A Novel Approach to Non-Halftone Binary
Image Transformations, Digital Halftoning and

Color Halftone Proofing

BY
PRADEEP KUNDU
B.PRINT.E. (HONS)

Thesis Submitted in Fulfillment of the Requirement for the Degree of

Doctor of Philosophy (Engineering)

JADAVPUR UNIVERSITY
KOLKATA 700 032
INDIA
2013

JADAVPUR UNIVERSITY
Kolkata 700 032

1. Title of the thesis: A Novel Approach to Non-Halftone Binary Image

Transformations, Digital Halftoning and Color Halftone Proofing

2. Name, Designation & Institution of the Sepervisor/s: Prof. Dr. Arun Kiran Pal,

Professor, Department of Printing Engineering, Jadavpur University

1)

2)

3)

4)

5)

6)

List of publication:

Kundu, Pradeep, Pal, Arun Kiran; “Some Methods of Digital Halftoning”, TAGA
Conference, March 15-18, 2009, New Orleans, Louisiana, USA.

Kundu, Pradeep, Pal, Arun Kiran; “A Color Prediction Model for Additive and
Subtractive Mixing of Colors”, TAGA Conference, March 15-18, 2009, New
Orleans, Louisiana, USA.

Kundu, Pradeep, Pal, Arun Kiran; “Some Methods of Non-halftone Binary Image
Transformations”, International Journal of Intelligent Information Processing,
ISSN: 09-3892, Vol. 4 Number 2, July-December 2010, Pages: 167-172

Kundu, Pradeep, Pal, Arun Kiran; “A Novel Versatile Method Of Generating Soft
Halftone Proofs”, TAGA Conference, March 12-21, 2012, Jacksonville, Florida,
USA.

Kundu, Pradeep, Pal, Arun Kiran; “Non-halftone Binary Image Transformations
by Processing the Image in an Arbitrary Path”, TAGA Journal of Graphic
Technology (to be communicated).

Kundu, Pradeep, Pal, Arun Kiran; “Non-halftone Binary Image Transformations
by Processing the Image Row-wise”, International Journal of Intelligent

Information Processing, ISSN: 09-3892 (to be communicated).

4. List of Patents: NIL

5. List of Presentations in National/ International: NIL

CERTIFICATE FROM THE SUPERVISOR

This is to certify that the thesis entitled “A Novel Approach to Non-Halftone Binary
Image Transformations, Digital Halftoning and Color Halftone Proofing” submitted by
Pradeep Kundu, who got his name registered on 29" November, 2006 for the award of
Ph.D (Engg) degree of Jadavpur University is absolutely based upon his own work under the
supervision of Prof. Dr. Arun Kiran Pal, Professor, Department of Printing Engineering,
Jadavpur University and that neither his thesis nor any part of the thesis has been submitted

for any degree or any other academic award anywhere before.

| 2173

Signature of the Supervisor
and date with Office Seal

DR. ARUN KIRAN PAL
PROFESSOR
Department of Printing Enginecnng

Acknowledgement

The author takes this privilege to acknowledge his deep gratitude and admiration for
Prof. Dr. Arun Kiran Pal, Professor, Department of Printing Engineering, Jadavpur
University, under whose keen supervision this research has been carried out. The author is
deeply indebted to him for his valuable suggestions, inspiring guidance and help which made
possible the completion of this research.

The author wishes to take this opportunity to express his gratitude and record his thanks
to Dr. Mark Bohan, TAGA, and to Mr. Vijay Kumar of Serial Publications, for their
appreciation in this research work.

Thanks are due to Dr. Swati Bandyapadhyay, Associate Professor, Department of
Printing Engineering, for her interest, kind help and appreciation of the work.

The author express his gratitude to the all teaching and non-teaching staff of the
Department of Printing Engineering for their necessary help and assistance to complete this
work.

During the tenure of the works, love and inspiration received by the author from
Mrs. N. Kundu, Mr. M.M. Kundu, Mrs. G. Kundu, Mr.S. Kundu and Mr. D. Kundu deserve
special mentioning. As a close blood relation they gave me essential support and
encouragement in various ways during the long period of this study.

PRADEEP KUNDU

Contents

Chapter 1: Introduction
1.1. Introduction
1.2. Originals for Reproduction
1.3. Line Reproduction from Continuous Tone Originals
1.3.1. Tone-Line Process
1.4. Halftoning
1.4.1. AM and FM Halftoning
1.4.2. Dithering Techniques
1.42.1. Ordered Dither
1.4.2.2. Error Diffusion
1.4.3. Parameters of AM Halftoning
1.4.3.1. Screen Frequency
1.4.3.2. Dot Shape
1.43.3. Screen Angle
1.4.4. Moiré and Rosette in AM Halftoning
1.5. Object of the Present Work
1.6. Scope of the Present Work
Chapter 2: Review of Early Works
2.1 Introduction
2.2 Non-Halftone Binary Image Transformations
2.3 Digital Halftoning
2.4 Soft Halftone Proofing
Chapter 3: Non-Halftone Binary Image Transformations
3.1 Introduction
3.2 Thresholding as a Binarization Tool
3.2.1 The Image Matrix for Threshold Operation
3.2.2 Threshold Option: 1
3.2.3 Threshold Option: 2
3.2.4 Threshold Option: 3
3.2.5 Threshold Operations: Input and Output Images

3.2.6 Discussions

© ©O© ©O© ~N o1 o1 o1 O W W N P -

W N RN DD NRNNNNRER R B B B 2
N © N O © Ol 01 U1 01 © 0 0 0 ~N U w O

3.2.7 Program 3.1
3.3 Non-Halftone Binary Image Transformations Methods
3.3.1 Row-wise and Column-wise Processing
3.3.1.1 Threshold Selection Method
3.3.1.2 Algorithm for Method
3.3.1.3 Input and Output Images
3.3.1.4 Discussions
3.3.1.5 Program 3.2
3.3.2 Blockwise Processing
3.3.2.1 Direction of Processing
3.3.2.2 Input and Output Images
3.3.2.3 Discussions
3.3.2.4 Program 3.3
3.3.3 Processing based on pixel location and
path based on location
3.3.3.1 Processing the Image Column-wise
3.3.3.1.1 Image Processing Path
3.3.3.1.2 Output Images
3.3.3.1.3 Discussions
3.3.3.1.4 Program 3.4
3.3.3.2 Processing the Image Row-wise
3.3.3.2.1 Image processing Path
3.3.3.2.2 Output Images
3.3.3.2.3 Discussions
3.3.3.24 Program 3.5
3.3.3.3 Processing the Image in Arbitrary Path
3.3.3.3.1 Output Images
3.3.3.3.2 Discussions
3.3.3.3.3 Program 3.6
3.3.3.3.4 Program 3.7

33
37
37
37
37
38
41
42
44
44
44
50
51

53
53
53
54
60
61
63
63
63
69
70
73
73
77
78
81

Vi

3.3.3.4 Processing the Image Diagonally

3.3.34.1
3.3.34.2
3.3.34.3
3.3.34.4
3.3.3.4.5

Location Mapping

Types of Diagonal Processing

Algorithm for the above methods

Image Processing Directions and Matrices

Image Processing Techniques

3.3.3.4.6 Image Processing Tables

3.3.3.4.7 LTRB:

3.3.34.7.1
3.3.34.7.2

3.3.3.48 LTRB:

3.3.348.1
3.3.3.4.8.2

3.3.349 LTRB:

3.3.349.1
3.3.3.4.9.2

3.3.3.4.10 LTRB:

3.3.3.4.10.1
3.3.3.4.10.2

3.3.3.4.11 LTRB:

3.3.34.111
3.3.3.4.11.2

3.3.3.4.12 LTRB:

3.3.34.121
3.3.3.4.12.2

3.3.3.4.13 LTRB:

3.3.34.131
3.3.3.4.13.2

3.3.3.4.14 LTRB:

3.3.34.141
3.3.3.4.14.2

3.3.3.4.15 RTLB:

3.3.34.151
3.3.3.4.15.2

LTDAVFTC
Output Images
Discussions

LTDAVFTAC
Output Images
Discussions

LTDVLB2RT
Output Images
Discussions

LTDVRT2LB
Output Images
Discussions

RBDAVFTAC
Output Images
Discussions

RBDAVFTC
Output Images
Discussions

RBDVRT2LB
Output Images
Discussions

RBDVLB2RT
Output Images
Discussions

RTDAVFTC
Output Images
Discussions

83

83

84

84

85

101
105
107
107
112
113
113
117
118
118
122
123
123
127
128
128
132
133
133
137
138
138
142
143
143
147
148
148
153

Vil

3.3.3.4.16 RTLB:

RTDAVFTAC

3.3.34.16.1 Output Images
3.3.3.4.16.2 Discussions
3.3.3.4.17 RTLB: RTDVRB2LT

3.3.34.17.1 Output Images
3.3.34.17.2 Discussions
3.3.3.4.18 RTLB: RTDVLT2RB

3.3.3.4.18.1 Output Images
3.3.3.4.18.2 Discussions
3.3.3.4.19 RTLB: LBDAVFTAC

3.3.3.4.19.1 Output Images
3.3.3.4.19.2 Discussions
3.3.3.4.20 RTLB: LBDAVFTC

3.3.3.4.20.1 Output Images
3.3.3.4.20.2 Discussions
3.3.3.4.21 RTLB: LBDVLT2RB

3.3.34.211 Output Images
3.3.34.21.2 Discussions
3.3.3.4.22 RTLB: LBDVRB2LT

3.3.34.221
3.3.3.4.22.2

Output Images
Discussions

3.3.3.4.23 Program 3.8
3.3.3.4.24 Program 3.9
3.3.3.4.25 Program 3.10
3.3.3.4.26 Program 3.11

3.3.3.4.27 Comparison with the Earlier Technique
Chapter 4: Digital Halftoning (Ordered Dither)
4.1 Introduction
4.2 Halftoning by Pre-embedding the Pattern
4.2.1 Algorithm (Method 1)
4.3 Halftoning by Simulating Character-writing Pattern
4.3.1 Algorithm (Method 2)

154
154
158
159
159
163
164
164
168
169
169
173
174
174
178
179
179
183
184
184
188
189
192
197
202
205
206
206
206
210
211
214

viii

4.4 Results and Discussions
44.1 For Method 1
4.4.2 For Method 2
4.5 Conclusions
4.6 Program4.1
4.7 Program 4.2
4.8 Comparison with the Other Techniques Developed
Chapter 5: Soft Halftone Proofing
5.1 Introduction
5.2 Experimental Procedures
5.3 Results and Discussions
5.4 Conclusions
5.5 Comparison with the Other Techniques Developed
Chapter 6: Discussions and Concluding Remarks
6.1 Discussions
6.2 Conclusions
6.3 Scope of Future Investigations
Appendix A
Program A.1
Program A.2

References

214
214
214
215
216
222
224
226
226
226
242
243
243
244
244
244
245
246
246
252
255

Chapter 1

Introduction

Chapter 1

Introduction

1.1 Introduction

Transforming gray images to binary ones through non-halftone binarization (algorithm
driven digital line conversion methods) and novel digital halftoning techniques and building
multicolor soft halftone proof would always find their general and special application in the
field of printing and imaging science and engineering. This present research work
concentrates on such type of approaches to the design of image transformation methods for
converting gray scale images to non-halftone binary and halftone images and generation of

multicolor soft halftone proofs.

Chapter 1 gives an introduction to the background works and related theory on non-

halftone binarization, digital halftoning techniques and soft halftone proof.
Chapter 2 gives a review of the early works prior to the present research work.

Chapter 3 introduces various novel methods of non-halftone binary image
transformations. This chapter also compares the novel techniques with the earlier analog

techniques.

Chapter 4 describes two novel halftoning techniques. This chapter also compares the new

techniques with the earlier techniques.

Chapter 5 introduces one novel methods of soft halftone proofing. This chapter also

compares this novel technique with the other earlier techniques.

Chapter 6 draws a conclusion and describes the scope for future investigation.

1.2 Originals for Reproduction

Copies are divided into two general classes, line and continuous tone, and two
subdivisions viz. combination and color. Combination copies represent both line and
continuous tone originals as single unit, while color copies are restricted to full-color
originals, although multicolor effects can be produced from monochrome (black and white)

copies by various means and processes.

Fig. 1.1 shows some line drawing techniques like Outline pen drawing, Brush drawing,

Charcoal drawing and Scratchboard drawing

(c) Charcoal drawing (d) Scratchboard drawing

Figure 1.1: Line drawing Techniques

1.3 Line Reproduction from Continuous Tone Originals

1.3.1 Tone-Line Process

The Eastman Kodak Company introduced in 1953, a photographic method for making
line reproductions from continuous tone originals as the Tone-Line Process [35]. In this
procedure a continuous tone negative is masked with a positive image of nearly equal
contrast and the assembly exposed on a sheet of Kodalith film by rapidly spinning it (in a
printing frame) under a fixed light, or by rotating a movable light above a stationary vacuum
printing frame. Either method allows some light to creep around the edges of the masked
negative and produce the line effect displayed in fig.1.2, this shows the continuous tone

original and the result obtained therefrom by the Tone-Line process.

: o o
XX
£

(@) Tone-Line Reproduction: Original Image

7
fe

L -
R

-

FIN;“

il
£

ey
.
-

475

7

I\Il“ _‘\J
X

\\
‘.h” .
,NM,.
Lh

3

Y
T

o o]
&

=

(b) Tone-Line Reproduction: Reproduced Image

Figure 1.2 : Tone-Line Reproduction

1.4 Halftoning

Halftoning is the process of breaking the contone (continuous tone) images into dots to
create an illusion of tonal gradation by physical (screens) or logical (algorithmic tools) means

to circumvent the constraints of printing process or device to produce contone.

141 AM and FM Halftoning

The halftoning methods can mainly be divided into two main types, namely AM
(Amplitude Modulated) and FM (Frequency Modulated). In the AM methods the sizes of the
halftone dots vary, while their spatial frequency is constant. This means that the size of the
halftone dot becomes bigger as the tone gets darker. In the FM methods, on the other hand,
the dot size is constant while the frequency (the number of micro dots) varies. Something
worth observing here is that the terms AM and FM halftoning are sometimes incorrectly
replaced by conventional and stochastic halftoning, respectively.

1.4.2 Dithering Techniques

The term dithering is used in various contexts [19]. Primarily, it refers to techniques for
approximating halftones without reducing resolution, as pixel-grid patterns do. But the term
is also applied to halftone-approximation methods using pixel grids, and sometimes it is used

to refer to color halftone approximations only.

Main classes of dithering
1. Ordered dither
1.1. Clustered dot dither
1.2. Dispersed dot dither
2. Error Diffusion
2.1. Floyd and Steinberg
2.2. Jarvis filter weight
2.3. Stucki’s filter weight
2.4. Shiau’s & Fan’s filter weight
2.5. Knuth’s Dot Diffusion
1421 Ordered dither
The ordered dithering techniques are divided into two parts, clustered dot and dispersed
dot. In the clustered dot dithering the threshold matrices are arranged in a way that the final
halftone dot is a cluster of black microdots. In the dispersed dot dithering the black microdots

are dispersed. Fig. 1.3 is a clustered dot dither array and fig. 1.4 is the enlarged image of the

same array. Fig.1.5 is a dispersed dot dither array (Bayer dither) and fig.1.6 is the enlarged
image of the same array. Clustered dot dither is AM (Amplitude Modulated) and Dispersed
dot dither is FM (Frequency Modulated). Error diffusion dithers are FM (Frequency
Modulated).

3 |9 (17]27|25|15|7 |1

11129 |38 |46 |44 36|23 |5

19 |40 |52 |58 |56 |50 | 34 |13

31|48 |60 |64|62|54 |42 21

30 |47 |59 63|61 534120

18 (39 |51 |57 |55|49|33|12)
Figure 1.4: Image of a

10|28 |37 45|43 (35|22 |4 clustered dot dither array

2 |8 |16(26|24|14/6 |0

Figure 1.3: An 8x8 dither array
(clustered dot)

O |58(14|54|3 |57(13|53

321164630 |35|19|45]| 29

8 |48 |4 |62|11|51|7 |61

40 |24 136 | 20|43 |27 (3923

2 |56 12 (52|1 |59 15|55

34|18 |44 28|33 |17 |47 |31

Figure 1.6: Image of a

10|/50(6 |60(9 [49|5 |63 dispersed dot dither array

42 12613822 |41|25|37|21

Figure 1.5: An 8x8 Bayer dither
array (dispersed dot)

1.4.2.2 Error Diffusion

For a far better approach to FM halftoning, Floyd and Steinberg [10] proposed the
revolutionary error diffusion algorithm, an adaptive technique that quantized each pixel
according to a statistical analysis of an input pixel and its neighbors (neighborhood process),
leading to a stochastic arrangement of printed dots. Floyd’s and Steinberg’s proposed error
filter is shown in fig.1.7. Fig. 1.8 shows Floyd and Steinberg algorithm applied to a grayscale

ramp. Fig.1.9 shows same algorithm applied to an image.

® 7/16
3/16 5/16 1/16

Figure 1.7 : Floyd’s and Steinberg’s

Proposed error filter

llll.l.l__|_|.!I!_|F!_IIIII-'

Figure 1.8: Error diffusion (Floyd and Steinberg)

Figure 1.9: Image formed by Floyd and Steinberg error

diffusion

1.4.3 Parameters of AM Halftoning
1.4.3.1 Screen Frequency

The screen frequency is the number of lines or rows of clustered-dots per inch of the

resulting halftone. This is illustrated in fig. 1.10.

2
Resolution (DPI) W
No of unique gray levels [3] = +1

Screen Frequency (LPIj

Equation 1.1 shows number of gray levels that can be determined from resolution and

screen frequency of a halftone image.
1.43.2 Dot Shape

Dot shape refers to the specific arrangement of thresholds within the dither array. This is
illustrated in fig. 1.10.

10

Dot Shape

Halftone cell

(Screen frequency)™

Scretin angle

Figure 1.10: The screen frequency, dot shape, and screen
angle for an analog halftone screen

1.4.3.3 Screen Angle

It is the orientation of screen lines relative to the horizontal axis. This parameter is a
function of human visual system where directional artifacts are their least noticeable when
oriented along the 45 degree diagonal. It follows that for monochrome printing, this screen
angle should be also 45 degree. The screen angle plays a fundamental role in elimination of
moiré, the interference pattern produced by super imposing two or more regular patterns. Fig.
1.12 shows the moiré patterns associated with superimposed just two regular grids. Fig. 1.13
shows moiré pattern in four process color halftoning due to incorrect use of screen angle.
While this interference cannot be altogether eliminated, it is through the use correct screen
angle i.e. 75°, 105°, 90° and 45° for cyan, magenta, yellow and black respectively, that moiré

is minimized, creating pleasant rosette pattern of fig.1.14 — fig.1.16.

Fig.1.11 shows a vignetted dot within an analog halftone screen cell which is responsible

for variable dot size produced by the conventional halftone screen.

11

[F 3 s — - o
srdgFis bt ioan
- g g FEbagy) L™
- A g
F — —
I -
Al Yo g TR g
iyl L - gy e
Pl .“ A F 4
- istgiiriadiseintoay
s gL s aidgFioangfienny .
@ H =k hg e T .m..-_.l..-_ —_I.l_l.—._. "]
? o (T i sisacaifiii
- P2 aisiiv — vt { 3-f-e
..n_l..v (5 |m L [T gy 2% ——
5 m m -k EndngfFiegy b,
cL25 At np g Fidag FFmny b
.mVr.Il o Y fofonid L T Een F#mn o
25 8 = S
s =
—_ LE .".I..... .
) A Feahg gy !] ""
<SS w o s giisnagFitsagfitnny "
= - N - A a2 T LT Y i
< b ¥ .y ——n a3l T Ewp “I-
.S it oy e L 1] []
h S 9 " i o - M b
i .28 i * - ay bl
S8ET L LTy - FFmny]
W @ A g L T Fi gy g o P
m - = ——r - | T3 Frmy
= m o ; i 1 P "-.l-
DB == i Fmy Sma
ST et ST I e e
) ke X T 4 —_l.l.l.—l [m L]
344 . Snpgpffmuy
Liha LTy g F TR i - .I‘.ﬂ. n"““_

(@) 10 degree

-rrf:vf'-;:#‘!rg:lr:; iui’l rr‘rﬁfﬂu £9% I'r:'f'.!.f#
dstrad ”"?r%, *ﬁm?;ﬁ.r "’iff (R

(il e

(el 3

i

-*ﬁﬁ:‘;ﬁfﬁf’* *’} ’}r’* i i

R :f* ‘*"’??ffi:r'"
et

(b) 30 oTegree

Figure 1.12: The Moiré patterns created by offsetting two
AM halftone patterns by (a) 10 degree (b) 30 degree

Figure 113: A CYK AM halftone proof with ncrrect
screen angles and Moiré patterns appear. Screen angles
are C 92°, M 759, Y 0° and K 45°

12

13

Figure 1.14: CMYK halftone roof with correct
screen angles, no Moiré pattern but only Rosette. Screen
angles are C 75° M 105°, Y 90° and K 45°

144 Moiré and Rosette in AM Halftoning

If the job required 120 Ipi, place the yellow on 133 Ipi. The ideal frequency ratio of
yellow to other colors is about 1.11 higher.

When the colors are correctly angled, a rosette pattern will be visible in highlight and
middletone areas where all the colors are present. The frequency of rosette pattern is such that
it occurs at one half that of the screen ruling; i.e., the rosettes appear at 75 per inch frequency
for a 150 Ipi process color halftone.

There are two types of rosette pattern [9] : those with a clear center (fig.1.16) and those
with a dot center (fig.1.15). Dot centered rosettes are less noticeable but must be printed to
tighter register tolerances in order to minimize color variations in certain tonal values (this is
the reason why dot-on-dot same angle printing has generally been unsuccessful, despite its

superior resolution when compared to multi-angle printing).

- &
Figure 1.15: Rosette Pattern (dot centered or closed)

14

15

o o Voo s
,.s*' ,_.ac": (‘)1’.(‘{.&;*~".
r.)("% ”.‘4' ﬂ“‘aLO

$“‘4" e .. e & ®
® .o % ?-$. Y © L
rk”.‘«"i‘.)r..r".gﬁ .1
P 8 L » e C.e0%

¢ . o . d‘ﬁk

S € e ac
& - &l a alter a a®
Figure 1.16: Rosette Pattern (clear centered or open)

15 Object of the Present Work

The present research work has been subdivided into three sections.
1. Non-Halftone Binary Image Transformations.
2. Digital Halftoning.
3. Soft Halftone Proofing.

