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SISO Single Input Single Output

SOM Self-Organizing Map

SOM-STFPIC1 STFPIC for MF1

SOM-STFPIC2 STFPIC for MF2

SOM-STFPIC3 STFPIC for MF3

SOM-STFPDC1 STFPDC for MF1

STAR Self-Tuning Adaptive Resolution

STFLC Self-Tuning Fuzzy Logic Controller

STFPDC Self-Tuning Fuzzy PD Controller

STFPIC Self-Tuning Fuzzy PI Controller

STFPICα Self-Tuning Fuzzy PI Controller with Dynamic Gain

SVM Support Vector Machine

TS Takagi–Sugeno

VQTAM Vector-Quantized Temporal Associative Memory

ZN Ziegler-Nicholas

ZNPIC Ziegler-Nicholas Tuned PI Controller





Introduction and scope of the thesis

1.1 Introduction
The conventional PID controllers are widely used in industry due to their simplicity in 

arithmetic, ease of use, good robustness, high reliability, stabilization and zero steady state error 

[1-2]. Ziegler-Nichols tuned PI or PID controller performs well around normal working 

conditions, but its tolerance to process parameter variations are severely affected.  Conventional 

controllers require mathematical models, which may not be always available. The industrial 

processes are usually nonlinear and higher order systems with considerable dead-time, and their 

parameters may be changed with changes in ambient conditions or with time [3-4]. Thus, to have 

a satisfactory control performance, the control action should be a nonlinear function. It is not 

possible to incorporate this nonlinearity in a conventional controller. However, a conventional 

fuzzy logic controller (FLC) attempts to incorporate it by a limited number of if-then rules; 

although this may not always be sufficient to generate the required control action [5-8]. For the 

successful design of a FLC, the proper selection of input and output scaling factors and/or the 

tuning of other controller parameters, such as meaningful partition of the input-output linguistic 

variables, appropriate formulation of the rule-base, and definition of the membership functions, 

are crucial jobs [9-20]. Attempts are persistent in the research world to obtain a superior 

controller by choosing the correct set of rules and scaling factors in order to fine tune the fuzzy 

logic controller. Moreover, a number of approaches have been proposed to implement hybrid 

control structures that combine the robustness of conventional controllers with the intelligence of 

fuzzy logic techniques to control the nonlinear systems.

C

 CHAPTER 1
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In the process industry, generally a skilled human operator always tries to manipulate the process 

input, usually by adjusting the controller gain based on the current process states to get the 

process ‘optimally’ controlled. The proper tuning of the output scaling factor (SF) is very 

important, as it is equivalent to the controller gain. This output gain has been given the highest 

priority because of its strong influence on the performance and stability of the system [21 -25]. 

Mudi and Pal [22] proposed a robust self-tuning scheme for FLCs, where an on-line fuzzy gain 

modifier is determined by 49 fuzzy if-then rules based on operator’s knowledge. For fine tuning, 

irrespective of the process under control, they further augmented the gain modifier by an 

empirically obtained constant multiplying factor. Motivated by the encouraging simulation 

results of [22], we decide to investigate the proposed self-tuning fuzzy controllers’ performance 

in practical systems. As a typical nonlinear system, we consider the heating, ventilation and air-

conditioning (HVAC) system, where the supply air pressure control loop for HVAC is highly 

nonlinear in nature. We also consider the inverted pendulum, a benchmark system to researchers, 

for its strong degrees of non-linearity and inherent instability [6]. A control algorithm is properly 

judged when it efficiently and effectively controls such a complex system. By applying the 

proposed fuzzy controller and dual control scheme the inverted pendulum stabilization and 

swing-up problems are addressed.

Finding an appropriate multiplying factor for the fine tuning of FLCs [22] becomes a great 

challenge. Instead of using a fixed gain multiplier, we determine to find out a process specific 

multiplier that is directly related to the process dynamics. The relay-feedback approach is 

proposed here for this purpose. In this approach, output scaling factor of the FLC updated by 

fuzzy gain modifier is further parameterized by the process ultimate-gain and ultimate-period, 

i.e., critical point of the system obtained through relay-feedback experiment. The effectiveness 

of the technique is demonstrated on various linear and nonlinear processes. 

Mudi and Pal [22] used 49 rules for FLC and another 49 rules for its tuning. Sometimes, the 

tuning by such a large number of fuzzy rules may make the system more complex and slow. In 

view of this, a question comes in our mind, whether we really need so much of rules or is it 

possible to realize the same level of performance even with a much smaller set of rules. We 

investigate this issue by using lesser number of rules and also by applying different non-fuzzy 

adaptive schemes, and later on, proposed a rule extraction scheme that can extract a smaller but 
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adequate rule-base from a set of input-output data. Effectiveness of the proposed adaptive 

controller is studied with respect to its conventional fuzzy and non-fuzzy controllers in terms of 

several performance indices. Finally, the proposed control approach is demonstrated on a 

laboratory scale overhead crane. Moving a suspended load along a pre-specified path is not an 

easy task when strict specifications on the swing angle and on the transfer time need to be 

satisfied. In this thesis, twin adaptive fuzzy controllers are proposed to control the position of the 

trolley crane and swing angle of load. The proposed adaptive control scheme guarantees a fast 

and precise load transfer and the swing suppression during the load movement, despite of model 

uncertainties. 

Usually, most of the fuzzy systems are developed by user defined fuzzy if-then rules for a given 

system. But there are some cases where there is no expert, or expert cannot express his or her 

knowledge explicitly. Hence in such cases, it is required to extract input-output relationship 

based on the information obtained from the system. System identification (SI) is an important 

research area primarily devoted to developing models of physical systems based on observed 

input-output data. During the past three decades a lot of research has been directed towards 

developing efficient system identification algorithms with a view to obtain models that closely 

match to the real physical systems. The fuzzy modeling is an integral part of system 

identification. The main idea of fuzzy modeling [14, 17, 26-29] is to describe the input-output 

behavior of a given system by a set of fuzzy if-then rules. An unknown system transforms input 

xi to output yi and let the system be denoted by S, thus y=S(x). The problem here is to find an 

explicit (mathematical) or implicit (computational schemes/algorithms) model for S. 

Identification problem can be conceived as an optimization problem in which the error between 

the actual measured response of a system and the identified response of a model is minimized. 

Therefore, interest in system identification lies in minimizing the error norm of the outputs. The 

identification of such a linguistic model consists of two parts; structure identification and 

parameter estimation. For structure identification clustering techniques can be used. Among the 

different clustering models, we use Self-Organizing Map (SOM) since it operates in an 

unsupervised manner, thus minimizing the requirement for human guidance. SOM projects high-

dimensional data onto a low-dimensional grid. The projected data preserves the topological 

relationship of the original data. We define fuzzy rules for each node/cluster. Since the feature 

selection and rule identification are integrated, such a system can establish subtle nonlinear 
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interaction between features and fuzzy rule-base. Initial parameters of the input-output 

membership functions (MFs) are estimated from the clustering results and are refined by some 

gradient descent based optimization schemes. The proposed method has a provision of selecting 

desired number of rules for a given process. 

After rule extraction, it has been observed that many of the fuzzy sets are almost similar in 

nature. By investigating their similarity, for simplicity, rule merging scheme is suggested in this 

thesis. The number of rules is reduced through the merging of similar fuzzy sets. This thesis 

considers the linguistic modeling of nonlinear systems using a neuro-fuzzy approach and its 

effectiveness is successfully demonstrated through simulation experiments as well as real time 

implementation on an actual/practical system.

1.2 Background

1.2.1 Conventional controller

A proportional-integral-derivative (PID) controller is a generic control loop, with feedback 

mechanism, widely used in industrial control systems [30] as shown in Fig. 1.1. A PID controller 

calculates an ‘error’ value as the difference between a measured process variable and a 

desired set-point. The controller attempts to minimize the error by adjusting the process control 

inputs. The PID controller calculation involves three separate constant parameters: the 

proportional, the integral and derivative values, denoted by P, I, and D. Heuristically, these 

values can be interpreted in terms of time: P depends on the present error, I on the accumulation 

of past errors, and D is a prediction of future errors based on current rate of change. The 

weighted sum of these three actions is used to adjust the process via a final control element. By 

tuning the three parameters in the PID controller algorithm, the controller can provide control 

action designed for specific process requirements. The response of the controller can be 

described in terms of the responsiveness of the controller to an error, the degree to which the 

controller overshoots the set-point, and the degree of system oscillation. A PID controller will be 

called a P, PI or PD controller in the absence of the respective control actions. In process 

industries, PI and PID controllers are generally used due to their simple design and tuning 

methods. Due to the presence of measurement noise, PI controllers are more preferable than PID 

controllers. The absence of derivative action makes a PI controller simple and less sensitive to 
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noise [31]. In practice, nearly 90% of all industrial PID controllers have their derivative action 

turned off [32]. The most important step for a successful controller design is its tuning. Ziegler–

Nichols (ZN) ultimate cycle method [33] is widely used to determine reasonably good settings of 

P, PI and PID controllers, to start with. ZN tuned PI controllers (ZNPICs) exhibit good 

performance for first-order processes, but they usually fail to provide satisfactory performance 

for high-order and/or nonlinear systems, which represent most of the practical processes. 

Specially, performances of ZNPICs under set-point change are not acceptable in many cases due 

to excessive oscillation associated with a large overshoot [34, 35].

Figure 1.1: Block diagram of a PID controller.

1.2.2 Fuzzy logic controller

Complex real world problems require intelligent systems that combine knowledge, techniques, 

and methodologies from various sources. These intelligent systems are supposed to possess 

humanlike expertise within a specific domain, adapt themselves and learn to do better in 

changing environments and explain how they make decisions or take actions. This innovative 

approach to constructing computationally intelligent systems is called Soft Computing.

Zadeh introduced the subject of ‘Fuzzy Logic’ or fuzzy set theory, in 1965 [36]. The fuzzy logic 

tool is a soft computing tool that can be used to powerfully get things done. It deals with 

uncertainty and provides an inference structure that enables appropriate human reasoning 
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capabilities. The human brain interprets imprecise and incomplete sensory information provided 

by perceptive organs. The fuzzy set theory provides a systematic calculus to deal with such 

information linguistically, and it performs numerical computation by using linguistic labels 

stipulated by membership functions. Moreover, a selection of fuzzy if- then rules forms the key 

component of a fuzzy inference system that can effectively model human expertise in a specific 

application [37]. In simpler words, fuzzy logic reflects how people think. It attempts to model 

our sense of words, our decision making and our common sense. As a result, it is leading to new 

and more human intelligent systems.

Fuzzy logic unlike Boolean or crisp logic, deals with problems that have vagueness or 

imprecision. Normally in boolean logic we deal with statements, answers to which are either true 

or false, yes or no, or a 0 or 1. However for many situations the answer is more uncertain. Fuzzy 

logic deals with uncertainity in engineering by attaching degress of uncertainity to the answer to 

a logical question. Commercially, fuzzy logic has been used with success to control machines 

and consumer products [38]. Its major advantages include:

i. It is an alternative design methodology which is simpler and faster.

ii. Fuzzy logic reduces the design development cycle.

iii. It simplifies design complexity.

iv. It is always a better alternative solution to nonlinear control.

v. It improves control performances.

vi. It simplifies implementation, and reduces hardware costs.

