## MASTER OF ARTS EXAMINATION, 2018

(1st Year, 1st Semester, Old Syllabus)

## **E**conomics

## MATHEMATICAL ECONOMICS

Time: Two hours Full Marks: 30

Answer any three questions

1. Maximize 
$$\int_{0}^{T} [K - \alpha K^{2} - I^{2}] dt \quad \alpha > 0$$

S.t. 
$$\frac{dK}{dt} = I - \delta K$$
  $\delta > 0$ 

$$K(0)=K_{\scriptscriptstyle 0}$$
 , given

$$K(T)$$
 free.

- What do you mean by transversality condition in the context of optimum control problem? Show that transversality conditions essentially depend on the endpoint conditions on state variable.
- 3. The Forster's model on antipollution policy gives us the following optimal control problem:

$$\text{Max} \quad \int_0^T U[C(E), P] dt ,$$
 Where  $U_C > 0, U_P < 0$ 

[Turn over

$$U_{CC} < 0$$
,  $U_{pp} < 0$ 

S.t.  $\dot{P} = \alpha E - \beta A - \delta P$   $\alpha, \beta, \delta$  are all positive.

$$\dot{S} = -A - E$$

Where,

$$P(0) = P_0 > 0$$
 ,  $P(T) \ge 0$  free ( T given ),

$$S(0) = S_0$$
,  $S(T) \ge 0$  free

and 
$$E \ge 0$$
,  $0 \le A \le \mathring{A}$ 

Using the information given, show that while E has an interior solution, A has a boundary solution in the optimum. Discuss the economic meaning of anti-pollution policy in this context.

- 4. We wish to move from the initial point (0,8) in the t-y plane to achieve the terminal state value y(T)=0 as soon as possible. Formulate and solve the problem, assuming that  $\frac{dy}{dt}=2u$  and the control set is the closed interval [-1,1].
- 5. Give the economic meaning of different parts of optimum control problem.