Form A:

Ref. No. Ex/PG/LST/T/121A/2019

<u>Master of Laser Science and Technology Examination, 2019</u>
(2<sup>nd</sup> Semester)

SUBJECT: Laser Surface Modifiction & Forming Processes

Time: Three hours

Write short notes on: Carburising

b)

Full Marks 100

3

# Use Separate Answer Scripts for Each PART

### Part I

### Answer any Five question

| 1.    | What are the major process parameters for laser surface heat treatment? Explain each of them very briefly. | 10 |
|-------|------------------------------------------------------------------------------------------------------------|----|
| 2.    | Explain the Advantages and Disadvantages of Laser Surface Heat Treatment.                                  | 10 |
| 3.    | Explain very briefly the micro-structural changes in steels during laser surface heat treatment            | 10 |
| 4. a) | Explain the Advantages and Disadvantages of Laser Cladding.                                                | 7  |
| b)    | Write short notes on: Austenite                                                                            | 3  |
| 5. a) | Explain Laser shock peening process with suitable diagram.                                                 | 8  |
| b)    | Write short notes on: Dilution                                                                             | 2  |
| 6. a) | Compare the different mechanism for Laser Forming processes                                                | 7  |
|       |                                                                                                            |    |

Form A:

b)

Ref. No. Ex/PG/LST/T/121A/2019

# Master of Laser Science and Technology Examination, 2019 (2nd Semester)

SUBJECT: Laser Surface Modifiction & Forming Processes

Time: Three hours

Full Marks 100

15

10

15

## Use Separate Answer Script for Each PART

#### Part II

#### Answer any two questions

| 1. a) | what are positive and negative bendings in the laser bending process?                                                                                                                                                                                                                                                                                                                                                                                        |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| b)    | Compare the temperature distributions in temperature gradient mechanism and buckling mechanism and explain the reasons.                                                                                                                                                                                                                                                                                                                                      |
| c)    | State the advantages of laser bending over the conventional bending processes.                                                                                                                                                                                                                                                                                                                                                                               |
| d)    | AISI 304 stainless steel sheet metal is bent to form a shallow V-shape using a 1.8 kW CO2 laser. The beam radius is 3 mm, and scanning is done at a rate of 20 mm/s along the width of the sheet metal. If the sheet thickness is 2.5 mm, width is 150 mm, and length is 300 mm, determine the following, after the single pass a the bend angle b. the induced force, F                                                                                     |
|       | c. the bending moment, M and d. strains, e1 and e2, in the upper and lower parts of the sheet, respectively. The properties of the AISI 304 stainless steel are approximated as density, $\rho = 7850$ kg/m³, specific heat, $Cp = 502$ J/kg K, thermal conductivity, $k = 21.5$ W/m K, modulus of elasticity, $E = 190$ GPa and linear coefficient of thermal expansion, $\beta = 17.2 \times 10^{-6}$ /K. Assume a surface reflection coefficient of 0.65. |
| 2. a) | Explain the effect of the primary laser process parameters and plate thickness on                                                                                                                                                                                                                                                                                                                                                                            |

Discuss very briefly the mechanism of laser bending along with the temperature,

the direction of the bending angle in buckling mechanism.

stress and displacement distributions in a thick plate.

Form A:

Ref. No. Ex/PG/LST/T/121A/2019

# Master of Laser Science and Technology Examination, 2019 (2nd Semester)

SUBJECT: Laser Surface Modifiction & Forming Processes

Time: Three hours Full Marks 100

3. a) Explain the applications of laser bending in diverse industries.

5

b) Bending of a steel plate is achieved through Temperature Gradient Mechanism with a laser beam of diameter d, beam power P and the scanning speed Ux. The thickness of the plate is h, and the length of the plate is b along the direction of laser scanning. The linear coefficient of thermal expansion, the density and the specific heat of the plate are β, ρ and Cp, respectively. Assuming a two-layer model of the heated zone, find an expression for the bend angle in terms of appropriate parameters.

20