Responses of Motor Speed of PD and MFO based controllers of

the Rotary servo base SRV02 and its corresponding

Motor voltage 63

Fig 5.7 Convergence curve for QUBE-Servo 2 64

Fig.6.1 Hierarchy of grey wolf (dominance decreases from

 top down) 69

Fig 6.2 Updating position of gray wolves in GWO 70

Fig 6.3 Responses of Motor Speed of PD and GWO based controllers of

the QUBE-Servo2 identified model and its corresponding Motor

voltage 75

Fig 6.4 Responses of Motor Speed of PD and GWO based controllers of

the QUBE-Servo2and its corresponding Motor voltage 76

Fig 6.5 Responses of Motor Speed of PD and GWO based controllers of

the Rotary servo base SRV02 identified model and its

corresponding Motor voltage 77

Fig 6.6 Responses of Motor Speed of PD and GWO based controllers of

the Rotary servo base SRV02 and its corresponding

Motor voltage 78

Fig 6.7 Convergence curve for QUBE-Servo 2 79

Fig 7.1 Antlion trap 82

https://en.wikipedia.org/wiki/gray_wolves

xiii

Fig 7.2 Responses of Motor Speed of PD and ALO based controllers of the

QUBE-Servo2 identified model and its corresponding Motor

voltage 87

Fig 7.3 Responses of Motor Speed of PD and ALO based controllers of

the QUBE-Servo2 and its corresponding Motor voltage 88

Fig 7.4 Responses of Motor Speed of PD and ALO based controllers of

the Rotary servo base SRV02 identified model and its

corresponding Motor voltage 89

Fig 7.5 Responses of Motor Speed of PD and ALO based controllers of

the Rotary servo base SRV02 and its corresponding

Motor voltage 90

Fig 7.6 Convergence curve for QUBE-Servo 2 91

Fig 8.1 Responses of PSO-PD vs MFO-PD vs GWO-PD vs ALO-PD

for the identified model of QUBE-Servo 2 95

Fig 8.2 Responses of PSO-PD vs MFO-PD vs GWO-PD vs ALO-PD

for the QUBE Servo 2 96

Fig 8.3 Responses of PSO-PD vs MFO-PD vs GWO-PD vs ALO-PD

for the identified model of Rotary Base servo SRV02 97

Fig 8.4 Responses of PSO-PD vs MFO-PD vs GWO-PD vs ALO-PD

of Rotary Base servo SRV02 99

Fig 8.5 Comparison of Convergence Curve for different algorithms 100

xiv

LIST OF TABLES

Sl. NO. Title Page No.

Table 2.1 QUBE-Servo 2 system parameters 19

Table 2.2 Performance table for PD Controller of QUBE-Servo2 and the

designed model 27

Table 3.1 Main SRV02 Specifications 30

Table 3.2 Performance table for PD Controller of SRV02 system and the

designed model 40

Table 4.1 Particle Swarm Algorithm Parameters 45

Table 4.2 Performance Table of Controllers of QUBE-Servo2 Model 48

Table 4.3 Performance Table of Controllers of QUBE-Servo2 49

Table 4.4 Performance Table of Controllers of Rotary servo base

SRV02 model 50

Table 4.5 Performance Table of Controllers of Rotary servo base

SRV02 51

Table 5.1 Moth Flame Algorithm Parameters 58

Table 5.2 Performance Table of Controllers of QUBE-Servo2 Model 60

Table 5.3 Performance Table of Controllers of QUBE Servo2 61

Table 5.4 Performance Table of Controllers of Rotary servo base

SRV02 model 62

Table 5.5 Performance Table of Controllers of Rotary servo base SRV02 63

Table 6.1 Grey Wolf Algorithm Parameters 72

Table 6.2 Performance Table of Controllers of QUBE-Servo2 Model 75

Table 6.3 Performance Table of Controllers of QUBE-Servo2 76

xv

Table 6.4 Performance Table of Controllers of Rotary servo base

SRV02 model 77

Table 6.5 Performance Table of Controllers of Rotary servo base

SRV02 78

Table 7.1 Ant Lion Algorithm Parameters 85

Table 7.2 Performance Table of Controllers of QUBE Servo2 Model 87

Table 7.3 Performance Table of Controllers of QUBE Servo2 88

Table 7.4 Performance Table of Controllers of Rotary servo base

SRV02 model 89

Table 7.5 Performance Table of Controllers of Rotary servo base SRV02 90

Table 8.1 Performance Comparison of QUBE Servo2 identified model 95

Table 8.2 Performance Comparison of QUBE Servo2 96

Table 8.3 Performance Comparison of Rotary Servo SRV02 identified

model 98

Table 8.4 Performance Comparison of Rotary Servo SRV02 99

1

Chapter 1

Introduction & Scope of the Thesis

1.1 Introduction

A control system can be thought of as any system where additional hardware is

added to regulate the behaviour of a dynamic system. Control systems can

either be open loop or closed loop. A closed loop system implies the use of

feedback in the system. We will see that using feedback allows us more

freedom to specify the desired output behaviour of the system. For continuously

modulated control, a feedback controller is used to automatically control a

process or operation. The control system compares the value or status of

the process variable (PV) being controlled with the desired value or set

point (SP), and applies the difference as a control signal to bring the process

variable output of the plant to the same value as the set point. Control

Engineering is concerned with techniques that are used to solve the following

six problems in the most efficient manner possible.

(a)The identification problem: to measure the variables and convert data for

analysis.

(b)The representation problem: to describe a system by an analytical form or

mathematical model

(c)The solution problem: to determine the above system model response.

(d)The stability problem: general qualitative analysis of the system.

(e)The Controller design problem: modification of an existing system or

develop a new one.

(f)The optimization problem: from a variety of design to choose the best.

In studying control systems, one must be able to model dynamic systems in

mathematical terms and analyze their dynamic characteristics. A mathematical

model of a dynamic system is defined as a set of equations that represents the

dynamics of the system accurately, or at least fairly well. The mathematical

model is not unique to a given system. A system may be represented in many

different ways and, therefore, may have many mathematical models, depending

on one’s perspective. The dynamics of many systems, whether they are

https://en.wikipedia.org/wiki/Feedback_controller
https://en.wikipedia.org/wiki/Process_variable
https://en.wikipedia.org/wiki/Setpoint_(control_system)
https://en.wikipedia.org/wiki/Setpoint_(control_system)

2

mechanical, electrical, thermal, economic, biological, and so on, may be

described in terms of differential equations. Such differential equations may be

obtained by using physical laws governing a particular system—for example,

Newton’s laws for mechanical systems and Kirchhoff’s laws for electrical

systems. We must always keep in mind that deriving reasonable mathematical

models is the most important part of the entire analysis of control systems [1].

1.2 Process Control and Basic Terminology

A collection of components that interact with one another and with their

environment is known as system. A control system is a collection of

components that is designed to drive a given system (plant) with a given input

to a desired output [1].

Fig 1.1: Process control block diagram with feedback loop

In block diagrams of SISO systems, a solid line represents a single scalar signal.

In MIMO systems, a single line may represent multiple signals. The circle in the

figure represents a summing junction, which combines its inputs by addition or

subtraction depending on the + and – signs next to each input.

The contents of the dashed box in Fig 1.1 are the control system components.

The controller inputs are the reference input (also called a set point) and the

plant output signal (measured by the sensor), which is used as feedback. The

controller output is the actuator signal that drives the plant.

A block in a diagram can represent something as simple as a constant value that

multiplies the block input, or as complex as a nonlinear system with unknown

mathematical representation.

Figure 1.2 is a block diagram of a simple linear feedback control system. Lower

case characters identify the signals in this system.

 r is the reference input, also called the set point.

 e is the error signal, computed by subtracting the sensor measurement from

the reference input.

 y is the system output, which is measured and used as the feedback signal.

Output

Control System

Feedback Signal

-

+ + Control

Algorithm
Actuator Plant

Sensor

Reference

Input

3

The blocks in the diagram represent linear system components. Each block can

represent dynamic behaviour with any degree of complexity as long as the

requirement of linearity is satisfied.

 Gc is the linear controller algorithm.

 Gp is the linear plant model (including actuator dynamics.)

 H is a linear model of the sensor, which can be modelled as a constant such as

1 if the sensor dynamics are negligible.

Fig 1.2: Linear feedback control system

The fundamental rule of block diagram algebra states that the output of a block

equals the block input multiplied by the block transfer function [2]. Applying

this rule twice results in Eq. 1.1. In words, Eq. 1.1 says the system output y is

the error signal e multiplied by the controller transfer function Gc, and then

multiplied again by the plant transfer function Gp.

y = (eGc)Gp (1.1)

Block diagram algebra obeys the usual rules of algebra. Multiplication and

addition are commutative, so the parentheses in Eq. 1.1 are unnecessary. The

error signal e is the output of a summing junction subtracting the sensor

measurement from the reference input r. The sensor measurement is the system

output y multiplied by the sensor transfer function H. This relationship appears

in Eq. 1.2.

e = r - yH (1.2)

Substituting Eq. 1.2 into Eq. 1.1 and rearranging algebraically results in Eq. 1.3.
𝑦

𝑟
 =

𝐺𝑐𝐺𝑝

1+𝐺𝑐𝐺𝑝𝐻
 (1.3)

Eq. 1.3 is a transfer function giving the ratio of the system output to its

reference input. This form of system model is suitable for use in numerous

control system analysis and design tasks.

4

Using the relation of Eq. 1.3, the entire system in Fig. 1.2 can be replaced by the

equivalent system shown in Fig. 1.3. Remember, these manipulations are only

valid when the components of the block diagram are all linear.

Fig 1.3: Equivalent system to the system shown in Fig. 1.2.

1.2.1 Process

Any equipment that serves the targeted physical or chemical operation of the

plant is termed as a process. Reactors, separators, exchangers, pressure vessels,

tanks, etc. are examples of a process. Typically these processes are connected in

a logical fashion and the output of one process becomes input to the other [3].

Any disturbance or malfunction of one process may affect other processes in the

downstream side (and upstream too, in case recycle streams are used). Process

variables are primarily pressure, temperature, flow rate, level, composition, etc.

From the process control perspective, it is crucial to study how the changes in

one process variable affect the other, so that an educated measure of control

action on one variable can be taken in order to maintain the other [4].

1.2.2 Measuring Instruments or Sensors

The success of any feedback control operation depends largely on accurate

measurement of process variables through appropriate sensors. There are a large

number of commercial sensors available in the market. They differ in their

measuring principle(s) and or their construction characteristics [4].

1.2.3 Controllers [4]

A controller is basically a mathematical function block that reads the error

between desired set point and the measured output and then computes the

corrective action for the manipulated input that would steer process towards the

desired set point. There are three basic types of feedback controllers which are

widely used in the industry.

• Proportional (P) controller

• Proportional Integral (PI) controller

• Proportional Integral Derivative (PID) controller

5

Fig 1.4: Physical Realization of PID Controller

Let us discuss each one separately.

1.2.3.1 Proportional Controllers

The actuating output of a P controller is proportional to the error between the set

point and process output. Higher the error, higher will be the control action. The

control law is given as:

 C(t) = Kc e(t) + Cs (1.4)

where Kc is called the gain of the controller and Cs is the bias signal. When error

signal is zero (i.e., the process output reaches its desired set point), the control

signal C(t) stabilizes at its bias value Cs. The deviation form of actuating signal

is

𝐶̅(t) = C(t) – Cs = Kc e(t) (1.5)

Hence the transfer function of the proportional controller is

 (1.6)

The proportional controller is also termed as “Gain” controller. Equivalent

representation of proportional gain is proportional band. It is the amount of

6

change in error that will cause the control action to go from full OFF to full ON.

The amount of change in error is calculated as a percentage of full-scale error,

PB (in %) =
100

𝐾𝑐

 (1.7)

e.g. consider a level controller acting on a tank where we measure the level

from bottom to top as 0 to 100%. A control valve on the outlet of the tank

maintains the level in the tank. The PB is defined as the range of level over

which the control valve will go from fully closed to fully open.

1.2.3.2 Proportional Integral Controllers

The actuating output of a PI controller is given as:

C(t) = Kc(e(t) +
1

𝜏
 ∫ 𝑒(𝑡)𝑑𝑡

𝑡

0
) + Cs (1.8)

where τ1 is the integral time constant (or the reset time) in minutes.

The PI controller not only actuates on the basis of current error, e(t) but it also

accounts for the history of all the past errors that has been encountered since the

control action has started. From Eq.1.8, the transfer function of the PI controller

is

Gc =
𝐶(𝑠)̅̅ ̅̅ ̅̅

𝑒(𝑠)
 = Kc (1 +

1

𝜏𝑠
)

(1.9)

In industrial lingo, the PI Controller is also termed as “Gain-Preset” controller.

At this point, it is worth explaining the significance of the term reset. Suppose

the error between desired set point and process output changes by a constant

step of magnitude e (t). The effect of integral term of Eqn. 1.8 after every τ

minutes is given as

Kc (
 1

 𝜏
∫ 𝑒(𝑡))

𝑡

0
= Kc (

 𝑒

 𝜏
∫ 𝑑𝑡

𝜏

0
) = Kc (

 𝑒

 𝜏
 τ) = Kc e (2.0)

In other words, the integral action repeats the response of the proportional

action every τ minutes and “resets” itself for an integral action. Sometimes the

controllers are calibrated in terms of reciprocal of reset time, 1/ τ (repeats per

minute). This is known as reset rate.

The reset term causes the control action changing as long as there exists a non-

zero error in the system. Often this error cannot be eliminated quickly and given

enough time, they produce larger values for integral terms. Such situation is

7

often observed when the system undergoes a large change in set point (say a

positive change) and the integral term accumulates a significant error during the

rise. This condition is termed as Integral Windup. The control action in turn

keeps on increasing until it reaches the control valve saturation (i.e. control

valve fully open or fully closed). Even if the error changes its sign (as the

process output overshoots the desired set point), this accumulated error has to

unwind completely before control action is reversed. Various measures can be

taken to address the issue of integral windup such as:

• Re-initializing the integral action to a desired value

• Increasing the set point in a suitable ramp (rather than a single step jump)

• Disabling the integral action until the process output enters the controllable

region

• Preventing the integral term from accumulating above or below pre-

determined bounds

1.2.3.3 Proportional Integral Differential Controllers

The actuating output of a PID controller is given as:

C(t) = Kc(e(t) +
1

𝜏
 ∫ 𝑒(𝑡)𝑑𝑡

𝑡

0
 + τD

𝑑𝑒(𝑡)

𝑑𝑡
) +Cs (2.1)

where τD is the derivative time constant (or the react time) in minutes. The PID

controller not only actuates on the basis of current and past errors but it also

anticipates the error in immediate future and applies an additional control action

which is proportional to the current rate of change of error. Hence the transfer

function of the PID controller is

Gc =
𝐶(𝑠)̅̅ ̅̅ ̅̅

𝑒(𝑠)
 = Kc (1 +

1

𝜏𝑠
 + τDs) (2.2)

The PID Controller is also termed as “Gain-Reset-Preact” controller.

The major drawback of a PID controller is that for a noisy response in a process,

the controller can erroneously actuate a high derivative control action.

8

1.3 Performance Specifications

One of the first steps in the control system development process is the definition

of a suitable set of system performance specifications. Performance

specifications guide the design process and provide the means for determining

when a controller design is satisfactory. Controller performance specifications

can be stated in both the time domain and in the frequency domain [5].

Time domain specifications usually relate to performance in response to a step

change in the reference input. An example of such a step input is

instantaneously changing the reference input from 0 to 1. Time domain

specifications include, but are not limited to, the following parameters:

 Rise time from 10% to 90% of the commanded value, tr.

 Time to peak magnitude, tp.

 Peak magnitude, Mp. This is often expressed as the peak percentage by which

the output signal overshoots the step input command.

 Settling time to within some fraction (such as 1%) of the step input command

value, ts.

Examples of these parameters appear in Fig. 1.5. This figure shows the response

of a hypothetical plant plus controller to a step input command with an

amplitude of one. The time axis zero location is the instant of application of the

step input.

Fig 1.5 Time Domain control system performance parameters

The step response in Fig. 1.5 represents a system with a fair amount of

overshoot (in terms of Mp) and oscillation before converging to the reference

9

input. Sometimes the step response has no overshoot at all. When no overshoot

occurs, the tp parameter becomes meaningless and Mp is zero.

Tracking error is the error in the output that remains after the input function has

been applied for a long time and all transients have died out. It is common to

specify the steady-state controller tracking error characteristics in response to

different commanded input functions such as steps, ramps, and parabolas.

Here are some example specifications of tracking error in response to different

input functions:

 Zero tracking error in response to a step input.

 Less than ‘X’ tracking error magnitude in response to a ramp input,

where X is some nonzero value.

In addition to the time domain specifications discussed above, performance

specifications can be specified in the frequency domain. The controller

reference input is usually a low frequency signal, while noise in the sensor

measurement used by the controller often contains high frequency components.

It is normally desirable for the control system to suppress the high frequency

components related to sensor noise while responding to changes in the reference

input. Performance specifications capturing these low and high frequency

requirements would look similar to these:

 For sinusoidal reference input signals with frequencies below a cut-off point,

the amplitude of the closed loop (plant plus controller) response must be

within X% of the commanded amplitude.

 For sinusoidal reference input signals with frequencies above a higher cut-off

point, the amplitude of the closed loop response must be reduced by at

least Y%.

In other words, the frequency domain performance requirements given above

say that the system response to expected changes in the reference input must be

acceptable while simultaneously attenuating the effects of noise in the sensor

measurement. Looked at in this way, the closed loop system exhibits the

characteristics of a low pass filter.

1.4 System Stability

Stability is a critical issue throughout the control system design process. A

stable controller produces appropriate responses to changes in the reference

input. If the system stops responding properly to changes in the reference input

and does something else instead, it has become unstable.

