

On Demand Service Provisioning
On Peer-to-Peer Networks

Thesis submitted

by

Sujoy Mistry

DOCTOR OF PHILOSOPHY (Engineering)

School of Mobile Computing and Communication
Faculty Council of Engineering and Technology

Jadavpur University

Kolkata-700032, India

2017

Dedicated to my beloved parents, wife and my daughter

CERTIFICATE FROM THE SUPERVISOR/S

This is to certify that the thesis entitled "On Demand Service Provi-

sioning On Peer-to-Peer Networks", submitted by Shri Sujoy

Mistry, who got his name registered on 21st May, 2012, for the

award of Ph.D. (Engineering) degree of Jadavpur University is

absolutely based upon his own work under the supervision of Prof.

Nandini Mukherjee and Dr. Arijit Mukherjee and that neither his

thesis nor any part of the thesis has been submitted for any degree /

diploma or any other academic award anywhere before.

Prof. Nandini Mukherjee

Supervisor

Professor

Department of Computer Science

& Engineering

Jadavpur University

Dr. Arijit Mukherjee

Supervisor

Senior Scientist

TCS Research & Innovation

Tata Consultancy Services

Acknowledgements

It is my pleasure to acknowledge the roles of several individuals who were

instrumental for completion of my Ph.D research. It has been a long journey

with all the great memories which were created around the DST-FIST lab of

Department of Computer Science and Engineering, Jadavpur Unniversity.

I am tremendously fortunate to have a teacher and supervisor, Prof Nandini

Mukherjee during this period of Ph.D research. I would like to express my

sincerest gratitude and deep sense of respect to her for her inspiring sug-

gestion and guidance. It was her sustained support, continuous monitoring

and constant persuasion which help me to focus on achieving my goal. Her

advice on both research as well as career has been invaluable. At this point

where I am standing its only possible because of her enduring assistance,

rigorous attention, motivation and encouragement.

I must give my high, respectful gratitude to my another supervisor, Dr.

Arijit Mukherjee for his sincere guidance, supervision and help through-

out this Ph.D research. I learned a lot from him throughout this period

of research, specifically the technical aspects of this research, with many

challenging yet valuable experiences in order to complete the work. His

valuable guidance, scholarly inputs, quick paper correction and consistent

technical support that I received throughout the research work helped me

to persue my goal. Long discussion over problems with him helped me to

get out from several critical situations during this period.

I would like to express my highest appreciation towards my beloved parents

Shri Bimal Mistry and Smt. Kabita Mistry, who have always been there for

me, whatever situation arises or where I am, for all unconditional support

and patience. Thank you for being ever so understanding and supportive.

Also thanks to my beloved wife Smt. Smiti Mistry and my sweetest daugh-

ter Senjuti Mistry, for being around me, and for never ending motivations I

have been getting all this while. I also like to convey my sincerest gratitude

to my uncle Prof. Priti Km. Roy for his continuous mental support and

encouragement during the entire Ph.D period.

I would like to give a warm thanks to Tata Consultancy Services(TCS) for

their financial and other support through TCS-RSP research scholarship

propram.

I would like to specially thank my friends and fellow lab-mates of DST-FIST

lab, Department of Computer Science and Engineering, Jadavpur Univer-

sity for their encouragement and mental support throughout my Ph.D work.

Firstly, I would like to thank passed out M.Tech students of Department

of Computer science and Engineering, Mr Dibyanshu Jaiswal, Mr. Sagar

Virani and Mr. Sukhen Das for their support during this research work. I

would like to give a special thanks to a very special friend cum lab-mate Dr

Subrata Dutta for his encouragement, mental support throughout this re-

search period. I would like to thank Dr. Sarbani Roy, Associate Professor,

Department of Computer Science and Engineering, Jadavpur University for

her motivation towards the research work. I would also like to thank, Dr.

Madhulina Sarkar, Dr. Monideepa Roy, Dr. Zeenat Rehena, Shri Tanmoy

Moitra, Shri Dibyayoti Ghosh, Shri Rupam Mukhopadhyay, Smt. Shupi

Choudhury, Dr. Suman Shankar Bhunia, Shri Binoy Ray, Shri Joy Dutta

and all other lab mates with whom I have worked together and spent a

wonderful time. I would like to thank Shri Prabhat Chatterjee who is a

technical assistant in the Department of Computer Science and Engineer-

ing, Jadavpur University for his support towards maintaining DST-FIST

Lab.

I express my sincere thanks to, Head of the Department, Department

of Computer Science and Engineering, Jadavpur University and Director,

School of Mobile Computing and Communication, Jadavpur University for

allowing me to use the DST-FIST and their other supports towards fulfill-

ment my research work.

Finally, I like to thank all the teachers and staff of Department of Com-

puter Science and Engineering and School of Mobile Computing and Com-

munication, Jadavpur University and also all my relatives, friends for their

supports and good wishes.

Date:

Sujoy Mistry

JADAVPUR UNIVERSITY

KOLKATA – 700 032, INDIA

INDEX NO: 8/12/E

1. Title of the Thesis:

On Demand Service Provisioning On Peer-to-Peer Networks

2. Name, Designation and Institution of the Supervisor/s:

(a) Prof. Nandini Mukherjee

Professor

Department of Computer Science and Engineering

Jadavpur University

Kolkata-700032

(b) Dr. Arijit Mukherjee

Senior Scientist

TCS Research & Innovation

Tata Consultancy Services

Kolkata-700091

3. List Of Publication:

(a) Journal:

I. Sujoy Mistry, Dibyanshu Jaiswal, Arijit Mukherjee and Nandini

Mukherjee, “P2P Based Service Provisioning on Distributed

Resources”. Published in November, 2016 issue of

(INTRENATIONAL JOURNAL OF NEXT GENERATION

COMPUTING), IJNGC- Vol-7, No 3, and ISSN: 2229-4678.

(b) Conference:

I. Sujoy Mistry, Dibyanshu Jaiswal, Arijit Mukherjee and Nandini

Mukherjee, P2P-based Service Distribution over Distributed

Resources', In 29th IEEE International Conference on Advance

Information Networking and Applications(AINA-2015).

II. Sujoy Mistry, Dibyanshu Jaiswal, Sagar Virani, Arijit Mukherjee

and Nandini Mukherjee, 'An Architecture for Dynamic Web Service

Provisioning using Peer-to-Peer Networks', In 9th International

Conference on Distributed Computing and Internet Technology,

ICDCIT-2013, LNCS 7753, p 290

III. Dibyanshu Jaiswal, Sujoy Mistry, Arijit Mukherjee and Nandini

Mukherjee, “A Chord-based Architecture for Efficient Dynamic

Service Provisioning over Distributed Resources”, accepted in

PDPTA'13 - The 2013 International Conference on Parallel and

Distributed Processing Techniques and Applications.

IV. Dibyanshu Jaiswal, Sujoy Mistry, Arijit Mukherjee and Nandini

Mukherjee, “Efficient Dynamic Service Provisioning over

Distributed resources using Chord”, In International Conference on

Signal-Image Technology & Internet-Based Systems (SITIS), 2-5

Dec. 2013,Kyoto, JAPAN, Page(s): 257 – 264, INSPEC Accession

Number: 14064326 .

V. Sujoy Mistry, Arijit Mukherjee, Nandini Mukherjee, “Towards a

Dynamic On-Demand Service Grid Based on P2P Networks”,

Second International Conference on Emerging Application of

Information technology 2011, Kolkata, India 2011, p- 165 –

170,ISBN-978-1-4244-9683-9.

4. List of Patents: None

5. List of Presentations in National = International Conference :

a) Sujoy Mistry, Dibyanshu Jaiswal, Sagar Virani, Arijit Mukherjee and

Nandini Mukherjee, 'An Architecture for Dynamic Web Service

Provisioning using Peer-to-Peer Networks', In 9th International

Conference on Distributed Computing and Internet Technology, ICDCIT-

2013,KIIT, Bhubaneswar, LNCS 7753, p 290

b) Dibyanshu Jaiswal, Sujoy Mistry, Arijit Mukherjee and Nandini

Mukherjee, “Efficient Dynamic Service Provisioning over Distributed

resources using Chord”, In International Conference on Signal-Image

Technology & Internet-Based Systems (SITIS), 2-5 Dec. 2013,Kyoto,

JAPAN, Page(s): 257 – 264, INSPEC Accession Number: 14064326 .

c) Sujoy Mistry, Arijit Mukherjee, Nandini Mukherjee, “Towards a

Dynamic On-Demand Service Grid Based on P2P Networks”, Second

International Conference on Emerging Application of Information

technology 2011, Kolkata, India 2011, p- 165 – 170,ISBN-978-1-4244-

9683-9.

d) Sujoy Mistry, "Towards a Dynamic On-Demand Service Grid based P2P

Networks". Poster Paper Presentation at TCS Technical Architect's global

conference in Delhi on 3rd and 4th May 2012.

Abstract

The demand for distributed applications has been increasing since the birth

of internet. It has scaled geographical areas in search of information and

computational resources for processing. The recent developments in areas

like the grid, cloud and utility computing have enabled researchers in need of

compute power to utilize resources from a globally shared pool. The emer-

gence of Service Oriented Architectures and Web Services has contributed

to the development of several platforms for grid/cloud computing which of-

fer a new way to create loosely-coupled dynamic distributed systems. Thus

introduction of Virtual Organizations has added an impetus towards dis-

tributed applications by providing on-demand service provisioning. The

use of job-based paradigms and strong coupling of current service-based

paradigms with static registries such as UDDI hinder the achievement of

complete dynamism over volatile resources of the distributed frameworks.

A possible solution is the use of structured peer to peer overlay networks,

which has emerged as a means of sharing data and computing power where

the nodes act as peers of each other to keep a check on the resources as well

as handle the volatility of the system.

In this thesis, the architecture of a demand-driven web service deployment

framework is presented which allows sharing of data and computing ca-

pacity using p2p technology as its backbone. Thus the use of dynamic

peer-to-peer (p2p) techniques within a web service based framework intro-

duce the ability of the network to adapt to resource volatility which has

been already established in p2p-based content-delivery models. Consider-

ation of a service as well as user specification of resources for provisioning

consumer requests increases performance of the entire architecture. The

proposed framework also incorporates a proper load balancing approach

between the servers, thereby increasing the utilization of resources in the

networks.

One of the main focus of this architecture is decentralization of the reg-

istry. The distributed registry in the proposed architecture has been imple-

mented in such a way that it makes service discoverable form any part

of the network, increases the service availability, and provides a better

platform for handling the scalability of the framework. The use p2p file

sharing techniques within this framework reduces the overhead of fetching

the deployable code from the service repository and sharing it among the

deployed instances to carry out successive deployments. Thus, this the-

sis focuses on various issues such as resource availability, scalability and

abstraction. Demand-driven resource allocation is based on request param-

eters and availability of the resources to create the basis for a fully dynamic

virtual market place of computational resources.

Contents

Contents xi

List of Figures xv

List of Tables xvii

List of Algorithms xviii

1 Introduction 1

1.1 Distributed Computing . 3

1.1.1 Distributed Computing Architectures 4

1.1.2 Applications in Distributed Computing 5

1.2 Service Oriented Architecture (SOA) 6

1.2.1 Advantages of SOA . 8

1.3 Web Services . 8

1.3.1 Important Classification used by Web Services 9

1.3.2 Static vs Dynamic Web service Provisioning 10

1.4 Motivation . 11

1.5 Objectives . 13

1.6 Contribution . 14

1.7 Structure of Thesis . 15

2 Background and Related Work 16

2.1 Introduction . 16

2.1.1 Service Oriented Grid . 17

2.1.2 Benefits and Issues of SOA and Grid Combined 17

xi

CONTENTS

2.2 Architectures and Frameworks . 20

2.2.1 Approaches to Web Service Publication and Discovery 21

2.2.1.1 Centralized Approaches 21

2.2.1.2 Decentralized Approaches 22

2.2.2 Dynamic Service Deployment and Invocation 24

2.2.2.1 Centralized Approach : Dynamic Service Oriented Ar-

chitecture (DynaSOAr) 25

2.2.2.2 WSPeer . 27

2.2.2.3 P2PWeb . 29

2.2.2.4 Highly Available and Dynamic Deployment (HAND) . 30

2.2.3 Loopholes in the Existing Frameworks and Future Direction . . 31

2.3 Summary . 32

3 System Overview 33

3.1 Introduction . 33

3.2 Basic Requirements of the Framework 34

3.3 Overview of the Architecture . 35

3.4 Formal Description of the Framework 39

3.5 Functional Overview . 43

3.5.1 Network Establishment: Node Joining 46

3.5.2 Functioning of a Node: with p2p Based Communication Protocol 48

3.5.3 Decentralized Registry . 48

3.5.4 Publication and Discovery of Services 49

3.5.4.1 Requirements of Web Services and their Configuration 49

3.5.5 Resource Discovery . 51

3.5.5.1 Dynamic Requirements Matching Based on Basic Ser-

vice Requirements . 52

3.5.5.2 Load Balancing . 53

3.5.6 Scheduling Strategies . 54

3.5.7 Dynamic Service Deployments 55

3.6 Summary . 56

xii

CONTENTS

4 Dynamic Web service Discovery and Deployments using De-centralized

Registry 58

4.1 Introduction . 58

4.2 Approaches for Dynamic Web Service Discovery and Deployments . . . 59

4.3 Peer to Peer Networks . 63

4.3.1 Operations in p2p . 64

4.3.2 Advantages of Peer-to-Peer networks 65

4.3.3 Disadvantages of Peer-to-Peer networks 66

4.4 Distributed Hash Tables (DHT) . 66

4.4.1 Chord . 68

4.5 Chord-based Decentralized Registry . 70

4.5.1 The Registry Workflow . 71

4.5.1.1 Publishing a Web Service 72

4.5.1.2 Discoverying a Web Service 73

4.5.1.3 Binding with a Web Service 73

4.6 Summary . 76

5 Request Scheduling : A Load Balancing Approach. 77

5.1 Introduction . 77

5.1.1 Load Balancing Problem . 79

5.1.2 Dynamic, Static and Adaptive Algorithms 79

5.2 Load Balancing in the Proposed Framework 81

5.3 Resource Selection . 82

5.3.1 Concept . 82

5.3.2 Implementation . 83

5.4 Dynamic Load Balancing . 84

5.4.1 Overview . 85

5.4.2 Load Information . 85

5.4.3 Load and Load Threshold . 86

5.4.4 Implementation . 87

5.4.4.1 Gathering Load Information 87

5.4.4.2 Scheduling Strategies 88

5.5 Experimental Results . 88

xiii

CONTENTS

5.6 Summary . 91

6 P2P-Based Service Distribution: DynaTronS protocol 93

6.1 Introduction . 93

6.2 Enhancement of the Proposed Architecture 94

6.2.1 Bit-Torrent Protocol . 95

6.2.1.1 Operation . 96

6.2.1.2 Advantages and Disadvantages over Classical Downloads 97

6.2.2 Why Bit-Torrent? . 97

6.3 DynaTronS Deployment Protocol . 98

6.3.1 DynaTronS vs Bit-Torrent . 100

6.4 Downloading the Service Package . 101

6.4.1 Direct Download Mode . 101

6.4.2 P2P Download Mode . 102

6.5 Experimental Results . 106

6.6 Summary . 108

7 Conclusions and Discussion 109

7.1 Overview of the Thesis . 109

7.1.1 Dynamic Web Service Discovery and Deployments using De-

centralized Registry- Chapter 4 110

7.1.2 Request Scheduling : A Load Balanced Approach- Chapter 5 . . 110

7.1.3 P2P-Based Service Distribution: DynaTronS protocol- Chapter 6 111

7.2 Limitations . 112

7.3 Future Work . 113

Bibliography 115

xiv

List of Figures

1.1 SOA Interactions [1] . 7

1.2 Working of Web Services with WSDL, SOAP, XML. [2] 10

2.1 Process for service request in DynaSOAr Architecture [3] 26

2.2 WSPeer Architecture [4] . 27

3.1 Overview of the Architecture . 37

3.2 Basic Architecture as an Application 45

3.3 Components in the Architecture . 46

3.4 A sample Node Properties File . 47

3.5 A sample Web Service Configuration File 50

4.1 Chord Lookup Protocol [5] . 69

4.2 WSP Interface . 71

4.3 Service Request Types and Flow . 74

5.1 Load Balancing Model . 78

5.2 Static Load Balancing Model . 80

5.3 Dynamic Load Balancing Model . 81

5.4 Static Load Balancing Model . 83

5.5 Experimental results for Load Balancing 90

5.6 Dynamic Load Balancing Model . 92

6.1 File/Resource Sharing Models [6] . 96

6.2 Bit-Torrent Protocol . 98

6.3 Gather and Deploy Protocol . 99

xv

LIST OF FIGURES

6.4 Gather and Deploy Sequence Diagram 105

6.5 Experimental Results for Direct Download Mode 106

6.6 Experimental Results for p2p Download Mode 107

6.7 Experimental Results for Comparing p2p vs Direct Download Modes . 108

xvi

List of Tables

4.1 Service Request Types . 75

xvii

List of Algorithms

1 Algorithm for Service Change Event . 51

2 Algorithm for Best Node Finder . 52

3 Algorithm for Round Robin Reloaded (RRR) 89

4 Algorithm for Least Recently Used Reloaded (LRUR) 89

5 Algorithm for Minimum Loaded First (MLF) 91

6 Algorithm for Serial Chunk Distribution 103

7 Algorithm for Proportionate Chunk Distribution 104

xviii

Chapter 1

Introduction

“A distributed system is one in which the failure of a computer you didn’t even

know existed can render your own computer unusable.” —— Leslie Lamport

With each passing day distributed computing encompasses new distributed re-

sources connected through different modes of communication and enabling sharing

of data, sharing of cycle, sharing of storage, collusion of computing address etc. As

a matter of fact, with the growth of the inter-networking technology and the increase

in the number of computing nodes, the complexity of sharing resources within and

across enterprizes environment increased a lot. Many organizations now relying on

collaborative infrastructure which leads to significant cost reduction by distributing

their IT service requirements to various service providers. Although the fundamen-

tal distributed computing typically can handle heterogeneity, scalability, availability of

any distributed systems but these changing burden of excessive resources poses new

challenges for distributed application development and deployment.

As complexity of decentralization and sharing of resources in distributed environ-

ment are continuing it is important that, even with this diversity of resources there is a

need to obtain desired Quality of Service(QoS) as per the requirements of enterprizes,

service providers, or customer systems. There is a need for new concepts to allow the

applications to access services and share resources across distributed environment or

wide area networks, for better performance and other QoS metrics which are important

in a particular context.

Frameworks like grid [7] creates the basis of sharing and coordinated use of dis-

1

tinct resources within dynamic, distributed virtual organizations (VO) [8] that is,

the creation of virtual computing systems, by collaboration of remote resources op-

erated by distinct organizations with different protocols to deliver the desired QoS.

To support such VO environment, several tools, such as Globus [9], Condor [10] and

SunGridEngine [11] allow the construction of distributed applications over grid-based

resources. In order to satisfy the requirements, researchers have introduced many

different other architectural styles and standards, such as Service Oriented Architec-

ture(SOA) [12], peer-to-peer computing [13], grid computing and more recently cloud

computing [14] over the past decade to ease the cost of discovery, deployment and

maintenance, with varying degrees of success.

Although grid made it possible for the user to execute computationally expensive

jobs on remote resources, but for service discovery in globally distributed environment

with resource volatility, few challenges remain unsolved. In this context peer-to-peer

(p2p) computing has emerged as a means of sharing data and computing power where

the nodes act as peers of each other. This has resulted in the consideration of computing

grids based on p2p concepts as a new paradigm for developing new application for

solving large-scale problems in science, engineering, and commerce.

Continuing change in architecture, the applications have to be re-designed to be

composed of small software components, communicating and executing among the

different nodes over the network, to achieve a desired goal. These software components

have been called web services or simply services. To make such services readily available

to the users, some mechanisms for service discovery and deployment over the Internet

on top of physically distributed set of resources have become necessary. The service

discovery and deployment need to match the service requirements as well as user needs

and therefore have become a major challenge these days.

One major advantage of service-oriented framework over job based frameworks is

that once the service is deployed, it stays on the resource until explicitly removed and

the initial cost of deployment can be shared across multiple invocations. This is not

the case in job-based frameworks where once the execution is over, the job is removed

from the queue, and for each subsequent invocation, the execution code and data must

be resubmitted.

Traditionally, web services are hosted on fixed web servers and services are registered

and made available to serve requests from the service consumers. In such situations,

2

efficient service provisioning entirely depends on the capability of the web server and

consumer requests can be satisfied only if the web server has sufficient resources to

do so (that is web server is not overloaded). On the other hand, if the services are

not utilized at some point of time, web servers remain under utilized. In order to

overcome these bottlenecks, dynamic web service provisioning has been proposed by

the researchers [15] [16]. A three-tier architecture called DynaSOAr [3] is proposed

to provide a generic infrastructure and to offer a service-only approach for deploying

web services on demand and to exploit the computational resources offered by a host.

However, DynaSoAr is based on a centralized registry and therefore its performance

is degraded for large number of service requests. It also suffers from the problem of

single point failure.

Not only DynaSOAr, some other research works like WSPeer [4], HAND [16],

P2PWeb [17] etc. also suffer from the same bottleneck, limiting the service code to a

single site.

In order to overcome the above problem, this thesis focuses on the development of

a more distributed framework with an essence of sharing of data and computational

resources (also called nodes) by collaboration and communication among each other.

The framework is based on a p2p system. Since a p2p system is devoid of any centralized

resources and is adaptable to ad-hoc nature of volatile resources it can overcome the

bottlenecks of centralized systems.

This work presents the concepts of demand-driven deployment of services, and the

implementation of a non-centralized service registry which has been carried out in a

distributed environment. Decentralized service registry and resource discovery resolves

the scalability issue for handling a large number of consumer requests.

1.1 Distributed Computing

Distributed computing [18] is a field of computer science that studies distributed sys-

tems. A distributed system consists of multiple autonomous computers that communi-

cate through a computer network. The computers interact with each other in order to

achieve a common goal, such as solving a large computational problem. A problem is

divided into many tasks, each of which is solved by one or more computers. Basically,

distributed computing is the study of distributed systems which can characterized by :

3

• Platform independence : be capable of dealing with heterogeneous devices, soft-

ware stacks and operating systems in interpretable manner.

• Scalability : be easy to expand and scale

• Availability : be available all the time (even though parts of it may not be)

• Abstraction: hide communication from the users.

In a distributed system, there are several autonomous computational entities, each

of which has its own local (distributed) memory. Each such entity exchanges the

information by passing messages among themselves. Alternatively, each computer may

have its own user with individual needs, and the purpose of the distributed system is to

coordinate the use of shared resources or provide communication services to the users.

All the systems in the network have to tolerate failures on individual computers. The

structure of the system (network topology, network latency, number of computers)

is not known in advance. The system may consist of different kinds of computers

and network links, and the system may change during the execution of a distributed

program. An important goal of a distributed system is to hide the fact that resources

are physically distributed across multiple computers. A distributed system which is

able to present itself to users and applications as a single computer system is said to

be transparent.

1.1.1 Distributed Computing Architectures

Architectures of distributed computing differ with the shift in consanguinity of the

nodes. There are various design styles available to show the orientation of a dis-

tributed system [19], but the most important aspect is to make a divergence between

the logical orientation of the collection of software components and also the true phys-

ical organization. Thus the organization of distributed systems is mostly categorized

as follows:

• Software Architectures - describe the organization and interaction of software

components; focuses on logical organization of software (component interaction,

etc.)

4

• System Architectures - describe the placement of software components on phys-

ical machines. The realization of an architecture may be centralized (most com-

ponents are located on a single machine), decentralized (peer-to-peer: most ma-

chines have approximately the same functionality), or hybrid (some combination).

Till date different architectural styles have been established, of which some the

most commonly available distributed systems are:

1. Layered architectures

2. Object-based architectures

3. Data-centered architectures

4. Event-based architectures

Primary form of distributed architecture is the style of coordination and commu-

nicating the work within concurrent processes. There are numerous message passing

protocols available, but commonly a master/slave relationship exists and the processes

communicate directly with a central process. Another substitute way is to use a shared

database, a ’database-centric’ architecture can facilitate distributed computing to be

done without any mode of direct inter-process communication.

1.1.2 Applications in Distributed Computing

Several distributed applications continuously evolved for sharing of distinct resources

over the Internet which use vastly in real-life. Some of these applications are given

below:

• One of the important and hugely used application is telecommunication which

is based on distributed systems like Internet, cellular networks, different type of

wireless networks etc.

• Airplane control towers and different type of industrial applications are also based

on such computing.

5

Service Oriented Architecture

• Different kind of network applications are also based on this type of computing

such as WWW (World Wide Web), peer to peer networks, distributed databases

and many more.

• Distributed computing is also used with parallel computation in different appli-

cations such as. Scientific Computing and Data rendering in distributed graphics

etc.

1.2 Service Oriented Architecture (SOA)

Service Oriented Architecture (SOA) [12] is approach for building reliable distributed

applications where autonomous computational entities residing on distributed nodes

are exposed as services and can communicate between themselves by exchanging mes-

sages to perform a computational process. Such an architecture is built on the concepts

of loose coupling between interacting services allowing flexibility, scalability and fault

tolerance which are considered as pillars of a dynamic distributed environment. Inte-

grating different types of applications over a wide variety, of web based environments,

with the use of multiple platforms, SOA provides a great means of improving the reuse

of application logic while eliminating duplication of production environments. With

respect to the underlying concept, a service is considered as a software component

accessible by another software component or by a standard interface.

As shown in Figure 1.1 [1] of SOA at a very basic level, it uses a paradigm of

publish-find-bind-execute. This is characterized by three components namely:

Service Consumers/Client are the users who make request for a service via an

application.

Service Providers provides service as a functional unit to perform the application

specific task or a specified business logic.

Service Registry is a store of services available along with the records of the service

provider and corresponding interfaces.

Figure 1.1 illustrates a simple service interaction cycle where an organization or

service provider builds services and makes them discoverable over the Internet. They

6

Service Oriented Architecture

Figure 1.1: SOA Interactions [1]

register the service and hence publish the service information and interface in the Reg-

istry, making it discoverable. A client in search of a service, based on some criteria,

queries the registry in order to discover the service for its own use. The Client then per-

forms dynamic binding, to get a direct access of the service interface and its endpoint.

The service is then invoked by the client and is executed.

Thus, SOA provides an architectural approach where all the components imple-

mented in applications are accessed as modular services which commonly have the

following characteristics:

• Service Composability and re-useability - that means it can be used to compose

other services as well as to promote reuse of codes.

• Services communicate by the exchange of messages using well defined communi-

cation protocols.

• Services can perform in a function, where messages are sent and received in such

a form that affects the result of the processes performed by a service.

• Services are generally fully self-sufficient otherwise they need to depend on some

other resources such as database or they may depend on the availability of other

7

Web Services

services.

• Services promote all the specifications such as their interfaces, communication

protocols, capabilities, and other supported policies.

1.2.1 Advantages of SOA

SOA as an architectural style with appropriate implementation promises the following

benefits [20] :

• Applications are loosely coupled and are accessible from transparent locations.

• Provides higher scalability.

• Applications maintain interoperability using consistent connectivity between them..

• Better reuse of existing modules of business logic and reduces the cost of appli-

cation development and integration.

• For service provisioning much limited dependency on vendors.

1.3 Web Services

Web services are software entities which allow communication between application

over the Internet to exchange information in the form of extensible Markup Language

(XML) [21]. Unlike browsing web pages from web servers, web services typically define

business objects that execute a unit of work (e.g., perform a calculation, read a data

source, etc.) for the consumer and wait for the next request. However the back end

implementation is completely independent from the consumer. Actually web services

publish its functionalities and interface using WSDL [22], SOAP [23], and UDDI like

standard protocols. Two main characteristics of web services are their re-usability

and loosely coupled nature. Each web service is accompanied with a Web Service

Description (WSD) - a machine processable specification of the web service written in

WSDL, defining the message formats, datatypes, transport serialization and protocol

formats to be used between the service provider and the client.

8

Web Services

1.3.1 Important Classification used by Web Services

A service can be described, discovered and invoked using standardized XML technolo-

gies in the current web services technology stack. There are four main components:

XML (eXtensible Markup Language) is standard way to describe data and an

easy way to create information formats and electronically share structured data

via communication network such as Internet.

SOAP (Simple Object Access Protocol) is an XML-based messaging protocol for

exchanging information among computers.

WSDL (Web Services Description Language) defines an XML schema for de-

scribing a web service. A WSDL document describes a web service as a collection

of abstract items called ’ports’ or ’endpoints’.

UDDI (Universal Description and Discovery Integration) standard provides a

mechanism for businesses to ’describe’ themselves and the types of services they

provide and then register and publish themselves in a UDDI Registry. Such pub-

lished businesses can be searched for, queried, or ’discovered’ by other businesses

using SOAP messages.

A web service is a paradigm of an SOA with a clear-cut set of implementation

choices. Normally the technology preferences are SOAP and the Web Service Defi-

nition Language (WSDL) which are XML-based. WSDL describes the interface (the

’contract’), while SOAP describes the data that is transferred. Figure 1.2 [2] illustrates

the use of WSDL. The steps involved in providing and consuming a service are:

1. A service provider describes its service using WSD file written in WSDL. This

definition is published to a directory of services. The directory could use Universal

Description Discovery and Integration (UDDI). Other forms of directories can

also be used.

2. A service consumer issues one or more queries to the directory in order to locate a

service and determine how to communicate with that service, i.e. to fetch WSD.

9

Web Services

Figure 1.2: Working of Web Services with WSDL, SOAP, XML. [2]

3. Part of the WSD provided by the service provider is passed to the service con-

sumer. This tells the service consumer what the requests and responses are for

the service provider.

4. The service consumer uses the WSD to send a request to the service provider.

5. The service provider provides the expected response to the service consumer.

1.3.2 Static vs Dynamic Web service Provisioning

Web services provisioning is the procedure of attaching specific services to the funda-

mental functions of business processes. It represents an advantageous outline where

services are dynamically discovered and invoked in a business process following their

functional and non-functional proficiency. Hence, as a software unit web services need

a platform or resources where it can be executed and the result will be returned. It

may be possible that some of the applications or services will need extra resources

which can be either provided by the provider itself or may be rented from third party

resource provider. Thus, depending on how the web service is made available, there

can be two methods for web service provisioning :

10

Motivation

1. Static web service provisioning - Web Services are ready to use after the

publication and deployment at more than one nodes. In such case, it may possible

that the services are deployed at more than one locations and made ready to use

after the publication. Such a policy may lead to very wasteful use of the resources

and if the deployed instances has no consumer requests, the resources may remain

under-utilized. On the hand, it may also be possible that there is huge increase in

the consumer demand and the existing deployments fail to serve all the consumer

requests.

2. Dynamic web service provisioning - Hence, the notion of deploying a web

service on the basis of demand is followed. The web services are published over

the Internet, no matter weather they are deployed or not. A consumer is capable

of making a request for any of the service which is then followed by the decision

of making appropriate deployments providing a cleaner and efficient use of the

resources. In such a scenario the services presently in use only bear the cost

of deployments. Not only this, once the service is deployed, it can be used by

many consumers. Successive new deployments are made if the present deployed

instances fail to provide a desired QoS. Similarly the services may be undeployed

if the consumer demand subsides.

On comparing the above two techniques it may be observed that while static provision-

ing suffers from unconventional use of resources, it requires less overhead of resource

managements in real time decision making process. On the other hand dynamic pro-

visioning of services provide a better approach towards utilization of resources, though

it involves extra overhead of monitoring the resources with time.

1.4 Motivation

Continuous advancement in distributed system increases association between remotely

established distributed organizations which leading to newer challenges such as pro-

viding support for heterogeneity, scalability and availability in distributed computing.

Researchers continuously made improvements to cope up with these challenges, thus

some of the improved technologies like SOA, grid, cloud comes forward as major in-

novations and have been recently used by several organizations to provide solutions to

11

Motivation

these challenges. Further advancement of the Internet creates the opportunity to reuse

available online resources and also helps some of the popularly used technologies like

grid, p2p and recently cloud to come out from the conventional nature of distributed

computing for sharing resources among remotely distributed nodes. The emergence of

the service-oriented model and Web Services paves the way for development of several

grid and cloud computing platforms with a new approach for creating loosely-coupled

dynamic distributed systems.

Initially distributed applications were divided into two categories- Client/Server

model, i.e, centralized systems and decentralized systems better known as Peer-to-

Peer systems. The boundaries between them were not crystal clear because classifying

a system among the above two categories were determined based on the modes of

discovery, availability and communication among the nodes or resources. Among the

above three factors, discovery and availability decide the degree of centralization or

decentralization of the system. Distributed applications in the context of web services

which use XML specifics for its representation, advertisement WSDL [22], discovery

and communication SOAP [23] use a centralized database called the Registry of web

services maintained by UDDI [24] - a service discovery protocol. Hence we find a strong

coupling of SOA framework with a centralized system leaving it vulnerable to single

point failure of centralized systems. There have been various attempts to overcome this

problem by replication of the information over multiple sites, but they fail to provide

robust solutions with respect to scalability of the system as it incurs a lot of overhead

to maintain the consistency of the system. Hence a system which can be scalable, fault

tolerant and which can further increase the availability of the web services stands as

one of the major motivation for this research.