Principle Design parameters:

Membership Function (MF) is a graphical representation of the magnitude of participation of 

each input. It associates a weighting with each of the inputs that are processes, defines functional 

overlap between inputs, and ultimately determines an output response. The rules use the input 

membership values as weighting factors to determine their influence on the fuzzy output sets of 

the final output conclusion. Once the functions are inferred, scaled, and combined, they are 

defuzzified into a crisp output which drives the system. There are different MFs associated with 

each input and output response.

Some of the extensively used MFs, especially in real time implementation are:
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i. Increasing MFs

ii. Decreasing MFs

iii. Triangular MFs

iv. Pie / Trapezoidal MFs

v. S-/ Gaussian MFs

Fuzzification Module performs a scale transformation (i.e., an input normalization) which maps 

the physical values of the current process state variables into a normalized domain, we intend to 

work in. The fuzzification module converts a point-wise (crisp), current value of a process state 

variable into a fuzzy set of linguistic variables, in order to make it compatible with the fuzzy set 

representation of the process state variable in the rule-antecedent. In real life world, the 

quantities that we consider may be thought of as crisp, accurate and deterministic, but actually 

they are not so. They possess uncertainty within themselves. The uncertainty may arise due to 

vagueness or imprecision; in this case the variable is probably fuzzy and can be represented by a 

membership function [39].

Knowledge Base of a fuzzy knowledge base controller (FKBC) consists of data-base and a rule-

base. The basic function of the data-base is to provide the necessary information for the proper 

functioning of the fuzzification module, the rule-base, and the defuzzification module. This 

information includes: membership functions representing the meaning of the linguistic values of 

the process state and control output variables; and the physical domains and their normalized 

counterparts together with the normalization/denormalization factors. If the continuous domains 

of the process state and control output variables have been discretized then the data-base also 

contains information concerning the quantization look-up tables defining the discretization 

policy. The basic function of the rule-base is to represent in a structured way the control policy 

of an experienced process operator and/or control engineer in the form of a set of production 

rules such as:

If [process state] then [control output]

The if – part of such a rule is called the rule-antecedent and is a description of a process state in 

terms of a logical combination of atomic fuzzy propositions. The then – part of the rule is called 

the rule consequent and is again a description of the control output in terms of a logical 
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combination of fuzzy propositions. These propositions state the linguistic values which the 

control variables take whenever the current process state matches the process state description in 

the rule-antecedent. 

Fuzzy Inference Engine is a popular computing frame work based on the concepts of fuzzy set 

theory, fuzzy if-then rules, and fuzzy reasoning [37]. There are two basic types of approaches 

employed in the design of the inference engine of a FKBC: composition based inference and 

individual rule based inference. In composition based inference, union of the relational 

representation of each rule can be used for the entire rule-base and the control output is then obtained 

as the inference from this composite relation. The second type of inference rule is predominantly 

used in applications of FKBC. Its basic function is to compute the overall value of the control 

output variable based on the individual contributions of each rule in the rule-base. Each such 

individual contribution represents the value of the control output variables as computed by a 

single rule. The output of the fuzzification module representing the current crisp values of the 

process state variables is matched to each rule antecedent, and a degree of match for each rule is 

established. Based on this degree of match, the value of the control output variable in the rule 

antecedent is modified. 

Fuzzy Inference Methods:

Mamdani’s fuzzy inference method is the most commonly used in fuzzy decision making 

systems. Mamdani’s method is among the first control systems built using fuzzy set theory. It is

proposed in 1975 by Mamdani and Assilian [40] as an attempt to control a steam engine and 

boiler combination by synthesizing a set of linguistic control rules obtained from experienced 

human operators. Mamdani-type inference, expects the output membership functions to be fuzzy 

sets. After the aggregation process, there is a fuzzy set for each output variable that needs 

defuzzification. In Mamdani’s model the fuzzy implication is modeled by Mamdani’s minimum 

operator, the conjunction operator is min., the t-norm from compositional rule is min. and for the 

aggregation of the rules the max. operator is used [41].                                     

This can be mathematically explained as follows: For Mamdani implication the relation R is 

obtained as μ
R
(x,y) = min[µA(x), µB(y)]; xX , yY. Once the relationship between A and B is 

known for a given fact ‘x is A’ (A is a fuzzy set on X) the corresponding conclusion B (B is a 
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fuzzy set on Y) is obtained through composition operation as B = A o R; where ‘o’ denotes the 

composition operator.

Like fuzzy implications, various forms of composition operators also exist in the literature [42, 

43]. The two most common forms of composition operator are the ‘max-min’ and ‘max-product’ 

or ‘max-dot’ compositions.

max-min: µB(y) = max{min(µA(x), µR(x,y))};  xX

max-dot: µB(y) = min{max (µA(x), µR(x,y))};  xX

Such composition operation can be done by the combination of fuzzy sets and fuzzy relation 

with the aid of ‘cylindrical extension (ce)’ and ‘projection (proj)’ [42, 44] as

B = A o R = proj [ce (A) ∩ R] on Y.

This process of inferring the conclusion (B) from a given fact (A) and the fuzzy relation (R) is 

termed as ‘compositional rule of inference’. Fuzzy inference scheme that uses Mamdani 

implication in conjunction with max-min composition is known as Mamdani type inferencing

which is normally used in fuzzy control. The Mamdani model is typically used in knowledge-

based (expert) systems.                                                                                                                                   

Takagi–Sugeno (TS) Inference Method is another important method used in FLC design. In 

data-driven identification, the model due to Takagi and Sugeno has become popular [17]. In this 

model, the antecedent is defined in the same way as above, while the consequent is an affine 

linear function of the input variables:

Ri: If x is Ai then T
i i iy b a x ;   i = 1, 2, …….,K.  

where ia is the consequent parameter vector and bi is a scalar offset. This model combines a 

linguistic description with standard functional regression: the antecedents describe fuzzy regions 

in the input space in which the consequent functions are valid. The output y is computed by 

taking the weighted average of the individual rules’ contributions:
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where  i x  is the degree of fulfillment of the ith rule. The antecedent fuzzy sets are usually 

defined to describe distinct, partly overlapping regions in the input space. The parameters ia are 

then approximate local linear models of the considered nonlinear system. The TS model can thus 

be regarded as a smooth piece-wise linear approximation of a nonlinear function or a parameter-

scheduling model. 

Defuzzification Module performs the so-called defuzzification, which converts the set of 

modified control output values into a single point-wise value. A defuzzification process produces 

a non-fuzzy control action that best represents the possibility distribution of an inferred fuzzy 

control action. Some defuzzification processes are:

a) Centre of Area/ Centre of Gravity defuzzification is the well-known defuzzification method. 

In the discrete case (u= {u1, u2,……..ul}). Then the crisp value of the control output (u*) 

resulting from this defuzzification method will be given by
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 Here  denotes an algebraic integration, the overall control output U  or U is obtained as the 

union of the m clipped control outputs  ( )

1

m k

k

U CLU


 .

b) Centre of Sums is a similar but faster defuzzification method. The motivation for using this 

method is to avoid the computation of U . The idea is to consider the contribution of the area of 

each 
( )k

CLU individually. Mathematically, the Center of Area/Gravity method builds U by 

taking the union of all
( )k

CLU . Center of Sums, however, takes the sum of the
( )k

CLU , where k = 
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1 to n. Thus overlapping areas, if such exist, are reflected more than once by this method. The 

faster algorithm for this defuzzification method is one reason why most FKBC use this method. 

In discrete case Center-of-Sums is formally given by

( ) ( )
*

1 1 1 1

. ( ) ( )k k

l n l n

i i iCLU CLU
i k i k

u u µ u µ u
   

                                      (1.2)

c) Height defuzzification is a method which takes the peak value of each 
( )k

CLU and builds the 

weighted sum of these peak values. Thus neither the support nor the shape of 
( )k

CLU plays a role 

in the computation of u*. The Height method is both a very simple and very quick method. 

c*
k

1 1

.
m n

k k
k k

u µ f f
 

                                                        (1.3)

where µk
c and fk are the centroid and height or the firing strength of the kth rule respectively.

1.2.3 Self-tuning and adaptive fuzzy control

Nowadays, control engineers frequently use the conventional PI, PD and PID type fuzzy logic 

controllers to address different process nonlinearities by a limited number of if-then rules, but it 

may not always produce fruitful results with fixed valued scaling factors and uniform 

membership functions [12]. In spite of a number of merits, there are many limitations while 

designing a fuzzy logic controller, since there is no standard methodology for its various design 

steps, and no well-established criterion for selecting suitable values for its large number of 

design parameters. 

Induction of a suitable tuning scheme may eliminate the limitations of fuzzy logic controllers. 

Existing tuning schemes are applicable for conventional controllers, which are linear in nature. 

But, fuzzy logic is a nonlinear technique, thus the existing tuning schemes cannot solve this 

problem. Different attempts have been made to tune the if-then control rules to achieve the 

desired control objectives [21]. But, the tuning of a large number of FLC parameters is a time-

consuming, expensive, and cumbersome task. Ill-performed and ill-defined control systems 

greatly reduce system effectiveness, therefore control engineers recognized the importance of 

automatic tuning of the controllers. The automatic tuning or self-tuning of a fuzzy logic 
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controller aims to adapt the controller at different operating conditions and subsequently 

eliminates the disturbances occurring in the process.

A fuzzy logic controller is called ‘adaptive’, if any of its tunable parameters such as scaling 

factors, membership functions and if-then rules changes when the controller is in operation, and 

otherwise it is a non-adaptive or conventional fuzzy logic controller. An adaptive fuzzy logic 

controller that fine-tunes an already working controller by adjusting either its scaling factors or 

membership functions or both of them is called a self-tuning or adaptive fuzzy logic controller. 

On the other hand, a fuzzy logic controller is called self-organizing when its rules are changed 

automatically.

1.2.4 Neural network

Artificial neural networks (ANN) or Neural networks (NN) have a large number of highly 

interconnected processing elements with the ability to learn from training patterns or data. They 

are like human brain and can perform pattern-matching tasks. Neural networks combined with 

fuzzy logic can provide excellent performance in developing human made systems that can 

perform the same type of information processing as that of our brain. Distributed representation 

and learning capabilities are the two features of neural networks. Most importantly, neural 

networks can perform filtering operations that are beyond the capabilities of the conventional 

linear filtering techniques because of their non-linear nature. Artificial neural network (ANN) is 

composed of a large number of highly interconnected processing elements (neurons) working in 

union to solve specific problems. 