Fig. 1.6 shows an example of unstable system behavior. The initial response to

the step input overshoots the commanded value by a large amount. The

response to that overshoot is an even larger overshoot in the other direction [6].

10

This pattern continues, with increasing output amplitude over time. In a real

system, an unstable oscillation like this grows in amplitude until some

nonlinearity such as actuator saturation (or a system breakdown) limits the

response.

Fig 1.6: System with an unstable oscillatory response

In addition to achieving a bare minimum degree of stability, a control system

must possess a degree of robustness. A robust controller can tolerate limited

changes to the parameters of the plant and its operating environment while

continuing to provide satisfactory, stable performance. For example, an

automotive cruise control must maintain the desired vehicle speed by adjusting

the throttle position in response to changes in road grade (an environmental

change.) The cruise control must also perform properly whether or not the

vehicle is pulling a trailer (a change in system parameters).

Determining the allowable ranges of system and environmental parameter

changes is part of the controller specification and design process. To

demonstrate robustness, the designer must evaluate controller stability under

worst-case combinations of expected plant and environment parameter

variations [6]. For each combination of parameter values, a robust controller

must satisfy all of its performance requirements.

When working with linear models of plants and controllers it is possible to

precisely determine whether a particular plant and controller form a stable

system. If no mathematical model for the plant exists, stability can only be

evaluated by testing the plant and controller under a variety of operating

conditions.

11

1.5 Control System Testing

Testing is an integral part of the control system design process. Many of the

design methods rely on the use of a linear plant model. Creating a linear model

always involves approximation and simplification of the true plant behavior.

The implementation of a controller using an embedded processor introduces

nonlinear effects such as quantization. As a result, both the plant and the

controller contain nonlinear effects that are not accounted for in a linear control

system design.

The ideal way to demonstrate correct operation of the nonlinear plant and

controller over the full range of system behavior is by performing thorough

testing with an actual plant. This type of system-level testing normally occurs

late in the product development process when prototype hardware becomes

available. Problems found at this stage of the development cycle tend to be very

expensive to fix.

Because of this, it is highly desirable to perform thorough testing at a much

earlier stage of the development cycle [5]. Early testing enables discovery and

repair of problems when they are relatively easy and inexpensive to fix.

However, testing the controller early in the product development process may

not be easy if a prototype plant does not exist on which to perform tests.

System simulation provides a solution to this problem. A simulation containing

detailed models of the plant and controller is extremely valuable for performing

early-stage control system testing. This simulation should include all relevant

nonlinear effects present in the actual plant and controller implementations.

While the simulation model of the plant must necessarily be a simplified

approximation of the actual system, it should be a much more authentic

representation than the linear plant model used in the controller design.

When using a simulation in a product development process, it is imperative to

perform thorough simulation verification and validation [6].

 Verification demonstrates the simulation has been implemented correctly

according to its design specifications.

 Validation demonstrates that the simulation accurately represents the

behaviour of the simulated system and its environment for the intended

purposes of the simulation.

The verification step is relevant for any software development process, and

simply shows that the software performs as its designers intended. In simulation

work, verification can occur in the early stages of a product development

project. It is possible to perform verification for a simulation of a system that

does not yet exist. This consists of making sure that the models used in the

simulation are correctly implemented and produce the expected results.

12

Verification allows the construction and application of a simulation in the

earliest phases of a product development project.

Validation is a demonstration that the simulation models the embedded system

and the real world operational environment with acceptable accuracy. A

standard approach for validation is to use the results of system operational tests

for comparison against simulation results. This involves running the simulation

in a scenario that is identical to a test that was performed by the actual system in

a real world environment. The results of the two tests are compared and the

differences are analyzed to determine if they represent significant deviations

between the simulation and the actual system.

A drawback of this approach to validation is that it cannot happen until a

complete system prototype is available. Even when a prototype does not exist, it

may be possible to perform validation at an earlier project phase at the

component and subsystem level. You can perform tests on those system

elements in a laboratory environment and duplicate the tests with the

simulation. Comparing the results of the two tests provides confidence in the

validity of the component or subsystem model.

1.6 Computer-Aided Control System Design

The classical control system analysis and design methods were originally

developed and have been implemented for years as techniques that rely on

hand-drawn sketches. While this approach leads to a level of design intuition, it

takes significant time and practice to develop the necessary skills.

Since it intends to rapidly apply a variety of control system design techniques,

automated approaches will be emphasized rather than manual methods [5].

Several software packages are commercially available that perform control

system analysis and design functions as well as complete nonlinear system

simulation.

 MATLAB Control System Toolbox. This is a collection of algorithms that

implement common control system analysis, design and modelling

techniques. It covers classical design techniques as well as modern state-space

methods. This is an add-on to the MATLAB product, which integrates

mathematical computing, visualization, and a programming language to

enable the development and application of sophisticated algorithms to large

sets of data.

Here we have used MATLAB, the Control System Toolbox, and other MATLAB

add-on products to demonstrate a variety of control system modelling, design,

and simulation techniques. These tools provide efficient, numerically robust

algorithms to solve a variety of control system engineering problems. The

13

MATLAB environment also provides powerful graphics capabilities for

displaying the results of control system analysis and simulation procedures.

1.7 Method Based on Performance Criteria

It is based on minimizing an appropriate performance criterion, either for

optimum regularity or for optimum servo performance. Based on the minimum

ITAE value, settings for PID Controllers are derived. These settings are expected

to provide desirable performance for time delay to time constant ratio from 0.1 to

1. In 1993 Zhuang and Atherton suggested PI and PID settings based on

minimization of ISE, ISTE and ITAE [7]. For the process model, repeated

optimization is carried out for different values of time delay to time constant

ratio.

The ISE criterion penalises large errors, while the ITAE criterion penalises error

that persists for longer periods of time. In general, the ITAE criterion is the

preferred criterion in practise, because it usually results in the most conservative

controller settings [7]. By contrast, the ISE criterion provides the most aggressive

setting, while the IAE criterion tends to produce controller settings that are

between those for the ITAE and ISE criteria.

In all the above tuning rules, the optimum controller settings are different for set

point changes in comparison to those for step load disturbances. In general, the

controller settings for set point changes are more conservative. The performance

criteria for the controller chosen here is ITAE.

1.8 Literature Survey

Feedback control systems measure attributes of the system being controlled and

use that information to determine the control actuator signal [7]. Feedback

control provides superior performance compared to open loop control when

environmental or system parameters change. The system to be controlled is

called a plant.

The two fundamental steps in control system design are:

1. Specify the controller structure.

2. Determine the value of the design parameters within that structure.

The control system design process usually involves the iterative application of

these two steps. In the first step, a candidate controller structure is selected. In

the second step, a design method is used to determine suitable parameter values

for that structure. If the resulting system performance is inadequate, the cycle is

repeated with a new, usually more complex and controller structure.

A block diagram of a plant and controller graphically represents the structure of

a controller design and its interaction with the plant. It is possible to perform

14

algebraic operations on the components of a block diagram to reduce the

diagram to a simpler form.

Performance specifications guide the design process and provide the means for

determining when controller performance is satisfactory. Controller

performance specifications can be stated in both the time domain and the

frequency domain. The PID controller is the most widely used control algorithm

in the process industry, and that improvements in tuning PID controllers will

have a significant practical impact. The objective of the study in [8] is to find a

simple model based tuning rules that give insight into how the tuning depends

on the process parameters based on very simple process information .These

rules may then be used to assist in retuning the controller if, for example, the

production rate is changed. Another related objective is that the rules should be

so simple that they can be memorized. There has been previous work along

these lines; most noteworthy the early paper by Ziegler and Nichols (1942), the

IMC PID-tuning paper by Rivera, Morari and Skogestad (1986), and the book

by Smith and Corripio (1985) [8]. The Ziegler-Nichols tunings result in a very

good disturbance response for integrating processes [9].On the other hand, the

IMC-tunings of Rivera et al. (1986) are known to result in poor disturbance

response for integrating processes (e.g., Chien and Fruehauf (1990), Horn et al.

(1996), but generally give very good responses for set point changes [9].

Derivative action is primarily recommended for a process with dominant second

order dynamics. The derivative time is selected so as to cancel the second-

largest process time constant.

1.9 Scope of the Thesis

Our literature survey reveals that a lot of work has been done towards

improving the performance of PD Controllers with increased robustness. In a

broad sense, such development works on the controller tuning are mostly

dependent on the process model. However, for a practical process it is very

difficult to find its exact model, as a result, most of the theoretical developments

have limitation from practical implementation point of view.

Along with the mathematical complexity in finding out the appropriate process

model, there is always a certain amount of uncertainty in model parameters.

Model parameters are also changing with time due to natural phenomena like

aging, scaling, erosion etc. So obtaining the desired performance from PD

controller is not the only goal. Additionally it has to be robust enough to

withstand the model uncertainties as well as process nonlinearities. At the same

time, it is found that an optimally tuned controller is more prone to fragile. So

depending on the area of application, there should be a compromise between

optimality and robustness of selected parameters.

15

Soft computing tools like fuzzy logics, neural networks and different

optimization techniques are also used by the researchers to obtain optimal

settings of PD parameters. In such cases the engineers have tried to incorporate

the human intelligence in the controller behaviour. Certain improvements are

found in the controller performances on making them more intelligent but at the

cost of higher computational complexity [10]. A controller designed to reduce

the initial overshoot during set-point change usually fails to offer good load

rejection behaviour. On the other hand, a controller with better load regulation

cannot restrict the overshoot in the set point response. Although in some cases

improvements in the process behaviour are observed during both set-point and

load disturbance responses.

 In our experimental purpose initially we have identified the process model by

using Bump test method. Then the classical PD Controller has been designed

for identified model satisfying some performance indices (here Percentage

overshoot method). Then the optimal PD Controllers have been developed using

different optimization techniques for the same identified process model. Then

we have studied the performances of PD controller and optimized controllers

through simulation experiments with identified model as well as real time

experiments with actual process. For the optimization purpose we have chosen

ITAE as objective functions, because they provide the overall improved

performance, ITAE indicates improved set point and good load rejection

respectively.

In Chapter-2, we have presented the modelling and validation of the QUBE

Servo 2 made by Quanser , Canada [11] and also calculated the PD parameters

by Percentage overshoot method. The modelling of the Qube Servo 2 motor has

been done by Bump test modelling method and the validation has been

performed. According to the validation the first order process model has been

derived on which the tuning of the PD parameters has been done.

In chapter-3, we have presented the same thing as above for another Rotary

Servo base unit (SRV02), made by Quanser, Canada [11].

In Chapter-4, the detailed description is presented for the Particle Swarm

Optimization (PSO) based PD controllers with respect to ITAE. We compared

the performance with already tuned conventional PD controllers of the

identified model. Then the performance is tested with two plant models of

QUBE Servo2 and SRV02 through simulation experiments with identified

models as well as real time experiments with actual process.

In Chapter-5, we have presented the detailed description of Moth Flame

optimization (MFO) based PD Controllers with respect to the objective

16

function, ITAE. Initially we have tuned the conventional PD controllers and

compared it with algorithm tuned PD Controllers. These controllers are then

tested with two plant models through simulation experiments with identified

models as well as real time experiments with actual process.

In Chapter-6, the detailed description is presented for the Grey Wolf

Optimization (GWO) based PD controllers with respect to ITAE. Initially we

have found the conventional PD controllers manually based on percentage

overshoot method and compared it with GWO algorithm based PD Controllers.

Then the performance is tested with two plant models through simulation

experiments with identified models as well as real time experiments with actual

process.

In Chapter-7, we have presented the Ant Lion Optimization (ALO) based PD

Controllers with respect to the objective function, ITAE. Initially we have tuned

the conventional PD controllers and compared with ALO algorithm based PD

controllers. Then the performance is tested with two models through simulation

experiments with identified models as well as real time experiments with actual

process.

In Chapter-8, all the outputs of PD controllers for different set of environment

are compared. An effort to determine the best algorithm for the purpose of

tuning controllers has been made in this chapter.

In Chapter-9, first we have provided a brief summary of the present study. Then

we have discussed the implementation issues of the four optimization

techniques, Particle Swarm Optimization, Moth Flame optimization, Grey Wolf

Optimization, Ant Lion Algorithm while designing optimal logic controllers in

the last chapters. We have also tried to learn the future scopes for further

improvement.

17

References

[1] Modern Control Engineering 5th Edition Ogata.

[2] Smith, C.A. and A.B. Corripio (1985). Principles and Practice of

Automatic Process Control. John Wiley & Sons.

[3] Cohen, G.H. and G.A. Coon (1953). Theoretical consideration of

retarded control. Trans. ASME 75, 827– 834.

[4] Seborg, D.E., T.F. Edgar and D.A. Mellichamp (1989). Process

Dynamics and Control. John Wiley & Sons Shinskey, F.G. (1998).

Personal communication.

[5] Ziegler, J.G. and N.B. Nichols (1942). Optimum settings for

automatic controllers. Trans. of the A.S.M.E. 64, 759–768.

[6] Astrom, K.J., T. Hagglund, C.C. Hang and W.K Ho (1993).

Automatic tuning and adaptation for PID controllers - A survey. Control

Eng. Practice 1(4), 699–714.

[7] Holm, O. and A. Butler (1998). Robustness and performance

analysis of PI and PID controller tunings. Technical report. 4th year

project, Department of Chemical Engineering. Norwegian University of

Science and Technology, Trondheim.

[8] Ho, W.K., K.W. Lim and W. Xu (1998). Optimal gain and phase

margin tuning for PID controllers. Automatica 34(8), 1009–1014. See

Automatica.

[9] Tyreus, B.D. and W.L. Luyben (1992). Tuning PI controllers for

integrator/dead time processes. Ind. Eng. Chem. Res. pp. 2628–2631.

[10] Horn, I.G., J.R. Arulandu, J. Gombas, J.G. VanAntwerp and R.D.

Braatz (1996). Improved filter design in internal model control. Ind. Eng.

Chem. Res. 35(10), 3437–3441.

[11] Quanser Operating Manual; Documentation for the USER

MANUAL Quanser, Ontario, Canada, 2016.

18

 Chapter 2

Modelling, validation and Position control of Quanser QUBE-Servo 2

2.1 Introduction

Direct-current motors are used in a variety of applications. As discussed in the

QUBE-Servo 2 User Manual [1], the QUBE-Servo 2 has a brushed DC motor

that is connected to a PWM amplifier. Encoders are used here to measure

angular position. There are many types of encoders but we have used here in

this experiment the rotary incremental optical encoder, the angle they measure

depends on the last position and when it was last powered. The Quanser QUBE-

Servo 2 is a direct-drive rotary servo system as shown in Fig. 2.1

The resolution of the encoder:- In order to measure the total counts per

revolution, we moved the disc to the 0 degree position marked on the QUBE-

Servo 2 and the controller is started and the disc rotates one full rotation. The

encoder count reads 2048, which is in-line with the specifications given in the

QUBE-Servo 2 User Manual [1]. The encoder resolution is 512 lines per

revolution, but goes up to 2048 in quadrature mode (4 x 512 = 2048). To get a

measurement in degrees we need a gain of 360 ◦/2048 cnts = 0.1758 ◦/cnts.

Fig 2.1: Quanser QUBE-Servo2 System

19

2.2 First Principle Modelling

The motor armature circuit schematic of QUBE-Servo 2 is shown in Fig 2.2 and

the electrical and mechanical parameters are given in Table 2.1. The DC motor

shaft is connected to the load hub. The hub is a metal disk used to mount the

disk or rotary pendulum and has a moment of inertia of Jh. A disk load is

attached to the output shaft with a moment of inertia of Jd.

Fig 2.2: QUBE-Servo 2 DC motor and load

The back-emf (electromotive) voltage eb(t) depends on the speed of the motor

shaft, wm, and the back-emf constant of the motor, km. It opposes the current

flow. The back emf voltage is given by: eb(t) = km ωm(t) (2.21)

Symbol Description Value

DC Motor

Rm Terminal

resistance

8.4Ω

Kt Torque Constant 0.042N.m/A

Km Motor back-emf

constant

0.042 V/(rad/s)

Jm Rotor inertia 4.0 x106 kg:m2

Jh Load hub inertia 0.6x106 kg.m2

rh Load hub mass 0.0111 m

mh Load hub mass 0.0106 kg

Lm Rotor

inductance

1.16 mH

Load Disk

Md Mass of disk

load

0.053 kg

rd Radius of disk

load

0.0248 m

Table 2.1: QUBE-Servo 2 system parameters

20

Using Kirchhoff’s Voltage Law, we can write the following equation:

𝑣𝑚(𝑡) − 𝑅𝑚 𝑖𝑚 (𝑡) − 𝐿𝑚
𝜕

𝜕𝑡
𝑖𝑚 (𝑡) − 𝑘𝑚𝜔𝑚 (𝑡) = 0 (2.2.2)

Since the motor inductance Lm is much less than its resistance, it can be ignored.

Then, the equation becomes 𝑣m (𝑡) - 𝑅𝑚 𝑖𝑚 (𝑡) - 𝑘𝑚𝜔𝑚 (𝑡) =0 (2.2.3)

Solving for im(t), the motor current can be found as:

 im(t) =
𝑣𝑚(𝑡) − 𝑘𝑚𝜔𝑚(𝑡)

𝑅𝑚
 (2.2.4)

The motor shaft equation is expressed as Jeq ωm(t) = 𝜏𝑚(𝑡) (2.2.5)

where Jeq is total moment of inertia acting on the motor shaft and τm is the

applied torque from the DC motor. Based on the current applied, the torque is

 𝜏𝑚(𝑡) = 𝐾𝑚𝑖𝑚(𝑡) (2.2.6)

The moment of inertia of a disk about its pivot, with mass m and radius r, is

 J = (1/2) m r2 (2.2.7)

Based on the models, we have designed a model that applies a 1 - 3 V, 0.4 Hz

square wave to the motor and reads the servo velocity using the encoder.