Convergence of p2p and SOA opens up a new dimension to the evolving distributed

computing frameworks by adding functionalities to deal with dynamic changes of re-

sources during service discovery and service deployment.

There have been lot of research works in the area of web service/ resource publi-

cation and discovery and dynamic service deployment like DynaSOAr [3], WSPeer [4],

HAND [16], P2PWeb [17] etc., which fail to exploit the basic advantages enabled by

different computing technologies such as peer-to-peer computing, grid computing and

recently cloud computing. It is believed that working on the three main agenda of

publish-find-bind of web service technologies and blending them in p2p networks can

12

Objective

bring better performance results to meet the requirements on demand for dynamic

service deployment framework with respect to availability, scalability, volatility of web

services and other resources. Moreover, since grid computing enables us to geograph-

ically distributed resources for a single application. A collection of such ready to use

resources at disposal, provided by Virtual Organizations (VOs) can prove to be ben-

eficial for hosting the services, managing them and providing a good QoS as per the

policies of grid environments. Hence, a grid providing a back end for a service oriented

framework can facilitate dynamic provisioning of services.

1.5 Objectives

The objective of this thesis is to provide a distributed architecture which is reliable

for consumers, flexible in terms of performance requirements, scalable and adaptable

towards the volatility of resources available in distributed environment like grid or

cloud. In this research a fully distributed SOA-oriented framework is introduced that

offers loose coupling, robustness, scalability, availability and extensibility for large-scale

grid systems.

One of the major challenges in research on SOA-centric distributed systems are

resource/service discovery and on-demand deployment of computational entities (jobs

or services) on dynamically acquired resources.

In relation to the objective stated above, this thesis focuses on proposing an ar-

chitecture for provisioning Web Services in a distributed environment based on a de-

centralized, peer-to-peer (p2p) network. The thesis considers to bring in the following

new possibilities in the perspective of distributed computing merging it with the ad-

vancement of SOA and web services technologies as stated below:

• Peer-to-peer communication between the nodes in the system so as to facilitate

scalability and fault tolerance over the resources.

• Enabling on-demand provisioning of web services among resources available based

on some minimum resource requirement to deliver better QoS.

• De-centralizing the registry of services among the available peers in the network.

13

Objective

• Scheduling the consumer requests in the host environment, thereby balancing the

load among the available resources.

• Minimizing the traffic to the service repository/service provider.

1.6 Contribution

The contribution of this thesis is towards the overall design and evaluation of a service-

oriented distributed system that exploits dynamic deployment of web services. This

thesis aims at providing an integrated framework which supports dynamic web service

provisioning in a p2p based service oriented distributed environment. The distinguish-

ing features of this framework in comparison with other systems are:

• A robust framework adaptable to the volatile nature of the nodes in the network.

• Services as well as the service requests can be categorized as per service and

user specifications to opt for the execution environments to achieve better per-

formance.

• A proper approach towards balancing the load of the servers as well as serving

consumer requests for better utilization of resources available in the grid.

• A distributed registry to fulfill the purpose of service publication and discovery

thereby increasing the service availability at the same time.

• Reducing overhead of fetching the deployable code from the service repository and

sharing it among the deployed instances to carry out successive deployments.

This thesis thoroughly investigates various aspects of dynamic web service pro-

visioning within a distributed framework where dynamic service discovery over the

geographically distributed area and resource volatility still considered as a serious is-

sue. In this context this thesis introduces a p2p-based architecture which not only tries

to take advantage from dynamic peer-to-peer framework but also comes forward as a

means of sharing resources and gives a complete dynamic nature. The work builds on

two main approaches described in the thesis - managing the services and resources us-

ing a decentralized p2p Protocol and the Dynamic Torrent Service deployment protocol

(DynaTronS) for dynamic or demand-driven service deployment.

14

Structure of Thesis

The main pillar in the proposed architecture is the concept of deploying a service

only when it is required using p2p as its backbone. As opposed to job-based grid

frameworks, the deployment cost in this case is one-time, and is shared across multiple

invocations of the service. In this approach the idle resources in the network are used

via service deployments on the basis of their capability and load factors. The resulting

DynaTronS protocol is a unique concept of dynamic on-demand service deployment

using Bit-torrent-like p2p file sharing (Bit-torrent) framework. This technique enables

handling the resource volatility of the nodes/peers in the network maintaining the

consistency in the architecture to serve its purpose. Simplicity, ease of use, effective

use of bandwidth makes the proposed architecture suitable for deploying large, highly

computational intensive services over the Internet. Unlike typical network scenarios

where a high demand for a resource can create a bottleneck thereby degrading the

performance of the entire network, the techniques proposed here can actually improve

the performance of the network.

1.7 Structure of Thesis

The thesis is divided into chapters discussing the different aspects in detail. Chapter 1

provides introductory overview with necessary background by giving a brief description

of the related technologies. Chapter 2 provides a background studies about the present

scenario and surveys a range of projects providing provisioning of web services. Chap-

ter 3 describes the basic architecture of the proposed framework. Chapter 4 provides

a different approach to facilitate the SOA framework with a registry in a completely

decentralized fashion. Chapter 5 puts emphasis on balancing load of the resources in

the fframework. Chapter 6 presents a unique approach towards deploying the services

by utilizing all the deployed instances for faster deployments. Chapter 7 provides a

conclusion and discusses the future prospects of the thesis.

15

Chapter 2

Background and Related Work

2.1 Introduction

The popularization of the Internet has made it possible for users to consume glob-

ally distributed services, which has also increased the use of internet resources. Dis-

tributed applications have undergone a lot of changes after the introduction of service-

orientation and web services within the distributed environment using standards like

WSDL [22] for service description and SOAP [23] for message communication. Use-

fulness of web services increases significantly because of its re-usability and loosely

coupled nature. The emergence of Service Oriented Architectures and Web Services

has contributed to the development of several platforms, like grid/cloud computing

which offer a new way to create loosely-coupled dynamic distributed systems. Inte-

grating peer-to-peer (p2p) based distributed architecture with frameworks based on

Service Oriented Architecture (SOA) and Web Services [12] is emerging as a power-

ful technology for different industry standard applications. Virtual organizations built

over grids allow collaborative sharing of computational and data resources over a wide

area network. To support this, several tools, such as Globus [9], Condor [10] and

SunGridEngine [11] allow the construction of distributed applications over grid-based

resources. Researchers have introduced many different architectural styles and stan-

dards, such as web services, REST over the past decade to ease the cost of discovery,

deployment and maintenance, with varying degrees of success.

This chapter explores the background behind the thesis concentrating on the work

16

SOA Meets Grid

relevant to the dynamic discovery and deployment over service oriented architecture dis-

tributed framework. It looks into the service-orientation and available service-oriented

technologies, preliminary concepts on grid and its problem, SOA, web services, p2p

within the grid and cloud context.

2.1.1 Service Oriented Grid

Service Oriented Architecture introduces a conceptual framework for increased inten-

sity on the application layer, but modular services need much better hold of the en-

terprize resources for actual implementation during its execution. SOA has no role

in formulating the distribution of processes and management of enterprize resources

although it uses common Internet protocols to enable interoperability. However, col-

laboration between the advantages of SOA and goals of grid computing following rapid

advances in web service technology opens up new platform for architecture like grid to

service-oriented, standardized, enterprise-class grid for future [12].

Grid Computing supplement SOA by allowing virtualization of data and resources

along with the necessary mechanism to achieve flexibility in monitoring and discovery

of resources. Grid provides an effective collection and management of distributed

resources providing a suitable infrastructure to meet the needs of SOA concept [20].

For execution of a computational logic (i.e. a service), an enterprize must have a

proper command of resources making them available as and when needed. Hence, a

fusion of grid, seeking management of resources when combined with service-oriented

framework, all build in one box can help creating a successful SOA. Conventional grid

environments work with only few specifically designed application running on dedicated

servers. Expanding the boundaries with increase in applications may reflect a scenario

similar to SOA framework. On coalition of SOA with grid [25], the enterprizes will

have to deal with a huge amount of services spanning a large number of resources,

which can be well handled by utility grids.

2.1.2 Benefits and Issues of SOA and Grid Combined

An architecture developed on the premises of grid, while implementing the SOA frame-

work can help us to achieve the following benefits [20]:

17

SOA Meets Grid

• Flexibility of the applications with independence towards platforms for execution.

• Usage-based accounting and control for global management of services and work-

load distribution.

• Dynamic provisioning of service based on easy adaptable load balancing mecha-

nisms.

• Rapid development and deployment of services due to inherent nature of service

orientation and virtualisation.

• Reduction in cost over easy management of resources.

Collectively SOA and grid can be thought of as complementary to each other. While

grid offers a complete framework for distribution of information and resources which is

one of the key features for SOA, at the same time SOA offers an modular approach for

grid architectural solutions by offering software mobility which is well suited for the

dynamic nature of grid environments. However, there can be certain inherent issues to

be dealt in such a integrated approach as enlisted below [20]:

• Security of the services - the provider of a service may or may not wish to

share the service with other organisations. Migration of the service code to a host

should involve secure transmissions. The hosts where deployments are carried out

must be trustworthy, to prevent any unwanted use of the service.

• Policies of management - management policies are required for service de-

ployments and use of services should be figured out. The underlying cost model

should also be well defined.

• Maintaining the QoS - QoS are to maintained for its prospective clients.

• Communication protocols - protocols are adopted for inter and intra node

communication of resources to achieve interoperability of the services

• Platforms and environments - several issues also come up while deciding

platforms and environments for execution of the services.

18

SOA Meets Grid

• Monitoring resources and load - health of resources and their loads must be

monitored regularly for better performance of the system and also the volatile

nature of the resources must be taken into account.

The above issues may be dealt with effectively with the availability of appropriate

standards, techniques and tools. There are many standard bodies and agencies such as

Open Group Services Infrastructures (OGSI) [7], Global Grid Foundation (GGF) [26],

World Wide Web Consortium (W3C) [27], Organization for Advancement of Struc-

tured Information Standards (OASIS) [28], which contribute towards defining various

standards and implementing toolkits. For example,

• OGSA(Open Grid Services Architecture) uses the web service technology to ren-

der grid services and hence defines their behavior, description styles, communi-

cation protocols such as XML, WSDL and SOAP.

• Globus Toolkit [29] provides by IBM an approach towards resource management,

data management and information services, providing a base for developing ser-

vices and applications.

Though SOA and grid share the same objectives, SOA can virtualize services and

business processes. On the other hand grid virtualize and manages hardware resources

depending on the present needs, they both can use same technologies (XML, WSDL,

SOAP, UDDI) complementing each other. Such an integrated approach of SOA with

grid can be a treated as a Computational Market Place. Though grid environment

itself implements the concept of pay per use, specially in the case of utility grid en-

vironments [30] [31], leveraging computational resources on demand can be beneficial

for provisioning/hosting services. From the SOA perspective, services are implemented

with well defined business logic with small granularity. Hence, these services can be

used by various applications or other services. These services can work as a new

paradigm for the business model, encouraging IT industry for development of cost

effective service modules in terms of execution times, security, low communication

overheads of the services. Not only this, every invocation of a service can be associated

with a charge to be paid by the consumer. Depending on QoS, the charges may vary

within some specified range.

19

Architecture and Frameworks

In recent times, there have been several approaches to build architectures to imple-

ment SOA-driven frameworks. Though these architectures follow the notion of publish-

find-bind technology,they have undergone changes in trends of implementation. Dur-

ing the early days of implementation, service publication and discovery were achieved

through UDDI (Universal Description, Discovery and Integration) [24] protocol.UDDI

is an XML based, platform independent registry, to locate web services over the In-

ternet. It is an open industry initiative defined by OASIS. A provider publishes the

WSDL of a given service to UDDI, which could be used by a prospective client and

hence bind to the service. However, UDDI due to its centralized nature, suffers from

single point failure and remains a bottleneck for the architectures adopting UDDI. OA-

SIS have tried to refine such technicalities by de-centralizing the UDDI registry over

multiple sites. Nevertheless accomplishing a fully de-centralized registry has not been

successful.

Even distributed framework like grid, service or resource discovery and deployments

over the widely spread distributed environment dynamic decentralization has not been

successful. Thus a shift towards the upcoming concepts in computing technology such

as peer to peer(p2p) computing and cloud computing has also been observed. These

computing technologies not only help in carrying out deployments in an efficient manner

but also enrich the framework with there specialities making them different from the

existing grid environments.

In the rest of this chapter, the discussion on the different architectures and frame-

works developed prior to this work providing different approaches towards service de-

ployments.

2.2 Architectures and Frameworks

In recent years, distributed applications have experienced a lot of changes after the in-

troduction of SOA. Web services being the model for implementation have provided a

diverse set of approaches towards its discovery and deployments abiding to SOA frame-

work. Key research for Service Oriented Computing is focused on convergence of p2p

and web services for service discovery. These paradigms can add a new dimension to

the evolving grid computing framework by adding functionalities to deal with dynamic

changes of resources during service discovery and service deployment. In particular

20

Architecture and Frameworks

DHT based p2p systems like CAN [32], Chord [33], Pastry [34], Tapestry [35] can

overcome disadvantages of early p2p systems like Gnutella [36] and Napster [37] and

provide efficient and effective service discovery mechanisms. There have been lots of

research work for web service publication and discovery and deployment. In the liter-

ature, mainly two types of approaches are considered for service publication, discovery

and deployments, these are:

• Centralized

• Decentralized

2.2.1 Approaches to Web Service Publication and Discovery

2.2.1.1 Centralized Approaches

In the early of stage of Internet, when Information Technology market started to grow

rapidly, Prof. J Yannis Bakos, in the year 1997 has proposed a strong approach towards

electronic market place in his paper [38]. He has attempted to build up a model for

searching services over the network in a cost effective manner. Actually his work

inspired us to think that service discovery over the Internet in a cost effective way is

one of the major issues for virtual IT market place. After that several frameworks were

proposed to increase the ability for rapidly locating useful on-line services.

Earlier service retrieval techniques were simply based on table-based approaches

for matchmaking between tasks and on-line services. JiniTM [39], eSpeak [40], Salu-

tation [41], UDDI/WSDL use this approach. Keyword based web service search also

seems to be back dated, because, it does not fully support the underlying seman-

tics of web services [42]. Generally, WSDL which is a simple web service description

language with standard UDDI registries support this kind of keyword based search.

Semantic web service has been supported by ontology based language like OWL-S [43].

WSMO [44] is another popular web service language for semantic web services. There

are mainly two type of registries which match industry standard, one is UDDI and

another is Universal Business Registry (UBR) [45]. Although UDDI has been used by

different industry standard mechanism for service discovery but both of these registries

i.e. UDDI and UBR are fully centralized and often the problems faced by them include

single point failure, low availability, low accuracy, and bad performance. A quality

21

Architecture and Frameworks

driven centralized discovery approach uses Web Service Broker (WSB). In this model,

service providers publish service information in the UDDI or search engines. WSB

performs the tasks of gathering web services spread over the web with the help of the

UDDI registries and also monitors their behavior based on various Quality of Service

(QoS) metrics automatically without needing any human intervention. Its interface

allows clients to express appropriate service queries based on its QoS. When clients

receive responses regarding availability of services, they can invoke services. A refine-

ment of the above proposed model uses Web Service Crawler Engine (WSCE) [46], a

crawler that can capture service information from various accessible resources over the

Web like search engines and service portals, to help in searching of web services on the

Web.

Centralized approach mainly focuses on discovering web services through a cen-

tralized UDDI registry. Centralized registries can provide effective methods for web

service discovery, but they suffer from problems associated with centralized systems

such as single point of failure, and delayed delivery of notification for updated ser-

vice description. Above issues merging with other issues relating to the scalability of

data replication and handling versioning of services from the same provider are driving

researchers to find other alternatives.

2.2.1.2 Decentralized Approaches

As Internet grows, number of available services also increases rapidly and thus handling

those services through a centralized process seems to be quite impractical. So, in the

past few years researchers concentrate to develop decentralized registries which are

more reliable, more scalable and more flexible compared existing centralized registries.

From this perspective, p2p comes forward as a suitable platform for the web service

discovery in a distributed manner because it offers interesting technical aspects like

decentralized control, self organization, adaptation and scalability.

Decentralized approaches are used to overcome the problems associated with cen-

tralized systems. There have been attempts to decentralize the existing UDDI reg-

istry, by replicating the web service information over more than one sites. UDDI over

JXTA [47] and UDDI on top of DHT were among the few successful outcomes in this

context. But the major drawback of such decentralization has been maintaining the

22

Architecture and Frameworks

consistency over the replicated instances and synchronization between them.

Several systems to exploit DHT-based p2p approaches for resource discovery in grids

have been proposed. Two important issues investigated by these systems are range

queries and multi-attribute resource discovery. Range queries look for resources speci-

fied by a range of attribute values (e.g., a CPU with speed from 1.2GHz to 3.2GHz).

These queries are not supported by standard DHT-based systems such as Chord, CAN,

and Pastry. To support range queries over DHTs, a typical approach is to use local-

ity preserving hashing functions that retain the order of numerical values in DHTs.

Multi-attribute resource discovery refers to the problem of locating resources that are

described by a set of attributes or characteristics (e.g., OS version, CPU speed, etc.).

Several approaches have been proposed to organize resources in order to efficiently

support multi-attribute queries. Some systems focus on weaving all attributes into one

DHT or one tree. Some others adopt one DHT for each attribute [48].

In some approaches Gnutella-based dynamic query strategy is used to reduce the

number of messages generated by flooding. Instead of all directions, this strategy

forwards the query only to a selected peer. If a response is not returned from a direction,

another round of search is initiated in the next direction, after an estimated time. For

relatively popular contents, this strategy significantly reduces the number of messages

without increasing the response time. Broadcast in DHT-based p2p networks adds

broadcast service to a class of DHT systems that have logarithmic performance bounds.

In a network of N nodes, the node that starts the broadcast reaches all other nodes with

exactly N - 1 messages (i.e., no redundant messages are generated). Some approaches

proposed for dynamic resource discovery uses a DHT for broadcasting queries to all

nodes without redundant messages, and adopts a similar incremental approach for

dynamic query. It reduces the number of exchanged messages and response time.

Below here a few architectures which try to provide web services with decentralized

registry approaches are discussed

Searching and publishing web services have brought forward a new direction by

introduction of ontology. Introduction of DAML-S [49] allows to create ontology which

makes it possible to search web services not only based on keywords but also by its

content. Most of the distributed systems have been so far developed based on p2p archi-

tecture for semantic web services and they use otologies for automated service discovery,

such as Hypercube ontology-based p2p system [50] and Speed-R [51]. Recent p2p sys-

23

Architecture and Frameworks

tems like CAN, Chord, Pastry, Tapestry use distributed hash tables (DHT) as their

basic component to create the peer-to-peer network and provide new favorable service

publishing and discovery mechanism for Web Services. Japster [52], CoDiP2P [53],

SpiDeR [54] are some well known works in respect to collaboration of p2p and web

services.

2.2.2 Dynamic Service Deployment and Invocation

Many of the current research works target to improve searching for web services. How-

ever, not much work has been done for service deployment. Very recently, collaboration

peer-to-peer (p2p) based systems with frameworks based on Service Oriented Architec-

ture (SOA) and web services are emerging as powerful technology for different industry

standard applications, specifically in the context of grid computing. Among different

architectural styles of service orientation, the web service model is a popular form.

Large-scale grid computing environments use different standard mechanisms like the

Open Grid Services Architecture (OGSA) [8] and the Web Service Resource Frame-

work (WSRF) [7] for creating Virtual Organizations (VO) meant for secure resource

sharing among several users. This research focuses on combining the advantages of

p2p network within a WS-based grid computing framework. Dynamic deployment of

services is considered with utmost importance in grid or cloud frameworks to allow

services to be deployed on the fly on available resources. This can be compared to job-

oriented frameworks as in Condor [10], where jobs are submitted to a Condor master,

which schedules the actual execution on one or more suitable resources. One advantage

of dynamic service deployment over a job-based framework is that once the service is

deployed, the deployed cost can be shared over many invocations of the service till the

service is explicitly removed, whereas, in case of jobs, once the execution is over, it

is removed from the Condor queue, and each subsequent execution requires the exe-

cution code and data to be resubmitted to the cluster. Projects like DynaSOAr [3],

WSPeer [4] , HAND [16] provide an infrastructure where services can be dynamically

deployed on-demand over a distributed network thereby creating an ad-hoc computa-

tional Grid. In the next following section, a brief description of some of the systems is

given-

24

Architecture and Frameworks

2.2.2.1 Centralized Approach : Dynamic Service Oriented Architecture

(DynaSOAr)

Distributed job scheduling systems that can dynamically route client jobs to remote

computing resources for execution are now widely available (e.g. Condor, Globus,

SunGridEngine), and used by most Grid computing infrastructures. The job - a com-

bination of code to be executed and the data on which it is to operate - is created by a

client and submitted to distributed job scheduling systems which route it to a suitable

host with sufficient the resources available to execute it. In recent years, an appli-

cation is represented as a set of services using widely accepted standards like WSDL

that communicate through the exchange of messages using protocols like SOAP. Dy-

naSOAr project is a service-only approach that promotes service-oriented application

design free of the job abstraction. It automatically deploys a service on an available

host if no existing deployment is found, or if performance requirements cannot be met

by existing deployments. A key feature of the architecture is that it makes a clear

separation between two tires of it- namely, Web Service Providers, who offer services

to consumers, and Host Providers, who offer computational resources on which services

can be deployed, and messages sent to them are processed. These components are sup-

ported by Service Repositories that hold deployable versions of services, and Brokers

that decide to which of a set of Host Providers a message should be routed.

DynaSOAr infrastructure is based on Tomcat/Axis for deployment of web services

and GRIMOIRES [55] as the UDDI registry for serviced discovery. All these com-

ponents are themselves realized as loosely-coupled web services, so enabling a wide

range of deployment options. This approach has the potential to provide three main

advantages over existing approaches that utilize both jobs and services:

1. It simplifies the development of applications and services by allowing designers

and program developer to work entirely in a service-oriented framework;

2. It can improve performance by retaining the deployment of the code (in this case

the deployed service) on a host. This allows the deployment cost to be shared

over the processing of many messages sent to the service. In contrast, because

jobs represent self-contained, often one-off executions, job schedulers lack the

ability to share the cost of movement and installation of code across multiple

executions; and third us,

25

Architecture and Frameworks

(a) Existing Deployment (b) New Deployment

Figure 2.1: Process for service request in DynaSOAr Architecture [3]

3. The clear distinction between Service Providers and Host Providers enables new

organizational/business models.

DynaSOAr provides a generic infrastructure for the dynamic deployment of web

services. This is achieved by dividing the handling of the messages sent to a service

between two components - a Web Service Provider (WSP) and a Host Provider (HP)

- and defining an interface through which they interact. The Web Service Provider

accepts incoming SOAP messages sent to an endpoint associated with a particular ser-

vice and is responsible for arranging their processing. It does this by choosing a Host

Provider and forwarding the SOAP message to it together with any associated Quality

of Service (QoS) information. The Host Provider controls computational resources (e.g.

a cluster or a grid) on which services can be deployed and messages to be processed.

It accepts SOAP messages from the Web Service Provider (along with any associated

information). If a response is generated after the processing of a message, the Host

Provider returns it to the Web Service Provider.

Some of De-centralized approach for web service Deployment are discussed in the

following section:

26

Architecture and Frameworks

2.2.2.2 WSPeer

WSPeer [4] provides an interface for hosting and invoking web services. It allows appli-

cation code to work with potentially varying and evolving service architectures while

maintaining a consistent interface. Figure 2.2a [4] shows how WSPeer sits between

application code and remote services acting as both buffer and interpreter. WSPeer

has three main aims:

• To act as a complete interface for both publishing and invoking services, enabling

applications to expose themselves as service oriented peers.

• To be applicable to a variety of network architectures including standard Web

service architectures using technologies such as UDDI and HTTP, and p2p style

networks.

• To be flexible and extensible, allowing users to develop application specific service

capabilities of their choice.

(a) WSPeer Structure (b) WSPeer - Tree of Interfaces

Figure 2.2: WSPeer Architecture [4]

27

Architecture and Frameworks

WSPeer is constructed as a Tree of Interfaces (Figure 2.2b) [56]. Server side is

responsible for publishing the web service as well as deploying the service when required.

Whereas the client side is responsible for searching and invoking the web service. The

main aim of the tree structure and the corresponding event driven notification system

is to keep the elements of the tree loosely coupled, so as to allow individual nodes in

the tree be replaced either at runtime or as part of a new implementation without

disrupting the overall structure. WSPeer currently has two implementations. The first

uses standard web service technologies with UDDI registry. The second uses a p2p

framework called Peer-to-Peer Simplified(P2PS) [57].

HTTP/UDDI Implementation [58] [59] makes use of the standard technologies.

Service Locator on the client side searches the UDDI registries for services after which

a remote endpoint is invoked directly. The server side implementation launches a

HTTP server that listen for requests. The server is launched once the application has

deployed a service. The service publisher on the server side publishes the service to

the UDDI registry.

P2PS Implementation makes use of a framework called Peer-to-Peer Simplified

(P2PS) [57] and uses attribute based search as opposed to traditional key based search.

P2PS uses XML to expose peers and services to the network. P2PS peer use abstract

unidirectional communication channels called pipes. Such a level of abstraction is used

as the peers are identified by their logical id instead of their physical addresses. Service

publication and discovery follow a different pattern where peers broadcast there service

information to other peers as advertisements to indicate a valid endpoint. Peers even

search for a service by broadcasting messages to other peers. Another peer possessing

the service, it returns an advertisement for a pipe which can be used to connect to the

service. Both implementations have their own limitations. In case of HTTP/UDDI

implementation, WSPeer suffers due to the tightly coupled UDDI registry. As a given

node/peer in the system can act as both a client as well as service provider, a service

may not be available to the system if the peer is not up, i.e. the peer is currently not

in the network. Since P2PS implementation requires unidirectional pipes as it abstract

communication channels, WSPeer requires two different pipes for both request and

response. Also publishing a new web service and discovery of web service require a

broadcast message hence leading to high network traffic. For a search query made of

a service which is not available, no response is returned, hence keeping the client in

28

Architecture and Frameworks

waiting state.

2.2.2.3 P2PWeb

P2PWeb [17] is one such infrastructure which gets its instinct for the de-centralizing

approach towards UDDI registries whereas providing high availability of web service

deployment infrastructure. The three main motives of P2PWeb are as follows:

• easy integration of web services into P2PWeb network,

• secure and de-centralized web services deployment,

• transparent location, load balancing and fault-tolerant p2p mechanism.

It aims at providing an easy way for developers of web services, to create them and

just deploy them in the P2PWeb network. The infrastructure provides de-centralized

structured p2p network, where every peer hosts a lightweight web server to permit

deployment of web applications and services. P2PWeb platform has its foundation from

middleware infrastructure to support peer-to-peer web application services, based on

Distributed Remote Objects (Dermi) [60], a Component Model (P2PCM) [61] and Web

Services Infrastructure (P2PWeb SOA). On top of such middleware, it provides a SNAP

P2PWeb platform - a web application infrastructure over structured overlay network,

by which developer can easily deploy any kind of J2EE compatible web application onto

a worldwide structured peer-to-peer network. P2PWeb makes use of a decentralized

registry D-UDDI [62], following a tag-oriented keyword based model for publishing the

web service in the network. To provide a packaging model for web services, it offers

P2PWeb service running on top of overlay network. After a P2PWeb service is deployed

as one or more instance managed by P2PCM, it generates a P2PURI corresponding

to it. A decentralized locator is used by the service provider to publish the service

to the registry. A client requiring a p2pWeb service searches the registry, and the

decentralized registry locates the service in the p2p network. Once the client obtains

the P2PURI of the web service, it uses a p2p naming service provided by Dermi to

resolve the specific endpoint and then binds to the service. The p2ps naming service

resolves the P2PURI to make the closest instance available for the client.

In spite of the advantages promised by the infrastructure, it provides the services

on the premises of static deployment made during publishing the service. In such a

29

Architecture and Frameworks

scenario, a service may lay uselessly deployed even if it has no client requests to serve.

Further p2pWeb employs a fully Java-centric approach abiding to J2EE platform.

2.2.2.4 Highly Available and Dynamic Deployment (HAND)

HAND [16] is highly available and capable dynamic deployment functionality based on

the Java Web Services Core of Globus Toolkit. It uses two different approaches for dy-

namic deployment, these are: Service-level deployment (HAND-S) and Container-level

deployment (HAND-C). In Container-level deployment (HAND-C), the installa-

tion of any new service involves reloading (re-initializing and reconfiguring) the whole

container. This is achieved by initially putting the container in reloading mode. The

container will then return service unavailable error to any request that the container

receives during the deployment. This step blocks until all currently executing requests

finish or until a specified timeout expires. Then it stops and deactivates all services,

resource homes, and so on. Cleanup operations to flush caches that might contain ref-

erences to the resources and classes loaded by the original deployment are carried out.

Then the deployment or undeployment scripts are executed. Afterwards, the whole

container is reloaded. Lastly, the container is returned to the normal operating mode

and it start accepting new requests.

In Service-level deployment (HAND-S), one or more existing services are de-

activated, new services are installed, and re-activate without reloading the whole con-

tainer. It first checks the requested target service name. If it matches the already de-

ployed service, then the class loader is switched to system level, or it uses its own class

loader registered in the Service Package Manager (SPM). If requests being processed

involve the services to be deployed, then deployment is suspended until those requests

are completed or a timeout occurs. The services requested to be deployed is stopped if

they are running. During this period, the container will return service unavailable to

any request to the services. The stop operation will execute the persistency interface

implemented by the services to keep persistency of the status of related resources. It

also stops the services on which the pre-deployed services depend, and deactivates any

related resources, and store the resources to persistency storage. Cleanup operations

to flush caches that might contain references to the resources and classes loaded by the

original deployment are carried out. Then the deployment or undeployment scripts are

30

Architecture and Frameworks

executed and the working space context for the new services are created or updated and

are registered to the SPM registry. Finally, the new services are initialized, activated

and started

2.2.3 Loopholes in the Existing Frameworks and Future Di-

rection

The DynaSOAr framework evolves around a static centralized UDDI registry and hence

is unable to adapt to a volatile grid framework where the resources are not constant.

Further, a centralized registry gives rise to bottlenecks while dealing with large service

deployments and handling huge number of service requests.

The other two frameworks, i.e. both WSPeer and HAND support dynamic web ser-

vice deployment. However, these frameworks have differences in their implementations.

In case of WSPeer, one implementation is based on UDDI which uses a centralized reg-

istry similar to DynaSOAr. The other implementation is P2PS-based [63], which forms

a tree of interfaces where peers are communicating via abstract channels called pipe.

This architecture basically facilitates service requests mainly on the basis of direct

communication between the peers via pipes, ignoring the service deployment. On the

other hand, HAND uses GTV4 for dynamic service provisioning, where HAND-C pro-

vides container-level dynamic deployment, i.e. during dynamic deployment the whole

container is redeployed. Alternatively, HAND-S provides service deployment, where

instead of the whole container, only the required service needs to be deployed.

Although these frameworks support dynamic web service provisioning, but none of

these frameworks offer full dynamism over a volatile set of resources.

On the other hand, the advantages of peer-to-peer networks have often been tried

to be leveraged in grid and distributed computing. In [39], the JINI framework was

introduced for large-scale distributed computation and was based on the hybrid p2p

network JXTA. The model proposed here comprises of separate levels of peer groups,

such as monitors, task dispatchers and workers, which has limited similarity with the

work proposed in this thesis. CompuP2P [64] was a highly appreciated research work

and proposed a marketplace for resource sharing and computation using p2p as the

backbone. However, it was more centred around a marketplace for computational

cycles and thus differs from the current proposal. In a similar manner, CoDiP2P [53],

31

Architecture and Frameworks

talks about computational resource sharing over a p2p network, rather than demand-

driven service discovery and provisioning. GlobalStat [65] proposes an approach for

statistical calculation within heterogeneous nodes using a semi-p2p structured designed

to achieve efficient load-balancing and avoiding performance bottlenecks. DuDE [66],

on the other hand, distributes the analysis of log files across a distributed system using

the concepts of p2p systems.

Unlike the above research works, the current work introduces a demand-driven

and dynamic p2p-based service provisioning framework with distributed registry and

distributed functioning of the Web Service Providers and Host Providers. The work is

further improved with the use of Bit-Torrent protocol which implements a file sharing

technique to download service packages from the existing deployments to cater to new

deployments.

2.3 Summary

This chapter presents a detailed overview of the background related to the research

work presented in this thesis. This chapter starts with a discussion on how advance-

ment of SOA, grid, p2p, cloud provides efficient platform for web service provisioning.

To understand the frameworks for service discovery and deployment of web services

this chapter discusses some key research for web service publication, discovery and de-

ployments. After that a detailed introduction of the existing work related to dynamic

web service discovery and deployment over service oriented distributed architectures is

presented here.

Detailed study of some existing dynamic service discovery and deployment systems

for distributed frameworks like SOA, Grid, peer-to-peer computing along with their

strengths and limitations are also discussed in this context. Based on this overview,

this thesis aims to build up a new architecture for dynamic web service provisioning,

overcoming the limitations of the existing architectures.