Figure 1.2: A simple artificial neural net.
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An artificial neuron is characterized by:

1. Architecture (connection between neurons)

2. Training or learning

3. Activation function

Fig. 1.2 shows an artificial neuron with a set of ‘n’ inputs xi, each representing the output of 

another neuron (the subscript i takes values between 1 and n and indicates the source of the 

vector input signal). Each input is weighed before it reaches the main body of the processing 

element by the connection strength or the weight factor analogous to the synaptic strength. The 

amount of information about the input that is required to solve a problem is stored in the form of 

weights. Each signal is multiplied by its associative weight w1, w2, w3,…,wn before it is applied to 

the summing block. In addition, the artificial neuron has a bias term w0, a threshold value ‘θ’ that 

has to be reached or extended for the neuron to produce a signal. Thus the output of the summing 

block is:

                                                                 
1

n

o i i
i

S w


  x w                                                         (1.4)

The resultant signal is then passed through a nonlinear activation function ‘f’. Then the output ‘y’ 

of the neuron may be represented as,

                                                  
1

( ) ( )
n

o i i
i

y f w f S


   x w                                                      (1.5)

The neuron firing condition is: 

1

n

i i
i




 x w  [for linear activation function], or 

( )f S  [for nonlinear activation function].

Learning algorithms are used in neural network to update the weight parameters at the inter-

connection level of the neurons during the training process of the network. The well-known and 

most often used learning mechanisms are the supervised and the unsupervised.

Supervised learning:

The main feature of the supervised learning mechanism is the training by examples. This means 

that an external expert provides the network with a set of input stimuli for which the output is a 

priori known. During the training process, the outputs are continuously compared with the 
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desired value. An appropriate learning rule (such as gradient decent) uses the error between the 

actual output and the desired output to adjust the connection weights so as to obtain, after a 

number of iterations, the closest match between the target output and the actual output. 

Supervised learning is particularly useful for feedforward networks. The back-propagation 

neural network (BPNN) algorithm, which is based on the gradient decent optimization technique, 

radial basis function network (RBFN) and the least mean square (LMS) algorithm are among the 

most commonly used supervised learning rules. 

Unsupervised learning:

Unsupervised or self-organized learning does not involve any external teacher and relies instead 

upon local information and internal control. The training data and input patterns are presented to 

the system, and through predefined guidelines, the system discovers emergent collective 

properties and organizes the data into clusters or categories. Unsupervised learning algorithms 

have been known as open loop adaptation learning schemes. An unsupervised learning scheme 

operates as follows:  

 A set of training data is presented to the system at the input layer. 

 The network connection weights are then adjusted through some sort of competition 

among the nodes of the output layer, where the successful candidate will be the node with 

the highest value. In the process, the algorithm strengthens the connection between the 

incoming pattern at the input layer and the node output corresponding to the winning 

candidate. 

 In addition to the strengthening of the connections between the input layer and the 

winning output node, the learning scheme may be used to adjust the weights of the 

connections leading to the neighboring nodes at the output layer. It has the major 

property of making groups of output nodes (clusters) behave as single entities with 

particular features.  

Clusters, or conceptually meaningful groups of objects that share common characteristics, play 

an important role in how people analyze and describe the world. Indeed, human beings are 

skilled at dividing objects into groups (clustering) and assigning particular objects to these 

groups (classification). Clusters are potential classes and cluster analysis is the study of 

techniques for automatically finding classes. Cluster analysis provides an abstraction from 
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individual data objects to the clusters in which those data objects reside. Additionally, some 

clustering techniques characterize each cluster in terms of a cluster prototype; i.e., a data object 

that is representative of the other objects in the cluster. Clustering techniques are validated on the 

basis of the following assumptions:

1. Similar inputs to the target system to be modeled should produce similar outputs.

2. These similar input-output pairs are bundled into clusters in the training dataset.

Assumption-1 states that the target system to be modeled is a smooth input-output mapping; this 

is generally true for most of the real world systems. 

Assumption-2 requires the data to conform to some specific type of distribution; however, this is 

not always true. Therefore clustering techniques used for structure identification in neural or 

fuzzy modeling are highly heuristic, and finding data to which clustering techniques cannot be 

applied satisfactorily is not uncommon.  

Clustering techniques can be off-line or on-line.

Off-line clustering techniques: Mostly four types of off-line clustering techniques [45 - 49] are 

used for fuzzy modeling: K-Means Clustering, Fuzzy C-Means Clustering, Mountain Clustering 

and Subtractive Clustering.

On-line (unsupervised) clustering techniques: When no external teacher or critic’s instruction is 

available, only input vectors can be used for learning, such an approach is learning without 

supervision or unsupervised learning. This type of learning frequently employed for data 

clustering, feature extraction and similarity detection. Some of the unsupervised learning 

techniques are: Competitive learning, Kohonen self-organizing feature map and Principal 

component analysis. 

 Competitive Learning is an unsupervised learning that updates weights only on the basis 

of the input patterns, with no available information regarding the desired outputs. 

Competitive Learning is usually implemented with neural networks that contain a hidden 

layer which is commonly known as “competitive layer”. We can find the best matching 

unit by two ways: 

i) Comparing the inner product T
ijX W of the impinging input X with each weight vector 

Wij. The winning neuron is the one that has the largest inner product. 



16      
     

ii) Euclidean distance criterion: the winning neuron is the one that that minimizes the 

distance ijX W . 

For every input vector, the competitive neurons ‘compete’ with each other to see which 

one of them is the most similar to that particular input vector. The winner neuron sets its 

output ‘1’ and all the other competitive neurons set their output ‘0’. This strategy is also 

called winner-take-all since only the winning neuron is updated. A limitation of 

competitive learning is that some of the weight vectors never get updated. This learning 

method lacks the capability to add new clusters when necessary. 

 Kohonen self-organizing feature map is another competition based network paradigm 

for data clustering. Self Organizing Map (SOM) by Teuvo Kohonen [50] provides a data 

visualization technique which helps to understand high dimensional data by reducing the 

dimensions of data to a map. SOM also represents clustering concept by grouping similar 

data together. Therefore it can be said that SOM reduces data dimensions and displays 

similarities among data. With SOM, clustering is performed by having several units 

compete for the current object. Once the data have been entered into the system, the 

network of artificial neurons is trained by providing information about inputs. The weight 

vector of the unit is closest to the current object becomes the winning or active unit. 

During the training stage, the values for the input variables are gradually adjusted in an 

attempt to preserve neighborhood relationships that exist within the input dataset. As it 

gets closer to the input object, the weights of the winning unit are adjusted as well as its 

neighbors. Getting the Best Matching Unit (BMU) is done by running through all weight 

vectors and calculating the distance from each weight to the sample vector. The weight 

with the shortest distance is the winner. There are numerous ways to determine the 

distance; however, the most commonly used method is the Euclidean Distance. We have 

discussed in details about SOM and SOM algorithm in Section 5.2 (Chapter-5). Teuvo 

Kohonen writes "The SOM is a new, effective software tool for the visualization of high-

dimensional data. It converts complex, nonlinear statistical relationships between high-

dimensional data items into simple geometric relationships on a low-dimensional display.

As it thereby compresses information while preserving the most important topological 
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and metric relationships of the primary data items on the display, it may also be thought 

to produce some kind of abstractions."

1.2.5 System identification and Neuro-fuzzy systems

System Identification is prerequisite before going to design a controller for a plant, say for a 

scenario, an on-line plant requires a controller for improving its performance. The controller 

cannot be designed on-line for a running plant as it may disturb the entire production which may 

be cost effective, so a model is required which represents the on-line plant. Here comes the 

concept of modeling a plant. 

System identification concerns with the determination of a system structure on the basis of input-

output data samples. The identification task is to determine a suitable estimate of finite 

dimensional parameters which completely characterize and describe the plant. The selection of 

the estimate is based on comparison between the actual output value and a predicted value on the 

basis of input data up to that instant.

The purposes of system identification/modeling are multiple:

 To predict a system’s behavior, as in time series prediction and weather forecasting.

 To explain the interactions and relationships between inputs and outputs of a system. 

For example, a mathematical model can be used to examine whether the demand 

indeed varies proportionally to the supply in an economic system.

 To design a controller based on the model of a system, as in aircraft and ship control. 

Also to control computer simulation of the system, we need a model based on the 

system.

System identification generally involves two steps:

A. Structure Identification: In this step, we need to apply a priori knowledge about the 

target system to determine a class of models within which the search for the most suitable 

model is to be conducted. Usually this class of models is denoted by a parameterized 

function y=f(u, θ); where y is the model’s output, u is the input vector, and θ is the 

parameter vector. The determination of the function f is problem dependent, and the 
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function is based on designer’s experience and intuition as well as the laws of nature 

governing the target system.

B. Parameter Estimation: In the second step, when the structure of the model is known, we 

need to apply optimization techniques to determine the parameter vector θ, such that the 

resulting model y can describe the system appropriately.

In general, system identification is not a one pass process; it needs to do both structure 

identification and parameter estimation repeatedly until a satisfactory model is found. 

Neuro-Fuzzy system represents a hybrid intelligent system combining the main features of ANN 

with those of fuzzy knowledge base system (FKBS). It is well recognized that neither fuzzy 

reasoning systems nor neural networks are by themselves capable of solving problems involving 

both linguistic and numerical knowledge at the same time. The aim of this integration is to either 

adapt fuzzy systems to the changing environment, or to identify fuzzy rules and membership 

functions. The integration of fuzzy logic systems with neural networks reduces the limitations of 

fuzzy systems in terms of lack of learning while strengthening the neural network features in 

terms of explicit knowledge representation. Major strengths and weaknesses of both neural 

network and fuzzy logic system are summarizing below:

Fuzzy Logic Neural Network

Representation Linguistic description of 
knowledge

Knowledge distributed within 
computational units

Adaptation Some adaption Adaptive

Knowledge 
representation

Explicit and easy to interpret Implicit and difficult to interpret

Learning Non-existent Excellent tools for imparting learning

Verification Easy and efficient Not straightforward

 It is difficult to construct model of an unidentified ill-defined system, but it is possible to obtain 

output data from the system for a given set of known input data. It is important to extract input-
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output relational data from any unknown or ill-defined system. This relational information helps 

to characterize or model the system. Neuro-fuzzy system is an important tool to investigate any 

nonlinear and ill-defied system. Usually to construct a neuro-fuzzy system, we use a set of 

numerical data consisting of an input-output space. The construction of the system involves two 

essential phases: structure identification, which aims to determine the fuzzy rules structure, and 

the parameter learning phase used to tune and optimize the parameters of each fuzzy rule 

constructed in the structure identification phase. The input-output behavior of a given system can 

be described by a set of fuzzy rules [26, 45]. These two phases are carried out in sequence with 

the learning structure phase coming first followed by the learning parameter phase. 