Fig 2.3: Completed QUBE-Servo 2 Model subsystem.

Based on the parameters given in the Table 2.1, we can calculate the total

moment of inertia acting on the motor shaft which is the sum of the motor

armature or rotor inertia Jm the hub inertia Jh and the disk inertia Jd. The

equivalent moment of inertia is therefore

Jeq = Jm + Jh + Jd (2.2.8)

The moment of inertia of the hub and disk load are: Jh =(1/2) mh rh
2

And Jd =(1/2)md rd
2 .

Therefore, Jeq = 2.09 x 10-5

21

The QUARC controller and the model generated as in Fig 2.3 is run and

obtained the response as in Fig 2.4.

Fig 2.4: Motor Speed and Motor voltage of the QUBE-Servo2 and the model

according to First principle modelling

2.3 Bump test Modelling

The bump test is a simple test based on the step response of a stable system. A

step input is given to the system and its response is recorded. Considering a first

order system given by the following transfer function:
𝑌(𝑠)

𝑈(𝑠)
 =

 𝐾

𝜏𝑠+1

The step input begins at time t0. The input signal has a minimum value of umin

and a maximum value of umax. The resulting output signal is initially at y0. Once

the step is applied, the output tries to follow it and eventually settles at its

steady-state value yss. From the output and input signals, the steady-state gain is

K =
Δ𝑦

Δ𝑢
 (2.3.1)

22

where Δy = yss - y0 and Δu = umax - umin. The time constant of a system τ is

defined as the time it takes the system to respond to the application of a step

input to reach 63.2% of its steady-state value, i.e.

t1 = t0 + τ (2.3.2)

where y(t1) = 0.632Δy + y0

Then, we can read the time t1 that corresponds to y (t1) from the response data.

From Eq. (2.3.2), the model time constant can be found as:

 τ = t1- t0

Fig 2.5: Experimental set up for Quanser QUBE-Servo2

Going back to the QUBE-Servo 2 system, the s-domain representation of a step

input voltage with a time delay t0 is given by

Vm(s) =
𝐴𝑣

𝑠
 𝑒−𝑠𝑡0 (2.3.3)

where Av is the amplitude of the step and t0 is the step time (i.e. the delay).

The voltage-to-speed transfer function is

 (2.3.4)

where K is the model steady-state gain, Τ is the model time constant,

Ωm(s) = L[ωm(t)] is the load gear rate, and

Vm(s) = L[Vm(t)] is the applied motor voltage.

If we substitute input in Eq. 2.3.3 into the system transfer function in Eq.(2.3.4),

we get:

Ωm(s) =
 𝐾

(𝜏𝑠+1)

𝐴𝑣

𝑠
 𝑒−𝑠𝑡0 (2.3.5)

23

We can then find the QUBE-Servo 2 motor speed step response in the time

domain ωm(t) by taking inverse Laplace of this equation

ωm(t) = K Av (1 - 𝑒−(𝑡−𝑡0)/𝜏) + ωm(t0) (2.3.6)

noting the initial conditions ωm(0-) = ωm(t0).

Based on the models designed in QUBE-Servo 2, we desire to design a model

that applies a step of 2 V to the motor for 2.5 seconds and reads the servo

velocity using the encoder.

Fig 2.6: Motor Speed and Motor voltage of the QUBE-Servo 2 step response.

From Fig 2.6, the measured initial and steady-state load shaft speeds are

ωm(t0) = 0 rad/s and

ωmss = 45.6132 rad/s and

the input voltage amplitude is Av = 2.0 V

Using the above Eq. 2.3.1 with the collected data from the Fig 2.6, the resulting

steady-state gain is: K = 22.7 rad/(Vs)

To find time of the first decay t1 = t0 + τ , the corresponding speed is measured.

From Figure the time at the shaft speed

ωm(t0 + τ) = 28.33 rad/s is t1 = 1.158 s

The step start time is t0 = 1.0 s

Given the step start time t0 and decay time t1 the time constant is

τ = 0.158 s

Therefore, voltage-to-speed transfer function of the identified model becomes

𝛺𝑚(𝑠)

𝑉𝑚(𝑠)
 =

22.7

0.158𝑠+1
 (2.3.7)

24

And the voltage-to-position transfer function is

 P(s) =
𝜃𝑚(𝑠)

𝑉𝑚(𝑠)
 =

22.7

𝑠(0.158𝑠+1)
 (2.3.8)

To check if the derived model parameters K and τ are correct, the Simulink

diagram has been modified to include a Transfer Function block with the first-

order model.

Fig 2.7:Motor Speed and Motor voltage of the QUBE-Servo2 and the model

according to Bump test modelling (Validation)

The actual and model responses in Fig 2.7 match very closely. Given the model

represents the actual system accurately, the parameters derived are correct.

2.4 Position Control

The QUBE-Servo 2 voltage-to-position transfer function is

P(s) =
𝜃𝑚(𝑠)

𝑉𝑚(𝑠)
=

𝐾

𝑠(𝜏𝑠+1)
 (2.4.1)

where K = 22.7 rad/(V-s) is the model steady-state gain, τ = 0.158 s is the model

time constant, 𝜃m(s) is the motor or disk position, and Vm(s) is the applied motor

voltage. The value of K and τ has been found by the Bumptest modelling

experiment mentioned in Section 2.3.

Proportional-Derivative (PD) controller is a distinct class of controller having a

wide acceptance for industrial position control applications. Mostly, in

25

industrial automation processes where robots and manipulators are extensively

used, any oscillation in arm movement is highly undesirable [1, 2]. At the same

time, good responsiveness in its behaviour during achieving a new position and

simultaneously improved load rejection is expected. To satisfy these

requirements appropriate amount of damping (D action) should be present in

control action and at the same time suitable amount of sensitivity (P action)

should also be present in the controller behaviour [3]. So, to get the best result

from servo motor based position control applications, integral component (I

action) of PID controller is usually kept off as it provides oscillatory responses

with large overshoots or undershoots for such integrating processes. A variation

of the classical PD control will be used: the proportional-velocity control as

illustrated in Fig 2.8. Here, only the negative velocity is fed back (i.e. not the

velocity of the error) and a low-pass filter is used along with the derivative term

to suppress measurement noise. The combination of a first order low-pass filter

and the derivative term results in a high-pass filter H(s) which will be used

instead of a direct derivative.

Fig 2.8: Block diagram of PV control

The proportional-velocity (PV) control has the following structure

u= (kp (r(t) – y(t)) – kd �̇�(t)) (2.4.2)

where kp is the proportional gain, kd is the derivative (velocity) gain, r = 𝜃d(t) is

the set point or reference motor /load angle, y = 𝜃m(t) is the measured load shaft

angle, and u = Vm(t) is the control input (applied motor voltage).

The closed-loop transfer function of the QUBE-Servo 2 is denoted
𝑌(𝑠)

𝑅(𝑠)
 =

𝜃𝑚(𝑠)

𝜃𝑑(𝑠)

 Assume all initial conditions are zero, i.e. 𝜃m(0-) = 0 and �̇�m(0-) = 0, taking the

Laplace transform of Eq.(2.4.2) yields

U(s) = (𝑘𝑝 (𝑅(𝑠) − 𝑌(𝑠)) − 𝑘𝑑𝑠 𝑌(𝑠)) (2.4.3)

26

which can be substituted into Eq. (2.4.1) to result in

Y(s) =
𝐾(𝑘𝑝 (𝑅(𝑠)− 𝑌(𝑠))−𝑘𝑑𝑠 𝑌(𝑠))

𝑠(𝜏𝑠+1)

Solving for Y (s)/R(s), we obtain the closed-loop expression

𝑌(𝑠)

𝑅(𝑠)
 =

𝐾𝑘𝑝

τ𝑠2 + (1+𝐾 𝑘𝑑)𝑠 + 𝐾𝑘𝑝
 (2.4.4)

This is a second-order transfer function. By comparing the standard second-

order transfer function
𝑌(𝑠)

𝑅(𝑠)
 =

𝜔𝑛
2

𝑠2+2ξωn+𝜔𝑛
2
 (2.4.5)

The characteristic equation of the QUBE-Servo2 closed-loop transfer function

in Eq. (2.4.4) is: τ𝑠2 + (1 + 𝐾 𝑘𝑑)𝑠 + 𝐾𝑘𝑝 = 0 and can be re-structured into the

form 𝑠2 +
(1+𝐾 𝑘𝑑)𝑠

𝜏
 +

𝐾𝑘𝑝

τ
 = 0

Equating this with the standard second order system Eq. (2.4.5) gives the

expressions
𝐾𝑘𝑝

τ
 = 𝜔𝑛

2 and
(1+𝐾 𝑘𝑑)𝑠

𝜏
 = 2ξωn

Solving for kp and kd to obtain the control gain equations

kp =
𝜔𝑛

2

𝜏
 (2.4.6)

and kd =
2ξωn− 1

𝐾
 (2.4.7)

For the response to have a peak time of 0.15 s and a percentage overshoot of

5 %, the natural frequency and damping ratio needed are

ωn = 28.9321 rad/s and ξ = 0.6903.

Using the model parameters given above and the desired natural frequency with

Eq.(2.4.6) generates the proportional control gain

kp = 5.8263 V/rad

Similarly, the derivative control gain is obtained by substituting the model

parameters given above with the damping ratio specification into Eq.(2.4.7)

kd = 0.2340 V/(rad/s)

When these gains are used with the PD controller, the position response of the

load gear on a QUBE-Servo 2 with a disk load should satisfy the specifications.

The motor voltage and the position response of both the QUBE-Servo 2 and the

designed model has been plotted in the following Fig 2.9

27

Fig 2.9: Motor Speed and Motor voltage of the QUBE-Servo2 and the model

according to PD Control

 QUBE-Servo2 Model

Rise Time (ms) 70.762 64.010

%Overshoot -0.122 0.117

Peak Time(sec) 0.178 0.136

ITAE 0.01074 0.01135

IAE 0.06353 0.06633

ISE 0.03474 0.03891

Table 2.2: Performance table for PD Controller of QUBE-Servo2 and the

designed model

The response satisfies the overshoot since the magnitude of the measured

percent overshoot is less than 5 %. However, the measured peak time in Table

28

2.2 surpasses 0.15 s in the case of QUBE-Servo2, the response is slower. The

QUBE-Servo 2 model response from the transfer function is ideal, and thus, has

no steady state error. The QUBE-Servo 2 response is expected to have a small

steady state error due to friction, which has not been modelled. To improve the

response time (i.e. decrease the peak time), we can increase the proportional

gain. Thus in order to get tuned result we have implemented various

optimization technique. For the optimization purpose we have chosen ITAE as

objective functions because they provide the overall improved performance,

ITAE indicates improved set point response and good load rejection

respectively.

Refernces:

[1] Documentation for the USER MANUAL QUBE-Servo 2. Quanser,

Ontario, Canada, 2016.

[2] C. Aguilar-Ibáňez and Sira-Ramirez, “PD control for active vibration

damping in an under actuated nonlinear system,” Asian Journal of Control, vol.

4, no. 4, pp. 502–588, 2002.

[3] K. R. Atia and M. P. Cartmell, “A new methodology for designing PD

controllers,” Robotica, vol. 14, no. 3, pp. 267–273, 2001.

[4] K. Ogata, Modern Control Engineering. New Jersey: Prentice-Hall,

2002.

29

Chapter 3

Modelling, validation and position control of Quanser SRV02 Rotary Servo

Base unit

3.1 Introduction

The Quanser SRV02 rotary servo plant, pictured in Fig 3.1, consists of a DC

motor that is enclosed in a solid aluminium frame and equipped with a planetary

gearbox. The motor has its own internal gearbox that drives external gears. The

SRV02 is equipped with three sensors: potentiometer, encoder, and tachometer.

The potentiometer and encoder sensors measure the angular position of the load

gear and the tachometer can be used to measure its velocity.

Fig 3.1: Quanser SRV02 system

30

Table 3.1 lists and characterizes the main parameters associated with the

SRV02. Some of these are used in the mathematical model.

Symbol Description Value

Vnom Motor nominal input voltage 6.0 V

Rm Motor armature resistance 2.6 Ω

Lm Motor armature inductance 0.18 mH

kt Motor current-torque constant 7.68 x 10-3 N-

m/A

km Motor back-emf constant 7.68x10-3

V/(rad/s)

Kg High-gear total gear ratio 70

 High-gear total gear ratio 14

ηm Motor efficiency 0.69

ηg Gearbox efficiency 0.90

Jm,rotor Rotor moment of inertia 3.90 x10-7 kg-m2

Jtach Tachometer moment of inertia 7.06 x10-8 kg-m2

Jeq High-gear equivalent moment of inertia without

external load

2.087 x10-3 kg-

m2

 Low-gear equivalent moment of inertia without

external load

9.785 x10-5 kg-

m2

Beq High-gear Equivalent viscous damping

coefficient

0.015 N-

m/(rad/s)

mb Mass of bar load 0.038 kg

Lb Length of bar load 0.1525 m

md Mass of disc load 0.04 kg

rd Radius of disc load 0.05 m

mmax Maximum load mass 5 kg

fmax Maximum input voltage frequency 50 Hz

Imax Maximum input current 1 A

wmax Maximum motor speed 628.3 rad/s

Table 3.1: Main SRV02 Specifications

3.2 First Principle Modeling

3.2.1 Electrical Equations

The DC motor armature circuit schematic and gear train is illustrated in Fig 3.2.

As specified Rm is the motor resistance, Lm is the inductance, and km is the back-

emf constant.

31

Fig 3.2: SRV02 DC motor armature circuit and gear train

The back-emf (electromotive) voltage eb(t) depends on the speed of the motor

shaft, ωm(t), and the back-emf constant of the motor, km. It opposes the current

flow. The back emf voltage is given by: eb(t) = km ωm(t) (3.2.1)

Using Kirchhoff’s Voltage Law, we can write the following equation:

 𝑣𝑚(𝑡) − 𝑅𝑚 𝑖𝑚 (𝑡) − 𝐿𝑚
𝜕

𝜕𝑡
𝑖𝑚 (𝑡) − 𝑘𝑚𝜔𝑚 (𝑡) = 0 (3.2.2)

Since the motor inductance Lm is much less than its resistance, it can be ignored.

Then, the equation becomes 𝑣m (𝑡) - 𝑅𝑚 𝑖𝑚 (𝑡) - 𝑘𝑚𝜔𝑚 (𝑡) =0 (3.2.3)

Solving for Im(t), the motor current can be found as:

 im(t) =
𝑣𝑚(𝑡) − 𝑘𝑚𝜔𝑚(𝑡)

𝑅𝑚
 (3.2.4)

3.2.2 Mechanical Equations

The equation of motion describing the speed of the load shaft, ωl, with respect

to the applied motor torque, 𝜏 m, is developed. Since the SRV02 is a one degree-

of-freedom rotary system, Newton's Second Law of Motion can be written as:

J .α = 𝜏

where J is the moment of inertia of the body (about its center of mass), α is the

angular acceleration of the system, and 𝜏 is the sum of the torques being applied

to the body. As illustrated in Fig 3.2, the SRV02 gear train along with the

viscous friction acting on the motor shaft, Bm, and the load shaft Bl are

considered. The load equation of motion is

 Jl
𝜕

𝜕𝑡
𝜔𝑙(𝑡) + Bl ωl (t) = τl (t) (3.2.5)

where Jl is the moment of inertia of the load and ωl is the total torque applied on

the load. The load inertia includes the inertia from the gear train and from any

32

external loads attached, e.g. disc or bar. The motor shaft equation is expressed

as: Jm
𝜕

𝜕𝑡
𝜔𝑚(𝑡) + Bm ωm(t) + τml (t) = τm(t) (3.2.6)

where Jm is the motor shaft moment of inertia and 𝜏𝑚𝑙 is the resulting torque

acting on the motor shaft from the load torque. The torque at the load shaft from

an applied motor torque can be written as:

 𝜏𝑙(t) = ηgKg 𝜏𝑚𝑙(t) (3.2.7)
where Kg is the gear ratio and ηg is the gearbox efficiency. The planetary

gearbox that is directly mounted on the SRV02 motor is represented by the N1

and N2 gears in Fig 3.1 and has a gear ratio of

Kgi = N2/N1 (3.2.8)
This is the internal gear box ratio. The motor gear N3 and the load gear N4 are

directly meshed together and are visible from the outside. These gears comprise

the external gear box which has an associated gear ratio of

Kge = N4/N3 (3.2.9)
The gear ratio of the SRV02 gear train is then given by:

Kg = KgeKgi (3.2.10)
Thus, the torque seen at the motor shaft through the gears can be expressed as:

τml (t) =
𝜏𝑙(𝑡)

𝜂𝑔𝐾𝑔
 (3.2.11)

Intuitively, the motor shaft must rotate Kg times for the output shaft to rotate one

revolution: θm (t) = Kg θl (t) (3.2.12)

We can find the relationship between the angular speed of the motor shaft, ωm,

and the angular speed of the load shaft, ωl by taking the time derivative:

ωm(t) = Kgωl(t) (3.2.13)
The differential equation that describes the motion of the load shaft with respect

to an applied motor torque is as follows:

JmKg
𝜕

𝜕𝑡
𝜔𝑙 (t) + Bm Kg 𝜔𝑙 (t) + Jl

𝜕

 𝜕𝑡
𝜔𝑙 (𝑡)+𝐵𝑙 𝐾𝑔 𝜔𝑙 (𝑡)

𝜂𝑔𝐾𝑔
 = τm (t) (3.2.14)

Collecting the coefficients in terms of the load shaft velocity and acceleration

gives

 (𝜂𝑔𝐾𝑔
2𝐽𝑀 + 𝐽𝑙)

𝜕

𝜕𝑡
𝜔𝑙(𝑡) + (𝜂𝑔𝐾𝑔

2𝐵𝑚 + 𝐵𝑙)𝜔𝑙(𝑡) = 𝜂𝑔𝐾𝑔𝜔𝑚(𝑡) (3.2.15)

Defining the following terms:

 𝐽𝑒𝑞 = 𝜂𝑔𝐾𝑔
2𝐽𝑚 + 𝐽𝑙 (3.2.16)

 𝐵𝑒𝑞 = 𝜂𝑔𝐾𝑔
2𝐵𝑚 + 𝐵𝑙 (3.2.17)

simplifies the equation as:

 𝐽𝑒𝑞
𝜕

𝜕𝑡
𝜔𝑙(𝑡) + 𝐵𝑒𝑞𝜔𝑙(𝑡) = 𝜂𝑔𝐾𝑔τm (t) (3.2.18)

33

3.2.3 Combining the Electrical and Mechanical Equations

In this section the electrical equation derived and the mechanical equation are

brought together to get an expression that represents the load shaft speed in

terms of the applied motor voltage.