32

Chapter 3

System Overview

3.1 Introduction

This chapter presents the overall architecture for dynamic web service provisioning,

based on the concept of peer-to-peer computing to enable dynamic on-demand service

discovery and deployment on geographically scattered networked resources. To achieve

this a SOA-oriented distributed architecture is proposed, which uses p2p technologies

as a communication medium making it more flexible, scalable, reliable and robust

compared to previous approaches used for dynamic service discovery and deployment

in a distributed environment.

Virtual organizations introduced by Foster and Kesselman [8] allow collaborative

sharing of computational and data resources over a wide area network. To support

this, several tools, such as Globus, Condor and SunGridEngine have been built, who

allow the construction of distributed applications over grid-based resources. Grid com-

puting, peer-to-peer (p2p) computing and Service Oriented Architectures (SOA) have

been major technologies adopted by various organizations to meet increasing demands

of resource sharing by distributed applications during the last decade to ease the cost

of discovery, deployment and maintenance with varying degree of success. One of the

main target in Service Oriented Computing research has been on-demand or dynamic

deployment of services or jobs on available resources. Job-based architecture such as

Condor although provide dynamism in the sense that, it deploys jobs on the fly on

available resources. However, dynamic discovery over geographically distributed area

33

Architectural Concept

and resource volatility were not considered in grid. In this context, we propose to in-

troduce p2p-based architecture which provides a new approach for resource discovery

and management suitable for dynamically changing distributed environments where

smart decisions must be made to adapt to the changing environment and complex user

requirements, and thus removes several redundancies and bottlenecks due to central-

ized registries and frequent resource alterations are removed. This chapter proposes a

framework for dynamic service discovery and deployment in a distributed framework.

3.2 Basic Requirements of the Framework

The architecture presented here based on a service oriented framework which aims to

serve its customer (using internet via an interface or by another application) through

various web services, by dynamically deploying the services over the available dis-

tributed resources. To achieve this seemless service the architecture needed to be built

with two aspects- from customer point of view and from service provider’s point of

view. When a customer wants to access web services which are made available by

the service providers in the network, he can choose only those services which meet

functional requirements and hence can make a service request to get back a desired

response being totally unaware of the fact from where the request has been served.

On the other hand from service provider’s perspective, a registry must be maintained

properly and efficiently in such a way that all the services made available in the net-

work are published and any customer can use that service from any location any time.

A static UDDI registry is thus not appropriate in the service discovery mechanism of a

distributed web service architecture. After the advent of peer-to-peer (p2p) architec-

ture, which is decentralized and distributed, a combination of the peer-to-peer concepts

with those of web services appears to be the most promising model for a dynamic Web

Service discovery and deployment framework. As the registry is de-centralized in na-

ture, all the services available in the network are accessible from any of the service

provider in the network. Depending on the service request made, a deployment of the

same is carried out if no current deployment exists or the existing deployments are

unable to serve the request within the desired QoS. Otherwise the client request is

routed to an existing deployment using some scheduling strategy. Depending on the

current network and service usage patterns a service provider may forcefully undeploy

34

The Architecture

one or more deployed instances of a service to optimize resource usage.

All the service providers need to be depend on their own or on third party resources

for their service deployments. Thus, the resource providers joining the system with

available resources need to allow service providers to carry out the required service

deployments. Based on the service requirements service providers choose best possible

resources for executing the web services. In this approach the idle resources among

those distributed resources in the network are used for service deployments on the basis

of their capability and load factors. The concept of separating service providers and

resource providers within this distributed framework also enhances the performance of

data intensive jobs. In the real life scientific research fields, many research problems

require lot of resources to analyze high volume of data. In such cases, the research

organizations may try to get the computing resources from all over the world, and a p2p-

oriented on-demand service deployment framework is likely to suit such requirements

may be built to suit such requirements. Next section proposes an architecture based

on the above mentioned requirements.

3.3 Overview of the Architecture

The overall architecture provides a new platform for dynamic web service provisioning

by creating a network of computing resources using peer-to-peer computing as the basic

platform. This is achieved by processing the incoming consumer request at different

levels between three different components, namely Consumer, a Web Service Provider

(WSP) and a Host Provider (HP), with a defined interface between them. Although

each node plays a different role in the network, all the nodes are connected to each other

and share their node information between each other. The HPs are resource owners

in distributed environment, and provide required resources to perform computational

intensive jobs with an abstraction of SOA framework. Combining the benefits of SOA

and p2p computing, the key features of this architecture are as follows-

• Complete segregation of provider of services and provider of resources.

• All the nodes act as peers to each other providing p2p based service publication,

discovery, deployment and management.

35

The Architecture

• Efficient load distribution mechanisms based on the concepts of grid computing

environments.

• Resource discovery and allocation in a heterogeneous environment based on re-

source availability and QoS metrics of the Web Service.

• Scheduling of consumer requests following some basic scheduling algorithms like

round-robin (RR) and least recently used (LRU).

• Faster deployment mechanism availing the benefits of Bit-torrent like protocol.

One of the key characteristics of this architecture is that it is composed of three

distinct layers, each having separate functionalities and hence individually contributing

to the workflow. Each layer is formed with a collection of nodes. Thus when a node

joins the network based on its active role that it plays in the architecture(WSP or HP or

Consumer),it announces the role and becomes part of some layer. It is clear that each

level in this framework is distributed in nature and may consist of one or more peers

so as to embed the dynamic features of a p2p network within the framework. Each

peer node actively presented in the network must share their dynamic load information

with all the other other peers to achieve better performance and maintain QoS for the

clients and proper resource managements. Thus except the nodes in the consumer tier,

all the nodes contributing in other two tiers are peers to each other. Each peer can

functionally act as either a WSP or a HP which is to be determined before a peer joins

the network. The peers which aim to host web services, join the network as WSPs,

whereas the peers that aim to provide computational resources join the network as

HPs, As shown in Figure 3.1, the three layers are described below:

1. Consumer: A consumer can request for any service available, from anywhere

at any point of time. These services are made available to the consumer via the

interfaces provided by the WSP using internet as a communication protocol.

2. Web Service Provider (WSP): Between the three layers, WSP plays the most

important role, and aim to provide web services to its consumers while maintain-

ing a de-centralized service registry. These services can be any computational

entities, ranging from basic computational services to database services. Some of

the main functionalities played by the WSPs are :

36

The Architecture

Figure 3.1: Overview of the Architecture

• Rendering a portal/interface for the Consumer tier.

• Establishing and maintaining the de-centralized service registry.

• Managing new and successive deployments of the web services on the basis

of service metrics and current load information of the peers on demand basis.

• Scheduling the incoming consumer requests among the present deployed

instances of a given service.

• Adapting the web service deployments and the service registry with respect

to the volatility of the resources.

The WSP acts as the intermediary between consumers and computing hosts,

to process service request while keeping the process completely transparent to

the consumer. A WSP is responsible for managing service publication, handling

consumer requests, choosing the best suited host for service deployment and/or

request processing. During the request processing, WSP fetches every service

37

The Architecture

request form the Deployed nodes according to the present load of the host. The

WSP maintains a local repository of Web Services and a list of hosts on which

services are deployed in order to serve the consumer requests.

Each web service is accompanied with some information and service provisioning

criteria like the service name, current status denoting whether it is deployed or

not, as well as a set of minimum requirements with respect to the supported

processor, required memory and operating systems for optimum performance. A

service can have either of the two statuses:

• Available: The service is ready, but has not been deployed yet in the

system. In such a case, the consumer can request for the service which will

then be deployed on an available host for processing the request.

• Deployed: If the service has one or more ready deployments in the sys-

tem,then the service URI of those instances will be provided.

Consumer requests are all made to the WSP. The WSP accepts the request and

finds the most suitable HP to serve it.

3. Host Provider (HP): A host provider, provides resources and platform for

service execution. All the host providers are connected as a decentralized hybrid

p2p network and control the computational resources on which the services can be

deployed and requests from consumers can be processed. The main job of a host

provider is to maintain the computational resources in a distributed environment,

such as a grid or a cluster or cloud, on which services can be deployed, and

requests for those services can be processed. Web service provider forwards the

user request to the host provider, HP accepts the massages on behalf of the

services hosted by it, process the request and sends back the response to the

Customer. Some of the main functionalities played by the HP are-

• It must be able to receive service requests forwarded by the service provider

and process them accordingly.

• It must maintain a list of child host providers under its domain to whom

the service request can be routed to. In order to achieve this it must allow

other hosts to register and deregister with it.

38

The Architecture

• It must have the knowledge of the services supported by it.

The host providers are implemented in such a way that each host provider has

the knowledge about all the other host providers and is capable of scheduling the

processing request on any of them. It is also capable of downloading a service

package, if multiple copies of the same service exist on different nodes in order

to perform some load-balancing. Various scheduling algorithms such as Least

Recently Used, Minimum Load First, Round Robin Reloaded are utilised within

the host provider to make decisions about routing a request to a specific instance

of the service.

3.4 Formal Description of the Framework

The framework provides a new platform for dynamic web service provisioning. One of

the main features of this framework is the implicit demand driven nature, i.e. services

are deployed on a suitable host exposed by a host/resource provider only when they are

required. Similar to a typical web service scenario, when a consumer makes a request

for using a certain service, it sends a request in the form of a SOAP message to one

of the endpoints exposed by the service provider, which contains service request. This

SOAP message may be extended to contain other consumer requirements as well - such

as Quality of Service (QoS) requirements. From here the architecture deviates from

conventional WS-Framework due to its complete dynamic nature for p2p environment.

Thus to define this framework, a Distributed System (DS) needs to be established

against the existing conventional WS-Framework. Following is a definition for this

distributed system which can be denoted using the following tuples-

DS = (M,P,WR,HP,NTm,WS,Dm,MS) (1)

where,

39

The Architecture

M = Map Size, nodes in the system

M = {M1,M2,M3,,Mn}
P = Node Properties

NTm = A mapping between the nodes and WSPs

and HPs according to their properties

NTm : M → P(WR) ∧ M → P(HP)

WR = Set of Web Service Providers (Chord Ring)

(at a particular instant)

HP = Set of Host Providers (at a particular instant)

WS = Set Of Web Services hosted in the Network

Dm = List of nodes where the Web Services are

deployed

Dm : WS → HP

MS = Node Monitoring system

Each element Mi in M (for i = 1 to n) is defined as

Mi = 〈Ni, IPi, Li〉
where,

Ni = Name of the Node

IPi = IP Address of the node

Li = Load of the node (current)

P = (Cl, T, I) (2)

where,

Cl = Category of the node

T = Type of the node, i.e, either it is WSP or HP

I = Node’s basic resource information

WS = (Σ, R, S,Df) (3)

where,

40

The Architecture

Σ = Request messages

R = Resources Requirement

S = State of the Service

Df = List of WSPs who are the owner of the web services

Df : WS → WSP

MS = (Th,E,Em) (4)

Th= {Nm, Nc, Sm, BFn, Wsr }
Em : E → Th

where,

E = Set Events

Th = Set of Threads

Nm = NodeMonitor

Nc = NodeCommunicator

Sm = ServiceMonitor

BFn = BestNodeFinder

Wsr = WebServer

The overall system for dynamic service provisioning in distributed architecture can

be defined as above using the tuples 1 to 4. Thus this formal representation denotes

each and every functionality of the proposed architecture. First, M (the Map size)

denotes the nodes actively present in the system at any particular moment, and changes

accordingly as and when nodes join or leave the system. A node joining the system

either act as WSP or HP. Thus if we consider that there are n number of nodes actively

present in the system, then M = {M1,M2,M3,,Mn}, where (WR ∪ HP) = M .

However, (WR ∩ HP) 6= φ, because some nodes may act as both WSP, as well as

HP. NTm defines mapping relationship between each node with respect to its property.

Whenever a node joins the system, based on its own property it is decided whether it

joins the list of Web Service Providers (implemented as a Chord Ring) or remains in the

system only as a Host Provider. Thus the nodes joining the network with a role as WSP

(as specified in P) form a ring (via Chord protocol) and share web service information

among each other and are denoted as WR. Every WSP maintains a list of nodes where

41

The Architecture

the web services are already deployed (Dm). This list is created dynamically after each

deployment of the web services to some suitable host providers which is denoted by

A node in the system is defined by its certain properties (P) as defined in Equation

2. Node property is broadcast to all other nodes in the system, when a node joins the

network. In a heterogeneous system, a node (WSP or HP), is categorised according

to its type and resource information. Type defines whether the node is a WSP or HP.

Resource information includes processor speed, memory size, operating system installed

and other information. Node properties (P) according to the categories are defined in

Equation 3. This information, though static in nature, is used for various purposes

like, to meet the service requirements during service provisioning, load distribution,

node collaboration and resource sharing among the nodes in the network.

A newly created web service is made available to a WSP in the system as the owner

of the web service. Each web service (WS) (as defined in Equation (3)) in the system

is accompanied with information and service criteria like the service name, current

state (S) denoting whether it is deployed or not, minimum Resource requirements (R)

(in terms of requirements for processor, memory, operating system etc.) for optimum

performance. A mapping Df provides list of owners of the web services from the

available WSPs. A web service can have either of the following two statuses:

• Available: The service is ready, but has not been deployed yet in the system. In

such a case, the consumer can request for the service which will then be deployed

on an available resource (HP) for processing the request.

• Deployed: If the service has one or more ready deployments in the system,

then the service URI of those instances will be provided.

The system maintains a list of nodes where web services are already deployed (Dm).

This list is changed dynamically and has a strong relationship with basic resource

requirements for the services (R), present status of the service (S) and current load (Li)

of the nodes. A service can also have more than one deployments in several nodes. Now

when a request comes for the service, only the best suited node responds to the service

request based on some load or job scheduling strategies. If the service is not deployed

on any of the nodes or all the nodes are overloaded, a suitable HP from all the available

HPs is selected for deployment on the basis of their current load information collected

42

Implementation

dynamically during runtime, after a certain interval of time. Consumer requests are

all made to the WSP. The host providers only serve as the computational resources on

which services can be deployed and requests from consumers can be processed. The

WSP accepts the request and finds the most suitable HP to serve it, if the services is

already deployed in the system, else a new deployment is triggered for the service. Once

the service deployment is complete the consumer requests are served from it unless the

HP get loaded and hence new deployments are triggered.

The subsequent operations that take palce once a service request reaches the Ser-

vice Provider are described through node Monitoring System (MS). The Monitoring

System(MS) is responsible for monitoring current node and make sure all the support-

ing threads(Th) are running. Threads in the system have their own functions which

are defined based on different modules of the monitoring system, like NodeMonitor,

Node-Communicatior, ServiceMonitor, BestNodeFinder, WebServer. The NodeCom-

municator module establishes inter and intra-node communication of events(E). The

ServiceMonitor component is responsible for publishing the service and making it dis-

coverable based on its status. The BestNodeFinder component (only on WSPs) moni-

tors all the nodes on the basis of their properties, runtime CPU and memory utilization

to select one HP for new deployments and/or processing consumer requests.

3.5 Functional Overview

The overall architecture described above is implemented with five activities, namely,

node establishment or node joining, service publication, service discovery, resource

discovery and service deployment. The system is implemented as a composition of

independent modules taking care of different aspects of WSPs and HPs, which com-

municate amongst each other to meet some common goal.

Each of these nodes are distinguished by a set of node properties such as node name,

node category - i.e. whether the corresponding node is a WSP or HP, and other static

information such as host operating system, processor frequency and physical memory,

all maintained within a configuration file. The nodes taking part in the architecture

as WSP or HP are connected to each other in a p2p fashion by using JmDNS [67] and

the node properties are known to each other.

The architecture discussed above is formed by an application running on nodes

43

Implementation

which facilitates the nodes to join the network and play their roles as WSP or HP.

Though the roles may seem to be completely different from each other, but different

aspects of WSPs and HPs are handled using a set of modules such as Service Moni-

tor, Node Communicator, Load Balancer, Registry Handler, Deployment Manager and

Web Server as depicted in Figure 3.2. Each module bearing a unique responsibility

collaborates among each other to achieve the required goal. The functionality of each

module as shown in Figure 3.3 is described below:

• Service Monitor - a module responsible for monitoring the service and its

deployment status, hence mange the service deployments keeping track of the

deployed instances.

• Node Communicator - a module that establishes connection to the network,

registers the node and thereafter handle inter and intra-node communication of

events.

• Load Balancer - a component that monitors the current load information based

on free memory, CPU utilization of the nodes in the network to select a suitable

HP to carry out deployments and/or scheduling consumer requests.

• Registry Handler - this module, in collaboration with the Service Monitor (

only in case of WSP), maintains the registry to keep upgraded information about

all the web services in the network.

• Deployment Manger - a module that handles the deployments od downloaded

service code (i.e. WAR files) in an efficient manner as and when notified by the

Node Communicator.

• Web Server - it provides a ready platform for execution of the web services being

deployed on HPs. In the case of WSP, it is used to provide a portal/interface

to the clients or other application to bind to the web services available in the

network.

The hierarchy followed by the modules as depicted Figure 3.2, can be explained as

follows: Node Communicator forms basis for the nodes to join the network and handles

the communication, so it is placed at the lowest level. The Deployment Manager needs

44

Implementation

Figure 3.2: Basic Architecture as an Application

to serve downloading of files which requires the knowledge of both the service packages

as well as the information of peers, hence is stacked in between the Node Communicator

and Service Monitor modules. Monitoring the services being the most important part

for all the nodes, the Service Monitor is placed in the midst. Registry Handler, which

requires only the service information to publish the services is placed directly above

Service Monitor, at the top most level, providing a list of web services for the interface

enabled by the Web Server. Further the Web Server requires a direct contact with the

Deployment Manger to carry out deployments at HPs once the web service package

download is complete. On the other side the Load Balancer remains in touch with

Node Communicator to send, receive dynamic load information of the nodes to each

other; with Deployment Manager to download files based on the load of a node; with

Service Monitor for selection of best nodes for a given service and also with Registry

Handler which help in scheduling the requests. The modules of the application are

activated and deactivated depending on the role the node plays in the architecture.

The architectural workflow described above is achieved by a series of steps that may

occur in the process of deploying a web service starting form Nodes Establishing the

Network followed by Service Publication and Discovery, Resource Discovery, Dynamic

Service Deployments and Service Request Scheduling. In the following subsections

details of the events that take place for each of the steps mentioned above are provided.

45

Implementation

Figure 3.3: Components in the Architecture

3.5.1 Network Establishment: Node Joining

The main advantages of this architecture is its scalability and robustness while enabling

on-demand service provisioning and resolving the problem of resource volatility by

providing a network of interconnected nodes. To become part of this distributed system

a node must need to join the network via Internet. Thus a node willing to join the

network needs to register itself by sharing a detailed node configuration information

called node properties as shown in Figure 3.4, similar to a [key, value] based property

file with keys enlisted below:

• Node Name :- to identify the node in the network.

• Node Type :- WSP or HP, i.e. the role in which it wants to represent itself in the

network (to be specified explicitly).

• Host Operating System :- used by the node.

• Processor information :- such as number of cores, frequency.

• Physical Memory :- Total physical memory installed.

• Other :- information such as operating port numbers, IP addresses etc.

46

Implementation

Figure 3.4: A sample Node Properties File

A node willing to join the system initializes the Node Communicator module. Node

Communicator creates the basis for the incoming nodes to join the network and also

maintains communication link between each node. As soon as the node registers itself

with the network, its node properties are made available to all other nodes in the

network using multicast DNS governed by a specific communication protocol(TCP/IP),

enabling them to act as peers. Thus using this broadcast technique each peer maintains

a list of all WSPs and HPs in the network for its own perusal. Thus the main function

of the Node Communicator module is establishing inter and intra-node communication

of events. After a node successfully joins the network the control of the events passes

to the Service Monitor component, which is responsible for publishing the services

and making them discoverable based on their status. Node Communicator waits until

some inter or intra-node event occurs and at the same time monitors the changes in

the network (if any) to adapt accordingly.

A node, when leaves the network, Node Monitor - a submodule of Node Commu-

nicator, at all the peers detect this change by the receipt of a node removed event,

multicast by the node just before leaving the network. This change in network is

then communicated to their respective Service Monitor so that appropriate actions are

47

Implementation

performed to maintain the consistency of the system.

3.5.2 Functioning of a Node: with p2p Based Communication

Protocol

At time of joining, each node assumes the roles in clearly two categories, i.e., either

WSP or HP. Now on the basis of the categories, these nodes communicate with each

other to accomplish different tasks. The communication is based on p2p computing

technique. Thus each node acts as a peer to other. There can be following basic tasks

leading to communication among the peers to accomplish functioning of the overall

architecture.

• Registry Maintenance - All the WSPs maintain a registry to provide services to

the consumer. In the architecture p2p Chord protocol is used to maintain this

registry. This is a distributed registry. Thus each service is being owned by some

WSP, and its current status is updated in the registry of its owner, that is then

propagated among all the WSPs in a structured fashion.

• Service Monitoring- This task is carried out by WSPs, which are responsible for

publishing the service and making it discoverable based on its status.

• Service Deployments- Whenever there is a requirement of a web service deploy-

ment, a suitable HP is selected from the list of HPs and a deployment message

is forwarded to the selected HP.

• Load Balancing - It is carried out in the direction of HPs to WSPs. All the HPs

send their dynamic load information to the WSPs to help in decision making pro-

cess for service deployments and request scheduling for proper load distribution

and resource utilization.

3.5.3 Decentralized Registry

In this architecture registry service is provided in distributed manner based on p2p

protocol. When a service developer decides to make a service available via the Web

Service Provider(WSP), the deployable service code and its information is uploaded

48

Implementation

to the registry as a result of which the registry is updated with this information.

The registry is composed of a DHT of web services stored as [key, value] pairs. It

uses a hash function to generate unique keys from the byte versions of service names,

that are mapped to node identifiers generated as hash values of nodes IP addresses.

Incorporating the benefits of distributed registry to the existing p2p network, the

architecture decentralizes the registry among the WSPs.

3.5.4 Publication and Discovery of Services

The node joining the network as WSP is mainly responsible for performing the basic

steps of service publication adhering to SOA framework. As discussed earlier, all the

WSPs maintain a distributed Chord registry for managing the web services. Thus a

WSP publishes all the services it owns to the registry maintained over the network in

a de-centralized manner, whereas keeps deployable versions of the web service confined

to its local repository.

WSPs publish services by providing the corresponding service in the form of a WAR

(web archive) file. Each service is characterized by a set of service configurations and

Service List defined in files. Both these files are metadata files corresponding to each

service, with some identifiers which are discussed below. Basically this all operation

maintained by Service Monitor. Each new service made available to the system makes

their attributes known with the state as ”available”.

3.5.4.1 Requirements of Web Services and their Configuration

There is a service level agreement for all the web services provided by the WSPs.

Developers during service development create and configure those services such a way

that they meet some basic requirements before the deployment process. Thus web

service management stand to be one of the most important issue for the architecture.

A WSP can launch a new web service providing the web service package (executable

code), packed as a Web Archive File (WAR file), along with a web service configuration

file (Figure 3.5) annotating the web service with certain parameters such as name of

service, a short description of its functionalities, service state i.e. its deployment status

(available or deployed) and minimum deployment requirements such as processor fre-

quency, memory and host operating system required for proper execution; collectively

49

Implementation

Figure 3.5: A sample Web Service Configuration File

all known as service metrics.

A web service is published to the registry by Registry Handler with its status set

to available, rendering the service discoverable over Internet, after which consumers

can search for the service and make requests to the system. For the first web service

request, its status is changed from available to deployed. A change in the configuration

of a given service triggers the Service Monitor by a Service Config Change Event

which is processed by Service Change Event based on the processing logic depicted in

Algorithm 1.

Among the different events portrayed in Algorithm 1, events ADDED and CHANGED

drive the deployment process and hence invoke DEPLOYED or UNDEPLOY events.

To remove a service from the current deployed instances, REMOVED event is triggered.

Depending on the node type, i.e. WSP or HP, the event is delegated in appropriate

direction. If the event takes place on a WSP, since WSP never deploys a service within

itself, it forwards the event to a selected HP to carry out the deployment process. If the

node is a HP it deploys/undeploys/removes the service as per the event type. After a

service request is made to deploy a service, WSPs try to choose a suitable HP in order

to deploy the service. This is where the next step, Resource Discovery comes into play.

50

Implementation

Algorithm 1: Algorithm for Service Change Event
1 begin
2 serviceName← getServiceName();
3 switch ServiceChangeEvent.getType() do
4 case ADDED:
5 // add or update service;

6 status← addService(serviceName);

7 case CHANGED:
8 // update service;

9 status← updateService(serviceName);

10 case REMOVED:
11 // undeploy service from node and remove from repository;

12 status← undeployAndRemoveService(serviceName);

13 case REDEPLOYED:
14 // get service name and deploy service on a selected host;

15 node← selectNode(nodeArray);
16 status← deployService(serviceName, node);

17 case UNDEPLOY:
18 // undeploy service from node;

19 status← undeployService(serviceName, node);

Service Monitor hence communicates with Load Balancer to select a suitable HP and

carry out the deployment process.

3.5.5 Resource Discovery

The node joining the network as HP is mainly responsible for providing resources

and platform for service execution. Nodes acting as Host Providers play an equally

important role in the functioning of the architecture along with the WSPs. Since

the aim is to serve the consumers in best possible way, a correct choice of the HP is

required to meet the service requirements. Thus, resource discovery is an important

task, Resource discovery process is performed in two steps-

Resource discovery process done in two steps-

• Dynamic requirements matching based on basic service requirements

• Load balancing

51

Implementation

3.5.5.1 Dynamic Requirements Matching Based on Basic Service Require-

ments

When a user tries to execute a service by paying some amount, he or she expects the

response time to be bare minimum along with some quality of service (QoS) require-

ments. In order to achieve this, the web service provider must state these requirements

in advance or the user can mention it explicitly while executing a service so that when

the service is deployed it chooses the right host provider based on these requirements.

The requirements are specified by the web service provider using a service metadata

file in which the minimum service requirements are specified as service metrics. Once

an incoming consumer request triggers the deployment process, the WSP uses Best

Node Finder, a submodule of Service Monitor, to search for a suitable HP with enough

resources to deploy the service. The search process employs matchmaking on the basis

of the service metrics with the node properties as demonstrated in Algorithm 2 to

select a HP with sufficient The node acts as a peer joins the network as WSP mainly

resposible for performing the basic steps of service publication adhering to SOA frame-

work.resources to meet the service requirement for optimum performance. The first

node which satisfies all the minimum service requirements and is not heavily loaded,

is returned by the algorithm.

Algorithm 2: Algorithm for Best Node Finder
1 begin
2 serviceMetric← ServiceToDeploy.getServiceMetric();
3 nodeProp← NULL;
4 foreach NodeProperties ∈ HPNodeList do
5 nodeProp← NodeProperties;
6 if nodeProp.getOperatingSystem() == serviceMetric.getOperatingSystem() then
7 if nodeProp.getCPU() >= serviceMetric.getCPU() then
8 if nodeProp.getMemory() >= serviceMetric.getMemory() then
9 // service metrics satisfied. Check for Node not loaded.

10 if LoadThreshold(nodeProp.getNodeName()) == FALSE then
11 break;

12 return nodeProp;

The node acts as a peer joins the network as WSP mainly responsible for performing

the basic steps of service publication adhering to SOA framework.

It may so happen that no such HP is available for the given service, in which case

the algorithm returns NULL, and the deployment process is withdrawn. Otherwise a

52

Implementation

deployment event is forwarded to the selected HP. The deployment event consists of the

certain important information which help in the deployment process, as listed below:

• Web Service Configuration File to provide a detailed information of the web

service.

• URI of web service package to facilitate the download from the selected HP.

• Length of web service package in bytes.

• Checksum of the web service package, to ensure its integrity.

3.5.5.2 Load Balancing

Whenever a Consumer sends a request to execute a service, the service is deployed

on any one of the host providers based on the resource requirements and current load

information for the first time. All the subsequent requests to that service are then

redirected to that host provider and results are made available to the consumers. Min-

imum response time and quality of service desired by the consumers are the two major

concerns when a request is handled. A load balancing approach is adopted for this

architecture. Initially a simple threshold based load balancing approach has been im-

plemented. Every host provider has a threshold or load criterion defined. It depends

on parameters like memory and CPU usage of the overall system, CPU and memory

usage per service, etc. Once a host provider exceeds that criterion, a new host provider

node with a load lower than the threshold value is found from the remaining nodes in

the network. Then the service is deployed on this new node. From then on, all the

new consumer requests for the particular service are redirected to the new node and

results are redirected to the clients from that node. Other load balancing approaches

have also been explored as discussed in Chapter 4.

Upon receiving a of deployment event at the HPs end the Deployment manager is

triggered to carry out the service package download (discussed in Chapter 6) and the

service is deployed. Since the performance of the entire architecture depends on the

QoS that can be delivered by the HPs, this step plays an important role in the service

request flow to choose a suitable HP from the HP tier and trigger deployment.

53

Implementation

3.5.6 Scheduling Strategies

Scheduling the incoming consumer requests to the current deployed instances is one

of the important issue to meet the consumer satisfaction. A service is provided with

an exposed endpoint in the system after the deployment by which the consumers can

easily request for the web service. A proper distribution of load, i.e. web service

requests is delivered by the use of some scheduling algorithms adopted by the WSPs.

These scheduling strategies are are used to increase the performance of the overall

architecture by achieving better response times, proper utilization of resources and

also increasing the service availability. The scheduling strategies used are time-slice

based, i.e. an instance among all the deployed instances for a given service is selected

as a best node for a given time period. At the end of the time slice the best node

is changed as per the strategies/algorithms like- Round Robin Reloaded (RRR), Least

Recently Used Reloaded (LRUR), Minimum Loaded First (MLF).

This time slice based scheduling strategies provided by the Load Balancer, to dis-

tribute the service requests among the deployed instances. The algorithm is invoked

at the end of every time slice (pre-decided), after the first deployment for the web

service. A particular HP is selected as a best node from the current deployed instances

and all the incoming consumer requests are routed to this best node. When the time

slice expires depending on the algorithm used, a best node is selected again to serve

the consumer requests for the next time slice and so on.

The algorithm is also responsible to trigger new deployments if the existing deploy-

ments become unavailable or fail to serve the consumer requests within some desired

QoS. This decision is taken based on the present load of the deployed instances. If

any HP among the deployed instances is found to be loaded, the scheduling algorithms

does not assigns them as best node to serve consumer requests because they may fail

to provide the response within the expected time violating consumers QoS. New de-

ployments are triggered only if all the existing deployments are found to be loaded at

the present instant. By the use of such scheduling strategies, the architecture tries to

ensure proper distribution of load, by monitoring the deployed instances on the basis of

their dynamic load information. Since new service deployments and selection of a best

node are based on the present load of a HP, a clear idea on how the load is calculated

and gathered, turns up to be a major concern. In the end, a service request scheduled

54

Implementation

to the present best node processes the request and returns a response (if any) back to

the consumer.

3.5.7 Dynamic Service Deployments

Web service requests are initiated from the consumer tier. A consumer can make a

web service request only after web services are made available by the WSP tier. A

WSP when joins the network it publishes the services to a de-centralized registry.

Once the web service is made discoverable over Internet and ready for use, a proper

endpoint is provided by the interface. A consumer can make a web service request to

any WSP, via the interface. Once a consumer makes a web service request, the control

is transferred to the WSP tier. A consumer request made to a WSP may have three

types of interactions depending on the status of the service as described below-

◦ First time deployment: When the status of the web service is set to available,

it implies there exists no deployment of the web service in the system. In such

a scenario, first time deployment of the web service is required. WSP uses some

criteria to select an HP which is best suited for the service, and the HP is directed

to download the code from the repository and deploy it. The status of the web

service is then changed to deployed.

◦ Fresh deployment when current instances are busy: When a service has

its status set to deployed, but the existing deployed instances are not able to

serve the request (the nodes may be overloaded), a need for a fresh deployment

arises. This decision is taken at the WSP on the basis of a set of dynamic load

information collected from the HPs. The consumer remains unaware of the fact

that a new deployment is made.

◦ Request for an existing service: The consumer requests for a service already

deployed on multiple nodes are redirected by service provider, to the currently

selected best HP, based on some scheduling strategies.

All the consumer requests after reaching the HP tier are served and a response for

the service is returned back to the consumer. To achieve dynamic deployments the

architecture adopts two different modes to accomplish download of the service packages:

55

Implementation

1. Direct Download : the HPs download the service package directly from the

local repository of the WSP to complete the deployment process.

2. P2P Download : the HPs download the service package by requesting chunks of

the WAR file from more than one site. The p2p approach is capable of removing

single point failure for service package downloads. Based on this approach, a

second mode of download is implemented using a protocol called Dynamic Torrent

Service deployment protocol (DynaTronS) which we discussed in the Chapter 6.

At the HPs end, when a deployment event is received, the Deployment Manager

module is triggered to download the web service package or the WAR file of the web

service and deploy the web service performing the basic steps of the application’s Web

Server. The architecture uses a light weight Jetty server, embedded in the application

itself, for all its individual peers, which relieves architecture from the need of an external

container to carry out the deployments. Once the web service is fully deployed and is

ready to use, it can serve the incoming consumer requests and return desired response(if

any).