1.3 Literature survey 

1.3.1 Self-tuning fuzzy control

Here we have reviewed the literature for different approaches of developing self-tuning FLCs: 

Yoshida et al. [51] proposed the gain tuning method assuming all processes as first-order 

systems with dead-time. The input and output SFs are calculated by some empirical relations

involving process parameters. However, good control performances for higher order systems 

cannot be ensured by this technique. Iwasaki and Morita [52] considered linear first-order plant 

models with dead-time in their auto-tuning scheme. Here, the parameters of an assumed plant 

model are iteratively revised through fuzzy inference using differences between the actual plant 

features (rise time and overshoot) and the plant model features. The overall performances of the 

controller will be dependent on the appropriateness of the assumed process model. Hayashi [53]

designed an auto-tuning fuzzy controller by considering two tuning functions. From the 

approximate parameters of the identified plant model (first-order lag with dead-time) the input 

and output SFs are calculated using the concept of Chien–Hrones–Reswick tuning rules for a 

conventional PI controller. Then the crisp consequent parts are modified by fuzzy rules using 

overshoot and rise time to improve the control performance. Nomura et al. [54] proposed the

self-tuning method of FLCs, which is a well known gradient decent technique to optimize both 

the fuzzy antecedent and crisp consequent parts. The controller is tuned iteratively by 

minimizing the square error between the FLC output and the desired output given by the training 

data. This method simultaneously modifies the crisp consequent values and, centers and widths 
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of triangular input fuzzy sets. This off-line tuning method may be very good for time invariant

control systems, but its applicability is limited due its dependency on the availability of a reliable 

set of training data. Performance evaluation of self-tuning fuzzy controller is described by 

Daugherity et al. [55] where the scaling factors of the inputs are changed in the tuning 

procedure. The FLC has two control inputs: the current error and the change of error. The control 

action is the change in the manipulated variable. The tuning of the two scaling factors for the two 

control inputs is done automatically by a fuzzy set of meta rules. The performance measures for 

tuning are the overshoot, rise time and the amplitude of oscillation of the transient response of 

the process. By changing the scaling factor of each controller input, the weight given to the input 

of the controller is changed. For example, if the system response is slower than desired, the 

effect of the error on the system must be increased. Hence, the error scaling factor is increased. 

Similarly, if the overshoot or amplitude of oscillation is higher, the effect of the change of error 

on the controller should be bigger. Hence, the appropriate scaling factor is determined. 

Maeda et al. [56] introduced the application of neural nets to the design and tuning of fuzzy 

system. He described how neural networks (NN) and fuzzy logic have been applied to consumer 

products. Zheng [57] presented a self-tuning fuzzy logic controller (STFLC) which can emulate 

not only the control experience of human expert, but also the strategies or thinking of the expert 

to be utilized in developing a fuzzy controller. The remarkable feature of a STFLC is its dynamic 

knowledge, which is constructed by a multi-layer rule-base. He suggested to tune the parameters 

of PI-type FLCs in order to their significance; i.e., first parameters with a global effect and then 

ones with only local effect and, hence, given the maximum importance to the tuning of SFs. 

Zheng did not provide any algorithm for tuning of FLCs, but discussed various factors, their 

interaction, and their impact on the controller performance that should be considered while 

designing tuning algorithms for FLCs. Input and output SFs are recommended to be selected 

from the knowledge of conventional PI-controller parameters, if available, otherwise through

trial and error. Simulation result with tuned MFs shows a marginal improvement in transient 

response of a second-order linear process where tuning resulted in symmetric (triangle) MFs 

with unequal base. To be more specific, the width of MFs increased around steady state (i.e.,

e=0, Δe=0) and such MFs contradict the usual practice. Thus, the proposed MFs tuning scheme 

cannot guarantee improved performance under load disturbance, which is a very important 

criterion for the performance evaluation of any control system. Maeda and Murakami [58]
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proposed fuzzy rule-based schemes for adjustment of input–output SFs as well as for tuning of 

control rules for Takagi–Sugeno (TS) model. The fuzzy rule-base for tuning has three sets of 

rules based on three different performance measures: overshoot, rise time, and amplitude. After 

the tuning of SFs, the crisp consequent parts of the control rules are modified in each sampling 

time considering a fuzzy performance index and the deviation of the actual control response from 

a predefined target response. He et al. [59] proposed a scheme for self-tuning of a conventional 

PID controller using fuzzy rules. The proportional sensitivity, integral time and derivative time 

are initially calculated using Ziegler–Nichols (ZN) tuning formula. These three parameters are 

then modified on-line by a single parameter, which is updated by a rule-base defined on error 

and change of error. It is reported that there is a considerable improvement in the overall 

performance of the controller over its conventional counterpart. The algorithm is tested by

simulation under step changes in the set-point and load disturbance. Results obtained by this 

method, shows a significant reduction in overshoots of second-order processes with dead time,

but at the cost of increased rise times. Neither experimental trials nor any evidence of the 

controller robustness were examined.

Tönshoff and Walter [60] presented a method, which uses neural networks and other intelligent 

technologies for adjusting the design parameters of FLC for grinding control. Two distinct 

controllers are used. In case of high deviations between the normal and controlled value, the first 

controller is activated. Its input may lie in the entire range and it gives the controller output as an 

absolute value. At a low deviation, an incremental controller, whose input covers only a limited 

range is used. The fuzzy controller proposed is able to reproduce the behavior of dead-beat 

controller fully, but it seems to be difficult to implement on-line as it depends on hard 

computation requirements. Lee [61] proposed two augmented versions of the conventional fuzzy 

PI controller using resetting factors with a view to eliminating the overshoot caused by the

accumulation of control input in a fuzzy PI-type controller. The first of the two fuzzy controllers 

determines the resetting rate based on error and change of error, while the second one uses error

and control input. The computation of the resetting factor is driven by a fuzzy rule-base. The 

controller remarkably improves the transient response of a second-order linear system with

integrating element. But the authors, Mudi and Pal [62] in their paper have clearly shown with 

extensive simulation conducted on different types of second-order linear as well as nonlinear 
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systems with and without integration that the controller used by Lee with resetting action is 

almost similar to a conventional fuzzy PD controller.

Lui et al. [63] introduced a novel self-tuning adaptive resolution (STAR) fuzzy control 

algorithm. One of the unique features in STAR is that the fuzzy linguistic concepts change 

constantly in response to the states of input signals. This is achieved by modifying the 

corresponding membership functions. This adaptive resolution capability is used to realize a 

control strategy that attempts to minimize both the rise time and the overshoot. In this approach, 

the rule-base of the controller will not change, but the definition of the linguistic concepts adapt 

constantly according to requirements. This approach has been applied for a simple two input-one 

output fuzzy controller. Experimental results show the cascaded controller is robust against 

disturbances and uneven load. Compared to the conventional fuzzy controller, the STAR 

approach reduces the positional overshoot and also the angular error in steady state. Ramkumar 

and Chidambaram [64] developed fuzzy self-tuning PI controller with the basic idea of 

parameterize the ZN tuning formula by two parameters and and then to use an on-line fuzzy 

inference mechanism to tune the PI controller parameters i.e. proportional gain and reset time. 

The fuzzy self-tuning method uses the process output error as input and the tuning parameters 

and as outputs. The ranges of membership functions are selected based on the simulation 

study. The presented fuzzy logic controller is robust to process parameter uncertainties. Jung et 

al. [65] presented a self-tuning fuzzy water level controller based on the real-time tuning of the 

scaling factors for the steam generator of a nuclear power plant. They proposed a new real-time 

tuning of the scaling factors. The new tuning method uses a variable reference tuning index and 

an instantaneous system fuzzy performance. The controller is simulated on the Compact Nuclear 

Simulator at the Korea Atomic Energy Research Institute. The simulation results show that the 

proposed tuning method improves the performance of the water level controller. Chiricozzi et al.

[66] proposed a new gain self-tuning method for PI controllers based on the fuzzy inference 

mechanism. The purpose is to design a fuzzy rule-based parameter adaptation scheme for non-

fuzzy PI controller on-line. The aim of the method is to improve the step response gradually and 

to assure a certain system overshoot target reached with a reasonable rise time. This algorithm is 

tested in the permanent magnet synchronous motor drive speed control scheme with different 

set-points and extreme initial conditions. Shimojima et al. [67] proposed a new supervised self-
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tuning fuzzy modeling, which consists of some membership functions expressed by the radial 

basis function with insensitive region. Genetic algorithms (GA) take care of learning. The 

steepest descent method is also utilized for tuning the shapes of the membership functions and 

consequent parts of the rules. There are two tuning methods. One is the coarse tuning with GA 

and the other is the fine-tuning by the gradient descent method. No evidences of experimental 

trials neither of robustness of this algorithm are provided. Moreover, its on-line applicability is 

not indicated.

Palm [68] proposed to achieve the optimal adjustment in the input SF with the help of input–

output cross-correlation function, though he assigned a higher priority to the tuning of output SF 

over that of input SFs. Here, the input data’s are assumed to follow a Gaussian distribution 

whose parameters are unknown. An optimal input SF is obtained by maximizing the cross-

correlation function, which is a measure of the statistical dependence between input and output. 

Li and Gatland [69] have given more emphasis on the tuning of input and output SFs than that of 

MFs or rule-base. They basically suggested a trial and error method for tuning of input and

output SFs for a fuzzy PID controller developed from two FLCs in parallel- one is a PI-type and 

the other is a PD-type.

Miyata and Ohkita [70] proposed a steepest descent based method for the generation of 

piecewise linear membership functions. In this algorithm, MFs of the premise for each fuzzy rule 

are tuned independently. Comparing with the conventional triangular form and the Gaussian 

distribution of MFs, an expansion of the expressiveness is indicated. This greatly reduces the 

iterative computation. However, the determination of some initial learning coefficients remains 

unsolved. Wang and Chai [71] developed a learning algorithm to train the simplified fuzzy 

inference network (SFIN), used for implementation of the fuzzy logic controller, to match the 

given input-output pairs. This learning algorithm firstly considers the FLC as a four-layer 

feedforward network and secondly uses the chain rule to determine gradients of the output errors 

of the SFIN with respect to its design parameters. Routray et al. [72] introduced a fuzzy logic 

based approach for the on-line tuning of the control parameters. A satisfactory accuracy of the 

parameter adaptation is obtained by referring the fuzzy subsets to the normalized values of the 

variables involved in the fuzzy logic. The tuning rule-base tries to emulate operator experience 
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on gain tuning. A comparative study has been done with and without tuning, using an 

electromagnetic transient simulation program. No experimental tests are provided.

Chen and Lin [73] presented a methodology to tune the initial membership functions of a fuzzy 

logic controller. The membership functions of the controller output are adjusted according to the 

performance index of sliding mode control, thereby trying to propose a real time simultaneous 

tuning method. The input variables i.e. error and change in error define this performance index. 

The general gradient method is adopted to alter the output fuzzy set in the direction of the 

gradient of the performance index. The proposed algorithm has not been tested on experimental 

systems, and no evidence of its robustness has been provided. Leu et al. [74] presented the 

adaptive fuzzy-neural controllers tuned on-line for a class of unknown nonlinear dynamical 

systems. To approximate the linearization of the unknown nonlinear dynamical system, the fuzzy 

approximation is established. Furthermore, the control law and update law are derived to tune 

on-line both the B-spline membership functions and the weighting factors of the adaptive fuzzy-

neural controllers. The superiority of the on-line tuning of both membership functions and 

weighting factors over the tuning of only the weighting factors is demonstrated. The proposed 

algorithm has not been tested on practical systems. The robustness property of the controller is 

also not mentioned. Takagi et al. [75] presented a skill-based PID control scheme, which extracts 

skills of human experts as PID gains. This controller was designed by using a three-layered

artificial neural network together with a conventional PID controller. The digital PID controller 

produces a control signal by using the proportional, integral and derivative actions and the main 

task of the neural network is to tune the parameters- KC (proportional gain), Ti (reset time) and Td

(rate time) of the PID controller. 