The motor torque is proportional to the voltage applied and is described as

𝛵m(t) = ηmktIm(t) (3.2.19)
where kt is the current-torque constant (N.m/A), ηmis the motor efficiency, and

Im is the armature current. We can express the motor torque with respect to the

input voltage Vm(t) and load shaft speed ωl(t) by substituting the motor armature

current into the current-torque relationship is as follows:

 τm (t) =
𝜂𝑚𝑘𝑡(𝑉𝑚(𝑡) − 𝑘𝑚𝜔𝑚(𝑡))

𝑅𝑚
 (3.2.20)

After substituting we can express this in terms of Vm and ωl,

 τm(t)=
 𝜂𝑚𝑘𝑡(𝑉𝑚(𝑡) − 𝑘𝑚𝐾𝑔𝜔𝑙(𝑡))

𝑅𝑚
 (3.2.21)

 𝐽𝑒𝑞
𝜕

𝜕𝑡
𝜔𝑙(𝑡) + 𝐵𝑒𝑞𝜔𝑙(𝑡) = 𝜂𝑚𝜂𝑔𝐾𝑔𝑘𝑡

(𝑉𝑚(𝑡) − 𝑘𝑚𝐾𝑔𝜔𝑙(𝑡))

𝑅𝑚
 (3.2.22)

After collecting the terms, the equation becomes

 𝐽𝑒𝑞
𝜕

𝜕𝑡
𝜔𝑙(𝑡) + (

𝑘𝑚𝜂𝑔𝐾𝑔
2𝜂𝑚𝑘𝑡

𝑅𝑚
+ 𝐵𝑒𝑞)𝜔𝑙(𝑡) = 𝜂𝑚𝜂𝑔𝐾𝑔𝑘𝑡

𝑉𝑚(𝑡)

𝑅𝑚
 (3.2.23)

This equation can be re-written as:

 𝐽𝑒𝑞
𝜕

𝜕𝑡
𝜔𝑙(𝑡) + 𝐵𝑒𝑞𝜔𝑙(𝑡) = 𝐴𝑚𝑉𝑚(𝑡) (3.2.24)

where the equivalent damping term is given by:

 𝐵𝑒𝑞,𝑣 =
𝑘𝑚𝜂𝑚𝜂𝑔𝐾𝑔

2𝑘𝑡+ 𝐵𝑒𝑞𝑅𝑚

𝑅𝑚
 (3.2.24a)

and the actuator gain equals

 𝐴𝑚 =
𝜂𝑚𝜂𝑔𝐾𝐺

2𝑘𝑡

𝑅𝑚
 (3.2.24b)

Taking the Laplace transform of the equation and assuming ωl(0-) = 0 gives

 𝐽𝑒𝑞𝑠𝜔𝑙(𝑠) + 𝐵𝑒𝑞,𝑣𝜔𝑙(𝑠) = 𝐴𝑚𝑉𝑚(𝑠)

Solving for
𝜔𝑙(𝑠)

𝑉𝑚(𝑠)
 gives the plant transfer function of the load shaft speed as a

function of the motor input voltage:

𝜔𝑙(𝑠)

𝑉𝑚(𝑠)
=

𝐴𝑚

𝐽𝑒𝑞𝑠+ 𝐵𝑒𝑞,𝑣
 (3.2.25)

The time constant parameter is 𝜏 =

𝐽𝑒𝑞

𝐵𝑒𝑞,𝑣
 (3.2.26)

And the steady state gain is K=
𝐴𝑚

𝐵𝑒𝑞,𝑣
 (3.2.27)

34

The equivalent viscous damping parameter Beq= 0.015Nms/rad (in the high-gear

configuration). Substituting all the specifications into the above equation gives

Beq,v = 0.0844N m s / rad

Evaluating the actuator gain expression with the SRV02 parameters gives

Am = 0.129 N m/V

The moment of inertia about the motor shaft equals Jm = Jtach + Jm,rotor

Evaluating the above expression with the parameters outlined in gives

Jm = 4.606251061 x 10-7 kg m2

The formula to calculate the moment of inertia of a disc is

Jdisc = 𝑚𝑟
2 /2 where m is the mass and r is the radius.

the external load moment of inertia equals

Jl,ext = 5.00 x 10-5 kg m2

Assuming the gears are discs and using the parameters given in Table 3.1, the

moment of inertia of the 24-tooth, 72-tooth, and 120-tooth gears are

J24 = 1.01 x 10-7 kg m2

J72 = 5.44 x10-6 kg m2

and

J120 = 4.18 x 10-5 kg m2

The total moment of inertia from the gears is

Jg = J24(120/24)2 + 2J72 + J120

which equals Jg = 5.52 x 10-5 kg m2

Using Jl = Jg + Jl,ext, the total load moment of inertia is

Jl = 1.05x 10-4 kg m2

Using Equations found above with the gear train and motor specifications listed

in Table 3.1 and the load inertia, the equivalent moment of inertia acting on the

SRV02 motor shaft is

Jeq = 0.00214 kg m2

The steady-state gain using the above equation is K = 1.53 rad/(V s)

and the model time constant is 𝛵 = 0.0253 s

Hence, the voltage-to-position transfer function is

P(s) =
𝜃𝑚(𝑠)

𝑉𝑚(𝑠)
 =

1.53

𝑠(0.0253𝑠+1)
 (3.2.28)

3.3 Bump test Modelling

The bump test is a simple test based on the step response of a stable system. A

step input is given to the system and its response is recorded. Considering a first

order system given by the following transfer function:

𝑌(𝑠)

 𝑈(𝑠)
 =

 𝐾

𝜏𝑠+1

(3.3.1)

35

The step input begins at time t0. The input signal has a minimum value of umin

and a maximum value of umax. The resulting output signal is initially at y0. Once

the step is applied, the output tries to follow it and eventually settles at its

steady-state value yss. From the output and input signals, the steady-state gain is

K =
𝛥𝑦

𝛥𝑢
 (3.3.2)

where Δy = yss - y0 and Δu = umax - umin. The time constant of a system 𝛵 is

defined as the time it takes the system to respond to the application of a step

input to reach 63.2% of its steady-state value, i.e.

 t1 = t0 + 𝜏 (3.3.3)

where y(t1) = 0.632Δy + y0

Then, we can read the time t1 that corresponds to y(t1) from the response data .

From this, the model time constant can be found as:

𝜏 = t1- t0

Fig 3.3: Experimental set up for Quanser SRV02 system

Going back to the Quanser SRV02 system, the s-domain representation of a step

input voltage with a time delay t0 is given by

Vm(s) =
𝐴𝑣

𝑠
 𝑒−𝑠𝑡0 (3.3.4)

where 𝐴𝑣 is the amplitude of the step and 𝑡0 is the step time (i.e. the delay).

The voltage-to-speed transfer function is

𝛺𝑚(𝑠)

𝑉𝑚(𝑠)
=

𝐾

𝜏𝑠+1
 (3.3.5)

where K is the model steady-state gain, τ is the model time constant,

 Ωm(s) = L[wm(t)] is the load gear rate, and

36

Vm(s) = L[vm(t)] is the applied motor voltage.

If we substitute input in Eq. 3.3.4 into the system transfer function in Eq. 3.3.5,

we get:

Ωm(s) =
 𝐾

(𝜏𝑠+1)

𝐴𝑣

𝑠
 𝑒−𝑠𝑡0 (3.3.6)

We can then find the SRV02 motor speed step response in the time domain

ωm(t) by taking inverse Laplace of this equation

ωm(t) = K Av (1 - 𝑒−(𝑡−𝑡0)/𝜏) + ωm(t0) (3.3.7)

noting the initial conditions ωm(0-) = ωm(t0).

Based on the models designed in SRV02, we desire to design a model that

applies a step of 2 V to the motor for 2.5 seconds and reads the servo velocity

using the encoder.In this method, a step input is given to the SRV02 and the

corresponding load shaft response is recorded. Using the saved response, the

model parameters can then be found. We have found the steady state value as

K=2.61 rad/(V s) and the model time constant 𝜏 = 0.039s.

Fig 3.4: Motor Speed and Motor voltage of the SRV02 step response

From the Fig. 3.4, the measured initial and steady-state load shaft speeds are

ωl(t0) = 0 rad/s and

ωlss = 5.2366 rad/s and the input voltage amplitude is Av = 2V

Using the equation K =
𝜔𝑙𝑠𝑠−𝜔𝑙(𝑡0)

𝐴𝑣
 with the collected data from the Fig 3.4, the

resulting steady-state gain is: K = 2.6183rad/(V.s)

37

To find time of the first decay t1 = t0 +𝜏 , the corresponding speed measurement

is found. From Figure the time at the shaft speed

ωm(t0 + τ) = 3.9012 rad/s

is t1 = 1.2890 s

The step start time is t0 = 1.2500 s

Given the step start time t0 and decay time t1 the time constant is

𝜏 = 0.0390 s

Therefore, voltage-to-speed transfer function of the identified model becomes

 𝛺𝑚(𝑠)

𝑉𝑚(𝑠)
 =

2.61

0.039𝑠+1
 (3.3.8)

And the voltage-to-position transfer function is

P(s) =
 𝜃𝑚(𝑠)

𝑉𝑚(𝑠)
 =

2.61

𝑠(0.039𝑠+1)
 (3.3.9)

3.4 Model Validation

To check if the model parameters K and τ derived from bumptest modelling and

nominal value calculation are correct, the Simulink diagram has been modified

to include a Transfer Function block with the first-order model .

Fig 3.5: Nominal value and Bump test Model comparison with SRV02 response

Both the nominal response model parameters represent the SRV02 well. The

transient is represented more accurately with the nominal method. The

parameters derived using the bump test method do not represent the SRV02. As

shown in the plot of Fig 3.5, the simulated steady-state value is higher than the

measured speed.

38

3.5 SRV02 Position Control

The SRV 02 voltage-to-position transfer function as considered is

P(s) =
 𝜃𝑚(𝑠)

𝑉𝑚(𝑠)
 =

1.53

𝑠(0.0253𝑠+1)
 (3.5.1)

The desired time-domain specifications for controlling the position of the

SRV02 load shaft are:

ess = 0

tp = 0.20 s and

PO = 5.0 %

Thus, when tracking the load shaft reference, the transient response should have

a peak time less than or equal to 0.20 seconds, an overshoot less than or equal to

5 %, and the steady-state response should have no error.

The proportional-velocity (PV) control has the following structure

u= (kp (r(t) – y(t)) – kd �̇�(t)) (3.5.2)

where kp is the proportional gain, kd is the derivative (velocity) gain, r = 𝜃d (t) is

the set point or reference motor or load angle, y = 𝜃m(t) is the measured load

shaft angle, and u = Vm(t) is the control input (applied motor voltage).

The closed-loop transfer function of the QUBE-Servo 2 is denoted
𝑌(𝑠)

𝑅(𝑠)
 =

𝜃𝑚(𝑠)

𝜃𝑑(𝑠)

 Assume all initial conditions are zero, i.e. 𝜃m(0-) = 0 and �̇�m(0-) = 0, taking the

Laplace transform of Eq.(3.5.2) yields

U(s) = (𝑘𝑝 (𝑅(𝑠) − 𝑌(𝑠)) − 𝑘𝑑𝑠 𝑌(𝑠)) (3.5.3)
which can be substituted into Eq. (3.3.1) to result in

Y(s) =
𝐾(𝑘𝑝 (𝑅(𝑠)− 𝑌(𝑠))−𝑘𝑑𝑠 𝑌(𝑠))

𝑠(𝜏𝑠+1)

Solving for Y (s)/R(s), we obtain the closed-loop expression

𝑌(𝑠)

𝑅(𝑠)
 =

𝐾𝑘𝑝

τ𝑠2 + (1+𝐾 𝑘𝑑)𝑠 + 𝐾𝑘𝑝
 (3.5.4)

This is a second-order transfer function. By comparing the standard second-

order transfer function
𝑌(𝑠)

𝑅(𝑠)
 =

𝜔𝑛
2

𝑠2+2ξωn+𝜔𝑛
2
 (3.5.5)

The characteristic equation of the SRV 02 closed-loop transfer function in Eq.

(3.5.4) is: τ𝑠2 + (1 + 𝐾 𝑘𝑑)𝑠 + 𝐾𝑘𝑝 = 0 and can be re-structured into the form

𝑠2 +
(1+𝐾 𝑘𝑑)𝑠

𝜏
 +

𝐾𝑘𝑝

τ
 = 0. Equating this with the standard second order

system Eq. (3.5.5) gives the expressions
𝐾𝑘𝑝

τ
 = 𝜔𝑛

2 and
(1+𝐾 𝑘𝑑)𝑠

𝜏
 = 2ξωn

Solving for kp and kd to obtain the control gain equations,

we get kp=
𝜔𝑛

2

𝜏
 (3.5.6)

and kd =
2ξωn− 1

𝐾
 (3.5.7)

39

For the response to have a peak time of 0.15 s and a percentage overshoot of

5 %, the natural frequency and damping ratio needed are ωn = 21.7 rad/s and

ξ = 0.6903.

Using the model parameters given above and the desired natural frequency with

Eq. 3.5.6, generates the proportional control gain

kp = 7.83 V/rad

Similarly, the derivative control gain is obtained by substituting the model

parameters given above with the damping ratio specification into Eq. 3.5.7

kd = 0.156 V/(rad/s)

When these gains are used with the PD controller, the position response of the

load gear on SRV02 with a disk load should satisfy the specifications. The

motor voltage and the position response of both the SRV02 and the designed

model has been plotted in the following Fig 3.6

Fig 3.6: Motor Speed and Motor voltage of the SRV02 and the identified model

according to PD Control

40

 SRV02 Model

Rise Time (ms) 72.083 78.132

%Overshoot 7.484 8.717

Peak Time(sec) 0.166 0.202

ITAE 0.06585 0.03135

IAE 0.07305 0.04871

ISE 0.01021 0.01033

Table 3.2: Performance table for PD Controller of SRV02 system and the

designed model

The magnitude of the measured percent overshoot is slightly more than 5 %.

However, the measured peak time in Table 3.2 surpasses 0.15 s in the case of

identified model of SRV02; the response is slower, while that of SRV02 is

nearly 0.15s. The SRV02 response from the transfer function is ideal, and thus,

has no steady state error. To increase the response time (i.e. decrease the peak

time), we can increase the proportional gain. Thus in order to get tuned result

we have implemented various optimization technique. For the optimization

purpose we have chosen ITAE as objective functions because they provide the

overall improved performance, ITAE indicates improved set point response and

good load rejection respectively.

Reference:

[1] Documentation for the USER MANUAL QUBE-Servo 2. Quanser,

Ontario, Canada, 2016.

41

Chapter 4

Optimal PD Controller using Particle Swarm Optimization (PSO)

4.1 Introduction

Particle swarm optimization (PSO) algorithm is a stochastic optimization

technique based on swarm, which was proposed by Eberhart and Kennedy

(1995) and Kennedy and Eberhart (1995). PSO algorithm simulates animal’s

social behaviour, including insects, herds, birds and fishes. These swarms

conform a cooperative way to find food, and each member in the swarms keeps

changing the search pattern according to the learning experiences of its own and

other members. Main design idea of the PSO algorithm is closely related to two

researches: One is evolutionary algorithm, just like evolutionary algorithm; PSO

also uses a swarm mode which makes it to simultaneously search large region in

the solution space of the optimized objective function.[1] The other is artificial

life, namely it studies the artificial systems with life characteristics. In studying

the behaviour of social animals with the artificial life theory, for how to

construct the swarm artificial life systems with cooperative behaviour by

computer, Millonas proposed five basic principles (van den Bergh 2001):[3]

(1) Proximity: the swarm should be able to carry out simple space and time

computations.

(2) Quality: the swarm should be able to sense the quality change in the

environment and response it.

(3) Diverse response: the swarm should not limit its way to get the resources

in a narrow scope.

(4) Stability: the swarm should not change its behaviour mode with every

environmental change.

(5) Adaptability: the swarm should change its behaviour mode when this

change is worthy.

In PSO, particles can update their positions and velocities according to the

environment change, namely it meets the requirements of proximity and quality.

In addition, the swarm in PSO does not limit its movement but continuously

search the optimal solution in the possible solution space. Particles in PSO can

42

keep their stable movement in the search space, while change their movement

mode to adapt the change in the environment. So particle swarm systems meet

the above five principles.

Proposed in 1995 by J. Kennedy an R.Eberhart, the article “Particle Swarm

Optimization” [1] became very popular due to its continuous optimization

process allowing variations to multi targets and more. Consisting in the constant

search of best solution, the method moves the particles (in this case represented

as a (x,y) position) with a certain velocity calculated in every iteration. [5] Each

particle’s movement has the influence of his own the best known position and

also the best known position in the space-search. The final result expected is that

the particle swarm converge to the best solution. It’s important to mention that

PSO doesn’t use Gradient Descent, so it can be used to non linear problems once

it doesn’t require that the problem have to be differentiable.