The deployed instances are then used by the WSP to serve further incoming con-

sumer requests, and new deployments are carried out if a WSP figures out that its

existing deployments are not able to meet the consumer demands. The deployment

process is termed as dynamic deployment because the first time deployments are car-

ried out only when consumer requests are made i.e. when there is a need of a service

execution. Furthermore successive deployments are carried out with increasing num-

ber of consumer requests rendering the architecture scalable with consumer demands

providing efficient resource utilization and management. The decision to carry out new

deployments is taken at the last phase of the workflow, i.e. Service Request Scheduling.

3.6 Summary

This chapter introduces a brief overview of the propose architecture for dynamic web

service provisioning based on peer-to-peer networks. The functionalities of the proposed

architecture for enabling dynamic on-demand service discovery and deployment on

geographically scattered networked resources are also discussed in this context. A

three tire architecture from consumers to Web Service Providers (WSP), and to Host

56

Implementation

Providers (HP) is discussed here. The architecture targets to serve its consumers (using

Internet via an interface) using various web services provided by Web Service Providers,

by dynamically deploying the services over the available Host Providers. How a web

service is published by a web service provider and how a consumer can get that service,

each and every functionality of service publication, discovery and deployment is briefly

discussed in this chapter. A formal description of the architecture also discussed this

chapter. Thus, this chapter provides an SOA-oriented distributed architecture which

uses p2p technologies as a communication medium making it more flexible, scalable,

reliable and robust compared to previous approaches used for dynamic service discovery

and deployment in a distributed environment.

57

Chapter 4

Dynamic Web service Discovery

and Deployments using

De-centralized Registry

4.1 Introduction

A fully distributed service oriented framework which uses peer-to-peer (p2p) techniques

at its core has been introduced in Chapter 3. The framework offers loose coupling,

robustness, scalability, availability and extensibility for large-scale distributed systems.

The use of peer-to-peer concepts and techniques allow more flexibility and dynamism

when compared with previous approaches such as DynaSOAr used for dynamic service

deployment in distributed environments. A major change in the implementation of the

framework is the use of distributed registry service for dynamic deployment of services.

The primary objectives of this distributed registry for dynamic web service provisioning

are mentioned below:

• To provide a distributed environment overcoming issues associated with central-

ized registry based architectures.

• To allow clients and service providers to mention specific requirements for a

service in order to achieve desired quality of services for clients.

• To provide scalability by load-balancing of deployed instances and re-deploying

58

De-centralizing the Registry

on demand using a p2p communication model

One of the key features of this framework is complete segregation of provider of

services and provider of resources. Thus, providers of resources (platforms for service

execution), i.e. the Host Providers (HPs) are placed in a different layer as compared

with the Web Service Providers (WSPs), who provide services to the consumers and

take care of all the collaborations with hosts. Consumers are placed in the third layer.

In this three-layer architecture all the nodes act as peers to each other providing p2p

based service publication, discovery, deployment and management. Resource discovery

and allocation are done in a heterogeneous environment as per resource availability and

metrics of the Web Service. In this chapter the implementation of the proposed archi-

tecture on a structured overlay peer-to-peer (p2p) network is discussed using Chord [33]

protocol. The major goals of the implementation are as follows:

1. de-centralizing the service registry in a structured manner,

2. making the registry adaptable with volatile set of resources,

3. deployment cost of a given service incurred by a single WSP is shared among all

WSPs,

4. making the registry scalable, having definite time bounds for a service query

In the earlier approaches [17], though the registry is decentralized as multiple single-

site registries, a service may become unavailable if the hosting WSP goes down. To

increase the service availability, it is proposed that the service is to be hosted from

more than one WSP incurring a separate set of deployments for the same service. The

framework presented in this chapter provides a robust approach towards dynamically

deploying web services, as well as decentralizing the registry to meet the increased

availability of the services and maintaining its scalability at the same time.

4.2 Approaches for Dynamic Web Service Discov-

ery and Deployments

The phenomenal growth of Internet and web technologies has led to the development of

more and more complex services with complicated interaction patterns, spread across

59

De-centralizing the Registry

different organisations, platforms with different multi-layered architectures, which has

in turn led to an immense complexity in cost-effective service discovery and manage-

ment. In this context, dynamic service discovery and deployment are two of the most

important issues for any service oriented framework. There are existing toolkits for

such purposes, such as the Monitoring And Discovery System (MDS) [68] as a com-

ponent of the Web Services Resource Framework (WSRF). However, an MDS Index

Service registry is functionally similar to a centralized UDDI with some additional

flexibilities, and is still limited in terms of exploiting and reflecting the complete dy-

namism of a Grid framework. In this section, the various approaches to dynamic service

provisioning that are in existence are discussed.

• UDDI-Based approach:

Most service oriented architectures use the UDDI standard for creating service

registries. Since UDDI is based on XML, platform independence and inter-

operability is implicit, but at a syntactic level. As UDDI uses a keyword-based

service query, the discovery process is limited to a certain precision. With the

increase in number of entries corresponding to services in the registry, the effi-

ciency of the service discovery process and its scalability become a critical issue.

The common model of a centralized UDDI is liable to single point of failure when

the demand is extremely high. Decentralizing the registry, by having replicas of

the service and the service metadata over various sites may be considered as a

solution to the problem, but this distributed architecture makes the discovery

process even more complex and requires periodic synchronization to maintain a

uniform view.

The concept of dynamic service deployment on available resources using UDDI

was introduced by DynaSOAr which was capable of deploying services on-demand,

based on consumer requests. The DynaSOAr architecture offered a clear separa-

tion between Web Service Providers (WSP) and Host Providers (HP) in order to

better manage the simultaneous tasks of service publication and discovery and

service execution. In this architecture, the consumers send requests to the WSP,

which in turn routes them to an appropriate HP for completion. For an already

deployed service, the request is executed on the host and the result is returned

back to the consumer. In case of a request for an yet undeployed service, the

60

De-centralizing the Registry

process involves its discovery from the centralized UDDI registry used by WSPs

to publish the available services, locating the repository for service download and

thereafter its deployment and the execution of the request. But, due to that

static nature of UDDI, there are certain limitations related to service metadata

and dynamic nature of resources in the grid environment.

• P2P-Based Approach:

As opposed to the UDDI-based approaches, p2p networks accomplish sharing

of resources based on the discovery of peers in the network involving various

discovery strategies and p2p network topologies. Since p2p systems are well

equipped in handling the volatility of networked resources, a fusion of the two

concepts (p2p and SOA) may bring up new possibilities. p2p overlays generally

make use of DHT [69] to index and store data items. Unstructured p2p overlays

support partial-match and complex queries, which fail to discover rare items as

compared to popular ones, within specified time bounds. In contrast, structured

p2p networks have some definite algorithms to guide the resource discovery pro-

cess having an upper bound of the search time required. Chord [33], CAN [32],

Pastry [34], Tapestry [35] are some examples of such networks. From the above

mentioned DHT implementations, the architecture in this thesis makes use of

Chord due to its easy ring shaped structure achieved by the concept of consistent

hashing providing an extra benefit for managing the volatility of peers in the net-

work and the resources they wish to share. Chord [33]- a DHT - implementation

over structured p2p overlay network, is a distributed lookup protocol that helps

in efficiently locating a node that stores a particular data item in p2p applica-

tions. It can adapt itself with a changing set of resources (nodes) and hence can

answer search queries even when nodes join and leave the system.

This chapter provides a brief overview about the implementation of the architec-

ture based on Chord. The reason behind this is two-fold - (i) Chord is efficient in

terms of tracking the networked, resources and (ii) Chord uses an efficient mech-

anism of key assignment for network nodes as well as the retrieval by locating

the node responsible for the key.

In recent years, the developments in decentralized p2p techniques related to re-

source sharing and discovery have ensured fault tolerance and scalability in the

61

De-centralizing the Registry

systems. At the same time, researchers have also looked into the possibility of

incorporating p2p techniques with web service based architectures to cater to

dynamic provisioning of services.

As discussed earlier, WSPeer emerged as an interesting framework which com-

bines the benefits of p2ps decentralized resource sharing with the XML based web

service technologies. One of the major advantages of WSPeer is that consumers

and service providers are located in remote places and can use it as an interface.

This architecture provides the dynamic deployment facility in such a way that

anyone can easily deploy their application or part of application as web services.

WSPeer has two different approaches towards service publication and discovery

by the use of: (a) HTTP and UDDI coupled together, and, (b) a P2PS [57] im-

plementation with a pluggable architecture of nodes. In the case of HTTP/UDDI

implementation, the static centralized registry still remains a bottleneck of the

infrastructure. However, this bottleneck is removed in the P2PS implementation.

Since the peer can act as a service provider, as well as service consumer a service

endpoint is made available only when the node remains available in the network.

In recent years, there have been a lot of research works on efficient ways of service

discovery in Grid and SOA based frameworks applying different approaches such

as keyword based matching, semantics or syntax based matching for the discov-

ery process. Some approaches also use a ranking model to enhance the search

procedure. All these approaches differ from each other and it is claimed that

the suitability of the approaches depend on the application requirements, which

in turn makes the selection of an appropriate service discovery process difficult.

Further, it is desirable that the service discovery process should also be flexible

enough for changing requirements. Hence, there is a need for a service discovery

mechanism coupled with a registry which also caters to dynamic service provi-

sioning. Frameworks which provide a complete solution for the entire cycle of

web service publication to the deployment and management of the resources are

rare or are in their initial stages of development.

A comparative study of the architectures mentioned in this section reveals that

a static registry such as UDDI is a bottleneck for any system based on SOA

in terms of availability, capability of handling volatile resources in the network

62

De-centralizing the Registry

and system scalability. Since p2p systems are capable of handling the volatility

of networked resources, a merger of the two concepts (p2p and SOA) may have

certain advantages. P2P systems make use of distributed hash tables (DHTs) to

keep track of the resources provided by the peers in the networks. Considering

the web services as resources provided by peers in the system, the registry can

be decentralized. Making use of a structured p2p overlay network with DHT

implementation may further facilitate discovery and retrieval of resources within

definite time bounds, making the registry scalable. DHT implementations such

as CAN, Pastry, Tapestry, Chord can help achieve the above characteristics for

a decentralized registry.

In the following sections, a brief overview of peer-to-peer networks and their ad-

vantages are discussed.

4.3 Peer to Peer Networks

P2P networking is defined by the Intel Working Group as the sharing of computer

resources and services by direct exchange between systems [70]. These resources and

services include the exchange of information, processing cycles, cache storage, and disk

storage for files. In p2p, all the nodes act as simultaneous clients and servers are able

to provide and consume resources at the same time. A p2p network is void of any cen-

tralized data sources. Any node can initiate a connection and a node can join or leave

the system at any time without affecting the system performance thereby increasing

the scalability. The malfunction on any given node does not affect the overall system

thereby increasing the overall reliability of the system. Now from the beginning, several

forms of architectural styles have been design on peer-to-peer framework. Two types of

architectures, which categorizes peer-to-peer networks are structured and unstructured

p2p. But in detail, p2p can be categorized in the following architectures -

Semi Centralized, Unstructured Decentralized, Decentralized or Hybrid p2p, Struc-

tured Decentralized

• Semi Centralized : Some dedicated servers are there to manage all the peer nodes.

Napster is the earliest example of this type.

63

De-centralizing the Registry

• Unstructured Decentralized : Purely Decentralized, all peer nodes have the equiv-

alent capabilities, like Gnutella 0.4v [71].

• Hybrid p2p or Super Peer p2p : This is also a complete decentralized architecture

for p2p but not all the nodes have the same capabilities. There are some extra

powerful nodes called ’Super Peer Node’, maximum message routing taken care

of by this node, like Gnutella2.

• Structured Decentralized p2p :This is also a complete decentralized architecture

and all the nodes have the same capabilities, but here all the peers organized in

definite structure using some criteria or algorithms. Generally Distributed Hash

Table (DHT) is used for building this type of structured peer-to-peer networks.

So the earlier p2p systems like Napster used centralized servers resulting in some

obvious problems like a single point of failure and higher traffic. More recent p2p

systems like Gnutella [72] or Freenet [73] do not depend on a centralized server and

thus are more robust with respect to such issues. The latest p2p systems, including

Chord, Content Addressable Networks (CAN), D2B [74], Tapestry, Pastry etc. in-

corporate distributed hash tables (DHT) to support scalability, load balancing and

fault-tolerance [75].

4.3.1 Operations in p2p

Any peer participating in a p2p network applications must be able to perform the

following operations:

• Discovery of other Peers: A peer may keep a list of other clients/peer on

the application server, also known as trackers, so that a peer can use the list in

order to find other peers. One may also use a Peer Name Resolution Protocol

(PNRP) [76] infrastructure, which enables clients to find each other directly.

• Connection with other Peers: The connection problem is a more subtle one,

and concerns the overall structure of the networks used by a p2p application. If

there is one group of clients, all of which can communicate with one another, the

topology of the connections between these clients can become extremely complex.

64

De-centralizing the Registry

• Communication with other peers: Communication takes place via well de-

fined protocols known over the network such as TCP/IP etc.

In p2p architecture the applications are generally Content Distribution Application

like File sharing applications for example Napster [37], or are collaborative applications

such as desktop sharing and shared white board applications. There are also multi-

user communication applications, allowing them to communicate to exchange data, as

well as distributed processing applications to performs tasks involving large amounts

of data. The main idea behind the peer-to-peer systems was to exploit the resources

distributed across internet to provide a single useful application, taking advantage of

increased bandwidth and hard disk capacity to provide a file-sharing service. These

system differ from each other by the methods of finding data among the resources.

Naspter was the first largest p2p content delivery system, which used a central index

server, to maintain the list of files available in the system. Due to this centralized

architecture of Napster it was vulnerable to attacks and single point failure. Whereas

Gnutella [36] used a flooding query model as a search method. Though it could avoid

single point failure but was significantly less efficient than Napster. Freenet [77] was a

fully distributed and employed a heuristic Key-based routing, associating each file with

a key and clustering all files with similar keys on a similar set on nodes in the system.

Search requests were routed from a node to other in the search of the file to the cluster

without any need to visit many nodes, however it did not guarantee that the data will

be found. Hence there was a need of an structured organization of data in a distributed

architecture which formed the foundations of Distributed Hash Tables (DHTs). DHT

is discussed in detail in Section 4.4.

4.3.2 Advantages of Peer-to-Peer networks

Distributed computing from its early versions has been accompanied with several ben-

efits. But structuring the distributed network in different ways pointed out different

advantages as per the system design [78]. Among them peer-to-peer networks stands to

be a totally different approach in distributed computing with the following advantages:

1. It distributes the financial cost in terms of computing resources, which requires

dedicated powerful servers or high performance computers to meet the needs.

65

Distributed Hash Tables

2. The cost of the bandwidth of the whole system is spread over the network as

compared to a single site.

3. Single point failure of the traditional Client/Server model is eliminated success-

fully proving its robustness towards increasing load and risk handling.

4. Capacity in terms of resources increases with the scalability of the system since

the peers not only use the resources of the system but also provide the same to

the system.

4.3.3 Disadvantages of Peer-to-Peer networks

Peer-to-peer networks, although provide an important concept in distributed comput-

ing but are still vulnerable with respect to scalability and security of the system [79].

It totally depends on the design of the systems as stated below:

1. Few peer-to-peer systems used flooding query models for the communication

purpose whereby making the system infeasible, increasing the network load for

large number of peers in the network.

2. Nodes in the network may not be trustworthy as per the application needs which

may cause flooding and denial of service attacks.

3. File sharing systems may be prone to poisoning of files, loosing the users trust in

the system.

4.4 Distributed Hash Tables (DHT)

Hash table has been proved to be an easier means of storing and retrieving data using

keys associated with the data values. It uses a simple lookup function with a key

as an input parameter and hence determines the location of the data value stored in

the hash table. Distributed Hash Tables(DHT)[69] are similar to hash tables with a

structured key-based routing lookup service for decentralized distributed system or say

peer-to-peer systems. Using [key, value] pairs, any peer participating in the network

can efficiently retrieve the value associated with a given key. The mapping form keys

to values is maintained and shared among the nodes, in such way that a change in

66

Distributed Hash Tables

a set of participants causes minimal amount of disruption of the hash table. with

nodes coordinating with only a few other nodes in the system at most O(log N) of

the N participants, only a limited amount of work needs to be done for a change in

membership. DHTs characteristically emphasize the following properties:

• Decentralization : the nodes taking part collectively form the system without

any central coordination.

• Fault Tolerance : the system should be reliable (in some sense) even with nodes

continuously joining, leaving, and failing.

• Scalability : the system should function efficiently even with thousands or mil-

lions of nodes.

DHT uses an abstract keyspace, which is partitioned among the participating nodes.

This means each and every participating node is made responsible for a range of keys

within the keyspace of the hashing algorithm. To store a file in DHT, a key is generated

say by using a hash function on the file name. Now since the key space is partitioned

among the nodes participating, the node assigned to the key generated stores the file

in the system. Each node maintains a set of links to other nodes or say its neighbors,

just like a routing table, all together forming an overlay network. For an incoming

search request of a given key, firstly a lookup is performed to find the node responsible

for the range of keys in the keyspace of the hashing algorithm. For this the nodes are

arranged in such a fashion that the key addresses the nodes as well as the item in the

hash table. The arrangement is done via a routing table maintained for structuring the

network. A search for a key results in a node closer to node responsible for the key in

every iteration. After the responsible node has been located the item can be retrieved

as like a traditional hash table.

There can be different algorithms for defining the overlay networks and hence may

have different time complexities for information retrieval. One of the very commonly

used variant of the DHT is using Consistent hashing in a Cartesian space. Consistent

hashing is a special type of hashing where for K number of keys and n slots, only K/n

keys are re-mapped on average to n re-mappings being made for the change in size of

the hash table. The choice of a good hash function endeavors uniqueness of key values,

some real world implementations may use SHA-1 as its hash function. Varying the

67

Distributed Hash Tables

parameters of DHTs they can be used to build distributed file systems, domain name

services, multicast, instant messaging, peer-to-peer file sharing and content distribu-

tion systems. Some of the well known DHT implementations are Apache Cassandra,

CAN [32], Chord[33], Pastry[34], Tapestry[35] etc.

4.4.1 Chord

Chord provides an algorithm for peer-to-peer DHTs having a different approach towards

searching the location of keys in the system and how the nodes join and leave the

system. It provides a fast distributed computation of hash function using consistent

hashing for key value pairs to their hash buckets as physical nodes. Using the Chord

lookup protocol [80], node keys are arranged in a circle that has at most 2m nodes.The

circle can have IDs/keys ranging from 0 to 2m− 1. IDs and keys are assigned an m-bit

identifier using consistent hashing. The SHA-1 algorithm is the base hashing function

for consistent hashing. Consistent hashing is integral to the robustness and performance

of Chord because both keys and IDs (IP addresses) are uniformly distributed and in

the same identifier space. Consistent hashing is also necessary to let nodes join and

leave the network without disruption. Each node is accompanied with a successor

and a predecessor. The successor to a node (or key) is the next node (key) in the

identifier circle in a clockwise direction. The predecessor is counter-clockwise. Since

the successor (or predecessor) node may disappear from the network (because of failure

or departure), each node records a whole segment of the circle adjacent to it, i.e. the r

nodes preceding it and the r nodes following it. This list results in a high probability

that a node is able to correctly locate its successor or predecessor, even if the network

in question suffers from a high failure rate.

The Chord protocol is one solution for connecting the peers of a p2p network.

Chord consistently maps a key onto a node [81]. Both keys and nodes are assigned an

m-bit identifier. For nodes, this identifier is a hash of the node’s IP address. For keys,

this identifier is a hash of a keyword, such as a file name. It is not uncommon to use

the words“nodes” and“keys” to refer to these identifiers, rather than actual nodes or

keys. There are many other algorithms in use by p2p, but this is a simple and common

approach.

A logical ring with positions numbered 0 to 2m - 1 is formed among nodes (as

68

Distributed Hash Tables

(a) Chord Ring of 10 nodes (b) Finger Table for Node N8

Figure 4.1: Chord Lookup Protocol [5]

shown in Figure 4.1) [5]. Key k is assigned to node successor(k), which is the node

whose identifier is equal to or follows the identifier of k. If there are N nodes and K

keys, then each node is responsible for roughly K / N keys. When a new node joins

or leaves the network, responsibility for O(K / N) keys changes hands. If each node

knows only the location of its successor, a linear search over the network could locate

a particular key. This is a naive method for searching the network, since any given

message could potentially have to be relayed through most of the network taking O(N)

time. Hence it can be said that Chord implements a faster search method [82].

Chord requires each node to keep a ”finger table” containing up to m entries. The

ith entry of node n will contain the address of successor ((n + 2i−1)mod2m). In a 64-

node Chord network, the nodes are arranged in a circle labeled as N1, N8, N14 and

so on as per the node identifier (Figure 4.1a). Each node is connected to other nodes

at distances 1, 2, 4, and 8 away. The ”fingers” for one of the nodes are highlighted

in Figure 4.1b. A lookup for a given key k made to any node n, searches its finger

table to find the exact node or the node nearest as per its finger table, responsible for

the key, i.e. successor(k). With such a finger table, the number of nodes that must be

contacted to find a successor in an N-node network is O(log N).

69

Distributed Hash Tables

4.5 Chord-based Decentralized Registry

Chord [33] - a DHT [69]-implementation over structured p2p overlay network is a

distributed lookup protocol in p2p applications that helps in efficiently locating a

node/peer that stores a particular data item. Chord is adaptable to resource volatility

(i.e. changing set of resources/nodes) and hence is capable of answering search queries

even if nodes continue to join and leave the network. Chord uses consistent hashing of

the resources over a ring of node identifiers where it can map a given key directly to

a node identifier. The registry is composed of a distributed hashtable of web services

stored as [key, value] pairs. Chord uses a hash function to generate unique keys from

the byte-encoded service name that are mapped to node identifiers generated as hash

value of nodes’ IP address. In this framework, a node may attempt to join the network

as a WSP (service provider) with services that are available, but may or may not be

deployed at that point of time. In either case, the node joins the de-centralized registry

within the network and shares its own web services as owner with other WSP peers.

This sharing and de-centralization of the registry is achieved by use of Chord protocol.

Since the resources to be shared here are web services, the value corresponding to a

key is service metadata, which consists of the following items:

1. Name of service

2. Status of the service (Available /Deployed)

3. Owner of the service i.e. WSP hosting the service.

4. List of HPs on which the service is currently deployed.

Each web service is owned by some WSPs as identified by the owner field in service

metadata. Such service metadata help in identifying the service, its endpoints and

other details necessary for proper execution in SOA framework.

Once the service is published in the registry, any further changes made to the state

of the service such as status of the service and new deployments are all propagated

simultaneously to the registry. The consumers are provided with a user interface,

maintained by the WSP with all the services it can provide along with their current

status as shown in Figure 4.2. A closer look towards the implementation can provide a

70

Workflow of Registry with SOA Framework

clear picture of how the p2p overlay network is exploited to achieve the above benefits.

Adhering to SOA framework, the next section describes implementation and working

of the registry.

Figure 4.2: WSP Interface

4.5.1 The Registry Workflow

In order to maintain and use the registry for the dynamic set of resources, three basic

steps are required. These steps are responsible for publish-find-bind notion of the SOA

framework that achieves interoperability of web services.

71

Workflow of Registry with SOA Framework

4.5.1.1 Publishing a Web Service

The first and foremost task performed by a WSP when it joins the network is to

publish the web services it owns. In case the WSP is the first one to join the network,

it initializes the DHT-based service registry by uploading the information about its

services to the registry. Further, this node also identifies itself as the bootstrap peer

for the Chord protocol which facilitates the other WSP peers to contribute to the

DHT so formed when they join the network. With the increase in the number of WSPs

and services provided by them increases, the entries in the registry are distributed

among the peers based on the Chord protocol rules. This is achieved by mapping the

hashed keys onto respective node identifiers and distributing the information among

all the peers in the network. Apart from this, each WSP node also maintains a list of

all services as [key, value] pairs locally, assigned by Chord along with the services it

owns/hosts. When a service is published in the registry by the owner WSP, it becomes

discoverable by all the consumers and other WSPs which are peers, until and unless the

service is explicitly removed by the owner. Other WSP peers do not have the rights to

perform any administrative task, such as publishing/deploying/modifying/removing

the service owned by a particular WSP to/from the registry. The registry provides

service metadata only which ensures that the service is discoverable by other WSP

peers and consumers and it does not provide the entire service package for security

reasons.

Once the service is published it may so happen that the owner undergoes a net-

work/node failure or leaves the network, that is becomes unavailable, thereby creating

uncertainty in the environment. In such a scenario the service still remains discover-

able in the network due to the DHT-based implementation. This is possible because

the keys of the services owned by a particular WSP are shared among the predecessor

and successor of the concerned peer in a structured fashion as per the Chord protocol.

Such a phenomenon of exchanging information and re-mapping the keys enables the

architecture with higher service availability. When the WSP rejoins the network, it

can resume its normal functioning from the same set of the deployed instances and

schedules the incoming requests accordingly. This is possible because of the dynamic

nature of the registry where dynamic service metadata such as the service status and

the list of nodes where the service is deployed are maintained even if the owner is

72

Workflow of Registry with SOA Framework

unavailable leading to a high degree of fault-tolerance in the registry.

4.5.1.2 Discoverying a Web Service

A client can make a service request only when the service endpoint is made available

to the client via the interface. By default the interface enlists all the services with

endpoints maintained locally as a list of DHT entries. Depending on the list a client

request can be made in two ways:

1. Case 1 - If the service is in the list then the service endpoint is made directly

available to client by which a service request can be made.

2. Case 2 - If the service is not in the list, the client can submit a service query to

the registry as a result of which the endpoint is returned if the service exists.

Chord uses an efficient routing algorithm for locating a key in the ring with an

upper bound of O(log N), where N is the number of nodes taking part in the chord

ring [33]. As a result of this, the registry remains scalable even with an increase in

number of web services and WSP’s, as compared to previous approaches.

4.5.1.3 Binding with a Web Service

After the service endpoint is made available to the client, depending on the three

parameters i.e. status of the service, the WSP through whom the service request is

being made and the WSP who owns the service; a client request is scheduled accordingly

among the available HPs.

In order to represent the workflow, we have modelled the request as a tuple with

three attributes - [service name, requesting WSP, target WSP]. For example, as shown

in Fig. 4.3, a service request tuple [WS2, WSP#1, WSP#2] implies that a client has

made a request for service WS2 via the WSP#1 and the owner of the service is WSP#2.

Describing the service request tuple in a generalized manner denoting WSx be the name

of the web service owned by a WSP#x and WSy be a name of the web service owned

by WSP#y and so on, with respect to these parameters four generic kinds of requests

can occur as depicted in Table 4.1 along with there scheduling criteria.

From the table it is evident that for a service which is already deployed, a client

request made directly to the service owner (SR1) is routed using a default scheduling

73

Workflow of Registry with SOA Framework

Figure 4.3: Service Request Types and Flow

strategy. A service request made to a WSP other than the owner (SR2) of the service

is routed to a minimum loaded HP so that the QoS parameters are not compromised.

If the service is not deployed yet, a request made to a WSP other than the owner

(SR3) first routes the request to the owner for the deployment of the service, after

which, a normal deployment procedure is carried out similar to deployment request

74

Workflow of Registry with SOA Framework

Table 4.1: Service Request Types

Request Status Request Scheduling
Type Tuple Criteria

SR1 Deployed [WSx,WSP#x,WSP#x] Routed to HP
using WSP#x’s
scheduling strategy

SR2 Deployed [WSx,WSP#y,WSP#x] Routed to HP
using minimum
load criteria

SR3 Available [WSx,WSP#y,WSP#x] Routed to owner
i.e. WSP#x for
deployment

SR4 Available [WSx,WSP#x,WSP#x] Deployed on an
appropriate HP

made to same owner (SR4). As mentioned earlier, if the owner of a service goes down,

the service still remains discoverable and hence can be used by client via SR2 if it has

already been deployed. Since the deployment rights are limited to the owner of the

service, further new deployments will not occur and all the incoming client requests

will be serviced from the existing deployments, by selecting a suitable node among the

deployed instances decided by some scheduling strategy.

As discussed in Section 4.5, the registry entry for a given service includes the service

meta-data, among which status of the service and the list of deployed instances play an

important role to compensate for the absence of the WSP who owns the service. WSPs

receiving service requests of type SR2 schedule them to appropriate HPs using the list

of deployed instances from the registry. Once a WSP wants to rejoin the network it

queries the registry for all the services it is supposed to provide and synchronizes its

own service states, i.e. the service status and deployed instances, as per the registry,

to avoid any inconsistency or conflict. Such an approach where consumer requests

are handled while utilizing the benefits of the Chord protocol ultimately increases the

service availability and provides a unique approach for rendering an architecture which

can fully realize demand-driven provisioning of web services. Thus the use of only web

service metadata instead of the whole web service package, improvises the architecture

75

Workflow of Registry with SOA Framework

with the following unique benefits:

• Enables the security and confines administration of the web service from other

WSPs. This may further encourages a business model for exchanging web ser-

vices.

• Increases the availability of the web service, making is accessible from more than

one site.

• Keeping the service available even if the owner WSP is not available in the

network, as the list of current deployed instances is made available in the network.

• Enabling the owner WSP to resume its old state of web services with its existing

deployments, when the WSP returns back to the network after some failure.

4.6 Summary

The architecture presented in this chapter attempts to address the drawbacks of static

UDDI-based registries that are used in distributed web based frameworks. It extends

the ideas proposed in the architecture like DynaSOAr framework about decoupling the

service providers and host providers and sharing the one-time deployment cost among

many invocations and provides an alternative model which may be considered as com-

plimentary to job-based grid paradigms. It employs service provisioning on the basis

of balancing the load and meeting minimum service requirements to achieve better

performance to cater to increasing demands for web applications. The incorporation

of p2p technologies in the framework provides a robust approach towards handling the

uncertainty of grid environments by sharing and distributing resources over the net-

work. It overcomes the scenario of single point failure as it is devoid of any centralized

mechanism of service registry. The architecture not only decentralizes the registry but

at the same time dynamically adapts the registry to the inherent volatility of a grid-like

framework.

76

Chapter 5

Request Scheduling : A Load

Balancing Approach.

5.1 Introduction

The distributed architecture discussed in Chapter 3 aims at achieving the primary goals,

such as high performance, availability and extensibility at low cost. However some of

these benefits can be realized by overcoming the problem of allocating considerable

processing capacity available in the distributed system so that it is used to its fullest

advantage. In this system, the tasks, i.e. web service requests that are submitted to

the WSP tier are of unpredictable nature and are submitted on the fly. Not only this,

the service requests may vary from one web service to another. The performance of

the architecture entirely depends on the HPs for executing service requests. But HPs

may get overloaded if proper method of scheduling service requests is not adopted by

the WSPs.

Alike commonly known distributed architectures, the system discussed in Chap-

ter 3 consists of a collection of autonomous nodes connected by communication net-

work where computing power of this distributed system can be realized by allowing

its constituent computational elements (CEs), or nodes, to work cooperatively so that

large loads are allocated among them in fair and effective manner. Different strategies

are used for this load distribution. Any such strategy for load distribution among the

nodes is called load balancing (LB). An effective LB policy ensures optimal use of the

77

Request Scheduling

distributed resources whereby no CE or nodes remains in an idle state while other CEs

are being utilized.

Services must be submitted to the host computer (Host Provider) for processing

whenever a consumer requests for that service. Now the problem is that the random

arrival of services as shown in Figure 5.1 in such an environment can cause some

nodes to be heavily loaded while other nodes are idle or only lightly loaded. Load

distribution improves performance by transfering tasks from heavily loaded computers,

where service is poor, to lightly loaded computers, where the tasks can take advantage

of computing capacity that would otherwise go unused.

Figure 5.1: Load Balancing Model

In this chapter the focus is on the load distribution problem of the system among

its nodes so that overall performance is maximized. Initially after discussing some key

issues in load distribution for general purpose distributed systems, a survey on some

load balancing policies is presented and algorithms used in this existing architecture

are discussed. Conclusions are drawn about which algorithm might help in realizing

the most benefits of load distribution.

78

Request Scheduling

5.1.1 Load Balancing Problem

Load balancing problem in distributed environment is an old problem, but some suc-

cessors of distributed computing, such as grid computing, p2p added new challenges

in it. One of the main challenges which creates a huge difference between the early

distributed environments and the present day’s distributed environments is that, in

initial distributed systems nodes are homogeneous in nature and static, whereas in

grid environments nodes are heterogeneous and any node can join and leave the net-

work any time. In such an environment, system performance needs to be improved

by suitably transferring the workload from heavily loaded computers to idle or lightly

loaded computers. Originally a widely used performance metric considered to be the

average response time of tasks. The response time of a task is the time elapsed between

its initiation and its completion. Minimizing this average response time often becomes

the goal of load distribution. Thus, if a system schedules the service request to a over-

loaded node then the request will take longer time to get served, which may lead to a

service failure. Load balancing algorithms can solve this problem by distributing load

evenly to the available resources. Basically, the following four basic steps are necessary

for a load balancing system:

1. monitoring resource load and state,

2. exchanging load and state information between resources,

3. calculating new load distribution,

4. updating data movement,

5.1.2 Dynamic, Static and Adaptive Algorithms

Load-distributing algorithms can be broadly distinguished as dynamic, static or adap-

tive algorithms. Load balancing decisions can be taken either statically at compile

time or dynamically at runtime. Static load distribution always assigns a given job to

a fixed node. As shown in Figure 5.2, these decisions are based on a priori knowledge

of the system, i.e. computing nodes and communication network are known and a

prior information about all the characteristics of the jobs are required. Load balancing

decisions are made deterministically or probabilistically at compile time, and remain

79

Request Scheduling

constant during run-time. The static approach is quite attractive for its simplicity and

the reduced run-time overhead. However, the static approach cannot respond to the

dynamic changes in the system, and may lead to load imbalance on some nodes and

significantly increase the job response time. The majority of recent distributed system

exhibit significant dynamic behavior. For these systems, dynamic scheduling, in which

policy decisions are based on the load-state of nodes, is required.

