Master of Arts Examination, 2018

(1st Year, 1st Semester)
PHILOSOPHY
[Logic (Western)]
Full Marks : 30
Time : Two Hours

The figures in the margin indicate full marks.
Use a separate answer-script for each group.

Group-A

1. Construct a formal proof of validity for each of the following arguments :
(a) Any friend of Al is a friend of Bill. Therefore anyone who knows a friend of Al knows a friend of Bill.(Px : x is a person. Fxy : x is a friend of y . Kxy : x knows y. a : A1. b : Bill).
(b) $(x)\{K x \supset[(\exists y) L x y \supset(\exists z) L z x]\}$
$(x)[(\exists z) L z x \supset L x x]$
$\sim(\exists x) L x x$
$\therefore(x)(K x \supset(y) \sim L x y)$
[Turn over]
(c) Construct demonstration for the following :

$$
(y)[F y \supset(\exists x) F x] \quad(4 \times 2)+2=10
$$

Or

2. Symbolize the following using the suggested notations.
(a) If something is missing, then if nobody calls the police, it will not be recovered. ($\mathrm{Mx}: \mathrm{x}$ is missing. $\mathrm{Px}: \mathrm{x}$ is a person. Cx : x calls the police. $\mathrm{Rx}: \mathrm{x}$ will be recovered).
(b) Anyone who promises everything to everyone is certain to disappoint somebody. (Px : x is a person. Pxyz : x promises y to z . Dxy : x disappoints y).
(c) No charity receives all of his money from any single person. ($\mathrm{Cx}: \mathrm{x}$ is a charity. $\mathrm{Mx}: \mathrm{x}$ is money. $\mathrm{Px}: \mathrm{x}$ is a person. Bxy : x belongs to y . Dxyz : x donates y to z).
(d) Prove the invalidity of the following argument

$$
\begin{aligned}
& (\exists x)(A x \cdot B x) \\
& \quad A c \\
& \quad \therefore B c
\end{aligned} \quad 2+3+3+2=10
$$

[3]

3. Prove the following in System T
(a) $M \sim p \vee M \sim q \vee M(p \vee q)$
(b) $(p \rightarrow q) \supset(M p \supset M q)$

Or

4. State the axioms of System T.

Group - B

5. (a) If S is a formal system in which for each formula A of S there is a formula A^{\prime} of S that on the intended interpretation expresses the negation of A, then prove that if S is simply consistent, then it is absolutely consistent.
(b) If S is a formal system for which it is a metatheorem that $A,\left.A^{\prime}\right|_{s} B$ (where A and B are arbitrary formulas of S, and A^{\prime} expresses the negation of A on the intended interpretation of S), then prove that if S is absolutely consistent, then it is simply consistent. 5

Or
6. (a) Define a maximal p-consistent set of PS.
(b) Prove that any p-consistent set of $P S$ is a subset of some maximal p-consistent set of $P S$. $2+8=10$
7. Prove that $\Gamma \bigcup\left\{\sim A^{2}\right\}$ is a p-inconsistent set of $P S$ iff $\Gamma \mid$ ps A.

> Or
8. Prove that if Γ 酐 A , then $\Gamma \overline{\overline{\mathrm{P}}} \mathrm{A}$. 5

