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Abstract 

Reconstruction of cerebral cortex or its parametric representation from MR image is on one 

hand, a challenging problem in computational neuroanatomy, on the other hand its an 

extremely important tool in diverse applications. Complete parametric description of the 

cortical boundaries using model-free, low level image processing techniques produce 

inefficient results because of inherent biological intricacies and attributes of image 

acquisition. While many acceptable and encouraging results have been obtained using 

deformable model-based approach, a fully automatic and standard algorithm with accurate 

outcome is still an open area of research. The focus of this dissertation is to investigate 

hybridization of the existing deformable models with extensive use of the knowledge of 

neuroanatomy to meet the target of full automation with minimum computation and highly 

accurate cortical reconstruction for such applications as functional mapping or morphometric 

analysis. Shortcomings of the proposed models for cortical reconstruction in the available 

literature include varied amount of human interaction, approximations and assumptions, 

heuristic tuning of several parameters and above all, the questionability of true representation 

of the cortical surface. 

In this research, one of my main contributions is optimization of image acquisition 

parameters for improved image quality, reducing computational burden in post-hoc 

processing. My other contribution is a novel Advanced Anatomy Guided Hybrid Deformable 

(AAGHD) model for cortical reconstruction. There are four major contributing factors in this 

model. First, there is hybridization of different existing deformable models as well as 

hybridization of low level and high level processing techniques. Second, the model is fully 

automatic, starting with initialization of the deformable contour progressing through various 

stages even into the deepest sulcul folds. Third, a novel external force field has been designed 

overcoming the problem of partial volume effect, especially at narrow, deep sulcul folds. 

Fourth, the reconstructed cortical boundary converges completely with CSF/Gray matter 

interface i.e. the true cortical boundary. Our model has been validated on real MR images of 

brain from various 1.5 T MR scanners.      
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1.1        Deformable Models and its Necessity  

 

Deformable models, introduced in computer vision by Terzopoulos et al. [1, 2, 3] are 

physics-based techniques which have been used extensively in the medical image processing 

because of their unique capacity for extracting image information, incorporating a priori 

knowledge as well to accomplish given objectives with great fineness. In this approach a 

flexible boundary model is placed automatically or manually in the vicinity of the structure to 

be segmented, and the model is allowed to evolve iteratively to fit the contour of the structure 

with some explicit converging criterion. Deformable models have been conceptualized from 

Lagrangian models of solids which follow Hamilton’s principle for monogenic systems for 

which all forces are (except the forces of constraint) derivable from a generalized scalar 

potential that may be function of the coordinates, velocities and time [4]. As Lagrangian 

models of solids complement Eulerian models of fluids in continuum mechanics, similarly, 

parametric deformable models complement its geometric counterparts by means of level set 

method [2, 5] or elastic or fluid transformation models [6] in continuum mechanical analysis. 

After initialization, deformable model evolves as a function of local image properties, 

intrinsic constraints and a priori knowledge of the target object and it mimics various generic 

behaviour of natural non-rigid materials in response to applied forces, such as continuity, 

smoothness, elasticity etc. In this approach, the parameters of standard geometric primitives 

become generalized coordinates in Lagrangian formulations that govern their automatic 

evolution in response to simulated forces [7]. The name of this physics-based model roots 

from the use of elastic theory at a physical level. Actually, initial deformable contour 
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simulates an elastic model of a continuous, flexible contour which is imposed upon an image 

to match an object boundary. By varying elastic parameters, the strength of prior assumptions 

can be controlled. These models are subjected to external forces that impose constraints 

derived from image data and they actively shape and move models to achieve maximal 

consistency with imaged objects of interest. In medical image analysis, deformable model is 

highly useful in segmenting, matching and tracking anatomic structures by exploiting 

constraints derived from the image data along with a priori knowledge about the location, 

size and shape of these structures. In the area of image segmentation, deformable model can 

be regarded as a problem of boundary mapping, that is, mathematical description of object 

boundaries from the images. Deformable model can also be applied directly in motion 

tracking, shape modelling, object recognition, image registration and warping though image 

segmentation is fundamental to all such applications.   

Segmentation can be regarded as the task of image partitioning into regions based on 

specified homogeneity criteria. In medical imaging, the segmentation of anatomic structures 

is partitioning of the original set of image points into subsets corresponding to meaningful 

anatomic regions and their surroundings. These tasks require the anatomic structures in the 

original image to be reduced to a compact, analytic representation of their shapes. In medical 

imaging, automated delineation of different image components is used for analyzing 

anatomical structure and tissue types, spatial distribution of function and activity, and 

identification of pathological regions. Segmentation can also be used as an initial step for 

visualization and compression [3]. Given the extremely complicated nature of segmentation 

in general and its pivotal role in image processing, innumerable algorithms have been 

developed. Typically, segmentation of an object is achieved either by identifying all pixels or 

voxels that belong to the object or by locating those that form its boundary. The former is 

based primarily on the intensity of pixels as well as the texture that can be associated with 

each pixel. Techniques that locate boundary pixels use the image gradient, which has high 

values at the edge of objects. The fundamental concepts and techniques used for region-based 

and edge-based segmentation, include global and adaptive thresholding, watershed 

segmentation, gradient operators, region growing and multispectral segmentation techniques. 

Since segmentation requires classification of pixels, it is treated as a pattern recognition 

problem and addressed with related techniques. One such approach is fuzzy clustering, a 

technique based on fuzzy models and membership functions. Another approach is neural 

networks, where the classification is based on distributed nonlinear parallel processing. 
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Segmenting structures from medical images and reconstructing a compact geometric 

representation of these structures is difficult because of the sheer size of the datasets and the 

complexity and variability of the anatomic shapes of interest. Furthermore, the shortcomings 

typical of sampled data, such as sampling artifacts, spatial aliasing and noise, may cause the 

boundaries of structures to be indistinct and disconnected. The challenging problem in 

segmentation is to segment regions with boundary insufficiencies, that is, missing edge or 

lack of texture contrast between regions of interest (ROIs) and background and also to 

integrate boundary elements from those regions into a coherent and consistent model of the 

structure. Traditional low-level image processing techniques that consider only local 

information can make incorrect assumptions during this integration process and generate 

infeasible object boundaries. Segmentation using traditional low-level image processing 

techniques, such as thresholding, region growing, edge detection and mathematical 

morphology operations require considerable amounts of expert interactive guidance. 

Furthermore, automating these model-free approaches is difficult because of the shape 

complexity and variability across individual subjects. In general, the underconstrained nature 

of the segmentation problem limits the efficacy of approaches that consider local information 

only. Noise and other image artifacts can produce incorrect regions of boundary 

discontinuities in objects recovered by these methods [3, 8].  

 Deformable model-based segmentation scheme provides a mechanism that is 

considerably different from traditional techniques and pattern recognition methods and 

largely overcomes many of their limitations. The main reason of their immense popularity in 

medical image analysis is their robustness, primarily due to the constraints of the models. 

These connected and continuous geometric models consider an object boundary as a whole 

and can make use of a priori knowledge of object shape to constrain the segmentation 

problem. It is particularly suited for segmentation of images that have artifacts, noise and 

weak boundaries between structures. The inherent continuity and smoothness of the models 

can compensate for noise, gaps and other irregularities in object boundaries. Furthermore, 

parametric representations of the models provide compact and analytical description of object 

shape. These properties lead to an efficient, robust, accurate and reproducible technique for 

linking sparse or noisy local image features into a complete and consistent model of the 

object. The most important aspect of segmentation with deformable models is the possibility 

of incorporating prior information on the shape of the object. Specific shape information can 

be used when the shapes of the structures of interest are consistent. If shapes are likely to 
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vary significantly, generic shape constraints are needed. A maximum a posteriori (MAP) 

formulation and related distributions are used for specific shape constraints, while the level 

set method and thickness constraints are used for the generic shape constraints. It drastically 

decreases the labour intensiveness of medical image processing task through automation and 

increases significantly their reproducibility, while still allowing for interactive guidance or 

editing by the experts.  

1.2        Gross Anatomy of Human Brain 

The brain lies in the cranial cavity and is continuous with the spinal cord through the foramen 

magnum. It is surrounded by three layers of meninges: the dura mater, the archnoid mater and 

the pia mater. The brain is composed of an inner core of white matter, which is surrounded by 

an outer covering of gray matter. Certain important masses of gray matter are situated deeply 

within the white matter, called subcortical gray matter. The cerebrum, the largest part of the 

brain, consists of two cerebral hemispheres, which are connected by a mass of white matter 

called the corpus callosum. The surface layer of each hemisphere, the cortex is composed of 

gray matter. The cerebral cortex is thrown into folds, or gyri, separated by fissures, or sulci. 

The surface area of the cortex is greatly increased by this means. Most of the cerebral cortex 

is concealed from view in the walls of the sulci. Although the patterns of the various sulci 

vary from brain to brain, some are sufficiently constatnt to serve as descriptive landmarks. 

The deepest sulci are the lateral sulcus (sylvian fissure) and the central sulcus (Rolandic 

fissure). These two and an imaginary T-shaped line divide the hemisphere into four lobes, 

named frontal, parietal, occipital and temporal. The lips (opercula) of the lateral culcus can be 

pulled apart to expose the insula.  

 The meninges surround the brain and suspend it in the protective jacket provided by 

the Cerebro Spinal Fluid (CSF). The meninges comprise the tough dura mater or pachymenix 

(Gr. Thick membrane), and the leptomeninges (Gr. Slender membranes) consisting of the 

arachnoid mater and pia mater. Between the arachnoid and the pia is the subarachnoid space 

filled with CSF. Dura mater is tough layer of fibrous tissue, fussed with the inner periosteum 

of the skull except where it is reflected into the interior of the vault or is stretched scross the 

skull base. Wherever it separates from the periosteum, the intervening space contains venous 

sinuses. Two major dural folds extend into the cranial cavity and help to stabilize the brain. 

These are the falx cerebri and the tentorium cerebelli. The falx cerebri occupies the 

longitudinal fissure between the cerebral hemispheres. Along the vault of the skull it encloses 
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the superior sagittal sinus. Its free border contains the inferior sagittal sinus. The crescentic 

tentorium cerebelli arches like a tent above the posterior cranial fossa, being lifted up by the 

falx cerebri in the midline. The attached margin of the tentorium encloses the transverse 

sinuses and the superior petrosal sinuses. The two U-shaped limbs of the tentorium are linked 

by a sheet of dura, the diaphragm sellae. The arachnoid (Gr. Spidery) is a thin, fibrocellular 

layer in direct contact with the dura mater. Innumerable arachnoid trabeculae cross the space 

to reach the pia mater. The pia mater invests the brain closely, following its contours and 

lining the various sulci. Like the arachnoid, it is fibrocellular.  

 

Fig 1.1: Human brain showing highly convoluted cortical surface                                   

(Courtesy: www.wisegeek.com) 

The cavity present within each cerebral hemisphere is called the lateral ventricle. The 

lateral ventricles communicate with the third ventricle through the interventricular foramina. 

The principal source of the CSF is the secretion of the choroid plexuses into the ventricles of 

the brain. From the lateral ventricles, the CSF enters the third ventricle. It descends to the 

fourth ventricle and then into the subarachnoid space. From the subarachnoid space at the 

base of the brain, the CSF ascends and bathes the surface of the cerebral hemisphere before 
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being returned to the blood through the arachnoid granulations, pinhead pouches of arachnoid 

mater projecting through the dural wall of the major venous sinuses [9, 10].  

1.3      MR Image of Brain  

MRI is a tomographic imaging technique that produces images of internal physical & 

chemical characteristics of an object from externally measured NMR signal.Tomography 

comes from the Greek word Tomas )( sτοµο  means ‘Cut’. Tomography means creating 

images of the internal (anatomical or functional) organization of an object without physically 

cutting open. Tomography imaging principles are rooted in physics, mathematics, computer 

Science and Engineering. Radon first addressed the Tomography imaging issue in 1917 but it 

was unnoticed for 50 years. 60s & 70s were the formative years of Tomography, when X Ray 

Tomography & MRI were developed. Categorically there are three kinds of tomography, 

namely emission tomography (MRI/PET/SPECT), transmission tomography (acoustic 

tomography) and diffraction tomography (acoustic tomography). MRI is a form of emission 

tomography (like PET/ SPECT). It outputs a multidimensional data array (or image) 

representing spatial distribution of some measured physical quantity like other modalities. 

Unlike others it produces 2D sectional images at any orientation, 3D volumetric images, or 

even 4D images presenting Special Spectral distributions. It operates in the RF range, so there 

is no harmful effect. The most important feature of this technique is richness in information 

content. Its image pixel value depends on the intrinsic parameters, namely nuclear spin 

density )(ρ , spin – lattice relaxation time (T1), spin- spin relaxation time (T2), molecular 

motions (Diffusion & perfusion), susceptibility effects and chemical shift differences. These 

parameters can be regulated by another set of operator- selectable parameters. 

Imaging process involves two transformations, data collection called imaging 

equation or forward problems and measured data are processed into image formation, known 

as image reconstruction equation or inverse problem. Core part of the MRI principle is 

similarly consists of two aspects, first one is NMR phenomena, observed by Felix Block at 

Stanford and Edward Purcell at Harvard in 1946 and the second one is image formation using 

NMR signals by the spatial information encoding principles, called zeumatography, 

developed by Paul Lauterbur in 1972 [11]. 

Detail discussion of the principle of MRI is beyond scope of this thesis, still salient 

features of NMR phenomenon and signal generation is discussed in the Appendix A.  
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Magnetic gradient system is used to encode special information into the transient responses 

of a spin system upon RF excitation.       

1.4       Cortical Reconstruction: Challenge and Importance  

Human cerebral cortex reconstruction or parametric representation of the cerebral cortex 

from MR image is a challenge in computational neuroanatomy because of its highly 

convoluted, complex structures and marked variability within and across individuals. Apart 

from these inherent biological attributes of the anatomic shapes of interest, post-hoc 

processing in MRI data is limited by factors like image contrast, resolution, SNR, RF field 

inhomogeneity, sampling artefact and partial volume effect etc. which make the structure 

boundaries indistinct and discontinuous [3]. That is why integration of cortical boundaries 

into a coherent mathematical description using model-free, low level image processing 

techniques such as thresholding, edge detection and linking, region growing, relaxation 

labeling and mathematical morphology operations produce inefficient results; also because 

these techniques consider local information only and suffer highly from manual 

interpretations [1, 3, 12]. Deformable model-based segmentation approach can overcome 

many of the limitations of traditional image processing techniques [1]. Researchers have tried 

to implement both types of deformable models in cortical reconstruction as it is a 

fundamental step for activities like brain image registration [13, 14], image-guided 

neurosurgery [15, 16], brain geometry analysis [17, 18], functional mapping by means of co-

registration of the functional data with the structural image data [19, 20], spatial 

normalization of brain image [12, 21, 22, 23], cross subject elastic matching or warping for 

disease analysis [6, 25, 26] and so on. Many acceptable and encouraging results have been 

achieved but a standard and fully automatic algorithm for accurate result is still an open area 

of research. Complete automation is a subject of specific application and the demand of 

accuracy also varies with the application. While coarse reconstruction of the cortex with 

consistent curves and points are enough for image registration, such kind of approximation 

may not be tolerated in case of functional mapping or morphometric analysis. In one hand, 

computational anatomy is gradually sharpening itself to meet the demands of more 

automation and more precision, on the other hand application of these techniques to explore 

the natural science of cognition by means of functional analysis of brain or understanding of 

disease process or development of more advanced techniques is getting an impetus which 

present more and more challenges to these techniques. It is now time to consider the problem 

of cortical reconstruction from the perspective of objective rather than put forward a 
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generalized approach. Optimization between computational resources and levied 

computational burden is another constraint of this highly complex application. We have 

addressed the problem by means of hybridization of the existing deformable models with 

extensive use of knowledge of neuroanatomy to meet the target of full automation with 

minimum computation and highly accurate result for applications like functional mapping or 

morphometric analysis.           

1.5       Thesis Organization 

This thesis has been organized with the following sections with content relevant to 

development of the proposed reconstruction algorithm. Part II is more or less a traditional 

literature survey of basic deformable models and its advancement for more complex 

application along with precise application of those models for cortical reconstruction. This 

part includes merits as well as demerits of such techniques in the present application and also 

silhouettes basic hitting points of our approach. Part III details a novel image acquisition 

protocol and part IV details the proposed novel external force field. In part V, we have 

detailed the algorithm of Advanced Anatomy Guided Hybrid Deformable (AAGHD) model 

for cortical reconstruction. The thesis concludes with highlights of the major contributions 

and scope of future work in part VI. Source of MR image signal and derivation of highly used 

Euler-Lagrange equation are to be found in Appendix A and B respectively.         
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CHAPTER 2 

CORTICAL RECONSTRUCTION WITH DEFORMABLE MODELS   

CONTENTS 

2.1 Overview of Deformable Models 

  2.1.1 Basic deformable models and its mathematical basis 

  2.1.2 Modification to potentiate the basic models  

  2.1.3 Deformable curves, surface and volume  

2.2 Review of Cortical Reconstruction 

 2.2.1 An overview    

 2.2.2 Potentialities and limitations   

2.3 Approaches to Overcome the Shortcomings 

  2.3.1 Addressing the problem of image acquisition  

  2.3.2 Incorporation of prior knowledge of anatomy  

2.3.3 Hybridization of potentialities of existing model 

2.3.4 Designing of new force field 

 

2.1 Overview of Deformable Models 

 

The theory of continuous multidimensional deformable models based on deformation 

energies in the form of generalized splines was introduced by Terzopoulos in 1986. In 1986, 

Kass et al. introduced parametrically defined deformable model known as “snake” or “active 

contour model”, which can be regarded as a special case of the general multidimensional 

deformable theory in two-dimensional image domain [27]. This revolutionary invention 

opened a new frontier in the field of computer vision and inspired researchers to explore the 

exciting approach with deeper contemplation. Trail of that giant wave is still propagating and 

researchers are contributing to the archive of deformable models to address more and more 

challenging problems in the application of real life. Work of these researchers have been 

highlighted in this section along with the mathematical foundations.    

2.1.1 Basic deformable models and its mathematical basis 

 

Geometry, classical mechanics and approximation theory are the three fundamental 

contributing pillars of the mathematical foundations of deformable models. Though 
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deformable model geometry incorporates geometric representations with many degrees of 

freedom (e.g. splines), it is still highly manageable as the degrees of freedom are not allowed 

to evolve independently because of imposed constraints according to some physical 

principles. The physical interpretation views deformable models as elastic bodies which 

respond naturally to applied forces and constraints. Deformable models are broadly classified 

into two general approaches, the parametric and the geometric models, depending on the 

definition of the model in the shape domain. Hybridization of these parametric and geometric 

models produces a third category of deformable model, namely, the geodesic model.  Again, 

parametric model encompasses two forms - Energy-Minimizing snake and Dynamic snake 

depending on the applications - statically to single image or dynamically to temporal image 

sequences respectively. Deformable model can be viewed as a problem of model fitting 

process in a probabilistic framework and it gives rise to probabilistic deformable models.    

Parametric model or Active contour model 

Parametric model is used in boundary mapping of an object in images, assuming that, the 

boundaries are piecewise continuous or smooth. Mathematical foundation of this active 

contour model is derived from the theory of optimal approximation involving functionals [2].   

Energy-minimizing deformable model or Classical snake 

Classical snake is a thin elastic band that is placed on an image to be deformed in order to 

reach a state of minimal (local) energy to delineate the object boundary.  

Description  

Geometrically, the deformable contour is an explicit, parametric contour represented in the 

image plane 
2),( ℜ∈yx as 

Τ
= ))(),(()( sysxsv , where x and y are the coordinate functions 

and coordinate values are continuous functions of a scalar parameter, ]1,0[∈s  in the 

parametric domain. (x(0), y(0)) represents one end of the curve and (x(1), y(1)) the other end. 