Non-Halftone Binary Image Transformations: One earlier method of converting
continuous tone image into line work is Tone Line process, developed by Eastman Kodak in
the year 1953. After that, in analog field no system is found (to the best of the knowledge of
the author), which is better and equivalent to Tone Line process. This part of the research

work aims to develop various non-halftone binarization methods. The methods might be

1. Row-wise and column-wise processing
2. Blockwise processing,
3. Processing based on pixel location and path based on location.

16

3.1. Processing the image column-wise

3.2. Processing the image row-wise

3.3. Processing the image in arbitrary path

3.4. Processing the image diagonally

34.1

3.4.2

Starting point of the diagonal is Left Top or Right Bottom (LTRB)

3.4.1.1 LTDAVFTC (Left top diagonal alternate vector spiral with first
turn clockwise)

3.4.1.2 LTDAVFTAC (Left diagonal alternate vector spiral with first
turn anti-clockwise)

3.4.1.3 LTDVLB2RT (Left top diagonal vectors, left bottom to right
top)

3.4.1.4 LTDVRT2LB (Left top diagonal vectors, right top to left
bottom)

3.4.1.5 RBDAVFTAC (Right bottom (starting point) diagonal alternate
vector spiral with first turn anti-clockwise. 5 is reverse of 1)

3.4.1.6 RBDAVFTC (Right bottom diagonal alternate vector spiral
with first turn clockwise. 6 is reverse of 2)

3.4.1.7 RBDVRT2LB (Right bottom diagonal vectors, right top to left
bottom. 7 is reverse of 3)

3.4.1.8 RBDVLB2RT (Right bottom diagonal vectors, left bottom to
right top. 8 is reverse of 4)

Starting point of the diagonal is Right Top or Left Bottom (RTLB)

3.4.2.1 RTDAVFTC (Right top diagonal alternate vector spiral with
first turn clockwise)

3.4.2.2 RTDAVFTAC (Right top diagonal alternate vector spiral with
first turn anticlockwise)

3.4.2.3 RTDVRB2LT (Right top diagonal vectors, right bottom to left
top)

3.4.24 RTDVLT2RB (Right top diagonal vectors, left top to right
bottom)

3.4.2.5 LBDAVFTAC (Left bottom (starting point) diagonal alternate
vector spiral with first turn anti-clockwise. 5 is reverse of 1)

3.4.2.6 LBDAVFTC (Left bottom diagonal alternate vector spiral with

first turn clockwise. 6 is reverse of 2)

17

3.4.2.7 LBDVLT2RB (Left bottom diagonal vectors, left top to right

bottom. 7 is reverse of 3).
3.4.2.8 LBDVRB2LT (Left bottom diagonal vectors, right bottom to

left top. 8 is reverse of 4)
Digital Halftoning: Digital halftoning has replaced conventional halftoning long back.
Various authors have contributed in this field (Refer Section 2.3). This part of the research
aims to contribute to novel halftoning methods specially in ordered dithering. The methods

might be
1. Halftoning by pre-embedding the pattern
2. Halftoning by simulating character-writing pattern

Soft Halftone Proofing: This part of the research work aims to develop novel technique
in soft halftone proofing which could be used directly to produce amplitude modulated and
frequency modulated halftone proof and display it on the monitor screen in comparison to

earlier techniques (Refer Section 2.4).
A detailed review has been done on the three sections.
1.6 Scope of the Present Work

Non-halftone binary image transformations are implemented through various algorithms
to convert gray images into non-halftone binary images. These methods of non-halftone
binarization could be used as imaging tools for special applications and sometimes as a

substitute for halftone where semi-halftone nature of the image is seen.

In the digital halftoning section, two novel techniques are presented to generate
halftones. The first method titled “Halftoning by pre-embedding the pattern” is a technique
which could be used for general purpose digital halftoning. The second method titled
“Halftoning by simulating character-writing pattern” could be used in special halftoning (i.e.
to show a change in halftone dot percentage with the progressive writing of strokes, to

complete a character) application.

The method of generating soft halftone proof as presented in Chapter 5 is a unique, novel and
versatile method with wider application than the existing methods. It could be used to produce both
amplitude and frequency modulated onscreen soft halftone proofs prior to taking hardcopy proofs
through printers like color laser printer, color ink jet printer or other suitable output systems.

Chapter 2

Review of Early Works

Chapter 2

Review of Early Works

2.1 Introduction

In this chapter the author has presented some earlier photomechanical and digital
imaging and imageprocessing methods. These are the existing techniques that might serve as

a background for the present research work.
2.2 Non-Halftone Binary Image Transformations

In the analog photomechanical field one method e.g. Tone Line Process [35], has been
discussed in Chapter 1 (Section 1.3.1) which is equivalent to non-halftone binary image
conversion. To the best of the knowledge of the author there is no digital non-halftone
binarization method (algorithm driven digital line conversion methods) that could serve as a

background for the present work.
2.3 Digital Halftoning

Before digital halftoning came into the picture, electronic halftoning were used in
electronic drum scanners like Crossfield Magnascan, which made use of electronic dot
generation (EDG) through built in analog computing systems. Before electronic halftoning
conventional halftoning using glass crossline screen and contact screen were made. After
electronic halftoning many digital halftoning methods have been discovered which are

outlined in the following paragraphs.

18

19

In 1973, Bayer [4] popularized the most widely used patterns for dispersed dot ordered
dither. Fig. 1.5 and fig. 1.6 shows and 8x8 Bayer dither array and image of the same array

respectively.

In 1976, Floyd and Steinberg [10] discovered revolutionary error diffusion algorithm.

Fig. 1.7 shows Floyd’s and Steinberg’s proposed error filter.

In 1976, Jarvis et al. [22] discovered further improvement in error diffusion. In an effort

to break up worm patterns in error diffusion, they introduced 12-element error filters.

In 1981, Stucki [44], modified error diffusion with different filter weight. Similarly in an
effort to break up worm patterns in error diffusion, they also introduced 12-element error

filters.

In 1987, Knuth [24] introduced algorithm for dot diffusion. This algorithm leads to
strong periodic patterns, where pixels are processed in the order of clustered dot ordered

dither.

In 1988, Ulichney [48], Blue noise (error diffusion). Blue noise halftoning is
characterized by a distribution of binary pixels where the minority pixels are spread as

homogeneously as possible.

In 1993, Ulichney [50], Void and clustered dither: Among the modifications of ordered
dither, a prominent place belongs to Ulichney’s void and cluster method, which is also

dispersed dot ordered dither.

In 1996, Shiau’s and Fan’s [42] error diffusion with different filter weight. Here, the

filter is restricted to just two rows but extraordinarily long tail.

20

In 1999, Mese and Vaidhyanathan [36] introduced improved dot diffusion and showed
that order can optimized for 16 x 16 blocks to results of comparable visual quality to error

diffusion.

The author has proposed two new methods in digital halftoning (ordered dither) that are
presented in Chapter 4.

2.4 Soft Halftone Proofing

Images almost equivalent to halftone proofs have been generated through existing image
editing softwares like Adobe Photoshop 7 and Corel PhotoPaint 11 in fig. 2.1 and fig. 2.5
respectively. These halftone proofs are mainly meant for amplitude modulated halftoning. In
the table: 2.1 the original image “flcmyk.tif” (fig.5.3) is at 144 dpi, and screen angles and
max dot radius are also given to generate the proofs. Individual dots in each color channel of
the proofs are antialiased, which must not be there for any halftone image. Fig. 2.3 and fig.
2.7 are the part of the enlarged black channels containing antialiased dots for Photoshop 7
and Corel PhotoPaint 11 respectively. Fig. 2.4 and fig. 2.8 are the histograms of the fig.2.3
and fig.2.7 respectively, which show tonal variation because of having antialiased dot
structure. Fig.2.2 and fig.2.6 shows histograms of the four channels of the fig.2.1 and fig.2.5
respectively. These histograms of fig.2.2 and fig.2.6 show that there is tonal variation within
the individual channels and colors used are not pure. The author has proposed a more
versatile method i.e. with wider applications, using Photoshop 7 as described in the

Chapter 5.

Table 2.1: Filename, channels and other data for proof generation
through Photoshop 7 and Corel PhotoPaint 11

Original | Resolution | Color Screen Angle | Max Radius of a
Image (DPI) (Degree) Dot (Pixels)
flemyk.tif | 144 Cyan 108 4
(Fig.5.3)

Magenta | 162

Yellow 90

Black 45

21

: o &
Figre 2.1 : Halftone P

roof (hotoshop7

Channel: | Black v Channel: | Cyan w
uhtjuwbmwm ww

[| .

Channel: | Magenta b Channel: | Yellow W

| B

-+

Figure 2.2 : Histograms of the four channels of the figure 2.1

22

Figure 2.3 : Antialiased Dots (Photoshop 7)

Channel: Gray

el

Figure 2.4 : Histogram of the figure 2.3

23

Figure 2.5 : Halftone Proof (CoreIPhoto-Paint 11)

Channel: | Elack b Channel: | Cyan w

bt dibabad k]

Channel: | MMagenta b Channel: | “Yellow b

|

Figure 2.6 : : Histograms of the four channels of the figure 2.5

Figure 2.7 : Antialiased Dots (Corel Photo-Paint 11)

i_hannel: Gray

L le.l_udjumm

I
Figure 2.8: Histogram of the figure 2.7

K

24

Chapter: 3

Non-Halftone Binary Image Transformations

Chapter: 3

Non-Halftone Binary Image Transformations

3.1 Introduction

Reproducing a continuous tone image is always a challenging job. In the pre halftone
era, when analog halftoning techniques were not known, non-halftone binary images were
preferred to reproduce contone images, where people used to apply their own hand drawn
techniques. In analog systems, particularly, in photomechanics, Eastman Kodak Company
introduced Toneline process in 1953; it is a photographic method for making line
reproduction from continuous tone original. This chapter describes a novel approach towards
non-halftone processes of converting a gray image into binary images using different

algorithm driven programs.
3.2 Thresholding as a Binarization Tool

To generate binary images which are of non-halftone types, the first method that come
into picture is converting the whole image into a binary one (0 or 1, black and white) by

thresholding. It is one of the basic methods used in digital halftoning also.
The thresholding can be expressed as follows:
Let “thv’ be the threshold value, ‘im’ be the image pixel value
Then if im<=thv, im=0 and im>thv, im=1

3.2.1 The Image Matrix for Threshold Operation

An original image matrix m (3 by 4) that is equivalent to a gray image is given by

m= [10 20 30 40
15 35 25 5
55 50 4 12]

25

md= [0.0392 0.0784 0.1176 0.1569
0.0588 0.1373 0.0980 0.0196
0.2157 0.1961 0.0157 0.0471]

md matrix is the double datatype equivalent of the above m matrix

3.2.2 Threshold Option: 1

al = mean (m, 1) = 26.6667 35.0000 19.6667 19.0000 (mean of the elements of three
rows)

a2 = mean (al, 2) = 25.0833

thv = 25.0833 (final threshold value) (0.0984 for double)

Resultant thresholded matrix is:

mth= [0 0 1 1
0100
1 1 0 0]

3.2.3 Threshold Option: 2

a3 = maximum element of m, i.e. 55
a4 = minimum element of m, i.e. 4
thv = mean of a3 and a4, i.e. 29.5

Resultant thresholded matrix is:

mth= [0 0 1 1
0 100
1 1 0 0]

27

3.2.4 Threshold Option: 3
50% threshold, i.e. thv = 128

Resultant thresholded matrix is:

mth= [0 0 0 0
0 000
0 0 0 0]

There will be minute difference in images with ‘uint8’ and ‘double’ datatype-based
threshold. Thresh function (Program 3.1) does ‘uint8’ data type-based thresholding

Matlab 6.1’s “graythresh’ function uses Otsu’s method [38] to give threshold level
0.1059 for the md matrix.

Threshold option 1 and option 2 are the new methods for threshold selection, proposed
by the author.

3.25 Threshold Operations: Input and Output Images
Various threshold operations are done on fig.3.T1 to
produce the following pictures (fig

Figure 3.T1: Sample Image

28

29

Figure 3.T2: (tho_ptl)

iure 3.T3: (thopt2)

Figure 3

.

T5: (thps128)

30

31

Figure 3.T6: (thdoubl_e;)

Fiure 3.7: (gthresh)

32

3.2.6 Discussions

The fig.3.T1 is the sample image. Filenames are given in parenthesis for the fig.3.T2-

fig.3.T7.

Table 3.1

Threshold Methods and Output

Options Figures
(Results)

Option 1 (Uint8 datatype) Fig.3.T2

Option 2 (Uint8 datatype) Fig.3.T3

Option 3 (Uint8 datatype) Fig.3.T4

Photoshop 7, threshold value 128 | Fig.3.T5

Double data (Matlab 6.1) type Fig.3.T6
based
Matlab 6.1’s gthresh function Fig.3.T7

This above table 3.1 shows results (Output figures) corresponding to different threshold
methods and options.

33

3.2.7 Program 3.1

The following program function (in matlab 6.1) does thresholding of gray images using
various options.

function thimg=Thresh(varargin)

%THRESH Thresholding of Gray Image

% thimg=Thresh(varargin)

% THRESH (function)

% This function does thresholding of gray image matrix

%

% INPUT ARGUMENTS:

% m=varargin{1}: gray image file or matrix or any matrix (m by n)
%

% opt=varargin{2}: options 1, 2 and 3

% 1 : Average of all the elements of the matrix

% 2 : Average of maximum and minimum values of the matrix

% 3 : Custom threshold value

% 4 : Otsu's method

%

% thmax=varargin{3}: maximum value after thresholding (thmax=<1)
% thmin=varargin{4}: minimum value after thresholding (0<=thmin)
% cthv=varargin{5}: custom threshold value (true for opt=3)

%

% OUTPUT ARGUMENT:

% thimg: thresholded image

%

% EXAMPLES:

% 1.

% thimg=Thresh('flgray.tif',1,1,0)

34

% 2.

% thimg=Thresh('flgray.tif',3,1,0,128)

% 3.

% m=imread('pout.tif')

% Thresh(m,1,1,0)

%

% Tested using Matlab 6.1.0.450 Release 12.1

m=varargin{1};
opt=varargin{2};
thmax=varargin{3};

thmin=varargin{4};

if ischar(m)
m=imread(m);
[r c dim]=size(m);
if dim==3

m=rgb2gray(m)

end

else
m=m;
[r c dim]=size(m);

end

thmax; % thmax=1

thmin; % thmin=0

% Option: 1

% 1. Average of all the elements of the matrix

if opt==1

av0=mean(m,1);
av=mean(av0,2);
thv=av; % threshold value

end

% Option: 2

% 2. Average of maximum and minimum values

if opt==2

% Maximum element
mx=max(max(m));

% Minimum element

mn=min(min(m));

mxmn=[mx mn];
av=mean(mxmn)
thv=av; % threshold value

end

% Option: 3

% 3. The custom threshold value for the operaton.

if opt==3
cthv=varargin{5};
thv=cthv;

end

% Option: 4
% 4. Otsu's threshold selection method
if opt==

thv=graythresh(m);

thv=thv*255;

end

35

% Threshold operation loop
for ri=1:r
for c1=1:c
if m(rl,cl)<=thv
thimg(rl,c1)=thmin;
else
thimg(rl,cl)=thmax;
end
end
end
thimg;

thimg=logical(thimg);

36

37

3.3 Non-Halftone Binary Image Transformations Methods
Different non-halftone binary image transformation methods are discussed in the following
sections.
Various novel non-halftone binary image transformation methods are
1. Row-wise and column-wise processing.
2. Blockwise processing.
3. Processing based on pixel location and path based on location.
3.1. Processing the image column-wise.
3.2. Processing the image row-wise.
3.3. Processing the image in arbitrary path.
3.4. Processing the image diagonally.
3.4.1 Starting point of the diagonal is Left Top or Right Bottom.
3.4.2 Starting point of the diagonal is Right Top or Left Bottom.
Subdivision of the methods 3.4.1 and 3.4.2 are given in Section 3.3.3.4.2
3.3.1. Row-wise and Column-wise Processing
3.3.1.1 Threshold Selection Method
For the above-mentioned method threshold selection is done by the following method.
1. Take all the arithmetic means of all the elements of the rows of the image matrix.
2. Then take arithmetic mean of all the above means, to get the threshold value.
3.3.1.2 Algorithm for Method
1. Select the group of pixels row wise or column wise.
2. Then thresholding is done on the above group of selected pixels.

Image processing direction for row wise processing is shown in the figure 3.RC1.

ClL C2 Cn
R1 ——F—>
R2 =3 >
Rm

Figure 3.RC1

Row-wise

Image processing direction for column wise processing is shown in the figure 3.RC2.

Cl C2 Cn
R1 4
R2
Rm '

Figure 3.RC2

Column-wise

3.3.1.3 Input and Output Images
The row-wise and column-wise processing of fig.3.RC3 generates the following pictures
(fig.3.RC4-fig.3.RC7) as output.

~

AL i P8,

. o _udaskiler

Figure 3.RC4: (einstein300_photoshop7thresh) Photoshop 7 Threshold value:128

39

fnl

SN g et

Figure 3.RC6 : (rowthresh) Row-wise p

rocessed image

40

41

B T 3 “
K) . \] .
- ry - B
. . " el
% . % B A - LN
- ’ 3 I ¢ :

Figure 3.RC7: (colthresh) Coumn-wise processed ima
3.3.1.4 Discussions

Fig.3.RC3 is the sample image. Filenames are given in parenthesis for the fig.3.RC3-
fig.3.RC7. After close observation it can be said that the fig.3.RC6 and fig.3.RC7 carries the
image details (especially coat portion of the image in Fig.3.RC3) that are absent in fig.
3.RC4, as fig.3.RC4 is a simple threshold image done through Photoshop 7 with a threshold
level 128. The fig.3.RC5 which is Photoshop 7 threshold with value 106 contains the image
details of the coat portion but not the face of the image. The face of the person in fig.3.RC7 is
more prominent and where as background of the image in fig.3.RC6 is little bit prominent

than in the fig.3.RC7.

3.3.1.5 Program 3.2

The following program function (in matlab 6.1) does row wise and column wise thresholding of
gray images and generate non-halftone binary images.

function RCThresh(im)

o/
(o]

% RCThresh(im)

% RCTHRESH (function)

% This function thresholds an image or matrix by selecting
% each row and column

%

% INPUT ARGUMENT:

% im: gray or rgb image file or matrix;

%

% EXAMPLE:

% RCThresh('pout.tif')

% and

% im=[..]

% RCThresh(im)

%

% Tested using Matlab 6.1.0.450 Release 12.1

if ischar(im)
im=imread(im);
[r c dim]=size(im)
if dim==3

im=rgb2gray(im);

end

else
im=im;

end

pix=numel(im);

% Selecting each row and thresholding
htr=[];
fori=1:r

im2=im(i,:);

ht=Thresh(im2,1,1,0);

htr=[htr; ht];

end

htr=logical(htr);

% Selecting each column and thresholding
hte=[];
fori=1:c
im2=im(:,i);
ht=Thresh(im2,1,1,0);
htc=[htc ht];

end

htc=logical(htc);

% OUTPUTS
imshow(htr)
title('Row threshold')

imwrite(htr,'rowthresh.tif')

figure,imshow(htc)
title('Column threshold')

imwrite(htc,'colthresh.tif")

43

3.3.2 Blockwise Processing

3.3.2.1 Direction of Processing

44

Block 1

Foomsmm-e- Horizontal movement

i ——— path for the first row of

P processing

_______ » Horizontal movement path
for the second row of
processing

Vertical movement path

<+—— Image

Figure 3.B1: Schematic Drawing for Blockwise Processing

In the above schematic drawing of an image (fig.3.B1), the initially the blocks used for

processing moves horizontally for the first row of processing and then goes to the second row

of processing till it sweeps the total image. As each of the block move the threshold is applied

block wise to the image to convert it to binary image.

Table 3.2

Function: blkthresh.m

Block size Resolution | Original Transformed | Resolution
(pixels x of original | image name image name (dpi)
pixels) (dpi)

2 X2 600 einstein600.tif | ebtl 300
4 x4 do do ebt2 do

8 x8 do do ebt3 do
16 x16 do do ebt4 do
32x32 do do ebt5 do
64x64 do do ebt6 do
128x128 do do ebt7 do
256x256 do do ebt8 do
512x512 do do ebt9 do

The above table 3.2 shows the block sizes used to process the original image Fig.3.B2

(einstein600.tif) with resolution 600 dpi to get the processed images like ebtl, ebt2 etc as

given the above table with resolution 300dpi.

3.3.2.2 Input and Output Images
The block-wise processing of fig.3.B2 generates the following pictures (fig.3.B3-fig.3.B12)

as output

Figure 3.B3: (ebtl)

45

46

e :
e e
TN R H
3 i oy L
i - by J T _"‘-\._]
Py : :
. 3 .
B o i
I . H
: 3 1]
T . = : % ;
: Eosigd
S i
: s Sh 3
2 ':... i o) 3 :
A B .
: 3) w
) b L] il % R
Y : i - 3)
ﬁ;‘ ;A L : 5
bt :
! k :
1 3 e : 1 >
Ry i . - :) '
s ey ! :
] " h : :
= 2 X o
. i] ; " 1m
i] x h G e
0 : ’{H : :
g 3
: et A v ol f 3 L
TR I
5 o0 L
z ¥ L
¥ 5,
4
7 1 I
r I i
o ; 3

; : s By)
e 3 i U35 5
Tk %
> T i L
e AL T ¢ LY e il i

b
ArTREr) ¥ o e ok B Tk

Flgure3 B4: (ebtlﬁzoom33 3 b|tmap) m.-..,__,

Y

.q“‘i
Agl u ‘(\

ah ’k

quure 3.B7: (ebt4)

Figure 3.B9: (ebt6)

48

49

ebt D) |

Figure 3.B10

(ebt8)

Figure 3.B11

50

Figure 3.B12: (ebt9)

3.3.2.3 Discussions

Fig.3.B2 (Einstein600.tif) is the original sample image. Filenames are given in
parenthesis for the fig.3.B2-fig.3.B12. As we increase the size of the block and process the
image, the image becomes prominent but block like structures appear. In the extreme cases
when block size is 256 x 256 or more the image details are also lost. Image fig.3.B4
(ebtl_zoom33p3_bitmap) is the image fig.3.B3 (ebtl) zoomed at 33.3% through Photoshop

7. It contains more details which are absent in the image fig.3.B3 (ebtl).

3.3.2.4 Program 3.3
The following program function (in matlab 6.1) does blockwise processing of gray images to
generate a binary image.

function BlkThresh(im,bs)

%BLKTHRESH : Block Thresholding

% BlkThresh(im,bs)

% BLKTHRESH (function)

%

% This function does dynamic (adaptive) thresholding through
% block wise processing of a gray image to generate a binary
% image.