Ying [76] investigated the analytical structure of the Takagi-Sugeno type fuzzy controllers. The 

TS fuzzy controllers employ a new and simplified TS control rule scheme in which all the rule 

consequents use a common function and are proportional to one another, greatly reducing the 

number of parameters needed in the rules. The proposed controller scheme does not match the 

problem of fuzzy self-tuning exactly, but it is an alternative way to build up a new improved 

fuzzy controller in the hybrid system using the variable gain as a tunable parameter. Chung et al.

[77] proposed a self-tuning fuzzy controller with a smart and easy structure. The tuning scheme 

allows tuning the scaling factors by only seven rules. The aim of the controller is to obtain a 
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satisfactory performance in term of rise time, overshoot and steady-state error for the step 

response. The structure of this controller consists of two fuzzy logic controllers: one is a PI-type

fuzzy controller at low level directly applied to the process; the other one is the fuzzy

supervisory tuner controller which adjusts the scaling factors of each MF of the low level 

controller. This means that the self-tuning controller adjusts three scaling factors for the three 

linguistic variables of the PI-type fuzzy controller, i.e. scaling factor of error, change of error and 

change of manipulated variable. This controller shows some robustness but no experimental 

trials are made.

Mudi and Pal [22] presented a simple but robust model for self-tuning FLCs. According to them,

the adaptive tuning of a FLC is based on an on-line adjustment of the output SF of a FLC by 

fuzzy rules according to the current trend of the controlled process. The rule-base for tuning the

output SF is defined based on the error (e) and the change of error (Δe) of the controlled variable 

using the most common and unbiased membership functions (MFs). The proposed self-tuning

technique is applied to both PI and PD-type FLC and tested through simulation experiments on a 

wide range of different linear and nonlinear second order processes including a marginally stable 

system. The performance of the proposed self-tuning FLC (STFLC) is compared with the 

corresponding conventional FLC in terms of several performance measures such as peak 

overshoot, settling time, rise time, integral absolute error (IAE) and integral-of-time absolute 

error (ITAE) in addition to the responses due to step set-point changes and load disturbances.

The proposed algorithm has not been tested on any real or actual systems.

Woo et al. [78] proposed a new fuzzy controller structure, namely PID type fuzzy controller by 

relating to the conventional PID control theory. In order to improve the performance of the 

transient state and the steady state of the PID type controller further, they developed a method to 

tune the scaling factors of the PID type fuzzy controller on-line. Chang et al. [79] proposed a 

self-tuning method for a class of nonlinear PID control systems based on Lyapunov approach. 

Here, the three PID control gains are adjustable parameters and will be updated on-line with a 

stable adaptation mechanism such that the PID control law tracks certain feedback linearization 

control, which is previously designed. The stability of closed loop nonlinear PID control system 

is analyzed and guaranteed by introducing a supervisory control and a modified adaptation law 

with projection. Yesil et al. [80] proposed a self-tuning fuzzy PID type controller for solving the 
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load frequency control (LFC) problem. The fuzzy PID type controller is constructed as a set of 

control rules, and the control signal is directly deduced from the knowledge-base and the fuzzy 

inference. Moreover, there exists a self-tuning mechanism that adjusts the input scaling factor 

corresponding to the derivative coefficient and the output scaling factor corresponding to the 

integral coefficient of the PID type fuzzy logic controller in an on-line manner. The self-tuning 

mechanism depends on the peak observer idea, and this idea is modified and adapted to the LFC 

problem. 

Huang and Chen [81] proposed a novel model-free adaptive sliding controller to suppress the 

position oscillation of the spring-mass in response to road surface variation. Since the hydraulic 

actuating suspension system has nonlinear and time-varying behavior, it is difficult to establish 

an accurate dynamic model for a model-based sliding mode control design. This control strategy 

employs the functional approximation technique to establish the unknown function for releasing 

the model-based requirement. In addition, a fuzzy scheme with on-line learning ability is 

introduced to compensate the functional approximation error for improving the control 

performance and reducing the implementation difficulty. The important advantages of this 

approach are to achieve the sliding mode controller design without the system dynamic model 

requirement and release the trial and error work of selecting approximation function. Pal and

Mudi [23] presented a self-tuning Fuzzy PI controller for the supply air pressure control loop for 

Heating, Ventilation and Air-Conditioning (HVAC) system. The self-tuning Fuzzy PI controller 

(STFPIC) adjusts the output scaling factor on-line by fuzzy rules according to the current trend 

of the controlled process [22]. Comparing with PID and Adaptive Neuro-Fuzzy (ANF) 

Controllers, results show that STFPIC performances are better under normal conditions as well 

as when the HVAC system encounters large parameter variations.

1.3.2 Rule extraction and fuzzy modeling

There have been several attempts to identify a rule-based system to characterize the relation 

between the input and output by various clustering methods [14, 82-91]. Among the different 

clustering methods, the K-means algorithm has a long history, but is still the subject of current 

research. The original K-means algorithm was proposed by MacQueen [82]. The recent 

variations of K-means are new incremental versions of K-means proposed by Dhillon et al. [83]. 
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K-means is simple and can be used for a wide variety of data types, but is not suitable for all 

types of data. It cannot handle clusters of different sizes and densities. 

The clustering method, called Fuzzy C-means (FCM), was introduced by Dunn [84] in 1973. An 

extensive discussion on of fuzzy clustering, including a description of fuzzy C-means and formal 

derivations of the formulas can be found in the book on fuzzy cluster analysis by Hoppner et al.

[85]. FCM has much the same strengths and weaknesses as K-means, although it is somewhat 

more computationally intensive.  

Sugeno and Yasukawa [14] used FCM algorithm to determine the structure of the system. The 

number of clusters, c, (i.e., the number of rules) is determined by minimizing the validity 

function S(c):
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In the above equation, n = total number of data points to be clustered, c = number of clusters, μik

= membership value of the kth data point, yk, to the ith cluster, m = the fuzzy exponent used in the 

FCM algorithm, vi= ith cluster center and 
_

y  = the grand mean vector of all data points. The 

number of clusters is determined by minimizing S(c) with respect to c. For each c, the FCM 

centroids V and the partition matrix U are first obtained and then used them to compute S(c). The 

value c c at which S(c) attains the minimum value is taken as the right number of rules. The 

membership values of the input clusters were obtained by projecting the membership values of 

the extracted clusters on the input axes. They approximated these clusters by trapezoidal fuzzy 

sets and used a heuristic method to adjust the parameters of the trapezoidal MFs. Yoshinari et al.

[86] clustered using fuzzy C-linear varieties, where each cluster is interpreted as a multi-

dimensional local linear relationship. Sin and de Figueiredo [92] used FCM for clustering and 

suggested to use the Xie–Beni index [93] for selecting the number of clusters. Each cluster 

obtained from input-output dataset is represented by a Takagi–Sugeno type rule [17]. They 

estimate the consequent functions by minimizing an objective function Ek. For a given data set 
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compute the output of the ith rule as y=ui(x). This y is then augmented to x and the augmented 

vector is used to find the firing strength of the ith rule. 

Krishnapuram and Keller [94] introduced a possibilistic approach to clustering i.e., the 

possibilistic C-means (PCM). Yager and Filev [87] used the mountain clustering method 

(MCM). The optimal number of clusters is chosen based on a user-defined threshold on the 

mountain potential. They investigate the cluster centroid *
x p
i

i y
i

 
  

 

v
v

v
, i = 1, 2…c from a 

MISO system and converted it into a fuzzy rule of the form: If x is CLOSE to x
iv  then y is 

CLOSE to y
iv . Chiu [89] proposed Subtractive Clustering Method (SCM), where each data point 

is considered as a potential cluster. After calculating the potential of all data points, the point 

with the highest potential is selected as first cluster center. Then after revision, the data point 

with the highest remaining potential is selected as second cluster center, and so on. If the ith

cluster center *
ix is found in the group of data for class c1, then the corresponding rule can be 

written as Ri: If x is CLOSE to *
ix then class is c1. The fuzzy set CLOSE to *

ix is modeled by a 

Gaussian type MF. No explicit cluster validity index is used here. The number of clusters SCM 

settles to is dependent on the parameters of the mountain function. Nakamori and Royke [95] 

used the objective variables and a subset of explanatory and conditional variables. They used a 

hyper-ellipsoidal crisp clustering algorithm, which dynamically determines the number of

clusters based on several user-defined parameters. Each cluster is then translated into a TS rule 

with linear function for the consequents, and if the TS model is not satisfactory, they use the 

Mamdani-Assilian (MA) model. 

Babuska and Kaynak [90] clustered using Gustafson–Kesel’s [96] fuzzy C-means (GKFCM) 

algorithm for TS modeling. Then the compatible cluster merging criterion of Krishnapuram and

Freg [97] is used to merge compatible clusters. After this, GKFCM algorithm is again run with 

the reduced number of clusters. The process is repeated until no more clusters can be merged. 

The fuzzy partition thus obtained is used to generate MFs for the antecedent variables. Finally, 

the consequent parameters are estimated using the least square technique. Kaynak et al. [91] and 

Babuska et al. [98] discussed methods for system optimization through removal and merging of 

fuzzy sets extracted by clustering of input-output datasets using a measure of similarity between
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fuzzy sets. Runkler and Palm [99] designed a regular fuzzy system with complete rule-base,

defined with equispaced unimodal MFs and the first order TS consequents. Delgado et al. [100] 

presented several methods for fuzzy modeling that use clusters with FCM. They also proposed to 

cluster input and output separately to generate fuzzy sets for antecedents and for the consequents. 

Several cluster validity indices [100-102, and 91] are used to get a good choice for the number of 

clusters (rules). Finally, they optimized the system with respect to root mean square error 

(RMSE) using genetic algorithm (GA). Wong and Chen proposed a hybrid clustering and 

gradient descent approach for constructing a multi-input fuzzy model automatically [103]. Pal et 

al. applied FCM for their rule extraction scheme in nonlinear system [104-106]. FCM is widely

used in data mining process [107], but, it is very difficult to partition large number of datasets 

effectively and, also, often datasets are affected by noise and outliers [108, 109]. Choice of the 

right value for the number of clusters is very important for successful identification of the system 

and in the case of FCM there are many validity indices that have been used for this purpose. 

Proper selection of validity indices is very important in the case of FCM and there are no such 

guidelines for that.

Krishnapuram et al. [110] proposed a relational fuzzy C-means (RFCM) algorithm for 

partitioning large datasets. Dave and Sen introduced a new algorithm for relational data, named 

fuzzy relational data clustering (FRC) algorithm, having an identical objective function as 

RFCM, but without the restriction of RFCM [111]. Frigui et al. introduced a semi-supervised 

approach for clustering and aggregating of relational data and they assumed that data is 

represented by multiple dissimilarity matrices form [112, 113]. Some improvement has also been 

done using Kernel-based fuzzy C-means clustering for large noisy datasets [114, 115]. When the 

kernel function integrates with Fuzzy C-means, it behaves almost like support vector machine 

(SVM). SVM is a useful method for generation of fuzzy rules automatically with fuzzy 

singletons; though the numbers of fuzzy rules are generally high [116]. SVM faces problem of 

speed and size in case of training huge datasets. 