A closed curve is defined by (x(0), y(0)) and (x(1), y(1)) as the same point, i.e., x(0) = x(1) 

and y(0) = y(1).The shape of the contour is subject to an image, I(x,y) and it is typically 

determined by variational formulation expressed as           

.))(())((int dssvsv ext
s

Ε+Ε=Ε ∫                         (2.1) 
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The functional can be viewed as a representation of the energy of the contour, and the final 

shape of the contour corresponds to the minimum of this energy. The first term, the internal 

deformation energy prescribes a priori knowledge about the model such as its elasticity and 

rigidity and can be expressed as  
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The term
s

v

∂

∂
 indicates roughly the change we get in the coordinate locations of the curve as a 

result of unit change in the parameter s. The first derivative of v corresponds to the first-order 

smoothness of the curve, that is, distance between successive points on the curve, while the 

second derivative determines smoothness in a direction normal to the curve.  Parameters 

w1(s) and w2(s) dictate the simulated physical characteristics of the contour and regulate the 

relative importance of the two smoothness terms. Sometimes these tunable parameter values 

can be computed automatically using minimax principle [28, 29]. The minimization of the 

energy in (2.1) and (2.2) forces the curve toward minimum length and maximum smoothness. 

The second term in (2.1) is the external force derived from the image information and it 

couples the snake to the image by attracting the snake to edges, mostly as a function of 

gradient magnitude. A popular formulation for the energy term deriving the external image 

forces is as follows:  

( ) ( )[ ]( ) dssvyxIGcsv
ext ∫Ε ∇−=

1

0

2
)(,*)(

σ

   (2.3) 

where c controls the magnitude of the potential and ( )[ ]( ))(,* svyxIG
σ

∇ is the image gradient 

along the curve v(s), which is derived by convolved the image with a Gaussian smoothing 

filter whose characteristic width σ controls the spatial extent of the local minima of the 

external force. By minimizing this external potential, the summed up image gradient along 

the curve is maximized, which means the parametric snake is attracted by strong edges that 

correspond to pixels with local-maxima image gradient values [8].   

 

Initialization 

Being dependent on image gradient information, parametric snake is highly sensitive to 

image noise or spurious edges and this property of the snake mandates to be initialized close 
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to the object boundary. Initialization of active contour can be viewed as an inverse problem 

[28]. In the case of active contour initialization, the effects are the external force vectors that 

are caused by the object boundary. Our aim is to approximate this object boundary given the 

external force vectors. Initialization can be done by one of the three ways.  

 

1. Naїve initialization:  As no prior knowledge of image content or any image attributes 

are used in this initialization (e.g. snake at the image boundary or as a simple 

geometric shape), there is very little possibilities of convergence with the correct 

object boundary with this type of initial contour even after an inordinate number of 

iterations.  

 

2. Manual initialization: A coarsely approximated object boundary is provided by the 

user and that acts like an active contour to be refined for more accurate object 

boundary by an active contour algorithm. Such manual interaction is tedious, time-

consuming, difficult and may not be possible in some application.  

 

3. Automatic initialization:  This is best suited for a given problem for some specific 

application, rather than any general strategy. Once objective has been designed, low-

level primary image processing (e.g. Automated histogram based segmentation, 

mathematical morphology) may help to form the initial contour of the region of 

interest (ROI) [30]. Centres of divergence (CoD) [31],  force field segmentation (FFS) 

[32] and Poisson inverse gradient (PIG) initialization [33] are a few examples of 

general automated methods of snake initialization. CoD places small circular initial 

contours at points of zero vector divergence within a given external force field. Major 

shortcoming of this method is over-segmentation and it requires significant post-

processing in the form of region merging. FFS quantizes the external force vector 

field into predetermined directional unit vectors and forms connected components in 

between opposing vectors to define the initialization for a system of snakes. This 

approach is sensitive to clutter and broken edges and generally leads to spurious 

contours. PIG initialization solves the inverse problem of determining the object 

boundary that produced a given external force field. Lines of constant value within the 

energy field (isolines) are determined and isoline of minimum energy level serves as 

active contour initialization.  
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Evolution and convergence  

As the name suggests, energy-minimizing active contour is evolved to minimize some energy 

to be at rest at minimum energy state. In case of noise free synthetic image, after initialization 

on the image surface (I(x,y)), the snake eventually crawls down the negative of squared 

gradient surface and settles at its valley. This intuitive statement can be expressed 

mathematically in attempting to minimize the external energy functional only. But, in real-

life image, noise disrupts the smoothness in the gradient magnitude surface and the snake is 

hindered by the impediments created by the noise. To overcome this problem in evolution of 

the curve, in basic deformable model, Kass, Witkin and Terzopoulos had introduced the 

internal energy terms stated in equation (2.2). That’s why this snake is also popularly known 

as KWT snake. Considering an object boundary as smooth or piecewise smooth, final contour 

is desired to be smooth. From equation (2.2) we can note that a contour with lower internal 

energy should have average lower magnitudes, the first and the second derivative of v with 

respect to the parameter s. In accordance with the calculus of variations, the contour v(s) that 

minimizes the energy E must satisfy the condition that functional derivatives of the total 

energy functional (2.1) equals to zero, also known as the Euler-Lagrange equation 
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The equation is solved with the help of numerical techniques by discretizing the equation and 

solving the discrete system iteratively. Gradient descent method is one of the popular 

numerical methods to solve this equation. Originally, Kass et al. proposed resolution 

minimization method, where partial derivatives were estimated by the finite-difference 

method. Later on, Amini et al.[34] proposed dynamic programming approaches to solve this 

problem.  

 This classical energy-minimizing contour can be analyzed in probabilistic framework 

by approaching with Bayesian theorem [1, 3, 28] which is known as the probabilistic 

deformable model.  

Dynamic deformable model  

To make this classical energy-minimizing snake a time-varying dynamic model, the 

parametric contour has to be treated as a function of s as well as a function of time t. So, 

Τ
= ))(),(()( sysxsv of the static classical deformable contour becomes 
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Τ
= )),(),,((),( tsytsxtsv  for the dynamic model. To add inertial and damping forces during 

evolution, the contour is to be introduced with a mass density µ(s) and a damping density γ(s) 

[1] along with the internal force similar to the static deformable contour. The equation of 

motion for such contour can be expressed as follows: 
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Equilibrium is achieved when all forces are balanced and the contour comes to rest by means 

of 022
=∂∂=∂∂ tvtv . This dynamic deformable contour not only quantifies shape of the 

object but also measures its temporal changes.      

Geometric active contour or Implicit snake 

Geometric active contour models that can adjust with the image topology and can delineate 

an arbitrary number of ROI, have been proposed by Caselles et al. [35] and Malladi et al. 

[36] based on curve evolution theory. Mathematical foundation of this model comes from 

Euclidean curve shortening flow that is the Euclidean perimeter shrinks as quickly as possible 

when the curve evolves with a velocity profile which is a function of the curvature. Such type 

of flow confirms that the curves are increasingly smooth or regular over time. Convergence 

problem of this evolving (expands or shrinks) curve to the boundary object can be 

approached using the level sets model [5]. The level set approach to image segmentation is 

based on the fact that the intersection of a smooth three-dimensional surface and a plane yield 

a closed set of curves [28]. In this approach, an implicit function ϕ(x, y, t) is the height of the 

surface at position (x, y) and at time/level t. The 3
rd

 dimension is considered as the “level” of 

ϕ. In an image I(X) where X is a point in 
2

ℜ or 
3

ℜ this implicit function can be parametrically 

expressed as C(p,t) where p is a geometric parameter ( ]1..0[∈p ) and the desired contour at 

convergence is C(p). The function ϕ happens to be identical to C(p) on the level 0.  

 

ϕ (x, y, 0) = C(p)             (2.6) 

 

This is the so-called zero level set. The flow of the contours can be described by a partial 

differential equation as    
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g-function is essential to reach the right contour and it acts as a “stopping term”. To force the 

speed of the contour to zero at the boundary, g-function may be chosen to be small near an 

edge, and can be designed as 
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Gσ is the Gaussian smoothing filter with scale-space parameter σ, though other smoothing 

filters can be used. κ denotes the curvature of the curve C(p,t) at (p,t) and can be expressed as 
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N
r

is the unit normal vector (inward or outward) along C(p,t) and F(κ) is evolution speed 

function, expressed as  

0,)( ≥+= νκνκF             (2.11) 

where, ν is a constant stabilizer for the convergence speed and considered as the inflation 

term [37] essential to keep the evolution moving in proper direction by determining shrinkage 

or expansion of the contour according to its sign.  

 In brief, g-function states that the evolving contour C(p,t) expands or shrinks with the 

speed F(κ) along the normal direction of C(p,t) up to the level zero set by the criterion e.g. 

edge map or intensity gradient. Apart from intensity other stopping terms like texture, optical 

flow, stereo disparity etc. can also be considered [37].    

 

Geodesic active contour 

Concepts of classical energy-minimizing active contour and geometric active contour have 

been unified to produce a new active contour, named geodesic active contour, proposed by 

Caselles, Kimmel, Sapiro and Kichenassamy [37, 38]. An extra term is added to the overall 

speed function, called “doublet” in order to attract the contour very quickly to the boundary, 

and, if necessary, to push the contour backwards if it passes the edge. The level set version of 

the speed function of this model on 
2

ℜ can be expressed as follows    
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In geometric active contour, due to the formulation of the image force (g-function), it never 

comes to a complete stop, and heuristic stopping procedures are essential to turn off evolution 

of the contour. The contour evolution is slower when the g-function is small but the curve 

does not necessarily stop completely at the boundary, since it never reaches equilibrium. But, 

in geodesic snake, the additive term ( )NNg
rr

.∇  balances the other term close to the boundary 

and causes the curve to stop there. 

 

2.1.2 Modification to potentiate the basic models  

 

The basic concept of parametric deformable models lies on the designing of the external force 

field which comes from the image data, parameterizing the contour in terms of internal 

energy or flexibility and optimizing the contour in terms of evolution or way of interaction 

between internal energy and the external force field which results convergence of the contour 

to the object boundary. These three sections are the source of all of the potentialities as well 

as limitations of the deformable models after addressing the problem of initialization which is 

highly application dependent. Further advancement of this deformable model can be roughly 

categorized in the development in these three sections. 

Improved designing of the external force field: 

As the sole objective of deformable models is delineation of the object boundary, edge map 

of the given image is the primary source of the external force field. The gradient of the edge 

map has vectors pointing towards the edges with a large magnitudes close to the edges but 

nearly zero in the homogenous region of the image. As a consequence, capture range of this 

force filled is very small which demands initialization of the contour very close to the desired 

object boundary. Several attempts have been made to increase the capture range of the force 

filled. Gradient Vector Flow (GVF) proposed by Chenyang Xu and Prince [12, 39] has 

addressed this problem by extending the gradient map further away from the edges using a 

computational diffusion process. GVF is the vector field V(x,y)=[u(x,y),v(x,y)] which 

minimizes the following energy functional  

( )∫∫ ∇−∇++++= dxdyfVfvvuuE yxyx

222222
µ

             (2.13)
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where, f∇ is the gradient of the edge map and µ is a controlling parameter that controls the 

degree of smoothness of the field V. The first integrand keeps the field, V, smooth, while the 

second integrand encourages the field to resemble the edge force where the latter is strong 

[28]. GVF field can be found by solving the following Euler equation  
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          (2.14)

 

Diffusion of the edge map in the GVF field is indifferent to initial contour and despite its 

capacity to extend the capture range of the vector field of the edge map, never ensures the 

correct boundary delineation. To make this vector field sensitive to the initial contour, 

Dirichlet boundary condition has been incorporated into the GVF by N. Ray et al. to produce 

enhanced gradient vector flow field (EGVF) [40]. The corresponding Euler equation for 

EGVF is as follows:  
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where additionally the symbol Ω denotes the image domain, C denotes the domain enclosed 

by the initial active contour, Ω\C denotes the set difference of Ω and C, ∂C is the boundary of 

C, and n∂C is unit outward normal to the boundaries ∂C, λ is a positive parameter for Dirichlet 

boundary condition.  

B. Li and S. T. Acton [41] proposed Vector field convolution (VFC) to increase the capture 

range by means of diffused force field with the help of convolution technique. A prefixed 

vector kernel is convolved with the edge map to form external force field. The prefixed 

isotropic vector kernel k is defined as 

 

k (x,y) = m(x, y) n(x, y)     (2.16) 

 

where m(x, y) is the magnitude of the vector at (x, y), and n(x, y) is the unit vector pointing to 

the origin at the centre of the matrix k. The VFC external force field v(x, y) is yield by the 

convolution of the vector field kernel k(x, y) and the edge map f (x, y) 

 

v (x, y) = f (x, y) * k(x, y)    (2.17) 
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Improved parameterization for internal energy    

 

The flexibility of a parametric contour depends on pattern of parameterization of the contour. 

Local deformation behaviour of the curve i.e. deformation of only a portion of the curve 

within a local neighbourhood of the point can be better explained by the concept of splines. 

Fugeiredo et al. has introduced the spline snakes which adaptively modify the number of 

control points in snakes represented by B-spines.  

 

Improvement for better convergence 

All attempts of redesigning of the external force field or parameterization of the contour for 

controlling the flexibility are aimed to proper convergence of the contour with the true object 

boundaries. Despite all attempts, convergence to the true object boundaries is a big problem 

due to local minima of the model’s energy or spurious edge in the image due to some artifact 

(e.g. sampling artifact) or noise.  

This problem is addressed inherently by the GVF force field by Xu and Prince [12, 39]. The 

controlling parameter µ of the smoothing term in (2.13) regulates the tradeoff between 

smooth vector field and the gradient of edge map and to be set according to the presence of 

the noise in the image to overcome the edginess due to noise.  

An internal “inflation” force is used by Cohen and Cohen [42] to expand the snake model 

through spurious edges due to noise toward the real edges of the structure. A typical external 

force for this balloon model can be expressed as follows  
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where n(s) is the unit vector normal to the curve at point v(s) and k1 is the amplitude of this 

force and k is the amplitude of the factor coming from potential P. P may be function of 

derived image information or any others, like distance of a point on v and the nearest edge 

[42].  Since the balloon force inflates the snake everywhere with an equal amount of force 

irrespective of the image data, the snake may “leaks” through edges having weak gradient 

magnitude [12, 28].  

 

While edge-based image information is insufficient for accurate boundary tracking of ROI 

and trapped by the insignificant edges, many researchers consider integration of region-based 
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information into deformable contour to decrease sensitivity to insignificant edges and initial 

model placement. Rougon and Preteux [43] have incorporated mathematical morphology in 

the active contour model as deformable marker. Gauch et al. [44] introduced hybrid 

boundary-based and region-based deformable model to exploit merits of both of the 

approaches.  Amit Chakraborty and James S. Duncan [45] have introduced game theoretic 

approach for region-based segmentation with probabilistic deformable model considering the 

segmentation problem as a two-person nonzero-sum noncooperative game. Poon et al. [46] 

use a discriminant function to incorporate region-based image features into the image forces. 

The discriminant function allows the inclusion of additional image features in the 

segmentation and serves as a constraint for global segmentation consistency. Herlin et al. 

[47] has introduced deformable region model in the mathematical environment of Markov 

Random Field (MRF) and stochastic process. T. Chen and D. Metaxas [48] have also 

integrated MRF and deformable models for segmentation problem. S. C. Zhu et al. [49] has 

introduced the concept of unification of snake/balloon model, region growing and 

Bayes/Minimum Description Length (MDL) in an algorithm named “Region Competition”. 

A generalized energy function which combines active contour and region growing is 

proposed here and the objective function is minimized to converge to a local minimum. R. 

Ronfard [50] used region-based model where the parametric model partitions the image into 

ROI and background with different statistics approximated with Gaussian distributions and 

their difference drives the model evolution. The statistical model of ROI, IROI and that of the 

background, Ib are compared with the image I by means of minimization of the mean square 

error. Energy formulation of this model is as follows  
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S. R. Gunn and M. S. Nixon [51] used a dual active contour combined with a local shape 

model. One contour expands from inside the target feature while the other contracts from the 

outside. The contour v evolved in this model according to the following equation.  
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where u is the other contour and g(t) is the strength of the adaptive driving force and F is the 

external force derived from image information. The internal energy of the contour at vi, is the 
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energy associated with the force ei, normalised by the average space step, h, rendering the 

energy scale invariant and λ is a regularizing parameter.   

 

Further development of the basic parametric model have been done for better convergence 

with the topologically complex structures like long tubular shape or bifurcation or sudden 

change of any topology or boundary concavity in narrow fold like shape and so on. T. 

McInerney and D. Terzopoulos [52]  proposed “Topology adaptive snakes” or “T-Snakes” 

defined in affine cell image decomposition (ACID) framework to allow more topological 

flexibility over the classical snake. ACID divides the image domain into a grid of discrete 

cells and it automatically reparameterizes the T-snakes as they evolve with a new set of nodes 

by computing the intersection points of the model with the ACID grid. This allows the model 

to split or merge and adapt to the topology of the target image. S. Bischoff and L. P. Kobbelt 

[53] addressed a similar problem with “restricted snake” or “r-snakes” by restricting the 

movement of the contour vertices to the grid-lines and thus employ parameterization 

independent evolution rules. C. Xu and Prince also extended their GVF model to Generalized 

Gradient Vector Flow (GGVF) model for better convergence of the contour with the 

boundary concavity, especially at long, thin boundary indentation. It synthesizes a medial 

property of a shape together with its boundary information. With help of the edge map, 

GGVF field v  is defined as the equilibrium solution of the following vector partial 

differential equation   

( ) ( )( )fvfhvfgvt ∇−∇−∇∇=
2

  (2.21)
 

Spatially varying weighting functions )(⋅g and )(⋅h are applied to the smoothing and the data 

term in comparison with GVF field. For better progression of the deformable contour in long, 

thin indentation where two edges are in close proximity, weighting functions are selected 

such that )(⋅g gets smaller as )(⋅h becomes larger [12, 54].  

Though, further development of the basic geometric and geodesic deformable models 

has also taken place these review does not mention here as those models do not influence the 

algorithm developed in this thesis.    

 

2.2 Review of Cortical Reconstruction 

 

2.2.1 An overview  
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Parametric mapping of the human cerebral cortex generates extreme academic interest for its 

complex convoluted structure and also because of vast application in medical practice and 

research leading to experimenting with all variants of deformable models. Besides, several 

researchers have tried to design specialized deformable models aimed at solving this specific 

problem only. In 2-D image slice a deformable curve and in 3-D volume data a deformable 

surface, as the case may be, is used which deforms and progresses as a continuous smooth 

contour to represent the cortex. As classical deformable models have difficulties progressive 

into deeper parts of the convoluted cortical folds, most researches have tried to implement 

deformable models designed in line with the cortical boundary. Basic similarity in all these 

approaches is classification of the brain tissue with low level image processing which is 

crucial for initializing the deformable contour and guidance for convergence, followed by 

estimation of the initial contour and its deformation into the cortical topography.  

 A. Dale and M. Sereno (in 1993) proposed a cortical reconstruction algorithm for 

functional localization of cerebral activity by using a deformable model called “shrink 

wrapping”. In this voxel based approach, initial contour is estimated by a recursively flood-

filling algorithm to determine the topology of  gray-white matter border. This continuous 

surface is refined by relaxing it against the original 3-D image by means of curve evolution 

under influence of the local repulsive force field calculated as a function of the deviation of 

the given pixel value from the expected pixel value of the gray matter in inversion recovery 

pulse sequence [19].  

D. McDonald et al. (in 1994) designed an iterative algorithm for simultaneous 

deformation of multiple surfaces with inter-surface proximity constraints and self-intersection 

avoidance for cortical reconstruction using cost function minimization [55]. 

J.F. Mangin et al. (in 1995) proposed an algorithm for construction of an attributed 

relational graph (ARG) representing the cortical topography from 3D skeleton of the object 

derived from union of gray matter and CSF [56]. The algorithm is based on homotopically 

deformable region principle which can be considered as halfway between deformable contour 

and Markovian segmentation approach.    

 Davatzikos and Prince (in 1995) used Active Contour Algorithm for Ribbon (ACAR) 

for modelling the cross section of brain cortex from 2D image plane [57]. External force for 

the ACAR model is designed on assuming the cortex as a fixed width ribbon like structure 

and placing a disk centred on the active contour which experiences a driving force 

proportionate to its distance from the spine of the ribbon. Though the model fails to delineate 
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the deep sulcual fold, it has been extended with the aids of control point based approach to 

overcome this limitation.   

