M.E. (Water Resources & Hydraulic Engineering) Examination, 2019

(2nd Semester)

COMPUTATIONAL HYDRO DYNAMICS

(Paper- VII)

Time: Three Hours

Full Marks: 100

Answer any four questions.

- 1. a) Find a root of the equation $x^3 4x 9 = 0$, using the bisection method in four stages.
 - b) Find root of the equation 2x-log₁₀ x=7, which lies between 3.5 and 4 by regula-falsi method.
 - c) Evaluate $\sqrt{65}$ to four decimal places by Newton's iterative method.
 - d) Apply Gauss elimination method to solve the equations 10x+2y+z=9; 2x+20y-2z=-44; -2x+3y+10z=22.

6+6+6+7 = 25

- a) State different advantages and disadvantages of experimental, theoretical and computational approaches for solving non-linear problems.
 - Give examples of elliptic and parabolic partial differential equations as found in fluid dynamics.
 Briefly explain the characteristics of such equations.
 - c) Consider the function $f\left(x,y\right)=e^{4x}+e^{-2y}$. Consider the point $(x_{i}y)=1$,2. Assume $\Delta x=\Delta y=1$.
 - (i) Calculate the exact values of $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at this point.
 - (ii) Calculate the same using $\mathbf{1}^{\Re}$ order accurate forward and backward differences. Also calculate the percentage difference compared with the exact values.
 - (iii) Calculate the same using 2nd order accurate central differences. Also calculate the percentage difference compared with the exact values.

9+4+(3+6+3) = 25

- 3. a) Distinguish between Discretisation Error, Round-off Error.
 - b) What do you mean by explicit approach of CHD Technique? Give examples.
 - c) Discretise the vorticity transport equation for two-dimensional fluid flow using forward difference for the temporal variation and central difference for the spatial variation. Hence find out the stability criteria for the finite difference scheme.

- 4. a) Find out the numerical solution for the unsteady two-dimensional inviscid flow by MacCormack's technique. Use Euler equations in non-conservation form. Assume that there is no body force and no volumetric heat addition.
 - b) Write short note on Reflection boundary condition.
 - c) Obtain 1st order and 2nd order accurate finite difference expressions for the terms $\frac{\partial^2 u}{\partial x \partial y}$ at the backward boundaries of the flow domain.

13+4+8 = 25

- 5. a) By Taylor series expansion show how can you obtain 1^{st} order and 2^{nd} order accurate finite difference expressions for the terms $\frac{\partial v}{\partial y}$ and $\frac{\partial^2 u}{\partial z^2}$ at the forward and backward boundaries of the flow domain.
 - b) Consider the viscous flow of water over a river bed. At a given station in the flow direction, the variation of the flow velocity (u) in the direction perpendicular to the bed (the z direction) is given by the expression $u=100(2\rho^2-\rho^2+0.5\rho)$ where $\rho=z/L$ and L= total depth of water = 10 cm, velocity along the flow (u) is in meter per second. The dynamic coefficient of viscosity of water at $20^{\circ}\mathrm{C}$ (μ) = 0.001002 kg/(m·s). Values of u were measured at discrete grid points with $\Delta z=5$ mm. Calculate the shear stress (τ_0) at the wall using the following ways: (a) Using 1^{st} order accurate forward difference and using the 3^{sd} order accurate forward/backward difference and using the 3^{sd} order accurate forward difference. Finally, compare these calculated finite-difference results with the exact value of τ_0 .

12+13 = 25

- 6. a) Explain briefly the effectiveness of Lax-Wendroff technique.
 - b) Define consistency with suitable example.
 - c) Write a short note on Dirichlet and Neumann boundary conditions.

18+3+4=25