Usually, conventional model-based clustering methods described above, may not be able to 

maintain the topological relationship among different clusters, after the clustering procedure 

[117]. Some work has been reported in this field to preserve topological relationship using 

conventional model-based clustering methods. Celikyilmaz and Turksen [118] applied FCM 
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initially and then re-clustered the datasets using improved fuzzy clustering (IFC) to capture 

interactive membership values. Apart from maintaining topological relationship, selection of 

proper clustering index is also a major concern in the supervised clustering methods. Kohonen

suggested an unsupervised clustering method self-organizing map (SOM) that can maintain the 

topological relationship between the clusters [119]. The use of hierarchical agglomerative 

clustering using K-means is investigated by Vesanto and Alhoniemi [120]. As with incremental 

K-means, data objects are processed one at a time and the closest centroid is updated. They used 

SOM to produce the prototypes. Unlike K-means, SOM imposes a topographic ordering on the 

centroids and nearby centroids are also updated. 

Yang and Bose [121] used SOM to generate fuzzy membership function directly during the 

learning phase. A key step in their proposed scheme is to combine the input feature vector (xn)

with the vector (yn) coding the class labeling information. The dimensions of xn and yn are 

respectively, the number of input features d and the number of class labels c. That is, a new 

vector zn of dimension c+d is constructed. In the learning phase, the newly constructed zn will be 

the input feature vector to SOM and after the learning phase, the SOM can be considered as a 

membership generation network just like its supervised counterpart, i.e., the feed-forward 

multilayer neural network trained with a supervised learning algorithm. In the retrieving phase, 

the input feature vector is only xn. Therefore, the input feature vector will find the best matching 

neuron by calculating the minimum Euclidean distance, considering only the weight sub-vector 

related to input features.

Hashimoto et al. [122] applied SOM-based clustering method for nonlinear system 

identification. SOM belongs to the class of unsupervised learning networks and the network 

produces a low-dimension representation of the input space that preserves the ordering of the 

original structure of the network [123, 124]. It projects high-dimensional data onto a low-

dimensional grid. The projected data preserves the topological relationship of the original data;

therefore, this ordered grid could be used as a convenient visualization surface for showing 

various features of the training data. The SOM possesses a regular structure, which is readily 

extendable and has been successfully scaled-up to implement different real world applications. 

SOM can be used as an efficient rule-extraction scheme as it not only clusters large data but also 
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provides useful information about clustered data [125]. We have elaborated this topic in chapter-

5.

1.4 Objectives of the thesis
Fuzzy controllers do not have well defined tuning mechanisms. To overcome this tuning problem 

an on-line gain adjustment scheme has been developed using fuzzy if-then rules [22]. In this self-

tuning scheme gain will be automatically adjusted according to the process trend. 

Our initial objective is to test the performance of this self-tuning fuzzy controller in 

simulated as well as in real time processes. 

To further modify this tuning scheme:

We plan to develop a relay feedback tuning approach to parameterize the output gain of a

self-tuning fuzzy controller according to the process under control. 

In place of fuzzy rule-based tuning, we attempt to develop a non-fuzzy auto-tuning 

method based on process dynamics and thereby reduced the number of rules 

significantly.

The main idea of fuzzy modeling is to describe the input-output behavior of a given system by a 

set of fuzzy rules. But, there are some cases where there is no expert, or due to highly complex 

and ill-defined nature of the system expert cannot construct any linguistic model of the system. 

In such cases, our objective is to make a proto-type of the system from the available input-output 

data, which is expected to behave like the original system. To achieve this goal:

We plan to develop a SOM-based rule extraction scheme that can pick up essential rules 

to make an effective linguistic model of the system from the available input-output data. 

We apply this developed scheme to identify a highly nonlinear gain surface and control 

surface of self-tuning fuzzy controller.

To evaluate the effectiveness of the identified linguistic model we observe its

performance on different simulated and real time processes.  

We attempt to reduce the MFs / rules using similarity measure among fuzzy sets to make 

the identified model simpler.
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1.5 Motivation of the present work
Most of the industrial processes under automatic control are nonlinear, complex and higher order 

systems and most of them have considerable dead-time. In industrial environment these 

parameters are often varied with time. Among the different parameters in a physical system, 

dead-time is the most difficult one, as it delays the required control action to a process. Though, 

FLC tries to incorporate these parameter variations of process, but it may fail to give desired

result due to its limited number of if-then rules. A FLC consists of various parameters like MFs, 

linguistic data-bases, rule-bases, fuzzification and defuzzification strategy, which are not well 

defined till date. Considering all these parameters, designing an optimal FLC analytically 

becomes very difficult. These limitations of the conventional FLCs motivated us to design on-

line tuning schemes for fuzzy controller that can control real time systems satisfactorily.

The first step in designing the controller is to model the plant. System identification is the 

process of building models of dynamical systems from input-output data. However, there are 

many ill-defined systems; the modeling of such systems is very difficult in absence of experts’ 

knowledge about the data pattern. This fact motivated us to develop an unsupervised mechanism 

that can pick up required number of if-then rules along with their antecedent and consequent 

MFs from the input-output data for developing a prototype of the original system. 

1.6 Thesis organization
Next we provide brief chapter-wise information about the content of this thesis. 

Chapter-1 gives an overview about the scope and objectives of the thesis. The different 

background components of our thesis are discussed briefly in this chapter. We review the 

literature for different approaches of developing self-tuning FLCs. This chapter provides a 

survey on different techniques used to identify the unknown systems from the available input-

output data. The importance of clustering techniques for rule extraction and system modeling is 

also reviewed.

Chapter-2 provides tuning procedure of fuzzy controller and its applications to practical 

systems. In this chapter, an on-line self-tuning scheme for fuzzy controller is discussed. The 

proposed self-tuning Fuzzy PI controller (STFPIC) and self-tuning Fuzzy PD controller 
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(STFPDC) adjust their output scaling factors on-line by a fuzzy gain modifier (β) according to 

the current trend of the controlled process. Later, the performance of the proposed control 

scheme is investigated in simulated process and also in real time process. A comparative study of 

the investigated processes is made with respect to different performance measures such as rise 

time (tr), settling time (ts), peak overshoot (% OS), integral absolute error (IAE) and integral-of-

time multiplied absolute error (ITAE) and integral square error (ISE).

Chapter-3 is an extension to the work proposed in chapter-2. Here the fuzzy output gain 

modifier (β) is further augmented by a multiplicative factor (α), which is directly related to the 

system dynamics and derived by relay feedback experiment.  STFPIC uses process specific 

appropriate gain multiplicative factor (α) instead of a fixed numerical value. The modified 

STFPIC uses only 50 rules in place of 98 rules used earlier [22, 23]. Robustness of the proposed 

controller is demonstrated by testing on a wide range of processes including nonlinear and 

marginally stable systems with a considerable variation in dead-time. This chapter also shows a 

real time implementation of the proposed controller for the speed control of DC motor.

Chapter-4 introduces a new auto-tuning scheme for PD-type fuzzy controller. Instead of using 

large number of fuzzy if-then rules for gain adjustment as demonstrate in previous chapters, here, 

we propose a simple non-fuzzy scheme for the design of an adaptive fuzzy PD controller 

(AFPDC). In the proposed AFPDC, output SF of the controller continuously updates by a non-

fuzzy multiplicative factor β, which is directly related to the normalized error and normalized 

change of error of the system under control. An important point of our proposed scheme is that it 

significantly reduces the number of rules from the previous cases. The proposed scheme is 

applied on different second order integrating, nonlinear and non-minimum phase systems with 

variable dead-time. In this chapter, twin adaptive fuzzy controllers are also implemented for a 

laboratory scale crane (FEEDBACK, UK) to control the position of the trolley crane and swing 

angle of load more precisely. Note that, it is very difficult to transfer a suspended load along a 

pre-specified path by maintaining minimum swing angle and transfer time of load.

Chapter-5 presents a new scheme of fuzzy modeling, based on the Kohonen self-organizing 

map [119]. The main idea of the fuzzy modeling is to describe the input-output behavior of a 

given system by a set of fuzzy rules. In this proposed work, we can find suitable computational 
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(linguistic) model for any unidentified system through structure identification and parameter 

estimation stages. For structure identification, Self-Organizing Map (SOM) based clustering 

technique is used. Here, the system identification method is integrated with rule extraction 

method in such a way that it can pick up essential rules for an unknown system. The scheme has 

been successfully tested by identifying the rules required to realize the gain factor of a self-

tuning fuzzy PI controller, which is highly nonlinear in nature. Identified gain rules along with 

initial control rules are used to investigate different linear, nonlinear and marginally stable 

systems. Comparative studies of simulation results ensure that the proposed rule extraction 

technique is capable to model any complex process successfully. In this chapter, an attempt has 

been made for further MF reduction using similarity measure. The proposed modeling scheme is 

also applied on a function approximation problem to justify its generalization capability.

Chapter-6 demonstrates the effectiveness of the rule extraction technique in two crucial 

industrial processes. The developed SOM based control scheme in chapter-5 is used here to 

control the position as well as swing angle of a laboratory based overhead crane. The 

effectiveness of the proposed approach is also tested in an industrial pressure control loop. The 

results show that even with significant reduction of rule-base, the controllers’ exhibit effective 

and improved performance in real time systems compared to its conventional fuzzy counterpart. 

Chapter-7 concludes by highlighting the contributions of this thesis together with some scope

for future work.
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Self-Tuning fuzzy logic controller and its 
application to HVAC and inverted pendulum

2.1 Introduction
Fuzzy logic controllers have been implemented successfully in a number of complex and 

nonlinear processes [12]. Application of fuzzy logic for inverted pendulum control still by far 

remains most popular, as they do not require precise knowledge of the system parameters [6]. 

Among the proportional-integral (PI), proportional-derivative (PD), and proportional-integral-

derivative (PID) type of FLCs, just like the widely used conventional PI controllers [126] in 

process control systems, PI-type FLCs are most common and practical followed by the PD-type 

FLCs because proportional (P) and integral (I) actions are combined in the proportional-integral 

(PI) controller to take advantages of the inherent stability of proportional controllers and the 

offset elimination ability of integral controllers. The performance of PI-type FLCs for higher 

order systems, systems with integrating elements or large dead-time, and also for nonlinear 

systems may be very poor due to large overshoot and excessive oscillation [127]. PD-type FLCs 

are suitable for a limited class of systems [128] and they are not recommendable in presence of 

measurement noise and sudden load disturbances. PID-type FLCs are rarely used due to the 

difficulties associated with the generation of an efficient rule-base and the tuning of its large 

number of parameters.

For the successful design of FLCs proper selection of input and output scaling factors are very 

important. Among the various tunable parameters, SFs have the highest priority due to their 

global effect on the control performance. Unlike conventional control, which is based on 

mathematical model of a plant, a FLC usually embeds the intuition and experience of a human 

C

 CHAPTER 2
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operator and sometimes those of designers and researchers. While controlling a plant, a skilled

operator always tries to manipulate the controller output (manipulated variable) with a view to 

minimize the error within the shortest possible time. By analogy with the human operator, the 

output SF should be considered a very important parameter of the FLC since its function is 

similar to that of the controller gain. Moreover, it is directly related to the stability of the control 

system. So the output SF should be determined very carefully for the successful implementation 

of a FLC.