Davatzikos and Bryan (in 1996) implemented deformable surface model in 3D 

volume data similar to ACAR model of 2D to obtain a shape representation of cortex [58]. 

DFSA algorithm is used in this model for convergence of the contour in multiscale 

formulation. At low resolution, DFSA converges very fast to a surface which captures the 

gross shape of the outer cortex. A finer representation of the outer cortical structure is then 

captured at a higher resolution. 

Kapur et al. (in 1996) also used a snake approach, along with 

Expectation/Maximization (EM) segmentation and mathematical morphology [59]. EM 

segmentation used for an intensity-based correction and classification of the data into major 

tissue classes, binary morphology and connectivity used for incorporation of relative 

topological information, and balloon-based deformable contours of Cohen et al. [42] for 

refinement of a rough estimate of the morphological operation.   

Teo et al. (in 1997) [60] incorporated knowledge of cortical anatomy with deformable 

models, in which white matter and CSF regions were first segmented by posterior anisotropic 

diffusion, then the connectivity of the white matter was verified. Finally, a connected 

representation of the gray matter was created by growing out from the white matter boundary.  

Though most researchers used specialized deformable model for application of 

cortical reconstruction, a generalized deformable model was also used to address this 

problem. GGVF model of Xu et al.  (in 1997) has been designed for better convergence with 

boundary concavity and better propagation into long indentation where adjacent edges are 

close enough. Considering the similarity of the convoluted cortical folds with these attributes 

the GGVF deformable surface in conjunction with fuzzy membership functions of specific 

tissue class has been implemented for cortical reconstruction. After tissue classification with 

fuzzy c means, an isosurface is computed on the basis of white matter membership function 

to obtain an initial estimator. Using deformable surface, this initial surface moves towards the 

central cortical layer halfway between the gray/white and gray/CSF boundaries [12, 61] 

under the influence of GGVF with an extra pressure force. 

Topologically adaptive snake (T-Snakes) of McInerney and Terzopoulos (in 1998) is 

also implemented to segment gray/white interface while its inflation force is weighted with 

the statistics of the white matter pixel intensity [52].  

Apart from these parametric deformable models, Zeng et al. (in 1999) implemented 

geometric deformable models by developing a coupled surfaces approach for automatically 
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segmenting a volumetric cortical layer from 3D image. They used a set of coupled 

differential equations, each equation determining the evolution or propagation of a surface 

within a level set framework [62, 63]. Starting from concentric spheres, the outer and inner 

surfaces propagate outwards looking for image features of CSF/gray boundary (outer cortical 

surface) and gray/white boundary (inner cortical surface) respectively, while maintaining a 

nearly constant thickness in between. Prior to this deformation, a local operator (using the 

gray level information gives a measure of the likelihood of a voxel lying on the boundary of 

two adjacent tissues) is used to determine the gray level transition crucial to set level at 

zero[63]. 

 

2.2.2 Potentialities and limitations  

 

Despite so many attempts and approaches, fully automated reconstruction of the outer 

cortical surface is still a big challenge. Though all approaches address the challenge with 

success to a great extent, question of automation, close initialization of the deformable 

models and validation of the end result are still under investigation. All approaches suffer 

from varied amount of human interaction, approximation and assumption, heuristic tuning of 

several parameters and above all, a questionable representation of the true surface. 

The model of A. Dale and M. Sereno is marked with its potentiality for easy 

visualization of deep sulcal folds by means of “flattening” of the cortical surface by gradual 

elimination of the data term from the external force field. But initialization in this model has 

been done at Gray matter/white matter interface and the curve evolved to CSF/Gray interface 

which makes the model highly sensitive to magnetic field inhomogeneity nearly obliterating 

the gray-white demarcation. Besides, data term of the force field is not derived solely from 

the image data as it depends on some statistically referred pixel value of the gray matter of 

inversion recovery pulse sequence. This reference is not an inherent feature of the image 

itself and highly dependent on the validity of related studies and may vary even with different 

acquisition parameters of the same pulse sequence.     

Algorithm of McDonald et al. is not only computationally expensive but also requires 

tuning a number of weighting factors in the cost function [3, 55].  

In the model proposed by J.F. Mangin, the method is concern about topology of the 

cortex ignoring the topology along with cortical volume. To avoid partial volume effect in the 

narrow sulci, approaches to determine Gray matter/white matter interface rather than 

CSF/Gray interface. Apart from this overall approach in this model, the precise technique is 
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also constrained with several factors. Thinning algorithm for skeletonization is highly 

sensitive to image noise and as a generic structural model of the cortical tomography based 

on only eight data sets is used as reference topography; the algorithm is inefficient in 

recognizing more variable sulci [56].    

Deformable ribbon of Davatzikos et al. is highly encouraging for topological mapping 

of the cortex and feature extraction from the curvature map and depth map for automatic 

identification, labelling and matching of the cortical fold [58]. Vaillant and Davatzikos (in 

1997) extended this model for parametric representation of the sulcal medial surface to 

extract sulcal ribbons and characteristics of the cortical shape [64]. But the designed external 

force propels the active contour towards spine of the ribbon instead of boundary between two 

objects. In this application it delineates the cortical topology halfway in the cortical thickness. 

It can not parameterise the CSF/Gray matter interface. Though the topology of the cortex is 

well maintained and can be used in cortical feature extraction, it may not be suitable for 

volumetric quantification or functional mapping.  In the question of automation, the manual 

placement of the initializing curve is a limitation, and so could be the tuning of the weights 

on the external forces [65]. In the control point based approach, human inteventions are 

needed to force the ribbon into the deep sulcal folds [3, 57, 58]. DFSA algorithm of 

Davatzikos and Bryan is a computationally demanding iterative process and manual 

intervention is required for close initialization in order to reduce the computational burden.     

Although volume measurement may be reliable with the approach of Kapur et al., the 

shape of the outer surface is a poor representation of the true surface [3, 59]. Use of 

morphological operation has introduced lot of approximation and empirically tuning of the 

parameters. It needs manual supervision and intervention if morphological operation fails to 

remove all non-brain tissues connected to cortex before refinement with the deformable 

model. Parameters of the internal energy are also dependent of the performance of the 

morphological operator and needs slice specific manual adjustment.  

The process of voxel growing in the model of Teo et al. is extremely dependent on  

precise knowledge of anatomy and most adversely, the user dependent parameter of the 

number of layers of gray matter is not uniform all over the cortex and varies according to the 

resolution of the image. It is only applicable for specific functional area at a time. If this 

selected parameter does not match properly with the resolution of the image, there is high 

chance of loss of cortical volume in the reconstructed image volume.   

Due to medial property of the GGVF deformable surface of Xu et al., it retrieves the 

central cortical layer but not the outer cortical surface. It may be useful for feature based 
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image registration but it can not meet other purposes like functional mapping or 

morphometric analysis. Besides this, the method depends on human interaction for extraction 

of intracranial tissue from entire brain image, for computation and acceptance of the 

isosurface as initial estimator of the cortical surface and depends on tuning of a number of 

parameters empirically [12, 61]. 

T-snake segments the Gray/White interface with minimum manual intervention, 

maintaining its topological details, but not the CSF/Gray interface of outer cortical surface.  

Because of level set implementation of the model of Zeng et al., segmentation 

algorithm has the advantage of handling highly convoluted structures. Coupled surface 

approach prevents the inner surface from collapsing into CSF and prevents the outer surface 

from penetrating non-brain tissue. However, the model is not free from manual intervention 

in terms of initialization of concentric spheres as starting point of coupled surface and also in 

the pre-processing. Performance of this model to determine the deep sulcal fold or other 

features is less dependent on the deformation method but depends more on the local operator 

that is the determinant of the transition of tissue classes. This operator indirectly depends on 

the voxel statistics. Apart from that, inter-subject variability of the cortical thickness and 

regional gradient of the cortical thickness (front to back progressively decreasing) can not 

balance automation of the process with accuracy of the result [9, 10, 66]. 

 From the limitations of the existing cortical reconstruction algorithm, we can see, 

maintaining entire brain volume without loss of tissue, preserving the detail topology of the 

brain cortex unaffected by the partial volume effect in the narrow deep sulci is still an open 

area of research especially the question of full automation.  

 

2.3 Approaches to Overcome the Shortcomings  

 

Considering potentialities and limitations of the existing deformable models applied for 

reconstruction of the outer cortical surface from MR image of brain we have developed a 

novel Advanced Anatomy Guided Hybrid Deformable (AAGHD) Model to make it fully 

automated with tuning of minimum number of parameters by hybridizing the essence of 

different deformable models. These models are interrelated with each other in a common 

space of a prior knowledge of the object shape and hybridized on a strong mathematical basis 

to address the ultimate objective.  
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2.3.1 Addressing the problem of image acquisition  

We tried to identify the basis of the drawbacks of all existing models. Actually all deformable 

models with or without incorporation of a priori knowledge of brain anatomy highly depends 

on parameters derived from image information namely pixel values of the classified tissues, 

relative differences of their pixel values, edge maps, gradient and so on. Apart from structural 

variability of the complex brain structure, common source of error is lack of specific 

information from a particular tissue class. Different tissue classes may share the same 

information, most importantly the pixel value. If specific non-overlapping information does 

not reside in the image at acquisition level, mere post-hoc processing is not enough to 

distinguish different tissue classes depending on the image information. In spite of advances 

in post hoc processing, image acquisition plays a central role to meet the objectives. Once the 

objective is defined, image acquisition should be done in a way that leads to minimum 

computational overheads with maximum accuracy. For this application we have focused on 

the highest contrast between white and gray matters as well as CSF and gray matters at 

acquisition level to explicitly delineate the CSF/gray interface without any post-hoc 

enhancement. The acquisition protocol has been detailed in section III. The resulting images 

of this protocol have brilliant gray-white contrast which is evident in a unique feature of the 

histogram. In the histogram, pixels of specific brain structures namely CSF, gray and white 

matters, background and bones have so distinct gray levels that they group into dominant 

modes with prominent valleys in between. CSF is confined in the lowermost range of the 

gray scale and the gray matter, background, white matter and bones are distributed in that 

order towards the lighter direction of the gray scale.  

 We were also concerned with the image acquisition time along with image contrast. 

Higher acquisition time may not be feasible in practical scenario, even if it produces great 

image contrast. The typical acquisition time was highly comparable with the other protocol 

and discussed in section III in details. Though application of Compressed Sensing (CS) to 

MRI offers potentially significant scan time reductions, we could not apply this technique in 

our data acquisition session. The transform sparsity of MR images and the coded nature of 

MR acquisition are two key properties enabling CS in MRI. In MRI, CS is claimed to be able 

to make accurate reconstructions from a small subset of k-space, rather than an entire k-space 

grid.  
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2.3.2 Incorporation of prior knowledge of anatomy  

We have exploited the most important aspect of deformable models that is the possibility of 

incorporating prior information on the shape of the object. Inherent structural complexity by 

means of highly convoluted shape and marked cross subject variability makes the task of 

reconstruction of cortex tough and challenging. Incorporation of concept of similarity or 

likeliness of this object with any other object for reconstruction will produce an approximate 

result only. Actually, cortex has a complex but well defined shape; leading to a description 

that cortex shapes like cortex. Accurate and fully automated reconstruction of this complex 

structure would require a high degree of application specificity as well as model specificity. 

Implementation of the mathematical model of the cortex itself as a template formed by 

exploiting the consistent features of the cortex are used in atlas based approaches. Instead of 

features of the cortex itself, its consistency regarding juxtaposition with the other tissue 

classes is used here to guide the reconstruction task. Tomographic image like MRI of a 

structurally normal brain provides only structural information of specific four tissue classes 

namely bones and soft tissue, CSF, gray matter and white matter along with background. By 

means of histogram statistics of the acquired image data, CSF has been easily classified and 

this CSF map which is typically confined in between meninges (part of the soft tissues) and 

cortical gray matter guides the deformable contours to converge with the outer surface of the 

gray matter.             

2.3.3 Hybridization of potentialities of existing model  

Failure of the existing models to address the problem accurately has encouraged designing 

other models and thereby it has produced a voluminous archive of deformable models. 

Instead of going for a new general approach, we have tried to find the positivity of 

hybridization of the different models for designing the algorithm specialized for cortical 

reconstruction only. After initial steps of tissue classification by means of histogram 

statistics, our model capitalizes on the merits of several existing deformable model to 

reconstruct the cortical topology accurately without loss of any brain volume. Hybridization 

techniques decompose the whole objective into multiple steps and analyze the ability of 

different models to meet the precise step along with their way of interactions on the 

mathematical basis to make it fully automatic in nature. While generalized approach is highly 

attractive to address the vast application range in the field of image processing, hybridization 

technique for specific application is attractive for its accuracy. In the proposed AAGHD 
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model we have fused the classical KWT snake along with GGVF model in the GGVF force 

field and a novel external force field. This hybridized deformable model is preceded by 

analysis of histogram statistics and followed by region growing operation for accurate result. 

 This hybridization idea actually stems from fusion idea. Fusion is the process or result 

of joining two or more things together to form a single entity. This idea can also be applied 

for computer algorithms. Fusion of algorithms is not consists of mere adding or subtracting of 

different algorithms, rather concatenation of idea of one algorithm with other in parts or as a 

whole to solve a predesigned problem synergistically. For our application, we have explored 

the potentialities of different algorithms and tried to fuse them with a prior knowledge of 

anatomy, rather than developing a general algorithm. In our model, we have fused low level 

processing with high level processing, again we have fused different deformable algorithms 

into single one, a new force field also fused with existing deformable algorithm and above all 

the entire process is fused all-round with a prior knowledge of anatomy. Extension of this 

fusion idea into machine learning has been discussed in section VI briefly, in the context of 

this model.     

2.3.4 Designing of new force field  

While hybridization of the existing deformable models with the proposed force field is not 

enough to meet the desired accuracy because of the inherent problem specific for the given 

application, we have designed a new external force to overcome the hindrance. The force 

field is designed for propagation of the parametric contour into deep narrow cortical fold 

where evolution of GGVF contour is restricted by the partial volume effect or sampling 

artifact. The objective of this force field is forceful propagation of the contour beyond 

spurious convergence due to partial volume effect in to narrow sulcal fold. This force field 

can be applied in general image processing to break the insignificant boundaries where 

strength of the boundaries is expressed parametrically with quantifying metrics. 
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3.1 MR Image Contrast 

 

Contrast can be defined as the intensity difference between different quantities being 

measured by an imaging system. It also can refer to the physical quantity being measured 

[67]. In case of image, it refers to the ability of the image to display differences of image 

intensity for tissues having different properties. A high contrast image shows a large intensity 

difference between two tissues whose properties differ only slightly. In a low contrast image, 

two different tissues lying side by side are relatively difficult to distinguish because the 

intensities of the pixels are nearly equal [68].  

MRI is capable of providing outstanding soft tissue contrast and imaging of flow 

effects [68]. Compared with other neuroimaging methods, MRI has extraordinary versatility 

for generating images of a wide range of different tissues. In MRI contrast is produced by 

controlling several different intrinsic parameters related to the chemical makeup of the tissues 

and extrinsic parameters not specifically related to the chemistry of the tissues. Intrinsic 

parameters are the relaxation constants T1, T2 and T2*, the proton density, the chemical shift 

and any flow within the tissue. Extrinsic parameters include the pulse timing represented by 

repetition time between subsequent radiofrequency excitation pulse (TR), echo time following 
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the excitation pulse (TE), inversion time (TI), flip angle and more. Contrast can be categorized 

into two major classes, static contrasts and motion contrasts. Motion contrasts are sensitive to 

the movement of spins through space (e.g. diffusion, perfusion) and static contrasts are 

sensitive to the type, number, relaxation and resonance properties of atomic nuclei within a 

voxel. Typical static contrasts are based on density (e.g. proton density), relaxation time (e.g. 

T1, T2, T2*), chemical concentration (e.g. lactate, acetylcholine) and even content of a 

particular molecular type (e.g. macromolecules).     

The goal of MRI is to produce contrast between tissue type based on differences in 

the way these tissues respond to different manipulations of the net magnetic field vector by 

means of RF energy and gradient field switching. Switching of the various parameters 

leading to signals being produced from anatomic structures during the imaging process is 

accomplished through the use of pulse sequences [68]. The pulse sequence is the most critical 

part of image acquisition, since it defines what the characteristics of the image will be [68]. 

There are many different pulse sequence designs which produce useful tissue contrast. The 

most basic are the spin echo pulse sequence, the inversion recovery spin echo pulse sequence 

and the gradient echo pulse sequence. The critical parameters of a pulse sequence specify the 

strength, temporal order, polarity, duration and repetition rate of RF pulses and gradients. The 

parameters related to image acquisition that allow the contrast to be optimized are described 

throughout this chapter. They include the TI, TR, TE, flip angle, slice thickness and more [68]. 

Among different contrasts, MR image influenced by static contrast is used mainly to 

determine brain anatomy due to their ability to illustrate basic tissue characteristics. As we 

are concern about structural brain anatomy, basic underlying source of image contrast i.e. 

spin density contrast and contrast based on relaxation times are highlighted in this section.  

 

3.1.1 Spin-density contrast 

 

For this contrast the image intensity is simply proportional to the local number density of 

spins contributing signal. Most of the spins are single proton nucleus of hydrogen (
1
H), so 

this is referred to as proton density contrast. Proton-density images provide contrast based on 

the sheer number of protons in a voxel, which differs in different tissue types [67]. At 

equilibrium, the longitudinal magnetization will be greater for greater proton densities. To 

maximize proton-density contrast, T1 and T2 contrast have to be minimized [68]. In practice, 

a TR greater than T1 and a TE less than T2 satisfy the criteria [67].  In case of spin echo 

imaging, a long TR is used so that the longitudinal magnetization differences between tissues 



due to T1 are mostly eliminated because the tissues have time to nearly return to equilibrium 

[68]. To preserve this information so that T

image contrast, a very short TE 

value of the tissue being imaged (e.g. two to three times as long), the protons will be nearly 

fully recovered after each excitation. Likewise, 

(e.g. one tenth as long), there will be minimal decay before image acquisition [67]. Figure 3.1 

shows a proton-density weighted image of brain and figure 3.2 schematically diagrams a 

pulse sequence for generation of proton
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Tissues with large numbers of protons include fats and fatty components, but there is no 

marked difference between white and gray matters of brain [67, 70]. This means that, if 

relying on proton density alone, MR images would show limited tissue contrast [70].   

 

3.1.2 Contrast based on relaxation times 

 

Different tissues in the head have different NMR relaxation times. Image contrast produced 

by exploiting these differences is derived from differences in T1, T2 or T2* and these are 

known as T1-weighted, T2-weighted and T2*-weighted images respectively. This type of 

contrast is achieved by regulating two fundamental sequence timing parameters: TR and TE. If 

consecutive excitations occur at time intervals not enough to allow full recovery of the 

longitudinal magnetization, the subsequent transverse magnetization, which translates to 

detectable MR signal, can be expressed as [11, 67] 

                                              ( ) 21 //

0 1)(
TtTT

xy eeMtM R −−
−=                        (3.1) 

This equation shows that the MR signal depends not only on the original magnetization (i.e. 

proton density) but also on the properties of the tissue being imaged (i.e. T1 and T2 relaxation 

times). The term )1( 1/TTRe
−

− accounts for the incomplete recovery of the longitudinal 

magnetization, which will reach a steady state after repetitive excitations [67]. Approximate 

value of time constants T1 and T2 at a field strength of 1.5 T for three major tissue classes of 

brain are shown in Table 3.1 as per reference 1 and these values are used in our experiment 

mentioned in the following section.   

 

 Gray matter White matter Cerebrospinal fluid 

T1 760 ms 510 ms 2650 ms 

T2 77 ms 67 ms 280 ms 

 

Table 3.1: approximate values for the time constants T1 and T2 at field strength of 1.5 T 

 

The second governing factor TE is the time interval between excitation and data acquisition. 

In equation 3.1, we can replace the term t with TE to give the MR signal for an image with a 

given TE [67].    
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Equation 3.2 shows the basis for manipulating the signal from a particular tissue type by 

regulating TR and TE.  

