MASTER OF ARTS EXAMINATION, 2018

(2nd Year, 4th Semester)

PHILOSOPHY

[Logic - III]

Full Marks : 30

Time : Two Hours

The figures in the margin indicate full marks.

1. Let *R* be an equivalence relation on a set *S*. Then, prove that the quotient set S/R is a partition of *S*. 10

Or;

- 2. Suppose $P = \{Ai\}$ is a partition of a set *S*. Then, prove that there is an equivalence relation \sim on *S* such that S/\sim is the same as the partition $P = \{Ai\}$. 10
- 3. Consider functions $f: A \rightarrow B$ and $g: B \rightarrow C$. Prove the following :
 - (a) If f and g are one-to-one, then $g \circ f$ is one-to-one.

[Turn over]

5/37 - 50

(b) If f and g are onto functions, then $g \circ f$ is an onto function. 5+5=10

Or,

- 4. Consider functions $f: A \rightarrow B$ and $g: B \rightarrow C$. Prove the following :
 - (a) If $g \circ f$ is one-to-one, then f is one-to-one.
 - (b) If $g \circ f$ is onto, then g is onto. 5+5=10
- 5. Let $[A_1, A_2, ..., A_m]$ and $[B_1, B_2, ..., B_n]$ be partitions of *X*. Prove that the collection of sets $P = \left[\left\{A_i \cap B_j\right\}\right] \setminus \phi$ is also a partition of *X*. 5

Or;

- 6. Let A be a set of nonzero integers and let ≈ be the relation on A × A defined as follows : (a,b)≈(c,d) whenever ad = bc. Prove that ≈ is an equivalence relation.
- 7. Let $f: R \to R$ be defined by f(x) = 2x 3. Find a formula for f^{-1} .

Or,

[Turn over]

5/37 - 50

- 8. Let the functions *f* and *g* be defined by f(x) = 2x+1 and $g(x) = x^2 2$. Find the formulas defining the functions
 - (a) $g \circ f$
 - (b) $f \circ g$ $2\frac{1}{2}+2\frac{1}{2}=5$