Master of Arts Examination, 2018

(2nd Year, 3rd Semester)

PHILOSOPHY

Logic - II

Full Marks : 30
Time : Two Hours

The figures in the margin indicate full marks.

1. Let I be an interpretation of Q with domain D . Let A be an arbitrary wff of Q . Let s and s' be two sequences such that for each variable v in A , if v is the $\mathrm{k}^{\text {th }}$ variable in the fixed enumeration of the variables, then s and s have the same member of D for their $\mathrm{k}^{\text {th }}$ terms. Then, prove that s satisfies A iff s' does.

Or

2. Let A be a wff of $\mathrm{Q}, \mathrm{v}_{\mathrm{k}}$ a variable, t a term that is free for v_{k} in A . Let s be a sequence and let s be the sequence that results from replacing the $\mathrm{k}^{\text {th }}$ term of s by $\mathrm{t}^{*} \mathrm{~s}$ (i.e. the member of D assigned by I to the term t for the sequence s), i.e. $s^{\prime}=s(t * s / k)$. Then, prove that s satisfies A_{t} / v_{k} iff s' satisfies A.10
3. If K is a consistent first order theory, then prove that the system that results from adding a denumerable set of new individual constants to K , with an effective enumeration of these constants, is a consistent first order theory that is an extension of K .

Or

4. If K is a consistent first order theory, then prove that there is a first order theory K^{\prime} that is a consistent negation complete extension of K with the same formulas as K .10
5. If $\Gamma \cup\{\sim \mathrm{A}\}$ is an inconsistent set of QS , then prove that Γ 「esA.

Or

6. Prove that VvA is satisfiable for an interprelation I iff A is satisfiable for the same interpretation.
7. Let I be an interpretation with domain D. Let A be a wff with exactly one free variable v_{k}. If each member of D is assigned by I to some closed term or other and A_{t} / v_{k} is true for I for each closed term t, then prove that $\Lambda \mathrm{vkA}$ is true for I.

Or
8. Prove that A is logically valid iff A^{c} is logically valid.