 

T1-weighted contrast 

 

Images are called T1-weighted if the relative signal intensity of voxels within the image 

depends on the T1 value of the tissue. The tissue that has a shorter T1 value recovers more 

rapidly and thus has greater MR signal. For any two tissues that differ in T1, there is an 

optimal TR value that maximally differentiates between them [67]. To achieve exclusive T1 

weighting, a spin echo pulse sequence is designed to reduce the contributions due to T2 and 

spin density. This is achieved by using an intermediate TR (usually less than 500-600 ms) and 

a short TE (less than 20 ms) [68]. At very short TR (shorter than the tissue T1), there is no time 

for longitudinal magnetization to recover and thus no MR signal is recorded for either tissue 

and at very long TR (greater than the tissue T1), all longitudinal magnetization will be similar 

between the tissues [67]. Signal intensity modulated or weighted by a factor that depends on 

the ratio of TR and T1 [70].  At intermediate TR, there are clear differences between them. 

Short TE is essential to minimize T2 contrast. When TE is much less than T2, the term 2/TTEe
−

from equation 3.2 becomes approximately equal to one. If TE is short, then the T2 dephasing 

does not have time to occur and the differences due to T1 are preserved in the magnitude of 

the signal converted to image intensities [68]. The proton density of the tissues always 

contributes to the contrast, because the number of spins in the imaging volume determines the 

original net magnetization. Observing the MR signal  at Figure 3.3, it can be noted that, the 

shortest T1 relaxation time is due to fatty tissue outside the skull as well as bone marrow 

(very light), while the longest is due to CSF (appears dark). Longitudinal recovery curves for 

major three tissue classes of brain at figure 3.4 shows that white matter returns to equilibrium 

faster than gray matter, which returns faster than CSF. It also shows that intermediate TR 

differentiates them clearly and short TE helps to maintain it.   

 

T2-weighted contrast 

 

The amount of signal loss depends on the time between excitation and data acquisition i.e. 

TE. An optimal combination of TR and TE exists to maximize the T2 contrast of an image of 

a multi tissue organ. If TE is very short, then little transverse magnetization will be lost 



Figure 3.3: T1-weighted spin echo image at field strength of 1.5 T
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T2* Contrast 

 

It is often more a secondary property of the geometry of the sample rather than a primary 

property of the tissue [70]. The combined effect of transverse relaxation due to spin-spin 

interaction and changes in spin precession frequencies due to inhomogeneities in the 

magnetic field is given by the time constant T2*. It forms the basis for BOLD-contrast fMRI 

and venogram of brain in case of anatomical imaging. T2* images are sensitive to the amount 

of deoxygenated haemoglobin present, which changes according to the metabolic demands of 

active neurons [68]. T2* contrast is also provided by pulse sequences with long TR and 

intermediate TE values but the pulse sequence must use magnetic field gradients to generate 

the signal echo. Usually gradient-echo sequences are used. In this case TE is the time between 

the initial excitation of the spins and the centre of the gradient echo [70].         

  

3.2 Signal Attenuation from Gray Matter 

 

The goal of this acquisition protocol is to produce contrast between different brain tissues, 

namely CSF, gray matters and white matters based on differences in the way these tissues 

respond to different manipulations of the net magnetic field vector by means of RF energy 

and gradient field switching. The most commonly used structural contrast for anatomical 

images of the brain is T1 weighting as there is marked differences of T1 value between major 

three tissue classes of brain, namely CSF, gray matter and white matter. Inversion recovery 

which begins the sequence with a 180
0
 inversion pulse boosts T1 contrast by enhancing the 

differences of T1 relaxation among different tissues [11, 67, 68, 69, 70]. In this pulse 

sequence there is an initial preparatory 180
0
 RF pulse, followed by a standard spin echo pulse 

sequence after inversion time (TI). This “inversion” of the magnetization and its subsequent 

recovery dictates the contrast in the images [69]. The choice of TI changes the contributions 

of different tissues with different T1 relaxation times to the image contrast. Depending on the 

choice of TI and the particular T1 relaxation times, the signal from certain tissues will be 

emphasized, and the signal from other tissues suppressed [69, 70]. In this sequence, 

longitudinal magnetization of any tissue, in crossing from a negative to a positive value, must 

pass through zero. If the MR signal is read out when the magnetization is near zero, little or 

no signal from a selected tissue to be detected based on T1 relaxation time. This is called null 

or bounce-point or zero-crossing [11, 68]. Different variant of inversion recovery sequence 
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modified with this ‘signal nulling effect’ are STIR (Short Tau Inversion Recovery) and 

FLAIR (Fluid Attenuated Inversion Recovery) have been designed to suppress the signals 

emitted from fat and CSF respectively [68, 69]. Signal attenuation from gray matter is 

another modification of inversion recovery sequence in terms of signal suppression from the 

gray matters by exploiting this signal nulling effect.    

 

3.2.1 Motivation  

 

In spite of much advancement of MR pulse sequence designing, high contrast MR image of 

brain for high level image processing is still an open challenge. Apart from complexity and 

cross subject variability of the anatomic shapes of interest, in MRI, post-hoc processing is 

limited by factors like image contrast, resolution, SNR, RF field inhomogeneity, sampling 

artifact due to indistinct and discontinuous boundaries [3]. As a consequence, the spectrum of 

automated segmentation of brain and its substructures has been extended from histogram-

based thresholding [71, 72] to implementation of parametric and geometric deformable 

contour [55, 56, 57, 58, 59, 60, 61, 62] and atlas-based reconstruction of cortical and 

subcortical structures [3, 6]. Though all approaches address the challenge with success to a 

great extent, question of automation, close initialization of the deformable models and 

validation of the end result are still under investigation. This issue is detailed in part II. 

Actually all approaches suffer from varied amount of human interaction, approximation and 

assumption, heuristically tuning of several parameters and above all the questionable 

representation of the true surface. Actually all mathematical models with or without 

incorporation of a priori knowledge of brain anatomy highly depends on parameters derived 

from image information namely pixel values of the classified tissues, relative differences of 

their pixel values, edge maps, gradient and so on. Apart from the structural variability of the 

complex brain structure, common source of error is lack of specific information from a 

particular tissue class. Different tissue classes may share the same information, most 

importantly the pixel value. If specific non-overlapping information does not resides in the 

image at acquisition level mere post-hoc processing is not enough to distinguish different 

tissue classes depending on the image information. In spite of advancement of post hoc 

processing, image acquisition plays the central role to meet the objectives. Automated 

segmentation of the gray structures of brain to reconstruct the cortical surface and 
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morphometric analysis of the subcortical gray structures are the primary challenge of brain 

image registration [13, 14], co-registration of structural image with functional neuroimaging 

like PET, SPECT or fMRI [19, 20], image guided neurosurgery [15, 16], brain geometry 

analysis [17, 18], temporal evaluation of neurodegenerative diseases and more advanced 

application of brain image. In order to address this challenge, we have attempted to design a 

standard acquisition protocol of MRI with maximum gray-white and gray-CSF contrast.  

 

3.2.2 Mathematical basis for parameters selection  

 

In MR image, pixel value is a multiparameter function depending on the intrinsic parameters 

related to the chemical makeup of the tissues, extrinsic equipment parameters as well as their 

way of interaction [11, 68]. Unalterable intrinsic tissue parameters are nuclear spin density 

(ρ), spin – lattice relaxation time (T1), spin – spin relaxation time (T2), T2*, molecular 

motions, susceptibility effects, chemical shift difference etc. The changeable extrinsic 

parameters which have strong impact on the pixel value are FOV, slice thickness, spacing, 

matrix size, number of excitation, phase FOV, bandwidth, homogeneity of the static magnetic 

field and so on. To get full control over the pixel value we neither yield to the constraint of 

the intrinsic parameters nor depend on the extrinsic parameters. Rather we have explored the 

mathematical basis of their way of interaction to get the best possible result.  

The acquisition protocol has been determined to maximize the contrast between white 

and gray structures with optimum SNR. Contrast between two classes of tissues can be 

expressed generally by contrast index A B

AB

ref

I I
C

I

−
=  where, IA is image intensity of tissue A, IB 

is image intensity of tissue B and Iref is normalizing reference value. The contrast index for 

MRI is a multiparameter function as *

1 2 2( , , , ...)
AB

C f T T Tρ= , where, function f is dependent on 

the acquisition protocol. Depending on the chosen parameters, the contrast may be T1 

weighted, T2 weighted or proton density (ρ) weighted. 

To generate greater T1 contrast we deal with the inversion recovery sequence. Since the 

goal of imaging is to differentiate between tissues having different relaxation times, T1 

weighting produces better gray-white contrast than T2 weighting. T1 differences between 

CSF-gray matters and gray matters-white matters are more distinct than T2 differences 

between these tissue classes. Inversion recovery produces images that are highly sensitive to 
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T1 relaxation times by preparing the magnetization with an additional 180
0
 RF pulse before 

the body of the fast SE pulse sequence. Because the inversion pulse flips the net 

magnetization to the negative state, it effectively doubles the dynamic range of the signal 

[67]. MR images are usually reconstructed in a way that makes them insensitive to the phase 

of the signal. As a result, MZ can only vary between 0 and 1. In case of phase-sensitive 

images MZ can vary from -1 to 0 to 1; that is the dynamic range for T1 contrast is doubled. 

Phase-sensitive images are more sensitive to image distortions produced by motion or 

magnetic field inhomogeneity [69].  In inversion-recovery spin echo sequence, T1 weighted 

image I can be expressed as [11]  
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C is a scaling constant that depends on the encoding and image reconstruction methods, 0

ZM  

is bulk magnetization. Though this sequence can generate T1 and T2 weighted contrast, in 

practical scenario, for very small TE the expression denotes T1 weighting and the expression 

becomes:  
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With this image equation, contrast between gray and white matters CGW is given by  
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where 
Gρ  and 

Wρ are the spin densities for the gray and white matters respectively and 
1,GT ,

1,WT are the T1 times for gray and white matters respectively. Similarly CSF-gray matter 

contrast, CCG is also function of TI and TR and can be expressed as  

























−+










−−−

























−+










−−=

CSF

R

CSF

I
CSF

G

R

G

I
GCG

T

T

T

T

T

T

T

T
CC

,1,1,1,1

expexp21expexp21 ρρ
 (3.6)      



Where, CSFρ and CSFT ,1 is the spin density and the T

contrast is a function of two independent variables, T

values of these variables for maximum 

have designed a sequence to suppress the signal from the gray matter. 

Selection of TI: 

Unlike standard T1 weighted spin echo sequences, T
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will contribute no signal in the final image. Our aim is to suppress the 

for a given field strength with prefixed TR value. 

longitudinal magnetization of three major tissue classes of brain, namely white matter, gray 

ter and CSF is shown in Figure. 3.7 with zero-crossing of gray matter. We intended to 

value at zero crossing of gray matter. 
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Selection of TR:  

Choice of TI has a modest dependency on TR. The TI needed to suppress a particular tissue’s 

signal will be reduced if the TR is shorter and conversely, increased if the TR is longer. In 

general, long TR is desirable to maximize tissue contrast and the SNR (within the constraints 

of an acceptable scan time, which is proportional to TR.) [69]. For this purpose, putting the 

value of TI of equation 3.7 with 0

1T  = 
1,GT  in equation 3.5, multivariate function CGW (TI, TR) 

is reduced to a function of TR only and expressed as:  
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For optimal contrast, we have 0GW RdC dT = .On expansion the expression becomes:                                                            
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Using T1 values for white and gray matters for specific field strength, the corresponding TR 

value is to be solved numerically. For given field strength of 1.5 T, putting T1,G = 760 ms and 

T1,W  = 510 ms [11] in equation 3.9 the equation for optimal value of TR is solved. The curve 

produced in this attempt is shown in Figure 3.8. After TR = 0 ms, the curve increases  

 

Figure 3.8: TR values for optimal contrast 
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monotonically up to its global maxima and becomes asymptotic in nature beyond that. TR = 0 

ms indicates minimum contrast. For maximum contrast higher value of TR has been searched. 

As the total scan time is directly proportional to TR, practically TR could not be increased 

infinitely considering patient compliance. Though exact solution was not met, we fix the TR 

value at 10,000 ms heuristically to optimize the image contrast and the total scan time. At 

TR=10,000 ms value of expression in equation 3.9 is in the order of 10
-6

 and assumed to be 0 

for practical purposes. 

By using this TR value we can get the appropriate TI from equation 3.7. For TR = 

10,000 ms, corresponding TI = 527 ms. These TR and TI are two essential inputs for final 

image equation. 

 

Selection of TE: 

To minimize signal loss and T2 effect in the output image, hardware compatible minimum TE 

is used in this acquisition protocol. For practical purpose, TE varies from 11 to 14 ms.   

 

3.2.3 Analytical discussion on selected parameters  

 

To control the pixel value of the image we have explored the mathematical dependency of the 

controlling parameters namely TI, TR and TE to get the best possible result. Though the output 

image is T1 weighted, proton density of the tissues always contributes to the contrast, because 

the number of spins in the imaging volume determines the original net magnetization [67]. As 

the TR used is much greater than the T1 value of the tissues being imaged, the protons will be 

nearly fully recovered after each excitation. Likewise, as the TE value is much less than the 

T2 value of the tissues, there will be minimal decay before image acquisition. As a 

consequence proton-density weighting is also attributed to the image along with T1 

weighting. The most crucial step is optimization of TI value as T1 contrast during inversion 

recovery, primarily dependent on this parameter. Since we focused on better visualization of 

gray matter in the output image, we were concern about greater contrast between gray and 

white matter for inner boundary of cortical gray matter and boundaries of all subcortical gray 

matters as well as contrast between CSF and gray matter for distinct boundary of outer 

cortical surface. TI has to be selected in order to maximize gray-white contrast along with 

CSF-gray matter contrast as high as possible. To maximize gray-white contrast we have tried 
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to suppress signal from gray matter by selecting the TI at its zero-crossing during recovery of 

longitudinal magnetization. As T1 value of gray and white matters are markedly different, 

signal suppression of gray matter does not suppress any signal from the white matter. Now, 

the question is whether signal difference from white and gray matter with this TI is maximum 

or optimum for overall image quality.  

Optimum Gray-white contrast 

For a given TR and specific field strength, contrast between gray and white matter is a 

function of TI. We can get the curve of gray-white contrast (CGW) from equation 3.5 for field 

strength 1.5 T with pre-specified TR value. The curve of gray-white contrast as a function of 

TI is shown in Figure 3.9 with its maxima at TI equals to 400 milliseconds approximately. 

This value of TI is much higher than the TI value of STIR sequence (175 milliseconds) or 

commonly used TI value of conventional inversion recovery pulse sequence (150-250 

milliseconds) and markedly lower than the TI used in FLAIR sequence [68, 69]. As a 

consequence, gray-white contrast  

 

Figure 3.9: Gray-white contrast as a function of TI 

is away from its maximum value in the images from those sequences. Signal attenuation of 

gray matters with TI value of 527 millisecond is also little away from maximum gray-white 

contrast though very close to it in comparison with other inversion recovery pulse sequences. 

Rationale of this deviation from the value of TI for the maximum gray-white contrast can be 

better explained in the ground of CSF-gray matter contrast. Delineation of subcortical gray 
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matter solely dependent on gray-white contrast, but demarcation of cortical gray matter is 

dependent on both gray-white contrast as well as CSF-gray contrast for its inner and outer 

boundaries respectively.  

Optimum CSF-gray contrast 

For T1 values of CSF and gray matter for specific field strength and for specified TR, CSF-

gray matter contrast, CCG is also function of TI and expressed in 3.6. The curve of CCG is 

shown in Figure 3.10 for field strength 1.5 T and TR value of 10,000 milliseconds. It is clearly 

shown in Figure 3.10 that for the maximum CSF-gray contrast, TI is to be around eight 

hundred milliseconds. It is neither close to the commonly used TI value for the conventional 

inversion recovery sequence or any of its modification namely STIR, FLAIR or even proposed 

acquisition protocol for signal suppression from gray matter. It is also noted from Fig. 3.9 that, 

TI value of 800 ms produces very poor gray-white contrast (CGW). So, maximum CSF-gray 

contrast can be achieved at the cost of gray-white contrast.          

 

Figure 3.10: CSF-gray contrast as a function of TI 

Justification of TI value for zero-crossing of gray matter 

Fig. 3.10 shows maximum CSF-gray contrast at TI value of around 800 ms while Figure 3.9 

shows the highest gray-white contrast can be achieved at TI value of around 400 ms. 

Optimization of TI value is essential to get the optimum gray-white and CSF-gray contrast 

instead of the maximum contrast of any one of them.  For this optimization, we have designed 
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a cost function (CTI) based on sum of the absolute difference [70] between maximum contrast 

and contrast from the current value of TI for each contrast, namely gray-white and CSF-gray 

contrast and expressed in equation 3.10.  

( ) ( )CG

Max

CGGW

Max

GWTI CCCCC −+−=            (3.10) 

Where, Max

GWC and Max

CGC are the maximum value of gray-white contrast function, CGW and CSF-

gray contrast function, CCG respectively. Corresponding TI for the minima of CTI is the 

solution for optimum TI for both the contrast. Minima of CTI is determined by calculus-based 

approach and solved numerically in order to get the corresponding value of TI of 625 

milliseconds approximately. The curve of CTI is shown in Figure 3.11. It can be noted from 

Fig. 3.11 that, conventional range of TI value of 150-200 millisecond is far away from the 

optimum TI value while considering gray-white and CSF-gray contrast simultaneously but TI 

value of zero-crossing of gray matter, 527 milliseconds is close to this optimum value.  Exact 

optimum value of TI of 625 milliseconds is not used as gray-white contrast is compromised  

 

Figure 3.11: TI for optimum gray-white and CSF-gray contrast   

with this TI without marked improvement of CSF-gray contrast in comparison with TI value of 

527 milliseconds. It is clearly evidenced in Fig. 3.9 and Fig. 3.10 that, shifting of TI value 

from theoretical optimum value of 625 milliseconds to zero-crossing of gray matter of 527 

milliseconds increases the gray-white contrast at the cost of slight decrease of CSF-gray 

contrast. 
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3.2.4 Results 

Though the acquisition protocol has been tested with 1.5 T field strength, the same 

mathematical basis for optimum TI and TR can be applicable for any field strength with given 

T1 value of gray matter, white matter and CSF for that field. Acquisition parameters are 

finalized for 1.5 T as follows: inversion-recovery spin echo sequence, coronal, axial and 

sagittal sections, TR = 10,000 ms, corresponding TI = 527 ms, hardware compatible minimum 

echo time TE = 11 ms, slice thickness 3 mm, FOV= 210-230 mm and base resolution 256. The 

protocol has been tested with 1.5 T Siemens and GE scanner on 34 individuals of eastern and 

south India in the age group of 19 to 32 years after taking written consent with satisfactory 

outcome. Total scan time varies from 8 to 10 minutes. Unprocessed images of this protocol are 

illustrated in Figure 3.12. 

 

3.3  Metrics of image quality 

3.3.1 Observer assessment  

Qualitative assessment   

The resulting images of this protocol have brilliant gray-white contrast. Concordance of a 

group of anatomists on identification of finer details of the gray matters from unprocessed 

images substantially establishes the potential of this protocol. No post-hoc processing is 

required for visualization of the delicate gray structures in the images produced by this 

protocol. This ranges from the gray bridges between the caudate and putamen, intensity 

variation in globus pallidus and putamen, distinct boundary of the hippocampus and fornix, 

red nuclei, substantia ferrugenisa of the fourth ventricle, cerebellar folia, to intracerebellar 

dentate nuclei. Though visual evaluation usually suffers from subjective variations, consistent 

findings of the intricate details of the structural organization of the brain by the 

neuroanatomists defy this pitfall of the qualitative evaluation.   

 

Quantitative assessment  

Convincing qualitative assessment has been established on objective criteria to eliminate the 

fuzziness of the subjectivity. In biomedical image, manual segmentation is reasonably 

unacceptable due to dearth of reproducibility. In case of MR image, source of this error roots 

in the poor image contrast and resolution that produce ambiguous boundary between two  
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Figure 3.12: MR Image of brain acquired using the proposed protocol 

tissue classes [3]. That’s why high reproducibility on manual segmentation of unprocessed 

images is definitely attributed to easily distinguishable boundary of high contrast images.   