%

% INPUT ARGUMENT:

% im: gray image file or matrix of m by n

% bs: one side of the square blocksize, in pixels

%

% EXAMPLE:

% BlkThresh('pout.tif',4)

%

% Tested using Matlab 6.1.0.450 Release 12.1

if ischar(im)
im=imread(im);
else
im;

end

[r c]=size(im);

tr=bs;
tc=tr; % tr and tc: row and column size of threshold matrix

tre=tr*tc;

% Converts mxn blocks into column with padding
imc=im2col(im,[tr tc],'distinct");

[r2 c2]=size(imc);

fun = @Thresh; % invoking the function Thresh.m

% uses: thresh(m,op,thmax,thmin)

imb=blkproc(imc,[trc 1],fun,1,1,0);

imu=unstkc(imb,r2,c2);
imi=col2im(imu,[tr tc],[r c],'distinct');

imbin=logical(imi);

% Outputs

out={'imshow' 'imwrite' imi imbin 'bit1.tif' 'bit2.tif' ...

'resolution' 72 'figure'};

i=1;
% For gray output of grayimage file
feval(out{i},out{i+2})

feval(out{i+1},out{i+2},out{i+4},out{i+6},out{i+7})

% For bitmap output of grayimage file
feval(out{i+8})
feval(out{i},out{i+3})

feval(out{i+1},out{i+3},out{i+5},out{i+6},out{i+7})

53

3.3.3 Processing Based on Pixel Location and Path Based on Location

In this section image processing is mainly based on pixel location or path based on pixel
locations [27]. Pixel location is defined in the Section 3.3.3.1.1. In different directions (e.g.

row-wise, diagonally etc) processing path is taken based on pixel locations.

3.3.3.1. Processing the Image Column-wise

Cl C2 Cn
R1 :
R2 '

Rmiy |v
Figure 3.C1

33311 Image Processing Path

Figure 3.C1 is a gray image matrix (m by n). Total number of pixels=m*n. Serial
numbers of the pixel locations are from 1 to m*n, that run column wise from top to bottom,
i.e. 1 (R1C1), 2 (R2C1) etc. The program processes the image by the pixels locations as
described. Advantage of this method is that single number is used to identify the pixel
location. One term is proposed, that is LISN (Location Identification by Single Number). Fig.

3.C1 shows image processing direction with arrows.

Table 3.3

Function: locthresh.m

Nop Original Original Transformed

(No of Pixels) | Resolution | Filename Filename
(dpi)

Thresh opt=1

10 600 einstein600.tif | ltein-1

50 do do Itein0

100 do do Iteinl

200 do do Itein2

400 do do Itein3

600 do do Iteind

750 do do Iteinb

1200 do do Itein6

1500 do do Itein7

1800 do do Itein8

2400 do do Itein9

10 72 gs3.tif locthresh_nop10

54

50 do do locthresh_nop50

100 do do locthresh_nop100

This above table 3.3 shows the transformed images corresponding to the number of pixels
used to process original images einstein600.tif and gs3.tif.

3.3.3.1.2 Output Images
The column-wise processing of fig.3.B2 generates the following pictures (fig.3.C2-fig.3.C12)
as outpu 3.C2.1, fig.3.C3.1 and fig.3.C4.1

e

ey

Figure 3.C2.1
(locthresh_nop10)

55

S

0 Sl
t: h 3 g

o

i' ‘Vu‘ H MR o g
Fia Shilre A ﬁ’w
PRI KGR W ity
i) ' |; ! ‘?‘1‘ ! % H

eyl
NI ™)

"o -t i
X ;,.mﬁ\
WCHiL

R
A " X

i m“’" R
A A

\\'A. “:'11‘5

.w l“&:“ t ¥

(LR

Figure 3.C3.1: (locthresh_nop50)

3.1

Figure 3.C4:

3 M €L D

Figure 3.C5: (|

B

Figure 3.C6: (I

tein?2)

‘m%

tein3

56

i |\
¥

‘ “wIH

il

quure 3.C8: (Iteinb)

57

58

Figure 3.C

59

"

11: (Itein

v
s |
O
-
i
e

60

3.3.3.1.3 Discussions

Filenames are given in parenthesis for the fig.3.C2-fig.3.C12, fig.3.C2.1, fig.3.C3.1 and

fig.3.C4.1.

Image details of the processed images are lost slowly as we increase the number of pixels
processed at a time, which is evident from fig.3.C3 (Itein0) to fig.3.C12 (Itein9). The image
Itein-1 looks like mildly engraved image. Visual artifacts are more prominent in the images
fig.3.C4 (Iteinl) and fig.3.C5 (ltein2) in comparison to other processed images. Fig.3.C2.1
(Locthresh_nop10), fig.3.C3.1 (locthresh_nop50), fig.3.C4.1 (locthresh_nop100) are
grayscale image ramp (Fig.3.A1.1) non-halftoned using this lockthresh.m function (Section

3.3.3.1.4, Program 3.4)

61

3.3.3.14 Program 3.4

The following program function (in Matlab 6.1) does pixel location-wise processing of gray images
to generate a binary image.

function LocThresh(filename, nop)

0,
(o]

0,
(o}

% LocThresh(filename,nop)

%

% LOCTHRESH (function) : LOCation THRESHold

%

% This function generates a thresholded image from
% gray or rgb image by selecting group of pixels

% locationwise.

%

% INPUT ARGUMENTS:

% filename: gray or rgb image

% nop :number of pixels thresholded at a time,

% (if nop is column size it is equivalent to rcthresh-column)
% except the last group, which may be less.

% EXAMPLES:

% 1.

% LocThresh('pout.tif',4)

% 2.

% LocThresh('flowers.tif',100)

%

% Tested using Matlab 6.1.0.450 Release 12.1

0,
(o]

0,
(o]

im=imread(filename);

[r c dim]=size(im);

if dim==3
im=rgb2gray(im);

end

pix=numel(im);

nop;

rm=rem(pix,nop);

ht2=[];
im3=[];
imend=[];
htend=[];

for i=0:nop:pix

if nop+i<=pix
im2=im(1+i:nop+i);
im3=[im3 im2];
ht=Thresh(im2,1,1,0);
ht2=[ht2 ht];

end

if rm~=0
imend=im(end-rm+1:end);
htend=Thresh(imend,1,1,0);
end
ht3=[ht2 htend];

im4=[im3 imend];

end

im4;
ht3;
ht4=reshape(ht3,r,c);

imshow(ht4)

imwrite(ht4,'locthresh.tif','resolution’',300)

0,

(o]

62

63

3.3.3.2 Processing the Image Row-wise

3.3.3.21 Image Processing Path
ClL C2 Cn

R1 —— —»

R2 =—=—F— >

Rm
Figure 3.R1

The above fig.3.R1 shows the direction of processing row-wise while selecting locations
column-wise using arrows.

Table 3.4
Input Image | nop Output Image

(no of pixels)
einstein600.tif | 100 LocThreshRow_einl
do 200 LocThreshRow_ein2
do 400 LocThreshRow_ein3
do 600 LocThreshRow_ein4
do 750 LocThreshRow_ein5
do 1200 LocThreshRow_ein6
do 1500 LocThreshRow_ein7
do 1800 LocThreshRow_ein8
do 2400 LocThreshRow_ein9
do 5000 LocThreshRow_einl0

This above table 3.4 shows the processed images corresponding to the number of pixels (nop)
used to process the input image einstein600.tif

3.3.3.22 Output Images
The row-wise processing of fig.3.B2 generates the following pictures (fig.3.R2-fig.3.R11) as
output similarly processing of fig.3.A1.1 generates fig.3.R2.1 and fig.3.R6.1.

-1

1ITE

TR

L L

64

Figure 3.R2.1:(Locthreshrow_nop100)

65

66

Figure 3.R6.1:(Locthreshrow_nop750)

W g i) o @

Dl

Fl_quré 3.R8: (ocTh

Figure 3.R9: chﬁreshRow ein8)

67

|gUfe 3.R11: (LocThresth e|n10)

68

69

3.3.3.2.3 Discussions

Filenames are given in parenthesis for the fig.3.R2-fig.3.R11, fig.3.R2.1 and fig.3.R6.1.
Image details are more as we process less numbers of pixels per group. Visual artifacts are
more in the processed images fig.3.R2 (LocThreshRow einl) to fig.3.R5
(LocThreshRow_eind), artifacts have disappeared from the process image fig.3.R6

(LocThreshRow_ein5) to fig. 3.R11 (LocThreshRow_ein10).

70

3.3.3.24 Program 3.5
The following program function (in matlab 6.1) does row-wise processing of gray images, while
selecting group of pixels locationwise (along the column) to generate a binary image.

function LocThreshRow(im,nop)

o/

(o]

% LocThreshRow(im,nop)

% LOCTHRESHROW (function) : LOCation THRESHold ROWwise
%

% This function generates a thresholded image from

% gray or rgb image by selecting group of pixels

% locationwise (along the column) but processing is done
% along the row.

%

% INPUT ARGUMENTS:

% im: gray or rgb image or matrix of m by n.

%

% nop :number of pixels thresholded at a time,

% (if nop is column size it is equivalent to rcthresh-column)
% except the last group, which may be less.

%

% EXAMPLES:

% 1.

% locthreshrow('pout.tif',4)

% 2.

% locthreshrow('flowers.tif',100)

%

% Tested using Matlab 6.1.0.450 Release 12.1

if ischar(im)

im=imread(im);

[r c dim]=size(im);

if dim==3
im=rgb2gray(im);

end

else
im=im;

end

im=im.';

pix=numel(im);

nop;

rm=rem(pix,nop);

nht2=[];
im3=[];
imend=[];
htend=[];

for i=0:nop:pix

if nop+i<=pix
im2=im(1+i:nop+i);
im3=[im3 im2];
nht=thresh(im2,1,1,0);
nht2=[nht2 nht];

end

71

if rm~=0
imend=im(end-rm+1:end);
htend=thresh(imend,1,1,0);
end
nht3=[nht2 htend];

im4=[im3 imend];

end

im4;

nht3;
nht4=unstkr(nht3,r,c);
nht4=logical(nht4);

imshow(nht4)

imwrite(nht4,'LocThreshRow.tif','Resolution’,72)

72

73

3.3.3.3 Processing the Image in Arbitrary Path

Here image is processed in arbitrary path as done through Matlab 6.1 functions Paththresh
(Section 3.3.3.3.3, Program 3.6) and Patpath (Section 3.3.3.3.4, Program 3.7)

Table 3.5

Function Original file | pm | Nop Output File name
(Number of pixels)

Paththresh.m & patpath.m

Threshold opt=1 einstein72.tif | rand | 10 pathth_einl

do do 50 pathth_ein2

do do 100 pathth_ein3

do do 500 pathth_ein4

do do 2000 pathth_ein5

do do 5000 pathth_ein6

do gs3.tif 10 gs3_pathth_10nop

do gs3.tif 100 gs3_pathth_100nop

This above table 3.5 shows output file name (output images) processed corresponding to different nop
(number of pixels) used to process the images from the original file einstein72.tif (fig.3.Al) and

gs3.tif (fig.3.Al.1) with paththresh function and threshold option=1.

3.3.3.3.1 Output Images
The processing of fig.3.Al in arbitrary path generates the following pictures (fig.3.Al-fig.3.A7)
as output similarly processing of fig.3.Al.1 generates fig.3.A2.1 and fig.3.A4.1

Figure 3.A2: (pathth_ein

1)

74

AT ey

Figure 3.Al.1 : Grayscale (gs3.tif)

Figure 3.A2.1 : (gs3_pathth_10nop)

75

Figure 3.A3: (pathth ein2)
B il
s 3

L"' < & -i*“

Figure 3.A4: (pathth_ein3) Figure 3.A4.1: (gs3_pathth_100nop)

Fai A C

Figure 3.A5: (pathth_ei

i Pl -
Figure 3.A6: (pathth_ei

~+ .

vy

ns)

n4)

76

77

3.3.3.3.2 Discussions

Filenames are given in parenthesis for the fig.3.Al-fig.3.A7, fig.3.Al1.1, fig.3.A2.1 and
fig.3.A4.1. Here a low resolution input image file fig.3.Al (einstein72.tif) is used with resolution 72
dpi to process the images titled from fig.3.A2 (pathth_einl) to fig.3.A7 (pathth_ein6). As image
processing time is very high, low resolution image is used. In the first processed image fig.3.A2
(pathth_einl) image details are more which is processed with nop (number of pixels) = 10. Image
details are slowly reduced from fig.3.A2 (pathth_einl) to fig.3.A7 (pathth_ein6) as we increase the

nop.

The fig. 3.A2.1 (gs3_pathth_10nop) is a grayscale (fig. 3.A1.1) processed with nop = 10 shows
more details in the middle tone region and fig. 3.A4.1 (gs3_pathth_100nop) is a grayscale processed

with nop = 100 shows less image details.

78

3.3.3.33 Program 3.6

The following program function (in matlab 6.1) selects sequentially groups of pixels of an
image matrix or matrix along the defined path and thresholds the selected group of pixels
and generate the final non halftone binary image.

function PathThresh(im,nop);

o/

(o]

% PathThresh(im,nop)

% PATHTHRESH (function) : PATHwise THRESHold

%

% This function selects sequentially groups of pixels of an

% image matrix or matrix along the diagonal spiral or zigzag
% path and thresholds the selected group of pixels and generate
% the final non halftone binary image.

%

% INPUT ARGUMENTS:

% im: gray image file

% nop: no of pixels

%

% finput: the input function

% : DiagVectorLTRB or DiagVectorRTLB

%

% EXAMPLE:

% PathThresh('flgray.tif',100)

%

% Tested using Matlab 6.1.0.450 Release 12.1

o/

(o]

im=imread(im);
[r c dim]=size(im)

pix=r*c

% Path functions
pm=rand(r,c);
path=PatPath(pm); % tn: path
tn=path;

%----

re=r*c
L=length(tn)

nop
rm=rem(rc,nop) % left over pixels
div=rc/nop

fl=floor(div)

[r2 c2 dim]=size(tn)

th2=[];

th4=[];

th5=[];

for i=0:nop:rc

if i+nop<=rc

tn2=tn(:,i+1:i+nop);

% thresholding the image pixels in the path

th=thresh(im(tn2),1,1,0);
th2=[th2 th];

end

79

if rm~=0

tn3=tn(:,end-rm+1:end);

% thresholding the image pixels in the path
th4=Thresh(im(tn3),1,1,0);

end

end

th5=[th2 th4];

LL=length(th5)

tn;

im(tn)=th5(:);

im=logical(im);

imshow(im)

imwrite(im,'pathth.tif')

o/

(o]

80

81

3.3.3.34 Program 3.7
The following program function (in matlab 6.1) generates path in location matrix from any
square or rectangular matrix (spiral etc) for image processing

function path=patpath(pm)

% This function generates path in location matrix from any
% square or rectangular matrix (spiral etc) for image
% processing

%

% INPUT ARGUMENT:

% pm: pattern matrix

%

% OUTPUT ARGUMENT:

% path: final pattern path in location matrix

%

% EXAMPLES:

% 1.

% pm=spiral(4);

% path=patpath(pm);

% 2.

% pm=rand(4,5);

% path=patpath(pm);

%

% Tested using Matlab 6.1.0.450 Release 12.1

[r c dim]=size(pm)

Lpm=numel(pm)

Ln=(];
pmv=[];

fori=1:Lpm

% Serial location numbers

Ln=[Ln; i];

% Pattern matrix values
pmv=[pmv; pm(i)];

end

ps=[pmv Ln];

% Arranging for final location path

pss=sortrows(ps);

% Extracting final location based path
path=pss(:,2);
path=path.';

% Uses:
Im(path)=1:r*c;

o/

/0

82

3.3.3.4 Processing the Image Diagonally
Image is processed in various diagonal directions [27]. Location mapping helps in this
regard. The idea of pixel location is described in the Section 3.3.3.1.1.

3.3.34.1 Location Mapping

1] 7 13 | 19 | 25 | 31

2| 8 14 | 20 | 26 | 32

31 9 15 | 21 | 27 | 33

4 | 10e—16-»22 | 28 | 34

S| 117 17 [\23 | 29 | 35

6|12 | 18 | 24 | 30 | 36

Figure 3.d1: 6x6 Location Matrix

-(r+1) r-1

1
=
A
v
—

r+1

v

+1

Figure 3.d2: Eight Directions within a Location Matrix

Figure 3.d2 shows graphical representation of eight directions within a location matrix as
shown in the figure 3.d1. This concept is used in the Matlab 6.1 function locmap (Section
3.3.3.4.26 Program 3.11)

84

3.3.34.2 Types of Diagonal Processing

1. Starting point of the diagonal is Left Top or Right Bottom (LTRB)

1.1.
1.2.
1.3.
1.4.
1.5.

1.6.

1.7.

1.8.

LTDAVFTC (Left top diagonal alternate vector spiral with first turn clockwise)
LTDAVFTAC (Left diagonal alternate vector spiral with first turn anti-clockwise)
LTDVLB2RT (Left top diagonal vectors, left bottom to right top)

LTDVRT2LB (Left top diagonal vectors, right top to left bottom)

RBDAVFTAC (Right bottom (starting point) diagonal alternate vector spiral with
first turn anti-clockwise. 5 is reverse of 1).

RBDAVFTC (Right bottom diagonal alternate vector spiral with first turn clockwise.
6 is reverse of 2)

RBDVRT2LB (Right bottom diagonal vectors, right top to left bottom. 7 is reverse of
3)

RBDVLB2RT (Right bottom diagonal vectors, left bottom to right top. 8 is reverse of
4)

2. Starting point of the diagonal is Right Top or Left Bottom (RTLB)

2.1.
2.2.

2.3.

2.4.

2.5.

2.6.

2.7.

2.8.

RTDAVFTC (Right top diagonal alternate vector spiral with first turn clockwise)
RTDAVFTAC (Right top diagonal alternate vector spiral with first turn
anticlockwise)

RTDVRB2LT (Right top diagonal vectors, right bottom to left top)

RTDVLT2RB (Right top diagonal vectors, left top to right bottom)

LBDAVFTAC (Left bottom (starting point) diagonal alternate vector spiral with first
turn anti-clockwise. 5 is reverse of 1).

LBDAVFTC (Left bottom diagonal alternate vector spiral with first turn clockwise.
6 is reverse of 2)

LBDVLT2RB (Left bottom diagonal vectors, left top to right bottom. 7 is reverse of
3).

LBDVRB2LT (Left bottom diagonal vectors, right bottom to left top. 8 is reverse of
4)

3.3.34.3 Algorithm for the above methods

1. Selecting the group of pixel diagonally
2. Then thresholding is done on the above group of pixels serially to obtain the final

binary image.

85

33344 Image Processing Directions and Matrices
1. LTRB Optl (LTDAVFTC)

Cl C2 Cn
Rl | —»
R2
Rm

Figure 3.1La: Image
processing direction

1. LTRB Optl (LTDAVFTC)

Figure 3.1Lb Figure 3.1Lc

112 |6 7115 | 16 | 28 116 31| 46| 61| 76| 91

315 |8 14| 17 | 27 | 29 2 | 17| 32| 47| 62| 77| 92

419 | 13| 18| 26 | 30 | 42 3| 18| 33| 48| 63| 78| 93
10 12| 19| 25| 31 | 41 | 43 4119| 34 49| 64| 79| 94
11| 20| 24| 32| 40 | 44 | 56 5120| 35| 50| 65| 80| 95
21| 23| 33| 39| 45 | 55 | 57 6 | 21| 36| 51| 66| 81| 96
22| 34| 38| 46| 54 | 58 | 70 71 22|37| 52| 67| 82| 97
35| 37| 47| 53|59 | 69 | 71 8| 23| 38| 53| 68| 83| 98
36| 48| 52| 60| 68 | 72 | 84 9 | 24| 39| 54| 69| 84| 99
49| 51| 61| 67| 73 | 83 | 85 10| 25| 40| 55| 70| 85| 100
50| 62| 66| 74| 82 | 86 | 95 11| 26| 41| 56| 71| 86| 101
63| 65| 75| 81| 87 | 94 | 96 12| 27| 42| 57| 72| 87| 102
64| 76| 80| 88| 93 | 97 | 102 13| 28| 43| 58| 73| 88103
77| 79| 89| 92| 98 | 101|103 14| 29| 44| 59| 74| 89 | 104
781 90| 91| 99100 | 104 | 105 15| 30| 45| 60| 75| 90 | 105

Fig.3.1La shows the image processing direction. Fig.3.1Lb is the matrix showing image
processing direction serially pixel wise. Figure 3.1Lc is the location matrix. Within the
location matrix serial numbers show the path of processing which is column-wise from top to
bottom.

2. LTRB Opt2 (LTDAVFTAC)

Cl C2 Cn
R1 | | >
R2
Rm

Figure 3.2La: Image
processing direction

2. LTRB Opt2 (LTDAVFTAC)

Figure 3.2Lb Figure 3.2Lc
1| 3| 410|111 21| 22 1]16|31)|46| 61| 76| 91
2| 5| 912,20 | 23 | 35 2 | 17| 32| 47| 62| 77| 92
6| 8| 13| 19|24 | 34 | 36 3| 18| 33| 48| 63| 78| 93
7| 14] 18| 25| 33 | 37 | 49 4 19|34 49| 64| 79| %4
15| 17| 26| 32| 38 | 48 | 50 5]120| 35| 50| 65| 80| 95
16| 27| 31| 39| 47 | 51 | 63 6 | 21| 36| 51| 66| 81| 96
28 30| 40| 46| 52 | 62 | 64 71 22|37| 52| 67| 82| 97
29| 41| 45| 53| 61 | 65 | 77 8| 23| 38| 53| 68| 83| 98
42| 44| 54| 60| 66 | 76 | 78 9 | 24| 39| 54| 69| 84| 99
43| 55| 59| 67| 75 | 79 | 90 10| 25| 40| 55| 70| 85| 100
56| 58| 68| 74| 80 | 89 | 91 11| 26| 41| 56| 71| 86| 101
571 69| 73| 81| 88 | 92 | 99 12| 27| 42| 57| 72| 87| 102
70| 72| 82| 87| 93 | 98 | 100 13| 28| 43| 58| 73| 88103
71| 83| 8| 94| 97 | 101 | 104 14| 29| 44| 59| 74| 89 | 104
84| 85| 95| 96 | 102 | 103 | 105 15| 30| 45| 60| 75| 90 | 105

86

Fig.3.2La shows the image processing direction. Fig.3.2Lb is the matrix showing image
processing direction serially pixel wise. Figure 3.2Lc is the location matrix. Within the
location matrix serial numbers show the path of processing which is column-wise from top to

bottom.