4.2 Particle Swarm Algorithm Flowchart [8]

The following flowchart gives a relatively complete presentation of the PSO

algorithm. In the continuous space coordinate system, mathematically, the PSO

can be described as follows.

Assume that swarm size is N, each particle’s position vector in D-dimensional

space is Xi = (xi1, xi2, ··· , xid , ··· , xi D),

Velocity vector is Vi = (vi1, vi2, ··· , vid , ··· , vi D),

Individual’s optimal position (i.e., the optimal position that the particle has

experienced) is Pi = (pi1, pi2, ··· , pid , ··· , pi D),

Swarm’s optimal position (i.e., the optimal position that any individual in this

swarm has experienced) is represented as Pg = (pg1, pg2, ··· , pgd , ··· , pgD).

Without loss of generality, taking the minimizing problem as the example, in

the initial version of the PSO algorithm, update formula of the individual’s

optimal position is:

 pd i,t+1 = xd i,t+1, if f (Xi,t+1) < f (Pi,t) (4.1)

 pd i,t , otherwise

43

Fig4.1: Flow diagram illustrating the particle swarm optimization algorithm.

The swarm’s optimal position is that of all the individual’s optimal positions.

Update formula of velocity and position is denoted as follows, respectively:

vd i,t+1 = vd i,t + c1 ∗ rand ∗ (pd i,t − xd i,t) + c2 ∗ rand ∗ (pd g,t − xd i,t) (4.2)

 xd i,t+1 = xd i,t + vd i,t+1 (4.3)

Since the initial version of PSO was not very effective in optimization problem,

a modified PSO algorithm (Shi and Eberhart 1998) appeared soon after the

initial algorithm was proposed. Inertia weight was introduced to the velocity

update formula, and the new velocity update formula became:

vd i,t+1 = w ∗ vd i,t + c1 ∗ rand ∗ (pd i,t − xd i,t) + c2 ∗ rand ∗ (pd g,t − xd i,t) (4.4)

Although this modified algorithm has almost the same complexity as the initial

version, it has greatly improved the algorithm performance; therefore, it has

START

Swarm Initialization

Particle fitness evaluating

Calculating the individual

historical optimal position

Updating particle velocity and position

according to the velocity and position

updating equation

Satisfying the

ending condition

END

Yes

No

44

achieved extensive applications. Generally, the modified algorithm is called

canonical PSO algorithm, and the initial version is called original PSO

algorithm.

PSO algorithm has two versions, called global version and local version,

respectively. In the global version, two extremes that the particles track are the

optimal position pbest of its own and the optimal position gbest of the swarm.

Accordingly, in local version, aside from tracking its own optimal position

pbest, the particle does not track the swarm optimal position gbest, instead it

tracks all particles’ optimal position nbest in its topology neighbourhood. For

the local version, the velocity update became Eq. (4.5), where pi was the

optimal position in the local neighbourhood.

Analyzing the velocity update formula from a sociological perspective, we can

see that in this update formula, the first part is the influence of the particle’s

previous velocity. It means that the particle has confidence on its current

moving state and conducts inertial moving according to its own velocity, so

parameter ω is called inertia weight. The second part depends on the distance

between the particle’s current position and its own optimal position, called the

“cognitive” item. It means particle’s own thinking, i.e., particle’s move

resulting from its own experience. Therefore, parameter c1 is called cognitive

learning factor (also called cognitive acceleration factor). The third part relies

on the distance between the particle’s current position and the global (or local)

optimal position in the swarm, called “social” factor. It means the information

share and cooperation among the particles, namely particle’s moving coming

from other particles’ experience in the swarm. It simulates the move of good

particle through the cognition, so the parameter c2 is called social learning factor

(also called social acceleration factor).

4.3 Objective function of the Particle Swarm Algorithm

Here, minimization of integral-time-absolute-error (ITAE) is defined as the

objective function (performance index or fitness function). The ITAE is

calculated as:

ITAE = ∫ 𝑡 ∗ |𝑒(𝑡)|𝑑𝑡
𝑡

0

45

4.4 Particle Swarm Algorithm Parameters

Population Size 50

No. Of iterations 100

Inertia coefficient 0.9

Personal acceleration coefficient 0.12

Global/social acceleration

coefficient

1.2

Damping ration of inertia

coefficient

0.99

Range of Variables 0-200% of initial

parameters

Table 4.1: Particle Swarm Algorithm Parameters

4.5 Steps of PSO Algorithm

The pseudo code of the PSO algorithm is stated as follows:
FOR each particle i
 FOR each dimension d
 Initialize position xid randomly within permissible range
 Initialize velocity vid randomly within permissible range
 End FOR
End FOR

Iteration k=1
DO
 FOR each particle i
 Calculate fitness value
 IF the fitness value is better than p_bestid in history
 Set the current fitness value as the p_bestid
 End IF
 End FOR
Choose the particle having the best fitness value as the g_bestd
FOR each particle i
 FOR each dimension d
 Calculate velocity according to the equation

Vid(k+1)=w*vid(k)+c1*rand1(pid-xid)+c2*rand2(pgd-xid)
 Update particle position according to the equation
 Xid(K+1)=xid(k)+vid(k+1)
 End FOR
End FOR
K=k+1
WHILE maximum iterations or minimum error criteria are not attained

46

At first, in the for loops, we have initialized the particles’ positions with a

random uniform distribution within a permissible range for all its dimensions.

After that, for each particle, it calculates its fitness value and compared with his

own best position (The p_best value is the best position of that specific particle

has ever been) and then it chooses the best position of all particles in g_best. Let

us take a closer look to the equation that defines the velocity of the next iteration

of a particle dimension [7]:

 Vᵢ (k+1) is the next iteration velocity, w is an inertial parameter. This

parameter affects the movement propagation given by the last velocity value.

 c₁ and c₂ are acceleration coefficients. c₁ value gives the importance of

personal best value and c₂ is the importance of social best value.

 pᵢ is the best individual position and pg is the best position of all particles. In

the equation, is measured the distance of each of these parameters to the

particle’s actual position.

 rand₁ and rand₂ are random numbers where 0 ≤ rand ≤ 1 and they control the

influence of each value: Social and individual as shown in the next Fig 4.2.

Fig 4.2: Illustration of velocity and position updates in PSO Algorithm

After that is calculated the new particle’s position until the number of iterations

specified or an error criteria be reached.

47

A typical Convergence plot of the objective function vs. Iteration is shown

below:

Fig 4.3: Convergence Curve for QUBE-Servo2

4.6 Results

For simulation and performance study the process transfer function of the

identified model and the process itself of both QUBE-Servo2and SRV02 are

being considered.

For QUBE-Servo2, the voltage-to-position transfer function is

P(s) =
𝜃𝑚(𝑠)

𝑉𝑚(𝑠)
 =

22.7

𝑠(0.158𝑠+1)

For Rotary Servo Base unit SRV02, the voltage-to-position transfer function is

P(s) =
𝜃𝑚(𝑠)

𝑉𝑚(𝑠)
 =

1.53

𝑠(0.0253𝑠+1)

We have derived the close loop response characteristics for the identified process

model by using different controllers. For detailed comparison, in addition to the

response characteristics, several performance indices, such as percentage

overshoot (%OS),rise time (Tr), settling time(Ts), integral absolute error (IAE),

integral time absolute error (ITAE), integral square error (ISE) are calculated for

each controller. Performance of PSO-PD is compared with the corresponding PD

48

controller. Simpson’s1/3rd rule is used for numerical integration. The detailed

performance analysis is discussed next.

Fig 4.4: Responses of Motor Speed of PD and PSO based controllers of the

QUBE-Servo2identified model and its corresponding Motor voltage

Objective

Function

QUBE Servo 2 Model

Characteristics

PSO PD

ITAE

Rise Time (ms) 80.448 64.010

%Overshoot 1.065 0.117

Peak Time(sec) 0.174 0.136

ITAE 0.01374 0.01135

IAE 0.08029 0.06633

ISE 0.04684 0.03891

Table 4.2: Performance Table of Controllers of QUBE-Servo2Model

49

Fig 4.5: Responses of Motor Speed of PD and PSO based controllers of the

QUBE-Servo2 and its corresponding Motor voltage

Objective

Function

QUBE Servo 2

Characteristics

PSO PD

ITAE

Rise Time (ms) 92.731 70.762

%Overshoot 0.198 -0.122

Peak Time(sec) 0.216 0.178

ITAE 0.01827 0.01074

IAE 0.08607 0.06353

ISE 0.043 0.03474

Table 4.3: Performance Table of Controllers of QUBE-Servo2

50

Fig 4.6: Responses of Motor Speed of PD and PSO based controllers of the

Rotary servo base SRV02 identified model and its corresponding Motor voltage

Objective Function Rotary servo base

SRV02 model

Characteristics

PSO PD

ITAE

Rise Time (ms) 182.415 78.132

%Overshoot 0.501 8.717

Peak Time(sec) 1.498 0.202

ITAE 0.02266 0.03135

IAE 0.04901 0.04871

ISE 0.008904 0.01033

Table 4.4: Performance Table of Controllers of Rotary servo base SRV02

model

51

Fig 4.7: Responses of Motor Speed of PD and PSO based controllers of the

Rotary servo base SRV02 and its corresponding Motor voltage

Objective Function Rotary servo base

SRV02 Characteristics

PSO PD

ITAE

Rise Time (ms) 182.415 72.083

%Overshoot 0.501 7.484

Peak Time(sec) 1.498 0.166

ITAE 0.02266 0.06585

IAE 0.04901 0.07305

ISE 0.008904 0.01021

Table 4.5: Performance Table of Controllers of Rotary servo base SRV02

52

4.7 Conclusion

Here, we have explored the possibility of performance enhancement of position

control by Particle Swarm Optimization technique. From the simulation results

we observed that the actual process model of QUBE-Servo2 and rotary servo

base unit SRV02 produces good result due to set point changes as well as load

disturbances.

References:

[1] R. C. Eberhart and J. Kennedy, "A new optimizer using particle swarm

theory", in Proceedings of the sixth international symposium on micro machine

and human science, 1995.

[2] J. Kennedy and R. C. Eberhart, "Particle swarm optimization", in

Proceedings of the IEEE International Conference on Neural Networks, 1995.

[3] J. Kennedy, "Small Worlds and Mega-Minds: Effects of Neighborhood

Topology on Particle Swarm Performance", in Proceedings of the 1999

Congress on Evolutionary Computation, 1999.

[4] J. Kennedy and R. C. Eberhart and Y. Shi, "Swarm Intelligence", Morgan

Kaufmann, 2001.

[5] R. Poli and J. Kennedy and T. Blackwell, "Particle swarm optimization

an overview", Swarm Intelligence, 2007.

[6] R. Poli, "Analysis of the publications on the applications of particle

swarm optimisation", Journal of Artificial Evolution and Applications, 2008.

[7] C. W. Reynolds, "Flocks, herds and schools: A distributed behavioural

model", in Proceedings of the 14th annual conference on Computer graphics

and interactive techniques, 1987.

[8] Y. Shi and R. C. Eberhart, "A Modified Particle Swarm Optimizers", in

Proceedings of the IEEE International Conference on Evolutionary

Computation, 1998.

http://scholar.google.com.au/scholar?q=A+new+optimizer+using+particle+swarm+theory
http://scholar.google.com.au/scholar?q=A+new+optimizer+using+particle+swarm+theory
http://scholar.google.com.au/scholar?q=Particle+swarm+optimization
http://scholar.google.com.au/scholar?q=Small+Worlds+and+Mega-Minds:+Effects+of+Neighborhood+Topology+on++Particle+Swarm+Performance
http://scholar.google.com.au/scholar?q=Small+Worlds+and+Mega-Minds:+Effects+of+Neighborhood+Topology+on++Particle+Swarm+Performance
http://scholar.google.com.au/scholar?q=Swarm+Intelligence
http://scholar.google.com.au/scholar?q=Particle+swarm+optimization+An+overview
http://scholar.google.com.au/scholar?q=Particle+swarm+optimization+An+overview
http://scholar.google.com.au/scholar?q=Analysis+of+the+publications+on+the+applications+of+particle+swarm++optimisation
http://scholar.google.com.au/scholar?q=Analysis+of+the+publications+on+the+applications+of+particle+swarm++optimisation
http://scholar.google.com.au/scholar?q=Flocks,+herds+and+schools:+A+distributed+behavioral+model
http://scholar.google.com.au/scholar?q=Flocks,+herds+and+schools:+A+distributed+behavioral+model
http://scholar.google.com.au/scholar?q=A+Modified+Particle+Swarm+Optimizers

53

Chapter 5

Optimal PD Controller using Moth Flame Optimization (MFO)

5.1 Introduction

Optimization refers to the process of finding the best possible solution for a

particular problem. As the complexity of problems increases, over the last few

decades, the need for new optimization techniques becomes evident more than

before. Mathematical optimization techniques used to be the only tools for

optimizing problems before the proposal of heuristic optimization techniques.

Mathematical optimization methods are mostly deterministic that suffer from

one major problem: local optima entrapment. Some of them such as gradient-

based algorithms require derivation of the search space as well. This makes

them highly inefficient in solving real problems. Moth-Flame Optimization

(MFO) algorithm was proposed in 2016 [1] by Seyedali Mirjalili, as one of the

seminal attempt to simulate the navigation of moths in computer and propose an

optimization algorithm. This algorithm has been widely used in science and

industry.

5.2. Inspiration

Moths are fancy insects, which are highly similar to the family of butterflies.

Basically, there are over 160,000 various species of this insect in nature. They

have two main milestones in their lifetime: larvae and adult. The larva is

converted to moth by cocoons. The most interesting fact about moths is their

special navigation methods in night. They have been evolved to fly in night

using the moon light. They utilized a mechanism called transverse orientation

for navigation. In this method, a moth flies by maintaining a fixed angle with

respect to the moon, a very effective mechanism for travelling long distances in

a straight path [2]. Since the moon is far away from the moth, this mechanism

guarantees flying in straight line. The same navigation method can be done by

humans. Suppose that the moon is in the south side of the sky and a human

wants to go the east. If he keeps moon of his left side when walking, he would

be able to move toward the east on a straight line.

Despite the effectiveness of transverse orientation, we usually observe that

moths fly spirally around the lights. In fact, moths are tricked by artificial lights

https://en.wikiversity.org/wiki/Moth_flame_optimization#cite_note-1
https://en.wikiversity.org/wiki/Moth_flame_optimization#cite_note-2

54

and show such behaviours. This is due to the inefficiency of the transverse

orientation, in which it is only helpful for moving in straight line when the light

source is very far. When moths see a human-made artificial light, they try to

maintain a similar angle with the light to fly in straight line. Since such a light is

extremely close compared to the moon, however, maintaining a similar angle to

the light source causes a useless or deadly spiral fly path for moths [3]. It may

be observed in Fig. 5.1 that the moth eventually converges towards the light.

This behavior is modeled mathematically to propose an optimizer called Moth-

Flame Optimization (MFO) algorithm in the following subsection.

Fig 5.1: Spiral flying path around close light source [1]

5.3 MFO algorithm [1]

In the MFO algorithm, it is assumed that the candidate solutions are moths and

the problem’s variables are the position of moths in the space. Therefore, the

moths can fly in 1-D, 2-D, 3-D, or hyper dimensional space with changing their

position vectors. Since the MFO algorithm is a population-based algorithm, the

set of moths is represented in a matrix as follows:

M = [

𝑚1,1 ⋯ 𝑚1,𝑑

⋮ ⋱ ⋮
𝑚𝑛,1 ⋯ 𝑚𝑛,𝑑

]

Where n is the number of moths and d is the number of variables

(dimension).For all the moths, we also assume that there is an array for storing

the corresponding fitness values as follows:

https://en.wikiversity.org/wiki/Moth_flame_optimization#cite_note-3

55

OM = [

OM1

OM2

⋮
OMn

] ; where n is the number of moths.

The fitness value is the return value of the fitness (objective) function for each

moth. The position vector (first row in the matrix M for instance) of each moth

is passed to the fitness function and the output of the fitness function is assigned

to the corresponding moth as its fitness value (OM1 in the matrix OM for

instance). Another key component in the proposed algorithm are flames. A

matrix similar to the moth matrix is considered as follows:

F = [

𝐹1,1 𝐹1,2 … 𝐹1,𝑑

𝐹2,1 𝐹2,2 ⋯ 𝐹2,𝑑

⋮ … ⋱ ⋮
𝐹𝑛,1 𝐹𝑛,2 ⋯ 𝐹𝑛,𝑑

]

where n is the number of moths and d is the number of variables (dimension).

It may be seen in the above equation that the dimensions of M and F arrays are

equal. For the flames, it is also assumed that there is an array for storing the

corresponding fitness values as follows:

OF = [

OF1

OF2

⋮
OFn

] ; where n is the number of moths.

The moths are actual search agents that move around the search space, whereas

flames are the best position of moths that obtains so far. Therefore, each moth

searches around a flag (flame) and updates it in case of finding a better solution.

With this mechanism, a moth never loses its best solution.

The MFO algorithm is a three-tuple that approximates the global optimal of the

optimization problems and defined as follows:

MFO = (I, P, T)

I is a function that generates a random population of moths and corresponding

fitness values. The methodical model of this function is as follows:

I : φ = {M,OM}

The P function, which is the main function, moves the moths around the search

space. This function received the matrix of M and returns its updated one

eventually.