Manual segmentation of the gray structures by several experts as well as amateurs has 

been done and their results are analyzed objectively. To measure the similarity quantitatively, 

we use an index derived from the kappa statistics by Jijdenbos et. al.[73]. If area under the 

segmented region by an expert is denoted as A1 and the same by another expert is denoted as 

A2, then according to [74], the similarity index S  is expressed as  

1 2

1 2

2
A A

S
A A

=
+

I
           (3.11) 
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where { }0...1S ∈ . This index is sensitive to both size and location. It also weights heavily the 

common area between overlapping regions [73]. In our test result, in all cases the similarity 

index for two manually segmented structures is inevitably much greater than 0.7, which 

proves an excellent agreement [3, 74].  

1) Agreement between experts: Four neuroanatomists manually segmented the entire brain 

as well as cortical and subcortical gray structures. The segmented subcortical gray structures 

include head of the caudate nucleus, globus pallidus and putamen, thalamus, hippocampus, 

and red nucleus. For a particular structure segmentation is done on the same slice by all the 

experts and similarity of each pair is established by high similarity index (inevitably more 

than 0.96). 

2) Agreement between expert and amateurs: To eliminate the bias of prior knowledge of 

neuroanatomy and to emphasize only on the gray-white contrast, we use the same statistical 

measure to quantify the agreement between the structures segmented by expert and amateur. 

In this experiment a group of people without any prior knowledge of anatomy is chosen and 

prompted to delineate a specific structure of the brain solely depending on the gray-white 

contrast. These segmented structures are quantitatively compared with the same structures 

segmented by the experts. Excellent agreement in this case is solely attributed to the high 

contrast between the white and gray structures. TABLE 3.2 shows the quantitative 

measurement of comparison between segmented images of amateurs and that of expert 1.  

Better delineation of the boundary of the gray structures reduces subjective bias in manual 

segmentation by experts and it is quantitatively evidenced by very high similarity index. To 

eliminate the bias of the prior knowledge and to attribute this credit to the contrast, we 

compare manual segmentation between expert and amateurs. TABLE 3.2 shows consistent 

high value of similarity index for all gray structures except hippocampus. Relatively poor 

index value for this structure can better be explained by the inherent biological property 

rather than technical inefficiency. Because of gradual transition of hippocampal allocortex to 

parahippocampal neocortex, proper delineation of the structure depending only on contrast is 

impossible. This lacuna was masked in comparison of the structures segmented by the experts 

due to prior anatomical knowledge but become prominent during comparison between 

structures segmented by expert and amateurs. 
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TABLE 3.2.  Similarity Index 

Structures Case 1 Case 2 Case 3 Case 4 

Whole brain 0.98 0.99 0.99 0.97 

Cortex 0.98 0.97 0.99 0.98 

Caudate 

head 

0.99 0.97 0.96 0.99 

GlobusPalli

das 

0.96 0.95 0.97 0.97 

Putamen 0.99 0.94 0.99 0.98 

Thalamus 0.89 0.92 0.90 0.84 

Red nucleus 0.99 0.98 0.97 0.99 

Hippocamp

us 

0.86 0.82 0.80 0.87 

 

3.3.2 Histogram analysis 

Global Multilevel Thresholding  

Histogram of the image carries some unique but consistent features which are attributed to 

the high gray-white contrast as well as CSF-gray contrast. Among all structures of the 

acquired image, main tissue classes are white matter, gray matter, CSF and bone for further 

evaluation and post hoc processing. In the histogram, pixels of all the aforesaid structures 

have so distinct and non-overlapping gray levels that they group into dominant modes with 

prominent valleys in between. It is easy to see that CSF is confined in the lowermost range of 

the gray scale and the gray matter, background, white matter and bones are distributed in that 

order  towards the lighter direction of the gray scale. 

Pixel values of these four anatomical objects and the background are so distinct that 

five dominant modes are easily identified in the histogram. Global multilevel thresholding by 

heuristic approach, based on visual inspection on the left most image of the upper row of 

Figure 3.12 is illustrated in Figure 3.13. Faded out section in the first column denotes  



Figure 3.13: Histogram with faded out thresholded region on

 

 

 

 

 

Histogram with faded out thresholded region on left and the segmented image on right
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left and the segmented image on right 
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thresholded portion and the second column is of the corresponding segmented images. 

In all the images of our dataset, thresholding of the first mode, HCSF from the lower extreme of 

the histogram to the nadir of the first valley (gray value 0-30 in Fig. 3.13) is dominated by the 

CSF. Thresholding of the second mode, HGRAY (30-120 in Fig. 3.13) produces mostly the 

segmented image of gray matters along with ependymal lining of the ventricles and the dura 

matter. Thresholding of the third mode, HBACK (120-160 in Fig. 3.13) mainly segments out the 

background along with some intracranial region. Segmented out image of the fourth mode, 

HWHITE (160-220 in Fig. 3.13) solely consists of white matter and that of the fifth mode, HBONE 

(220-255 in Fig. 3.13) represents the bones. This test shows that in the histogram, pixel values 

of the gray matters ranging over the second mode is far away from the fourth mode, that is, 

distribution of the white matter, due to marked difference between their absolute pixel values.  

It is clearly shown that, from the histogram one can easily identify a mode actually 

representing a given anatomical structure by simple global thresholding. Very wide gap 

between distribution of gray structures (HGRAY) and that of white matter (HWHITE) certainly 

indicates very high gray-white contrast with respect to absolute pixel values of those 

structures. This is also true for distribution of pixel value of CSF and gray matter. As a 

consequence outer boundary of the cortical gray matter that is CSF-gray interface and inner 

boundary of the cortical gray matter that is gray-white interface both are highly distinct. 

Boundaries of the subcortical gray matters are also very distinct because of optimum gray-

white contrast. 

Comparison with other image histogram  

The proposed acquisition is modification of well known inversion recovery pulse sequence to 

generate T1 weighted image of brain. As inversion recovery sequence and its existing 

modification, FLAIR and T1-weighted images are well practiced in clinical and research 

purpose, comparison between those images and their histogram with images of the proposed 

protocol and its histogram is essential. Every pulse sequence has its own merits and is used in 

specific purpose. While T1 weighted images and inversion recovery is used in general purpose 

for visualization of brain tissue and FLAIR is used to suppress the signal from fluid (CSF). 

The proposed protocol for signal attenuation from the gray matter has been designed for better 

visualization of cortical and subcortical gray matters for segmentation, morphometric analysis 

and co-registration with functional brain images. This comparison is to determine prior to any 

processing task whether any existing protocol can serve the purpose in better way. Figure 3.14 



shows images with different protocols in the same field strength (1.5T) and essential 

parameters of those protocols along with corresponding histograms. 

 

Figure 3.14: Images from different protocols in s
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parameters of those protocols along with corresponding histograms.  

 

(a) 

 

(b) 

 

(c) 

Images from different protocols in same field strength (1.5 T)

 

white contrast is reflected as markedly separated distribution of 

CSF, gray matter and white matter in the histogram. From the Figure 3.14 (a) and 3.14

be noted that no tissue specific information can be obtained from the histogram of FLAIR 

weighted spin echo images because of overlapping pixel values of different tissue 

(a), two separate distribution is noted, first one for CSF and the 
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separate distribution of white and gray matter as well as CSF is not conspicuous in this 

Inversion Recovery  

TI=250 ms, TR=6700 ms, TE=14 ms 

FLAIR 

TI=2500 ms, TR=8100 ms, TE=114 ms 

Spin echo (T1 weighted) 

TR=500 ms, TE=8 ms 
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histogram. It is because gray-white contrast is very low while contrast between CSF and the 

intracranial tissues is high enough due to signal suppression of fluid in this FLAIR sequence. 

Histogram of the conventional inversion recovery sequence shown in Figure 3.14 (c) and it 

can be noted that multiple distributions is noted though out the entire gray scale as histogram 

of the images of our proposed protocol. Further analysis of the histogram of Figure 3.14 (c) 

reveals CSF is distributed to the lower most limit of the gray scale followed by the 

distribution of the gray values of the gray matter. Being close to the distribution of the gray 

matter, gray value distribution of the white matter overlaps the gray value distribution of the 

background and fails to generate separate conspicuous mode in the histogram. Gray values of 

CSF, gray matter and white matter are distributed separately but very closely in comparison 

to the histogram of the images of signal attenuation from the gray matters due to suboptimal 

gray-white and CSF-gray contrast. Mathematical basis for gray-white and CSF-gray contrast 

for all these images especially conventional inversion recovery and the proposed 

modification for signal suppression from the gray matter is discussed in detail in 3.2.3. 

 In comparison with other images it is noticed that only inversion recovery pulse 

sequence with usual range of TI is comparable with the images with suppressed signal from 

gray matter in terms of multimodal distribution of pixel values in the histogram. But, because 

of suboptimal contrast CSF-gray and gray-white contrast, modes in the histogram are not 

distributed wide apart. As a consequence single mode is generated by overlapping pixel 

values of multiple tissue classes. That’s why no tissue specific information can be retrieved 

from their histogram.  

3.3.3. Contrast to noise ratio 

In MRI, to assess the relative signal intensity between two relevant tissue classes, contrast to 

noise ratio (CNR) is more reliable metric than signal to noise ratio (SNR). It is the 

relationship of signal intensity differences between two regions of interest, scaled to image 

noise. CNR between gray and white matter, C can be defined as follows:  

σ

WG SS
C

−
=          (3.12) 

where, GS and WS are signal intensities for gray matter and white matter respectively and is 

the standard deviation of the image noise. We have compared CNR between gray and white 

matter of the proposed GrAIR protocol with other standard protocols with commonly used 

parameters values in the same field strength of 1.5T. TABLE 3 compares CNR of different  
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TABLE 3.3  CNR between gray and white matter 

Acquisition protocol Parameters CNR 

TR TE TI 

GrAIR 10000         11 527 10.11 ± 1.45 

FLAIR  8100 114 2500 4.11 ± 0.95 

Spin Echo (T1- 

weighted) 

500 8 - 6.21 ± 1.23 

Inversion Recovery  6700 14 250 6.62 ± 1.78 

 

images with different protocols and their essential parameters. It is clearly evidenced that, 

images with GrAIR protocol shows highest CNR.     
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PART IV 

EXTERNAL FORCE FIELD TO OVERCOME 

PARTIAL VOLUME EFFECT  
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NEWLY DESIGNED EXTERNAL FORCE FIELD  
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4.1 Motivation of Construction 

 

Cortex, the outer most layer of the brain is constituted of gray matter placed between CSF on 

the outside and white matter inside. The cortical layer of the gray matter is highly convoluted 

which produces numerous folds and deep narrow fissures called sulci. Cortical reconstruction 

aims to represent the cortical surface parametrically, preserving the cortical topolology in as 

much detail as possible. For this purpose two morphological approaches are possible, the first 

one is detection of CSF/Gray matter interface and the second one is Gray matter/white matter 

interface. Though both approaches can preserve the cortical topology, only the first approach 

preserves the entire brain volume in addition. Cortical reconstruction maintaining the 

topology only has got immense applications like feature extraction, image registration, atlas 

formation, automated recognition of the sulci, model-based inter subject elastic matching, 

cortical warping and many more. But preservation of the precise volumetric information 

along with topological detail is applicable in more extensive domain like morphometric 

analysis, functional mapping, study of diseases and more in addition to the previously 

mentioned applications. Though reconstruction of the CSF/Gray interface is appealing and 

attractive, it is limited by the apparently insurmountable challenge of partial volume effect of 

the sampled image data. The true CSF/Gray matter interface is difficult to trace when cortical 

fold is narrow with respect to image resolution due to the partial volume effect or sampling 

artifact (shown in Fig. 4.1).  



In order to avoid this problem, most of the researchers initiate the primary estimator 

of the deformable contour close to the gray ma

cortical topology. As an obvious consequence, most of the final results converge at gray 

matter/white matter interface [52] or half way through the cortical width [57, 58, 61]. Though 

the deformable models of A. D

cortical surface at CSF/gray matter interface, both models are dependent on some statistical 
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Fig. 4.1: Resolution problem in sampled image data: (a) Schematic represen

cortical folds (b) Schematic representation of sampled image of the cortical folds, 

emphasizing the resolution problem due to partial volume effect at narrow region (red circle)
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partial volume effect is the main driving force for construction of this force field. It is 

specifically designed for this cortical reconstruction preserving the entire brain volume when 

the initial deformable estimator approaches from outside to define the CSF/Gray ma

interface parametrically.          
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the deformable models of A. Dale and M. Sereno and that of Teo et al. extracts the outer 
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Resolution problem in sampled image data: (a) Schematic representation of real 

cortical folds (b) Schematic representation of sampled image of the cortical folds, 

emphasizing the resolution problem due to partial volume effect at narrow region (red circle)

reference values (reference pixel value of the gray matter and reference range of the cortical 
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4.2 Mathematical Foundation of the Force Field   

 

The force field is designed to force the parametric active contour to penetrate beyond 

sampling artefacts caused by the partial volume effect. This force field is not meant for 

cortical reconstruction independently, but it is obviously an essential part of the algorithm for 

fully automated reconstruction of cortex described in detail in section V as the AAGHD 

model. Mathematical foundation of this force field is based on the GGVF field proposed by 

C. Xu et al. with relevant modification in its data term. GGVF field has been chosen for this 

force field because of two reasons:   

1. Computational diffusion process of the force field increases the capture 

range to attract the contour towards the strong points of the images 

predefined by the data term from far away. 

2. Better convergence of the contour with the boundary concavity, especially 

at long and thin boundary indentation which is crucial for this application. 

A typical GGVF model uses gradient of the edge map as its data term for convergence of the 

contour with object boundary. But the problem here starts where standard algorithms finish. 

Actually, the initial estimator of this problem resides on spurious but strong edges formed by 

the sampling artifacts. As the brain is submerged in CSF with its covering called meninges, 

the entire cortical surface including its convoluted sulcal network is to be ideally in contact 

with the CSF. But this artifact disrupts the continuity of the CSF breaking it into discrete CSF 

clusters in the narrow sulcal fold. The phenomenon can be exemplified as a dam placed in a 

narrow, continuous tunnel that splits it into small reservoirs. In this problem, the deformable 

contour is initialized at the margin of the dam and is aimed to be pulled into the next 

reservoir, breaching the dam. That’s why at first the force field is directed to propagate the 

contour towards centre instead of boundary of the adjacent reservoir (CSF cluster in this 

case). For this reason, the data term of the gradient of edge map for GGVF field is replaced 

by a new data term pointing the vectors towards the centre. The force field is constructed as a 

function of the distance of zero to nearest non-zero pixel, and named as Zero-Non-Zero 

Distance (ZNZD) vector field. The field is constructed in two steps as follows:  

1. Tissue classification determining the CSF clusters 

 

2. Designing of the ZNZD vector field.  
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4.2.1  Tissue classification determining the CSF clusters 

In section 3.3.2 in part III, we have the resulting image histogram (Fig. 3.13) of the proposed 

protocol. It shows that CSF (HCSF), gray matter (HGRAY), background (HBACK), white matter 

(HWHITE) and bones (HBONE) are distributed progressively in the lighter direction of the gray 

scale with a prominent valley between two adjacent tissue classes [75, 76, 77]. Automated 

multilevel thresholding of this histogram can produce specific tissue classes. The CSF 

distribution (ICSF) on uniform background has been produced by an automated optimal global 

thresholding [78, 79] of the first mode, i.e., HCSF and the second mode, i.e., HGRAY which 

extends up to lower limit of HBACK. At the very first step lower level of the third mode, HBACK 

is to be found out automatically. It is determined by the background removal algorithm [80] 

as follows:  

In reconstructed MR image, background noise manifests as a Rayleigh distribution [81] in the 

histogram, IBRAIN, of given image, and is expressed as               

2

2 2
( ) exp

2
noise

f f
P f

σ σ

 
= − 

 
                      (4.1) 

where σ  is the standard deviation of the normally distributed white channel noise.   

Global maxima or height, 
maxr  of any Rayleigh curve is related to standard deviation of the 

channel noise as    

max0.607 rσ =                                     (4.2) 

 

Fig 4.2: Rayleigh curve 



64 

 

All maxima ( )ih f  of the histogram function ( )h f and the corresponding gray values 
if  are 

traced. Using each value of ( )ih f in (4.2), initially a Rayleigh curve ( )ir f  is generated at each 

maximum. Similarity of ( )ir f  in the range 
iσ  to 2σi is measured with the original histogram in 

the same range using a similarity index derived from the Kappa statistic as proposed by 

Zijdenbos et al. [73]. If area under ( )ir f  in the mentioned range is denoted as
iR and area under 

the original histogram in the same range is denoted as
iH , then the similarity index 

iS  

becomes   

2
i i

i

i i

R H
S

R H
=

+

I
            where { }0...1iS ∈     (4.3) 

The corresponding ( )ir f  
for the highest similarity is considered as the Rayleigh for the noise 

distribution ( )noiser f . Peak of the curve ( )noiser f    coincides with the noise peak of the original 

histogram. Then ( )noiser f  is scaled by a constant K and a least square fit is performed by 

minimizing the error expression  
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Kfh                    (4.4) 

to get the best fit Rayleigh curve ( )r f . Lower limit of ( )r f  is considered as the lower limit of 

the third mode that is image background i.e., HBACK or the upper limit of the second mode i.e., 

HGRAY.  

 Part of the histogram below this threshold is clearly bimodal with well-defined peaks 

and valleys for our image dataset. The first mode represents the CSF and the second mode the 

gray matter. Because of this distinct bimodal distribution, automated optimal global 

thresholding of the histogram up to lower threshold of the third mode by the algorithm 

proposed by Otsu [78. 79] efficiently segments out the distributed CSF in the given image. 

Given the distinct bimodal nature of the distribution up to upper limit of HGRAY by 

thresholding proposed by Otsu produces ICSF from IBRAIN. Simple global thresholding upto 

this point may misclassify some non-brain region. As CSF is included in the region of the 

least gray value, only the 8-connected set of the least gray value of the image is included 

during thresholding. This allows growth of the CSF by incorporating the lighter region of 

CSF and adjacent gray matter which complete the outer boundary of the brain but never  



 

(a)                                         

           (c)                                                    

Fig. 4.3: (a) Brain image (b) Noise peak at 139

fit Rayleigh curve with lower limit 128, upper limit 153

 

allows growth and coalescing of any discrete region, inside or outside the bra

with gray values between the least gray value and the selected thr

 As the smallest valued pixels serve as

thresholding, if each discrete set of CSF is denoted as 

Fig.4.4 shows an example of segmentation 

HBACK or upper limit of HGRAY and optimal global thresholding

 

 

                                              (b) 

                                                   (d) 

rain image (b) Noise peak at 139, (c) maximum similarity index 0.72.  (d) best 

fit Rayleigh curve with lower limit 128, upper limit 153 

allows growth and coalescing of any discrete region, inside or outside the bra

between the least gray value and the selected threshold. 

smallest valued pixels serve as seeds for growth during constrained 

f each discrete set of CSF is denoted as Ci, then 

C
ni

iCSF CI
,1=

=

                                      

(4.5) 

shows an example of segmentation of CSF with intermediate result of lower limit of 

and optimal global thresholding between HCSF and 
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maximum similarity index 0.72.  (d) best 

allows growth and coalescing of any discrete region, inside or outside the brain boundary 

seeds for growth during constrained 

of CSF with intermediate result of lower limit of 

and HGRAY. 



