MASTER OF ARTS EXAMINATION, 2018

(1st Year, 1st Semester)
 ECONOMICS
 MICROECONOMICS-1

Full Marks: 30

Time: Two Hours

Attempt Question no. 1 and any one from the rest:

1. (a). Suppose an agent (who is an expected utility maximizer) has the following quadratic Bernoulli utility function:

$$
u(x)=\beta x^{2}+\gamma x
$$

Show that, when comparing any two lotteries, this agent only looks at their respective means and variances. Assume x to be a continuous. (Make your own assumptions)
(b). Explain whether the following statements are True, False or Uncertain:
(i). "A Prudent individual should always exhibit Decreasing Absolute Risk Aversion (DARA)".
(ii). $u(x)=x^{\alpha} \quad(0<\alpha<1)$ exhibits bothDARA and CRRA at the same time.
(c). Consider two random variables X and Y distributed continuously on $[0,1]$. Their respective c.d.f.s are $F($.$) and G($.$) . Show that if \mathrm{X}$ second order stochastically dominates Y then $E(X) \geq E(Y)$.
(2). Suppose in a production model there are 2 inputs labour (L) and land (T). With the help of the two inputs two goods X_{1} and X_{2} are produced. Assume X_{1} to be relatively labour intensive. If there is an exogenous increase in the price of good 2 only, state and explain your conjecture about returns to both the factors? Assume fixed coefficient technology.
?
(b). Calculate the profit maximizing supply functions of x_{1} and x_{2} for the production technology given by the function $f\left(x_{1}, x_{2}\right)=x_{1}^{a_{1}} x_{2}^{a_{2}}$ where $a_{i}>0$. Also find the profit function of the firm.
(3). A firm has two plants with cost functions $c_{1}\left(y_{1}\right)=\frac{y_{1}^{2}}{2}$ and $c_{2}\left(y_{2}\right)=y_{2}$. What is the cost of producing an output y ?
(b). Explain true, false or uncertain:
(i). Consider a 2 factor 2 good production model with fixed coefficient technology. Then if the factor endowment ratio is equal to the relative factor intensity ratio of good 1 and good 2 then any one of the goods shouldn't be produced.
(ii). The Walrasian budget line may or may not pass through the endowment point.
(c). State the 'Independence Axiom'.