Designing a general tuning method for FLCs is a very difficult task because, it have no fixed 

structures like conventional PI, PD, and PID controllers. FLCs are knowledge based system and 

its different parameters like membership functions, number of linguistic values, rule-bases, 

fuzzification strategy, and defuzzification method are not well defined till date. Probably due to 

these reasons designing an optimal FLC analytically becomes very difficult. These limitations of 

the conventional FLCs motivated researchers [22] to investigate methods of tuning based on 

experts’ knowledge rather than mathematical models. In their scheme, the FLC is tuned on-line

by dynamically adjusting its output SF by a gain updating factor. The self-tuning mechanism is 

applied to both PI and PD-type FLCs for simulation experiments with nonlinear processes [22, 

129]. The proposed FLCs are also tested for marginally stable and unstable systems where well-

known Ziegler–Nichols tuned PI or PID controllers exhibit very poor performance [130, 131].

The simulation results show that in each case the proposed control scheme outperforms its 

conventional counterpart [22]. However, its performance is not yet investigated in any practical 

system. In this chapter, we demonstrate this self-tuning scheme in a real time Inverted 

Pendulum and also in a Heating, Ventilation and Air-Conditioning system. 

Heating, Ventilation and Air-conditioning (HVAC) system is a nonlinear and time variant

system. It is difficult to achieve desired tracking control performance since appropriate tuning or

adjusting PID parameters on-line is a difficult problem. Industrial pressure control systems 

constitute the heart of many process plants [126]. The performance of the Self-tuning Fuzzy PI 

controller is investigated in the supply air pressure control loop [23] for HVAC system.

The effectiveness of the self-tuning scheme is also tested in a laboratory based inverted 

pendulum, which is a nonlinear and highly unstable system [6]. Its basic structure consists of two 
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flexible pendulum arms mounted to a cart on a moving rail. In the absence of a stabilizing 

controller, the pendulum arms, which have their centre of mass above their pivot point, are 

unable to maintain their upright position. Control of an inverted pendulum is a very common but 

difficult control engineering problem, based on flight simulation of rockets and missiles during 

the initial stages of flight, wherein the aim is to stabilize the inverted pendulum such that the 

position of the carriage on the track is controlled quickly and accurately. The pendulum should 

remain erected in its inverted position during such movements.

2.2 Types of fuzzy logic controllers

2.2.1 PD type fuzzy controller (FPDC)

The equation of a conventional PD-controller is
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Following backward difference rule, the discrete form of equation (2.1) at kth sampling instant 

can be written as 
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is the derivative gain, ( ) ( ) ( 1)e k e k e k     and t is the sampling time.

Thus the linguistic variables of the rule antecedent (if-part of a rule) of FPDC are:

 error, denoted by e(k), where e(k)= r(k) – y(k)

 change-of-error, denoted by ∆e(k)

Where y(k) and r(k) are the system output and the set-point respectively.

The control output, denoted by u(k) represents the linguistic variable of the rule-consequent 

(then-part of the rule). 

Then a PD-like FLC consists of rules with following linguistic description:
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If the value of error (e) has the property of being<linguistic value> and the value of change-of-

error (∆e) has the property of being<linguistic value>; then the value of control output (u) has 

the property of being<linguistic value>.

Figure 2.1: Block diagram of PD type fuzzy logic controller.

2.2.2 PI type fuzzy controller (FPIC)

A conventional PI-controller uses an analytical expression of the following form to compute the 

control action

                                      0
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The discrete-time version of the equation (2.2) at kth and (k-1)th instant respectively can be 

written as
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 is the integral gain and t is the sampling time.

Now the incremental form of the discrete PI controller can be written as 

∆u(k) = u(k) – u(k-1);
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                                    or,   ( ) ( ) ( )P Iu k K e k K e k                                                          (2.5)

Thus the linguistic variables of the rule antecedent (if-part of a rule) of a FPIC are

 error, denoted by e(k) = r(k) – y(k)

 change-of-error, denoted by ∆e(k) = e(k) – e(k-1)

Finally, the control output, denoted by u(k) is obtained by

      u(k) = u(k-1) + ∆u(k)                                                 (2.6)

In equation (2.6), Δu(k) is the incremental change in controller output. We emphasize here that 

this accumulation (2.6) of controller output takes place outside the FLC and is not reflected in 

the rules themselves. On the other hand, if the output of the FLC is u(k) (not Δu(k)) and there is 

no accumulation of controller output, then it becomes a PD-type FLC. 

Figure 2.2: Block diagram of PI type fuzzy logic controller.

A PI-like FLC (FPIC) consists of rules with following linguistic description:

If the value of error (e) has the property of being<linguistic value> and the value of change-of-

error (∆e) has the property of being<linguistic value>; then the value of change in control output

(∆u) has the property of being<linguistic value>.

2.3 The proposed self-tuning scheme of FLCs
In spite of a number of merits, there are many limitations while designing a fuzzy controller, 

since there is no standard methodology for its various design steps, and no well-defined criterion

for selecting suitable values for its large number of tunable parameters. Attempts are persistent in 
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the research world to obtain a superior controller; as choosing the correct set of rules and scaling 

factor is not an easy task in order to fine tune the fuzzy logic controller [22, 25]. Therefore, 

tuning of a large number of FLC parameters can be a tough task [21]. Our objective here is to 

tune only the output SF for given input SFs to achieve better control performance, though we 

know, the characteristics of a PI or PD type FLC depends on both input and output SFs [57].  

The gain (output SF) of the FLC is adjusted on-line according to the current states of the process, 

thereby making them self-tuning FLC. The block diagram of the proposed self-tuning FLC is 

shown in Fig. 2.3, which basically have two major blocks with same inputs - Fuzzy logic 

controller block and Gain tuning block. The design components of STFPIC are described next.

Figure 2.3: Block diagram of the proposed self-tuning PI-type FLC (STFPIC).

Figure 2.4: Membership functions of
inputs (e, Δe) and output (Δu).

Figure 2.5: Membership functions of
gain updating factor, β.

2.3.1 Membership functions

There can be different types of MFs, but for simplicity, here we have used triangular type of MFs 

with equal base and 50% overlap with neighboring MFs. As shown in Fig. 2.4 and Fig. 2.5, the



41      
     

MFs for e, Δe and u/Δu are defined on the common interval [-1, 1]; whereas the MFs for the gain 

updating factor (β) is defined on [0, 1] respectively. In both the cases, we have divided the input 

and output spaces into 7 fuzzy regions and assigned membership functions accordingly. The term 

sets (shown in Table 2.1) of e, Δe and u/Δu contain the same linguistic expressions for the 

magnitude part of the linguistic values, i.e., LE = LΔE = LΔU = {NB, NM, NS, ZE, PS, PM, PB} 

as shown in Fig. 2.4. Similarly the MFs for gain updating factor is mapped into 7 fuzzy regions 

{ZE, VS, S, SB, MB, B, VB}, shown in Fig. 2.5.

Table 2.1: Linguistic expressions

Linguistic 
Expression

Stands for Linguistic 
Expression

Stands for

NB Negative big ZE Zero

NM Negative medium VS Very small

NS Negative small S Small

ZE Zero SB Small big

PS Positive small MB Medium big

PM Positive medium B Big

PB Positive big VB Very big

2.3.2 Scaling factors

The scaling factors also known as gains, which describe the input normalization and output 

denormalization, play an important role similar to that of the gain coefficients in a conventional 

controller. Fig. 2.3 shows that the output SF of the fuzzy controller is modified by a self-tuning 

mechanism. The MFs for both scaled inputs (eN and ΔeN) and output (ΔuN or uN) of the controller 

have been defined on the common interval [-1, 1]. The values of the actual inputs (e and Δe) are 

mapped onto [-1, 1] by the input SFs Ge and GΔe, respectively. Actually, suitable values of SFs

are chosen based on the knowledge of process control or by trial and error method. The 

relationships between the SFs and the input and output variables of the self-tuning fuzzy 

controller are as follows:

eN = Gee

ΔeN = GΔeΔe

Δu = (βGu)ΔuN (for STFPIC)                                                                             (2.7)
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u = (βGu)uN (for STFPDC)                                                                                (2.8)

Where Ge and GΔe are input scaling factors and Gu is output scaling factor.

2.3.3 The rule-bases

Before designing a rule-base for any system, expert should have proper understanding and 

knowledge about its characteristics. For example, in this section, we have designed rule-bases for 

a typical second order under-damped system. The linguistic values of the fuzzy knowledge-based 

system, are expressed as tuples of the form {value sign, value magnitude}, e.g., {positive big}, 

{negative small}, etc. The value sign can either be positive or negative and the value magnitude 

can be expressed by linguistic terms such as Big, Medium, Small, etc. In this case, the rule-base

is denoted by the two rule matrix in the form of {NB, NM, NS, ZE, PS, PM, PB} and {ZE, VS, 

S, SB, MB, B, VB}.

From the response of a typical second order under-damped system, it is revealed that linguistic 

value of error with a “positive sign” means that the current process output has a value below the 

set-point (r). On the other hand, linguistic value of e(k) with a “negative sign” means that the 

current value of y(k) is above the set-point. Linguistic value of change of error with a “negative 

sign” means that the current process output y(k) has increased when compared with its previous 

value y(k-1). Linguistic value of Δe(k) with a “positive sign” means that y(k) has decreased its 

value when compared to y(k-1). A linguistic value of “zero” for e(k) means that the current 

process output is at the set-point. A “zero” for Δe(k) means that the current process output has 

not changed from its previous value. 

Few possible combinations of positive/negative values of e(k) and Δe(k) in the antecedent part of 

the rule are discussed below: 

 The combination (positive e(k), negative Δe(k)) means that the current process output y(k)

is below the set-point, since e(k) = r(k) – y(k) > 0, and increasing, since Δe(k) = -( y(k) -

y(k-1)) < 0. Thus the current process output is approaching the set-point from below.

 The combination (negative e(k), positive Δe(k)) means that the current process output y(k)

is above the set-point and decreasing. Thus the process output is approaching the set-

point from above.
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 The combination (negative e(k), negative Δe(k)) means that the current process output 

y(k) is above the set-point and increasing. Thus the process output is moving further away 

from the set-point and approaching overshoot.

 The combination (positive e(k), positive Δe(k)) means that the current process output y(k)

is below the set-point and decreasing. Thus the process output is moving further away 

from the set-point and approaching undershoot.

The term sets of e(k), Δe(k) and Δu(k) all have been chosen equal in size and contain the same 

linguistic expressions. We can present the rule-base for the controller in a tabular form as shown 

in Table 2.2. For example, the cell defined by the intersection of the row and the column 

represents a rule such as, 

If e(k) is PM and Δe(k) is NS then Δu(k) is PS

In rule antecedent part, e(k) is positive and Δe(k) is negative means that the current process 

output is approaching the set-point from below. Thus, since the process output is moving in the 

direction of the set-point, the rule consequent prescribes a small Δu(k) to be added to the 

previous control output so that y(k) is moved further up in the direction of the set-point without 

going above it. 