 

          HCSF     

 

 

 

     

 

 

 

Fig. 4.4: CSF distribution: (a) Given image 

faded out part for optimal global thresholding and the threshold for CSF distribution and 

the segmented CSF distribution, 

        HGRAY 

      

 

 

     

(a) Given image IBRAIN  (b) Histogram with best fit Rayleigh curve, 

faded out part for optimal global thresholding and the threshold for CSF distribution and 

the segmented CSF distribution, ICSF 
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Histogram with best fit Rayleigh curve, 

faded out part for optimal global thresholding and the threshold for CSF distribution and (c) 
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4.2.2    Designing of the ZNZD vector field 

Now logical AND of ICSF, the classified image of CSF regions with IBRAIN, the original image 

forces the entire CSF region to zero instead of a range of gray values in the output image, 

IBRAIN-CSF. It thus produces a sharp and distinct boundary at the meninges/CSF interface and 

CSF/gray matter interface with an enhanced gradient. In IBRAIN-CSF any pixel of zero value 

must be in the set of CSF, Ci. In narrow grooves of the deep sulci, two juxtaposed sides of the 

cortical fold may erroneously breach the continuity of this CSF region in sampled image due 

to partial volume effect. The ZNZD force field, v is designed to pull the deformable contour 

from one CSF set to another adjacent CSF set instead of pushing the contour towards the 

object boundary as traditional objective of deformable models. The vector field is similar to 

GGVF vector field and constructed similarly with smoothing and data terms each scaled with 

weighting functions. Here the data term is designed as a ZNZD map (ϕ) which is a 

multivariate function of DZ-NZ(x,y), the distance of a pixel, Z(x,y) with value zero from the 

nearest non-zero pixel with value V (≠0) and the corresponding non-zero pixel value (V) in 

IBRAIN-CSF . It acts as an external force in this model. If the distance function is ϕ(V, DZ-NZ) 

)),(,(),( yxDVyx NZZ−
Ψ=φ

                       (4.6)
 

then ( )⋅ψ  can be designed according to application and for our application we have designed 

the function as follows  

21 ),(),( yxDCVyx NZZ −

−
=φ

  (4.7)
 

where  C is a scaling constant. Relevant properties of the ZNZD map are  

1. The gradient of the ZNZD map φ∇  has a vector pointing away from the non-zero 

pixel value. 

2. Magnitude of the vector increases with distance between zero and non-zero pixel 

value but decreases with the value of that non-zero pixel value.  

3. In the region of non-zero pixels, where no Z(x,y) is located,  φ∇  is zero.  

Because of these properties, deformable contour initialized on non-zero region but close to 

the set of zero, Ci tends to move into Ci depending on the pixel value of the non-zero pixels 

(V) separating that contour and Ci. Here the component V
-1

 controls fragility of the barrier 
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between the initial deformable contour and the nearby Ci. Higher pixel value shows less 

fragility. A computational diffusion process similar to GGVF is used to extend the vector 

field beyond the sets of zero pixel value. With the help of this ZNZD map in our 2D 

application, we define the ZNZD vector field, v(x,y) that minimizes the energy functional                    

( ) ( ) dxdyvnvmE ZNZD

22

φφφ ∇−∇+∇∇= ∫∫               (4.8) 

The gradient operator is applied to each component of v separately. The first term is referred 

to as smoothing term since it alone will produce a smoothly varying vector field.  The 

smoothing term is designed as GVF field [12], originated from the smoothing term used by 

Horn and Schunk in their classical formulation of optical flow [12, 82]. The second term is 

referred as the data term since it encourages the vector field v to be close to φ∇  computed 

from the ZNZD map. The weighting functions )(⋅m  and )(⋅n are applied to the smoothing and 

data terms, respectively. We have adjusted these weighting functions in such a way that )(⋅m

gets smaller as )(⋅n becomes larger for progression of the deformable contour into long thin 

indention like CSF sets in narrow sulci [12]. That is why, the weighting functions in our 

application are similar to the weighting functions of GGVF model and expressed as  

( )

2

exp 






 ∇
−=∇

κ

φ
φm

   

( ) ( )φφ ∇−=∇ mn 1
        (4.9) 

Using calculus of variation, the vector field must satisfy the Euler equation  
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Laplacian is applied to each component of the vector field v separately.  A solution to this 

Euler equation can be found by introducing a time variable t and finding the steady state 

solution of the following linear parabolic partial differential equation  
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where vt denotes the partial derivatives of v with respect to t. 

 

4.3 Discussion  

As an overview, it can be stated that ZNZD vector field stems from the GGVF vector field 

proposed by Xu et al. designed to overcome the unacceptable convergence of the contour at 

the spurious boundary due to partial volume effect at narrow sulci. The basic difference of the 

field with other deformable model is that it never converges with the desired object boundary; 

it just breaks the barrier of spurious edges. Some stopping criteria is to be set to control the 

propagation of the deformable contour and further processing is required to find out the final 

object boundary. Intuitively it can be said that ZNZD field pushes the contour by breaking the 

fragile barrier of spurious edges to other side where another processing scheme is waiting to 

propagate the contour to its final destination. Being function of the pixel value (V) of the 

obstructing pixels of the spurious edges, the field has got an inherent property to be spatially 

 

Fig 4.5: ZNZD vector fields showing vectors are not pointing towards edges; red lines are 

initialized deformable contours    
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varying in its strength depending on the image information. This property controls fragility or 

spuriousness of the edge. In our application of cortical reconstruction, to overcome the partial 

volume effect at deep cortical sulci adjacent to CSF, spurious edges form by pixels of low 

range of values (close to gray matter). If the initial estimator in the narrow sulci is obstructed 

with pixels of very high values, then these are invariably not attributable to partial volume 

effect and should not be considered as spurious edge. The force field is not strong enough to 

push the contour by breaking such barriers. The data term of the vector field thus varies 

spatially based on the image information. Though the vectors are only present in the sets of 

zero valued pixels (Ci) with inward direction, the field is diffused uniformly into the region of 

nonzero pixel values by adding the smoothing term. Weighting factors for the smoothing 

term and that of the data term are spatially varying and designed to propagate along the deep 

narrow indentation. Application of this ZNZD vector field is discussed in section V as an 

essential part of the fully automated cortical reconstruction algorithm.          
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PART V 

CORTICAL RECONSTRUCTION WITH 

AAGHD MODEL 
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CHAPTER 5 

ADVANCED ANATOMY GUIDED HYBRID DEFORMABLE MODEL   

CONTENTS 

5.1 Step 1: Tissue Classification for Determination of CSF Distribution  

5.2 Step 2: Automatic Initialization Classical Snake to Remove Meninges  

 5.2.1 Histogram thresholding  

 5.2.2 Classical snake to remove meninges  

 5.2.3 Removal of meningeal remnants 

 5.2.4  Minimum perimeter polygon  

5.3 Step 3: Reconstruction of CSF/Gray Interface 

 5.3.1 Mathematical basis of the force field  

 5.3.2 Curve evolution  

5.4  Results 

 5.4.1 Qualitative assessment 

 5.4.2 Quantitative assessment 

5.5 A round up of AAGHD Model 

   

 

Cortical reconstruction has been studied by several researchers in last few decades or so. 

However, there is no standardized approach nor is there any efficient algorithm in terms of 

automation and validation of results. Actually, attempts to completely automate the 

processing of medical images would require a high degree of application and model 

specificity respectively. In some medical image analysis applications, the presence of various 

structures with different properties suggests the use of a customized sequence of multiple 

segmentation techniques. For example, initial steps can use fundamental techniques to reduce 

the data, and subsequent steps can apply more elaborate techniques that are robust but more 

time consuming. The best choice of techniques and their order depends typically on the 

problem as well as computing resources.  

A new algorithm called Advanced Anatomy Guided Hybrid Deformable model 

(AAGHD) is proposed for cortical reconstruction at CSF/Gray interface preserving the brain 

volume in its entirety and maintaining the cortical topology precisely. The model is highly 

application specific and consists of a sequential stepwise approach to achieve the final 
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objective of CSF/Gray matter interface in fully automatic fashion. Most cortical 

reconstruction algorithms consist explicitly of two step approaches – tissue classification to 

determine the initial estimator and convergence criteria for deformable models followed by 

evolution of deformable models. The sequential steps of AAGHD model also includes tissue 

classification for determination of CSF distribution by using histogram statistics and 

hybridization of classical snake and GGVF deformable model in an automatically evolving 

external force field under the guidance of a prior knowledge of anatomy. Initialization of the 

deformable contour of this model was done outside the cortical gray matter and that’s why 

the model inherently possesses the property to address the challenge of partial volume effect 

at deep, narrow sulcal fold. 

Image data 

 

 

 

 

 

 

 

 

 

 

 

 

       

 

 

Reconstructed outer cortex  

Fig. 5.1: Block diagram of AAGHD model for cortical reconstruction 

The name of the model explains itself. Called hybrid deformable model, it assembles 

the merits of multiple deformable models; and the deformable contour goes through several 

Automatic multilevel thresholding of the histogram 

Automatic Initialization 

1.  Histogram thresholding 

2.  Classical snake to remove meninges 

3.  Removal of meninmgeal remnant  

4.  Minimum perimeter polygon 

Hybrid deformable model 

1. GGVF force field 
 

2. ZNZD force field 

CSF classification 

Region growing 
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external force fields, evolving with the deformable curve itself according to some preset 

criteria. The term anatomy guided is justified with usage of prior knowledge of anatomy from 

initialization of the deformable contour to overcome the partial volume effect. Initially name 

of the model was coined as Anatomy Guided Hybrid Deformable (AGHD) model [30], but 

further advancement for evolution of the external force field overcoming the partial volume 

effect has finalized the name as Advanced Anatomy Guided Hybrid Deformable (AAGHD) 

model. Detail of this model is discussed in this section. 

5.1  Step 1: Tissue classification for determination of CSF distribution  

CSF distribution is first determined from the given image histogram statistics. Because of 

high contrast acquisition, images of the proposed protocol require no pre-processing prior to 

this step. Details of this step have already been discussed in section 4.2.1 and the algorithm 

can be summarized as follows:  

1. Histogram of the given image IBRAIN is generated and the histogram function ( )h f  

is drawn. Mere visual inspection shows a distinct pentamodal nature of the 

histogram for CSF (HCSF), gray matter (HGRAY), background (HBACK), white matter 

(HWHITE) and bones (HBONE), distributed progressively in the lighter direction of 

the gray scale with prominent valleys between adjacent tissue classes.  

2. All maxima ( )ih f  of the histogram function ( )h f and the corresponding gray 

values 
if  are traced.  

3. Using each value of ( )ih f in (4.2), a Rayleigh curve ( )ir f  is generated initially at 

each maximum.  

4. Similarity of ( )ir f  is measured with the original histogram in the range 
iσ

(Standard deviation) to 2σi using the similarity index proposed by Zijdenbos et al.   

5. The ( )ir f  that corresponds with the highest similarity is considered as the Rayleigh 

for the noise distribution ( )noiser f .  

6. To get the best fit Rayleigh curve, ( )noiser f  is scaled by a constant K and a least 

square fit is performed by minimizing the error expression of (4.4).  

7. Lower limit of ( )noiser f  is considered as the lower limit of the third mode, the 

image background i.e. HBACK or the upper limit of the second mode i.e. HGRAY.  

8. Given the distinct bimodal nature of the distribution upto the upper limit of HGRAY 

by thresholding proposed by Otsu [78, 79] produces the image of CSF cluster, ICSF 
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from the original image, IBRAIN. If each discrete set of CSF is denoted as Ci, then 

ICSF is expressed in (4.5) as       
C

ni

iCSF CI
,1=

=

    

 

This tissue classification of CSF along with prior knowledge of anatomy will guide 

subsequent steps of this model, from determination of the initial estimator to designing of the 

force field as well as final tuning with region growing.  

5.2   Step 2: Automatic Initialization 

Initialization is the most crucial part for successful convergence of the deformable model. 

Close initialization is essential for accurate convergence with minimum computational 

burden. Fully automatic initialization especially for application like reconstruction of 

CSF/Gray matter interface is highly challenging. We have addressed this challenge in 

multistep approach from low level processing of histogram thresholding to incorporation of 

classical snake to overcome the hindrance of anatomical barriers. The steps are as follows:    

5.2.1 Histogram thresholding  

At first, third mode of the histogram, that is background (HBACK), is thresholded out 

automatically using histogram statistics as described in previous section of 5.1. Pixels 

containing  gray values lower than the lower threshold of the background must be part of CSF 

and the gray matters (Cortical and subcortical) as first and second mode of the histogram are 

representative of CSF and gray matter respectively. So, mere global thresholding of the entire 

image with lower threshold of the background produce boundary of the intracranial tissue 

consisting of CSF and cortical gray matter. Since meninges shares the same gray value as 

gray matter, the segmented brain contour is encapsulated with meninges of varied thickness. 

Thus, the brain contour surrounded by CSF and encapsulated by meninges is extracted 

automatically eliminating the extracranial tissues of bone, fat etc. One pixel thick outer 

boundary of the meninges, ΩMI serves as the initializing contour for the KWT snake. Logical 

AND of CSF clusters, ICSF with the original image, IBRAIN forces the entire CSF region to zero 

instead of a range of gray values in the output image, IBRAIN-CSF. It thus produces a sharp and 

distinct boundary at the meninges/CSF interface and CSF/gray matter interface with an 

enhanced gradient. Initialization of the deformable contour is done in IBRAIN-CSF instead of the 

original image, IBRAIN. Results of this automated histogram based segmentation of intracranial 
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tissues bounded by meninges and its one pixel thick outer margin ΩMI, spanning the entire 

brain from posterior to anterior are shown in Fig 5.2.    

    

 

 

 

 

Fig 5.2: Initial contour: Initial contour for deformable model derived by automated histogram 

based segmentation 

5.2.2   Classical snake to remove meninges  

Though the tissue specific information, especially the pixel value of specific tissue class is 

very distinct in the images of the proposed protocol and so evidenced in the image histogram, 

mere automated thresholding is not enough to segment out the CSF/gray matter interface. 

Apart from the problem of discontinuity of the cortical boundary, other tissues, namely, 

meninges share the pixel values of the gray matter. As a consequence, elimination of the 

meninges becomes the most crucial part to make the reconstruction algorithm fully automatic 

and accurate. It is done by means of classical KWT snake deformable model in the typical 

edge based external force field [27].  

The basic objective of classical deformable model is to bring the initial contour, ΩMI 

in the area containing CSF or in other words to drive the initial contour, ΩMI towards inner 

margins of the meninges that is meninges/CSF interface. For this reason, we have designed 

an external force field by using topological guidance of distributed CSF derived at step 1. 

External potential is designed whose local minima coincide with step edges and expressed as                       

2
),(),( yxIyx

ext
∇−=Ε              (5.1) 

In the image IBRAIN-CSF sharp and distinct boundary at the meninges/CSF interface with an 

enhanced gradient markedly increases the magnitude of this external force. This external 

force couples the contour ΩMI which is represented in the image plane 2),( ℜ∈yx as 
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Τ
= ))(),(()( sysxsv , where x and y are the coordinate functions and ]1,0[∈s  in the 

parametric domain. The shape of the contour is typically determined by variational 

formulation expressed as         

.))(())((int dssvsv ext
s

Ε+Ε=Ε ∫                    (5.2) 

The functional can be viewed as a representation of the energy of the contour, and the final 

shape of the contour corresponds to the minimum of this energy. The first term prescribes the 

a priori knowledge about the model such as its elasticity and rigidity and can be expressed as  
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 w1(s) and w2(s) are the two parameters that dictate the simulated physical characteristics of 

the contour. In accordance with the calculus of variations, the contour v(s) that minimizes the 

energy E must satisfy the Euler-Lagrange equation 
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A numerical solution of (5.4) is found by discretizing the equation and solving the discrete 

system iteratively. Fig 5.3 shows the final result of evolution of the classical energy-

minimizing snake, ΩMF. 

 

                             (a)                       (b)   

 Fig. 5.3: Removal of meninges: Classical deformable model started with initial 

contour over outer boundary of the meninges (a) and the final contour, red line in (b) resides 

over inner boundary of the meninges    
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5.2.3 Removal of meningeal remnants  

This part is designed to overcome the failure of classical energy-minimizing snake in an 

attempt to eliminate the meninges completely. As meninges have got spatially varied 

thickness, ΩMI may fail to come completely inside the meninges depending on the sharpness 

of the edge gradient and the chosen parameters for the internal force. This failure can also be 

attributable to the property of limited capture range of the classical deformable model. This is 

most prominent at the saggital sulcal fold. Besides these, in some areas, cortical surface may 

be attached to the meninges leaving no visible subarachnoid space for CSF. Fig. 5.4 is an 

example of failure of ΩMF to completely converge at meninges/CSF interface at saggital 

sulcus.  

 

Fig. 5.4: KWT snake trapped in thick meningeal fold 

Topological guidance from ICSF along with prior knowledge of neuroanatomy is used to 

eliminate this thick part of the meninges. Since we have clear distribution of CSF in IBRAIN-

CSF, the final contour, ΩMF (shown in red line in Fig. 5.4) of the classical snake is scanned 

pixel by pixel along its length with inspection of surrounding eight neighbours of each pixel. 

If any neighbour of the scanned pixel contains a zero pixel value then it is denoted as Pi and it 

must be part of CSF. Corresponding CSF set is traced by extraction of connected component, 

XKi of Pi [83]. If two pixels on the length of the contour, ΩMF are adjacent to the common 

CSF set, connected component of non-zero pixel value between them is invariably part of 

meningeal remnant and is turned to zero in order to eliminate those sets. That is, connected 

component of non-zero pixel value in between Pm and Pn is turned to zero in case of  

XKm = XKn   (m≠n)   (5.5) 



In Fig. 5.5 schematic representation of this problem and the proposed solution has been 

shown. In Fig. 5.5a initial estimator, 

ΩMF (red pixels) traversing through the meninges (gray pixels

the meninges/CSF (black pixels) interface along its entire length. The 

the red line and sets of the non

green pixels of meningeal remnants in 

 

             (a)                                

Fig. 5.5: Schematic representation

shows initial (yellow line) and final contour (red line) of the model of Kass 

the final contour does not converge with the CSF/menigeal interface.

In the thick meningeal fold where the classical snake could not touch the meninges/CSF 

interface, meningeal remnants are 

cerebellum the only tissue with non

5.2.4 Minimum perimeter polygon

 

At the end of this stage, we have removed extracranial tissues along with meninges from the

given brain image, IBRAIN. For this step, we are starting with the images containing only 

cerebrum and cerebellum as intracranial tissues surrounded by CSF region with the pixel 

value forcibly set to zero which is bounded by 

hybrid deformable model, presence of the initial estimator must be ensured in the capture 

range of the force field. As the set of non

of uniformly zero pixel value, no force field can be generated in this region with the help of 

image information only. The contour must be initialized at close proximity of the intracranial 

brain tissue. For this purpose, boundary of the cluster of non

In Fig. 5.5 schematic representation of this problem and the proposed solution has been 

shown. In Fig. 5.5a initial estimator, ΩMI (yellow pixels) has evolved as the final contour, 

(red pixels) traversing through the meninges (gray pixels), but does not converge with 

the meninges/CSF (black pixels) interface along its entire length. The ΩMF is scanned along 

the red line and sets of the non-zero pixels values attached with it are identified as sets of 

green pixels of meningeal remnants in Fig. 5.5b and turned into zero in Fig. 5.5c. 

 

(a)                                             (b)                                             (c) 

Schematic representation of the problem in eliminating the thick meningeal fold. (

shows initial (yellow line) and final contour (red line) of the model of Kass et. al.

the final contour does not converge with the CSF/menigeal interface.

 

In the thick meningeal fold where the classical snake could not touch the meninges/CSF 

meningeal remnants are eliminated in this way allowing the cerebrum and 

cerebellum the only tissue with non-zero pixel value. 

Minimum perimeter polygon  

At the end of this stage, we have removed extracranial tissues along with meninges from the

. For this step, we are starting with the images containing only 

cerebrum and cerebellum as intracranial tissues surrounded by CSF region with the pixel 

value forcibly set to zero which is bounded by ΩMF. Before implementation of the final 

deformable model, presence of the initial estimator must be ensured in the capture 

As the set of non-zero pixel values is surrounded with the CSF region 

no force field can be generated in this region with the help of 

image information only. The contour must be initialized at close proximity of the intracranial 

For this purpose, boundary of the cluster of non-zero pixel set (containing 

79 

In Fig. 5.5 schematic representation of this problem and the proposed solution has been 

(yellow pixels) has evolved as the final contour, 

), but does not converge with 

is scanned along 

zero pixels values attached with it are identified as sets of 

. 5.5b and turned into zero in Fig. 5.5c.  

 

of the problem in eliminating the thick meningeal fold. (a) 

et. al. (b) shows 

the final contour does not converge with the CSF/menigeal interface. 