3. LTRB Opt3 (LTDVLB2RT)

Cl Cc2 Cn

Rl | | S~
R2 | ¥/

4

Rm
Figure 3.3La: Image
processing direction

3. LTRB Opt3 (LTDVLB2RT)

Figure 3.3Lb
1| 3| 6|10 15|21 | 28
2| 5| 914,20 | 27 | 35
4| 8| 13| 19| 26 | 34 | 42
71 12| 18| 25| 33 | 41 | 49
11| 17| 24| 32| 40 | 48 | 56
16| 23| 31| 39| 47 | 55 | 63
22| 30| 38| 46| 54 | 62 | 70
29| 37| 45| 53| 61 | 69 | 77
36| 44| 52| 60| 68 | 76 | 84
43| 51| 59| 67| 75 | 83 | 90
50| 58| 66| 74| 82 | 89 | 95
57| 65| 73| 81| 88 | 94 | 99
64| 72| 80| 87| 93 | 98 | 102
71| 79| 86| 92| 97 | 101|104
78| 85| 91| 96| 100 | 103 | 105

Figure 3.3Lc
1|16 31| 46| 61| 76| 91
2 | 17| 32| 47| 62| 77| 92
3| 18| 33| 48| 63| 78| 93
4 | 19| 34| 49| 64| 79| 94
5]120| 35| 50| 65| 80| 95
6 | 21| 36| 51| 66| 81| 96
71 22|37| 52| 67| 82| 97
8| 23| 38| 53| 68| 83| 98
9 | 24| 39| 54| 69| 84| 99
10| 25| 40| 55| 70| 85| 100
11| 26| 41| 56| 71| 86| 101
12| 27| 42| 57| 72| 87| 102
13| 28| 43| 58| 73| 88103
14| 29| 44| 59| 74| 89 | 104
15| 30| 45| 60| 75| 90 | 105

87

Fig.3.3La shows the image processing direction. Fig.3.3Lb is the matrix showing image
processing direction serially pixel wise. Figure 3.3Lc is the location matrix. Within the
location matrix serial numbers show the path of processing which is column-wise from top to

bottom.

4. LTRB Opt4 (LTDVRT2LB)

Cil C2 Cn
Rl | —p »
R2 | &~

Rm
Figure 3.4La: Image
processing direction

4. LTRB Opt4 (LTDVRT2LB)

Figure 3.4Lb

112 4| 7|11 16| 22

3| 5| 81217 | 23 | 29

6| 9| 13| 18|24 | 30 | 36
10| 14| 19| 25| 31 | 37 | 43
15| 20| 26| 32| 38 | 44 | 50
21| 27| 33| 39| 45 | 51 | 57
28| 34| 40| 46| 52 | 58 | 64
35| 41| 47| 53| 59 | 65 | 71
42| 48| 54| 60| 66 | 72 | 78
49| 55| 61| 67| 73 | 79 | 85
56| 62| 68| 74| 80 | 86 | 91
63| 69| 75| 81| 87 | 92 | 96
70| 76| 82| 88| 93 | 97 | 100
77| 83| 89| 94| 98 | 101|103
841 90| 95| 99102 | 104 | 105

Figure 3.4Lc
1|16 31| 46| 61| 76| 91
2 | 17| 32| 47| 62| 77| 92
3| 18| 33| 48| 63| 78| 93
4 | 19| 34| 49| 64| 79| 9%
5]120| 35| 50| 65| 80| 95
6 | 21| 36| 51| 66| 81| 96
71 22|37| 52| 67| 82| 97
8| 23| 38| 53| 68| 83| 98
9 | 24| 39| 54| 69| 84| 99
10| 25| 40| 55| 70| 85| 100
11| 26| 41| 56| 71| 86| 101
12| 27| 42| 57| 72| 87| 102
13| 28| 43| 58| 73| 88103
14| 29| 44| 59| 74| 89 | 104
15| 30| 45| 60| 75| 90 | 105

88

Fig.3.4La shows the image processing direction. Fig.3.4Lb is the matrix showing image
processing direction serially pixel wise. Figure 3.4Lc is the location matrix. Within the
location matrix serial numbers show the path of processing which is column-wise from top to

bottom.

5. LTRB opt5 (RBDAVFTAC)

R1
R2

Rm

Figure 3.5La: Image
processing direction

Cl Cc2

Cn

Famvg

5. LTRB opt5 (RBDAVFTAC)

Figure 3.5Lb

105|103 | 102 | 96| 95| 85| 84
104|101 | 97 | 94| 86| 83| 71
100 | 98 | 93 | 87| 82| 72| 70
99 | 92 | 88 | 81| 73| 69| 57
91 | 89 | 80 | 74| 68| 58| 56
90 | 79 | 75 | 67| 59| 55| 43
78 | 76 | 66 | 60 | 54| 44| 42
77 | 65 | 61 | 53| 45| 41| 29
64 | 62 | 52 | 46| 40| 30| 28
63 | 51 | 47 | 39| 31| 27| 16
50 | 48 | 38 | 32| 26| 17| 15
49 | 37 | 33 | 25| 18| 14| 7
36 | 34| 24| 19|13| 8| 6
351232012 9| 5] 2
22 (211110 4] 3| 1

Figure 3.5Lc
1]16|31)|46| 61| 76| 91
2 | 17| 32| 47| 62| 77| 92
3] 18| 33| 48| 63| 78| 93
4 /19| 34| 49| 64| 79| 94
5]120| 35| 50| 65| 80| 95
6 | 21| 36| 51| 66| 81| 96
7| 22| 37| 52| 67| 82| 97
8| 23| 38| 53| 68| 83| 98
9| 24| 39| 54| 69| 84| 99
10| 25| 40| 55| 70| 85| 100
11| 26| 41| 56| 71| 86| 101
12| 27| 42| 57| 72| 87| 102
13| 28| 43| 58| 73| 88| 103
14| 29| 44| 59| 74| 89 | 104
15| 30| 45| 60| 75| 90 | 105

89

Fig.3.5La shows the image processing direction. Fig.3.5Lb is the matrix showing image
processing direction serially pixel wise. Figure 3.5Lc is the location matrix. Within the
location matrix serial numbers show the path of processing which is column-wise from top to
bottom.

90

6. LTRB opt6 (RBDAVFTC)

Cl1 Cc2 Cn
R1
R2
A
v
Rm x| £

Figure 3.6La: Image
processing direction

6. LTRB opt6 (RBDAVFTC)

Figure 3.6Lb Figure 3.6Lc

105|104 {100 | 99| 91| 90| 78 1]16| 31| 46| 61| 76| 91

103 1101 | 98 | 92| 89| 79| 77 2 | 17| 32| 47| 62| 77| 92

102 | 97 | 93 | 88| 80| 76 | 64 3| 18| 33| 48| 63| 78| 93

96 | 94 | 87 | 81| 75| 65| 63 4 11934 49| 64| 79| 94

95 | 86 | 82 | 74| 66| 62| 50 5]120| 35| 50| 65| 80| 95

85|83 | 73 |67| 615149 6 | 21| 36| 51| 66| 81| 96

84 | 72 | 68 | 60| 52| 48| 36 71 22| 37| 52| 67| 82| 97

71|69 | 59 | 53| 47| 37| 35 8 | 23| 38| 53| 68| 83| 98

70 | 58 | 54 | 46| 38| 34| 22 924|139 54|69 84| 99

57 | 55 | 45 | 39| 33| 23| 21 10| 25| 40| 55| 70 | 85| 100
56 | 44 | 40 | 32| 24| 20| 11 11| 26| 41| 56| 71| 86| 101
43 | 41 | 31 | 25| 19| 12| 10 12| 27| 42| 57| 72| 87| 102
42 | 30 | 26 | 18| 13| 9 | 4 13| 28| 43| 58| 73| 838|103
29 (27|17 | 14| 8| 5| 3 14| 29| 44| 59| 74| 89 | 104
28|16 |15 | 7| 6| 2| 1 15| 30| 45| 60| 75| 90 | 105

Fig.3.6La shows the image processing direction. Fig.3.6Lb is the matrix showing image
processing direction serially pixel wise. Figure 3.6Lc is the location matrix. Within the
location matrix serial numbers show the path of processing which is column-wise from top to
bottom.

91

7. LTRB opt7 (RBDVRT2LB)

Cl1 Cc2 Cn
R1
R2
A

Figure 3.7La: Image
processing direction

7. LTRB opt7 (RBDVRT2LB)

Figure 3.7Lb Figure 3.7Lc

105|103 {100 | 96| 91| 85| 78 1]16| 31| 46| 61| 76| 91
104 1101 | 97 | 92| 86| 79| 71 2 | 17| 32| 47| 62| 77| 92
102 | 98 | 93 | 87| 80| 72| 64 3| 18| 33| 48| 63| 78| 93
99 | 94 | 88 | 81| 73| 65| 57 4 | 19| 34| 49| 64| 79| 94
95 |1 89 | 82 | 74| 66| 58| 50 5]120| 35| 50| 65| 80| 95
90 | 83 | 75 | 67| 59| 51| 43 6 | 21| 36| 51| 66| 81| 96
84 | 76 | 68 | 60| 52| 44 | 36 71 22| 37| 52| 67| 82| 97
77 | 69 | 61 | 53| 45| 37| 29 8 | 23| 38| 53| 68| 83| 98
70 | 62 | 54 | 46| 38| 30| 22 924|139 54|69 84| 99
63 | 55 | 47 | 39| 31| 23| 16 10| 25| 40| 55| 70 | 85| 100
56 | 48 | 40 | 32| 24| 17| 11 11| 26| 41| 56| 71| 86| 101
49 | 41 | 33 | 25| 18| 12| 7 12| 27| 42| 57| 72| 87| 102
42 | 34 | 26 | 19| 13| 8 | 4 13| 28| 43| 58| 73| 838|103
35 (2712014 9| 5| 2 14| 29| 44| 59| 74| 89 | 104
28 |21 | 15|10 6| 3| 1 15| 30| 45| 60| 75| 90 | 105

Fig.3.7La shows the image processing direction. Fig.3.7Lb is the matrix showing image
processing direction serially pixel wise. Figure 3.7Lc is the location matrix. Within the
location matrix serial numbers show the path of processing which is column-wise from top to
bottom.

92

8. LTRB opt8 (RBDVLB2RT)

Cl C2 Cn
R1
R2
ad
A
Rm & &

Figure 3.8La: Image
processing direction

8. LTRB opt8 (RBDVLB2RT)

Figure 3.8Lb Figure 3.8Lc

105|104 | 102 | 99| 95| 90 | 84 1|16| 31| 46| 61| 76| 91

103|101 | 98 | 94| 89| 83| 77 2 | 17| 32| 47| 62| 77| 92

100 | 97 | 93 | 88| 82| 76| 70 3] 18| 33| 48| 63| 78| 93

9 | 92 | 87 | 81| 75| 69| 63 41 19| 34| 49| 64| 79| 94

91 | 86 | 80 | 74| 68| 62| 56 5]120| 35| 50| 65| 80| 95

8 | 79 | 73 | 67| 61| 55| 49 6 | 21| 36| 51| 66| 81| 96

78 | 72 | 66 | 60| 54| 48| 42 7| 22| 37| 52| 67| 82| 97

71 | 65 | 59 | 53| 47| 41| 35 8| 23| 38| 53| 68| 83| 98

64 | 58 | 52 | 46| 40| 34| 28 9| 24| 39| 54| 69| 84| 99

57 | 51 | 45| 39| 33| 27| 21 10| 25| 40| 55| 70| 85| 100
50 | 44 | 38 | 32| 26| 20| 15 11| 26| 41| 56| 71| 86| 101
43 | 37 | 31 | 25| 19| 14| 10 12| 27| 42| 57| 72| 87| 102
36 | 30 | 24 | 18| 13| 9| 6 13| 28| 43| 58| 73| 88| 103
29 (23|17 12| 8| 5| 3 14| 29| 44| 59| 74| 89 | 104
2 (16|11 7|4 2|1 15| 30| 45| 60| 75| 90 | 105

Fig.3.8La shows the image processing direction. Fig.3.8Lb is the matrix showing image
processing direction serially pixel wise. Figure 3.8Lc is the location matrix. Within the
location matrix serial numbers show the path of processing which is column-wise from top to
bottom.

1. RTLB optl (RTDAVFTC)

R1
R2

Rm

Figure 3.1Ra: Image
processing direction

Cl C2

Cn

<=

N

A

1. RTLB optl (RTDAVFTC)

Figure 3.1Rb

22 121111 10| 4| 3| 1

351232012 9| 5| 2

36 | 34|24 |19| 13| 8| 6

49 | 37 | 33 | 25| 18| 14| 7

50 | 48 | 38 | 32| 26| 17| 15
63 | 51 | 47 | 39| 31| 27| 16
64 | 62 | 52 | 46| 40| 30| 28
77 | 65 | 61 | 53| 45| 41| 29
78 | 76 | 66 | 60 | 54 | 44| 42
90 | 79 | 75 | 67| 59| 55| 43
91 | 89 | 80 | 74| 68| 58| 56
99 | 92 | 88 | 81| 73| 69| 57
100 | 98 | 93 | 87| 82| 72| 70
104|101 | 97 | 94| 86| 83| 71
105|103 102 | 96| 95| 85| 84

Figure 3.1Rc
1]16|31)|46| 61| 76| 91
2 | 17| 32| 47| 62| 77| 92
3| 18| 33| 48| 63| 78| 93
4 1 19| 34| 49| 64| 79| 94
5] 20| 35| 50| 65| 80| 95
6 | 21| 36| 51| 66| 81| 96
7| 22| 37|52| 67| 82| 97
8 | 23| 38| 53| 68| 83| 98
9| 24| 39| 54| 69| 84| 99
10| 25| 40| 55| 70| 85| 100
11| 26| 41| 56| 71| 86| 101
12| 27| 42| 57| 72| 87| 102
13| 28| 43| 58| 73| 88| 103
14| 29| 44| 59| 74| 89 | 104
15| 30| 45| 60| 75| 90 | 105

93

Fig.3.1Ra shows the image processing direction. Fig.3.1Rb is the matrix showing image
processing direction serially pixel wise. Figure 3.1Rc is the location matrix. Within the
location matrix serial numbers show the path of processing which is column-wise from top to
bottom.

2. RTLB opt2 (RTDAVFTAC)

R1
R2

Rm

Cl Cc2

Cn

w <

%

¥

Figure 3.2Ra: Image
processing direction

2. RTLB opt2 (RTDAVFTAC)

Figure 3.2Rb

28 |16 | 15| 7| 6| 2 1
29 | 27 | 17 | 14| 8| 5| 3
42 | 30 | 26 | 18| 13| 9 | 4
43 | 41 | 31 | 25| 19| 12| 10
56 | 44 | 40 | 32| 24| 20| 11
57 | 55| 45 | 39| 33| 23| 21
70 | 58 | 54 | 46| 38| 34| 22
71 169 | 59 | 53| 47| 37| 35
84 | 72 | 68 | 60| 52| 48| 36
85 | 83| 73| 67| 61| 51| 49
95 | 86 | 82 | 74| 66| 62| 50
96 | 94 | 87 | 81| 75| 65| 63
102 | 97 | 93 | 88| 80| 76| 64
103|101 | 98 | 92| 89| 79| 77
105|104 (100 | 99| 91| 90| 78

Figure 3.2Rc
1]16|31)|46| 61| 76| 91
2 | 17| 32| 47| 62| 77| 92
3| 18| 33| 48| 63| 78| 93
4 1 19| 34| 49| 64| 79| 94
5] 20| 35| 50| 65| 80| 95
6 | 21| 36| 51| 66| 81| 96
7| 22| 37|52 67| 82| 97
8| 23| 38| 53| 68| 83| 98
9| 24| 39| 54| 69| 84| 99
10| 25| 40| 55| 70| 85| 100
11| 26| 41| 56| 71| 86| 101
12| 27| 42| 57| 72| 87| 102
13| 28| 43| 58| 73| 88| 103
14| 29| 44| 59| 74| 89 | 104
15| 30| 45| 60| 75| 90 | 105

94

Fig.3.2Ra shows the image processing direction. Fig.3.2Rb is the matrix showing image
processing direction serially pixel wise. Figure 3.2Rc is the location matrix. Within the
location matrix serial numbers show the path of processing which is column-wise from top to
bottom.

95

3. RTLB opt3 (RTDVRB2LT)

Cl Cc2 Cn

R1 L. UANEE
R2 A Y

"

Rm
Figure 3.3Ra: Image
processing direction

3. RTLB opt3 (RTDVRB2LT)

Figure 3.3Rb Figure 3.3Rc

28 | 21| 15|10 6| 3| 1 1|16 31| 46| 61| 76| 91
3512712014, 9| 5| 2 2 | 17| 32| 47| 62| 77| 92
42 | 34 | 26 | 19| 13| 8 | 4 3| 18| 33| 48| 63| 78| 93
49 | 41 | 33 | 25| 18| 12| 7 4 119| 34| 49| 64| 79| 94
56 | 48 | 40 | 32| 24| 17| 11 51 20| 35| 50| 65| 80| 95
63 | 55 | 47 | 39| 31| 23| 16 6 | 21| 36| 51| 66| 81| 96
70 | 62 | 54 | 46| 38| 30| 22 71 22|37| 52| 67| 82| 97
77 | 69 | 61 | 53| 45| 37| 29 8| 23| 38| 53| 68| 83| 98
84 | 76 | 68 | 60| 52| 44| 36 9 | 24| 39| 54| 69| 84| 99
90 | 83 | 75 | 67| 59| 51| 43 10| 25| 40| 55| 70 | 85| 100
95 |89 | 82 | 74| 66| 58| 50 11| 26| 41| 56| 71| 86| 101
99 | 94 | 88 | 81| 73| 65| 57 12| 27| 42| 57| 72| 87| 102
102 | 98 | 93 | 87| 80| 72| 64 13| 28| 43| 58| 73| 88103
1041101 | 97 | 92| 86| 79| 71 14| 29| 44| 59| 74| 89 | 104
105|103 100 | 96| 91| 85| 78 15| 30| 45| 60| 75| 90 | 105

Fig.3.3Ra shows the image processing direction. Fig.3.3Rb is the matrix showing image
processing direction serially pixel wise. Figure 3.3Rc is the location matrix. Within the
location matrix serial numbers show the path of processing which is column-wise from top to
bottom.

4. RTLB opt4 (RTDVLT2RB)

Cl C2 Cn
R1 A AN
R2 r
"N
Rm

Figure 3.4Ra: Image
processing direction

4. RTLB opt4 (RTDVLT2RB)

Figure 3.4Rb

22 16 |11 | 7| 4| 2 1
29 | 23|17 | 12| 8| 5| 3
36 | 30 | 24 | 18| 13| 9| 6
43 | 37 | 31 | 25| 19| 14| 10
50 | 44 | 38 | 32| 26| 20| 15
57 | 51 | 45 | 39| 33| 27| 21
64 | 58 | 52 | 46| 40| 34| 28
71| 65 | 59 | 53| 47| 41| 35
78 | 72 | 66 | 60| 54| 48| 42
8 | 79 | 73 | 67| 61| 55| 49
91 | 8 | 80 | 74| 68| 62| 56
96 | 92 | 87 | 81| 75| 69| 63
100 | 97 | 93 | 88| 82| 76| 70
103101 | 98 | 94| 89| 83| 77
105|104 | 102 | 99| 95| 90 | 84

Figure 3.4Rc
1|16 31| 46| 61| 76| 91
2 | 17| 32| 47| 62| 77| 92
3| 18| 33| 48| 63| 78| 93
4 | 19| 34| 49| 64| 79| 94
51 20| 35| 50| 65| 80| 95
6 | 21| 36| 51| 66| 81| 96
71 22|37| 52| 67| 82| 97
8| 23| 38| 53| 68| 83| 98
9 | 24| 39| 54| 69| 84| 99
10| 25| 40| 55| 70 | 85| 100
11| 26| 41| 56| 71| 86| 101
12| 27| 42| 57| 72| 87| 102
13| 28| 43| 58| 73| 88103
14| 29| 44| 59| 74| 89 | 104
15| 30| 45| 60| 75| 90 | 105

96

Fig.3.4Ra shows the image processing direction. Fig.3.4Rb is the matrix showing image
processing direction serially pixel wise. Figure 3.4Rc is the location matrix. Within the
location matrix serial numbers show the path of processing which is column-wise from top to

bottom.

5. RTLB opt5 (LBDAVFTAC)

R1
R2

Rm

C1

C2

Cn

A

L

>

A

Figure 3.5Ra: Image

processing direction

5. RTLB opt5 (LBDAVFTAC)

Figure 3.5Rb
781 90| 91| 99100 | 104 | 105
771 79| 89| 92| 98 | 101|103
64| 76| 80| 88| 93 | 97 | 102
63| 65| 75| 81| 87 | 94 | 96
50| 62| 66| 74| 82 | 86 | 95
49| 51| 61| 67| 73 | 83 | 85
36| 48| 52| 60| 68 | 72 | 84
35| 37| 47| 53] 59 | 69 | 71
22| 34| 38| 46| 54 | 58 | 70
21| 23| 33| 39| 45 | 55 | 57
111 20| 24| 32| 40 | 44 | 56
10 12| 19| 25| 31 | 41 | 43
41 9| 13| 18| 26 | 30 | 42
3| 5| 8| 14|17 | 27 | 29
112 6| 7|15 16 | 28

Figure 3.5Rc
1|16 31| 46| 61| 76| 91
2 | 17| 32| 47| 62| 77| 92
3| 18| 33| 48| 63| 78| 93
4 | 19| 34| 49| 64| 79| 9%
5]120| 35| 50| 65| 80| 95
6 | 21| 36| 51| 66| 81| 96
71 22|37| 52| 67| 82| 97
8| 23| 38| 53| 68| 83| 98
9 | 24| 39| 54| 69| 84| 99
10| 25| 40| 55| 70| 85| 100
11| 26| 41| 56| 71| 86| 101
12| 27| 42| 57| 72| 87| 102
13| 28| 43| 58| 73| 88103
14| 29| 44| 59| 74| 89 | 104
15| 30| 45| 60| 75| 90 | 105

97

Fig.3.5Ra shows the image processing direction. Fig.3.5Rb is the matrix showing image
processing direction serially pixel wise. Figure 3.5Rc is the location matrix. Within the
location matrix serial numbers show the path of processing which is column-wise from top to
bottom.