P : M = M

The T function returns true if the termination criterion is satisfied and false if

the termination criterion is not satisfied:

T : M = {true; false}

56

With I,P, and T, the general framework of the MFO algorithm is defined as

follows:

M = I();

while T(M) is equal to false

M = P(M);

End

The function I have to generate initial solutions and calculate the objective

function values. Any random distribution can be used in this function. The

following method is utilized as the default:

for i = 1: n

for j = 1: d

M(i, j) = (ub(i) _ lb(i)) ⁄ rand() + lb(i);

end

end

OM = Fitness Function (M);

As can be seen, there are two other arrays called ub and lb. These matrixes

define the upper and lower bounds of the variables as follows:

ub =[ub1, ub2, ub3, . . ., ubn]

where ub(i) indicates the upper bound of the i-th variable.

lb =[lb1, lb2,lb3, . . . , lbn]

where lb(i) indicates the lower bound of the i-th variable.

After the initialization, the P function is iteratively run until the T function

returns true. The P function is the main function that moves the moths around

the search space. As mentioned above the inspiration of this algorithm is the

transverse orientation. In order to mathematically model this behaviour, the

position of each moth is updated with respect to a flame using the following

equation:

Mi = S(Mi,Fj)

where Mi indicate the i-th moth, Fj indicates the j-th flame, and S is the spiral

function. The exploration of the search space around the best locations obtained

so far is guaranteed with this method due to the following reasons:

 Moths update their positions in hyper spheres around the best solutions

obtained so far.

 The sequence of flames is changed based on the best solutions in each

iteration, and the moths are required to update their positions with respect

to the updated flames. Therefore, the position updating of moths may

occur around different flames, a mechanism that causes sudden

movement of moths in the search space and promotes exploration.

Another concern here is that the position updating of moths with respect to n

different locations in the search space may degrade the exploitation of the best

promising solutions. To resolve this concern, an adaptive mechanism is

proposed for the number of flames. Fig. 5.2 shows that how the number of

57

flames is decreased adaptively over the course of iterations. The following

formula is utilized in this regard:

flame no = round (N-l*(N-1)/T)(a)

Fig 5.2: Number of flame is decreased adaptively over the course of iterations

where l is the current number of iteration, N is the maximum number of flames,

and T indicates the maximum number of iterations. Fig. 5.2 shows that there is

N number of flames in the initial steps of iterations. However, the moths update

their positions only with respect to the best flame in the final steps of iterations.

The gradual decrement in number of flames balances exploration and

exploitation of the search space.

5.4 Objective function of the Moth Flame Algorithm

Here, minimization of integral-time-absolute-error (ITAE) is defined as the

objective function (performance index or fitness function). The ITAE is

calculated as:

ITAE = ∫ 𝑡 ∗ |𝑒(𝑡)|𝑑𝑡
𝑡

0

58

5.5 Moth Flame Algorithm Parameters

Search agent No. 30

No. Of iterations 100

Dimension (No. Of

Variables)

2

Range of Variables 0-200% of

initial

parameters

Table 5.1: Moth Flame Algorithm Parameters

5.6 Steps of MFO Algorithm [1]

After all, the general steps of the P function are as follows.
 Update flame no using Eq. (a)
OM = Fitness Function (M);
if iteration == 1
F = sort(M);
OF = sort(OM);
else
F = sort(Mt_1, Mt);
OF = sort(Mt_1, Mt);
end
for i = 1: n
for j = 1: d
Update r and t
Calculate D with respect to the corresponding moth
Update M(i,j) using with respect to the corresponding moth
end
end

As discussed above, the P function is executed until the function returns true.

After termination of the P function, the best moth is returned as the best

obtained approximation of the optimum.

59

5.7 Results:

For simulation and performance study the process transfer function of the

identified model and the process itself of both QUBE-Servo2and SRV02 are

being considered.

For QUBE-Servo2, the voltage-to-position transfer function is

P(s) =
𝜃𝑚(𝑠)

𝑉𝑚(𝑠)
 =

22.7

𝑠(0.158𝑠+1)

For Rotary Servo Base unit SRV02, the voltage-to-position transfer function is

P(s) =
𝜃𝑚(𝑠)

𝑉𝑚(𝑠)
 =

1.53

𝑠(0.0253𝑠+1)

We have observed the close loop response characteristics for the identified

process model by using different controllers. For detailed comparison, in

addition to the response characteristics, several performance indices, such as

percentage overshoot (%OS),rise time (Tr), settling time (Ts), integral absolute

error (IAE), integral time absolute error (ITAE), integral square error (ISE) are

calculated for each controller. Performance of MFO-PD is compared with the

corresponding PD controller. Simpson’s1/3rd rule is used for numerical

integration. The detailed performance analysis is discussed next.

60

Fig 5.3: Responses of Motor Speed of PD and MFO based controllers of the QUBE-

Servo2 identified model and its corresponding Motor voltage

Objective

Function

QUBE-Servo2 Model

Characteristics

MFO PD

ITAE

Rise Time (ms) 80.423 64.010

%Overshoot 1.058 0.117

Peak Time(sec) 0.174 0.136

ITAE 0.01373 0.01135

IAE 0.08026 0.06633

ISE 0.04682 0.03891

Table 5.2: Performance Table of Controllers of QUBE-Servo2 Model

61

Fig 5.4: Responses of Motor Speed of PD and MFO based controllers of the

QUBE-Servo2and its corresponding Motor voltage

Objective

Function

QUBE-Servo2

Characteristics

MFO PD

ITAE

Rise Time (ms) 97.072 70.762

%Overshoot -0.931 -0.122

Peak Time(sec) 0.202 0.178

ITAE 0.01883 0.01074

IAE 0.08601 0.06353

ISE 0.04284 0.03474

Table 5.3: Performance Table of Controllers of QUBE-Servo2

62

Fig 5.5: Responses of Motor Speed of PD and MFO based controllers of the

Rotary servo base SRV02 identified model and its corresponding Motor voltage

Objective

Function

Rotary servo base

SRV02 model

Characteristics

MFO PD

ITAE

Rise Time (ms) 170.96 78.132

%Overshoot 0.503 8.717

Peak Time(sec) 0.12 0.202

ITAE 0.02668 0.03135

IAE 0.05342 0.04871

ISE 0.01055 0.01033

Table 5.4: Performance Table of Controllers of Rotary servo base SRV02

model

63

Fig 5.6: Responses of Motor Speed of PD and MFO based controllers of the

Rotary servo base SRV02 and its corresponding Motor voltage

Objective Function Rotary servo base

SRV02 Characteristics

MFO PD

ITAE

Rise Time (ms) 122.722 72.083

%Overshoot -0.631 7.484

Peak Time(sec) 0.357 0.166

ITAE 0.08878 0.06585

IAE 0.08879 0.07305

ISE 0.01103 0.01021

Table 5.5: Performance Table of Controllers of Rotary servo base SRV02

64

5.8 Conclusion

Here, we have explored the possibility of performance enhancement of servo

position control by Moth Flame Optimization technique. From the simulation

results we observed that the actual process model of QUBE Servo and rotary

servo base unit produces good result due to set point changes as well as load

disturbances. In tables, results for the best optimized variables Kp and Kd are

shown. A typical Convergence plot of the objective function vs. Iteration is

shown below:

Fig 5.7: Convergence curve for QUBE-Servo2

65

References

[1] Mirjalili, Seyedali. "Moth-flame optimization algorithm: A novel nature-

inspired heuristic paradigm." Knowledge-Based Systems 89 (2015): 228-

249.

[2] Gaston, Kevin J., et al. "The ecological impacts of night time light pollution:

a mechanistic appraisal." Biological reviews 88.4 (2013): 912-927

[3] Frank, Kenneth D. "Effects of artificial night lighting on moths." Ecological

consequences of artificial night lighting (2006): 305-344.

[4] M. Mahdavi, M. Fesanghary, E. Damangir, An improved harmony search

algorithm for solving optimization problems, Appl. Math. Comput. 188

(2007)1567–1579

[5] A.Y. Lam, V.O. Li, Chemical-reaction-inspired metaheuristic for

optimization,IEEE Trans. Evol. Comput. 14 (2010) 381–399.

[6] B. Alatas, A novel chemistry based metaheuristic optimization method for

mining of classification rules, Expert Syst. Appl. 39 (2012) 11080–11088.

[7] Gutjahr WJ (2009) Convergence analysis of metaheuristics. In:

Matheuristics. Springer, Boston, pp 159–187

[8] Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm intelligence: from

natural to artificial systems (No. 1). Oxford University Press, New York

[9] Storn R, Price K (1995) Differential evolution—a simple and efficient

adaptive scheme for global optimization over continuous spaces, vol 3.

ICSI, Berkeley4.

[10] Simon D (2008) Biogeography-based optimization. IEEE Trans Evol

Comput 12(6):702–71

[11] Rechenberg I (1978) Evolutions strategien. In: Schneider B, Ranft U

(eds) Simulationsm ethoden in der Medizin und Biologie. Springer, Berlin,

pp 83–114

66

[12] Muangkote N, Sunat K, Chiewchanwattana S (2016) Multilevel

thresholding for satellite image segmentation with moth-flame based

optimization. In: 2016 13th international joint conference on computer

science and software engineering (JCSSE). IEEE, pp 1–6

[13] Bentouati Bachir, Chaib Lakhdar, Chettih Saliha (2016) Optimal power

flow using the moth flam optimizer: a case study of the algerian power

system. Indones J Electr Eng Comput Sci 1(3):431–445

[14] Yamany W, Fawzy M, Tharwat A, Hassanien AE (2015) Moth-flame

optimization for training multi-layer perceptrons. In: 2015 11th international

computer engineering conference (ICENCO). IEEE, pp 267–272

[15] Li Z, Zhou Y, Zhang S, Song J (2016) Lévy-flight moth-flame algorithm

for function optimization and engineering design problems. Math Probl

Eng. .

[16] Garg P, Gupta A (2016) Optimized open shortest path first algorithm

based on moth flame optimization. Indian J Sci Technol. 29.

[17] Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on

the use of nonparametric statistical tests as a methodology for comparing

Evolutionary and swarm intelligence algorithms.

67

Chapter 6

Optimal PD Controller using Grey Wolf optimization (GWO)

6.1 Introduction

The GWO algorithm mimics the leadership hierarchy and hunting mechanism

of gray wolves in nature proposed by Mirjalili et al. in 2014.[1] Four types of

grey wolves such as alpha, beta, delta, and omega are employed for simulating

the leadership hierarchy. In addition, three main steps of hunting, searching for

prey, encircling prey, and attacking prey, are implemented to perform

optimization. Meta-heuristic optimization techniques have become very popular

over the last two decades. Surprisingly, some of them such as Genetic

Algorithm (GA) [1], Ant Colony Optimization (ACO) [2], and Particle Swarm

Optimization (PSO) [3] are fairly well-known among not only computer

scientists but also scientists from different fields. In addition to the huge number

of theoretical works, such optimization techniques have been applied in various

fields of study. There are four main reasons behind this. They are: simplicity,

flexibility, derivation- free mechanism, and local optima avoidance. The

inspirations are typically related to physical phenomena, animals’ behaviours,

or evolutionary concepts. The simplicity allows the scientists to simulate

different natural concepts, propose new meta-heuristics, hybridize two or more

meta-heuristics, or improve the current meta-heuristics. Secondly, flexibility

refers to the applicability of meta-heuristics to different problems without any

special changes in the structure of the algorithm. The optimization process starts

with random solution(s), and there is no need to calculate the derivative of

search spaces to find the optimum. This makes meta-heuristics highly suitable

for real problems with expensive or unknown derivative information. The

search space of real problems is usually unknown and very complex with a

massive number of local optima, so meta-heuristics are good options for

optimizing these challenging real problems.

6.2 Inspiration [2]

Grey wolf (Canis lupus) belongs to Canidae family. Grey wolves are considered

as apex predators, meaning that they are at the top of the food chain. Grey

wolves mostly prefer to live in a pack. The group size is 5-12 on average. Of

particular interest is that they have a very strict social dominant hierarchy.

The leaders are a male and female, called alphas. The alpha is mostly

responsible for making decisions about hunting, sleeping place, time to wake,

and so on. The alpha’s decisions are dictated to the pack. However, some kind

of democratic behaviour has also been observed, in which an alpha follows the

other wolves in the pack. In gatherings, the entire pack acknowledges the alpha

https://en.wikipedia.org/wiki/gray_wolves
https://en.wikiversity.org/wiki/Algorithm_models/Grey_Wolf_Optimizer#cite_note-1
https://en.wikipedia.org/wiki/Canis_lupus

68

by holding their tails down. The alpha wolf is also called the dominant wolf

since his/her orders should be followed by the pack [5]. The alpha wolves are

only allowed to mate in the pack. Interestingly, the alpha is not necessarily the

strongest member of the pack but the best in terms of managing the pack. This

shows that the organization and discipline of a pack is much more important

than its strength.

The second level in the hierarchy of grey wolves is beta. The betas are

subordinate wolves that help the alpha in decision-making or other pack

activities. The beta wolf can be either male or female, and he/she is probably the

best candidate to be the alpha in case one of the alpha wolves passes away or

becomes very old. The beta wolf should respect the alpha, but commands the

other lower-level wolves as well. It plays the role of an adviser to the alpha and

discipliner for the pack. The beta reinforces the alpha's commands throughout

the pack and gives feedback to the alpha.

The lowest ranking grey wolf is omega. The omega plays the role of scapegoat.

Omega wolves always have to submit to all the other dominant wolves. They

are the last wolves that are allowed to eat. It may seem the omega is not an

important individual in the pack, but it has been observed that the whole pack

face internal fighting and problems in case of losing the omega. This is due to

the venting of violence and frustration of all wolves by the omega(s). This

assists satisfying the entire pack and maintaining the dominance structure. In

some cases the omega is also the babysitters in the pack.

If a wolf is not an alpha, beta, or omega, he/she is called subordinate (or delta in

some references). Delta wolves have to submit to alphas and betas, but they

dominate the omega. Scouts, sentinels, elders, hunters, and caretakers belong to

this category. Scouts are responsible for watching the boundaries of the territory

and warning the pack in case of any danger. Sentinels protect and guarantee the

safety of the pack. Elders are the experienced wolves who used to be alpha or

beta. Hunters help the alphas and betas when hunting prey and providing food

for the pack. Finally, the caretakers are responsible for caring for the weak, ill,

and wounded wolves in the pack.

In addition to the social hierarchy of wolves, group hunting is another

interesting social behaviour of grey wolves. According to Muro et al [6] the

main phases of gray wolf hunting are as follows:

 Tracking, chasing, and approaching the prey

 Pursuing, encircling, and harassing the prey until it stops moving

 Attack towards the prey

In this work this hunting technique and the social hierarchy of grey wolves are

mathematically modelled in order to design GWO and perform optimization.

https://en.wikiversity.org/wiki/Algorithm_models/Grey_Wolf_Optimizer#cite_note-ref1-2

69

6.3 Mathematical Model [7]

The hunting technique and the social hierarchy of grey wolves are

mathematically modeled in order to design GWO and perform optimization.

The proposed mathematical models of the social hierarchy, tracking, encircling,

and attacking prey are as follows:

6.3.1 Social hierarchy

In order to mathematically model the social hierarchy of wolves when designing

GWO, we consider the fittest solution as the alpha (α). Consequently, the

second and third best solutions are named beta (β) and delta (δ) respectively.

The rest of the candidate solutions are assumed to be omega (ω). In the GWO

algorithm the hunting (optimization) is guided by α, β, and δ. The ω wolves

follow these three wolves as shown in Fig 6.1.

Fig.6.1: Hierarchy of grey wolf (dominance decreases from top down)

6.3.2 Encircling prey

As mentioned above, grey wolves encircle prey during the hunt. In order to

mathematically model encircling behaviour the following equations are

proposed:

�⃗⃗� = |𝐶 . 𝑋 p(t) - 𝑋 (t) |

𝑋 (t+1) = 𝑋 p(t) - 𝐴 . �⃗⃗�

where t indicates the current iteration, 𝐴 and 𝐶 are coefficient vectors , 𝑋 p is

the position vector of the prey, and 𝑋 indicates the position vector of a grey

wolf.

The vectors 𝐴 and 𝐶 are calculated as follows:

𝐴 = 2𝑎 ⃗⃗⃗ 𝑟1⃗⃗⃗ - 𝑎 ⃗⃗⃗

𝐶 = 2. 𝑟2⃗⃗ ⃗

Where components of 𝑎 are linearly decreased from 2 to 0 over the course of

iterations and 𝑟1⃗⃗⃗ , 𝑟2⃗⃗ ⃗ are random vectors in [0,1].

With the above equations, a grey wolf in the position of (X,Y) can update its

position according to the position of the prey (X*,Y*). Different places around

70

the best agent can be reached with respect to the current position by adjusting

the value of 𝐴 and 𝐶 vectors.

6.3.3 Hunting

Fig 6.2: Updating position of gray wolves in GWO

Grey wolves have the ability to recognize the location of prey and encircle

them. The hunt is usually guided by the alpha. The beta and delta might also

participate in hunting occasionally. However, in an abstract search space we

have no idea about the location of the optimum (prey). In order to

mathematically simulate the hunting behaviour of grey wolves, we suppose that

the alpha (best candidate solution) beta and delta have better knowledge about

the potential location of prey. Therefore, we save the first three best solutions

obtained so far and oblige the other search agents (including the omegas) to

update their positions according to the position of the best search agent. The

following formulas are proposed in this regard.