In the thick meningeal fold where the classical snake could not touch the meninges/CSF 

the cerebrum and 

At the end of this stage, we have removed extracranial tissues along with meninges from the 

. For this step, we are starting with the images containing only 

cerebrum and cerebellum as intracranial tissues surrounded by CSF region with the pixel 

. Before implementation of the final 

deformable model, presence of the initial estimator must be ensured in the capture 

zero pixel values is surrounded with the CSF region 

no force field can be generated in this region with the help of 

image information only. The contour must be initialized at close proximity of the intracranial 

zero pixel set (containing 
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cerebrum and cerebellum) residing within ΩMF is approximated by a polygon with a method 

for finding minimum perimeter polygons proposed by Kim and Sklansky [83, 84]. In this 

procedure boundary of the cluster is enclosed by a set of two-pixel thick concatenated cells 

and the boundary is considered as a rubber band contained within the walls of a cell. If the 

rubber band is allowed to shrink, it produces a polygon of minimum perimeter that fits the 

geometry established by the cell strip. This minimum perimeter polygon serves as the initial 

estimator, 
INITIALΩ  of the CSF/Gray interface for the deformable model for next step.                       

 

5.3  Step 3: Reconstruction of CSF/Gray interface 

In this step we will implement a hybrid deformable model to meet the objective of 

reconstruction of CSF/Gray interface. The basic nature of the deformable model is similar to 

that of GGVF proposed by Xu et. al., but during its course of evolution, it experiences 

different external force fields which are also evolving with maturation of the deformable 

contour. The contour passes different probability spaces to get even into the deep narrow 

sulcus and finally tuned with region growing for accurate reconstruction of CSF/Gray 

interface.   

5.3.1 Mathematical Basis of the force field 

Mathematical foundation of the proposed force field is similar to the energy-minimizing 

parametric deformable model, but it evolves through a series of external force field instead of 

single external force field. The external force fields, in turn, evolve along with the evolving 

contour itself. The contour is represented as Τ
= ))(),(()( sysxsv  where x and y are the 

coordinate functions and ]1,0[∈s  in the parametric domain at a given time in a specific 

probability space i (i=1,2,...n). Probability space is designed on the basis of prior knowledge 

of the application and switched from one to another depending of the predefined controlling 

parameters based on the maturation of the contour. The shape of the contour is typically 

determined by variational formulation expressed in (5.2). Here the first term prescribes a 

priori knowledge about the model for a specific probability space and can be expressed as 
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where, w1i(s) and w2i(s) are two parameters that dictate the simulated physical characteristics 

of the contour in a specific probability space (i). The external force in this model for a 

specific probability space i is expressed as  
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(5.7)

 

Ej(v(s)) is designed on the basis of prior knowledge about the application for a specific 

probability space . )(ηβ j  is a scaling parameter and the probability space i is updated 

according to the controlling parameter η which is based on deformation of the parametric 

contour itself and expressed as  

∫=
s

dssv )(η
                                   

(5.8) 

The general form of the external force Ei.ext is to be adapted according to the application. In 

our application, it is predesigned with prior knowledge of anatomy and image information 

according to objectives.  Evolution of initial estimator, 
INITIALΩ  to the final contour at 

CSF/Gray matter interface, 
GRAYCSF /Ω  requires two probability spaces (i=1,2) and the 

updating criterion of i is 0=η . It is also assumed in this application that i=j. Thus, for two 

probability spaces the expression (5.7) can be rewritten as  

2,1))(()())(()( 2211. =+= ∫∫ idssvEdssvEE exti ηβηβ

        

(5.9) 

 In this application, the first part, E1(v(s))=EGGVF  is defined by the vector field similar to 

GGVF force field of Xu et. al. Construction of this vector field begins from an edge map 

f(x,y) derived from IBRAIN-CSF. In our application we have used Canny edge detector [85] to 

define the edge map with very high gradient at CSF/gray matter interface because of distinct 

topological guidance of CSF distribution. The gradient of the edge map f∇  has vectors 

pointing towards the edges, which are normal to the edges. In 2D image plane, the energy 

functional E1 can be expressed as  

( ) ( ) dxdyfvfhvfgEGGVF

22

∇−∇+∇∇= ∫∫             (5.10)
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The first term is smoothing term and the second term is data term [12]. Spatially varying 

weighting functions )(⋅g  and )(⋅h  are designed exactly the same way as GGVF field to 

maintain the force field in the long, thin indentation like structure where two edges are in 

close proximity. For better progression of the deformable contour in long, thin indentation 

along the cortical boundary weighting functions are selected such that )(⋅g gets smaller as 

)(⋅h becomes larger [12, 39, 54]. For this application, the weighting functions are as follows 
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  ( ) ( )fgfh ∇−=∇ 1                          (5.12) 

The specification of 1κ  determines to some extent the degree of tradeoff between field 

smoothness and gradient conformity.  

 The second part, E2(v(s))=EZNZD is the newly designed ZNZD vector field, detailed in 

section IV. Here the data term is designed as a ZNZD map (ϕ) which is a multivariate 

function of DZ-NZ(x,y), the distance of a pixel, Z(x,y) with value zero of set Ci from the nearest 

non-zero pixel with value V (V≠0) and the corresponding non-zero pixel value (V) in IBRAIN-

CSF . A computational diffusion process similar to GGVF is used to extend the vector field 

beyond the sets of zero pixel values. ZNZD vector field, v(x,y) that minimizes the energy 

functional is expressed as  
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C is a scaling constant and κ2 behaves similarly as that of GGVF force field. Now, for each 

probability space, i, sum of these two vector fields, EGGVF and EZNZD can be expressed as 

follows:  
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Β1(η) and β2(η) are two scaling functions associated with EGGVF and EZNZD force field 

respectively and adjusted according to application. Adjustment of these two scaling functions 

is discussed in the following curve evolution section for our application. In accordance with 

the calculus of variations the contour v(s) that minimizes the energy Ei,ext must satisfy the 

Euler-Lagrange equation 
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5.3.2  Curve evolution  

Initial estimator, 
INITIALΩ  is automatically derived from the algorithm of minimum polygon of 

the intracranial brain tissue and it is evolved through two probability spaces with different 

characteristics of internal force model by satisfying energy minimizing equation of (5.15) 

under predefined constrains.  

 Initially, for first probability space (i=1) we have 0)(2 =ηβ  and 1)(1 =ηβ . Thereby, in 

this case the external force is defined by the edge map f(x,y) as EGGVF only. Propagation of 

INITIALΩ in this force field is determined by Generalized Gradient Vector Flow (GGVF) 

proposed by Xu. et.al.[12, 39, 54]. With the help of this edge map, GGVF field v  is defined 

as the equilibrium solution of the following vector partial differential equation   
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The specification of κ determines to some extent the degree of tradeoff between field 

smoothness and gradient conformity. The contour is considered as a closed loop throughout 

its propagation with boundary condition )1('')0(''),1(')0(',0)1()0( vvvvvv ==== . 

After each iteration η  is calculated and i=1 updated to i=2 when η  becomes zero. 0=η

indicates that there is no further deformation of the deformable contour with further iteration 



under influence of the existing force field.

spurious edges at narrow sulcal fold due to partial volume effect. 

intermediate result (
XΩ ) at the end of the first pr

        (a)                                    

Fig. 5.6: Propagation in first step: 

estimator (red line), with canny edge map 

contour (green line) after evolution thr

 

For practical purpose deformation of the contour 

pixels in the subtracted area between two consecutive iterations. It is determined by XOR 

logic operation between sets of the pixels of the areas bounded by two consecutive iterations 

of the contour. In the first probability space, 

gradually attains a plateau near zero persistently. The plateau has been determined by the 

difference of η less than 5 in two consecutive calculations of that parameter. In practice 25 

30 is the number of iterations for our data

phase the first probability space is switched to second probability space for further 

deformation.  

he existing force field. In our application, it is solely attributable to the 
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Fig 5.7: Brain image (a) & (c) and their corresponding graph of the parameter 

number of iteration in the first probability space (b) & (d).

 

Second probability space is designed to overcome the partial volume effect. 

probability space (i=2), deformable contour is segmented out depending on its geometric 

features. Using differential geometry, curvature of each point of 

lower values are suppressed. Positive and negative signs are assig

convex points on the contour. Set of concave points (
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image (a) & (c) and their corresponding graph of the parameter 

number of iteration in the first probability space (b) & (d). 

Second probability space is designed to overcome the partial volume effect. 

), deformable contour is segmented out depending on its geometric 

features. Using differential geometry, curvature of each point of 
XΩ has been determined and 

lower values are suppressed. Positive and negative signs are assigned to indicate concave and 

convex points on the contour. Set of concave points (Pc) above the threshold value of 
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curvature (Cτ) is extracted as target geometric features. A closed interval along 
XΩ associated 

to each concave point Pci is designated as Fi and its length as Li where                   
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A local coordinate of Fi is designated as ε which is centred at Pci. Now, only Fi is a 

deformable contour with boundary condition 0)2/1()2/1( ==− vv and 0)2/1(')2/1(' ==− vv , 

while rest of 
XΩ remains unaltered.  Internal force of the contour for this case can be 

expressed as  
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In this case it is predefined that 1)(2 =ηβ and 0)(1 =ηβ for (5.9). Thus, in this case the 

external force is defined by the ZNZD map ϕ(x,y) as EZNZD only as mentioned in (5.13). A 

spatially varying constrain force )(ερ  is also applied on Fi to push the contour into nearby 

CSF set Ci, penetrating the spurious edge due to partial volume effect or sampling artifact.  

Here am += εερ )(
 where a  is a constant and 
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Final energy minimizing equation for propagation of Fi in the second probability space is    
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The equation is solved numerically by iteration. Location of Pci and controlling parameter η 

are checked after every iteration. Contact of Pci with any Ci of ICSF or η=0 is considered a 

limiting condition of propagation of corresponding Fi.  
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Fig 5.8: Green line is the initial deformable contour (Fi) and red lines are mark of evolution 

of the contour through ZNZD force field under influence of a spatially varying constrain 

force )(ερ  

 

Gradually, all Fi, initially detached from nearby CSF sets due to spurious edges of partial 

volume effect, now come to contact with them. Final position of Pci serves as the point of 

beginning for region filling algorithm [83] to grow 
XΩ inside the CSF set only.  

 Evolution of the deformable contour in second probability space is repeated until 

propagation of all Fi is restricted by the single criterion η=0 to get the final contour
FINALΩ . 

This step confirms overcoming of hindrance from multiple PVE in a single CSF set.  Fig. 5.9 

compares limitation of the intermediate contour 
XΩ  after propagation through GGVF force 

field to overcome PVE and final contour 
FINALΩ after propagation through ZNZD force filed 

and region growing.    

5.4   Results 

We have applied the AAGHD model for cortical reconstruction at CSF/Gray matter interface 

to 30 datasets of coronal views of MR image acquired with proposed acquisition protocol.  
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 (a)                                      (b)  

Fig. 5.9: Evolution of the deformable contour: (a) contour fails to enter into deep sulci due to 

PVE in first probability space under influence of GGVF field, (b) final result of propagation 

of the contour into deep sulci beyond PVE under influence of ZNZD force field and region 

growing operation. 
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Our AAGHD model is developed only for 2D image and its computations were implemented 

using MATLAB 7.10.0.499 (R2010a) code. For every N= 384 × 512 pixel image slice on an 

Intel CORE i3, a typical computation time is 50 seconds. Though a fair number of parameters 

are to tune in this model, in respect of complete automation, the number of parameters is 

acceptable and robust as well to change of their values and the image data. Same parameter 

values are used for all image data sets of 30 subjects and some of the results are produced in 

the following section. Parameters for traditional KWT snake for removal of non-brain tissue 

were w1 =1 and w2=0; parameters for deformable contour at GGVF force field in the first 

probability space were w11 =1, w21=0 and κ1=1. We have used Fourier descriptor for 

smoothening of the contour after convergence at GGVF field to find out the concave points 

for further propagation at ZNZD field. The parameter for thresholding the curvature, Cτ is 

0.2; and parameter for length of the deformable segment, Li is 3. For deformable contour at 

ZNZD force field in the second probability space w12 =0.1, w22=0.3 and κ2=1. A spatially 

varying constraint force is applied over the fragment, Fi with the parameters a=0.5 and m=2. 

Final outcome of the ZNZD force field and accuracy of the AAGHD model are largely 

dependent on the above parameters since it is crucial to find out the control points for further 

propagation of the penetrating part of the contour. We are considering further improvement 

of performance of the model by making it adaptive in nature.            

5.4.1 Qualitative Assessment 

Fig. 5.10 shows final results of the reconstructed cortical boundary derived by AAGHD 

model overlaid on the coronal view of the original brain image. The figure is consisting of 

coronal slices of a several individuals spanning from anterior to posterior part of the brain. 

The figure shows that the reconstructed cortical boundary exactly converge with the 

CSF/Gray matter interface maintaining the entire brain volume as well as detail cortical 

topology. Excellence of the model reveals in accurate convergence at the deep narrow sulci, 

namely the lateral sulcus (sylvian fissure) and the central sulcus (Rolandic fissure). Besides 

propagation of the contour into the deepest part of the sulci, it converges well at other narrow 

sulci, namely, precentral sulci, postcentral sulci and more. To some extent it also reconstructs 

the finest detail of the cerebellar folia in the posterior part of the coronal view.   

5.4.2 Quantitative Assessment 

For validation study, some slices were selected such that the entire brain volume from 

anterior at one end to posterior at the other was covered. Accuracy and reliability of cortical  
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Fig. 5.10: Reconstructed cortical boundary (Yellow line) overlaid on the coronal view of the 

corresponding MR image 
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reconstruction with the proposed AAGHD model are computed quantitatively by using two 

comparison metrics, namely, Dice Similarity Coefficient (DSC) [86, 87] and Symmetrized 

Hausdorff Distance [88] to manual and automated reconstructed contour.   

Dice Similarity Coefficient (DSC): 

The DSC value is a simple and useful measure of spatial overlap and applied to study 

accuracy in image segmentation. The DSC measures the spatial overlap between two 

segmentations, A and B, of the same target regions, and is defined as  

 

DSC (A,B)= 2(A∩B)/(A+B)   (5.21) 

Conceptually, the DSC metric is derived from the kappa statistic and commonly used in 

reliability analysis, when there is a much larger number of background voxels than that of the 

target voxels, as shown previously by Zijdenbos et al [32].  

In our application, a domain expert traced the target manually on each slice and it was 

compared with the automatically drawn brain contour using DSC. After segmenting coronal 

view brain images, the manually segmented cortical outer contour was highly comparable to 

the automated ones and it reflected in high similarity indices, approximately 0.97±0.02. 

Index for exactly similar patterns is 1 and index of more than 0.700 is considered as very 

good agreement [41].  

Symmetrized Hausdorff Distance:  

Examining the surface distances using Hausdorff Distance is another meaningful 

comparisons between structures as only accuracy of the segmentation boundaries is taken into 

account [86]. For two non-empty subsets, A and M for automated and manually reconstructed 

contour respectively, Symmetrized Hausdorff Distance can be expressed as follows:  

 

).,(),,(max),( AMhMAhMAH =   (5.22)  

 

where h(A,M) is the directed Hausdorff distance and expressed as 

     

),(minmax),( madMAh
MmAa ∈∈

=    (5.23) 

and d(a, m) is the euclidean distance between two points on two different contours. h(M.A) is 

also defined similarly. Lower the Hausdorff Distance metric indicates more similarity of the 
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automated reconstruction to the manual one. This distance for manually segmented cortical 

contour and the automated reconstructed cortical contour in our data sets is highly 

encouraging and remains in the range of 1.65±0.31.     

 

5.5   A round up of AAGHD Model 

We have tried to meet the basic challenge of reconstructing the outer cortical surface from 

MR image of brain by developing a novel AAGHD model which is a hybridization of the 

traditional deformable model with GGVF deformable contour and a newly designed ZNZD 

deformable model along with prior precise anatomical knowledge. The proposed algorithm 

claims its excellence in terms of full automation, tuning of minimum number of parameters, 

accuracy at deep narrow sulci and efficiency in overcoming the partial volume effect. No step 

of the algorithm, from elimination of bones and soft tissues or initialization of the deformable 

contour to final convergence at CSF/Gray interface requires any human intervention at all.   

Essence of the algorithm emanates from the rich non-overlapping tissue specific 

information in the acquired datasets. From the image histogram one can easily identify a 

mode actually representing a given anatomical structure. That is why determination of the 

initial contour is easily made by global thresholding only. Actually, using global 

thresholding, segmentation of the brain is possible only because of the high contrast of the 

adjacent tissues as well as complete control over manipulating it for meeting the objective. 

As in our dataset pixel values of CSF and gray matter are consistently lower than the 

background noise, lower threshold of the background is confidently chosen as the upper 

threshold for segmentation of the initial brain boundary.  As the brain is bounded by the bony 

skull and the background noise never overlaps the distribution of the bones, the chance of 

misclassification of the bony part as brain is virtually eliminated. The proposed model can 

not work on images with less tissue contrast as its operation starts on global thresholding on 

pentamodal distribution of the histogram, which is the feature of proposed acquisition 

protocol.    

The initial brain contour derived in this way is surrounded by CSF and encapsulated by 

meninges or non-brain tissues with spatially varying thickness. Non-brain tissues are 

eliminated by using traditional “snake” model and thus the deformable contour is brought to 

the inner boundary of meninges. To design the external force field for this purpose we again 

exploit the unique modal distribution feature of specific tissue class in the histogram for 
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segmentation of topological distribution of Denoting the distributed CSF map with zero and 

ANDing it with the original image we actually tried to get zero valued CSF and nonzero 

valued intracranial tissues like cerebrum and cerebellum. This is the most crucial step for 

success of the algorithm. In this way gradient of CSF/meninges interface and CSF/Gray 

matter interface become very high which helps in defining the external force field for 

traditional snake as well as GGVF field in the next step. Besides, it provides precise 

anatomical guidance for eliminating thick meningeal folds which cannot be removed by the 

traditional snakes. Though some zero valued CSF remain distributed in the ventricles, being 

far away from the cortical gray matters they do not affect the following steps of the algorithm 

anyhow.  