6. RTLB opt6 (LBDAVFTC)

R1
R2

Rm

C1

C2

Cn

™~

A~

~SA_

~

Figure 3.6Ra: Image

processing direction

6. RTLB opt6 (LBDAVFTC)

Figure 3.6Rb
84| 85| 95| 96 | 102 | 103 | 105
71| 83| 86| 94| 97 | 101|104
70| 72| 82| 87| 93 | 98 | 100
571 69| 73| 81| 88 | 92 | 99
56| 58| 68| 74| 80 | 89 | 91
43| 55| 59| 67| 75 | 79 | 90
42| 44| 54| 60| 66 | 76 | 78
29| 41| 45| 53| 61 | 65 | 77
28 30| 40| 46| 52 | 62 | 64
16| 27| 31| 39| 47 | 51 | 63
15| 17| 26| 32| 38 | 48 | 50
7| 14| 18| 25| 33 | 37 | 49
6| 8| 13| 19|24 | 34 | 36
2| 5] 9|12} 20| 23| 35
1| 3| 410|111 21| 22

Figure 3.6Rc
1|16 31| 46| 61| 76| 91
2 | 17| 32| 47| 62| 77| 92
3| 18| 33| 48| 63| 78| 93
4 | 19| 34| 49| 64| 79| 9%
5]120| 35| 50| 65| 80| 95
6 | 21| 36| 51| 66| 81| 96
71 22|37| 52| 67| 82| 97
8| 23| 38| 53| 68| 83| 98
9 | 24| 39| 54| 69| 84| 99
10| 25| 40| 55| 70| 85| 100
11| 26| 41| 56| 71| 86| 101
12| 27| 42| 57| 72| 87| 102
13| 28| 43| 58| 73| 88103
14| 29| 44| 59| 74| 89 | 104
15| 30| 45| 60| 75| 90 | 105

98

Fig.3.6Ra shows the image processing direction. Fig.3.6Rb is the matrix showing image
processing direction serially pixel wise. Figure 3.6Rc is the location matrix. Within the
location matrix serial numbers show the path of processing which is column-wise from top to
bottom.

7. RTLB opt7 (LBDVLT2RB)

R1
R2

Rm

C1

C2

Cn

N

™~

M

Figure 3.7Ra: Image

processing direction

7. RTLB opt7 (LBDVLT2RB)

Figure 3.7Rb
78| 85| 91| 96 | 100 | 103 | 105
711 79| 86| 92| 97 | 101|104
64| 72| 80| 87| 93 | 98 | 102
57| 65| 73| 81| 88 | 94 | 99
50| 58| 66| 74| 82 | 89 | 95
43| 51| 59| 67| 75 | 83 | 90
36| 44| 52| 60| 68 | 76 | 84
29| 37| 45| 53| 61 | 69 | 77
22| 30| 38| 46| 54 | 62 | 70
16| 23| 31| 39| 47 | 55 | 63
11| 17| 24| 32| 40 | 48 | 56
7 12| 18| 25| 33 | 41 | 49
4| 8| 13| 19| 26 | 34 | 42
2| 5] 91420 | 27| 35
1| 3| 6|10 15|21 | 28

Figure 3.7Rc
1|16 31| 46| 61| 76| 91
2 | 17| 32| 47| 62| 77| 92
3| 18| 33| 48| 63| 78| 93
4 | 19| 34| 49| 64| 79| 9%
5]120| 35| 50| 65| 80| 95
6 | 21| 36| 51| 66| 81| 96
71 22|37| 52| 67| 82| 97
8| 23| 38| 53| 68| 83| 98
9 | 24| 39| 54| 69| 84| 99
10| 25| 40| 55| 70| 85| 100
11| 26| 41| 56| 71| 86| 101
12| 27| 42| 57| 72| 87| 102
13| 28| 43| 58| 73| 88103
14| 29| 44| 59| 74| 89 | 104
15| 30| 45| 60| 75| 90 | 105

99

Fig.3.7Ra shows the image processing direction. Fig.3.7Rb is the matrix showing image
processing direction serially pixel wise. Figure 3.7Rc is the location matrix. Within the
location matrix serial numbers show the path of processing which is column-wise from top to
bottom.

8. RTLB opt8 (LBDVRB2LT)

R1
R2

Rm

C1

C2

Cn

.

haN

>

A

Figure 3.8Ra: Image

processing direction

8. RTLB opt8 (LBDVRB2LT)

Figure 3.8Rb
841 90| 95| 99102 | 104 | 105
77| 83| 89| 94| 98 | 101|103
70| 76| 82| 88| 93 | 97 | 100
63| 69| 75| 81| 87 | 92 | 96
56| 62| 68| 74| 80 | 86 | 91
49| 55| 61| 67| 73 | 79 | 85
42| 48| 54| 60| 66 | 72 | 78
35| 41| 47| 53| 59 | 65 | 71
28| 34| 40| 46| 52 | 58 | 64
21| 27| 33| 39| 45 | 51 | 57
151 20| 26| 32| 38 | 44 | 50
10| 14| 19| 25| 31 | 37 | 43
6| 9| 13| 18|24 | 30 | 36
3| 5] 812|177 | 23| 29
112 4| 7|11 16| 22

Figure 3.8Rc
1|16 31| 46| 61| 76| 91
2 | 17| 32| 47| 62| 77| 92
3| 18| 33| 48| 63| 78| 93
4 | 19| 34| 49| 64| 79| 9%
5]120| 35| 50| 65| 80| 95
6 | 21| 36| 51| 66| 81| 96
71 22|37| 52| 67| 82| 97
8| 23| 38| 53| 68| 83| 98
9 | 24| 39| 54| 69| 84| 99
10| 25| 40| 55| 70| 85| 100
11| 26| 41| 56| 71| 86| 101
12| 27| 42| 57| 72| 87| 102
13| 28| 43| 58| 73| 88103
14| 29| 44| 59| 74| 89 | 104
15| 30| 45| 60| 75| 90 | 105

100

Fig.3.8Ra shows the image processing direction. Fig.3.8Rb is the matrix showing image
processing direction serially pixel wise. Figure 3.8Rc is the location matrix. Within the
location matrix serial numbers show the path of processing which is column-wise from top to
bottom.

101

3.3.345 Image Processing Techniques

In the following figures (fig.3.1, fig.3.2, fig.3.5 and fig.3.6) image is splitted into two halves
having pixel location numbers for further processing through Matlab 6.1 functions
DiagvectorLTRB and DiagVector RTLB. Fig 3.3 and fig.3.4 show two halves of a real
image.

16 31 46 61 76 091
17 32 47 62 77 92
18 33 48 63 78 93

19 34 49 64 79 94 ‘//////////Leﬂ'ropIﬁMf(LTFD
20 35 50 65 80 95

21 36 51 66 81 96
22 37 52 67 82 97
23 38 53 68 83 98
24 39 54 69 84
10 25 40 55 70
11 26 41 56

12 27 42
28

w b

© 00 N o U1 b

101
87 102

73 88 103 /
74 89 104

75 90 105

Right Bottom Half (RBH)

Figure 3.1: LTRB

Fig.3.1 shows Left Top Half (LTH) and Right Bottom Half (RBH) of a portrait image with
pixel location numbers for processing through the Matlab 6.1 function DiagVectorLTRB
(Section 3.3.3.4.24 Program 3.9).

Left Top Half (LTH) Right Bottom Half (RBH)
/ /
8 15 22 29 36 57 64 71 78 85 92 99
9 16 23 30 51 58 65 72 79 86 93 100
24 45 52 59 66 73 80 87 94 101
46 53 60 67 74 81 83 95 102
47 54 61 68 75 82 89 96 103
48 55 62 69 76 83 90 97 104
49 56 63 70 77 84 91 98 105

Figure 3.2: LTRB

Fig.3.2 shows Left Top Half (LTH) and Right Bottom Half (RBH) of a landscape image
with pixel location numbers for processing through the Matlab 6.1 function
DiagVectorLTRB (Section 3.3.3.4.24 Program 3.9)

<«—— Left Top Half
(LTH)

Fig.3.3 and fig.3.4 shows
Left Top Half (LTH) and
Right Bottom Half (RBH)
of a real portrait image.

Figure 3.3

102

103

Right Bottom Half

/ (RBH)

Figure 3.4

16 31 46 61 76 091 Right Top Half (RTH)
17 32 47 62 77 9

18 33 48 63 78 93
19 34 49 64 79 94
20 35 50 65 80 95

21 36 51 66 81 9% Fig.3.5 shows Right Top Half (RTH)
22 37 52 67 82 97 and Left Bottom Half (LBH) of a
23 38 53 63 83 98 portrait image with pixel location
numbers for processing through the
Matlab6.1 function DiagVectorRTLB
(Section 3.3.3.4.25 Program 3.10)

o N oo o A oW N B

Left Bottom Half (LBH)

/

Figure 3.5: RTLB

Left Bottom Half (LBH)

Right Top Half (RTH)

8 15 22 29
9 16 23 30
10 17 24 31
11 18 25 32
12 19 26 33
13 20 27 34
7 14 21 28 35

o 01 A W DN

36 43
37 44 51
38 45 52
39 46 53
40 47 54
41 48 55
42 49 56

71 78 85 92
72 79 86 93
80 87 94
88 95
96

59
60 67
61 68 75
62 69 76 83
63 70 77 84

99
100
101
102
103
104

Figure 3.6: RTLB

Fig.3.6 shows Right Top Half (RTH) and Left Bottom Half (LBH) of a
landscape image with pixel location numbers for processing through the

Matlab 6.1 function DiagVectorRTLB (Section 3.3.3.4.25 Program 3.10)

1 2 6 7 14
(1) [20] |(5) [150]|(9) ([50] | (13) [12] | (17) [39]
3 5 8 13 15
(2) [100] | (6) [28] |(10) [120] |(14) [S5] |(18) [76]
4 9 12 16 19
(3) [40] |(v) [69] |(11) [200] | (15) [88] | (19) [46]
10 11 17 18 20
(4) [25] |(8) [86] |(12) [180] |(16) [92] | (20) [130]

Figure 3.7: Three Matrices for Image Processing

104

In fig.3.7 open numerals shows the matrix having image processing direction serially

pixel wise for the option LTDAVFTC (Left Top Diagonal Alternate Vector spiral with First
Turn Clockwise) of the Matlab 6.1 function DiagVectorLTRB (Section 3.3.3.4.24 Program

3.9)

In fig.3.7 numerals in the round brackets show the location matrix. Within the location

matrix serial numbers show the path of processing which is column-wise from top to bottom.

In fig.3.7 numerals in the square brackets shows pixel intensity values of a gray image.

3.3.3.4.6 Image Processing Tables

105

These following tables 3.6 and table 3.7 show output filenames corresponding to various nop

(number of pixels), options, input filename and input functions.

Table 3.6
Diagvector Opt 1 Opt2 |Opt3 | Opt4
Function: Nop | Result Result | Result | Result
DiagVectorLTRB
einstein600 50 einllL1 einlL2 | einlL3 | einllL4
100 ein2L1 ein2L2 | ein2L3 | ein2L4
500 ein3L1 ein3L2 | ein3L3 | ein3L4
1000 | ein4lL1 ein4L2 | eind4lL3 | eindL4
2000 | ein5L1 ein5L2 | ein5L3 | ein5L4
5000 | ein6L1 ein6L2 | ein6L3 | ein6L4
10000 | ein7L1 ein7L2 | ein7L3 | ein7L4
20000 | ein8L1 ein8L2 | ein8L3 | ein8L4
Opt 5 Opt6 |[Opt7 | Opt8
Nop | Result Result | Result | Result
50 einlL5 einlL6 | einlL7 | einllL8
100 ein2L5 ein2L6 | ein2L7 | ein2L8
500 ein3L5 ein3L6 | ein3L7 | ein3L8
1000 | ein4lL5 eindL6 | ein4lL7 | ein4L8
2000 | ein5L5 ein5L6 | ein5L7 | ein5L8
5000 | ein6L5 ein6L6 | ein6L7 | ein6L8
10000 | ein7L5 ein7L6 | ein7L7 | ein7L8
20000 | ein8L5 einBL6 | ein8L7 | ein8L8
Optl
Nop | Result
einstein300 5 ein300_dthL
TRB_optl_n
op5
do 10 ein300_dthL
TRB_optl_n
opl0
gs3 100 dth_Itrb_nop
100

Table 3.7
Diagvector Opt1l Opt2 | Opt3 | Opt4
Function: Nop | Result Result | Result | Result
DiagVectorRTLB
einstein600 50 einlR1 ein1lR2 | einlR3 | einlR4
100 ein2R1 ein2R2 | ein2R3 | ein2R4
500 ein3R1 ein3R2 | ein3R3 | ein3R4
1000 | ein4R1 eindR2 | eindR3 | eindR4
2000 | ein5R1 ein5R2 | ein5R3 | ein5R4
5000 | ein6R1 ein6R2 | ein6R3 | einbR4
10000 | ein7R1 ein7R2 | ein7R3 | ein7R4
20000 | ein8R1 einBR2 | ein8R3 | ein8R4
Opt5 Opt6 |Opt7 |Opt8
Nop | Result Result | Result | Result
50 einlR5 einlR6 | einlR7 | einlR8
100 ein2R5 ein2R6 | ein2R7 | ein2R8
500 ein3R5 ein3R6 | ein3R7 | ein3R8
1000 | ein4R5 ein4R6 | eindR7 | eindR8
2000 | ein5R5 ein5R6 | ein5R7 | ein5R8
5000 | ein6R5 ein6R6 | ein6R7 | ein6R8
10000 | ein7R5 ein7R6 | ein7R7 | ein7R8
20000 | ein8R5 ein8R6 | ein8R7 | ein8R8
Optl
Nop | Result
einstein300 5 ein300_dthR
TLB_optl_n
op5
do 10 ein300_dthR
TLB_optl_n
opl10
gs3 100 dth_rtlb_nop

100

106

107

3.3.34.7 LTRB: LTDAVFTC

3.3.34.7.1 Output Images

The processing of fig.3.B2 diagonally with LTRB: LTDAVFTC option generates the
following pictures (fig.3.L1.1-fig.3.L1.10) as output, similarly processing of fig.3.A1.1

108

ot) V

nop10.

Figure 3.L1.2: (ein300 dthL TRB

Figure 3.L1.3: (einl1L1)

109

Fig 3.L1.4.1:(dth_ltrb_nop100)

110

(ein4L1)

Figure 3.L1.6

VRN A Yo b -
N

(ein5L1)

Figure 3.L1.7

- kY
Figure 3.L.1.8: (ein6L1)

v

111

112

L A
Figure 3.L.1.10: (ein8L1)

3.3.34.7.2 Discussions

Filenames are given in parenthesis for the fig.3.L1.1-fig.3.L1.10 and fig.3.L1.4.1.
Fig.3.L1.1 and fig.3.L1.2 look like engraved images. Fig.3.L1.3 contains more image details.
Image details are slowly decreased from fig.3.L1.4 to fig.3.L1.7 as we have increased the nop
(number of pixels) processed per groups for images but from fig.3.L1.7 to fig.3.L1.10 the
decrease in image details is almost constant. Fig.3.L1.4.1 is a processed grayscale ramp
(having gray values from 0-255. The grayscale ramp is generated using Program A.1 and to
generate outside black border of the ramp Program A.2 is used). There is a sharp decrease is
image details from fig.3.L1.4 to fig.3.L1.5 because of sharp increase in nop. Lines are visible
(from right to inclined towards left), in the direction of processing which are more evident in
fig.3.L1.3 and fig.3.L1.4. In the images left edges are more prominent which is more evident
in fig.3.L1.3.

113

3.3.348 LTRB: LTDAVFTAC
3.3.3.4.8.1 Output Images

The processing of fig.3.B2 diagonally with LTRB: LTDAVFTAC option generates the
following pictures (fig.3.L2.1-fig.3.L2.8) as output.

fE kX SRR

7

Figure 3.L.2.1: (ein1L2)

o 7

2L

Figure 3.L.2.2: (ein

P

114

115

—ar

SN ../(rwl

N

- i NS

Ty

SAN Y M YA -

1y

A

Figure 3.L.2.4

(ein4lL2) .

EaH B3

(ein5L2)

Figure 3.L2.5

116

Figure 3.L.2.6: (€in6L2)

117

3.3.3.4.8.2 Discussions

Filenames are given in parenthesis for the fig.3.L2.1-fig.3.L2.8. Fig.3.L2.1 contains
more image details. Image details are slowly decreased from fig.3.L.2.2 to fig.3.L2.5 as we
have increased the nop (number of pixels) processed per groups for images but from
fig.3.L2.5 to fig.3.L2.8 the decrease in image details is almost constant. There is a sharp
decrease is image details from fig.3.L2.2 to fig.3.L2.3 because of sharp increase in nop. Lines
are visible (from right to inclined towards left), in the direction of processing which is evident
in fig.3.L2.1 and fig.3.L2.2. In the images left edges are more prominent which is more

evident in fig.3.L2.1.

118

33349 LTRB:LTDVLB2RT
3.3.3.4.9.1 Output Images

The processing of fig.3.B2 diagonally with LTRB: LTDVLB2RT option generates the
fo_llowing pictures (fig.3.L.3.1-fig.3.L3.8) as output.

%

A

fo 5

Figure 3.L3.1: (ein1L3)

119

Figure 3.L.3.2

(ein2L3)

\

——— ST T

(ein3L3)

Figure 3.L3.3

120

(ein4L.3)

Figure 3.L.3.4

S INGNSA p o yorman -

s)

(ein5L3)

Figure 3.L3.5

121

LR R R
Figure 3.L.3.7: (ein7L3)

o

122

B

£l s

* t

L.

E .
E B “y
)
5

3.3.3.4.9.2 Discussions

Filenames are given in parenthesis for the fig.3.L3.1-fig.3.L.3.8. Fig.3.L3.1 contains
more image details. Image details are slowly decreased from fig.3.L3.2 to fig.3.L3.5 as we
have increased the nop (number of pixels) processed per groups for images but from
fig.3.L3.5 to fig.3.L3.8 the decrease in image details is almost constant. There is a sharp
decrease is image details from fig.3.L3.2 to fig.3.L3.3 because of sharp increase in nop. Lines
are visible (from right to inclined towards left), in the direction of processing which is evident
in fig.3.L3.1 and fig.3.L3.2. In the images left edges are more prominent which is more

evident in fig.3.L3.1

123

3.3.3.4.10 LTRB: LTDVRT2LB
3.3.34.10.1 Output Images
The processing of fig.3.B2 diagonally with LTRB: LTDVRT2LB option generates the
following pictures (fig.3.L4.1-fig.3.L4.8) as output

I ; ; it e 4 7,

v, 3 4

.

4)

Figure 3.L4.1: (einlL

124

CNAF N R

125

b5 A
Figure 3.L.4.4:

Figure 3.L4.5: (ein5L4)

126

Figure 3.L.4.6: (ein6L

Sl et § Wy

127

-
‘7 Y

E 3 1\ |

: A

£ 3

3.3.3.4.10.2 Discussions

Filenames are given in parenthesis for the fig.3.L4.1-fig.3.L4.8. Fig.3.L4.1 contains
more image details. Image details are slowly decreased from fig.3.L4.2 to fig.3.L4.5 as we
have increased the nop (number of pixels) processed per groups for images but from
fig.3.L4.5 to fig.3.L4.8 the decrease in image details is almost constant. There is a sharp
decrease is image details from fig.3.L4.2 to fig.3.L4.3 because of sharp increase in nop. Lines
are visible (from right to inclined towards left), in the direction of processing which is evident
in fig.3.L4.1 and fig.3.L4.2. In the images left edges are more prominent which is more

evident in fig.3.L4.1.

128

3.3.34.11 LTRB: RBDAVFTAC
3.3.3.4.11.1 Output Images

The processing of fig.3.B2 diagonally with LTRB: RBDAVFTAC option generates the
following pictures (fig.3.L5.1-fig.3.L5.8) as output

”

Figure 3.L5.1: (einlL5)

129

(ein2L5)

(ein3L5)

Figure 3.L5.2

Figure 3.L5.3

130

Figure 3.L5.4

(einL5)

NS AN P rmmnane yonmggn, b -
4 .

(ein5L5)

Figure 3.L5.5

131

Figure 3.L5.6

(ein6L5)

(einLS)

Figure 3.L5.7

132

3.3.3.4.11.2 Discussions

Filenames are given in parenthesis for the fig.3.L5.1-fig.3.L5.8. Fig.3.L5.1 contains
more image details. Image details are slowly decreased from fig.3.L5.2 to fig.3.L5.5 as we
have increased the nop (number of pixels) processed per groups for images but from
fig.3.L5.5 to fig.3.L5.8 the decrease in image details is almost constant. There is a sharp
decrease is image details from fig.3.L5.2 to fig.3.L5.3 because of sharp increase in nop. Lines
are visible (from right to inclined towards left), in the direction of processing which is evident
in fig.3.L5.1 and fig.3.L5.2. In the images left edges are more prominent which is more

evident in fig.3.L5.1

3.3.34.12 LTRB: RBDAVFTC

3.3.3.4.12.1 Output Images

The processing of fig.3.B2 diagonally with LTRB:
RBDAVFTC option generates the following pictures
(fig.3.L6.1-fig.3.L.6.8) as output

<N ’ L }1” 1 1 .