Figure 5.2: Static Load Balancing Model

Dynamic algorithms use system-state information to improve the quality of their

decisions. For example, a simple dynamic algorithm, unlike its static counter part, will

not transfer an arriving task if the node where it arrived is idle. Dynamic load bal-

ancing algorithms (Figure 5.3) use current load information while making distribution

decisions. Multi computers with dynamic load balancing allocate/ reallocate resources

at runtime based on a priori task information, and determine when and whose tasks can

be migrated. As a result, dynamic load balancing algorithms can provide a significant

improvement in performance over static algorithms [83].

Adaptive load-distributing algorithms are a special class of dynamic algorithms.

They adapt their activities by dynamically changing their parameters, or even their

policies, to suit the changing system state. For example, if some load distributing policy

performs better than others under certain conditions, while another policy performs

better under other conditions, an adaptive algorithm can choose between these policies

based on the observations of the system state. Even when the system is uniformly so

80

Request Scheduling

Figure 5.3: Dynamic Load Balancing Model

heavily loaded that no performance advantage can be gained by transferring tasks, a

nonadaptive dynamic algorithm might continue operating and incur overhead. On the

other hand an adaptive algorithm may stop the load distributing activity until some

of the nodes become idle.

5.2 Load Balancing in the Proposed Framework

Today’s distributed applications involving more than one server require a proper mech-

anism to distribute its clients requests to its servers. Depending on these mechanisms

the servers may have varying workloads. Methods to achieve best performance needs to

minimize the workload differences between the servers. Many approaches use prior es-

timations of jobs submitted to an application and hence perform sharing of workloads.

Such a pre-decided load distribution leads to static load balancing approaches. In a

distributed environment, any load balancing algorithm with greedy approach would

seek for the least busy machine in the system. This decision for finding out the least

busy machine or say the least loaded machine is subjective to the requirements of the

application in consideration.

The architecture discussed in the Chapter 3 allows dynamic deployments of web

81

Static Load Balancing

services where services are deployed on the fly on available resources or Host Providers

(HPs). In this scenario once a service is deployed on a node (HP)after receiving a

request from a consumer, it remains deployed on that node until explicitly removed,

so that it can serve maximum requests for that service. So, in order to provide the

consumer efficient and fast access to the service there is a need to minimize the average

response time through efficient balancing of the load on these resources.

A web service may have more than one deployments to serve its consumers. Hence

all the incoming service requests should be handled carefully to achieve proper utiliza-

tion of the resources (HPs). In such a scenario, WSPs exercise different scheduling

strategies to schedule the requests among the deployed instances of the service based

on some suitable logic to balance the load among the deployed instances. As the re-

quests are dynamic in nature, the load balancing algorithms should be able to properly

mange the workload depending on the current load of the deployed instances specific

to the web service request being made.

In this thesis both static as well as dynamic load balancing approaches are used to

ensure better performance for the consumers. Static approach considers the minimum

service requirements along with node configuration information, to prevent over uti-

lization of the resources. This is achieved by constraining the deployments on HPs with

insufficient resources as compared to the minimum service requirements. To achieve

dynamic load balancing of the service requests, a major pre-requisite is to calculate

the present workload of an HP. Once the workload is determined and collected by the

WSPs, it runs some scheduling algorithm to decide a best suitable node to serve the

consumer requests. In the next few sections the different approaches taken up within

the framework to balance and manage the resources are discussed.

5.3 Resource Selection

5.3.1 Concept

The architecture works on the principle of assigning resources which have at least equal

or greater computational efficiency required by the web service from the heterogenous

pool of HPs. Thus, the WSPs ensure the all the deployments made do not over-utilize

the HPs resources, leaving them unavailable for the services which may match their

82

Static Load Balancing

static configuration. A web service (e.g. WSx and WSy as shown in Figure 5.4),

having a given set of minimum requirements as service metrics, if deployed on a HP

with lower configuration may lead to inefficiency of the system. Such a scenario will

not only violate the QoS for the consumer, but at the same time may lead to higher

response time for the web services which match the static configuration of the HPs (i.e.

WSz). By constraining the deployments to the HPs with enough resources to meet the

service requirements, the HPs with lower configuration may be pretended from being

overloaded or becoming unavailable in the network.

Figure 5.4: Static Load Balancing Model

5.3.2 Implementation

As mentioned in the earlier chapter, a web service hosted by a WSP is annotated with a

service metric which consists of fields specifying minimum physical resources required

such as - processor, memory, host operating system etc., for its proper execution.

All these requirements are provided by the manufacturer of the service to specify the

resource capabilities which would provide us with the desired QoS. In future more

83

Dynamic Load balancing

parameters can be added to meet SLA for its consumers. These specifications are

hence used to search for a suitable resource in the network.

The WSPs perform matchmaking of the service metrics with node properties, i.e.

static physical information made available as shown in Algorithm 2. Such matchmaking

process helps the WSP tier to prevent deployments on insufficient resources hence

avoiding over utilization of the resources. By this approach the Best Node Finder

ensures that no web service is deployed on a resource which is not compatible with the

service requirements.

In spite of the above effort, the HPs may still get overloaded if a large number of

consumer requests are scheduled to a single HP, resulting in higher response time and

under utilization of other deployed instances. Hence static load balancing does not

provide us with a solution for the dynamic nature of incoming service requests. To

handle such uncertain behavior of consumer requests, the architecture makes a move

towards dynamic collection of the present workload of the current deployed instances

and hence schedule the service requests among them.

5.4 Dynamic Load Balancing

A correct evaluation of a server’s workload can be determined by the amount of pro-

cessing or response time needed to execute all its clients’ requests. Researches have

shown [84] the best mechanism to accomplish optimal response time by distribut-

ing the workload evenly among the servers. But there is no known way to determine

how much processing time a request may take prior to actually executing it. As a

consequence, determining the actual workload of a server remains an unresolved issue.

Parameters, such as CPU utilization, CPU queue length may provide with approx-

imate estimates to determine the present workload of the server. The performance of

jobs which require access to a large database may depend on amount of physical mem-

ory available. In such cases amount of physical memory in use may also prove to be an

important parameter to determine the present workload of a server. A correct choice

and a right combination of such parameters can help in achieving a better estimate of

the overall workload.

84

Dynamic Load balancing

5.4.1 Overview

Our architecture deals with a situation where the WSP tier needs to distribute the

workload, i.e. the web service requests among the deployed instances in the HP tier.

To achieve this, it employs methods which make use of the dynamically collected

current load information of the HPs. All HPs send their current load information to

all WSPs at regular intervals. All such load information are stored by the WSPs and

are processed whenever required. The decision making process is carried out at two

stages:

1. First it is checked weather a HP is loaded or not before deploying a web service

(as shown in Algorithm 2in Chapter 3).

2. Next a best node is selected for distributing the service requests based on some

scheduling algorithm.

Though at the first stage, Algorithm 2 discussed in Chapter 3, depicts a static

approach to load balancing, but deploying a service on an overloaded node may lead to

higher cost of deployment and higher response times for the service requests scheduled

to that HP. Hence performing a check on the current load of a HP provides an added

advantage for selecting a suitable HP which is lightly loaded. At the second stage, WSP

uses the load information with the principle, that service requests should be scheduled

to only those HPs which are not overloaded at present. It utilizes the load information

(discussed next) in different ways depending on the scheduling algorithm in use.

5.4.2 Load Information

One of the important issue for any dynamic load-distribution algorithm is identifying a

suitable load parameter. A load parameter indicates the expected performance of a job

that which may be executed at some particular node. To be effective, load parameter

readings are taken when tasks are initiated and should correlate well with task-response

times.

Load indexes which have been studied and used in this thesis include the CPU uti-

lization, the average CPU queue length over some period, and the amount of available

memory. Researchers have consistently found significant differences in the effectiveness

of such load parameters - and that simple load indexes are particularly effective.

85

Dynamic Load balancing

In case of the architecture which has been discussed earlier, the current load of the

given servers such as CPU utilization and physical memory in use can be useful. A

waiting queue length of the given server may also contribute to get an estimate of the

number of jobs still pending at the server end. The architecture attempts to use these

parameters to estimate the current load of the HPs. All the HPs send their average or

present CPU usage, physical memory in use, the server queue length and size of server

thread pool in use. Collectively, the load information of a given HP consists of the

values as follows:

• Average CPU utilization (in percentage) over the last minute, i.e. just before

sending the load information.

• Physical memory (in percentage) currently in use.

• Queue length of the server.

• Size of the thread pool and number of idle threads in the thread pool.

• Overall load of the node calculated based on the above parameters.

• A boolean value to state the node is loaded or not, based on some threshold.

The load information is wrapped as an object and is communicated to all the WSPs

in the network. Among the above parameters the first four are basic load parameters

whereas the last two parameters are derived from the basic parameters and help in the

decision making process for the load balancing algorithms. Hence a proper derivation

and selection of such variables is of great concern and may effect the performance of

the system.

5.4.3 Load and Load Threshold

The HPs in the architecture may be of heterogenous nature, hence calculating load

information in terms of percentage of utilization provides a simple approach for han-

dling the workloads. Mapping all the above mentioned load information on one scale

provides an easier approach for deciding the difference in present workload of the HPs.

To obtain such a value, the architecture uses a liner equation of two major parameters

as shown in 5.1.

86

Dynamic Load balancing

load = (average CPU utilization× 0.5) + (physical memory in use× 0.5) (5.1)

Equation 5.1, estimates the load of a given HP as a linear combination of average

CPU utilization and physical memory in use, by assigning equal weights to both the

parameters, assuming that both parameters play equal role in estimating the present

workload of a HP.

Based on the above estimate of the workload, the decision that whether a node is

loaded or not depends on a threshold value. If the load exceeds the threshold, the HP

is said to be overloaded or simply loaded and may not be able to serve more incoming

service requests with the same proficiency as it could if the load lies below threshold.

Scheduling algorithms try to avoid the HPs if their corresponding load exceeds the

threshold. Similarly, no new deployments are made to the nodes if they are found to

be loaded.

The threshold value as discussed above is also pre-decided for all the nodes depend-

ing on the configuration of the nodes. Selection of an optimum threshold still remains a

research issue as performance of the system may vary with respect to different thresh-

olds.

5.4.4 Implementation

5.4.4.1 Gathering Load Information

Load Balancer provides the encapsulation of the current load information of a given

peer in the system. All peers can share their dynamic load information among each

other. The load information as described above are collected during runtime and is

wrapped as a load object and is sent to all WSPs by load Sender of each HP. All the

load objects received by the WSPs are stored in a load map (a map of load objects),

which contains only the latest load object corresponding to a given HP. The scheduling

algorithms running at the WSP makes use of the load map for monitoring the current

load of a HP. Load sender sends the load objects at regular intervals, equal to the time

slice (discussed in next section) for web service request scheduling. This enables the

scheduling algorithms to work on the latest load information for every time slice. Once

87

Experimental Results

the WSP has a ready database, i.e. load map of current load objects of the HPs, it uses

those to schedule the incoming web service requests to appropriate HPs.

5.4.4.2 Scheduling Strategies

The WSPs use a scheduling strategy to route the consumer requests based on the

dynamic load information collected from the HPs with deployed instances of the services

they own. The scheduling strategies used by Resource Scheduler, are time slice based,

i.e. an instance among the all the deployed instances for a given service is selected as a

best node for a given time period. To facilitate this process Service Monitor maintains

a sperate list of the deployed instance of HPs along with the best node, specific to each

web service. The list is known as service list. A set of all such service lists is maintained

as a Service List Map. At the end of every time slice, the best node is changed to some

other HP from the service list as per the scheduling strategy used below:

• Round Robin Reloaded (RRR) - selects the best node, in round robin fashion

for every time slice cycling over the deployed instances (Algorithm 3).

• Least Recently Used Reloaded (LRUR) - selects the least recently used

instance as the best node if the current instance is loaded, for the next time slice,

cycling over the deployed instances (Algorithm 4).

• Minimum Loaded First (MLF) - selects the instance with minimum load as

the best node for every time slice among the deployed instances (Algorithm 5).

5.5 Experimental Results

In this section we present the performance of dynamically deployed web services to

serve a large number of consumer requests made simultaneously. These tests have been

conducted using a simple web service for calculating the Nth Fibonacci term (N=40),

with one WSP and many HPs. Initially requests are made for a service which is not

deployed, calculating response time for each request, keeping the load factors as 50% of

CPU usage and a minimum free memory. The physical nodes used in the experiments

are of configuration which Intel Core 2 Duo with 1.86GHz frequency processor, 1GB

88

Experimental Results

Algorithm 3: Algorithm for Round Robin Reloaded (RRR)
1 begin
2 foreach ServiceList ∈ ServiceListMap do
3 NodeFound← FALSE;
4 Marker ← ServiceList.getPointer();
5 while not found suitable node do
6 ServiceList.incrementPointer();
7 tempNode← DeployNodes.get(ServiceList.getPointer());
8 if LoadThreshold(tempNode) == TRUE then
9 if Marker == ServiceList.getPointer() then

10 // all nodes loaded

11 NewDeploymentRequired();
12 NodeFound← TRUE;

13 else
14 ServiceList.setBestNode();
15 NodeFound← TRUE;

16 // update ServiceListMap with new ServiceList

17 UpdateServiceListMap(ServiceList);

Algorithm 4: Algorithm for Least Recently Used Reloaded (LRUR)
1 begin
2 foreach ServiceList ∈ ServiceListMap do
3 NodeFound← FALSE;
4 Marker ← ServiceList.getPointer();
5 while not found suitable node do
6 tempNode← DeployNodes.get(ServiceList.getPointer());
7 if LoadThreshold(tempNode) == TRUE then
8 ServiceList.incrementPointer();
9 if Marker == ServiceList.getPointer() then

10 // all nodes loaded

11 NewDeploymentRequired();
12 NodeFound← TRUE;

13 else
14 ServiceList.setBestNode();
15 NodeFound← TRUE;

16 // update ServiceListMap with new ServiceList

17 UpdateServiceListMap(ServiceList);

RAM with Windows 7/Windows XP and Linux (Ubuntu) installed. The graphs in

Figure 5.5, show the plots of 5000 consumer requests made to the corresponding service.

Response time in seconds for each service request is plotted for the different scheduling

strategies mentioned in the Section 5.4.4.2.

It may be noted that the time taken by the very first request to be served is

quite high as compared to the subsequent requests. The high response time for the

first request is caused due to the overhead of a new service deployment. Once the

89

Experimental Results

(a) Plot for Round-Robin Reloaded

(b) Plot for Least Recently Used Reloaded

Figure 5.5: Experimental results for Load Balancing

90

Experimental Results

Algorithm 5: Algorithm for Minimum Loaded First (MLF)
1 begin
2 foreach ServiceList ∈ ServiceListMap do
3 NodeFound← FALSE;
4 while not found suitable node do
5 LoadObject← FindMinimumLoad(ServiceList.getDeployedInstances());
6 if LoadObject.getThreshold() == TRUE then
7 // if minimum load exceeds load threshold

8 // all nodes loaded

9 NewDeploymentRequired();
10 NodeFound← TRUE;

11 else
12 ServiceList.setPointer();
13 ServiceList.setBestNode();
14 NodeFound← TRUE;

15 // update ServiceListMap with new ServiceList

16 UpdateServiceListMap(ServiceList);

service is deployed, subsequent requests are processed within a short duration till the

instance becomes loaded and a new deployment is triggered. When the new instances

are deployed, the response time again increases for those particular requests for which

the deployment was triggered. On the whole, the “ deploy once, use many times ”

philosophy of web services is well observed in the experiment. As the service requests

use the computational resources scheduled to them, the load of the nodes may increase

leading to higher response times - and such situations lead to fresh deployments.

Based on the experiments conducted with different parameters, and comparing the

results, we find the cumulative response time for LRUR (Figure 5.5b) is less than that

of RRR (Figure 5.5a) with same parameter set. As LRUR algorithm schedules the

service requests to the HP until it gets loaded, we get lower response time for longer

times (for good HPs) but this leaves the other deployed HPs less used. In contrast the

observation in RRR is just opposite as in this case the Resource Schedular schedules

the service requests evenly among all the HPs which may lead to higher response time

if the HPs have a load factor just below the threshold.

5.6 Summary

A load balancing approach for the proposed architecture and its implementation is

discussed in this chapter. To achieve the desired QoS of the propose architecture, an

91

Experimental Results

Figure 5.6: Dynamic Load Balancing Model

efficient and effective load balancing approach is needed. Thus, whenever a consumer

requests for a service, in order to execute that service, it needs to be deployed on any

of the available host providers based on its resource requirements and the current load

information of the host provider. After the first deployment, all the subsequent requests

for the service are then just redirected to the host providers. Some load balancing

approaches are discussed in this chapter where initially a simple threshold based load

balancing approach has been implemented. Every host provider has a threshold or load

criterion defined. It depends on parameters like memory and CPU usage of the overall

system, CPU and memory usage per service, etc. Once a host provider exceeds that

criterion, a new host provider node with a load lower than the threshold value is found

from the remaining nodes in the network. Then the service is deployed on this new

node. Next, some good scheduling strategies are also used to serve consumer requests

as the service is available on more than one host providers. These scheduling strategies

and their implementations with results are also discussed in this chapter.

92

Chapter 6

P2P-Based Service Distribution:

DynaTronS protocol

6.1 Introduction

Dynamic or demand-driven service deployment in a distributed environment is an im-

portant issue considering the varying nature of demand. Most distributed frameworks

either offer static service deployment which results in resource allocation problems,

or, are job-based where for each invocation, the job along with the data has to be

transferred for remote execution resulting in increased communication cost. An al-

ternative approach is dynamic demand-driven provisioning of services as proposed in

earlier chapters, but the proposed methods face one major difficulty. It incurs con-

siderable deployment cost because in many cases, a service deployment operation may

require additional data to be accompanied that increases the service package size. In

this context, fast p2p file sharing techniques (such as Bit-Torrent protocol) can act as

a value addition to the framework. Use of such protocol increases the speed of the

download, decreases the possibility of download failure and increases the availability

of the files and services. One significant contribution of the thesis is incorporation

of Bit-Torrent like protocol in the p2p-based framework by making use of such a file

sharing technique to download service packages from the existing deployments to cater

to new deployments.

In this chapter, a unique peer-to-peer based approach is proposed for dynamic

93

P2P Deployment

service provisioning. The approach is based on a Bit-Torrent like protocol for provi-

sioning the service on a remote node. Thus, this fast p2p file sharing technique can

make a value addition to the framework. Bit-Torrent [85] is quite popular as it in-

creases the speed of the download, decreases the possibility of download failure and

increases the availability of the files and services. This chapter focuses on the inclusion

of Bit-Torrent protocol in the proposed framework and demonstrates its advantages

by making use of such a file sharing technique to download service packages from the

existing deployments to cater to new deployments. Thus, being built around a p2p

model, the proposed framework discussed in this chapter caters to resource volatility

and also incurs lower provisioning cost .

6.2 Enhancement of the Proposed Architecture

The proposed framework discussed in the earlier chapters with decentralized service

registry, efficient catering of consumer requests is only possible if requested services

can be deployed in a timely manner. This three tire architecture where all the nodes

either serves as WSP or HP are connected in p2p network provides a new platform for

dynamic web service provisioning.

In case of on-demand service provisioning, the time required to download a service

package stands to be an important factor for delivering low response times specifically

for those requests which correspond to trigger the deployments. To achieve this on the

premises of p2p network, use of Bit-Torrent protocol seems to be a good solution for

reducing the deployment time of a service.

The architecture adopts two different modes to accomplish download of the service

package. These are:

1. Direct Download : where the HPs download the service package directly from

the local repository of the WSP to carry out the deployment process.

2. P2P Download : where the HPs download the service package by requesting

chunks of the WAR file from more than one site.

In the first approach, it portrays a client-server model where HP (client) needs to

download the service package from the WSP (server). In such a scenario a service

94

Bit Torrent Protocol

package may become unavailable if the owner WSP becomes unavailable at the time

or in the midst of a deployment. This may again lead to the bottleneck problem or

single point failure. Furthermore, it may require longer download times for large service

packages resulting in higher response time for the service requests which trigger the

successive service deployments. Since the whole architecture rests on the backbone

of p2p network, exploiting the benefits of p2p model may be advantageous for the

architecture. This is where something like Bit-Torrent protocol can achieve faster

download by proper utilization of the network bandwidth. In the following subsections,

a brief overview of Bit-Torrent protocol and its advantages re discussed.

6.2.1 Bit-Torrent Protocol

Bit torrent protocol was specifically designed for transfer of files, ensuring better per-

formance with respect to download times. This is achieved by the use of p2p networks

for resource sharing. In traditional client/server model [86], where each node acts as

a client or a server, enabling sharing of files between them, server acts as the cen-

tral/control point for the whole architecture. The server stores all the files/resources

hosted in the network, which can be downloaded by more than one clients at the same

time (as shown in Figure 6.1a) [6]. The main drawback of such an architecture is that

it suffers from single point failure, i.e. the failure of the server [87]. Moreover, it re-

quires a maximum cost of resources for the server to simultaneously cater many clients

possibly for same or different files.

The main goal of Bit-Torrent protocol is to reduce the server and network impact

of sharing large files by providing a swarm of hosts over a peer-to-peer network, where

each node acts as a peer to each other playing a dual role of client as well as server.

The peers who provide the files or parts of files are called seeds, whereas those who

wish to download the file are called leechers [88]. A file to be shared is divided into

pieces. All the pieces of the given file are equal in size, for example a file of 100MB

may be shared as ten pieces of 10MB each or twenty pieces of 5MB each. Once a peer

downloads a complete piece of the file it becomes the seed (source) of that piece while

downloading the rest of the pieces. Peers request different pieces from different peers

while downloading the complete file (as shown in Figure 6.1b). The pieces of the file

are generally downloaded in a random manner, and are arranged in order after all the

95

Bit Torrent Protocol

(a) Client/Server Model (b) Peer-To-Peer Model

Figure 6.1: File/Resource Sharing Models [6]

pieces have been downloaded by the bit torrent client, to produce the complete file.

In this approach of downloading the files in pieces, the download of the whole file can

be stopped in between, without loosing the information of the pieces which have been

downloaded completely. Due to this advantage it offers an easy way to download larger

files.

6.2.1.1 Operation

A node can act as a peer in the Bit-Torrent protocol only if it operates via a Bit-

Torrent Client - a program that implements bit torrent protocol rendering the node

capable of preparing, requesting and transmitting any type of file over internet using

this protocol. A node with an instance of Bit-Torrent client is considered as a peer.

To share a file, a peer creates another file called torrent, containing some metadata

about the file to be shared and about the tracker - a computer that coordinates file

distribution over the network. Once the torrent file is created, the peer publishes it

over web. A peer who wants to download the file, first downloads the torrent file and

connects to the specified tracker. Tracker then provides a list of peers from where to

download the file. In this process, the Bit-Torrent client makes small data requests over

different TCP connections to different peers. The selection of which piece to download

96

Bit Torrent Protocol

first follows an approach of rarest first, in contrast to the sequential download [89].

6.2.1.2 Advantages and Disadvantages over Classical Downloads

It provides a much lower cost to the content provider alleviating the overhead to cater

large number of clients to download the same file again and again. At the same time

it removes the bottleneck of single point failure, as not much of difference is made if

one of the seeds become unavailable. By this approach it reduces the resources and

bandwidth cost of the original distributor of the file. Since the downloads take place

from more than one site at the same time, it provides a better/full utilization of the

available bandwidth for a peer by offering higher transfer speeds. From a different point

of view, it also provides redundancy of data over many sites and reduces dependence

on the original distributor.

In spite of using the concept of decentralized peers in a p2p network, the whole

architecture can suffer if the centralized tracker fails. There have been approaches to

decentralize the tracker using DHT implementations. Another major disadvantage of

the protocol is that downloads achieve full download speed after some time, when all

or maximum connections to different peers have been established, whereas in classical

download system, full download speed is made available by the server from the be-

ginning of the download. Not only this, as per this protocol, a peer is offered high

download speeds only if it has pieces to share, otherwise the peer is choked.

6.2.2 Why Bit-Torrent?

Traditional File Transfer Protocol (FTP) [90] till is considered as a standard for secure

and reliable transmission of large files over the Internet. Nevertheless, it is based on

a client-server approach which is centralized and is inadequate for mass publication

of files. With a client-server approach, when the number of clients requesting services

from the server increases, the performance of the server deteriorates. On the other

hand, peer-to-peer (p2p) is an alternative network model which use a decentralized

model with each peer functioning as a client with its own layer of server functionality.

On top of this network model, Bit-Torrent [85] is implemented as a peer-to-peer file

sharing protocol. It is one of the most popular and successful protocols for transferring

large files over the Internet. The protocol takes up a very simple approach by breaking

97

Gather and Deploy Protocol

up large files (typically of the order of hundreds of megabytes) into uniform blocks of

considerably smaller size, such as 256 kilobytes, and these source components can be

dynamically requested from multiple source machines as shown in 6.2. In the proposed

architecture, Bit-Torrent technology can be used to download service packages from

the existing deployments, thereby sharing the deployment cost over many nodes. Thus,

the speed advantage of p2p file sharing over dynamic web service provisioning can be

achieved with increased service availability, decreased possibilities of service failure and

reduce time for aa service deployment.

Based on such a p2p approach capable of removing single point failure for service

package downloads, the architecture uses a second mode of download which is named

as Dynamic Torrent Service deployment protocol or DynaTronS.

Figure 6.2: Bit-Torrent Protocol

6.3 DynaTronS Deployment Protocol

DynaTronS is a download protocol specific to the requirements of the architecture

proposed in Chapter 3. It allows simultaneous download from all the available peer

to pull up the download speeds and hence reduces the download time for the service

package. The main aim of DynaTronS approach is to make an efficient use of all the

peers in the network who store the files required to complete a deployment request. The

underlying concept is to download the service package from all the possible locations,

i.e. peers which contain the service package. In the proposed architecture, the service

package is available at the local repository of the WSPs, as well as the HPs where the

98

Gather and Deploy Protocol

web service has been deployed. After a WSP notifies an HP to carry out the deployment

process, it also provides a seed list, i.e. a list of peers which contain the full service

package. Since the architecture enables the WSP tier to host the web service and to

share its information via the registry, but does not allow to share the service package

among the WSPs, the only place where one can find the service package (apart from

WSP) in the architecture is from the currently deployed instances of the web service

in concern. Hence the list of HPs bearing the service deployments along with the WSP

who owns the service collectively form the seed list for a given web service. With every

successive deployments of a given service, its corresponding seed list is added with

new peers. The HP selected to carry out a new deployment of the given web service

downloads the service package in chunks, simultaneously from the peers listed in the

seed list.

Figure 6.3 shows a conceptual diagram following the DynaTronS protocol, where

the service package is available at more than one sites, i.e. a WSP and few HPs. A

HP who needs to download the service package, requests chunks of the service package

from all those peers in the network who posses the complete copy of the service package

making a full use of the network bandwidth, while downloading different parts of the

service package concurrently.

Figure 6.3: Gather and Deploy Protocol

99

Gather and Deploy Protocol

6.3.1 DynaTronS vs Bit-Torrent

In early file transferring protocols, transferring file was a costlier affair in terms of time,

because as the size of the file increases, with limited bandwidth and speeds the time

to download the file also increases. After many p2p implementation Bit-Torrent comes

forward as a most popular form of file sharing protocol over the Internet. Bi-tTorrent

is a p2p-based communication protocol, that is used to share data and electronic files

over Internet. Mostly BitTorrent protocol is used for transferring large file such as

digital video files containing TV shows or video clips or digital audio files containing

songs over the Internet between geographically distributed nodes. Now considering

the advantages of Bit-Torrent protocols, DynaTrons protocol has been designed for

Service Oriented Architectures, where services are not limited to only video, audio or

some other content files. This protocol works behind some architectural framework

like service oriented grid or cloud, in such a way that whenever a service deployment

or service migration is needed for computationally intensive services, this protocol

provideds new platform for dynamic service deployment. Though the architecture

employs DynaTronS protocol for simultaneous download to achieve higher download

speed, it incurs some extra communication cost for requesting the required chunks of

the service package, organizing the chunks as well as monitoring the completion of

the download. Thus based on the functionalities of Bit-Torrent protocol, DynaTronS

protocol is designed some different architectural aspects where purpose remains the

same but roles of different elements change due to its architectural demand.

A direct comparison of DynaTronS protocol with the Bit-Torrent protocol may bring

up some conceptual differences between them considering the HPs as clients requesting

for a service package. Important characteristics for DynaTrons implementation in

comparison with Bit-Torrent protocol are discussed below:

1. No tracker involved : In DynaTronS protocol, the WSP itself plays the dual

role of providing the torrent file as well as the tracker (as in Bit-Torrent protocol).

The WSP itself provides the seed list, accompanied with the deployment events,

directly to the HPs.

2. First gather then share : DynaTronS adheres to the concept of downloading

the service package (in chunks) from all possible locations (as in the seed list),

and then upload the chunks of service package for next deployment. On the other

100

Downloading the Service Package

hand, in case of Bit-Torrent protocol the client may download, as well as upload

at the same time, which may sometime lead to choking of clients in the beginning

of the download.

3. Single seed - simultaneous download : For the first time deployment of a

web service, the web service package will have only a single peer in the seed list,

i.e. the WSP itself. In such case, if the service package is big, downloading it

at one go may be troublesome. Thus DynaTronS protocol downloads the service

package in small chunks simultaneously, even if the download is to be carried out

from a single site.

6.4 Downloading the Service Package

Whenever WSP requires a deployment of a web service after selection of the suitable

HP form the HP tier, it sends a deployment event to the selected HP, which in turn

initiates the Deployment Manager to start the deployment process at the HP end.

Deployment Manger then examines the deployment event received to extract the web

service credentials such as its configuration file, URI, length and checksum of the service

package. Depending on the deployment mode used by the HP tier, the service package

download is carried out accordingly. Two download modes discussed in Section 6.2 are

discussed detail in the following subsections.

6.4.1 Direct Download Mode

In this mode, the deployments, i.e. first time deployment or in some cases even the

successive deployments all are facilitated by the WSPs only. For every deployment

event received by an HP, after the retrieval of the service credentials, the HP contacts

the WSP, requesting to download the service as specified by the URI. WSP then verifies

identity of the HP requesting for the download. Download of a specific web service

is enabled to an HP if and only if the HP belongs to the list of deployed instances

maintained by the Service Monitor at the WSPs end. Such an identity verification

ensures that the service package is provided to only those HPs where the WSP intends

to deploy the service. Once the requesting HP is verified by the WSP, a dedicated

channel is established between the WSP and the HP to ensure the security of the service

101

Downloading the Service Package

package and hence starts the download for the requesting HP. Once the download is

complete the service package can be used to complete the deployment process. Binding

the deployment process to such a constraint of downloading the service package from

the WSP only, may lead to longer download times specially for service packages of

large sizes. In an attempt to reduce this download time, the architecture meets the

requirement of another download mode.

6.4.2 P2P Download Mode

This mode implements the DynaTronS protocol, enabling the HPs with deployed in-

stances of the web service, along with the WSPs, to provide the required service pack-

ages. In this mode, at the HP end, a receipt of a deployment event is followed by

extracting the service credentials accompanied with the seed list as sent by the WSPs.

With the complete information of the service URI and the seed list, the Deployment

Manager starts the download process by invoking a sub module - WAR Downloader

to download the WAR file corresponding to the web service deployment being carried

out. Based on the service package length, an appropriate chunk size and the number

of chunks required to download are decided by the WAR Downloader. Each of such

chunks is denoted by a Request Chunk object to acknowledge the identity of the chunk

such as :

• Name of the WAR file or the web service package.

• ID - a unique id to identify the chunk’s position in the complete service package.

• Start Offset - indicating the starting offset of the chunk in the complete file.

• Chunk Size - required specially to indicate the size of the last chunk as the last

chunk of the WAR file may not be equal to the decided chunk size.

• Buffer - to store the downloaded chunk as a byte array.

Once all the request chunks are initialized, WAR Downloader distributes these chunk

requests to different peers in the seed list using a Chunk Distribution Algorithm. A

peer can use either of the two algorithms to distribute chunk requests to the peers in

the seed list as discussed below:

102

Downloading the Service Package

• Serial Chunk Distribution - Sends chunk requests to all the peers in the seed

list, in a cyclic fashion, until all the chunks of a service package are requested

(Algorithm 6).