Final contour of the traditional snake, ΩMF is scanned pixel by pixel for its adjacency to 

the zero-valued CSF. In case of any thick isolated meningeal fold, final contour of the 

traditional snake passes arbitrarily through mid portion and may not be adjacent to CSF. But 

the first and the last pixel of the fold must be adjacent to the same CSF set. On checking this 

condition after tracing these extreme points, non-zero set in between is identified and turned 

to zero value to eliminate it. This situation is more vivid around superior sagittal sinus. This 

checking is made strategically not to affect the part of the cortical folds which are attached to 

the meninges leaving no CSF in between them. Thus all discrete non-zero valued meningeal 

folds turn into zero selectively and the brain remains a set of non-zero value. Polygon of 

minimum perimeter of that set serves as initial contour,
 INITIALΩ for GGVF deformable model 

and this initialization ensures starting of the deformable contour in the capture range of the 

force field. In our GGVF model, we have chosen a pair of weighting function for better 

convergence of boundary concavity which is very important for our application to reconstruct 

the highly convoluted cortical surface, proposed by Xu et. al. The GGVF field computed 

using this pair of weighting functions will conform to the edge map gradient at strong edges, 

but will vary smoothly away from the boundary. In spite of the medialness of the GGVF 

deformable model, in this application, the final contour perfectly lies over CSF/gay matter 

interface, since the contour faces a very high gradient at this interface when approached 

externally. This has occurred due to anatomical guidance of CSF distribution. Instead of 

having a range of gray values, distributed CSF possesses zero gray value and the gray matter 

distribution in the gray scale is far away from zero. This produces a very high gradient at 

their interface and helps in convergence on that interface.  
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As the deformable contour approaches from the outside, it inevitably faces hindrance 

due to the PVE especially at narrow sulci. AAGHD model strategically handles this problem 

automatically and selectively. It switches its external force field from GGVF to ZNZD field, 

when deformation under influence of GGVF halts according to the guiding parameter η. The 

new force field is used for fine tuning of the shape of the contour selectively for penetration 

of the contour at narrow sulcal folds. It does not work on the entire contour; rather selective 

part of the contour is marked with the help of differential geometry as a fraction or segment 

adjacent to the concave points of the contour. Spatially varying extra penetrating force is 

applied over this segment. It is maximum at the central concave point and decreasing linearly 

on both sides of the selected segment. It augments penetration of the contour through PVE in 

association with ZNZD force field. The main essence of the ZNZD force field is sensitivity to 

the PVE. Being a function of the pixel value of spurious edges at the site of the PVE, the 

force field is spatially varying and allows penetration of the contour through spurious edges 

formed by the PVE at narrow and adjacent gray matter folds only. This force field never 

pushes the contour towards boundary; rather attracts the contour at the centre of the nearby 

CSF set. So, a different strategy has to be applied to push it again toward the boundary. Once 

the AAGHD model switches from GGVF to ZNZD field there is no need to switch again to 

GGVF field on seizing deformation in ZNZD field as GGVF is meant for coarse tuning of the 

contour and ZNZD is meant for fine tuning. But it has to be checked whether any 

deformation is possible on application of the ZNZD force field repeatedly to overcome 

multiple obstructions of the PVE at a single CSF set. The contour is finalized as 
FINALΩ when 

no deformation is possible at all at any site on application of ZNZD field after running the 

region growing algorithm at the sites deformed under influence of ZNZD field in previous 

attempts. The contour accurately converges with the CSF/Gray interface maintaining cortical 

topology along with the entire brain volume.  
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6.1 Synthesis of Contributions 

 

6.1.1 Novel MR image acquisition protocol 

 

Huge advancement in neuroimaging and brain image processing in last few decades has 

opened many specialized application areas in research and clinical practice beyond 

conventional role of visualization of anatomical lesion in diseased individuals. Computational 

neuroanatomy, brain warping, reconstruction of cortical and subcortical structures of brain, 

image guided neurosurgery and above all localization of functional data in the structural 

image to explore the neuroanatomical correlation with a precise cognitive task are a few such  

examples of advanced applications. In biomedical imaging, MRI has extraordinary versatility 

for generating images of a wide range of different tissues by means of contrast. Though many 

protocols have been proposed for acquisition of MR image of brain for clinical practice, not 

one has been standardized for advanced research application like cortical reconstruction or 

multimodal image registration or brain warping. As a consequence, no standard post-hoc 

processing has been established for specific application. Besides validation of the final result 

of such processing tasks are not unquestionable even after huge computational burden and 

varied amount of manual intervention. Once the objective has been designed, it is imperative 

that planning of image acquisition and image processing run side by side. To address this 

problem, our research was aimed to improve the quality of MR image of brain at the 
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acquisition level going beyond the conventional acquisition protocols. The acquisition 

protocol was conceptualized from FLAIR or STIR protocols to suppress the signal from the 

gray matter for better delineation of cortical and subcortical gray structures in normal brain. 

In our approach, attempts towards optimization of the parameters have developed Gray 

Matter Attenuated Inversion Recovery protocol which has produced brain images with 

brilliant gray-white contrast, measured objectively and with comparative histogram analysis. 

Different tissue classes are distributed in separate modes in the histogram because of their 

non-overlapping pixel values and this feature is highly promising for post-hoc processing of 

tissue classification and segmentation with minimum computational burden. 

 

6.1.2 Head segmentation algorithm  

 

Though segmentation of head by means of removal of background is not the integral part of 

cortical reconstruction or the proposed AAGHD model, it can be done as an intermediate step 

of the algorithm for a specific application. The proposed algorithm is an improvement on the 

conventional background removal technique proposed by Brummer et al. [71] for MR image 

of brain and is invariant to image acquisition protocols. As image histograms vary wildly 

with acquisition protocols, modification is necessary in the algorithm for automatic threshold 

selection and even the question of feasibility of such automated thresholding may appear in 

some cases. In their algorithm Brummer et al. searched the background noise peak in the 

histogram by finding the local maxima. Search is proposed to be started from the least 

intensity level. That is why, when the image is distributed arbitrarily in the lower intensity 

range than the background noise intensity, the strategy of finding the local maxima may get 

trapped in the local maxima of the image itself and the image background will remain 

unidentified. The algorithm proposed by Brummer et al. is limited to those images which 

produce background noise distribution in the lower intensity range with object intensity 

always higher than the background noise in their histogram. This limitation is also evident in 

the work of Atkins and Mackiewich [71, 72].  

 

In our datasets background noise is distributed in the intermediate intensity range 

when image intensity partially drops below the background intensity and partially above that 

range. So, two thresholds (upper and lower) are to be generated automatically for complete 

segmentation of the image. But the primary challenge is to identify the peak of the 

background in such types of histograms. The challenge becomes apparently insurmountable 
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Fig. 6.1: Multilevel thresholding for removal of image background
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6.1.3 Novel external force field 

 

We have introduced a novel external force field named Zero-Non-Zero Distance (ZNZD) 

force field for reconstruction of outer cortical surface that is CSF/Gray matter interface of 

brain from MR image. The force is designed to address the problem of propagation of the 

deformable contour across the spurious edge due to partial volume effect at narrow sulci 

when the contour is initialized outside the cortical surface. This force field is designed with a 

function of the distance between CSF and the brain tissue instead of conventional gradient of 

edge map. This force field drives only the deep penetrating part of the contour for fine tuning 

with the deep sulci. The basic difference of the field with other deformable model is that it 

never converges with the desired object boundary; it just breaks the barrier of spurious edges. 

Being function of the pixel value of the obstructing pixels of the spurious edges, the field has 

got an inherent property to be spatially varying in its strength depending on the image 

information.  

 

6.1.4 Fully automated cortical reconstruction algorithm  

 

In this thesis we have studied different deformable models aiming to develop a fully 

automated algorithm for cortical reconstruction without loss of brain volume. In section V, 

we detail the algorithm which is named as Advanced Anatomy Guided Hybrid Deformable 

Model (AAGHD). Novel approaches of this model includes initialization of the deformable 

contour at outside of the cortex then stepwise application of different force field namely 

GGVF force field of Xu et. al. and a newly developed ZNZD force field in automatic fashion 

depending on the global deformation of the contour. Initialization algorithm includes 

histogram statistics to eliminate background and bones and deformable model of Kass et. al. 

to eliminate other non brain tissue like meninges. Uniqueness of the algorithm includes 

extensive usage of the anatomical guidance in the form of CSF distribution for accurate 

convergence with the CSF/Gray interface, complete automation from elimination of the non-

brain tissues through initialization of the contour, propagation and switching among different 

force field to final convergence at the true cortical surface. Performance of the algorithm 

measures quantitatively with a similarity index proposed by Zijdenbos et al. [73] derived 

from the reliability measures and quantifies the agreement between two measures. We have 

used this measure since it is sensitive to both size and location and weights heavily the 

common area between overlapping regions.          
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6.2 Future Work 

 

Though the algorithm is fully automated and addressed the challenge of accurate convergence 

to narrow deep sulci, scope of future work includes making some heuristic parameters more 

adaptive in nature to increase robustness of the algorithm. As the algorithm is efficient on the 

2D image to reconstruct the cortical outline as a deformable curve, it has to be extended to 

voxel based approach in 3D image data to reconstruct the cortical surface as deformable 

surface. The main essence of the algorithm that is incorporation of prior knowledge of 

anatomy with deformable models can be extensively used for reconstruction of subcortical 

gray matters namely thalamus, caudate nucleus, amygdale, hippocampus and more. As 

detailed analytical description is preserved in the reconstructed cortical map, study of 

different sulcal folds can be done with help of this algorithm. Above all, as entire brain 

volume is preserved, localization of the functional data in this reconstructed cortical surface 

will help to study the relationship between structure and function quantitatively.    

 It is also noteworthy, that the proposed model can also be extended into the domain of 

machine learning. The constraints of prior knowledge or curve evolution strategy can be 

treated as completely supervised learning process. The adaptive learning process can be 

introduced to accommodate cross subject cortical variability, instead of incorporating more 

anatomical constraints or rigorous curve evolution strategy.  Adaptive machine learning can 

also be applied for automated detection of cortical sulcal folds. However, machine learning 

for automatic detection of anatomical features and structural pathology is highly attractive 

domain of future research. For instance, IBM Watson has already been initiated for automatic 

medical diagnosis by using deep learning.    

 

6.3 Overall Perspectives  

 

The main goal of the work presented in this thesis is to develop an algorithm for fully 

automated but accurate reconstruction of the cortical surface by fusing different deformable 

models, developing new models along with precise application of anatomical guidance as 

constraints. This idea of fusion of existing algorithms is also reflected in the work of 

computer vision researcher Monique Thonnat, who has combined the best features of existing 

algorithms using human interactions [89]. We aim to reconstruct the cortical surface at 

CSF/Gray matter interface to maintain the entire brain volume with analytical description of 

the detail topology without any human interaction. For this purpose we address the challenge 
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of partial volume effect at deep and narrow sulcal folds to converge the contour exactly on 

the true surface of CSF/Gray matter interface. We also aim to nullify human interactions to 

make the algorithm fully automated from pre-processing, elimination of non-brain tissue, 

initialization of the contour, curve propagation to final convergence. It is hoped that the 

algorithm has explored efficiently the use of anatomical knowledge with the deformable 

models to fulfil the objective and encourage in extending the application of automated 

cortical reconstruction to other domain of neuroimaging like morphometric analysis, warping, 

structural-functional correlation and more.     
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APPENDIX A 

NMR Phenomenon and MR image signal 

 

Source of signal for MRI is externally measured NMR phenomenon. NMR involves Nuclei 

of an object to be imaged, Magnetic field generated by imager and Resonance phenomenon 

due to interaction of nuclei with the magnetic field. Nuclei with odd atomic weights and/or 

odd atomic numbers (e.g. H
+
), posses an angular momentum J , called “spin”. In MRI, an 

ensemble of the nucleic of the same type present in an object is referred to as a (nuclear) Spin 

system. Property of this spin system is that nuclear magnetism can be created by placing it in 

an external magnetic field. 

 

Nuclear Magnetic Moments (µ) 

A microscopic magnetic field (analogues to microscopic bar magnet) is associated with a 

nuclear spin. This is the basis of nuclear magnetism of a nuclear spin system. This 

microscopic magnetic field is represented as vector µ
r

, nuclear magnetic dipole moment or 

magnetic moment, where 

                                                  
Jγµ =

                  A.1 

γ is Gyromagnetic ratio. Its unit is rad/S/T and its value is nucleus dependent. A related 

constant is πγγ 2/= (unit is MHZ/T). For 
1
H 58.42=γ  MHZ/T 

 

Magnitudes of µ  

As per theory of quantum mechanics values of nuclear spin quantum number (I) depends on 

mass number and charge number of a nuclei and it may be 
2

5,2,
2

3,1,
2

1,0  .  

        
)1( +== IIh

r
γµµ

            A.2
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Where,  h is Plank’s constant, 
π2

h
h = its value is )106.6( 34

sJ −×
−

. In a sample, nuclei with I 

=1/2 (e.g. for 
1
H, 

13
C, 

19
F, 

31
P), the spin system is called ‘Spin- ½’ system. A nucleus is NMR 

active if and only if 0≠I    

 

 Direction of µ  

Direction of µ  is completely random in the absence of 
ο

B  due to thermal random motion. 

So, no net magnetic field exists around a macroscopic object. To activate macroscopic 

magnetization the spin vector is to be line up by exposing the object to external static 

magnetic field 
οB applied in z direction.                                                                 

                                 
kBB οο =                                   A.3                                                                       

Direction of µ  after exposure to is οB reoriented. As per quantum model, µ  can assume one 

of a discrete set of orientation but not exactly with the direction of the external magnetic 

field. If Zµ  is the z-component of µ  in 3-D space and mI is magnetic quantum number, then 

            hIZ mγµ =                           A.4 

If 0≠I , then mI = - I , - I +1 , - I+2 ,……. , I a set of (2I +1) values. So, there is (2I +1) 

possible orientation for µ with respect to οB . The angle θ between µ and οB  can be 

calculated as follows  

)1()1(( +
=

+
==

IIII
Cos mm IIZ

h

h

γ

γ

µ

µ
θ                   A.5 

µ
r

 is quantized along the direction of the external field. Direction of xyµ  (Transverse 

component) remains random and angle between xyµ and xµ , ξ  is random variable, 

distributed over [0,2π]  

    ji yxxy µµµ +=  



107 

 

               









=

=

ξµµ

ξµµ

sin

cos

xyy

xyx

 

Magnitude of xyµ is      

   

222 )1( Izxy mII −+=−= h
r

γµµµ                       A.6 

 

For Spin-1/2 system, I=1/2 and mI = +/- ½, then '4454o
±=θ according to equation A.5 and 

2

hγ
µ =xy

 according to equation A.6. That is, for spin-1/2 system any µ takes 1of 2 possible 

orientations, pointing up or parallel and pointing down or antiparallel. Now, motion of µ  in 

B0 can be calculated according to classical mechanics. The torque that µ  experiences from 

the B0 is    

  
kB

dt

d
or

J
dt

d
kB

ο

ο

µγ
µ

µ

×=

=×

r

)(

   A.7 

Thus precession of µ  about the Z axis (B0 field) is called nuclear precession. It is clockwise 

in direction and its angular frequency is called Larmor frequency, ω0  

       
B00

γω =
                            

A.8 

Nuclear precession can be expressed as  

  
)0()()( 0 µωµ tRt Z=                           A.9 

Where, RZ(ω0t) is a rotation matrix and can be expressed as 

















100

0)(cos)(sin

0)(sin)(cos

tt

tt

οο

οο

ωω

ωω

 

Bulk Magnetization 
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Collective behavior of µ  can be describe by macroscopic magnetization vector )(M . It is 

the vector sum of all the microscopic magnetic moment in the object. 

                                        ∑
=

=
SN

n
nM

1

µ

               

A.10 

NS is the total number of spin in the system. For Spin -½ systems, nµ takes parallel and/or 

antiparallel orientations with respect to z-axis. Spin in different orientation have different 

energy of interaction with B0. As per quantum theory energy E can be expressed as  

 

00
. B

I
mBE hγµ −=−=                     A.11 

For parallel spin, mI= ½ and their energy 
ο

γ BE h
2

1−=
↑

and for antiparallel spin, mI = - ½ 

and their energy
↓

E =  
ο

γ Bh
2

1 . So, spin down is the higher energy state than spin up. This 

energy difference expressed as  

   000 )
2

1(
2

1 BBBEEE hhh γγγ =−−=−=∆
↑↓

  

A.12  

If 0≠∆E , there is two states for a spin system. This phenomenon is called Zeeman splitting 

phenomenon. The spin population difference in this two spin states is related to their energy 

difference by the following Boltzmann Relationship 

 








 ∆
=

↓

↑
=

sspindownofnumber

spinupofnumber

KT

E

N

N
exp

         A.13 

 

Where K is the Boltzmann constant and its value is 1.38×10
-23

J/k and Ts is the absolute 

temperature (273+t). As in practice sKTE <<∆  
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If it is positive, then
↓↑

> NN . This uneven distribution occurs as spin is more likely to take 

the lower energy state with higher stability. Though   is very small, it generates 

an observable macroscopic magnetization vector )(M
r

 from a spin system. Such spin system 

is said to be magnetized. Difference between number of pointing up spin and pointing down 

spin is essential to produce macroscopic magnetization vector. 

 

Magnitude and direction of the bulk magnetization
 

kMjMiMM zyx

rvv
++=  knjnin
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Again, 0cos,
11

== ∑∑
==

Ns

n

n

Ns

n

xyx n ξµµ . As projection of nµ  onto the transverse plane has a 

random phase while it precesses about z- axis, ‘ nξ ’ is a random variable uniformly 

( )
↓↑

− NN
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distributed over [0, 2π]. In the same way 0,

1

=∑
=

n
Ns

n
yµ , and macroscopic magnetization can 

be expressed as κµ 







= ∑

=

Ns

n

z nM
1

, . For spin-½ system hγµ
2

1+=Z for parallel spins and 

hγµ
2

1−=Z  for antiparallel spins. Then the expression becomes 

( )κγκγγ
↓↑

↓

=

↑

=

−=







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n
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hhh
2

1
2

1
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Now, putting the value of ( )
KTs

B
NsNN

2

0hγ
=−

↓↑
we can get the magnitude for spin -½ 

systems as follows   

  
kTs

NsB

kTs

B
NMM sz

42
..

2

1 22

οο
γγ

γ
hh

h
o

===  

    

General form of this expression for Spin-I is given as   

   KTs

INsIB
M z

3

)1(22
0 +

=
ο

γ h
         A.15 

 

Direction of this bulk magnetization at equilibrium state is towards positive direction of z –

axis.  

 

RF Excitation and resonance  

Bulk magnetization, M is pointing along the οB . So, for spin -1/2 system in ο
B , large no of 

spins will be set of vectors spreading out two precessing cones. Resonance means 

establishment of phase coherence among these ‘randomly’ precessing spins. For this purpose, 

an external force has to be applied to make the phase coherent. For magnetized spin system, 

the external force comes from an oscillating magnetic field )(1 tB (Transmitter coil of RF 
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System). To induce a coherent transition of spin for one energy state to another, radiation 

energy ( E∆ ) is to be equals to the applied energy by RF system, Erf. If the excitation carrier 

frequency is ωrf, as per Plank’s law, applied energy by RF system rfrfE ωh= . For 

resonance condition,  

                                            
οο

ο

ωγω

ωγ

==

==∆

B

BE

rf

rfhh

   A.16 

 

RF pulse is a synonymous of 1B  field. It is called “Pulse” as 1B  field is short lived (duration 

is of ms). It is called “RF” as 1B  field oscillates in radio frequency range. 1B  is very very less 

than 
ο

B . 1B  field is linearly polarized as it oscillates along the x- axis and it generates an 

oscillating )(1 tB  field perpendicular to 
ο

B  field. 

e
tie rftBtB

)(

11 )()(
ψω +−

=             A.17 

Initial phase angle ( )Ψ  is constant and exerts no effect on excitation result. The envelop 

function, )(1 tB
e uniquely specifies shape and duration of RF pulse and excitation property. 

RF pulses are named on it. As for example of an rectangular pulse,  


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τ

τ

τ

A.18 

  

The Bloch Equation 

Bulk magnetization, M is a function of t when B1 is applied. This time-dependent behavior of 

M  has been quantified by Bloch equation and its general form is 

                     A.19 

1
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T1 and T2 are time constant for relaxation.  

 

Free precession and relaxations 

After perturbation of M from its thermal equilibrium state by an RF pulse, if enough time is 

given, M  returns to previous state as per laws of thermodynamics. This precession of M  

about 
ο

B  field is called free precession. Free precession consists of two parts, recovery of 

ZM , known as longitudinal relaxation and destruction of xyM , known as Transverse 

relaxation. Time evolution for the transverse and longitudinal magnetization components in 

larmor rotating frame are as follows:  

                  
11

2

//0

/

)0()1()(

)0()(

Tt

z

Tt

z

Tt

yxyx

eMeMztM

eMtM

−

+′

−

′

−

+′′′′

+−=

=

               A.20

 

 

yxM
′′  and ZM

′
are transverse and longitudinal component of bulk magnetization after 

application of RF pulse. Decay of yxM
′′  and recovery of  zM

′
 both follows an exponential 

function. This exponential description especially for yxM
′′  is only applicable for weak spin-

spin interaction system, e.g. spin in liquid state molecular. In other cases it is more 

complicated. Theoretically total time taken for complete destruction of yxM
′′  is prolonged. 

But, total regain of 
0

Mz is much faster. Theoretically it is more or less instantaneous. But 

1)0(
T

t

z eM
−

+′
 component has a negative impact on )(tM Z ′

, which make the exponential curve 

much smother than Mxy   decay curve. T1 is not the total time taken for longitudinal relaxation 

and T2 is not the total time taken for transverse relaxation. After 1T  time interval ZM
′  will 

regain 63% of  
0

ZM and after 2T  time interval yxM
′′  will lose 37% of  xyM . T1 and T2 values 

depend on tissue composition, structures and surrounding. In MRI rotating magnetization of 

NMR is converted to electrical signals. 
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