133

134

(ein2L6)

Figure 3.L6.2

Figure 3.L6.3

(ein3L6)

135

&

Figure 3.1.6.4: (ein4L6)

F

#
15
[=

136

Figure 3.L.6.6

(ein6L6)

(ein7L6)

Fiure 3.L6.7

137

g
Figure 3.L6.8: (ein8L6)

3.3.34.12.2 Discussions

Filenames are given in parenthesis for the fig.3.06.1-fig.3.L6.8. Fig.3.L6.1 contains
more image details. Image details are slowly decreased from fig.3.L6.2 to fig.3.L6.5 as we
have increased the nop (number of pixels) processed per groups for images but from
fig.3.L6.5 to fig.3.L6.8 the decrease in image details is almost constant. There is a sharp
decrease is image details from fig.3.L6.2 to fig.3.L6.3 because of sharp increase in nop. Lines
are visible (from right to inclined towards left), in the direction of processing which is evident
in fig.3.L6.1 and fig.3.L6.2. In the images left edges are more prominent which is more

evident in fig.3.L6.1

138

3.3.3.4.13 LTRB: RBDVRT2LB
3.3.34.131 Output Images

The processing of fig.3.B2 diagonally with LTRB:
RBDVRT2LB option generates the following pictures
(fig.3.L7.1-fig.3.L7.8) as output

; .q&“-:‘r ; ,1

139

Figure 3.L7.2

(ein2L7)

T SR

(ein3L7)

e\

R -
S

Figure 3.L7.3

140

SR SR Y
Figure 3.L7.5: (ein5L7)

141

5 AN Y -
Figure 3.L7.7: (ein7L7)

142

Figure 3.L7.8: (ein8L7)

3.3.3.4.13.2 Discussions

Filenames are given in parenthesis for the fig.3.L7.1-fig.3.L7.8. Fig.3.L7.1 contains
more image details. Image details are slowly decreased from fig.3.L7.2 to fig.3.L7.5 as we
have increased the nop (number of pixels) processed per groups for images but from
fig.3.L7.5 to fig.3.L7.8 the decrease in image details is almost constant. There is a sharp
decrease is image details from fig.3.L7.2 to fig.3.L7.3 because of sharp increase in nop. Lines
are visible (from right to inclined towards left), in the direction of processing which is evident
in fig.3.L7.1 and fig.3.L7.2. In the images left edges are more prominent which is more

evident in fig.3.L7.1

143

3.3.34.14 LTRB: RBDVLB2RT
3.3.3.4.14.1 Output Images

The processing of fig.3.B2 diagonally with LTRB: RBDVLB2RT option generates the
following pictures (fig.3.L8.1-fig.3.L8.8) as output

Z. 7

o e %,

144

oSN,

(ein2L8)

Figure 3.L.8.2

EUREN

(ein3L8)

Figure 3.L8.3

145

146

Figure 3.1.8.6

(ein6L8)

(ein7L8)

Fiure 3.L8.7

147

3.3.3.4.14.2 Discussions

Filenames are given in parenthesis for the fig.3.L8.1-fig.3.L8.8. Fig.3.L8.1 contains
more image details. Image details are slowly decreased from fig.3.L8.2 to fig.3.L8.5 as we
have increased the nop (number of pixels) processed per groups for images but from
fig.3.L8.5 to fig.3.L8.8 the decrease in image details is almost constant. There is a sharp
decrease is image details from fig.3.L8.2 to fig.3.L8.3 because of sharp increase in nop. Lines
are visible (from right to inclined towards left), in the direction of processing which is evident
in fig.3.L8.1 and fig.3.L8.2. In the images left edges are more prominent which is more

evident in fig.3.L8.1

148

3.3.34.15 RTLB: RTDAVFTC

3.3.3.4.15.1 Output Images

The processing of fig.3.B2 diagonally with RTLB: RTDAVFTC option generates the
following pictures (fig.3.R1.1-fig.3.R1.10) as output, similarly processing of fig.3.A1.1

149

n300 dthRTLB nop

W

150
_rtlb_nop100)

3.R1.4.1: (dth

igure

F

(ein2R1)

SwwES M s - o

Fiure 3.R14

(ein3R1)

Figure 3.R1.5

151

Figure 3.R1.6

(eindR1)

(ein5R1)

Figure 3.R1.7

152

3

Figure 3.R1.9: (ein7R1)

153

0
\ 3

Figure 3.R1.10: (ein8R1)

3.3.3.4.15.2 Discussions

Filenames are given in parenthesis for the fig.3.R1.1-fig.3.R1.10 and fig.3.R1.4.1.
Fig.3.R1.1 and fig.3.R1.2 look like engraved images. Fig.3.R1.3 contains more image details.
Image details are slowly decreased from fig.3.R1.4 to fig.3.R1.7 as we have increased the nop
(number of pixels) processed per groups for images but from fig.3.R1.7 to fig.3.R1.10 the
decrease in image details is almost constant. Fig.3.R1.4.1 is a processed grayscale ramp
(having gray values from 0-255. The grayscale ramp is generated using Program A.1 and to
generate the outside black border of the ramp Program A.2 is used). There is a sharp decrease
is image details from fig.3.R1.4 to fig.3.R1.5 because of sharp increase in nop. Lines are
visible (from left to inclined towards right), in the direction of processing which are more
evident in fig.3.R1.3 and fig.3.R1.4. In the images right edges are more prominent which is

more evident in fig.3.R1.3

154

3.3.3.4.16 RTLB: RTDAVFTAC
3.3.34.16.1 Output Images

The processing of fig.3.B2 diagonally with RTLB: RTDAVFTAC option generates the
following pictures (fig.3.R2.1-fig.3.R2.8) as output

N

e Sty ;
Figure 3.R2.1: (einlR2)

155

Figure 3.R2.4: 2)
s . '

4 ‘.

5R2)

Figure 3.R2.5: (ein

156

157

158

.,\

Figure 3.R2.8: (€in8R2)

3.3.3.4.16.2 Discussions

Filenames are given in parenthesis for the fig.3.R2.1-fig.3.R2.8. Fig.3.R2.1 contains
more image details. Image details are slowly decreased from fig.3.R2.2 to fig.3.R2.5 as we
have increased the nop (number of pixels) processed per groups for images but from
fig.3.R2.5 to fig.3.R2.8 the decrease in image details is almost constant. There is a sharp
decrease is image details from fig.3.R2.2 to fig.3.R2.3 because of sharp increase in nop.
Lines are visible (from left to inclined towards right), in the direction of processing which is
evident in fig.3.R2.1 and fig.3.R2.2. In the images left edges are more prominent which is

more evident in fig.3.R2.1

159

3.3.3.4.17 RTLB: RTDVRB2LT

3.3.3.4.17.1 Output Images

The processing of fig.3.B2 diagonally with RTLB: RTDVRB2LT option generates the

following pictures (fig.3.R3.1-fig.3.R3.8) as output
= — - — —

o Q

WRRETMY

? &)
Figure 3.R3.1: (ein1R3)

160

161

3.R3.4: (eindR3)

Figure
—\§ RN i .W.

162

-~ ¥
£ et

(S .oy X
Figure 3.R3.6: (ein6R3)

163

.,\

Figure 3.R3.8: (ein8R3)

3.3.3.4.17.2 Discussions

Filenames are given in parenthesis for the fig.3.R3.1-fig.3.R3.8. Fig.3.R3.1 contains
more image details. Image details are slowly decreased from fig.3.R3.2 to fig.3.R3.5 as we
have increased the nop (number of pixels) processed per groups for images but from
fig.3.R3.5 to fig.3.R3.8 the decrease in image details is almost constant. There is a sharp
decrease is image details from fig.3.R3.2 to fig.3.R3.3 because of sharp increase in nop.
Lines are visible (from left to inclined towards right), in the direction of processing which is
evident in fig.3.R3.1 and fig.3.R3.2. In the images left edges are more prominent which is

more evident in fig.3.R3.1

164

3.3.3.4.18 RTLB: RTDVLT2RB

3.3.3.4.18.1 Output Images

The processing of fig.3.B2 diagonally with RTLB: RTDVLT2RB option generates the

following pictures (fig.3.R4.1-fig.3.R4.8) as output
N ;w@\;; A N\

O S,

Y

165

Ra)

AT

in2

166

o . 2R
Figure 3.R4.6: (ein6RA4)
.“‘:'?_ i B

< 6Vt

Figure 3.R4.7: (ein7R4)

167

168

.,\

Figure 3.R4.8: (€in8R4)

3.3.3.4.18.2 Discussions

Filenames are given in parenthesis for the fig.3.R4.1-fig.3.R4.8. Fig.3.R4.1 contains
more image details. Image details are slowly decreased from fig.3.R4.2 to fig.3.R4.5 as we
have increased the nop (number of pixels) processed per groups for images but from
fig.3.R4.5 to fig.3.R4.8 the decrease in image details is almost constant. There is a sharp
decrease is image details from fig.3.R4.2 to fig.3.R4.3 because of sharp increase in nop.
Lines are visible (from left to inclined towards right), in the direction of processing which is
evident in fig.3.R4.1 and fig.3.R4.2. In the images left edges are more prominent which is

more evident in fig.3.R4.1

169

3.3.34.19 RTLB: LBDAVFTAC
3.3.3.4.19.1 Output Images

The processing of fig.3.B2 diagonally with RTLB: LBDAVFTAC option generates the
following pictures (fig.3.R5.1-fig.3.R5.8) as output

Figure 3.R5.1: (ein1R5)

170

ure 3.R5.2

(ein2R5)

(ein3R5)

Figure 3.R5.3

171

(ein4R5)‘

Figure 3.R5.4

(@iN5R5)

Figure 3.R5.5

172

3.R5.6: (ein6R5)

Figure

i o

Figure 3.R5.7: (ein?R)

173

Le 5

=

3.R5.8: (ein8R)

. Wer
-
N

Figure

fa®-

3.3.3.4.19.2 Discussions

Filenames are given in parenthesis for the fig.3.R5.1-fig.3.R5.8. Fig.3.R5.1 contains
more image details. Image details are slowly decreased from fig.3.R5.2 to fig.3.R5.5 as we
have increased the nop (number of pixels) processed per groups for images but from
fig.3.R5.5 to fig.3.R5.8 the decrease in image details is almost constant. There is a sharp
decrease is image details from fig.3.R5.2 to fig.3.R5.3 because of sharp increase in nop.
Lines are visible (from left to inclined towards right), in the direction of processing which is
evident in fig.3.R5.1 and fig.3.R5.2. In the images left edges are more prominent which is

more evident in fig.3.R5.1

174

3.3.34.20 RTLB: LBDAVFTC

3.3.3.4.20.1 Output Images

The processing of fig.3.B2 diagonally with RTLB: LBDAVFTC option generates the

following pictures (fig.3.R6.1-fig.3.R6.8) as output
Tt N Tat IR 3 ,

E

175

7

7
.

g
o
- \\\\\a\ s

,v* S

7

(ein2R6)

o

Figure 3.R6.2

5
v

LLLLIS P iz v

(ein3R6)

Figure 3.R6.3

176

(ein4R6).

Figure 3.R6.4

(ein5R6)

Figure 3.R6.5

177

(ein6R6).

Figure 3.R6.6

(@in7R6)

Figure 3.R6.7

178

L e

Figure 3.R6.8: (ein8R6)

3.3.3.4.20.2 Discussions

Filenames are given in parenthesis for the fig.3.R6.1-fig.3.R6.8. Fig.3.R6.1 contains
more image details. Image details are slowly decreased from fig.3.R6.2 to fig.3.R6.5 as we
have increased the nop (number of pixels) processed per groups for images but from
fig.3.R6.5 to fig.3.R6.8 the decrease in image details is almost constant. There is a sharp
decrease is image details from fig.3.R6.2 to fig.3.R6.3 because of sharp increase in nop.
Lines are visible (from left to inclined towards right), in the direction of processing which is
evident in fig.3.R6.1 and fig.3.R6.2. In the images left edges are more prominent which is

more evident in fig.3.R6.1

179

3.3.3.4.21 RTLB: LBDVLT2RB
3.3.3.4.21.1 Output Images

The processing of fig.3.B2 diagonally with RTLB: LBDVLT2RB option generates the
foIIo_v\ving pictures (fig.3.R7.1-fig.3.R7.8) as output

g o

Figure 3.R7.1: (ein1R7)

1

Figure 3.R7.2: (€in2R7)
N AT

Figure 3.R7.3: (ein3R7)

180

181

v - N

Figure 3.R7.4: (7)

-

Figure 3.R7.5:

(ein5R7)

182

6 N

Figure 3.R7.6: (ein6R

7

183

L e

Figure 3.R7.8: (ein8R7)

3.3.3.4.21.2 Discussions

Filenames are given in parenthesis for the fig.3.R7.1-fig.3.R7.8. Fig.3.R7.1 contains
more image details. Image details are slowly decreased from fig.3.R7.2 to fig.3.R7.5 as we
have increased the nop (number of pixels) processed per groups for images but from
fig.3.R7.5 to fig.3.R7.8 the decrease in image details is almost constant. There is a sharp
decrease is image details from fig.3.R7.2 to fig.3.R7.3 because of sharp increase in nop.
Lines are visible (from left to inclined towards right), in the direction of processing which is
evident in fig.3.R7.1 and fig.3.R7.2. In the images left edges are more prominent which is

more evident in fig.3.R7.1

184

3.3.3.4.22 RTLB: LBDVRB2LT
3.3.3.4.22.1 Output Images
The processing of fig.3.B2 diagonally with RTLB: LBDVRB2LT option generates the
following pictures (fig.3.R8.1-fig.3.R8.8) as output

0 N

e

NS

185

Figure 3.R8.2

(ein2R8)

(ein3R8)

Figure 3.R8.2

186

187

Figure 3.R8.6: (cin6R8)

o
57

Figure 3.R8.7: (ein7R8)

188

L e

Figure 3.R8.8: (€in8R8)

3.3.3.4.22.2 Discussions

Filenames are given in parenthesis for the fig.3.R8.1-fig.3.R8.8. Fig.3.R8.1 contains
more image details. Image details are slowly decreased from fig.3.R8.2 to fig.3.R8.5 as we
have increased the nop (number of pixels) processed per groups for images but from
fig.3.R8.5 to fig.3.R8.8 the decrease in image details is almost constant. There is a sharp
decrease is image details from fig.3.R8.2 to fig.3.R8.3 because of sharp increase in nop.
Lines are visible (from left to inclined towards right), in the direction of processing which is
evident in fig.3.R8.1 and fig.3.R8.2. In the images left edges are more prominent which is

more evident in fig.3.R8.1

189

3.3.3.4.23 Program 3.8

The following program function (in matlab 6.1) selects sequentially groups of pixels of an
image matrix or matrix along the diagonal spiral or zigzag path and thresholds the
selected group of pixels and generate the final non halftone binary image.

function DiagThresh(im,nop,finput,opt);

% DiagThresh(im,nop,finput,opt)

% DIAGTHRESH (function) : DIAGonal THRESHold

%

% This function selects sequentially groups of pixels of an
% image matrix or matrix along the diagonal spiral or zigzag
% path and thresholds the selected group of pixels and generate
% the final non halftone binary image.

%

% INPUT ARGUMENTS:

% im: gray image file

% nop: no of pixels

%

% finput: the input function

% : DiagVectorLTRB or DiagVectorRTLB

%

% EXAMPLES:

% 1.

% DiagThresh('flgray.tif',100,'DiagVectorLTRB',1)

% 2.

% im=magic(16);

% DiagThresh(im,100,'DiagVectorLTRB',1)

%

% Tested using Matlab 6.1.0.450 Release 12.1

if ischar(im)
im=imread(im);
else
im;

end

[r c dim]=size(im);

tn=feval(finput,r,c,opt)
rc=r*c;
L=length(tn);

nop;

rm=rem(rc,nop);
div=rc/nop;
fl=floor(div);
rm2=nop*fl;

rm3=rc-rm2;

[r2 c2 dim]=size(tn);
th2=[];
th4=[];
th5=[];

for i=0:nop:rc

if i+nop<=rc

tn2=tn(:,i+1:i+nop);

th=Thresh(im(tn2),1,1,0);

th2=[th2 th];

end

190

191

if rm3~=0
tn3=tn(:,end-rm3+1:end);
th4=Thresh(im(tn3),1,1,0);

end

end

th5=[th2 th4];

LL=length(th5);

tn;

im(tn)=th5(:);
im=logical(im);
imshow(im)
imwrite(im,'diagthresh.tif")

o/

0

192

3.3.3.4.24 Program 3.9
The following program function (in matlab 6.1) selects each diagonal vectors starting from left
top or right bottom of a gray image matrix or matrix either alternately in spiral path orin a

unidirectional way.

function [dvpath, mtp]=DiagVectorLTRB(r,c,opt)

[»)
(o]

0,
(o]

% DiagVectorLTRB(r,c,opt)

% DIAGVECTORLTRB (function) : DIAGonal Vector Left Top Right Bottom
%

% This function selects each diagonal vectors starting from

% left top or right bottom of a gray image matrix or matrix either

% alternately in spiral path or in a unidirectional way.

%

% Uses: Image processing path or mask matrix for halftoning or

% matrix for pattern generation.

%

% INPUT ARGUMENTS:

% r: no of rows

% c: no of columns

%

% Opt: options

% 1: LTDAVFTC: Left top (starting point) diagonal alternate vector spiral
% with first turn clockwise

% 2: LTDAVFTAC: Left top diagonal alternate vector spiral with

% first turn anti-clockwise

% 3: LTDVLB2RT: Left top diagonal vectors, left bottom to right top

% 4: LTDVRT2LB: Left top diagonal vectors, right top to left bottom

% 5: RBDAVFTAC: Right bottom (starting point) diagonal alternate vector
% spiral with first turn anti-clockwise (5 is reverse of 1)

% 6: RBDAVFTC: Right bottom diagonal alternate vector spiral with

% first turn clockwise (6 is reverse of 2)

% 7: RBDVRT2LB: Right bottom diagonal vectors, right top to left bottom

193

% (7 is reverse of 3)

% 8: RBDVLB2RT: Right bottom diagonal vectors, left bottom to right top

% (8 is reverse of 4)
%
% OUTPUT ARGUMENTS:

% dvpath: diagonal vector path consisting of pixel locations
% mtp: matrix for thresholding or pattern

%

% EXAMPLE:

% [dvpath mtp]=DiagVectorLTRB(4,5,1)

%

% Tested using Matlab 6.1.0.450 Release 12.1

0,
(o}

0,
(o}

dmx=min(r,c); % max size of the diagonal

% Starting locations of the diagonals for LTH (Left Top Half)
% on the location matrix

sl=1:r;

% Starting locations of the diagonals for RBH (Right Bottom Half)
% on the location matrix

s2=2*r:r:r*c;

% All the starting locations of the diagonals
% on the location matrix

s=[s1s2];

L=length(s);
n2=0;

t2=0;
tnl=[];
tn2=[];

for st=1:L

194

st2=s(st); % acessing the starting locations serially
n=st;
if n>dmx

n2=n2+1;

n=n-n2;

end

if n<=dmx
% [tn,mts, It]=locmap(st,r,n,sg,d,fnop)

[tn,mts,lt]=locmap(st2,r,n,'p',4,1);

if lt>=r*c

te=tn(:,end-t2:end);

t2=t2+1;

tn;

L2=length(te);

fori=1:L2
k=find(te(i)==tn);
tn(k)=[];

end

if opt==1 | opt==5
if st~=1 & rem(st,2)~=1
tn=fliplr(tn); % diagonals
else
tn;
end
tn2=[tn2 tn];
end
if opt==2 | opt==6
if st~=1 & rem(st,2)==1
tn=fliplr(tn); % diagonals
else

tn;

end
tn2=[tn2 tn];
end
if opt==3 | opt==7
if st~=1
tn;
end
tn2=[tn2 tn];
end
if opt==4 | opt==8
if stv=1
tn=fliplr(tn); % diagonals
else
tn;
end
tn2=[tn2 tn];

end

else
if opt==1 | opt==5
if st~=1 & rem(st,2)~=1
tn=fliplr(tn); % diagonals
else
tn; % diagonals
end
tnl=[tnl tn];
end
if opt==2 | opt==6
if st~=1 & rem(st,2)==1
tn=fliplr(tn); % diagonals
else
tn;
end

tn2=[tn2 tn];

195

196

end
if opt==3 | opt==7
if stv=1
tn;
end
tn2=[tn2 tn];
end
if opt==4 | opt==8
if stv=1
tn=fliplr(tn); % diagonals
else
tn;
end
tn2=[tn2 tn];

end

end

end

end

tnl
tn2

dvpath=[tn1 tn2] % diagonal vector path

if opt==5 | opt==6 | opt==7 | opt==
dvpath=fliplr(dvpath)

end

% Generation of matrix for threshold or pattern
z=zeros(r,c);

z(dvpath)=1:length(dvpath);

mtp=z % mtp:matrix for threshold or pattern

0,
(o]

197

3.3.3.4.25 Program 3.10
The following program function (in matlab 6.1) selects each diagonal vectors starting from

right top of an image matrix or matrix either spirally or in zigzag way.

function [dvpath,mtp]=DiagVectorRTLB(r,c,opt)

% DiagVectorRTLB(r,c,opt)

% DIAGVECTORRTLB (function) : DIAGonal Vector Right Top Left Bottom
%

% This function selects each diagonal vectors starting from

% right top of an image matrix or matrix either spirally or

% in zigzag way.

%

% INPUT ARGUMENTS:

% r: no of rows

% c: no of columns

%

% Opt: options

% 1: RTDAVFTC: Right top diagonal alternate vector spiral with

% first turn clockwise

% 2: RTDAVFTAC: Right top diagonal alternate vector spiral with first turn
% anti-clockwise

% 3: RTDVRB2LT: Right top diagonal vectors, right bottom to left top

% 4: RTDVLT2RB: Right top diagonal vectors, left top to right bottom

% 5: LBDAVFTAC: Left bottom (starting point) diagonal alternate vector
% spiral with first turn anti-clockwise (5 is reverse of 1)

% 6: LBDAVFTC: Left bottom diagonal alternate vector spiral with

% first turn clockwise (6 is reverse of 2)

% 7: LBDVLT2RB: Left bottom diagonal vectors, left top to right bottom
% (7 is reverse of 3)

% 8: LBDVRB2LT: Left bottom diagonal vectors, right bottom to left top

% (8 is reverse of 4)

%

% OUTPUT ARGUMENTS:

% dvpath: diagonal vector path consisting of pixel locations
% mtp: matrix for thresholding or pattern

%

% EXAMPLE:

% [dvpath,mtp]=DiagVectorRTLB(4,5,1)

%

% Tested using Matlab 6.1.0.450 Release 12.1

dmx=min(r,c); % max size of the diagonal

SL=r*c-r+1 % First starting location

% Starting locations of the diagonals for RTH (Right Top Half)
% on the location matrix

s1=SL:(r*c)

% Starting locations of the diagonals for LBH (Left Bottom Half)
% on the location matrix

s2=(r*c-r):-r:r

% All the starting locations of the diagonals
% on the location matrix

s=[s1s2];

L=length(s);
n2=0;

t2=0;
tnl=[];

198

tn2=[];
for st=1:L
st2=s(st); % acessing the starting locations serially
n=st;
if n>dmx
n2=n2+1;
n=n-n2;

end

if n<=dmx
% [tn,mts, It]=locmap(st,r,n,sg,d,fnop)

[tn,mts,tl]=locmap(st2,r,n,'n',2,1);

if opt==1
if st~=SL & rem(st,2)==1 % flip when starting position is odd
tn=fliplr(tn); % diagonals
else
tn; % diagonals
end
tnl=[tnl tn];

end

if opt==5
if st~=SL & rem(st,2)==1 % flip when starting position is odd
tn=fliplr(tn); % diagonals
else
tn; % diagonals
end
tnl=[tn1 tn];

end

if opt==2

199

200

if st~=SL & rem(st,2)~=1 % flip when starting position is even
tn=fliplr(tn); % diagonals

else
tn; % diagonals

end

tnl=[tnl tn];

end

if opt==6
if st~=SL & rem(st,2)~=1 % flip when starting position is odd
tn=fliplr(tn); % diagonals
else
tn; % diagonals
end
tnl=[tn1 tn];

end

if opt==3 | opt==7
if st~=SL
tn; % diagonals
end
tnl=[tn1 tn];

end

if opt==4 | opt==8
if st~=SL % flip to change the vector direction
tn=fliplr(tn); % diagonals
else
tn; % diagonals
end
tnl=[tnl tn];

end

end

end

% Final locations along the diagonal
tnl;

dvpath=tn1;

if opt==5 | opt==6 | opt==7 | opt==8
dvpath=fliplr(dvpath);

end

% Generation of matrix for threshold or pattern

z=zeros(r,c);

L4=length(dvpath);
sn=1:14;

z(dvpath)=sn(:);

mtp=z % mtp:matrix for threshold or pattern

o/
/0

201

202

3.3.3.4.26 Program 3.11
The following program function (in matlab 6.1) creates any user defined path using pixel

locations as mapped by a location matrix

function [tn,mts,It]=LocMap(st,r,n,sg,dom,fnop)

% [tn,mts,It]=LocMap(st,r,n,sg,dom,fnop)

% LOCMAP (function) : LOCation MAPping

%

% This function creates any user defined path using pixel
% locations as mapped by a location matrix

%

% INPUT ARGUMENTS:

% st: starting location value

% r: number of rows of the location matrix

% n: no of numbers required to be generated for a series
% sg: sign, 'p' positive, 'n' negative

% dom: direction of movement (options for positive sign)
% (movement in graphics coordinate plane is given in the
% parenthesis)

% 1: 1 :vertically from top to bottom (y-)

% 2: r+1:top to bottom but inclined towards right (x+,y-)
% 3: r :lefttoright (x+)

% 4: r-1:bottom to top but inclined towards right (x+,y+)
% for negative sigh movement is reverse

% fnop: if the starting number of the series is wanted, put 1
% else 2,3 etc depending on the number location required.
%

% OUTPUT ARGUMENTS:

% tn: total numbers

% mts: middle terms

203

% It: last term

%

% EXAMPLES:

% 1.

