Master of Arts Examination: 2018(Old) (2nd Year 4th Semester)

Economics

Comprehensive-II

Time: Two and half hours

Full Marks:50

(Use separate answer-script for each group)

Group: A (25 Marks)

Answer any two from the following

- Q. 1. Give the Economic meaning of: Initial and endpoint conditions on state variable. 12.5
- Q2. Why do we need transversality condition to solve optimal control problem?

12'5

Q3. Solve the optimal control problem

Maximize
$$\int_{0}^{1} -u^2 dt$$

Subject to
$$\frac{dx}{dt} = x + u$$

$$x(0)=1,$$

$$x(1) = 0$$

12.5

Q4. Define Control Variable, State and Costate Variable in the context of Optimal control problem.

4+4+4.5

[Turn over

GROUP - B (25 marks)

- 5. (a) Explain the concept of Co integration. Discuss one suitable method for testing co integration between two variables.
 - (b) What is the main difference between the random effect model and the fixed effect model?
 - (c) Define simultaneous equation bias with the help of a suitable model.
 - (d) Suppose that in the linear model $y = \mathbf{x}\beta + u$, where \mathbf{x} contains unity, $E(\mathbf{x}'u) = 0$, $var(u|\mathbf{x}) = \sigma^2$ but $E(u|\mathbf{x}) \neq E(u)$.
 - (i) Is it true that $E(u^2|\mathbf{x}) = \sigma^2$?
 - (ii) What is $\widehat{Avar(\hat{\beta})}$?

6+3+4+12

OR,

- 6. a) Let the N-vector \mathbf{y} be a vector of mutually independent realizations from the uniform distribution on the interval $[\beta_1, \beta_2]$. Let $\hat{\beta}_1$ be the maximum likelihood estimator of β_1 given by $\hat{\beta}_1 = \min(y_t)$, $t = 1, \ldots, N$ and the true values of β_1 and β_2 are 0 and 1, respectively. Find the cdf of $\hat{\beta}_1$.
 - b) Explain Augmented Dickey Fuller Test Procedure.
 - c) Discuss the problem of identification in simultaneous equation system.
 - d) What are the basic difference in the assumptions of the random effect model and fixed effect model?

 13+3+4+5