�⃗⃗� α= |𝐶 1. 𝑋 α (t) - 𝑋 |

�⃗⃗� β= |𝐶 2. 𝑋 β (t) - 𝑋 |

�⃗⃗� γ= |𝐶 3. 𝑋 γ (t) - 𝑋 |

𝑋 1= 𝑋 α - 𝐴 1.(�⃗⃗� α)

𝑋 2= 𝑋 β - 𝐴 2.(�⃗⃗� β)

𝑋 3= 𝑋 γ - 𝐴 3.(�⃗⃗� γ)

https://en.wikipedia.org/wiki/gray_wolves

71

𝑋 (𝑡 + 1) =(𝑋 1+𝑋 2+𝑋 3) /3

With these equations, a search agent updates its position according to alpha,

beta, and delta in a n dimensional search space. In addition, the final position

would be in a random place within a circle which is defined by the positions of

alpha, beta, and delta in the search space. In other words alpha, beta, and delta

estimate the position of the prey, and other wolves updates their positions

randomly around the prey.

6.3.4 Attacking prey (exploitation)

As mentioned above the grey wolves finish the hunt by attacking the prey when

it stops moving. In order to mathematically model approaching the prey we

decrease the value of 𝑎 . Note that the fluctuation range of 𝐴 is also decreased

by 𝑎⃗⃗⃗ . In other words 𝐴 is a random value in the interval [-2a, 2a] where a is

decreased from 2 to 0 over the course of iterations. When random values

of 𝐴 are in [-1, 1], the next position of a search agent can be in any position

between its current position and the position of the prey.

With the operators proposed so far, the GWO algorithm allows its search agents

to update their position based on the location of the alpha, beta, and delta; and

attack towards the prey. However, the GWO algorithm is prone to stagnation in

local solutions with these operators. It is true that the encircling mechanism

proposed shows exploration to some extent, but GWO needs more operators to

emphasize exploration.

6.3.5 Search for prey (exploration)

Grey wolves mostly search according to the position of the alpha, beta, and

delta. They diverge from each other to search for prey and converge to attack

prey. In order to mathematically model divergence, we utilize 𝐴 with random

values greater than 1 or less than -1 to oblige the search agent to diverge from

the prey. This emphasizes exploration and allows the GWO algorithm to search

globally. |A|>1 forces the grey wolves to diverge from the prey to hopefully find

a fitter prey. Another component of GWO that favors exploration is 𝐶 , which

contains random values in [0, 2]. This component provides random weights for

prey in order to stochastically emphasize (C>1) or de-emphasize (C<1) the

effect of prey in defining the distance in Equation (3.1). This assists GWO to

show a more random behaviour throughout optimization, favoring exploration

and local optima avoidance. It is worth mentioning here that C is not linearly

decreased in contrast to A. We deliberately require C to provide random values

at all times in order to emphasize exploration not only during initial iterations

but also final iterations. This component is very helpful in case of local optima

stagnation, especially in the final iterations.

72

The C vector can be also considered as the effect of obstacles to approaching

prey in nature. Generally speaking, the obstacles in nature appear in the hunting

paths of wolves and in fact prevent them from quickly and conveniently

approaching prey. This is exactly what the vector C does. Depending on the

position of a wolf, it can randomly give the prey a weight and make it harder

and farther to reach for wolves, or vice versa.

To sum up, the search process starts with creating a random population of grey

wolves (candidate solutions) in the GWO algorithm. Over the course of

iterations, alpha, beta, and delta wolves estimate the probable position of the

prey. Each candidate solution updates its distance from the prey. The parameter

a is decreased from 2 to 0 in order to emphasize exploration and exploitation,

respectively. Candidate solutions tend to diverge from the prey when |𝐴 |

>1 and converge towards the prey when |𝐴 |<1. Finally, the GWO algorithm is

terminated by the satisfaction of an end criterion.

6.4 Objective function of the Grey Wolf Algorithm

Here, minimization of integral-time-absolute-error (ITAE) is defined as the

objective function (performance index or fitness function). The ITAE is

calculated as:

ITAE = ∫ 𝑡 ∗ |𝑒(𝑡)|𝑑𝑡
𝑡

0

6.5 Grey Wolf Algorithm Parameters

Search agent No. 30

No. Of iterations 100

Dimension (No. Of

Variables)

2

Range of Variables 0-200% of

initial

parameters

Table 6.1: Grey Wolf Algorithm Parameters

73

6.6 Steps of GWO Algorithm [5]

The GWO Algorithm:

Initialize the grey wolf population Xi (i = 1, 2, ..., n)

Initialize 𝑎 , 𝐴 , and 𝐶

Calculate the fitness of each search agent

𝑋 α =the best search agent

𝑋 β =the second best search agent

𝑋 γ =the third best search agent

while (t < Max number of iterations)

for each search agent

Update the position of the current search agent by above equations

end for

Update 𝑎⃗⃗⃗ , 𝐴⃗⃗ ⃗ and 𝐶⃗⃗ ⃗

Calculate the fitness of all search agents

Update 𝑋 α , 𝑋 β , and 𝑋 γ

t=t+1

end while

return 𝑋 α

To see how GWO is theoretically able to solve optimization problems, some

points may be noted:

 The proposed social hierarchy assists GWO to save the best solutions

obtained so far over the course of iteration

 The proposed encircling mechanism defines a circle-shaped neighbourhood

around the solutions which can be extended to higher dimensions as a hyper-

sphere

 The random parameters A and C assist candidate solutions to have hyper-

spheres with different random radii

 The proposed hunting method allows candidate solutions to locate the

probable position of the prey

74

 Exploration and exploitation are guaranteed by the adaptive values of a and

A

 The adaptive values of parameters a and A allow GWO to smoothly

transition between exploration and exploitation

 With decreasing A, half of the iterations are devoted to exploration (|A|≥1)

and the other half are dedicated to exploitation (|A|<1)

 The GWO has only two main parameters to be adjusted (a and C)

6.7 Results:

For simulation and performance study the process transfer function of the

identified model and the process itself of both QUBE-Servo2 and SRV02 are

being considered.

For QUBE Servo 2, the voltage-to-position transfer function is

P(s) =
𝜃𝑚(𝑠)

𝑉𝑚(𝑠)
 =

22.7

𝑠(0.158𝑠+1)

For Rotary Servo Base unit SRV02, the voltage-to-position transfer function is

P(s) =
𝜃𝑚(𝑠)

𝑉𝑚(𝑠)
 =

1.53

𝑠(0.0253𝑠+1)

We have studied the close loop response characteristics for the identified process

model by using different controllers. For detailed comparison, in addition to the

response characteristics, several performance indices, such as percentage

overshoot (%OS),rise time(Tr), settling time(Ts), integral absolute error (IAE),

integral time absolute error (ITAE), integral square error (ISE) are calculated for

each controller. Performance of GWO-PD is compared with the corresponding

PD controller. Simpson’s1/3rd rule is used for numerical integration. The detailed

performance analysis for various types of process is discussed next.

75

Fig6.3: Responses of Motor Speed of PD and GWO based controllers of the QUBE-

Servo2 identified model and its corresponding Motor voltage

Objective

Function

QUBE-Servo2 Model

Characteristics

GWO PD

ITAE

Rise Time (ms) 77.313 64.010

%Overshoot 1.950 0.117

Peak Time(sec) 0.160 0.136

ITAE 0.0143 0.01135

IAE 0.08085 0.06633

ISE 0.04667 0.03891

Table 6.2: Performance Table of Controllers of QUBE-Servo2 Model

76

Fig6.4: Responses of Motor Speed of PD and GWO based controllers of the QUBE-

Servo2 and its corresponding Motor Voltage

Objective

Function

QUBE Servo 2

Characteristics

GWO PD

ITAE

Rise Time (ms) 88.115 70.762

%Overshoot -0.629 -0.122

Peak Time(sec) 0.204 0.178

ITAE 0.01924 0.01074

IAE 0.08581 0.06353

ISE 0.04255 0.03474

Table 6.3: Performance Table of Controllers of QUBE-Servo2

77

Fig 6.5:Responses of Motor Speed of PD and GWO based controllers of the Rotary

servo base SRV02 identified model and its corresponding Motor voltage

Objective Function Rotary servo base

SRV02 model

Characteristics

GWO PD

ITAE

Rise Time (ms) 68.126 78.132

%Overshoot 4.737 8.717

Peak Time(sec) 0.142 0.202

ITAE 0.01551 0.03135

IAE 0.02996 0.04871

ISE 0.0006471 0.01033

Table 6.4: Performance Table of Controllers of Rotary servo base SRV02

model

78

Fig 6.6: Response of Motor Speed of PD and GWO based controllers of the Rotary

servo base SRV02 and its corresponding motor voltage

Objective Function Rotary servo base

SRV02 Characteristics

GWO PD

ITAE

Rise Time (ms) 49.506 72.083

%Overshoot 7.060 7.484

Peak Time(sec) 0.122 0.166

ITAE 0.04351 0.06585

IAE 0.004536 0.07305

ISE 0.006419 0.01021

Table 6.5: Performance Table of Controllers of Rotary servo base SRV02

79

6.8 Conclusion

Here, we have explored the possibility of performance enhancement of position

control by Grey Wolf Optimization technique. From the simulation results we

observed that the actual process model of QUBE Servo and rotary servo base

unit produces good result due to set point changes as well as load disturbances.

In tables, results for the best optimized variables Kp and Kd are shown. A typical

Convergence plot of the objective function vs. Iteration is shown below:

Fig6.7: Convergence curve for QUBE-Servo2

80

6.9 References

[1] S.Mirjalili, S. M. Mirjalili, and A. Lewis, "Grey Wolf Optimizer,"

Advances in Engineering Software, vol. 69, pp. 46-61, 2014.

[2] Bonabeau E, Dorigo M, Theraulaz G. Swarm intelligence: from natural

to artificial systems: OUP USA; 1999.

[3] Dorigo M, Birattari M, Stutzle T. Ant colony optimization. Computing

Intelligence Magazine, IEEE 2006;1:28–39.

[4] Kennedy J, Eberhart R. Particle swarm optimization, in Neural

Networks, 1995.In: Proceedings, IEEE international conference on; 1995.

p. 1942–1948.

[5] Mech LD. Alpha status, dominance, and division of labour in wolf packs.

Can J Zool 1999;77:1196–203.

[6] Muro C, Escobedo R, Spector L, Coppinger R. Wolf-pack (Canis lupus)

hunting strategies emerge from simple rules in computational

simulations. Behav Process 2011;88:192–7.

[7] Grey Wolf Optimizer ,Seyedali Mirjalili ,Seyed Mohammad Mirjalili

,Andrew Lewis School of Information and Communication Technology,

Griffith University, Nathan Campus, Brisbane QLD 4111, Australia

Department of Electrical Engineering, Faculty of Electrical and Computer

Engineering, Shahid Beheshti University, G.C. 1983963113, Tehran, Iran

[8] Lee KS, Geem ZW. A new meta-heuristic algorithm for continuous

engineering optimization: harmony search theory and practice. Comput

Methods ApplMech Eng 2005;194:3902–33.

81

Chapter 7

Optimal PD Controller using Ant Lion Optimization (ALO)

7.1 Introduction

In recent years metaheuristic algorithms have been used as primary techniques

for obtaining the optimal solutions of real engineering design optimization

problems [1–3]. Such algorithms mostly benefit from stochastic operators [4]

that make them distinct from deterministic approaches. A deterministic

algorithm [5–7] reliably determines the same answer for a given problem with a

similar initial starting point. However, this behaviour results in local optima

entrapment, which can be considered as a disadvantage for deterministic

optimization techniques [8]. Stochastic optimization (metaheuristic) algorithms

[9] refer to the family of algorithms with stochastic operators including

evolutionary algorithms [10]. Randomness is the main characteristic of

stochastic algorithms [11]. This means that they utilize random operators when

seeking for global optima in search spaces. Evolutionary algorithms search for

the global optimum in a search space by creating one or more random solutions

for a given problem [13]. This set is called the set of candidate solutions. The

set of candidates is then improved iteratively until the satisfaction of a

terminating condition. The improvement can be considered as finding a more

accurate approximation of the global optimum than the initial random guesses.

This mechanism brings evolutionary algorithms several intrinsic advantages:

problem independency, derivation independency, local optima avoidance, and

simplicity. Problem and derivation independencies originate from the

consideration of problems as a black box. Evolutionary algorithms only utilize

the problem formulation for evaluating the set of candidate solutions. The main

process of optimization is done completely independent from the problem and

based on the provided inputs and received outputs. Therefore, the nature of the

problem is not a concern, yet the representation is the key step when utilizing

evolutionary algorithms. This is the same reason why evolutionary algorithms

do not need to derivate the problem for obtaining its global optimum.

82

7.2 Inspiration [15]

Antlions (doodlebugs) belong to the Myrmeleontidae family and Neuroptera

order (net-winged insects). The lifecycle of antlions includes two main phases:

larvae and adult. A natural total lifespan can take up to 3 years, which mostly

occurs in larvae (only 3–5 weeks for adulthood). Antlions undergo

metamorphosis in a cocoon to become adult. They mostly hunt in larvae and the

adulthood period is for reproduction.

Fig 7.1: Antlion trap

Their names originate from their unique hunting behaviour and their favourite

prey. An antlion larvae digs a cone-shaped pit in sand by moving along a

circular path and throwing out sands with its massive jaw. Fig. 7.1 shows

several cone-shaped pits with different sizes. After digging the trap, the larvae

hides underneath the bottom of the cone and waits for insects (preferably ant) to

be trapped in the pit as illustrated in Fig 7.1. The edge of the cone is sharp

enough for insects to fall to the bottom of the trap easily. Once the antlion

realizes that a prey is in the trap, it tries to catch it. However, insects usually are

not caught immediately and try to escape from the trap. In this case, antlions

intelligently throw sands towards to edge of the pit to slide the prey into the

bottom of the pit. When a prey is caught into the jaw, it is pulled under the soil

and consumed. After consuming the prey, antlions throw the leftovers outside

the pit and amend the pit for the next hunt.

The main inspiration of the ALO algorithm comes from the foraging behaviour

of antlion’s larvae. In the next subsection the behaviour of antlions and their

prey in nature is first modelled mathematically. An optimization algorithm is

then proposed based on the mathematical model.

83

7.3 Operations used in antlion algorithm: [15]

7.3.1. Random walks of ants

The ALO algorithm mimics interaction between antlions and ants in the trap. To

model such interactions, ants are required to move over the search space, and

antlions are allowed to hunt them and become fitter using traps. Since ants

move stochastically in nature when searching for food, a random walk is chosen

for modelling ants’ movement. Ants update their positions with random walk at

every step of optimization. Since every search space has a boundary (range of

variable), however, the equation cannot be directly used for updating position of

ants. In order to keep the random walks inside the search space, they are

normalized using the following equation (min–max normalization):

𝑋𝑖
𝑡 = (𝑋𝑖

𝑡 - ai) - (di - 𝑐𝑖
𝑡) / (𝑑𝑖

𝑡 – ai) (7.1)

where ai is the minimum of random walk of i-th variable, di is the maximum of

random walk in i-th variable, 𝑐𝑖
𝑡 is the minimum of i-th variable at t-th iteration,

and 𝑑𝑖
𝑡 indicates the maximum of i-th variable at t-th iteration

7.3.2. Trapping in antlion’s pits

As discussed above, random walks of ants are affected by antlions’ traps. In

order to mathematically model this assumption, the following equations are

proposed:

𝑐𝑖
𝑡 = 𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑡

𝑗
 + ct (7.2)

𝑑𝑖
𝑡 = 𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑡

𝑗
+ dt (7.3)

where ct is the minimum of all variables at t-th iteration, dt indicates the vector

including the maximum of all variables at t-th iteration, 𝑐𝑖
𝑡 is the minimum of all

variables for i-th ant, 𝑑𝑖
𝑡 is the maximum of all variables for i-th ant, and

𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑡
𝑗

 shows the position of the selected j-th antlion at t-th iteration.

7.3.3. Building trap

In order to model the antlions’s hunting capability, a roulette wheel is

employed. The ants are assumed to be trapped in only one selected antlion. The

ALO algorithm is required to utilize a roulette wheel operator for selecting

antlions based of their fitness during optimization. This mechanism gives high

chances to the fitter antlions for catching ants.

7.3.4. Sliding ants towards antlion

With the mechanisms proposed so far, antlions are able to build traps

proportional to their fitness and ants are required to move randomly. However,

84

antlions shoot sands outwards the centre of the pit once they realize that an ant

is in the trap. This behaviour slides down the trapped ant that is trying to escape.

For mathematically modelling this behaviour, the radius of ants’s random walks

hyper-sphere is decreased adaptively. The following equations are proposed in

this regard:

ct= ct /I (7.4)

dt= dt /I (7.5)

where I is a ratio, ct is the minimum of all variables at t-th iteration, and dt

indicates the vector including the maximum of all variables at t-th iteration. In

Eq. (7.4) and (7.5), I = 10w t/T where t is the current iteration, T is the

maximum number of iterations, and w is a constant defined based on the current

iteration (w = 2 when t > 0.1T, w = 3 when t > 0.5T, w = 4 when t > 0.75T, w =

5 when t > 0.9T, and w = 6 when t > 0.95T). Basically, the constant w can

adjust the accuracy level of exploitation.

7.3.5. Catching prey and re-building the pit

The final stage of hunt is when an ant reaches the bottom of the pit and is

caught in the antlion’s jaw. After this stage, the antlion pulls the ant inside the

sand and consumes its body. For mimicking this process, it is assumed that

catching prey occur when ants becomes fitter (goes inside sand) than its

corresponding antlion. An antlion is then required to update its position to the

latest position of the hunted ant to enhance its chance of catching new prey. The

following equation is proposed in this regard:

𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗
𝑡 = 𝐴𝑛𝑡𝑗

𝑡 ; if f (𝐴𝑛𝑡𝑗
𝑡) > f(𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗

𝑡) (7.6)

where t shows the current iteration, 𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗
𝑡 shows the position of selected j-th

antlion at t-th iteration, and 𝐴𝑛𝑡𝑗
𝑡 indicates the position of i-th ant at t-th

iteration.