• Proportionate Chunk Distribution - Decides a value called proportion based

on the number of chunks required and number of peers available in the seed list.

This algorithm also cycles over the peers in the seed list, but makes proportion

number of chunk requests to the peers which are lightly loaded, and only one

chunk request to the peers which have heavy load (Algorithm 7).

Among the two chunk distribution algorithms, Serial Chunk Distribution gives a

naive approach for distributing chunk requests and may fail to achieve the goal as

expected, because a need for new deployment arises only when the existing deployments

get loaded. In such a scenario, these deployed instances may require more amount of

time to provide a requested chunk, resulting in higher deployment cost as compared

with Direct Download mode. In contrast, Proportionate Chunk Distribution algorithm,

tries to overcome the problem by requesting less number of chunks from the loaded

peers. Though this approach does not guarantee to resolve the issue mentioned earlier,

but still achieves a better performance compared Serial Chunk Distribution algorithm.

Algorithm 6: Algorithm for Serial Chunk Distribution
1 begin
2 WarLength← DeploymentEvent.getWarLenght();
3 SeedList← DeploymentEvent.getSeedList();
4 ChunkSize← CalulateChunkSize(WarLength);
5 NumberOfChunks←WarLength/ChunkSize+ 1;
6 Offset← 0;
7 SeedCount← 0;
8 for id← 0 to NumberOfChunks do
9 peer ← SeedList.get(SeedCount);

10 SeedCount← SeedCount+ 1;
11 if SeedCount == SeedList.size() then
12 SeedCount← 0;
13 // to cycle over the peers in SeedList

14 // requesting a chunk to a peer

15 RequestChunkToPeer(id,Offset, peer);
16 offset← Offset+ ChunkSize;
17 if Offset > WarLength then
18 // invalid Offset

19 break;

103

Downloading the Service Package

Algorithm 7: Algorithm for Proportionate Chunk Distribution
1 begin
2 WarLength← DeploymentEvent.getWarLenght();
3 SeedList← DeploymentEvent.getSeedList();
4 ChunkSize← CalulateChunkSize(WarLength);
5 NumberOfChunks←WarLength/ChunkSize+ 1;
6 Offset← 0;
7 SeedCount← 0;
8 Proportion← NumberOfChunks/SeedList.size();
9 ProportionCount← Proportion;

10 for id← 0 to NumberOfChunks do
11 peer ← SeedList.get(SeedCount);
12 if peer.getThreshold() == TRUE then
13 // allow only one chunk request, so change SeedCount
14 SeedCount← SeedCount+ 1;
15 if SeedCount == SeedList.size() then
16 SeedCount← 0;
17 // to cycle over the peers in SeedList

18 else
19 // request Proportion number of chunks, and then change SeedCount
20 ProportionCount← ProportionCount− 1;
21 if ProportionCount == 0 then
22 ProportionCount← Proportion;
23 SeedCount← SeedCount+ 1;
24 if SeedCount == SeedList.size() then
25 SeedCount← 0;
26 // to cycle over the peers in SeedList

27 // requesting a chunk to current peer

28 RequestChunkToPeer(id,Offset, peer);
29 offset← Offset+ ChunkSize;
30 if Offset > WarLength then
31 // invalid Offset

32 break;

Once the chunks are distributed, based on the id and offset mentioned in each

request chunk, different peers respond to provide chunks via WAR Provider, A chunk

is provided only after performing a verification of the requesting peers identity (i.e.

HP) in a similar fashion as discussed in Direct Download mode. After the requesting

HP completes downloading all the chunks of the WAR file, WAR Downloader performs

a merge operation to organize the chunks in sequence based on the start offset to build

the complete WAR file.

Figure 6.4 depicts a sequence diagram for the service package download carried out

the at HPs end. As evident from the time line, at first WSP sends the seed list along

with the deployment event to a selected HP. The deployment manager after extracting

the seed list, requests parts of the service package via the WAR downloader (as per

104

Downloading the Service Package

Figure 6.4: Gather and Deploy Sequence Diagram

Algorithm 6), each such request of a chunk is then provided by the WAR provider at

the other peer end. After all the chunks of the WAR file is downloaded they are merged

and then deployed.

Once the service package download is complete in either of the download modes,

Deployment Manager performs an integrity check of the downloaded WAR file with

that of file length and checksum retrieved from the deployment event. Any discrepancy

may lead to download of the WAR file again. Otherwise the Deployment Manager

relinquishes the control to the Web Server to deploy the web service.

105

Experimental Results

6.5 Experimental Results

A set of experiments have been performed to compare the performance of the two

download modes for dynamic deployment of web services and managing client as dis-

cussed in the previous sections. The results of the experiments are presented in this

section. As before, a distributed environment is created for conducting the test where

some of the nodes are considered as Web Service Providers (WSP) and others as Host

providers (HP). Thus the tests have been carried out by sending the web service re-

quests to a given WSP, and 13 HPs of different node configurations have been kept

at disposal. A web service for calculating the Nth Fibonacci term is used with value

of N=40. Nodes taken into account are of configurations ranging from 1GB-4GB of

physical memory, 1.86GHz-3GHz dual-core processors. The tests have been conducted

by making 500 client requests. To compare the deployment times required in the dif-

ferent modes of deployment, the load threshold value is deliberately kept low so that

a small number of requests can trigger more deployments. A large service package of

36MB is used, so that a deployment requires a considerable amount of download time

for both the approaches and the service response times are plotted against the number

of service requests made.

Figure 6.5: Experimental Results for Direct Download Mode

Figure 6.5 and Figure 6.6 depict the service response time for the two download

modes. Figure 6.5 plots the time required for fetching a service using the direct down-

106

Experimental Results

Figure 6.6: Experimental Results for p2p Download Mode

load mode, and Figure 6.6 shows the time required for fetching service using the p2p-

based DynaTronS protocol. In these experiments, because of multiple service invoca-

tions, eight deployments were triggered. The experimental results shown in Figure 6.7

compare the service response time and also deployment time for the two download

modes. It is evident from the graphs that as the number of deployments increases, the

deployment time in the p2p mode decreases as there is an increase in the number of

peers; whereas, in the direct download mode, the deployment time remains more or

less same depending upon the network condition at that time.

The successive deployment events as depicted in Figure 6.5 also require similar

deployment times as required by the first deployment in Direct Download mode. This

is due to the fact that all deployments are handled by the WSP alone for fetching the

service package. In contrast, the p2p Download mode in Figure 6.6 shows a considerable

overall improvement. Though the first time deployment requires almost same amount of

time as compared to Direct Download mode, but successive deployments start showing

the benefit of the second mode using the peers in the seed list resulting in a sharp

decrease in deployment time.

In a distributed environment, resources may be volatile in nature, which is handled

well in a p2p framework. In the above experiments, node failures have been simu-

lated by turning off nodes at random and observing that the service download process

107

Experimental Results

Figure 6.7: Experimental Results for Comparing p2p vs Direct Download Modes

continues even if one or more of the peers leave the network. If the failed node is an

HP where deployment is being carried on, another deployment is triggered on another

designated HP.

6.6 Summary

This chapter provides a robust approach to dynamic deployment of web services in

a distributed environment. It also incorporates the benefits of p2p systems by de-

centralizing the registry of web services as resources. This architecture proposes a

unique concept of dynamic on-demand service deployment using Bit-Torrent-like p2p

file sharing protocol. The proposed techniques enable handling the resource volatility

of the nodes/peers in the network maintaining the consistency in the architecture to

serve its purpose. Its simplicity, ease of use, effective use of bandwidth make this

architecture appreciably suitable for deploying large, highly computational intensive

services over the internet. Unlike typical network scenarios where a high demand for

a resource can create a bottleneck thereby degrading the performance of the whole

network, the proposed techniques can handle increases in demand of services and can

actually improve the performance of the network.

108

Chapter 7

Conclusions and Discussion

Come to an end of the thesis a summary of the overall research and its contributions

are presented. A discussion about the opportunities for further work and possible

improvements to the concept of dynamic service provisioning are also presented.

7.1 Overview of the Thesis

This section summarizes and discusses the main work and contributions presented in

earlier chapters. The claims made in the introductory chapters are scrutinized with

respect to the results obtained during the evaluation to verify their validity.

In this research work an architecture is designed for enabling dynamic on-demand

service discovery and deployment based on the concepts of p2p computing. The con-

ceived framework attempts to use the idle resources within the network by deploying

services on distributed resources on the basis of their capabilities and load factors. The

services are made available by the service providers and are deployed on-demand, after

proper matchmaking of the service metrics with the capabilities of resources in order to

provide better performance. Successive deployments of an already deployed service are

triggered if the existing deployed instances are overloaded or fail to offer any response

with the desired QoS.

In dynamic service provisioning, service management (that is availability of the

service), resource management (scalability of the service and load balancing), dynamic

service deployment (deplyment cost management) are important issues to achieve bet-

ter performance of the overall architecture. The major contributions of this work are

109

Conclusions

summarized in the following sections.

7.1.1 Dynamic Web Service Discovery and Deployments using

De-centralized Registry- Chapter 4

An architecture is proposed for enabling dynamic on-demand service discovery and

deployment based on the concepts of p2p computing. The main focus is on decentral-

izing the registry, making it discoverable and thus increasing the service availability

and reducing the deployment cost by sharing the current deployments and making the

services available from more than one endpoints. In order to increase the availability of

any given service, the service must be hosted by multiple providers. In such a scenario,

the cost of deployment of a service is incurred separately at different service providers.

Thus, with the objective of provisioning web services on-demand, in this architecture

on de-centralizing the registry is considered, thereby making it discoverable and thus

increasing the service availability and reducing the deployment costs by sharing the

current deployments.

The implementation mentioned in this portion is based on DHT implementations,

such as CAN, Pastry, Tapestry and Chord. Among these DHT implementations, the

architecture presented in this thesis makes use of Chord due to its easy ring shaped

structure which is achieved by the concept of consistent hashing and provides an extra

benefit for managing the volatility of peers in the network and the resources they

wish to share. Chord, a DHT implementation over structured p2p overlay network,

is a distributed lookup protocol that helps in efficiently locating a node that stores a

particular data item in p2p applications. It can adapt itself with a changing set of

resources (nodes) and hence can answer search queries even when nodes join and leave

the system.

7.1.2 Request Scheduling : A Load Balanced Approach- Chap-

ter 5

The implementation of the architecture requires a load balanced approach which would

provide the desired QoS. In dynamic web service provisioning, services are deployed

110

Conclusions

on the fly on available resources, i.e. on Host Providers (HPs). In this scenario, once

a service is deployed on a node (HP) by receiving a request from consumer, it remains

deployed on that node until explicitly removed so that it can serve maximum request

of that service. So, to offer the consumer efficient and fast services, it is required to

minimize the average response time. However, for that managing the resources (HPs),

i.e. balancing load of those resources is important. In this architecture, the tasks, i.e.

web service requests which are submitted to the WSP tier are of unpredictable nature

and are submitted on the fly. Not only this, the service request may vary from one web

service to another. It is obvious that the performance of the architecture may bank on

the HPs for executing service requests. But HPs may get loaded if proper method of

scheduling service requests is not adopted by the WSPs.

This architecture uses dynamic load balancing approaches to ensure better per-

formance for its consumers. It first makes use of the minimum service requirements

information along with node configuration information, to prevent over utilization of

the resources. This is achieved by constraining the deployments on HPs with insuffi-

cient resources as compared to the minimum service requirements. To achieve dynamic

load balancing of the service requests, a major pre-requisite is to calculate the present

workload of an HP. Once the workload is determined and collected by the WSPs, it

runs some scheduling algorithm to decide a best suitable node to serve the consumer

requests. Thus, a proper load balancing approach and a good scheduling strategies are

needed to ensure better performance for dynamic web service provisioning.

7.1.3 P2P-Based Service Distribution: DynaTronS protocol-

Chapter 6

Within the framework, decentralized service registry, efficient catering of consumer

requests are only possible if requested services can be deployed in timely manner.

However, in many cases, a service deployment operation may require additional data

to be accompanied which increases the service package size, and hence incurs a con-

siderable deployment cost. In this context, fast p2p file sharing techniques (such as

Bit-Torrent protocol) can act as a value addition to the framework. Use of such proto-

col increases the speed of the download, decreases the possibility of download failure

111

Limitations

and increases the availability of the file and services. This thesis proposes incorporation

of Bit-Torrent protocol in the existing framework [91] and demonstrates its advantages

by making use of such a file sharing technique to download service packages from the

existing deployments to cater to new deployments.

A robust approach to dynamic deployment of web services in a distributed environ-

ment is provided. The proposed techniques enable handling the resource volatility of

the nodes/peers in the network maintaining the consistency in the architecture to serve

its purpose. Its simplicity, ease of use, effective use of bandwidth make this architec-

ture appreciably suitable for deploying large, highly computational intensive services

over the internet. Unlike typical network scenarios where a high demand for a resource

can create a bottleneck thereby degrading the performance of the whole network, the

techniques proposed in this thesis can handle increase in demand of services and can

actually improve the performance of the network.

7.2 Limitations

One of the shortcoming of the architecture can be its security in terms of migration of

the service packages. Not only this, the HPs on which the service may be deployed may

not be trustworthy and may put the service to wrong use. At present the architecture

does not provide with methods ensuring security of the services and authentication

of the HPs. Though it provides a separate communication channel to carry out the

service deployments and checksum to ensure the service’s integrity, these approaches

may not be enough to cope with the present Internet technologies. Also the terms

security and privacy of the service prove to subjective in nature, in the sense of how,

what, and to whom the services must be made available; and can be considered as a

separate research topic all over.

Another limitation which drives in the architecture is by the use of DHT for the

service registry. DHT enables only precise-match search queries and not partial-match

search queries [13]. Due to this, a random search query made to the registry will not

provide with good search results, until the query matches exactly to some names of

service presently hosted in the network.

Though the architecture tries to provision web services, it may run out of resources

112

Future Work

that may match the service requirements. During the resource discovery process as

discussed in Chapter 3, the Best Node Finder (Algorithm 2) may not find any resource

suitable for the current web service. From another point of view, since the algorithm

uses a policy of finding an HP with a configuration greater than or at least equal to

that of the minimum service requirement, it may so happen that a web service may be

deployed on a HP of higher configuration. This may not only lead to improper use of

resources but may also require higher cost for leveraging a better HP. With respect to

balancing the load over the HPs, categorizing and calculating the load on the basis of

web service being data intensive or CPU intensive may provide a better formalization

for calculating the present load of the HPs. Taking up more scheduling algorithms

and comparing them with existing works, may provide a wider perspective of resource

scheduling and hence adopting the best suited strategy among them. A proper trial

and error approach or a mathematical background for selection of time slice depending

on the web service execution time can further provide a robust mechanism for load

optimization.

The test beds upon which the experiments were performed are of very small scale,

hence a better performance measure can be obtained if the tests are conducted over a

large number of nodes with better configuration and dedicated servers.

7.3 Future Work

Looking into the future aspects of the architecture, it envisages a combination of ver-

satile and flexible environment for provisioning web services on demand. With ad-

vancement in technology and increase in devices accessing the Internet, a demand of

distributed applications is at its peak. One major need for the proposed architecture

is that it requires computational resources for deploying the web services. The archi-

tecture makes a choice among HPs available depending on the requirements of the web

services. At present, it utilizes the resources provided as HPs, which are made avail-

able as resources within the distributed environment. These resources may be a part

of a virtual organizations or may be provided by individual users whose configurations

may be unalterable or may not meet our requirements in some way or the other. To

cope with such scenarios of provisioning computational resources as well, a fusion with

113

Future Work

Platform as a Service (PaaS) in a cloud environment may provide a good solution.

Further, starting from highly efficient computational resources to portable devices

like mobile phones, computing devices are becoming a part of the Internet and hence

can contribute their computational power as well as other resources for the betterment

of the proposed architecture. This can be accomplished by further integrating the stan-

dard web service technologies like SOAP and WSDL to interface with the web services.

Not only this, for such portable devices the application needs a proper transformation

to suit the device requirements like power management.

As the QoS maintained at present is load calibrated, it opens up wide opportunities

for researches to enable the architecture with facilities where the user chooses a cost

model appropriate for its own requirement directly from the interface, adhering to

Service Level Agreement (SLA) and hence may further enhance the flexibility of the

architecture.

114

Bibliography

[1] L. Srinivasan and J. Treadwell, “An overview of service-oriented architecture, web

services and grid computing,” HP Software Global Business Unit, vol. 2, 2005. xv,

6, 7

[2] D. B. Claro, P. Albers, and J.-K. Hao, “Web services composition,” in Semantic

Web Services, Processes and Applications. Springer, 2006, pp. 195–225. xv, 9, 10

[3] P. Watson, C. Fowler, C. Kubicek, A. Mukherjee, J. Colquhoun, M. Hewitt, and

S. Parastatidis, “Dynamically deploying web services on a grid using dynasoar,” in

Object and Component-Oriented Real-Time Distributed Computing, 2006. ISORC

2006. Ninth IEEE International Symposium on, april 2006, p. 8 pp. xv, 3, 12, 24,

26

[4] a. Harrison and I. Taylor, “Wspeer-an interface to web service hosting and invoca-

tion,” in Parallel and Distributed Processing Symposium, 2005. Proceedings. 19th

IEEE International. IEEE, 2005, pp. 175a–175a. xv, 3, 12, 24, 27

[5] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek, F. Dabek,

and H. Balakrishnan, “Chord: a scalable peer-to-peer lookup protocol for internet

applications,” IEEE/ACM Transactions on Networking (TON), vol. 11, no. 1, pp.

17–32, 2003. xv, 69

[6] Napster. [Online]. Available: http://www.bittorrent.org/introduction.html xv,

95, 96

[7] I. Foster, “The anatomy of the grid: Enabling scalable virtual organizations,”

in Euro-Par 2001 Parallel Processing, ser. Lecture Notes in Computer Science,

115

http://www.bittorrent.org/introduction.html

BIBLIOGRAPHY

R. Sakellariou, J. Gurd, L. Freeman, and J. Keane, Eds. Springer Berlin Heidel-

berg, 2001, vol. 2150, pp. 1–4. 1, 19, 24

[8] I. Foster, C. Kesselman, J. Nick, and S. Tuecke, “The Physiology of the Grid:

An Open Grid Services Architecture for Distributed Systems Integration,” 2002.

[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.

14.8105 2, 24, 33

[9] The globus toolkit. [Online]. Available: http://www.globus.org/toolkit 2, 16

[10] T. Tannenbaum, D. Wright, K. Miller, and M. Livny, “Condor - a distributed

job scheduler,” in Beowulf Cluster Computing with Linux, T. Sterling, Ed. MIT

Press. 2, 16, 24

[11] W. G. S. Microsystems), “Sun grid engine: Towards creating a compute power

grid,” in Proceedings of the 1st International Symposium on Cluster Computing

and the Grid, ser. CCGRID ’01. Washington, DC, USA: IEEE Computer

Society, 2001, pp. 35–. [Online]. Available: http://dl.acm.org/citation.cfm?id=

560889.792378 2, 16

[12] D. Sprott and L. Wilkes. (2004) Understanding service-oriented architecture.

[Online]. Available: http://msdn.microsoft.com/en-us/library/aa480021.aspx 2,

6, 16, 17

[13] C. Wang and B. Li, “Peer-to-peer overlay networks: A survey,” Tech. Rep., 2003.

2, 112

[14] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee,

D. Patterson, A. Rabkin, I. Stoica et al., “A view of cloud computing,” Commu-

nications of the ACM, vol. 53, no. 4, pp. 50–58, 2010. 2

[15] P. Watson and C. Fowler, “Dynasoar: An architecture for the dynamic deployment

of web services on a grid or the internet.” 3

[16] L. Qi, H. Jin, I. Foster, and J. Gawor, “Hand: highly available dynamic deploy-

ment infrastructure for globus toolkit 4,” in Parallel, Distributed and Network-

Based Processing, 2007. PDP’07. 15th EUROMICRO International Conference

on. IEEE, 2007, pp. 155–162. 3, 12, 24, 30

116

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.8105
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.14.8105
http://www.globus.org/toolkit
http://dl.acm.org/citation.cfm?id=560889.792378
http://dl.acm.org/citation.cfm?id=560889.792378
http://msdn.microsoft.com/en-us/library/aa480021.aspx

BIBLIOGRAPHY

[17] R. Mondéjar, P. Garćıa, and C. Pairot, “Towards a decentralized p2pweb service

oriented architecture,” 2006. 3, 12, 29, 59

[18] A. Y. Zomaya et al., “Parallel and distributed computing handbook,” 1996. 3

[19] F. Schneider and A. Tanenbaum, “Distributed systems,” ch. Replication Manage-

ment using the State Machine Approach, pp. 169–198, 1993. 4

[20] Z. Mahmood, “Synergies between soa and grid computing,” Communications of

the IBIMA, vol. 8, 2009. 8, 17, 18

[21] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau, “Extensible

markup language (xml),” World Wide Web Consortium Recommendation REC-

xml-19980210. http://www. w3. org/TR/1998/REC-xml-19980210, vol. 16, p. 16,

1998. 8

[22] Web services description language (wsdl) 1.1, w3c note 15 march 2001,. [Online].

Available: http://www.w3.org/TR/wsdl 8, 12, 16

[23] Simple object access protocol (soap) 1.1, w3c note 08 may 2000. [Online].

Available: http://www.w3.org/TR/2000/NOTE-SOAP-20000508 8, 12, 16

[24] Universal description, discovery and integration(uddi) v3.0.2,. [Online]. Available:

http://uddi.org/pubs/uddi-v3.0.2-20041019.htm 12, 20

[25] Z. Mahmood, “Synergies between soa and grid computing,” Communications of

the IBIMA, vol. 8, pp. 164–169, 2009. 17

[26] C. Catlett, “Standards for grid computing: Global grid forum,” Journal of Grid

Computing, vol. 1, no. 1, pp. 3–7, 2003. 19

[27] R. Cailliau, “A little history of the world wide web,” World Wide Web Consortium,

1995. 19

[28] G. A. Moore, “Crossing the chasm,” 2002. 19

[29] I. Foster, “The globus toolkit.” 19

117

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/2000/NOTE-SOAP-20000508
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm

BIBLIOGRAPHY

[30] R. Buyya and S. Venugopal, “The gridbus toolkit for service oriented grid and

utility computing: An overview and status report,” in Grid Economics and Busi-

ness Models, 2004. GECON 2004. 1st IEEE International Workshop on. IEEE,

2004, pp. 19–66. 19

[31] P. D. Gurav, M. R. Hans, and N. A. Kulkarni, “Review: Role of cloud computing in

grid empowerment,” in Automatic Control and Dynamic Optimization Techniques

(ICACDOT), International Conference on. IEEE, 2016, pp. 258–263. 19

[32] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A scalable

content-addressable network,” in IN PROC. ACM SIGCOMM 2001, 2001, pp.

161–172. 21, 61, 68

[33] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. Kaashoek, F. Dabek, and

H. Balakrishnan, “Chord: a scalable peer-to-peer lookup protocol for internet

applications,” Networking, IEEE/ACM Transactions on, vol. 11, no. 1, pp. 17 –

32, feb 2003. 21, 59, 61, 68, 70, 73

[34] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object location and

routing for large-scale peer-to-peer systems,” 2001. 21, 61, 68

[35] B. Zhao, J. Kubiatowicz, A. Joseph et al., “Tapestry: An infrastructure for fault-

tolerant wide-area location and routing,” 2001. 21, 61, 68

[36] Gnutella. [Online]. Available: http://gnutella.wego.com 21, 65

[37] Napster. [Online]. Available: http://www.napster.com 21, 65

[38] J. Y. Bakos, “Reducing buyer search costs: Implications for electronic

marketplaces,” Manage. Sci., vol. 43, no. 12, pp. 1676–1692, Dec. 1997. [Online].

Available: http://dx.doi.org/10.1287/mnsc.43.12.1676 21

[39] K. Arnold, “The jini architecture: dynamic services in a flexible network,” in

Design Automation Conference, 1999. Proceedings. 36th. IEEE, 1999, pp. 157–

162. 21, 31

[40] J. Duddington, “espeak 1.36,” See http://espeak. sourceforge. net, 2008. 21

118

http://gnutella.wego.com
http://www.napster.com
http://dx.doi.org/10.1287/mnsc.43.12.1676

BIBLIOGRAPHY

[41] S. Consortium et al., “Salutation architecture specification,” 1999. 21

[42] E. Al-Masri and Q. H. Mahmoud, “Investigating web services on the world wide

web,” in Proceedings of the 17th international conference on World Wide Web.

ACM, 2008, pp. 795–804. 21

[43] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott, S. McIlraith,

S. Narayanan, M. Paolucci, B. Parsia, T. Payne et al., “Owl-s: Semantic markup

for web services,” W3C member submission, vol. 22, pp. 2007–04, 2004. 21

[44] R. Lara, D. Roman, A. Polleres, and D. Fensel, “A conceptual comparison of wsmo

and owl-s,” in Web services. Springer, 2004, pp. 254–269. 21

[45] K. Verma, K. Sivashanmugam, A. Sheth, A. Patil, S. Oundhakar, and J. Miller,

“Meteor-s wsdi: A scalable p2p infrastructure of registries for semantic publication

and discovery of web services,” Information Technology and Management, vol. 6,

no. 1, pp. 17–39, 2005. 21

[46] E. Al-Masri and Q. H. Mahmoud, “Wsce: A crawler engine for large-scale dis-

covery of web services,” in Web Services, 2007. ICWS 2007. IEEE International

Conference on. IEEE, 2007, pp. 1104–1111. 22

[47] L. Gong, “Jxta: A network programming environment,” IEEE Internet Comput-

ing, vol. 5, no. 3, pp. 88–95, 2001. 22

[48] D. Talia, P. Trunfio, J. Zeng, and M. Högqvist, “A dht-based peer-to-peer frame-

work for resource discovery in grids,” Institute on System Architecture, CoreGRID

Technical Report, 2006. 23

[49] A. Ankolekar, M. Burstein, J. R. Hobbs, O. Lassila, D. Martin, D. McDermott,

S. A. McIlraith, S. Narayanan, M. Paolucci, T. Payne et al., “Daml-s: Web service

description for the semantic web,” in International Semantic Web Conference.

Springer, 2002, pp. 348–363. 23

[50] M. Schlosser, M. Sintek, S. Decker, and W. Nejdl, “Hypercuphypercubes, ontolo-

gies, and efficient search on peer-to-peer networks,” in International Workshop on

Agents and P2P Computing. Springer, 2002, pp. 112–124. 23

119

BIBLIOGRAPHY

[51] U. Thaden, W. Siberski, and W. Nejdl, “A semantic web based peer-to-peer service

registry network,” Technical Report, 2003. 23

[52] S.-D. Wang, H.-L. Ko, and Y.-Y. Zhuang, “Japster: An improved peer-to-peer

network architecture,” in International Conference on Embedded and Ubiquitous

Computing. Springer, 2004, pp. 1044–1054. 24

[53] D. Castella, I. Barri, J. Rius, F. Giné, F. Solsona, and F. Guirado, “Codip2p: A

peer-to-peer architecture for sharing computing resources,” in International Sym-

posium on Distributed Computing and Artificial Intelligence 2008 (DCAI 2008).

Springer, 2009, pp. 293–303. 24, 31

[54] O. D. Sahin, C. E. Gerede, D. Agrawal, A. El Abbadi, O. Ibarra, and J. Su, “Spi-

der: P2p-based web service discovery,” in International Conference on Service-

Oriented Computing. Springer, 2005, pp. 157–169. 24

[55] W. Fang, L. Moreau, R. Ananthakrishnan, M. Wilde, and I. Foster, “Exposing

uddi service descriptions and their metadata annotations as ws-resources,” in 2006

7th IEEE/ACM International Conference on Grid Computing, Sept 2006, pp. 128–

135. 25

[56] A. Harrison and I. Taylor, “Dynamic web service deployment using WSPeer,” in

Proceedings of 13th Annual Mardi Gras Conference - Frontiers of Grid Applica-

tions and Technologies. Louisiana State University, Feb. 2005, pp. 11–16. 28

[57] I. Wang, “P2ps (peer-to-peer simplified),” in Proceedings of 13th Annual Mardi

Gras Conference-Frontiers of Grid Applications and Technologies, 2005, pp. 54–59.

28, 62

[58] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-

Lee, “Hypertext transfer protocol–http/1.1,” Tech. Rep., 1999. 28

[59] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara, “Importing the semantic

web in uddi,” in International Workshop on web services, e-business, and the

semantic web. Springer, 2002, pp. 225–236. 28

120

BIBLIOGRAPHY

[60] C. P. Gavaldà, P. G. López, and A. G. Skarmeta, “Dermi: A new distributed hash

table-based middleware framework,” IEEE Internet Computing, vol. 8, no. 3, pp.

74–84, 2004. 29

[61] C. Pairot, P. Garćıa, R. Mondéjar, and A. F. G. Skarmeta, “p2pcm: a structured

peer-to-peer grid component model,” in International Conference on Computa-

tional Science. Springer, 2005, pp. 246–249. 29

[62] R. Mondejar, P. Garcia, C. Pairot, and A. F. G. Skarmeta, “Enabling wide-area

service oriented architecture through the p2pweb model,” in Enabling Technolo-

gies: Infrastructure for Collaborative Enterprises, 2006. WETICE’06. 15th IEEE

International Workshops on. IEEE, 2006, pp. 89–94. 29

[63] V. Mesaros, B. Carton, and P. Van Roy, “P2ps: Peer-to-peer development plat-

form for mozart,” in International Conference on Multiparadigm Programming in

Mozart/OZ. Springer, 2004, pp. 125–136. 31

[64] R. Gupta, V. Sekhri, and A. K. Somani, “Compup2p: An architecture for inter-

net computing using peer-to-peer networks,” IEEE Transactions on Parallel and

Distributed Systems, vol. 17, no. 11, pp. 1306–1320, 2006. 31

[65] S. Wu and Z. Du, “Globalstat: A statistics service for diverse data collaboration

and integration in grid,” in High-Performance Computing in Asia-Pacific Region,

2005. Proceedings. Eighth International Conference on. IEEE, 2005, pp. 6–pp.

32

[66] P. Danielis, J. Skodzik, V. Altmann, B. Kappel, and D. Timmermann, “Extensive

analysis of the kad-based distributed computing system dude,” in Computers and

Communication (ISCC), 2015 IEEE Symposium on. IEEE, 2015, pp. 128–133.

32

[67] Napster. [Online]. Available: http://jmdns.sourceforge.net/ 43

[68] Monitoring and discovery system. [Online]. Available: http://www.globus.org/

toolkit/mds/ 60

[69] F. Dabek, “A distributed hash table,” Tech. Rep., 2005. 61, 66, 70

121

http://jmdns.sourceforge.net/
http://www.globus.org/toolkit/mds/
http://www.globus.org/toolkit/mds/

BIBLIOGRAPHY

[70] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey and compar-

ison of peer-to-peer overlay network schemes,” IEEE Communications Surveys &

Tutorials, vol. 7, no. 2, pp. 72–93, 2005. 63

[71] S. Ertel, “Unstructured p2p networks by example: Gnutella 0.4, gnutella 0.6,”

Proceeding of Dresden University of Technology, 2014. 64

[72] I. Ivkovic, “Improving gnutella protocol: Protocol analysis and research propos-

als,” Prize-Winning Paper for LimeWire Gnutella Research Contest, 2001. 64

[73] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet: A distributed anony-

mous information storage and retrieval system,” in Designing Privacy Enhancing

Technologies. Springer, 2001, pp. 46–66. 64

[74] P. Fraigniaud and P. Gauron, “The content-addressable network d2b,” 2003. 64

[75] S. Sen and J. Wang, “Analyzing peer-to-peer traffic across large networks,”

IEEE/ACM Transactions on Networking (ToN), vol. 12, no. 2, pp. 219–232, 2004.

64

[76] C. Huitema and J. L. Miller, “Peer-to-peer name resolution protocol (pnrp) and

multilevel cache for use therewith,” Jun. 20 2006, uS Patent 7,065,587. 64

[77] Freenet. [Online]. Available: https://freenetproject.org/ 65

[78] R. Hasan, Z. Anwar, W. Yurcik, L. Brumbaugh, and R. Campbell, “A survey

of peer-to-peer storage techniques for distributed file systems,” in Information

Technology: Coding and Computing, 2005. ITCC 2005. International Conference

on, vol. 2. IEEE, 2005, pp. 205–213. 65

[79] M. Parameswaran, A. Susarla, and A. B. Whinston, “P2p networking: an infor-

mation sharing alternative,” Computer, vol. 34, no. 7, pp. 31–38, 2001. 66

[80] R. Morris, M. F. Kaashoek, D. Karger, H. Balakrishnan, I. Stoica, D. Liben-

Nowell, and F. Dabek, “Chord: A scalable peer-to-peer look-up protocol for in-

ternet applications,” IEEE/ACM Transactions On Networking, vol. 11, no. 1, pp.