% [tn,mts,It]=LocMap(1,7,20,'p',4,1)

% 2.

% [tn,mts,It]=LocMap(99,7,14,'n',2,1)

%

% Tested using Matlab 6.1.0.450 Release 12.1

% Defining the movement options
if dom==1;
d=1;
elseif dom==2;
d=r+1;
elseif dom==3;
d=r;
else dom==4;
d=r-1;

end

% Path generation

tn=(];

if sg=="p'

for i=fnop:n
tr=st+(i-1)*d;
if tr>0;
tn=[tn tr];

end

204

end

L=length(tn);
if L>2;
mts=tn(:,2:end-1);
else
mts=[];
end

It=tn(:,end);

else % 'n'

for i=fnop:n
tr=st-(i-1)*d;
if tr>0;
tn=[tn tr];
end

end

L=length(tn);
if L>2
mts=tn(:,2:end-1);
else
mts=[];
end

It=tn(:,end);

205

3.3.3.4.27 Comparison with the Earlier Technique

Various non-halftone binary image transformation methods have been introduced in this
chapter. These methods are unique in design and have their own place in imaging science and
technology. These techniques are algorithm driven and must be produced through digital
computers. In comparison to earlier analog technique like Tone Line Process that has been
discussed in Chapter 1 (Section 1.3.1) these novel techniques are relatively faster and with
better esthetic look and less costly. The image (fig.1.2 (a)) produced by tone line process is
comparable to fig.3.B7 (an output image of blockwise processing) and are of almost same
category. Other methods like processing the image, columnwise (e.g. fig.3.C3), in arbitrary
path (e.g. fig.3.A2) or diagonally (e.g. fig.3.L1.3), produces non-halftone binary images of
better kinds (because of their nature of processing) than Tone-Line Process.

Chapter 4

Digital Halftoning (Ordered Dither)

Chapter 4
Digital Halftoning (Ordered Dither)

4.1 Introduction

Here the author has presented two novel methods of ordered dither. There are different
methods for dithering an image but ordered dither is the easiest to implement, as it does not
require processing or storage of neighboring pixels. Ordered dither can be divided into two
types by the nature of dots produced, clustered and dispersed. The most popular method,
printer’s screen is generated using clustered-dot ordered dither by following the optical
process used in printing industry for over 100 years. In offset printing, clustered-dots are
needed where the area of each pixel is too small to hold the ink on the printing plate. For
many electronic displays dispersed dot ordered dither is preferred where single-pixel

constraints are not an issue.
The two novel digital halftoning methods [25] that are attempted here are as follows

1. Halftoning by pre-embedding the pattern.

2. Halftoning by simulating character writing pattern

In the first method a pattern is embedded with the image to be halftoned which is
normally not done for other earlier methods of ordered dither. Then pattern embedded

halftone is generated.

In the second method a mask matrix is generated from the writing pattern of a character.

Then halftoning is done using a threshold matrix generated from mask matrix.
4.2 Halftoning by Pre-Embedding the Pattern

In this section a novel digital halftoning method is presented using fig.4.1 to fig.4.5.

206

207

Figure: 4.1

Mask matrix (Spiral)
7 |18 |9 |10
6 |1 |2 |11
5 |4 |3 |12
16 |15 |14 |13

Figure: 4.2
Threshold matrix

112 | 128 | 144 | 160
96 |16 |32 |176
80 (64 |48 |192
256 | 240 | 224 | 208

Figure 4.3: Sample Image

Figure 4.4 (a) Pattern to be embedded

Figure 4.4 (b) Pattern embedded sample

208

209

Figure 4.4 (d) Sample image of figure 3 is Halftoned using pattern

210

——————
Figure 4.5(a)

B
Figure 4.5(b)

L
Figure 4.5(c)

Figure 4.5. (a) Histogram of the sample image of
‘figure 4.3, (b) Histogram of the embedded pattern (c)
Histogram of the embedded image

4.2.1 Algorithm (Method 1):

1. A pattern image corresponding to an order dither matrix (fig. 4.1) is created and
then by adding the pattern column wise and row wise, a final pattern image
(fig.4.4(a)) is obtained which is of same size as that of the gray sample image
(fig.4.3).

2. Then gray sample image is embedded with the above final pattern image to get the
pattern embedded sample (fig.4.4(b)).

3. After embedding the required pattern in the image then the threshold operation is
done to get the final halftone (fig.4.4(c)).

211

4.3 Halftoning by Simulating Character-Writing Pattern

In this section a novel method of digital halftoning is presented using the fig.4.6 to
fig.4.12.

v v

Figure: 4.6 Writing Stroke Sequences of a
Character ‘M’

Figure: 4.7

Mask matrix

0|0 |00 |O |O |O]O
0|1 (7 |0 |0 |14]|15|0
0|2 |8 |0 |0 |13|16]|0
0|3 |09 |12|0 |17]|0
0|4 |0 (10|11]0 |18]|0
0|50 (0 |0 |0 |19]0
0|6 |00 |0 |0 |20]0
0|0 |00 |0 |O |O]O

Figure: 4.8

Threshold matrix with background of the character white
255 | 255 | 255 [255 |255 |255 | 255 | 255
255 |4 28 255 | 255 |56 60 255
255 |8 32 255 | 255 |52 64 255
255 |12 255 | 36 48 255 |68 255
255 |16 255 |40 |44 255 | 72 255
255 |20 255 | 255 [255 | 255 |76 255
255 |24 255 | 255 [255 | 255 |80 255
255 | 255 | 255 | 255 |255 |255 |255 | 255

212

= I S,
I S,
== I S,
== I S,
== I S,
O S,
= = S,
== I S,
= I S,
I S,
== I S,
== I S,
== I S,
O S,
= = S,
== I S,
= I S,
I S,
== I S,
= I S

Figure 4.10. Sample image of

Figure 4.9. Sample Image

grayscale

figure 4.9 is halftoned using the

matrix of figure 4.8

213

Figure 4.11. Sample image of figure 4.3 is halftoned using
the matrix of figure 4.8

(b)
Figure 4.12. (a) Histogram of the grayscale
ramp (0-255) image of ‘figure 4.9’. (b)
Histogram of the image corresponding to
matrix of figure 4.8.

214

4.3.1 Algorithm (Method 2)

1. Fig.4.6 is generated which shows the stroke sequences of writing the character ‘M’. A
mask matrix (8 x 8) (fig.4.7) containing all the pixel positions is generated
corresponding to the writing path of the character. Where as all other pixels which are
beyond the writing path (but within the matrix) are assigned zero value.

2. Then a threshold matrix (fig.4.8) is generated from the mask matrix. The pixel
positions beyond the writing path but within the matrix are assigned a value of 255.

3. A pattern image is generated from the threshold matrix.

4. Final halftones (fig.4.10 and fig.4.11) are generated by thresholding the original
sample image of fig.4.3 and grayscale ramp sample of fig.4.9, using the pattern

image, respectively.

4.4 Results and Discussions
441 For Method 1:

Fig.4.5(a) is the histogram of the sample image, which contains the tonal values mostly

in the middle tone areas. Fig.4.5(b) is the histogram of the embedded pattern.

The image after embedding the pattern become lighter due to adding of gray values of

the pattern with the gray values of the image which is evident from histogram of fig.4.5(c).

Halftone Image (fig.4.4(c)) is obtained as a result of processing, is containing lesser
image details (image appears to be lighter) [25] than the halftone produced in normal way

(fig.4.4(d)) i.e. without pre-embedding the pattern.

4.4.2 For Method 2:

Fig. 4.12(a) is the histogram of the fig.4.9 and fig.4.12 (b) is the histogram of the image
corresponding to matrix of fig.4.8. Fig 4.12(b) shows that the image contains tonal values
mostly in the darker zones. In the halftone image ‘fig.4.10’, it is seen that the character
writing pattern of ‘M’ tends to be completed when we approach from lighter tone to darker
tone [25].

215

Another image ‘fig.4.3” is also halftoned using the character writing pattern to produce

the image ‘fig.4.11’, generating fewer image details.
45 Conclusions
Here the author has presented two novel digital halftoning methods based on ordered

dither.

The method 1 has produced halftone by pre embedding the pattern image. The sample
image embedded with pattern may be used in special effect imaging. This method has
produced halftone, which is of considerably good quality.

The method 2 has produced halftone by using a character-writing pattern. This process

may be used to simulate the writing pattern of any character of alphabets.

216

4.6 Program 4.1
The following program function (in matlab 6.1) generates any pattern of equal size to the
image size and embeds it within the image once or any number of times and produce

binary image by thresholding it.

function PatEmbedHT(filename,patfun,bs,ntpa)

% PatEmbedHT(filename,patfun,bs,ntpa)

% PATEMBEDHT (function): PATtern EMBEDed HalfTone
%

% This function generates any pattern of equal size to the
% image size and embeds it within the image once or any number
% of times and produce binary image by thresholding it.
%

% INPUT ARGUMENTS

% filename: any gray or rgb image file

% patfun: pattern function or pattern matrix

% bs: linear dimension of the pattern block size (pixels).
% Max block size: 16 pixels

% ntpa: number of the times the pattern is added

%

% EXAMPLE:

% PatEmbedHT('pout.tif','spiral',4,10)

%

% Tested using Matlab 6.1.0.450 Release 12.1

cell={'spiral' 'magic' [1 3; 2 4]}
filename="einstein301.tif'
patfun=cell{1}

bs=4

ntpa=1

o/

(o]

im=imread(filename);

[r c dim]=size(im)

if dim==3
im=rgb2gray(im);

end

if ischar(patfun)
m=feval(patfun, bs);
else % if patfun is a matrix
m=patfun;
[bs c2]=size(m) % if m is pattern matrix change the bs
% if not correctly given.
end

m=m%*256/16

% No of horizontal blocks

nohb=c/bs

% No of vertical blocks

novb=r/bs

% Minimum no of horizontal blocks

nohbf=floor(nohb);

% Minimum no of vertical blocks

novbf=floor(novb);

% Image widthwise extra pix

wwep=c-nohbf*bs

217

% Image heightwise extra pix

hwep=r-novbf*bs

o/
(o]

mh=[];

mhv=(];

% Case 1
if wwep==0 & hwep==0
% Repeating the original pattern horizontally
for i=1:nohbf
mh=[mh m];

end

% Repeating the horizontal pattern vertically to create
% final pattern.
for j=1:novbf
mhv=[mhv; mh];
end

end

% Case 2
if wwep==0 & hwep~=0
% Repeating the original pattern horizontally
for i=1:nohbf
mh=[mh m];

end

% Repeating the horizontal pattern vertically to create
% final pattern.

for j=1:novbf

218

mhv=[mhv; mh];
end
m2=mhv(1:hwep,1:c);
mhv=[mhv;m2];

end

% Case 3
if wwep~=0 & hwep==

% Repeating the original pattern horizontally

for i=1:nohbf
mh=[mh m];
end

m2=m(1:bs,1:wwep);
mh=[mh m2];
% Repeating the horizontal pattern vertically to create
% final pattern.
for j=1:novbf
mhv=[mhv; mh];
end

end

% Case 4
if wwep~=0 & hwep~=0

% Repeating the original pattern horizontally

for i=1:nohbf
mh=[mh m];
end

m2=m(1:bs,1:wwep);

mh=[mh m2];

% Repeating the horizontal pattern vertically to create

% final pattern.

219

for j=1:novbf
mhv=[mhv; mh];
end
m2=mhv(1:hwep,1:c);
mhv=[mhv;m2];
end

o/
/0

mhv=uint8(mhv);

% Threshold and binarization of the original image
thl=graythresh(im);
binl=im2bw(im,th1);

figure,imshow(bin1)

% Datatype conversion
im=double(im);

mhv=double(mhv);

mhv2=uint8(mhv);

imwrite(mhv2,'pat.tif','resolution’,301)

% Enhancing the pattern by repeatedly adding
ntpa; % No of times the pattern is added
imz=zeros(r,c);
for k=1:ntpa

imz=imz+mbhy;

end

imz2=uint8(imz);

imwrite(imz2,'addpat.tif','resolution’,301)

% Adding the pattern image with the original image

220

impe=im+imz;

impe=uint8(impe);

% Displaying the pattern embedded image
figure,imshow(impe)

imwrite(impe,'impe.tif','resolution’,301)

% Threshold and binarization of the pattern embedded image
th2=graythresh(impe);

bin2=im2bw(impe,th2);

figure,imshow(bin2)

imwrite(bin2,'imht.tif','resolution’,301)

221

222

4.7 Program 4.2
The following program function (in matlab 6.1) creates a pattern to simulate the writing of

any character of any alphabet.

function [thm]=CharWritePat(bgcolor)

% thm=CharWritePat(bgcolor)

% CHARWRITEPAT (function)

%

% This function creates a pattern to simulate the writing of
% any character of any alphabet.

% Here it is done for 'M' within a 8 by 8 matrix
%

% INPUT ARGUMENT:

% bgcolor: background color options

% 'w': white

% 'k': black

%

% OUTPUT ARGUMENT:

% thm: threshold matrix

%

% EXAMPLE:

% CharWritePat('w')

%

% Tested using Matlab 6.1.0.450 Release 12.1

n=8; % linear dimension of the character matrix

% Matrix to hold the char design

m=zeros(n);

223

% Locations

loc=[10:15,18:19,28:29,37:-1:36,43:-1:42,50:55];

% Numbers

num=[length(loc):-1:1]

num2=fliplr(num)

% Inserting the numbers into the specific locations
% to generate mask matrix

m(loc)=num2(:)

% Threshold matrix
c=ceil(255/numel(m))

thm=m*c;

% Background color preferences
if bgcolor=="w'
k=find(thm==0);
thm(k)=255;
elseif bgcolor=="k'
thm;

end

thm=uint8(thm);

imwrite(thm,'CharWritePat.tif")

224

4.8 Comparison with the Other Techniques Developed

Two new methods of digital halftoning are developed and are presented in this chapter.
The method titled “Halftoning by pre-embedding the pattern” can be used for general purpose
ordered dither and produces halftone of reasonable good quality with image details. In the
following paragraphs this method is compared with direct clustered dot dither method of

halftoning.

L L L]
LA
Ld d
(A Al 222 a1 1)))]
111 11111l)yl

Ll L
Ll
Ll
Ll L
Ll

I I I IIIITY
e o o o o o o o o o o o o o o o o o
o o e e e e e e e
e o e b o o e o o e o
I LTI IIIIIIII Y
T I
Y I i I
N L L R
ok o ok ok ook ok ok ok ok ok ko ok b
F kP FEPFFEPFEFEPFEFEEREEFEEFEREFRE

Figure 4.13: (einstein301_cdd2) . Figure 4.14: (gs3_cdd2)

225

TEXTEEEE LT EE R R L EE LR L L L T
e e T g T e T T A
e e e e o e e o e o e o e o e o e o o e]
e
EERELLEEEEREREELLEEEEY
i EENREREENNRNNENNERNERNNN
EREEEEE Y YR AR
5331 et g e e e e e e e e e e e e e e e
iﬁg LRI R RN R R RN RN N
B bk b b b b B B b B B kb EE kR kK
-
i
it i
it
m.
it $3evett
o
Figure 4.15: (einstein301_imht_4) Figure 4.16: (gs3_imht_4)

Filenames are given in parenthesis for the fig.4.13-fig.4.16

Halftone of fig.4.13 is obtained by applying dither array (clustered dot) of fig.1.5 to the
image of fig.4.3 and similarly halftone of fig. 4.14 is obtained by applying same dither array
of fig.1.5 to the image of fig.4.9 (a grayscale ramp). Halftone of fig.4.15 is obtained by
embedding the image of the dither array of fig.1.5 to the image of fig.4.3 and halftoning it.
Similarly halftone of fig.4.16 is obtained by embedding the image of the dither array of
fig.1.5 to the image of fig.4.9 and halftoning it. By visual comparison of the fig.4.13 and
fig.4.15, it could be said that fig.4.15 is lighter than fig.4.13 and contains reasonable amount
of image details. By comparing fig. 4.14 and fig.4.16 it is seen that details are lost in fig.4.16
as tonal range is compressed.

The method titled “Halftoning by simulating character-writing pattern” is meant for

special application only and produces fewer image details.

Chapter: 5

Soft Halftone Proofing

Chapter: 5
Soft Halftone Proofing

51 Introduction

Digital color proofs are the most important requirements in predicting the results of print
production. Digital proofs on monitor always take a fore seat once an image is ready for
further processing especially in print production. Existing image-editing tools like Adobe
Photoshop, Corel Photo-Paint, and Corel PaintShopPro etc have not provided any readily
available imaging tools that may create soft halftone proofs with wide range of screening
methods like amplitude modulated with various dot sizes or frequency modulated screening.
The filter tool like ‘color halftone’ in Adobe Photoshop 7.0 create a special effect with
amplitude modulated anti-aliased round dots with different screen angles, which is equivalent
to soft-screened proof of one kind. The ‘halftone’ tool of Corel Photo-Paint 11 provides
similar facility to create AM based screened proof. Corel Paint Shop Pro 9.0 also provides
similar facility for creating soft halftone proofs. These above-mentioned proofing for color-
screened images is not versatile as already mentioned. In an earlier work by the author [26]
an attempt has been made to fill that lacuna in soft halftone proofing which is capable of

producing both amplitude modulated and frequency modulated soft halftone proofs.

5.2 Experimental Procedures

The Adobe Photoshop 7.0 has been selected as the main platform to work with.

Main procedure steps are as follows
1. Editing the image in RGB mode.

2. Converting to CMYK mode using suitable setup.
3. Doing necessary corrections.
4. Separating the four plates (Black, Cyan, Magenta and Yellow) by splitting the

channels, this creates four gray images corresponding to each process color.

o

Generating halftones for the four plates.
6. Converting four plates to single bit grayscale and then to CMYK mode and
colorizing four halftone plates using the process colors.

7. Combining all the four images in separate layer, in a single file.

226

227

8. Apply ‘multiply” (layer blending) effect for individual layers to create subtractive

mixing of colors for the layers i.e. individual color printers as shown in fig.5.1.

9. Judge the final soft halftone proofs and progressive proofs.

Table: 5.1: Filenames and other details at various stages of AM proof generation

Original | Resolution | Gray AM Halftone | AM Halftone | Dotshape | Screen | LPI
Image (DPI) Images Images Images Angle
(Splitted) (Colored*) (Degree)
flrgb or | 144 flemyk_K | flemyk_K_am | flemyk_K_amc | ellipse 45 36
flemyk
flemyk_C | flcmyk_C_am | flcmyk_C_amc | Do 75 36
flemyk_M | flemyk_M_am | flemyk_M_amc | Do 105 36
flemyk Y | flemyk Y _am | flemyk Y _amc | Do 90 36

* Color used: Photoshop CMYK, values are given in percentages, e.g. for cyan plate

C=100%, M=0%, Y=0%, K=0%
Progressive proofs: flcmyk_CM_amc, flcmyk_CY_amc, flemyk_MY_amc

Final Proof: flcmyk _am_proof

Table: 5.2: Filenames and other details at various stages of FM proof

generation

Original | Resolution | Gray FM Halftone | FM Halftone | Screening

Image (DPI) Images Images Images
(Splitted) (Colored¥*)

flrgbor | 144 flemyk K | flemyk K _fm | flcmyk K _fmc | Diffusion

flemyk dither
flemyk_C | flemyk_C_fm | flcmyk_C_fmc | Do
flemyk_M | flemyk_M_fm | flcmyk_M_fmc | Do
flemyk Y | flemyk_Y_fm | flcmyk_Y_fmc | Do

* Color used: Photoshop CMYK, values are given in percentages, e.g. for cyan plate

C=100%, M=0%, Y=0%, K=0%
Progressive proofs: flcemyk CM_fmc, flcemyk CY_fmc, flcemyk MY _fmc

Final Proof: flcmyk_fm_proof

228

Fig.5.1 shows layer blending effect “Multiply” in Photoshop 7 of three layers containing
colors in “‘Cyan’, “‘Magenta’ and “Yellow’ circles, to generate colors red, green and blue and

black, which is equivalent to subtractive mixing of colors.

Blue

Black

> Yellow
Cyan

Green

Figure 5.1: “Multiply” layer blending
effect in Photoshop 7 of three layers
‘Cyan’, ‘Magenta’ and “Yellow’ which
is equivalent to subtractive mixing of
colors.

In labeling the figures from fig.5.2-fig.5.29, the filename of the images are given in the

parenthesis.

Here both Amplitude Modulated and Frequency Modulated screening is done to generate
both type of halftone proofs. Fig.5.2 and fig.5.3 are the rgb and cmyk color originals. Fig.5.4

to fig.5.7 are the cyan, magenta, yellow and black plates in gray respectively.

