B.A. 2ND YR 4TH SEM EXAMINATION 2018 (OLD) ## **Econometrics** Ref.: EX/UG/ECO/4.3/63/2018 Time: Two hours Full Marks: 30 ## Answer any five of the following questions. $6 \times 5 = 30$ 1. An econometrician arranges her sample of n (even) observations in ascending order of the regressor X and divides up the sample into two equal parts containing n/2 observations each. She then calculates the average values of X and Y for each part separately. Let (\bar{X}_A, \bar{Y}_A) be sample means of first n/2 values of X and Y and (\bar{X}_B, \bar{Y}_B) be sample means of last n/2 values of X and Y. The model she considers is $$Y_i = \alpha + \beta X_i + \varepsilon_i$$ where X is non-stochastic, $\varepsilon_i \stackrel{iid}{\sim} (0, \sigma^2)$ and the estimated regression line is the straight line passing through the points (\bar{X}_A, \bar{Y}_A) and (\bar{X}_B, \bar{Y}_B) . If the estimates of α and β in this method are a and b, show that - (a) a and b are unbiased. - (b) $var(b) \ge var(\hat{\beta}_{OLS})$. - 2. Let $y_t = \beta_1 + \beta_2 y_{t-1} + u_t$, where $u_t \stackrel{iid}{\sim} N(0, \sigma^2)$. Is $\hat{\beta}_{2,OLS}$ unbiased? Is it consistent? - 3. If $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{u}$, where $E(\mathbf{u}) = \mathbf{0}$ and $E(\mathbf{u}\mathbf{u}') = \Sigma$, a positive definite (non-diagonal) matrix, prove that $\mathbf{var}(\hat{\boldsymbol{\beta}}_{OLS})$ is greater than $\mathbf{var}(\hat{\boldsymbol{\beta}}_{GLS})$ in a matrix sense. - 4. Consider the following regression model: $$y = X\beta + u$$ where **y** and **u** are $n \times 1$, **X** is $n \times K$ (where $X_{1i} = 1 \ \forall i = 1, ..., n$) and β is $K \times 1$. $\mathbf{u} \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$. Show that $$var(\hat{\beta_k}) = \frac{\sigma^2}{(1 - R_k^2) \sum_{i=1}^n (X_{ki} - \overline{X_k})^2}, \ \forall \ k = 2, \dots, K,$$ where R_k^2 is the R-squared from regressing X_k on all other regressors, including an intercept. 5. Let the model be $$y_t = \mathbf{x}_t' \boldsymbol{\beta} + u_t,$$ where **x** is $1 \times K$ and $u_t = \rho u_{t-1} + \varepsilon_t$, $|\rho| < 1$ and ε_t $(0, \sigma_{\varepsilon}^2)$. What is the autocorrelation of u in this model? Now consider the model $$y_t - y_{t-1} = (\mathbf{x}_t - \mathbf{x}_{t-1})'\boldsymbol{\beta} + v_t,$$ where $v_t = u_t - u_{t-1}$. Compare autocorrelation of v with that of u. [Turn over 6. Suppose $\hat{\boldsymbol{\beta}}_{OLS}$ is the $K \times 1$ least square coefficient vector in the regression of \mathbf{y} on \mathbf{X} and that \mathbf{c} is any other $K \times 1$ non-zero vector. Prove that the difference in the two sums of squared residuals is $$(\mathbf{y} - \mathbf{X}\mathbf{c})'(\mathbf{y} - \mathbf{X}\mathbf{c}) - (\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}_{OLS})'(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}_{OLS}) = (\mathbf{c} - \hat{\boldsymbol{\beta}}_{OLS})'\mathbf{X}'\mathbf{X}(\mathbf{c} - \hat{\boldsymbol{\beta}}_{OLS}).$$ Prove that this difference is positive. 7. Let the model be $$y_i = \mathbf{x}_i' \boldsymbol{\beta} + u_i,$$ where \mathbf{x} is $1 \times K$ and pdf of y, $f(y) = (1/\mathbf{x}'\boldsymbol{\beta})e^{(-y/\mathbf{x}'\boldsymbol{\beta})}$, y > 0. Derive the most efficient estimator of $\boldsymbol{\beta}$. 8. Let $y_i = \mu + \varepsilon_i$, where $E(\varepsilon_i) = 0$ and $V(\varepsilon_i) = \sigma^2 \ \forall \ i = 1, ..., n$. $cov(\varepsilon_i, \varepsilon_j) = \sigma^2 \rho \ \forall \ i \neq j$. Show that the OLS estimator of μ is inconsistent.