17–32, 2003. 68

122

https://freenetproject.org/

BIBLIOGRAPHY

[81] F. Dabek, E. Brunskill, M. F. Kaashoek, D. Karger, R. Morris, I. Stoica, and

H. Balakrishnan, “Building peer-to-peer systems with chord, a distributed lookup

service,” in Hot Topics in Operating Systems, 2001. Proceedings of the Eighth

Workshop on. IEEE, 2001, pp. 81–86. 68

[82] S. Zoels, M. Eichhorn, A. Tarlano, and W. Kellerer, “Content-based hierarchies

in dht-based peer-to-peer systems,” in Applications and the Internet Workshops,

2006. SAINT Workshops 2006. International Symposium on. IEEE, 2006, pp.

4–pp. 69

[83] N. G. Shivaratri, P. Krueger, and M. Singhal, “Load distributing for locally dis-

tributed systems,” Computer, vol. 25, no. 12, pp. 33–44, 1992. 80

[84] W. Winston, “Optimality of the Shortest Line Discipline,” Journal of

Applied Probability, vol. 14, no. 1, pp. 181–189, 1977. [Online]. Available:

http://dx.doi.org/10.2307/3213271 84

[85] J. Pouwelse, P. Garbacki, D. Epema, and H. Sips, “The bittorrent p2p file-sharing

system: Measurements and analysis,” in International Workshop on Peer-to-Peer

Systems. Springer, 2005, pp. 205–216. 94, 97

[86] M. D. Hanson, “The client/server architecture,” Server Management, p. 3, 2000.

95

[87] K. Davis, J. W. Turner, and N. Yocom, “Client-server architecture,” in The Defini-

tive Guide to Linux Network Programming. Springer, 2004, pp. 99–135. 95

[88] R. Toole and V. Vokkarane, “Bittorrent architecture and protocol,” The University

of Massachusetts, Dartmouth, 2006. 95

[89] J.-F. Paris and P. Shah, “Peer-to-peer multimedia streaming using bittorrent,” in

Performance, Computing, and Communications Conference, 2007. IPCCC 2007.

IEEE Internationa. IEEE, 2007, pp. 340–347. 97

[90] J. Postel and J. Reynolds, “File transfer protocol,” 1985. 97

[91] S. Mistry, D. Jaiswal, S. Virani, A. Mukherjee, and N. Mukherjee, “An architecture

for dynamic web service provisioning using peer-to-peer networks,” in Distributed

123

http://dx.doi.org/10.2307/3213271

BIBLIOGRAPHY

Computing and Internet Technology, ser. Lecture Notes in Computer Science,

C. Hota and P. Srimani, Eds. Springer Berlin Heidelberg, 2013, vol. 7753, pp.

290–301. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-36071-8 23

112

124

http://dx.doi.org/10.1007/978-3-642-36071-8_23

P2P Based Service Provisioning on Distributed
Resources

Sujoy Mistry1, Dibyanshu Jaiswal2, Arijit Mukherjee2 and Nandini Mukherjee3

1School Of Mobile Computing and Communication, Jadavpur University, Kolkata- 700032, India
2TCS Research and Innovation, Tata Consultancy Services, Kolkata-700091, India
3Department Of Computer Science and Engineering, Jadavpur University,Kolkata-700032, India

Dynamic or demand-driven service deployment in a Grid environment is an important issue considering the
varying nature of demand. Most distributed frameworks either offer static service deployment which results in

resource allocation problems, or, are job-based where for each invocation, the job along with the data has to be

transferred for remote execution resulting in increased communication cost. An alternative approach is dynamic
demand-driven provisioning of services as proposed in earlier literature, but the proposed methods fail to account

for the volatility of resources in a Grid environment. In this paper, we propose a unique peer-to-peer based

approach for dynamic service provisioning which incorporates a Bit-Torrent like protocol for provisioning the
service on a remote node. Being built around a P2P model, the proposed framework caters to resource volatility

and also incurs lower provisioning cost.

Keywords: Grid Computing, SOA, dynamic deployment, Bit-Torrent.

1. INTRODUCTION

During the recent years, several architectural styles, like client-server model, 3-Tier architecture,
n-Tier architecture and peer-to-peer computing have emerged to support computational models.
Alongside, Grid Foster [2002] (and recently Cloud) evolved with an aim at resource sharing and
problem solving in dynamic and controlled environment with sets of resource providers and re-
source consumers. The size of resource providers in such distributed systems vary from a few
nodes to a large number of heterogeneous nodes distributed over geographic boundaries to form
virtual organizations. In many small organizations with limited computational resources, sig-
nificant cost saving can be achieved by opting for third party computational resources instead
of investing in dedicated resources. Hence computationally expensive jobs are executed on dy-
namically acquired third party resources, which could be leased from a large organization. Such
a distributed computing model has led distributed computing to a next level where distributed
applications and platforms are comprised of heterogeneous resources and services.

Due to change in architecture, the applications have to be re-designed to be composed of
small software components, communicating and executing among the different nodes over the
network, to achieve a desired goal. These software components have been called web services or
simply services. To make such services readily available to the users, some mechanisms for service
discovery and deployment over the Internet on top of physically distributed set of resources have
become necessary. The service discovery and deployment need to match the service requirements
as well as user needs and therefore have become a major challenge these days.

Traditionally, web services are hosted on fixed web servers and services are registered and
made available to serve requests from the service consumers. In such situations, efficient service
provisioning entirely depends on the capability of the web server and consumer requests can
be satisfied only if the web server has sufficient resources to do so (that is web server is not
overloaded). On the other hand, if the services are not utilized at some point of time, web

International Journal of Next-Generation Computing, Vol. 7, No. 3, November 2016.

P2P Based Service Provisioning on Distributed Resources · 199

servers remain under utilized. In order to overcome these bottlenecks, dynamic web service
provisioning has been proposed by the researchers Watson et al. [2006], Mukherjee and Watson
[2012]. A three-tier architecture is proposed in these research works, where web service providers
are separated from the computational resource providers. Computational resource providers are
termed as Host Providers. However, in most of these works, service registration is centralized and
often a client-server model is used which actually adds more bottleneck than actually reducing
it.

In order to overcome the above problem, we propose a more distributed framework with an
essence of sharing of data and computational resources (also called nodes) by collaboration and
communication among each other. The framework is based on a P2P system and unlike the
previous research works, it uses a decentralized service registration, resource discovery (here
Host Providers are the resources on which services are deployed dynamically) and dynamic ser-
vice deployment over a P2P network. Over time, P2P-based systems for services discovery and
deployment have evolved utilizing concepts like DHT Mondejar et al. [2006], SOAP Curbera
et al. [2002], UDDI Walsh [2002] etc. But dynamic service discovery and deployment over a
geographically distributed area and resource volatility have not been considered in many. This
work presents the concepts of demand-driven deployment of services, and the implementation
of a non-centralized service registry which has been carried out in a distributed environment.
Decentralized service registry and resource discovery resolves the scalability issue for handling a
large number of consumer requests. Since a P2P system is devoid of any centralized resources and
is adaptable to ad-hoc nature of volatile resources it can overcome the bottlenecks of centralized
systems Tan [2009].

Thus, the novelty of this work is the implementation of a framework which enables dynamic
web service provisioning in a P2P-based distributed environment. This paper first introduces a
formal description of the proposed framework and provides a functional overview of it.

One major contribution of this work is the use of decentralized service registry for efficient
catering of consumer requests and deploying requested services in timely manner. The paper
describes the service registration and service discovery mechanisms used in the framework and
also presents a comparative study of different strategies for scheduling the consumer requests to
the Host Providers on the basis of information gathered from them.

In many cases, a service deployment operation may require additional data to be accompanied
which increases the service package size, and hence incurs a considerable deployment cost. In
this context, fast P2P file sharing techniques (such as BitTorrent protocol) can act as a value
addition to the framework. Use of such protocol increases the speed of the download, decreases
the possibility of download failure and increases the availability of the files and services. The
other significant contribution of the work is incorporation of BitTorrent protocol in the P2P-
based framework by making use of such a file sharing technique to download service packages
from the existing deployments to cater to new deployments.

Rest of the paper is organized as follows. Section 2 presents the related work. A formal
description and a functional overview of the proposed architecture is given in Section 3. The
architecture of the extended framework with chord decentralized registry features is given in
Section 4 and Section 5 discusses how dynamic deployment of web services manages to cope up
with the P2P technology for this architecture. The implementation and experimental results for
dynamic deployment are presented in Section 6 and Section 7 respectively. Finally Section 8
concludes with a discussion of future scope of the proposed architecture.

2. RELATED WORK

Grid Computing has made it possible for users to execute computationally expensive applications
on dynamically acquired distributed resources. Users are allowed to combine data and analysis
components distributed over the globe to build new complex applications. Virtual Organizations
built over Grids allow collaborative sharing of computational and data resources over a wide area

International Journal of Next-Generation Computing, Vol. 7, No. 3, November 2016.

200 · Sujoy Mistry, Dibyanshu Jaiswal, Arijit Mukherjee and Nandini Mukherjee

network. To support this, several tools, such as Globus Foster [2005], Condor Tannenbaum et al.
[2010] and SunGridEngine Gentzsch [2001] allow the construction of distributed applications over
grid-based resources. Researchers have introduced many different architectural styles and stan-
dards, such as SOA, Web Services, REST Feng et al. [2009] and more recently Cloud Computing
over the past decade to ease the cost of discovery, deployment and maintenance, with varying
degrees of success.

Integrating Peer-to-Peer (P2P) based systems with frameworks based on Service Oriented Ar-
chitecture (SOA) and Web Services Newcomer and Lomow [2005] is emerging as a powerful
technology for different industry standard applications, specifically in the context of Grid com-
puting. Among different architectural styles of Service Orientation, the Web Service model is
a popular form. Large-scale Grid Computing environments use different standard mechanisms
like the Open Grid Services Architecture (OGSA) Foster et al. [2001] and the Web Service Re-
source Framework (WSRF) for creating Virtual Organizations (VO) Foster [2002] meant for
secure resource sharing among several users. Our interest grows from the point of view of trying
to take advantage from the dynamic P2P network within a WS-based Grid Computing frame-
work. Universal Description Discovery and Integration (UDDI) was originally proposed by the
W3C Brooks [2010] as a standard for Web Service publishing and discovery where services will
be advertised by the publishers to facilitate discovery and consumption by service users. But the
static UDDI model has certain limitations related to service metadata and dynamic resources.
Several recent frameworks for service discovery and deployment based on P2P technology can
support scalability, load balancing and fault-tolerance. The P2P systems like CAN Ratnasamy
et al. [2001], Chord Stoica et al. [2003], Pastry Rowstron and Druschel [2001], Tapestry Rowstron
and Druschel [2001] use distributed hash tables (DHT) as their basic component to create the
Peer-to-peer network.

Dynamic deployment of services is considered with utmost importance in Grid frameworks
to allow services to be deployed on the fly on available re-sources. This can be compared to
job-oriented frameworks as in Condor, where jobs are submitted to a Condor master, which
schedules the actual execution on one or more suitable resources. One advantage of dynamic
service deployment over a job-based framework is that once the service is deployed, the deployed
cost can be shared over many invocations of the service till the service is explicitly removed,
whereas, in case of jobs, once the execution is over, it is removed from the Condor queue, and
each subsequent execution requires the execution code and data to be resubmitted to the cluster.

In this context, certain frameworks such as DynaSOAr Watson et al. [2006], WSPeer Harri-
son and Taylor [2005], HAND Qi et al. [2007] provide some good solutions to handle dynamic
deployments of services. Specifically DynaSOAr provides a framework for Dynamic Web Service
provisioning in Internet. DynaSOAr is a service based approach to grid computing where in-
stead of jobs, services are hosted and deployed dynamically on available resources, if no existing
deployments exist. It involves a Web Service Provider who offers services to the consumer, and
deploys them dynamically on Host Providers. A host provider offers resources to the services.
The major advantage of this framework lies in the reusability of the services to serve subse-
quent consumer requests via single deployment and has been successfully used in Mukherjee and
Watson [2006] and later more comprehensively in Mukherjee and Watson [2012]. However, the
framework evolves around a static centralized UDDI registry and hence is unable to adapt to
a volatile grid framework where the resources are not constant. Further, a centralized registry
gives rise to bottlenecks while dealing with large service deployments and handling huge number
of service requests.

The other two frameworks, i.e. both WSPeer and HAND support dynamic web service deploy-
ment. However, these frameworks have differences in their implementation. In case of WSPeer,
one implementation is based on UDDI which uses a centralized registry similar to DynaSOAr.
The other implementation is P2PS-based Wang [2003], which forms a tree of interfaces where
peers are communicating via abstract channels called pipe. This architecture basically facilitates

International Journal of Next-Generation Computing, Vol. 7, No. 3, November 2016.

hp pc
Cross-Out

hp pc
Inserted Text
resources

P2P Based Service Provisioning on Distributed Resources · 201

service requests mainly on the basis of direct communication between the peers via pipes, ignoring
the service deployment. On the other hand, HAND uses GTV4 for dynamic service provisioning,
where HAND-C provides container-level dynamic deployment, i.e. during dynamic deployment
the whole container is redeployed. Alternatively, HAND-S provides service deployment, where
instead of whole container only the required service needs to be deployed.

Although these frameworks support dynamic web service provisioning but none of this frame-
work offers full dynamism over a volatile set of resources.

The advantages of Peer-to-peer networks have often been tried to be leveraged in Grid and
distributed computing. In Verbeke et al. [2002], the “JNGI” framework was introduced for
large-scale distributed computation and was based on the hybrid P2P network JXTA. The model
proposed in this comprised of separate levels of peer groups, such as monitors, task dispatchers and
workers, which has limited similarity with the work proposed in this paper. CompuP2P Gupta
et al. [2006] was a highly appreciated research work and proposed a marketplace for resource
sharing and computation using P2P as the backbone. However, it was more centred around a
marketplace for computational cycles and thus differs from the current proposal. In a similar
manner, CoDiP2P Castellà et al. [2009], talks about computational resource sharing over a P2P
network, rather than demand-driven service discovery and provisioning. GlobalStat Wu and Du
[2005] proposes an approach for statistical calculation within heterogeneous nodes using a semi-
P2P structured designed to achieve efficient load-balancing and avoiding performance bottlenecks.
DuDE Danielis et al. [2015], on the other hand, distributes the analysis of log files across a
distributed system using the concepts of P2P systems.

Unlike the above research works, the current work introduces a demand-driven and dynamic
P2P-based service provisioning framework with distributed registry and distributed functioning
of the Web Service Providers and Host Providers. The work is further improved with the use
of BitTorrent protocol which implements a file sharing technique to download service packages
from the existing deployments to cater to new deployments.

3. PROPOSED FRAMEWORK

In this section a framework for dynamic service provisioning is proposed. The proposed frame-
work acts as the basis of a service-oriented system using P2P as its communication backbone,
thus allowing more flexibility and dynamism when compared with previous approaches used for
dynamic service deployment in distributed environments.

One of the key features of this architecture is complete segregation of provider of services and
provider of resources. Thus, providers of resources (platforms for service execution), i.e. the
Host Providers (HPs) are placed in a different layer as compared with the Web Service Providers
(WSPs), who provide services to the consumers and take care of all the collaboration with hosts.
Consumers are placed in the third layer. As shown in Figure 1, the three layers are described
below:

In this three-layer architecture all the nodes act as peers to each other providing P2P based
service publication, discovery, deployment and management. Resource discovery and allocation
are done in a heterogeneous environment as per resource availability and required performance
of the web service. The major goal of this framework that differentiates it from other existing
frameworks are as follows-

X decentralizing the service registry in a structured manner

X making the registry adaptable with volatile set of resources

X decentralizing the service deployment/execution in the environment

X sharing the deployment cost of a given service incurred by a single WSP among all WSPs.

X making the registry scalable, having definite time bounds for a service query

The framework provides a new platform for dynamic web service provisioning. One of the
main features of this framework is the implicit demand driven nature, i.e. services are deployed

International Journal of Next-Generation Computing, Vol. 7, No. 3, November 2016.

202 · Sujoy Mistry, Dibyanshu Jaiswal, Arijit Mukherjee and Nandini Mukherjee

Figure 1. Basic Architecture

on a suitable host exposed by a host/resource provider only when they are required. Similar to
a typical web service scenario, when a consumer makes a request for using a certain service, it
sends a request in the form of a SOAP message to one of the endpoints exposed by the service
provider, which contains service request. This SOAP message may be extended to contain other
consumer requirements as well - such as Quality of Service (QoS) requirements. From here
the architecture deviates from conventional WS-Framework due to its complete dynamic nature
for P2P environment. Thus to define this framework, a Distributed System (DS) needs to be
established against the existing conventional WS-Framework. Following is a definition for this
distributed system which can be denoted using the following tuples-

DS = (M,P,WR,HP,NTm,WS,Dm,MS) (1)

where,
M = Map Size, nodes in the system

M = {M1,M2,M3,,Mn}
P = Node Properties
NTm = A mapping between the nodes and WSPs

and HPs according to their properties
NTm : M → P(WR) ∧ M → P(HP)

WR = Set of Web Service Providers (Chord Ring)
(at a particular instant)

HP = Set of Host Providers (at a particular instant)
WS = Set Of Web Services hosted in the Network
Dm = List of nodes where the Web Services are

deployed
Dm : WS → HP

MS = Node Monitoring system

Each element Mi in M (for i = 1 to n) is defined as
Mi = 〈Ni, IPi, Li〉
where,
Ni = Name of the Node
IPi = IP Address of the node
Li = Load of the node (current)

International Journal of Next-Generation Computing, Vol. 7, No. 3, November 2016.

P2P Based Service Provisioning on Distributed Resources · 203

P = (Cl, T, I) (2)

where,
Cl = Category of the node
T = Type of the node, i.e, either it is WSP or HP
I = Node’s basic resource information

WS = (Σ, R, S,Df) (3)

where,
Σ = Request messages
R = Resources Requirement
S = State of the Service
Df = List of WSPs who are the owner of the web services

Df : WS → WSP

MS = (Th,E,Em) (4)

Th= {Nm, Nc, Sm, BFn, Wsr }
Em : E → Th

where,
E = Set Events
Th = Set of Threads
Nm = NodeMonitor
Nc = NodeCommunicator
Sm = ServiceMonitor
BFn = BestNodeFinder
Wsr = WebServer

The overall system for dynamic service provisioning in distributed architecture can be defined as
above using the tuples 1 to 4. Thus this formal representation denotes each and every functionality
of the proposed architecture. First, M (the Map size) denotes the nodes actively present in the
system at any particular moment, and changes accordingly as and when nodes join or leave the
system. A node joining the system either act as WSP or HP. Thus if we consider that there
are n number of nodes actively present in the system, then M = {M1,M2,M3,,Mn}, where
(WR ∪ HP) = M . However, (WR ∩ HP) 6= φ, because some nodes may act as both WSP, as
well as HP. NTm defines mapping relationship between each node with respect to its property.
Whenever a node joins the system, based on its own property it is decided whether it joins the
list of Web Service Providers (implemented as a Chord Ring) or remains in the system only as a
Host Provider. Thus the nodes joining the network with a role as WSP (as specified in P) form a
ring (via Chord protocol) and share web service information among each other and are denoted
as WR. Every WSP maintains a list of nodes where the web services are already deployed (Dm).
This list is created dynamically after each deployment of the web services to some suitable host
providers which is denoted by

A node in the system is defined by its certain properties (P) as defined in Equation 2. Node
property is broadcast to all other nodes in the system, when a node joins the network. In a
heterogeneous system, a node (WSP or HP), is categorised according to its type and resource
information. Type defines whether the node is a WSP or HP. Resource information includes pro-
cessor speed, memory size, operating system installed and other information. Node properties (P)
according to the categories are defined in Equation 3. This information, though static in nature,
is used for various purposes like, to meet the service requirements during service provisioning,
load distribution, node collaboration and resource sharing among the nodes in the network.

A newly created web service is made available to a WSP in the system as the owner of the
web service. Each web service (WS) (as defined in Equation (3)) in the system is accompanied

International Journal of Next-Generation Computing, Vol. 7, No. 3, November 2016.

204 · Sujoy Mistry, Dibyanshu Jaiswal, Arijit Mukherjee and Nandini Mukherjee

with information and service criteria like the service name, current state (S) denoting whether it
is deployed or not, minimum Resource requirements (R) (in terms of requirements for processor,
memory, operating system etc.) for optimum performance. A mapping Df provides list of owners
of the web services from the available WSPs. A web service can have either of the following two
statuses:

— Available: The service is ready, but has not been deployed yet in the system. In such a case,
the consumer can request for the service which will then be deployed on an available resource
(HP) for processing the request.

— Deployed: If the service has one or more ready deployments in the system, then the service
URI of those instances will be provided.

The system maintains a list of nodes where web services are already deployed (Dm). This list
is changed dynamically and has a strong relationship with basic resource requirements for the
services (R), present status of the service (S) and current load (Li) of the nodes. A service can
also have more than one deployments in several nodes. Now when a request comes for the service,
only the best suited node responds to the service request based on some load or job scheduling
strategies. If the service is not deployed on any of the nodes or all the nodes are overloaded, a
suitable HP from all the available HPs is selected for deployment on the basis of their current
load information collected dynamically during runtime, after a certain interval of time. Consumer
requests are all made to the WSP. The host providers only serve as the computational resources
on which services can be deployed and requests from consumers can be processed. The WSP
accepts the request and finds the most suitable HP to serve it, if the services is already deployed
in the system, else a new deployment is triggered for the service. Once the service deployment
is complete the consumer requests are served from it unless the HP get loaded and hence new
deployments are triggered.

The subsequent operations that take palce once a service request reaches the Service Provider
are described through node Monitoring System (MS). The Monitoring System(MS) is responsible
for monitoring current node and make sure all the supporting threads(Th) are running. Threads
in the system have their own functions which are defined based on different modules of the
monitoring system, like NodeMonitor, Node-Communicatior, ServiceMonitor, BestNodeFinder,
WebServer. The NodeCommunicator module establishes inter and intra-node communication of
events(E). The ServiceMonitor component is responsible for publishing the service and making
it discoverable based on its status. The BestNodeFinder component (only on WSPs) monitors
all the nodes on the basis of their properties, runtime CPU and memory utilization to select one
HP for new deployments and/or processing consumer requests.

3.1 Functional Overview

The framework discussed above is formed by an application running on nodes which facilitates the
nodes to join the networks and play their roles as WSP or HP. Though the roles may seem to be
completely different from each other, but different aspects of WSPs and HPs are handled using
a set of modules such as Service Monitor, Communicator, Load Balancer, Registry Handler,
Deployment Manager as depicted in Figure 2. Each module bearing a unique responsibility
collaborates among each other to achieve the required goal. Thus the flow of functionality between
these modules begin when a consumer makes a request to the WSP for a paticular Web Service.
The functionalities of these modules for dynamic web service provisioning are described below.

3.1.1 Node Joining . Node Communicator creates the basis for the incomming nodes to join
the network and also maintains communication link between each node. A node willing to join
the system sends a request to the Node Communicator module for processing. Each node has its
own node properties and based on that information node communicator decides whether it will
join the WSP set or HP set.

International Journal of Next-Generation Computing, Vol. 7, No. 3, November 2016.

hp pc
Cross-Out

hp pc
Inserted Text
Node

P2P Based Service Provisioning on Distributed Resources · 205

Figure 2. Components in the Architecture

3.1.2 Web Service Registration . WSPs willing to provide web services invoke Registry Han-
dler module, which collects and maintains service information to publish the services. Based
on the status of the web services (i.e, either available or deployed) and in collaboration with
the Service Monitor module, statuses of all the services are kept updated and maintained in the
system.

3.1.3 First time Service deployments . Whenever a WSP has one of its web services ready to
be published, it invokes a Registry Handler to publish it to the registry with the ’available’ status,
which means it is now available to the world for providing services over the Internet. Thus, when
a consumer requests a service for the first time, in such scenario, first time deployment of the web
services is required and the status of the web service is changed from available to deployed. Now
Registry Handler in collaboration with Service Monitor triggers Service Configuration Change
Event, and manages the service deployments keeping track of the deployed instances. Next, the
WSP finds a suitable HP in order to deploy the service. At this moment, Service Monitor plays
an extra role for finding best node with the help of Best Node Finder module. At the HP’s end
when a deployment event is received, Deployment Manager module is triggered to download the
web service from the WSP. Once the web service is fully deployed and it is ready to use, it can
serve the incoming consumer requests and return the results.

3.1.4 New deployments when current instances are busy . When a node gets overloaded, that
is when a service has its status “deployed”, but it is unable to serve any further requests for
the existing deployments, a need for fresh deployment arises. Once again WSP makes a decision
based on dynamic load information, collected by the Load Balancer with assistance from the
Node Communicator.

The architecture described above particularly focuses on the following aspects in order to
improve the efficiency of the system:

—Decentralizing the registry

—Dynamic deployment

Following subsections discuss in detail how these functionalities are effectively implemented in
our proposed architecture.

International Journal of Next-Generation Computing, Vol. 7, No. 3, November 2016.

206 · Sujoy Mistry, Dibyanshu Jaiswal, Arijit Mukherjee and Nandini Mukherjee

4. DECENTRALIZING THE REGISTRY

In our previous work Jaiswal et al. [2013] we presented an architecture enabling dynamic on-
demand service discovery and deployment based on the concepts of P2P computing where our
main focus was on decentralizing the registry, making it discoverable and thus increasing the
service availability and reducing the deployment costs by sharing the current deployments and
making the services available from more than one endpoints. In this section, we describe the
improvements made to our earlier work by implementing decentralization of the registry using
Chord.

Since P2P systems are well equipped in handling the volatility of networked resources, a fusion
of the two concepts (P2P and SOA) may bring up new possibilities. P2P systems make use
of distributed hash tables (DHTs)to keep track of the resources provided by the peers in the
networks. Considering the web services as resources provided by peers in the system, i.e. WSPs,
the service registry can be decentralized. Making use of a structured P2P overlay network with
DHT implementation may further facilitate discovery and retrieval of resources within definite
time bounds, making the registry scalable. DHT implementations such as CAN, Pastry, Tapestry
and Chord can help to achieve the above characteristics for a decentralized registry.

Among the above mentioned DHT implementations, the architecture makes use of Chord due
to its easy ring shaped structure achieved by the concept of consistent hashing providing an
extra benefit for managing the volatility of peers in the network and the resources they wish to
share. Chord, a DHT implementation over structured P2P overlay network, is a distributed
lookup protocol that helps in efficiently locating a node that stores a particular data item in P2P
applications. It can adapt itself with a changing set of resources (nodes) and hence can answer
search queries even when nodes join and leave the system. Chord uses consistent hashing of the
resources over a ring of node identifiers, i.e. unique identifiers of peers in the network. This is
achieved by a single operation: given a key it maps the key onto a node identifier. The registry
is composed of a DHT of web services stored as [key, value] pairs. It uses a hash function to
generate unique keys from the byte version of a service name, that are mapped to node identifiers
generated as hash value of nodes’ IP addresses. Incorporating the benefits of Chord to the existing
P2P network, the architecture decentralizes the registry among the WSPs.

4.1 Registry using Chord

To support decentralization, the proposed architecture is designed in such a way that at any time
a node can join the network acting as a peer specifically depends on the type of node i.e, if it is a
WSP then it may or may not carry Web Services to host. In either case it joins the de-centralized
registry within the network and shares its own web services as owners with other WSP peers.
This sharing and de-centralization of the registry is achieved by use of Chord protocol. Since the
resources to be shared here are web services, all the DHT entries have its key as name of service
and the corresponding value is set to service metadata, which consists of:

(1) Name of the service

(2) Status of the service (Available /Deployed)

(3) Owner of the service i.e. WSP hosting the service.

(4) List of HPs on which the service is currently deployed.

Each web service is owned by some WSP as identified by the owner field in service metadata.
Such service metadata helps in identifying the service, its endpoints and other details necessary
for proper execution in SOA framework. The use of only web service metadata instead of the
entire web service package, improvises the architecture with the following unique benefits:

X Enables the security and confines administration of the web service from other WSPs. This
may further encourage a business model for exchanging web services.

X Increases the availability of the web service, making is accessible from more than one sites.

International Journal of Next-Generation Computing, Vol. 7, No. 3, November 2016.

P2P Based Service Provisioning on Distributed Resources · 207

X Keeps the service available even if the owner WSP is not available in the network, as the list
of current deployed instances is made available in the network.

X Enables the owner WSP to resume its old state of web services with its existing deployments,
when the WSP returns back to the network after some failure.

Once the service is published in the registry, any further changes made to the state of the
service such as status of the service and new deployments are all propagated simultaneously to
the registry. A closer look towards the implementation can provide a clear picture of how the
P2P overlay network is exploited to achieve the above benefits. Adhering to SOA framework, the
next section describes implementation and working of the registry.

4.2 Service Discovery

All the nodes joining as Web Service Providers creates a P2P network using Chord protocol. If the
requested service is provided by any of the service providers on the Chord ring, the information
will be known to all other peers, and thus, the request will be forwarded to the corresponding
Service Provider node. The provider then selects a suitable Host Provider, which may be a cluster
of computational nodes, for processing the request and forwards the message to it. This selection
may again depend on the consumer requirements or the status of the available hosts. If the
service is not provided on any of the peers, a suitable Service Provider is selected (based upon
the criteria such as QoS or provider preference given by the consumer) and the SOAP message
is forwarded to the selected node with additional information which points to the location of the
deployable code for the requested service. The designated provider again selects a suitable host
and forwards the SOAP message in its entirety to it for deployment of the service and execution
of the request.
A client can make a service request only when the service endpoint is made available to them via
the interface. By default the interface enlists all the services with endpoints maintained locally
as a list of DHT entries. Depending on the list a client request can be made in two ways:

—Case 1: If the service is in the list then the service endpoint is made directly available to
client by which a service request can be made.

—Case 2: If the service is not in the list then a service query is made to the registry. As a result
an endpoint for the same is returned if the service exists.

Chord uses an efficient routing algorithm for locating a key in the ring with an upper bound of
O(log N), where N is the number of nodes taking part in the chord ring Stoica et al. [2003], thus
even with increase in number of web services and WSPs, the registry remains scalable as compared
to previous approaches. The WSPs always use a scheduling strategy to route the consumer
requests for adequate resource management based on the dynamic load information collected
from the HPs, with deployed instances of the services they own. The scheduling strategies used
are time slice based, i.e. an instance among all the deployed instances for a given service is
selected as a best node for a given time period. At the end of the time slice the best node is
changed as per one of the following scheduling strategies:

— Round Robin Reloaded (RRR) - selects the best node in round robin fashion for every
time slice, cycling over the deployed instances.

— Least Recently Used Reloaded (LRUR) - selects the least recently used instance as the
best node if the current instance is loaded, for the next time slice, cycling over the deployed
instances.

— Minimum Loaded First (MLF) - selects the instance with minimum load as the best node
for every time slice among the deployed instances.

Later, in Section 7, the experimental results to demonstrate the efficiency of the framework
with decentralized registry is given.

International Journal of Next-Generation Computing, Vol. 7, No. 3, November 2016.

208 · Sujoy Mistry, Dibyanshu Jaiswal, Arijit Mukherjee and Nandini Mukherjee

5. DYNAMIC DEPLOYMENT

When a service request is received at the WSP, there can be three interaction patterns depending
on whether the service was deployed or not:

(1) First time deployment: At the initial stage of the processing, for the first consumer
request of a given service (i.e. when the status of the service is available, the WSP uses some
criteria to select the best HP to process the request. This HP will be directed by the WSP
to download the corresponding service code from the repository and deploy it. The service
status is then changed to deployed.

(2) Fresh deployment: When the status of a service is deployed, but the existing deployment
instances are not able to serve the incoming requests (the nodes may be overloaded), the
need for a fresh deployment arises. This decision is taken at the WSP based on a set of load
information collected from the nodes. The consumer remains unaware of the fact that a new
deployment is made, however access to the service is made possible.

(3) Request for an existing service: The requests from consumers for services already de-
ployed on multiple nodes are redirected by service providers (WSPs) to the currently selected
best node. The selection is made on the basis on some scheduling strategies (like round-robin
or least-recently-used).

The architecture adopts two different modes to accomplish download of the service packages
that are discussed below:

(1) Direct Download : where the HPs download the service package directly from the local
repository of the WSP to complete the deployment process.

(2) P2P Download : where the HPs download the service package by requesting chunks of the
WAR file from more than one site.

In the first approach, it portrays a client-server model where HP (client) needs to download
the service package from the WSP (server). In such a scenario a service package may become
unavailable if the owner WSP becomes unavailable at that time or in the midst of a deployment.
This may again lead to the same old bottleneck of single point failure. Furthermore, it may
require longer download times for large service packages resulting in higher response time for the
service requests which trigger the successive service deployments. Since the whole architecture
rests on the backbone of P2P network, exploiting the benefits of P2P model may prove to be
advantageous for the architecture. This is where something like BitTorrent protocol can achieve
faster download by proper utilization of the network bandwidth.

5.1 Dynamic Deployments with P2P

When a consumer requests a service to the WSP for the first time, WSP selects the best suited
HP for the service and deploys the service by downloading the service package to the selected
Host Provider. In case of on-demand service provisioning, the time required to download a service
package stands to be an important factor for delivering low response times specifically for those
requests which correspond to trigger the deployments. From the graphs (Figure 7 and Figure 8),
it can be observed that the service requests which lead to trigger new deployments require more
time than the average response time. Though the deployment time depends largely on many
factors like present network load, size of the service package and efficiency of the WSPs and the
HPs; To achieve this on the premises of P2P network, use of Bittorrent protocol seems to be a
good solution for reducing the deployment time of a service.

