MASTER OF ARTS EXAMINATION, 2018

(1st Year, 1st Semester)

ECONOMICS

MATHEMATICAL ECONOMICS

Time: Two hours Full Marks: 30

Use separate Answer Script for each group

Group A

1. Consider the case of a firm in which the stock of capital, x_t , changes continuously over time according to the following equation of motion:

$$\dot{x_t} = ax_t - bx_t^2 - z_t$$

where a>0 and b>0 are positive constant and z_t is the rate of production. Firm's profit depends on the production at the rate $In(z_t)$, and the goal of the firm is to maximize the discounted present value of profit over an infinite horizon, the rate of discount being r.

A formal statement of the firm's problem, therefore is:

$$\max \int_0^\infty e^{-rt} \ln(z_t) \, dt$$
 subject to $\dot{x_t} = ax_t - bx_t^2 - z_t$ and $x_t > 0$

- a) Set up the current value Hamiltonian.
- b) What is the transversality condition? Interpret it.
- c) Write down the costate equation and interpret it.
- d) Explore the dynamics using phase diagram.

1+2+2+3

2. Solve the following dynamic programming problem using Benveniste Scheinkman method.

 $\operatorname{Max} \textstyle \sum_0^\infty \beta^t \ln(c_t)$

Subject to
$$a_{t+1} = (1+r)a_t - c_t$$
 and $a_0 = \overline{a_0}$

[Turn over

Group B

Answer any 3 questions. Each question carries 5 marks.

1) Show that there always exists a rational number between 2 rational numbers. Use the proved proposition to explain that there always exists an infinite number of rational numbers between 2 rational numbers.

3 + 2 = 5

2) Define a 'sequence' and explain the concept of a 'convergent sequence'. Give an example of a convergent sequence and demonstrate that the sequence provided by you actually converges.

1+1+1+2=5

3) Prove rigorously that the set of cubes of natural numbers is unbounded above.

5

4) Prove rigorously that the sum of absolute values of 3 real numbers is never less than the absolute value of their sum.

5