229

Figure 5.3: Original CMYK image (flcmyk)

230

Figure 5.5: Magenta part in gray (Icmyk_M)

231

"3
.

be® : L

; N T
Figure 5.7: Black part in gray (flemyk_K)

232

Figure S.S:AM ha'lcﬁz)ned Black (flcmyk K _amc)

|gure5.9: AM ihalﬁned Cyan(lémyk_C_amc)

233

|gure 5.0: AM h;fﬁoned Magéhta (flemyk_M_amc)

Figure 5.11: AM halftoned Yellow (flcmyk_Y_amc)

234

_amc)

k_CM

Figure 5.12: Progressive Proof: Cyan ad Magnt (flemy

_amc)

k_ CY

Figure 5.13: Progressive Proof: Cyan and Yellow (flcmy

235

Figure 5.15: AM halftoned Proof (flcyk_amprof)

236

Figure 5.17: FM halftoned Cyan (flcmyk_C_fmc)

237

Figure 5.18: FM halftoned Magenta (flcmyk_M_fmc)

Figure 5.19: FM halftoned Yellow (flcmyk_Y_fmc)

238

igure 5.20: Progressiv Proof: Cyanand Magt fIcmyk_CM_amc)

Figure 5.21: Progressive Proof: Cyan and Yellow (flcmyk_CY_amc)

239

Figure 5.22: Progressive Proof: Magenta and Yellow (flcmyk_MY_amc)

igre 523: FM halftoned Proof (flcykfm_pr)

240

Channel: | Luminosity

e

k

Figure 5.24: Histogram of figure 5.2 (flrgb_hg)
Channel: | Luminosity

-

Figure 5.25: Histogram of the figure 5.3 (flcmyk_hg)
Channel: | Luminosity W

F
Figure 5.26: Luminosity histogram of the figure 5.15 (am_hg_2)

241

Channel: | Black “ Channel: | Cyan b

I

Channel: | Magenta w Channel: | Yellow A

| 1 N
Figure 5.27: K, C, M and Y histograms of the figure 5.15 (am_hg)

Channel: | Luminosity "

[.
Figure 5.28: Luminosity histogram of the figure 5.23 (frri_th)

242

Channel: | Black (v Channel: | Cyan L
[.

Channel: | Magenta L Channel: | elioe I
[' ‘

Figure 5.29: K, C, M and Y histograms of the figure 5.23 (fm_hg)

5.3 Results and Discussions

Fig.5.8 to fig.5.11 are the amplitude modulated screened black, cyan, magenta and
yellow plates respectively. Dot shape, screen angle, screen frequency (Lines per Inch) and
resolution (DPI) of the original images and filename details are given in the Table-5.1. Fig.
5.12 is cyan-magenta, fig 5.13 is cyan-yellow and fig.5.14 is magenta-yellow, progressive
proofs. Fig.5.15 is the amplitude modulated halftone proof. Fig.5.16 to fig.5.19 are the
frequency modulated screened black, cyan, magenta and yellow plates respectively. Dots per
inch of the original images, type of screening used and filename details are given in the
Table-5.2. Fig. 5.20 is cyan-magenta, fig 5.21 is cyan-yellow and fig.5.22 is magenta-yellow,
progressive proofs. Fig.5.23 is frequency modulated halftone proof. Fig.5.24 and fig.5.25 are
the luminosity histograms of the fig.5.2 and fig.5.3 respectively and their image-wise
difference is evident in the histograms especially in darker tones. Fig.5.26 is the luminosity
histogram of the fig. 5.15 which shows few histogram tones because of using pure and single

tone color. Fig. 5.27 contains histograms of black, cyan, magenta and yellow channels of the

243

fig. 5.15 which show pure and single tone K, C, M and Y colors (as intermediate tones are
not available in the histograms of K, C, M and Y) are used to make AM proof. Like that
fig.5.28 is the luminosity histogram of the FM proof (fig 5.23) which shows few histogram
tones because of using pure and single tone color. Fig.5.29 contains histograms of K, C, M
and Y channels of the fig.5.23 which show pure and single tone K, C, M and Y colors (as
intermediate tones are not available in the histograms of K, C, M and Y) are used to generate

the FM proof also.

54 Conclusions

The method presented here is more versatile i.e. having wider applications than the
existing methods as shown in Chapter 2 (Section 2.4), as both amplitude modulated and
frequency modulated halftone proofs can be generated. Proofs of good quality (having more
image details and C, M, Y, K plates colorized with pure colors, i.e. one color not mixed with
other color) can be generated by this method for both types of halftoning. Color gamut might

change if different colors are selected at the time of colorizing each plate.

5.5 Comparison with the Other Techniques Developed

In this chapter a novel method is developed in proofing which could produce both
amplitude modulated and frequency modulated soft halftone proofs within a short period of
time. This method produces better quality soft halftone proofs than the existing systems. Fig.
5.15 and fig. 5.23 are amplitude modulated and frequency modulated soft halftone proofs
respectively, which are of better quality (obtained by histogram analysis e.g. fig2.2, fig.2.4,
fig.2.6, fig.2.8, fig.5.27 and fig.5.29 and visual comparison of the image details) than fig. 2.1
and fig.2.3, the proofs produced by Photoshop 7 and Corel Photo-Paint 11 respectively (Refer

Section 2.4 and Section 5.3).

Chapter 6

Discussions and Concluding Remarks

Chapter 6

Discussions and Concluding Remarks

6.1 Discussions

The present research work has been subdivided into three sections. 1. Non-Halftone
Binary Image Transformations. (Chapter 3) 2. Digital Halftoning (Chapter 4) and 3. Soft
Halftone Proofing (Chapter 5).

In the first section, the author has presented various novel non-halftone binary image
transformation methods which might create new avenues of image transformations in digital

imaging and image processing.

In the second section, the introduced two methods of novel digital halftoning would
generate halftone for various application and would fuel further improvement in digital

halftoning.

In the third section, the method presented in soft halftone proofing would solve the

existing problems of soft halftone proofing.
6.2 Conclusions

The research work has been subdivided into three sections. 1. Non-Halftone Binary
Image Transformations. (Chapter 3) 2. Digital Halftoning (Chapter 4) And 3. Soft Halftone
Proofing (Chapter 5).

The following conclusions may be drawn from carried out research work.

We have achieved the goal in non-halftone binarization section i.e. we have produced
non-halftone binary images through various methods. From the image processing point of
view few methods take more time to produce result and few methods take less time to process
images. Example of one such method which takes less time is “Row-wise and column-wise
processing”. Example of one such method which involves more mathematical calculation and
takes more time is “Processing the image diagonally”. Quality non-halftone output for special

application can be produced from methods such as “Processing the image diagonally” and

244

245

other methods of “Processing based on pixel location and path based on location” like

“Processing the image columnwise”.

In digital halftoning (ordered dither) section two proposed novel methods are based on
relatively faster algorithms. Method 1 which is based on pre-embedded pattern produced
halftone of considerable good quality. Method 2 which is based on character writing pattern

which has simulated character writing in halftone generation.

In the section soft halftone proofing, methodology proposed to generate soft halftone

proofs is more versatile with wider application.
6.3 Scope of Future Investigations

The algorithms proposed for some methods e.g. “Processing the image diagonally” in
non halftone binarization section, might require further investigations to design faster

algorithms.

In the similar way new avenues might come on further research in improving the image

quality and pattern embedding methods in the digital halftoning section (ordered dither).

Likely we might get new methods of soft halftone proofing with further research in
digital soft halftone proofing section. The method of soft halftone proofing requires faster

algorithm to be designed and implemented through software environment.

Appendix A

Program A.1

The following program function (in matlab 6.1) generates grayscale ramp

function gs=Grayscale(mng,mxg,sj,noc,nor,ori,res,nows,method)

o/
/0

% gs=Grayscale(mng,mxg,sj,noc,nor,ori,res,nows,method)
%

% GRAYSCALE (function)

%

% This function generates grayscale

%

% INPUT ARGUMENTS:

% mng: Minimum gray value mng>=0

% mxg: Maximum gray value mxg<=255

% sj: Grayscale step to step jump required

% noc: No of columns required for each grayscale step
% nor: No of rows required for each grayscale step

% ori: Orientation (string)

% 't2b': Top to bottom (mng to mxg) or any string

% 'l2r': Left to right (mng to mxg)

% res: Resolution required for output file. This is essential
% to reduce the physical size of the grayscale image,
% rather than filesize. if res=0 is given,

% default 72 is taken.

% nows: No of whitespaces given in between each steps
% method: Methods 1, 2 and 3

%

% EXAMPLE:

246

% gs=Grayscale(0,255,1,800,8,'t2b',300,0,1)

o/

(o]

if method==1

% Method: 1
g=[(mng:sj:mxg).'];
gv=[l;

gvh=[];

% White space to be given in between gray steps
gw=[255];

gw2=[];

nost=length(g); % no of steps

% Vertical repeat loop
for i=1:nost
gw2=[];
for j=1:nor % vertical steps
gv=[gv;g(i)];

end

% Insertion of white spaces in between gray steps
if nows>0

for w=1:nows

gw2=[gw2;gw];

end

gv=[gv;gw2];
else

gv=[gv;gw2];

end

247

248

end

% Horizontal repeat loop

for i=1:noc % horizontal steps
gvh=[gvh gv];

end

gs=(gvh);

% Orientation

if ori=="2r"
gs=rot90(gs);

else % or=="t2b'
gs=8s;

end

gs=uint8(gs);

% Output
imwrite(gs,'gs1.tif','resolution’,res)
end

o/
/0

if method==2

% Method: 2
gs=[I;

gw2=[];

for i=mng:sj:mxg

gsi=zeros(nor,noc)+i;

% Insertion of white spaces in between gray steps
if nows>0

gw2=[];

249

gw=zeros(1,noc)*255;
for w=1:nows
gw2=[gw2;gw];
end
gsi=[gsi;gw2];
else
gsi=[gsi;gw2];

end

gs=[gs; gsil;

end

% Orientation

if ori=="2r"
gs=rot90(gs);

else % or=="t2b'
85=8S;

end

gs=uint8(gs);

% Output
imwrite(gs,'gs2.tif','resolution’,res);
end

o/
/0

if method==3
% Method: 3
nost=length(mng:sj:mxg);

nd=ndgrid(mng:sj:mxg,1:noc);

row=(nor*(nost+nows));

gs=zeros(row,noc);

gs2=[];
gw2=[];
for i=1:nost
gw2=[];
nd(i,1:noc);
for j=1:nor
gs2=[gs2; gs(j,1:noc)+nd(i,1:noc)];

end

% Insertion of white spaces in between gray steps
if nows>0

gw2=[];

gw=zeros(1,noc)*255;

for w=1:nows

gw2=[gw2;gw];

end

gs2=[gs2;gw2];
else

gs2=[gs2;gw2];

end

end

gs2;

% Orientation

if ori=="2r'
gs2=rot90(gs2);

else % or=="t2b'
g52=g52;

end

250

251

gs2=uint8(gs2);

% Output
gs=8s2;
imwrite(gs,'gs3.tif','resolution’,res);

end

252

Program A.2
The following program function (in Matlab 6.1) creates tile arrangement of photos and
with separate condition gives black borders to a single photo

function []=PhotoTileBSP(fname,nohp,novp,wp)

%PHOTOTILEBSP : Creates tile arrangement of photos

% []=PhotoTileBSP(fname,nohp,novp,wp)

% PHOTOTILEBSP (function) : PHOTO TILE Black SPace

%

%

%

% EXAMPLES:

% PhotoTileBSP('pout.tif',5,4,10)

% PhotoTileBSP('pout.tif',1,1,10) Give black borders to a single photo
%

% Tested using Matlab 6.1.0.450 Release 12.1

i=zimread(fname);
[r c dim]=size(i);

wp; % black spaces 10 rows/columns
p; % black sp 10 /col

% Generating vertical black spaces (width=wp, height=r)
z=zeros(r,wp);

z=2*255;

if dim==3
z=zeros(r,wp,3);

z=2%255;

end

% Creating horizontal strip of tiling with black spaces in between
i2=[];
for j=1:nohp % nohp: no of horizontal photos

i2=[i2,z2,i];

end

[r2 c2 dim2]=size(i2);
% Last vetical strip of black spaces
zc=zeros(r2,wp);

z2c=2c*255;

if dim==3
zc=zeros(r2,wp,3);
zc=zc*255;

end

% Appending white spaces to the right of last column
i2=[i2,zc];
[r3 c3 dim3]=size(i2);

% Generating horizontal black spaces (width=c3, height=wp)
z2=zeros(wp,c3);

22=22%255;

if dim==3
z2=zeros(wp,c3,3);
22=22*255;

end

i3=[];

253

for k=1:novp % novp: no of vertical photos
i3=[i3;z2;i2];

end

[r4 c4 dim4]=size(i3);

% Last horizontal strip of black spaces
z3=zeros(wp,c4);

23=23%*255;

if dim==3
z3=zeros(wp,c4,3);
z3=2z3*255;

end

% Adding it to the bottom of tiled photos.
i3=[i3;z3];

6 i3=logical(i3); % only to get binary images, not valid for
% i3=logical(i3); % onl bi i lid f

% graycale image (uncomment this line for grayscale images)

imwrite(i3,'phototile.tif')
imshow(i3)

o/

(o]

254

References

1. Allebach, J.P., Liu, B., “Analysis of halftone dot profile and aliasing in the discrete
binary representation of images”, J. Optical Society America, Vol. 67, no.9, pp.1147-

1154, 1977.

2. Analoui , M. and Allebach , J. P., “Model-based Halftoning using Direct Binary
Search”, Proceedings of the 1992 SPIE/IS&T Symposium on Electronic Imaging

Science and Technology, Vol. 1666, San Jose, CA, pp. 96-108, 1992.

3. Bandyopadhyay, Dr. Swati, “Effects of Screen Ruling and Screen Shape on Image
Quality”, Proceedings of IS&T’s Image Processing, Image Quality, Image Capture

Systems Conference, Pages 311-314, Savannah, GE, April 25-28 1999. IS&T.

4. Bayer, B.E., “An Optimum Method for Two Level Rendition of Continuous-Tone
Pictures”, Proc. IEEE Int. Conf. Commun., Conference Record, pp.(26-11)-(26-15).,

1973.

5. Billmeyer, F.W. & Saltzman, M., “Principles of Color Technology”, John Wiley &

Sons, USA, 1981.

6. Eschbach, R. and R. Hauck, “Binarization using a two dimentional pulse-density

modulation”, J.Opt. Soc. of America, Vol. 4, no.10, pp.1873-1878, 1987

7. Eschbach, Reiner, “Pseudo-Vector Error Diffusion Using Cross Separation Threshold
Imprints”, Proceedings of IS&T’s Image Processing, Image Quality, Image Capture

Systems Conference, Pages 321-323, Savannah, GE, April 25-28 1999. IS&T.

255

10.

11.

12.

13.

14.

15.

16.

17.

256

Fan, Zhigang, “Error Diffusion for CMYK Color Images”, Proceedings of IS&T’s
Image Processing, Image Quality, Image Capture Systems Conference, Pages 324-

326, Savannah, GE, April 25-28 1999. IS&T.

Field, Gary G., Color and its Reproduction, GATF Press, USA, 1999
Floyd, R. W. and Steinberg, L, “Adaptive algorithm for spatial grey scale”, Proc.

Society Information Display, Vol. 17/2, pp. 36-37, 1976.

Gonzalez, R.C., Woods, R.E., “Digital Image Processing”, 2" ed., Prentice Hall, Uper

Saddle River, NJ, 2002

Gonzalez, R.C., Woods, R.E., Eddins, Steven L., “Digital Image Processing Using

MATLAB”, Pearson Education, Delhi, India, 2004

Gooran S, “Context Dependent Color Halftoning in Digital Printing”, proceedings of

IS & T's 2000 PICS Conference, pp. 242-246, March 2000, Portland, USA.

Gooran, S and Kruse, B, “Color Halftoning in Digital Printing”, IARIGAI 26th

Research Conference, Advances in Digital Printing, Sept. 1999, Munich, Germany.

Gooran, S., “High Quality Frequency Modulated Halftoning”. Thesis, Linkdping

University, Linkoping, Sweden, 2001

Gooran, S., and Kruse, B., “Near-optimal model-based halftoning technique with dot

gain”, SPIE, Human Vision and Digital Display Ill, San Jose, 1998.

Gooran, S., Osterberg, M., and Kruse, B., “Hybrid halftoning —A Novel Algorithm for
Using Multiple Halftoning Technologies”, Proc. IS&T Int. Conf. On Digital Printing

Technologies (NIP12), pp. 79-86, 1996.

18.

19.

20.

21.

22.

23.

24,

25.

26.

217.

257

Gusev, D. A., “Anti-Correlation Digital Halftoning by Generalized Russian Roulette”,
Proceedings of IS&T’s Image Processing, Image Quality, Image Capture Systems

Conference, Pages 327-332, Savannah, GE, April 25-28 1999. IS&T.

Hearn D., and Baker M.P., “Computer Graphics, C Version”, (Pearson Education

(Singapore) Pte. Ltd., Delhi 110 092, India), 2005.

Herniter, Marc E., “Programming in MATLAB”, Thomson Asia, Vikas Publishing

House Pvt. Ltd., New Delhi, 2003

Hunt, R.W.G., “The Reproduction of Colour in Photography, Printing & Television”,

Fountain Press, England, 1987

Jarvis, J. F.; Judice, C. N.; Ninke, W. H., “A Survey of Techniques for the Display of
Continuous-tone Pictures on Bilevel Displays.” Computer Graphics and Image

Processing, Vol. 5, 13-40, 1976
Kang, H. R., “Digital Color Halftoning” New York: IEEE Press, 1999.

Knuth, D.E., “Digital halftones by dot-diffusion”, ACM Transactions on Graphics,

6(4):245-273, October 1987.

Kundu, Pradeep, and Pal, Arun Kiran, “Some Methods of Digital Halftoning”, TAGA

Conference, March 15-18, 2009, New Orleans, Louisiana, USA, 2009.

Kundu, Pradeep, Pal, Arun Kiran; “A Novel Versatile Method Of Generating Soft
Halftone Proofs”, TAGA Conference, March 12-21, 2012, Jacksonville, Florida,

USA.

Kundu, Pradeep, Pal, Arun Kiran; “Some Methods of Non-halftone Binary Image
Transformations™, International Journal of Intelligent Information Processing, ISSN:

09-3892, VVol. 4 Number 2, July-December 2010, Page Nos: 167-172

28.

29.

30.

3L

32.

33.

34.

35.

36.

258

Lau, D.L., Arce G.R., “Modern Digital Halftoning” Marcel Dekker, Inc, New York,

2001.

Lau, D.L., Arce G.R., and Gallagher, N.C., “ Digital color halftoning via generalized
error-diffusion and vector green-noise masks”, IEEE Transactions on Image
Processing, VVol.9, no.5, May, 2000.

Lau, D.L., Arce G.R., and Gallagher, N.C., “Digital color halftone with generalized
error diffusion and multichannel green-noise masks”, IEEE Trans. On Image

Processing, VVol.9, no.5, pp.923-935, 1998

Lau, D.L., Arce G.R., and Gallagher, N.C., “Digital halftoning green-noise masks”,
Journal of the Optical Society of America, Vol. 16, no.7, pp.1575-1586, July 1999.
Lau, D.L., Arce G.R., and Gallagher, N.C., “Green-noise digital halftoning”, Proc of
the IEEE, Vol. 86, n0.12, pp.2424-2444, December 1998.

Lau, D.L., Arce, G.R., “Robust halftoning with green noise”, Proceedings of the
IS&T’s Image Processing, Image Quality, Image Capture Systems Conference, Pages

315-320, Savannah, GE, April 25-28 1999. IS&T.

McCann, John J., “Color Theory and Color Imaging Systems: Past, Present and
Future”, Journal of Imaging Science and Technology, Vol.42, Number 1,

January/February 1998.

Mertle, J.S. and Monsen, G.L. “Photomechanics and Printing: Practical Information
on Platemaking and Presswork by Recognized Procedures”, Oxford & IBH
Publishing Co., New Delhi, India, 1969.

Mese, M., and Vaidyanathan, P.P., Improved Dot Diffusion for Image Halftoning,
Proceedings of NIP 15: International Conference of Digital Printing Technologies,

pages 350-353, Orlando, FL, October 17-22, 1999, IS&T.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

259

Nilsson, F., “Pre-computed frequency modulated halftoning maps that meet the
continuity criterion”, Proceedings of the IS&T International Conference on Digital

Printing Technologies (NIP12), pp. 72-77, 1996.

Otsu, N., “A Threshold Selection Method from Gray-Level Histograms” IEEE

Transactions on Systems, Man, and Cybernetics., VVol.9, no. 1, pp. 62-66, 1979.
Pratt, William K., “Digital Image Processing”, Wiley-Interscience, New York, 2001.

Russ, J.C, “The Imageprocessing Handbook”, 3" ed., CRC Press, Boca Raton, FL,

1999.
Shapiro, “The Lithographers Manual”, GATF, USA, 1981

Shiau, J.N., Fan, Z. “A set of easily implementable coefficients in error-diffusion with
reduced worm artifacts” In J.Bares, editor, Color Imaging: Device-Independent Color,
Color Hard Copy, and Graphics Arts, Volume 2658, pages 222-225, SPIE, March

1996.

Stevenson, R.L. and G.R.Arce, “Binary display of hexagonally sampled continuous-

tone images”, J.Opt. Soc. America, Vol.2, no.7, pp.1009-1013, 1985.

Stucki, P., “MECCA -A Multiple-Error Correcting Computation Algorithm for
Bilevel Image Hardcopy Reproduction”, Research Report RZ1060, IBM Research

Laboratory, Zurich, Switzerland, 1981.

Sullivan, J.; Miller, R.; Pios, G., ”Image Halftoning Using a Visual Modeling Error

Diffusion” Journal of Optical Society of America, Vol. 10, 1714-1724, 1993.
Tritton, K., “Colour Control in Lithography”, PIRA International, U.K., 1993.
Ulichney, R., “Digital Halftoning”, MIT Press, 1987.

Ulichney, R., “Dithering with Blue Noise”, Proc. IEEE, Vol.76, no.1, 1988.

49.

50.

Sl

52.

53.

260

Ulichney, R., “Frequency Analysis of Ordered dither”, Proc. SPIE, Hardcopy Output,

V0l1.1079, pp.361-373, 1989.

Ulichney, R., “The Void-and-Cluster Method for Generating Dither Arrays”,
IS&T/SPIE Symposium on Electronic Imaging Science & Technology, San Jose, CA,

Vol. 1913, Feb. 1-5, pp. 332-343, 1993

Velho, L., Gomes, J.M., “Stochastic screening dithering with adaptive clustering”,

Computer Graphics, pp.273-276, 1995.

Wyszecki, G.; Stiles, W. S., “Color Science”, New York (et al.): John Wiley & Sons,

INC, 2000.

Yule, J. A. C,. “Principle of Color Reproduction”, New York: John Wiley and Sons,

1967.