5.1.1 Rationale behind using BitTorrent. Traditional File Transfer Protocol (FTP) Postel and
Reynolds [1985] till now remains a standard for secure and reliable transmission of large files over
the Internet. Nevertheless, its highly centralized client-server approach is inadequate for mass
publication of files. With a client-server approach, when the number of clients requesting services

International Journal of Next-Generation Computing, Vol. 7, No. 3, November 2016.

P2P Based Service Provisioning on Distributed Resources · 209

from the server increases, the performance of the server deteriorates. On the other hand, peer-
to-peer (P2P) is an alternative network model which uses a decentralized model with each peer
functioning as a client with its own layer of server functionality. On top of this network model,
BitTorrent Pouwelse et al. [2005] is implemented as a peer-to-peer file sharing protocol. It is one
of the most popular and successful protocols for transferring large files over the Internet. The
protocol takes up a very simple approach by breaking up large files (typically of the order of
hundreds of megabytes) into uniform blocks of considerably smaller size, such as 256 kilobytes,
and these source components can be dynamically requested from multiple source machines as
shown in Figure 3.

In our architecture, BitTorrent technology (implemented by Node Communicator Nc) can be
used to download service packages from the existing deployments, thereby sharing the deployment
cost over many nodes. Thus main advantages of P2P file sharing over dynamic web service
provisioning can be achieved and it becomes possible to decrease the service failure, increase
service availability and also to decrease the time taken for a service deployment.

The P2P approach is capable of removing single point failure for service package downloads.
Based on this approach, a second mode of download is implemented using a protocol called
Dynamic Torrent Service deployment protocol (DynaTronS).

Figure 3. Bit-Torrent Protocal

5.2 DynaTronS Deployment Protocol

It is a download protocol specific to our architectural requirements, following the idea of simulta-
neous download from all the available peers to pull up the download speeds and hence to reduce
the download time for the service package. The main aim of DynaTronS approach is to make
an efficient use of all the peers in the network who bear the files required to complete a present
deployment request. The underlying basic concept tries to download the service package from all
the possible locations, i.e. the peers which contain the service package. In our architecture, the
service package is available at the local repository of the WSPs as well as the HPs where the web
services have already been deployed. After a WSP notifies a HP to carry out the deployment
process, it also provides a seed list, i.e. a list of peers which contain the full service package. The
architecture enables the WSP tier to host the web service, share its information via the registry,
but does not allow to share the service package among the WSPs. Therefore, the only places
(apart from WSP) where the service package can be found in the architecture are the current
deployed instances of the web service in concern. Hence the list of HPs bearing the service de-
ployments along with the WSP who is owner of the service, collectively form the seed list for a
given web service. With every successive deployments of a given service its corresponding seed
list is added with new peers. The HP selected to carry out a new deployment of the given web
service, downloads the service package in chunks simultaneously from the peers enlisted in the
seed list.

International Journal of Next-Generation Computing, Vol. 7, No. 3, November 2016.

210 · Sujoy Mistry, Dibyanshu Jaiswal, Arijit Mukherjee and Nandini Mukherjee

Figure 4 shows a conceptual diagram based on the DynaTronS protocol, where the service
package is available at more than one site, i.e. a WSP and few HPs. An HP who needs to
download the service package, requests chunks of the service package from all those peers in the
network who posses the complete copy of the service package. Thus, the requesting HP makes
a full use of the network bandwidth while downloading different parts of the service package
concurrently.

Figure 4. DynaTronS Deployment

A direct comparison of DynaTronS protocol with the bit-torrent protocol may bring up some
conceptual differences between them considering the HPs as clients requesting for a service pack-
age. Important characteristics for DynaTrons implementation are discussed below:

(1) No Tracker involved : In DynaTronS protocol, the WSP itself plays the dual role of
providing the torrent file as well as the tracker(as in BitTorrent protocol). The WSPs itself
provides the seed list, accompanied with the deployment events, directly to the HPs.

(2) First Gather then Share : DynaTronS adheres to the concept of downloading the service
package (in chunks) from all possible locations (as in the seed list), and then upload the
chunks of service package (if asked) for next deployment. On the other hand, in case of
BitTorrent protocol the client may download, as well as upload at the same time, which may
sometime lead to choking of clients in the beginning of the download.

(3) Single Seed - Simultaneous Download : For the first time deployment of a web service,
the web service package will have only a single peer in seed list, i.e. the WSP itself. In such
a case if the service package is big, downloading it at one go may be troublesome. Thus
DynaTronS protocol downloads the service package in small chunks simultaneously, even if
the download is to take place from a single site.

Though the architecture employs DynaTronS protocol for simultaneous download, to achieve
higher download speed, it incurs a some extra communication cost for requesting the required
chunks of the service package, organizing the chunks as well as monitoring the completion of the
download. All these tasks of managing and deploying the service is in the hands of Deployment
Manager which takes care of downloading the service package.

6. IMPLEMENTATION OF SERVICE DOWNLOAD PROTOCOLS

Whenever a WSP requires deployment of a web service, after selection of the suitable HP from the
HP tier, it sends a deployment event to the selected HP, which in turn initiates the Deployment
Manager to start the deployment process at the HPs end. Deployment Manger then examines
the deployment event received to extract the web service credentials such as its configuration file,
URI, length and checksum of the service package. Depending on the deployment mode used by
the HP tier, the service package download is carried out accordingly.

Implementation of the two modes, i.e. the direct download mode and the P2P download mode
are detailed in the following two sebsections.

International Journal of Next-Generation Computing, Vol. 7, No. 3, November 2016.

P2P Based Service Provisioning on Distributed Resources · 211

6.1 Direct Download Mode

In this mode, the deployments, i.e. first time deployments or be it the successive deployments, are
facilitated by the WSPs only. For every deployment event received by an HP, after the retrieval of
the service credentials, the HP contacts the WSP, requesting to download the service as specified
by the URI. WSP then verifies identity of the HP that requests for the download. Download
of a specific web service is enabled to an HP if and only if the HP belongs to list of deployed
instances maintained by the Service Monitor at the WSPs end. Such an identity verification
ensures that the service package is provided to only those HPs where the WSP intends to deploy
the service. Once the requesting HP is verified by the WSP, a dedicated channel is established
between the WSP and the HP to ensure the security of the service package and then the download
for the requesting HP is started. Once the download is complete, the service package can be used
to complete the deployment process. Binding the deployment process to such a constraint of
downloading the service package from the WSP only may lead to longer download times specially
for service packages of large sizes. In an attempt to reduce this download time, the architecture
meets the requirement of another download mode.

6.2 P2P Download Mode

This mode implements the Dynamic Torrent Service deployment protocal (DynaTrons), enabling
the HPs with deployed instances of the web service, along with the WSPs to provide the required
service package. In this mode, at the HPs end, a receipt of a deployment event is followed by
extracting the service credentials accompanied with the seed list as sent by the WSPs. With
the complete information of the service URI and the seed list, the Deployment Manager starts
the download process by invoking a sub module - WAR Downloader to download the WAR file
corresponding to the web service deployment being carried out. Based on the service package
length, an appropriate chunk size and number of chunks required to download are decided by the
WAR Downloader. Each of such chunks is denoted by a request chunk object to acknowledge the
chunks’ identity such as :

—Name - name of the WAR file or the web service package.

—ID - unique id to identify the chunk’s position in the complete service package.

—Start Offset - indicating the starting offset of the chunk in the complete file.

—Chunk Size - required specially to indicate the size of the last chunk as the last chunk of the
WAR file may not be equal to the decided chunk size.

—Buffer - to store the downloaded chunk as a byte array.

Once all the request chunks are initialized, WAR Downloader distributes these chunk requests
to different peers in the seed list using a Chunk Distribution Algorithm. A peer can use either of
the two algorithms to distribute chunk requests to the peers in the seed list as discussed below:

—Serial Chunk Distribution - The algorithm sends chunk requests to all the peers in the seed
list in a cyclic fashion, until all the chunks have been requested (Algorithm 1).

—Proportionate Chunk Distribution - The algorithm decides a value called proportion,
based on the number of chunks required and number of peers available in the seed list. This
algorithm also cycles over the peers in the seed list, but makes more number of chunk requests
to the peers which are lightly loaded (given by the variable proportion), and only one chunk
request to the peers which have heavy load (Algorithm 2).

Among the two chunk distribution algorithms, Serial Chunk Distribution gives a naive approach
for distributing chunk requests but may fail to achieve the goal as expected, because a need of
new deployment arises only when the existing deployments get loaded. In such a scenario, these
deployed instances may require more amount of time to provide a requested chunk, resulting in
higher deployment cost as compared with Direct Download mode. In contrast, Proportionate
Chunk Distribution algorithm tries to overcome the problem by requesting less number of chunks

International Journal of Next-Generation Computing, Vol. 7, No. 3, November 2016.

212 · Sujoy Mistry, Dibyanshu Jaiswal, Arijit Mukherjee and Nandini Mukherjee

Figure 5. DynaTronS Sequence Diagram

Algorithm 1: Algorithm for Serial Chunk Distribution

1 begin
2 WarLength← DeploymentEvent.getWarLenght();
3 SeedList← DeploymentEvent.getSeedList();
4 ChunkSize← CalulateChunkSize(WarLength);
5 NumberOfChunks←WarLength/ChunkSize+ 1;
6 Offset← 0;
7 SeedCount← 0;
8 for id← 0 to NumberOfChunks do
9 peer ← SeedList.get(SeedCount);

10 SeedCount← SeedCount+ 1;
11 if SeedCount == SeedList.size() then
12 SeedCount← 0;
13 // to cycle over the peers in SeedList

14 // requesting a chunk to a peer

15 RequestChunkToPeer(id,Offset, peer);
16 offset← Offset+ ChunkSize;
17 if Offset > WarLength then
18 // invalid Offset

19 break;

from the loaded peers. Though this approach does not guarantee to resolve the issue mentioned
earlier, but still achieves a better performance over Serial Chunk Distribution algorithm.

International Journal of Next-Generation Computing, Vol. 7, No. 3, November 2016.

P2P Based Service Provisioning on Distributed Resources · 213

Algorithm 2: Algorithm for Proportionate Chunk Distribution

1 begin
2 WarLength← DeploymentEvent.getWarLenght();
3 SeedList← DeploymentEvent.getSeedList();
4 ChunkSize← CalulateChunkSize(WarLength);
5 NumberOfChunks←WarLength/ChunkSize+ 1;
6 Offset← 0;
7 SeedCount← 0;
8 Proportion← NumberOfChunks/SeedList.size();
9 ProportionCount← Proportion;

10 for id← 0 to NumberOfChunks do
11 peer ← SeedList.get(SeedCount);
12 if peer.getThreshold() == TRUE then
13 // allow only one chunk request, so change SeedCount
14 SeedCount← SeedCount+ 1;
15 if SeedCount == SeedList.size() then
16 SeedCount← 0;
17 // to cycle over the peers in SeedList

18 else
19 // request Proportion number of chunks, and then change SeedCount
20 ProportionCount← ProportionCount− 1;
21 if ProportionCount == 0 then
22 ProportionCount← Proportion;
23 SeedCount← SeedCount+ 1;
24 if SeedCount == SeedList.size() then
25 SeedCount← 0;
26 // to cycle over the peers in SeedList

27 // requesting a chunk to current peer

28 RequestChunkToPeer(id,Offset, peer);
29 offset← Offset+ ChunkSize;
30 if Offset > WarLength then
31 // invalid Offset

32 break;

Once the chunks are distributed, based on the id and offset of the chunks mentioned in each
request chunk, different peers respond to provide chunks via WAR Provider, A chunk is provided
only after performing a verification of the requesting peers identity (i.e. HP) in a similar fashion
as discussed in direct download mode. Once the requesting HP downloads all the chunks of the
WAR file, WAR Downloaderperforms a merge operation to organize the chunks in sequence based
on the start offset to build the complete WAR file.

Figure 5 depicts a sequence diagram for the service package download carried out at the HPs
end. As evident from the time line, at first WSP sends the seed list along with the deployment
event to a selected HP. The deployment manager after extracting the seed list requests parts of
the service package via the WAR Downloader (as per Algorithm 1). Each such request of a chunk
is then provided by the WAR Provider at the other peer end. After all the chunks of the WAR
file are downloaded, they are merged and then deployed.

Once the service package download is complete in either of the download modes, Deployment
Manager performs an integrity check of the downloaded WAR file using file length and checksum

International Journal of Next-Generation Computing, Vol. 7, No. 3, November 2016.

214 · Sujoy Mistry, Dibyanshu Jaiswal, Arijit Mukherjee and Nandini Mukherjee

Figure 6. Plot for Round-Robin Reloaded]

retrieved from the deployment event. Any discrepancy may lead to download of the WAR file
again. Otherwise the Deployment Manager relinquishes the control to the Web Server to deploy
the web service.

7. EXPERIMENTAL RESULT

This section includes experimental results to demonstrate the efficient functioning of the frame-
work. First the framework is implemented with decentralized registry and resource discovery
and its behavior is shown in Section 7.1. Next, the DynaTronS Protocol discussed in the pre-
vious sections is implemented in the framework and the experimental results are discussed in
Section 7.2.

The experiments have been carried out in a laboratory environment with a handful number of
nodes. Thus, although the functioning of the system is demonstrated here, the scalability issue
has not been handled in these experiments. Nevertheless, the scalability issue of a P2P-based
system has been handled by other researchers Chiola and Cordasco [2009], Mantyla [2005], Rosen
[2016] and this research work only puts forward the concepts of decentralized registry, resource
discovery and distributed service download protocols based on a P2P system.

7.1 Experimental Results for Decentralized registry

In this section we present the results of the experiments performed for dynamically deploying
web services and managing client requests over a distributed registry. The tests have been
conducted in a laboratory environment where some of the nodes have been assigned as Web
Service Providers (WSP) and others as Host providers (HP). In our distributed testbed we have
considered 3 WSP peers, and 7 HP of different node configurations.

A web service for calculating the Nth Fibonacci term has been used with value of N=40.
Nodes taken into account have been of configuration ranging from 1GB-4GB of physical memory,
1.86GHz-3GHz Dual-core processors. The tests have been conducted by making 10000 client
requests, made to different WSPs each time, and the response times have been measured. The
graphs are obtained by using different scheduling strategies as described in Section 4.2 and then
plotting the service response times with number of service requests made.

From the graphs shown in Figure 6, Figure 7, and Figure 8, we can observe that few requests

International Journal of Next-Generation Computing, Vol. 7, No. 3, November 2016.

P2P Based Service Provisioning on Distributed Resources · 215

Figure 7. Plot for Least Recently used Reloaded

Figure 8. Plot for Minimum Loaded First

which incur the deployment costs (shown as higher peaks) take higher response times. For rest
of the requests, the response time is comparatively low. Thus it can be concluded that the initial
deployment cost is shared over successive consumer requests and the idea of “deploy once and use
many times” is well implemented, proving to be a major advantage over the job-based framework.

Comparing the plots we can observe that the cumulative response time for RRR (Figure 6)
strategy is high as compared to the other two strategies. This is because an instance with lower
capacity is selected as best node in every cycle leading to higher response time, which is not
the case in other two strategies. Hence RRR strategy leads to better utilization of resources at
the cost of high response time. In contrast, LRUR (Figure 7) strategy achieves lower response

International Journal of Next-Generation Computing, Vol. 7, No. 3, November 2016.

216 · Sujoy Mistry, Dibyanshu Jaiswal, Arijit Mukherjee and Nandini Mukherjee

times for a longer time, till the current instance does not get loaded. At the same time it also
guarantees the utilization of all the instances. NTm : M → P(WR) ∨ M → P(HP) defines
mapping relationship between each node to HP or WSP with respect to its Property type (P).
Thus, whenever a node joins in the system, based on its own property it is decided whether
it joins Web Service Provider’s Chord Ring or remains in the system only as a Host Provider.
The nodes joining the network with a role as WSP (as specified in P) form an intranetwork via
Chord protocol and share web service information among each other and are denoted as WR.
The instances are arranged in a cyclic fashion, thereby providing an approach to web service
provisioning with lower response time and better utilization of resources as well.

In contract to the above approaches, MLF (Figure 8) does not cycle over the deployed instances.
However, it provides the best possible response time for every time slice. Thus, cumulative
response time is low as compared to other strategies, though it suffers from poor utilization
of resources as the instances with lower capacity may have higher load values as compared to
instances with higher capacity.

7.2 Experimental Results for dynamic deployment of web services using DynaTronS Protocol

In this section we present the results of the experiments performed to compare the performance of
the two download modes for dynamic deployment of web services and managing client as discussed
in the previous sections. As before, we have created a P2P-based distributed environment in the
laboratory. Here, some of the nodes are considered as Web Service Providers (WSP) and others
as Host providers (HP). Thus the tests have been carried out by making web service requests to
a given WSP, and 13 HPs of different node configurations have been kept at disposal.

A web service for calculating the Nth Fibonacci term is used with value of N=40. Nodes taken
into account were of configuration ranging from 1GB-4GB of physical memory, 1.86GHz-3GHz
dual-core processors. The tests were conducted by making 500 client requests. To compare
the deployment times required in the different modes of deployment, the load threshold value
is deliberately kept low so that a lower number of requests can trigger more deployments. A
large service package of 36MB is used, so that the deployment requires a considerable amount
of download time for both the approaches and the service response times are plotted against the
number of service requests made.

Figure 9. Experimental Results for Direct Download Mode

Figure 9 and Figure 10 depict the service response time for the two download modes. Figure 9
plots the time required for fetching a service using the direct download mode, and Figure 10

International Journal of Next-Generation Computing, Vol. 7, No. 3, November 2016.

P2P Based Service Provisioning on Distributed Resources · 217

Figure 10. Experimental Results for P2P Download Mode

Figure 11. Experimental Results for Comparing P2P vs Direct Download Modes

shows the time required for fetching service using our P2P-based DynaTronS protocol. In our
experiments, because of multiple service invocations, eight deployments were triggered. The
experimental results shown in Figure 11 compare the service response time and also deployment
time for the two download modes. It is evident from the graphs that as the number of deployments
increases, the deployment time in the p2p mode decreases as there is an increase in the number
of peers; whereas, in the direct download mode, the deployment time remains more or less same
depending upon the network condition at that time.

The successive deployment events as depicted in Figure 9 also require similar deployment times
as required by the first deployment in Direct Download mode. This is due to the fact that all
deployments are handled by the WSP alone for fetching the service package. In contrast, the
P2P Download mode in Figure 10 shows a considerable overall improvement. Though the first
time deployment requires almost same amount of time as compared to Direct Download mode,
but successive deployments start using the benefit of the peers in the seed list resulting in a sharp
decrease in deployment time.

In a Grid environment, resources may be volatile in nature, which is handled well in a P2P
framework. In our experiments, we simulated node failures by turning off nodes at random
and observed that the service download process continued even if one or more of the peers left
the network. If the failed node was an HP where deployment was being carried on, another

International Journal of Next-Generation Computing, Vol. 7, No. 3, November 2016.

218 · Sujoy Mistry, Dibyanshu Jaiswal, Arijit Mukherjee and Nandini Mukherjee

deployment was triggered on another designated HP.

8. CONCLUSION

This paper provides a robust approach to dynamic deployment of web services in a distributed
environment. It also incorporates the benefits of P2P systems by de-centralizing the registry of
web services as resources. This architecture proposes a unique concept of dynamic on-demand
service deployment using BitTorrent-like P2P file sharing protocol. The proposed techniques
enable handling the resource volatility of the nodes/peers in the network maintaining the consis-
tency in the architecture to serve its purpose. Its simplicity, ease of use, effective use of bandwidth
make this architecture appreciably suitable for deploying large, highly computational intensive
services over the internet. Unlike typical network scenarios where a high demand for a resource
can create a bottleneck thereby degrading the performance of the whole network, our proposed
techniques can handle increases in demand of services and can actually improve the performance
of the network.

The experiments discussed in this paper have been carried out in a laboratory environment.
Thus, the scalability of the system could not be demonstrated in this paper. However, the system
needs to be tested on a Internet scale which will be taken up as future work.

The performance of the whole architecture depends on how efficiently we can choose a best
suitable host provider for a service. The need for an optimized load-balancing algorithm is also
understood while carrying out the experiments. Hence, we intend to work on load balancing
issues in future. Till now, we have not looked into the security issues. In future, we shall also
focus on the security issues and investigate the possibilities of incorporating the work by other
researchers on P2P and Grid security into our framework.

References

Brooks, T. A. 2010. World wide web consortium (w3c). In Encyclopedia of library and infor-
mation sciences. 5695–5699.

Castellà, D., Barri, I., Rius, J., Giné, F., Solsona, F., and Guirado, F. 2009. CoDiP2P:
A Peer-to-Peer Architecture for Sharing Computing Resources. Springer Berlin Heidelberg,
Berlin, Heidelberg, 293–303.

Chiola, G. and Cordasco. 2009. Degree-optimal routing for p2p systems. Number 1. 43–63.
Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., and Weerawarana, S.

2002. Unraveling the web services web: an introduction to soap, wsdl, and uddi. IEEE
Internet computing 6, 2, 86.

Danielis, P., Skodzik, J., Altmann, V., Kappel, B., and Timmermann, D. 2015. Extensive
analysis of the kad-based distributed computing system dude. In 2015 IEEE Symposium
on Computers and Communication (ISCC). 128–133.

Feng, X., Shen, J., and Fan, Y. 2009. Rest: An alternative to rpc for web services architecture.
In Future Information Networks, 2009. ICFIN 2009. First International Conference on.
IEEE, 7–10.

Foster, I. 2002. The physiology of the grid: An open grid services architecture for distributed
systems integration.

Foster, I. 2005. Globus toolkit version 4: Software for service-oriented systems. In Proceedings
of the 2005 IFIP International Conference on Network and Parallel Computing. NPC’05.
Springer-Verlag, Berlin, Heidelberg, 2–13.

Foster, I., Kesselman, C., and Tuecke, S. 2001. The anatomy of the grid: Enabling scalable
virtual organizations. Int. J. High Perform. Comput. Appl. 15, 3 (aug), 200–222.

Gentzsch, W. 2001. Sun grid engine: towards creating a compute power grid. In Cluster
Computing and the Grid, 2001. Proceedings. First IEEE/ACM International Symposium
on. 35–36.

International Journal of Next-Generation Computing, Vol. 7, No. 3, November 2016.

P2P Based Service Provisioning on Distributed Resources · 219

Gupta, R., Sekhri, V., and Somani, A. K. 2006. Compup2p: An architecture for internet
computing using peer-to-peer networks. IEEE Trans. Parallel Distrib. Syst. 17, 11 (nov),
1306–1320.

Harrison, A. and Taylor, I. 2005. Wspeer-an interface to web service hosting and invo-
cation. In Parallel and Distributed Processing Symposium, 2005. Proceedings. 19th IEEE
International. IEEE, 175a–175a.

Jaiswal, D., Mistry, S., Mukherjee, A., and Mukherjee, N. 2013. Efficient dynamic
service provisioning over distributed resources using chord. In Signal-Image Technology
Internet-Based Systems (SITIS), 2013 International Conference on. 257–264.

Mantyla, J. 2005. Scalability of peer-to-peer systems. In Seminar on Internetworking, Spring
2005. Citeseer.

Mondejar, R., Garcia, P., Pairot, C., and Gomez Skarmeta, A. F. 2006. Enabling wide-
area service oriented architecture through the p2pweb model. In Proceedings of the 15th
IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises. WETICE ’06. IEEE Computer Society, Washington, DC, USA, 89–94.

Mukherjee, A. and Watson, P. 2006. Adding dynamism to ogsa-dqp: Incorporating the
dynasoar framework in distributed query processing. In European Conference on Parallel
Processing. Springer, 22–33.

Mukherjee, A. and Watson, P. 2012. Case for dynamic deployment in a grid-based dis-
tributed query processor. Future Gener. Comput. Syst. 28, 1 (jan), 171–183.

Newcomer, E. and Lomow, G. 2005. Understanding SOA with Web services. Addison-Wesley.

Postel, J. and Reynolds, J. K. 1985. File transfer protocol.

Pouwelse, J., Garbacki, P., Epema, D., and Sips, H. 2005. The bittorrent p2p file-sharing
system: Measurements and analysis. In Proceedings of the 4th International Conference on
Peer-to-Peer Systems. IPTPS’05. Springer-Verlag, Berlin, Heidelberg, 205–216.

Qi, L., Jin, H., Foster, I., and Gawor, J. 2007. Hand: Highly available dynamic deployment
infrastructure for globus toolkit 4. In Parallel, Distributed and Network-Based Processing,
2007. PDP ’07. 15th EUROMICRO International Conference on. 155–162.

Ratnasamy, S., Francis, P., Handley, M., Karp, R., and Shenker, S. 2001. A scalable
content-addressable network. SIGCOMM Comput. Commun. Rev. 31, 4 (Aug.), 161–172.

Rosen, A. 2016. Towards a framework for dht distributed computing.

Rowstron, A. and Druschel, P. 2001. Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems.

Stoica, I., Morris, R., Liben-Nowell, D., Karger, D., Kaashoek, M., Dabek, F., and
Balakrishnan, H. 2003. Chord: a scalable peer-to-peer lookup protocol for internet
applications. Networking, IEEE/ACM Transactions on 11, 1 (feb), 17 – 32.

Tan, Y. 2009. A peer-to-peer based web service discovery mechanism. In Proceedings of the
2009 Second Pacific-Asia Conference on Web Mining and Web-based Application. WMWA
’09. IEEE Computer Society, Washington, DC, USA, 175–177.

Tannenbaum, T., Wright, D., Miller, K., and Livny, M. 2010. Condor - a distributed job
scheduler. In Beowulf Cluster Computing with Linux, T. Sterling, Ed. MIT Press.

Verbeke, J., Nadgir, N., Ruetsch, G., and Sharapov, I. 2002. Framework for Peer-
to-Peer Distributed Computing in a Heterogeneous, Decentralized Environment. Springer
Berlin Heidelberg, Berlin, Heidelberg, 1–12.

Walsh, E. A., Ed. 2002. Uddi, Soap, and Wsdl: The Web Services Specification Reference Book.
Prentice Hall Professional Technical Reference.

Wang, I. 2003. P2ps (peer-to-peer simplified).

Watson, P., Fowler, C., Kubicek, C., Mukherjee, A., Colquhoun, J., Hewitt, M., and
Parastatidis, S. 2006. Dynamically deploying web services on a grid using dynasoar.
In Ninth IEEE International Symposium on Object and Component-Oriented Real-Time
Distributed Computing (ISORC’06). 8.

International Journal of Next-Generation Computing, Vol. 7, No. 3, November 2016.

220 · Sujoy Mistry, Dibyanshu Jaiswal, Arijit Mukherjee and Nandini Mukherjee

Wu, S. and Du, Z. 2005. Globalstat: a statistics service for diverse data collaboration and
integration in grid. In Eighth International Conference on High-Performance Computing
in Asia-Pacific Region (HPCASIA’05). 600–602.

International Journal of Next-Generation Computing, Vol. 7, No. 3, November 2016.

P2P Based Service Provisioning on Distributed Resources · 221

Sujoy Mistry has completed his M.Tech in Computer Science and Engineering from
University of Calcutta, Kolkata, West Bengal, India in 2009. He is now pursuing PhD
from School of Mobile Computing and Communication, Jadavpur University, Kolkata,
India. Currently he is doing research in the area of Distributed Computing, P2P Networks
and Grid Computing.

Dibyanshu Jaiswal has completed his Bachelors in Computer Science from Dr. B. C.
Roy Engineering College, Durgapur, West Bengal in 2011 and Master of Engineering in
Computer Science form Jadavpur University, Kolkata West Bengal in 2013. He joined
Innovation Labs of Tata Consultancy Services a Systems Engineer in September 2013.

Dr. Arijit Mukherjee had completed his PhD in 2008 from Newcastle University. From
June 2008, Arijit worked as a lead researcher at Connectiva Systems (I) Pvt. Ltd., in
Kolkata, India, for three years. He joined the TCS Research and Innovation of Tata
Consultancy Services in September 2011 and is currently working as a Senior Scientist.

Prof. Nandini Mukherjee has joined as a faculty member in Department of Computer
Science and Engineering, Jadavpur University, India in 1992. She has completed her PhD
in Computer Science from University of Manchester, UK in 1999. She has become a pro-
fessor in Jadavpur University in 2006. She has acted as the director of School of Mobile
Computing and Communication, an interdisciplinary school of research in Jadavpur Uni-
versity from 2008 to 2014. Her research interests are in the area of High Performance
Parallel Computing, Grid Computing and Mobile Computing. She is a senior member of
IEEE.

International Journal of Next-Generation Computing, Vol. 7, No. 3, November 2016.

	Contents
	List of Figures
	List of Tables
	List of Algorithms
	1 Introduction
	1.1 Distributed Computing
	1.1.1 Distributed Computing Architectures
	1.1.2 Applications in Distributed Computing

	1.2 Service Oriented Architecture (SOA)
	1.2.1 Advantages of SOA

	1.3 Web Services
	1.3.1 Important Classification used by Web Services
	1.3.2 Static vs Dynamic Web service Provisioning

	1.4 Motivation
	1.5 Objectives
	1.6 Contribution
	1.7 Structure of Thesis

	2 Background and Related Work
	2.1 Introduction
	2.1.1 Service Oriented Grid
	2.1.2 Benefits and Issues of SOA and Grid Combined

	2.2 Architectures and Frameworks
	2.2.1 Approaches to Web Service Publication and Discovery
	2.2.1.1 Centralized Approaches
	2.2.1.2 Decentralized Approaches

	2.2.2 Dynamic Service Deployment and Invocation
	2.2.2.1 Centralized Approach : Dynamic Service Oriented Architecture (DynaSOAr)
	2.2.2.2 WSPeer
	2.2.2.3 P2PWeb
	2.2.2.4 Highly Available and Dynamic Deployment (HAND)

	2.2.3 Loopholes in the Existing Frameworks and Future Direction

	2.3 Summary

	3 System Overview
	3.1 Introduction
	3.2 Basic Requirements of the Framework
	3.3 Overview of the Architecture
	3.4 Formal Description of the Framework
	3.5 Functional Overview
	3.5.1 Network Establishment: Node Joining
	3.5.2 Functioning of a Node: with p2p Based Communication Protocol
	3.5.3 Decentralized Registry
	3.5.4 Publication and Discovery of Services
	3.5.4.1 Requirements of Web Services and their Configuration

	3.5.5 Resource Discovery
	3.5.5.1 Dynamic Requirements Matching Based on Basic Service Requirements
	3.5.5.2 Load Balancing

	3.5.6 Scheduling Strategies
	3.5.7 Dynamic Service Deployments

	3.6 Summary

	4 Dynamic Web service Discovery and Deployments using De-centralized Registry
	4.1 Introduction
	4.2 Approaches for Dynamic Web Service Discovery and Deployments
	4.3 Peer to Peer Networks
	4.3.1 Operations in p2p
	4.3.2 Advantages of Peer-to-Peer networks
	4.3.3 Disadvantages of Peer-to-Peer networks

	4.4 Distributed Hash Tables (DHT)
	4.4.1 Chord

	4.5 Chord-based Decentralized Registry
	4.5.1 The Registry Workflow
	4.5.1.1 Publishing a Web Service
	4.5.1.2 Discoverying a Web Service
	4.5.1.3 Binding with a Web Service

	4.6 Summary

	5 Request Scheduling : A Load Balancing Approach.
	5.1 Introduction
	5.1.1 Load Balancing Problem
	5.1.2 Dynamic, Static and Adaptive Algorithms

	5.2 Load Balancing in the Proposed Framework
	5.3 Resource Selection
	5.3.1 Concept
	5.3.2 Implementation

	5.4 Dynamic Load Balancing
	5.4.1 Overview
	5.4.2 Load Information
	5.4.3 Load and Load Threshold
	5.4.4 Implementation
	5.4.4.1 Gathering Load Information
	5.4.4.2 Scheduling Strategies

	5.5 Experimental Results
	5.6 Summary

	6 P2P-Based Service Distribution: DynaTronS protocol
	6.1 Introduction
	6.2 Enhancement of the Proposed Architecture
	6.2.1 Bit-Torrent Protocol
	6.2.1.1 Operation
	6.2.1.2 Advantages and Disadvantages over Classical Downloads

	6.2.2 Why Bit-Torrent?

	6.3 DynaTronS Deployment Protocol
	6.3.1 DynaTronS vs Bit-Torrent

	6.4 Downloading the Service Package
	6.4.1 Direct Download Mode
	6.4.2 P2P Download Mode

	6.5 Experimental Results
	6.6 Summary

	7 Conclusions and Discussion
	7.1 Overview of the Thesis
	7.1.1 Dynamic Web Service Discovery and Deployments using De-centralized Registry- Chapter 4
	7.1.2 Request Scheduling : A Load Balanced Approach- Chapter 5
	7.1.3 P2P-Based Service Distribution: DynaTronS protocol- Chapter 6

	7.2 Limitations
	7.3 Future Work

	Bibliography