7.3.6. Elitism

Elitism is an important characteristic of evolutionary algorithms that allows

them to maintain the best solution(s) obtained at any stage of optimization

process. In this study the best antlion obtained so far in each iteration is saved

and considered as elite. Since the elite is the fittest antlion, it should be able to

affect the movements of all the ants during iterations. Therefore, it is assumed

that every ant randomly walks around a selected antlion by the roulette wheel

and the elite simultaneously as follows:

𝐴𝑛𝑡𝑗
𝑡

 =
𝑅𝐴

𝑡 + 𝑅𝐸
𝑡

2
 (7.7)

85

where 𝑅𝐴
𝑡 is the random walk around the antlion selected by the roulette wheel

at t-th iteration, 𝑅𝐸
𝑡 is the random walk around the elite at t-th iteration, and

𝐴𝑛𝑡𝑗
𝑡 indicates the position of i-th ant at t-th iteration.

7.4 Objective function of the Ant Lion Algorithm

Here, minimization of integral-time-absolute-error (ITAE) is defined as the

objective function (performance index or fitness function). The ITAE is

calculated as:

ITAE = ∫ 𝑡 ∗ |𝑒(𝑡)|𝑑𝑡
𝑡

0

7.5 Ant Lion Algorithm Parameters

Search agent No. 30

No. Of iterations 100

Dimension (No. Of

Variables)

2

Range of Variables 0-200% of

initial

parameters

Table 7.1: Ant Lion Algorithm Parameters

7.6 Steps of ALO Algorithm [15]

The pseudo codes the ALO algorithm is defined as follows:

Initialize the first population of ants and antlions randomly
Calculate the fitness of ants and antlions
Find the best antlions and assume it as the elite (determined optimum)
while the end criterion is not satisfied
for every ant
Select an antlion using Roulette wheel
Update c and d using equations Eqs. (7.4) and (7.5)
Create a random walk and normalize it using Eqs. (7.1) and
Update the position of ant using (7.7)
end for
Calculate the fitness of all ants
Replace an antlion with its corresponding ant it if becomes

86

fitter (Eq. (7.6))
Update elite if an antlion becomes fitter than the elite
end while
Return elite

7.7 Results:

For simulation and performance study the process transfer function of the

identified model and the process itself of both QUBE-Servo2 and SRV02 are

being considered.

For QUBE Servo 2, the voltage-to-position transfer function is

P(s) =
𝜃𝑚(𝑠)

𝑉𝑚(𝑠)
 =

22.7

𝑠(0.158𝑠+1)

For Rotary Servo Base unit SRV02, the voltage-to-position transfer function is

P(s) =
𝜃𝑚(𝑠)

𝑉𝑚(𝑠)
 =

1.53

𝑠(0.0253𝑠+1)

We have derived the close loop response characteristics for the identified process

model by using different controllers. For detailed comparison, in addition to the

response characteristics, several performance indices, such as percentage

overshoot (%OS), rise time (Tr), settling time (Ts), integral absolute error (IAE),

integral time absolute error (ITAE), integral square error (ISE) are calculated for

each controller. Performance of ALO-PD is being compared with the

corresponding PD controller. Simpson’s1/3rd rule is used for numerical

integration. The detailed performance analysis is discussed next.

87

Fig7.2: Responses of Motor Speed of PD and ALO based controllers of the QUBE-

Servo2 identified model and its corresponding Motor voltage

Objective

Function

QUBE Servo 2 Model

Characteristics

ALO PD

ITAE

Rise Time (ms) 75.016 64.010

%Overshoot 1.515 0.117

Peak Time(sec) 0.164 0.136

ITAE 0.0131 0.01135

IAE 0.07664 0.06633

ISE 0.4475 0.03891

Table 7.2: Performance Table of Controllers of QUBE-Servo2 Model

88

Fig7.3: Responses of Motor Speed of PD and ALO based controllers of the QUBE-

Servo2 and its corresponding Motor voltage

Objective

Function

QUBE Servo 2

Characteristics

ALO PD

ITAE

Rise Time (ms) 81.948 70.762

%Overshoot 0.575 -0.122

Peak Time(sec) 0.214 0.178

ITAE 0.01524 0.01074

IAE 0.07984 0.06353

ISE 0.04007 0.03474

Table 7.3: Performance Table of Controllers of QUBE-Servo2

89

Table 7.4: Performance Table of Controllers of Rotary servo base SRV02

Model

Fig 7.4: Responses of Motor Speed of PD and ALO based controllers of the

Rotary servo base SRV02 identified model and its corresponding Motor voltage

Objective

Function

Rotary servo base

SRV02 model

Characteristics

ALO PD

ITAE

Rise Time (ms) 70.635 78.132

%Overshoot 3.644 8.717

Peak Time(sec) 0.148 0.202

ITAE 0.01507 0.03135

IAE 0.02973 0.04871

ISE 0.006483 0.01033

90

Fig 7.5: Responses of Motor Speed of PD and ALO based controllers of the Rotary

servo base SRV02 and its corresponding Motor voltage

Objective Function Rotary servo base

SRV02 Characteristics

ALO PD

ITAE

Rise Time (ms) 61.830 72.083

%Overshoot 4.737 7.484

Peak Time(sec) 0.119 0.166

ITAE 0.03994 0.06585

IAE 0.04498 0.07305

ISE 0.006462 0.01021

Table 7.5: Performance Table of Controllers of Rotary servo base SRV02

91

7.8 Conclusion

Here, we have explored the possibility of performance enhancement of position

control by Grey Wolf Optimization technique. From the simulation results we

observed that the actual process model of QUBE-Servo2 and rotary servo base

unit SRV02 produces good result due to set point changes as well as load

disturbances. In tables, results for the best optimized variables Kp and Kd are

shown. A typical Convergence plot of the objective function vs. Iteration is

shown below:

Fig 7.6: Convergence curve for QUBE-Servo2 motor

92

References

[1] Blum C, Puchinger J, Raidl GR, Roli A. Hybrid metaheuristics in

combinatorial optimization: a survey. Application for Soft Computing

2011;11:4135–51.

[2] Boussaïd I, Lepagnot J, Siarry P. A survey on optimization

metaheuristics.

Inform Sci 2013;237:82–117.

[3] Gogna A, Tayal A. Metaheuristics: review and application. Experiment

on Theory of Artificial Intelligence 2013;25:503–26.

[4] Bianchi L, Dorigo M, Gambardella LM, Gutjahr WJ. A survey on

metaheuristics for stochastic combinatorial optimization. Nat Computing: Int J

2009;8:239–87.

[5] Cornuéjols G. Valid inequalities for mixed integer linear programs. Math

Program 2008;112:3–44.

[6] Avriel M. Nonlinear programming: analysis and methods. Courier Dover

Publications; 2003.

[7] Land AH, Doig AG. An automatic method for solving discrete

programming

problems. In: 50 Years of integer programming 1958–2008. Springer; 2010. p.

105–32.

[8] Simpson AR, Dandy GC, Murphy LJ. Genetic algorithms compared to

other techniques for pipe optimization. J Water Resour Plann Manage

1994;120:423–43.

[9] Spall JC. Introduction to stochastic search and optimization: estimation,

simulation, and control, vol. 65. John Wiley & Sons; 2005.

[10] Back T. Evolutionary algorithms in theory and practice. Oxford Univ.

Press;1996.

[11] Talbi E-G. Metaheuristics: from design to implementation, vol. 74. John

Wiley & Sons; 2009.

93

[12] Scharf I, Ovadia O. Factors influencing site abandonment and site

selection in a sit-and-wait predator: a review of pit-building antlion larvae. J

Insect Behaviour 2006;19:197–218.

[13] Grzimek B, Schlager N, Olendorf D, McDade MC. Grzimek’s animal life

encyclopedia. Michigan: Gale Farmington Hills; 2004.

[14] Goodenough J, McGuire B, Jakob E. Perspectives on animal behaviour.

John Wiley & Sons; 2009.

[15] Seyedali Mirjalili, The Ant Lion Optimizer, Advances in Engineering,

Software 83 (2015) 80-98

94

Chapter 8

Comparative Result Analysis of Different Algorithms

8.1 Introduction

In this thesis, the tuning of the PD Controller is made by different Algorithms,

namely a) Particle Swarm Optimization [Chapter 4], b) Moth Flame

Optimization [Chapter 5], c) Grey Wolf Optimization [Chapter 6] and d) Ant

Lion Optimization [Chapter 7]. Here the comparative study of these algorithms

over the manually tuned controller has been observed. But it was also noticed

that one out of these four algorithms outperforms the other algorithms. Here all

the four algorithms are compared simultaneously for actual process and

identified model of both the QUBE-Servo2 and Rotary Servo Base SRV02.

8.2 Parameters for different algorithm

8.2.1 Computer Environment

All these algorithms are executed on the same environment i.e. same computer

with no other bulk process running in the background (other than necessary

background Operating System & Matlab). Matlab R2016a has been used for all

these simulation.

8.2.2 Algorithm Parameters

Population Size: 30

Maximum iteration: 100

Objective Function: ITAE

No. Decision variables: 2

8.3 Overall Performance

Responses of the first order integrating identified model of QUBE-Servo2 and

SRV02 for the position control have been observed under Particle Swarm

optimization (PSO), Moth Flame Optimization (MFO), Grey Wolf optimization

(GWO) and Ant Lion Optimization (ALO). Responses for QUBE-Servo2 under

these four algorithms have been shown in Fig 8.1 and Fig 8.2.The responses for

Rotary base servo SRV02 under these four algorithms have been shown in Fig

8.3 and Fig 8.4 .The performance indices of the processes for different

controllers are given in Table 8.1 – Table 8.4 .Performance analysis reveals that

all these four algorithms based controllers are capable of providing acceptable

95

and improved performance during both set point change and load disturbance.

Responses of the identified model and actual process of QUBE-Servo2 and

SRV02 for four algorithms have been shown as follows.

Fig 8.1: Responses of PSO-PD vs MFO-PD vs GWO-PD vs ALO-PD for the

identified model of QUBE-Servo 2

Objective

Function

QUBE Servo2

identified model

Characteristics

PSO MFO GWO ALO

ITAE

Rise Time (ms) 182.415 80.423 77.313 75.016

%Overshoot 0.501 1.058 1.950 1.515

Peak Time(sec) 1.498 0.174 0.160 0.164

ITAE 0.02266 0.01373 0.0143 0.0131

IAE 0.04901 0.08026 0.08085 0.07664

ISE 0.008904 0.04682 0.04667 0.4475

Table 8.1: Performance Comparison of QUBE Servo2 identified model

Responses of the identified model of QUBE Servo2 under PSO-PD, MFO-PD,

GWO-PD and ALO-PD has been shown in Fig 8.1.The performance indices of

the process for different controllers are listed in Table 8.1. All optimized

controllers perform in a better way. The detail analysis reveals that for the

position control or PD control of the identified model of this servo motor, Ant

96

lion and Particle Swarm optimized controller shows better performance as they

produce lower integral-time-absolute error. The percentage overshoot of particle

swarm optimized controller is the least among all the four other controllers but

the response is much slower in this case.

Fig 8.2: Responses of PSO-PD vs MFO-PD vs GWO-PD vs ALO-PD for the

QUBE Servo 2

Objective

Function

QUBE Servo2

Characteristics

PSO MFO GWO ALO

ITAE

Rise Time (ms) 92.731 97.072 88.115 81.948

%Overshoot 0.198 -0.931 -0.629 0.575

Peak Time(sec) 0.216 0.202 0.204 0.214

ITAE 0.01827 0.01883 0.01924 0.01524

IAE 0.08607 0.08601 0.08581 0.07984

ISE 0.043 0.04284 0.04255 0.04007

Table 8.2: Performance Comparison of QUBE Servo2

97

Responses of the identified model of QUBE Servo2 under PSO-PD, MFO-PD,

GWO-PD and ALO-PD have been shown in Fig 8.2.The performance indices of

the process for different controllers are provided in Table 8.2. All the optimized

controllers perform in a better way. The detail study reveals that for the position

control or PD control of the identified model of this servo motor, Ant lion has

the best performance as it reduces the integral-time-absolute error to the least as

well as the percentage overshoot and also the response is the fastest with this

type of controller. The proposed AL tuning of PD controller is designed towards

achieving improved set point tracking along with better load rejection for servo

motor based position control System. Thus, the performance of the position

control under the Ant Lion algorithm outperforms the other.

Fig 8.3: Responses of PSO-PD vs MFO-PD vs GWO-PD vs ALO-PD for the

identified model of Rotary Base servo SRV02

98

Objective

Function

Rotary servo

SRV02

identified

model

Characteristics

PSO MFO GWO ALO

ITAE

Rise Time (ms) 92.731 170.96 68.126 70.635

%Overshoot 0.198 0.503 4.737 3.644

Peak Time(sec) 0.216 0.12 0.142 0.148

ITAE 0.01827 0.02668 0.01551 0.01507

IAE 0.08607 0.05342 0.02996 0.02973

ISE 0.043 0.01055 0.0006471 0.006483

Table 8.3: Performance Comparison of Rotary Servo SRV02 identified model

Responses of the identified model of SRV02 under PSO-PD, MFO-PD, GWO-

PD and ALO-PD have been shown in Fig 8.3.The performance indices of the

process for different controllers are listed in Table 8.3. All optimized controllers

perform in a better way. The detail analysis reveals that for the position control

of the identified model of this servo motor, Ant lion optimized controller has the

best performance as it reduces the integral-time-absolute error to the least

among all the other four controllers and also the response is much faster. The

percentage overshoot of particle swarm optimized controller is the least among

all the four other controllers but the response is much slower in this case.

99

Fig 8.4: Responses of PSO-PD vs MFO-PD vs GWO-PD vs ALO-PD of Rotary

Base servo SRV02

Objective

Function

Rotary servo

SRV02

Characteristics

PSO MFO GWO ALO

ITAE

Rise Time (ms) 182.415 122.722 49.506 61.830

%Overshoot 0.501 -0.631 7.060 4.737

Peak Time(sec) 1.498 0.357 0.122 0.119

ITAE 0.02266 0.08878 0.04351 0.03994

IAE 0.04901 0.08879 0.004536 0.04498

ISE 0.008904 0.01103 0.006419 0.006462

Table 8.4: Performance Comparison of Rotary Servo SRV02

The comparative analysis reveals that Ant lion optimized controller has the best

performance as it achieves improved set point tracking along with better load

rejection and also its response is much faster. Note that the percentage

ALO

PSO

GWO

MFO

100

overshoots of particle swarm optimized controllers and grey wolf optimized

controllers are smaller than the others as depicted in the Fig 8.4.

Fig 8.5: Comparison of Convergence Curve for different algorithms

In Fig 8.5, typical convergence curves for the same objective function i.e. first

order integrating process is shown. A PD controller is optimized by all these

four algorithms. From the Convergence curve, we can observe that Ant Lion

algorithm converges very fast almost within 20 iterations. While Particle Swarm

algorithm and Moth Flame algorithm converge around 35 iterations. And note

that Grey Wolf Algorithm takes longer time to converge and also this algorithm

converges at a higher value.

So, it can be concluded that ‘Ant Lion Algorithm’ is the best for tuning or

optimizing controller for servo position control. Particle Swarm optimization

also performed well.

101

Chapter 9

Conclusion & Future Scope

9.1 Conclusion

We have incorporated four optimization techniques – Particle Swarm

Optimization (PSO), Moth Flame optimization (MFO), Grey wolf optimization

(GWO) and Ant Lion Optimization (ALO) on an already developed position

controller of the Qube Servo and rotary base servo motor by using empirical

relations with a view a) to overcome its empirical and percentage overshoot

method of choosing appropriate tuneable parameters and b) achieving its

optimal performance. Here the two tuneable parameters of the PD controller

have been optimized by PSO, MFO, GWO and ALO for two given processes.

The derived optimal controllers are tested through extensive simulation

experiments, even with the application of load disturbance at a particular time,

for checking the robustness. Performances of the optimal controllers PSO-PD,

MFO-PD, GWO-PD, and ALO-PD have been compared. The detailed

performance analysis revealed that all algorithms provide significantly

improved performance in set point tracking along with better load rejection for

servo motor based position control System as the initial PD Controller.

9.2 Future Scope

In this study we have used four different optimization algorithms to optimize

the parameters of both the processes of QUBE Servo 2 motor and rotary based

servo SRV02 motor. These algorithms are taken on the basis of their

convergence rate and run time. Initially we used some empirical relations and

expert knowledge to tune the parameters i.e. Kp and Kd of the PD controller for

the position control. While developing PSO-PD, MFO-PD, GWO-PD, and

ALO-PD, we have considered the range of variables i.e. Kp & Kd to be in the

range of 0-200% of the initial variables. Therefore by increasing the range of

the variables we may further improve the performance. Here we consider only

ITAE as the objective function. The performance of the controller may be

improved if we consider other performance criteria to be optimized

simultaneously e.g. IAE, IAE+ITAE or total variation as the objective

102

functions. For future aspect we may study the stability of the process when the

controller is optimized by the algorithm used. We have studied the robustness of

the controller by application of the load disturbance at a particular time for each

process. Finally the performance can be improved by using different

optimization algorithms or some other techniques like using machine learning,

neural network etc.

	1.3 Performance Specifications 8
	1.4 System Stability 9
	1.6 Computer-Aided Control System Design 12
	1.8 Literature Survey 13
	6.3.1 Social hierarchy 69
	6.3.2 Encircling prey 69
	6.3.3 Hunting 70
	6.3.4 Attacking prey (exploitation) 71
	6.3.5 Search for prey (exploration) 71

	1.3 Performance Specifications
	1.4 System Stability
	1.5 Control System Testing
	1.6 Computer-Aided Control System Design
	1.8 Literature Survey
	6.3.1 Social hierarchy
	6.3.2 Encircling prey
	6.3.3 Hunting
	6.3.4 Attacking prey (exploitation)
	6.3.5 Search for prey (exploration)