Table 2.2: Fuzzy rules for computation of Δu

∆e/e NB NM NS ZE PS PM PB

NB NB NB NB NM NS NS ZE

NM NB NM NM NM NS ZE PS

NS NB NM NS NS ZE PS PM

ZE NB NM NS ZE PS PM PB

PS NM NS ZE PS PS PM PB

PM NS ZE PS PM PM PM PB

PB ZE PS PS PM PB PB PB

Gain rule- Similarly, as shown in Table 2.3, the cell defined by the intersection of the row and 

the column represents a gain rule such as, 
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If e(k) is PB and Δe(k) is NM then β is VS

With a view to improving the overall control performance, we use the rule-base in Table 2.3 for 

computation of β. It is designed in conjunction with the rule-base in Table 2.2. Some important 

considerations have been taken into account for determining the rules. For example, to make the 

controller produce a lower overshoot and reduce the settling time, the controller gain is set at a 

small value when the error is big (either +ve or -ve), but e(k) and Δe(k) are of opposite signs. For 

example, If e(k) is PB and Δe(k) is NS then β is VS or if e(k) is NM and Δe(k) is PM then β is S.

To minimize the effects of delayed control action due to inherent process dead-time or measuring 

lag such small gain is essential to maintain the controller performance within the acceptable 

limit, especially when the process dead-time becomes considerably large. Observe that when the 

error is big but e(k) and Δe(k) are of the same sign (i.e., the process is now not only far away 

from the set-point but also it is moving farther away from it), the gain should be made very large 

to prevent from further worsening the situation. This has been realized by rules of the form: If

e(k) is PB and Δe(k) is PS then β is VB or if e(k) is NM and Δe(k) is NM then β is VB. Depending 

on the process trend, there should be a wide variation of the gain around the set-point (i.e., when 

e(k) is small) to avoid large overshoot and undershoot. For example, overshoot will be reduced 

by the rule If e(k) is ZE and Δe(k) is NM then β is B. This rule indicates that the process has just 

reached the set-point but it is moving away upward from the set-point rapidly. In this situation, 

large gain will prevent its upward motion more severely resulting in a smaller overshoot. 

Similarly, a large undershoot can be avoided using the rules of the form: If e(k) is NS and Δe(k)

is PS then β is VS. This type of gain variation around the set-point will also prevent excessive 

oscillation and as a result the convergence rate of the process to the set-point will be increased. 

Note that unlike conventional FLCs, here the gain of the proposed controller around the set-point 

may vary considerably depending on the trend of the controlled process. Such a variation 

justifies the need for variable SF.

Further modification of the rule-base for β in Table 2.3 may be required, depending on the type 

of response the control system designer wishes to achieve. It is very important to note that the 

rule-base for computation of β will always be dependent on the choice of the rule-base for the 

controller. For example, the rule-base in Table 2.3 is justified and defined for the controller rule-
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base in Table 2.2.  Any significant change in the controller rule-base may call for changes in the 

rule-base for β accordingly.

Table 2.3: Fuzzy rules for computation of β

∆e/e NB NM NS ZE PS PM PB

NB VB VB VB B SB S ZE

NM VB VB B B MB S VS

NS VB MB B VB VS S VS

ZE S SB MB ZE MB SB S

PS VS S VS VB B MB VB

PM VS S MB B B VB VB

PB ZE S SB B VB VB VB

2.3.4 The self-tuning mechanism    

From section 2.3.2, it is found that the effective gain of the self-tuning controller is βGu. Though 

the value of Gu is constant for PI or PD type of FLCs, but the gain of the self-tuning FLC does 

not remain constant, when the controller is in operation, rather it is modified in each sampling 

time by the gain updating factor β, depending on the trend of the process output. This on-line

gain variation updates the controller output according to the desired performance specifications. 

The functional relationship of β can be viewed as, β(k) =f(e(k), Δe(k)), where, ‘f’ is a nonlinear 

function of e and Δe, which is described by the rule-base shown in Table 2.3.

The variation of β with e and Δe is shown in the surface plot Fig. 2.6, which is seen to be highly 

nonlinear in nature. For example, if error is positive big and change of error is negative big then 

the system is moving fast toward the set-point and, hence, gain should be kept very small to 

avoid possible large overshoot by using rule-base such as.

If e(k) is PB and Δe(k) is NB then β is ZE
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Figure 2.6: Gain surface of {e, Δe, β} with 49 gain rules.

The following steps can be used for tuning of the proposed FLC:

Step 1: Tune the SFs of the self-tuning FLC without the gain tuning mechanism for a given 

process to achieve a reasonably good control performance. In doing so first, Ge should be 

selected in such a way that the error almost covers the entire domain [-1, 1] to make efficient use 

of the rule-bases. Then GΔe and Gu are to be tuned to make the transient response of the system as 

good as possible, since there is no existing well-defined method for the determination of SFs. 

Suitable values of GΔe and Gu are to be selected from the knowledge of the process to be 

controlled and sometime through trial and error. Usually, we get a good controller without self-

tuning mechanism and for further improvement a self-tuning mechanism is introduced in Step 2.

Step 2: Set the output SF (Gu) of the self-tuning FLC nearly three times greater than that 

obtained in Step 1 keeping the values of Ge and GΔe same as those of the conventional FLC. The 

value of β is calculated according to the rule-base depicted in Table 2.3. It has been found that 

this large increase in output scaling factor (three times) is required due to very small 

multiplication factor arises from gain updating factor, which is defined in the range of [0, 1]. The 

design rule-base is flexible in nature and one can modify it for getting desired performance. 
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In the next two sections two practical problems (i.e., HVAC and Inverted Pendulum) are 

addressed in detail. In each case, first we provide a brief statement about the system description. 

Then we illustrate the effectiveness of the proposed STFPIC/STFPDC for such systems.

2.4 HVAC system
The objectives of HVAC (heating, ventilation, and air conditioning) system are to provide an 

acceptable level of occupancy comfort and process function to maintain good indoor air quality, 

and to keep system costs and energy requirements to a minimum. HVAC is the technology of 

indoor and automotive environmental comfort. HVAC system design is a sub-discipline 

of mechanical engineering, based on the principles of thermodynamics, fluid mechanics, 

and heat transfer. HVAC is important in the design of medium to large industrial and office 

buildings such as skyscrapers and in marine environments such as aquariums, where safe 

and healthy building conditions are regulated with respect to temperature and humidity, using 

fresh air from outdoors. The three central functions of heating, ventilating, and air-conditioning 

are interrelated, especially with the need to provide thermal comfort and acceptable indoor air 

quality within reasonable installation, operation, and maintenance costs [132, 133]. Here we are 

discussing these three parts in brief. 

Heating :

There are many different types of heating systems. Central heating is often used in cool climates 

to heat houses and public buildings. Such a system contains a boiler, furnace, or heat pump to 

warm water, steam, or air in a central location such as a furnace room in a home or a mechanical 

room in a large building. These systems also contain either duct for forced air systems or piping 

to distribute a heated fluid to radiators to transfer this heat to the air. Most modern hot water 

boiler heating systems have a circulator, which is a pump, to move hot water through the 

distribution system. This distribution system can be via radiators, convectors, hot water coils or 

other heat exchangers. The air supply is typically filtered through air cleaners to remove dust and 

pollen particles [134]. Electrical heaters are often used as backup or supplemental heat for heat 

pump systems. Heat pumps can extract heat from the exterior air or from the ground. Initially, 

heat pump HVAC systems were used in moderate climates, but with improvements in low 
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temperature operation and reduced loads due to more efficient homes, they are increasing in 

popularity in other climates. 

Ventilation:

Ventilation is the process of changing or replacing air in any space to control temperature or 

remove any combination of moisture, odors, smoke, heat, dust, airborne bacteria, or carbon 

dioxide, and to replenish oxygen. Ventilation includes both the exchange of air with the outside 

as well as circulation of air within the building. It is one of the most important factors for 

maintaining acceptable indoor air quality in buildings. Methods for ventilating a building may be 

divided into mechanical / forced and natural types [135]. 

Mechanical or forced ventilation is provided by an air handler and used to control indoor air 

quality. Excess humidity, odors, and contaminants can often be controlled via dilution or 

replacement with outside air. However, in humid climates much energy is required to remove 

excess moisture from ventilation air. Kitchens and bathrooms typically have mechanical exhausts 

to control odors and sometimes humidity. Factors in the design of such systems include the flow 

rate (which is a function of the fan speed and exhaust vent size) and noise level. Direct drive fans 

are available for many applications, and can reduce maintenance needs. Ceiling fans and 

table/floor fans circulate air within a room for the purpose of reducing the perceived temperature 

by increasing evaporation of perspiration on the skin of the occupants. 

Natural ventilation of a building with outside air is without the use of fans or other mechanical 

systems. It can be achieved with operable windows or trickle vents when the spaces to ventilate 

are small and the architecture permits. In more complex systems, warm air in the building can be 

allowed to rise and flow out upper openings to the outside thus causing cool outside air to be 

drawn into the building naturally through openings in the lower areas. These systems use very 

little energy but care must be taken to ensure comfort. 

Air Conditioning:

Air conditioning and refrigeration are provided through the removal of heat. Refrigeration 

conduction media such as water, air, ice, and chemicals are referred to as refrigerants. A 

refrigerant is employed either in a heat pump system in which a compressor is used to drive 

thermodynamic refrigeration cycle, or in a free cooling system which uses pumps to circulate a 
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cool refrigerant (typically water or a glycol mix). An air conditioning system, or a standalone air 

conditioner, provides cooling, ventilation, and humidity control for all or part of a building. The 

refrigeration cycle uses four essential elements to cool. The system refrigerant starts its cycle in a 

gaseous state. The compressor pumps the refrigerant gas up to a high pressure and temperature. 

From there it enters a heat exchanger (sometimes called a "condensing coil" or condenser) where 

it loses energy (heat) to the outside, cools, and condenses into its liquid phase. The liquid 

refrigerant is returned to another heat exchanger where it is allowed to evaporate; hence the heat 

exchanger is often called an "evaporating coil" or evaporator. A metering device regulates the 

refrigerant liquid to flow at the proper rate. As the liquid refrigerant evaporates it absorbs energy 

(heat) from the inside air, returns to the compressor, and repeats the cycle. In the process, heat is 

absorbed from indoors and transferred outdoors, resulting in cooling of the building. In variable 

climates, the system may include a reversing valve that switches from heating in winter to 

cooling in summer. By reversing the flow of refrigerant, the heat pump refrigeration cycle is 

changed from cooling to heating or vice versa. 

Dehumidification (air drying) in an air conditioning system is provided by the evaporator. 

A dehumidifier is an air-conditioner-like device that controls the humidity of a room or building. 

It is often employed in basements which have a higher relative humidity because of their lower 

temperature (and propensity for damp floors and walls). In food retailing establishments, large 

open chiller cabinets are highly effective at dehumidifying the internal air. Conversely, a 

humidifier increases the humidity of a building.

Air conditioned buildings often have sealed windows, because open windows would work 

against an HVAC system intended to maintain constant indoor air conditions. For example, a 

building in a high dust environment, or a home with furry pets, will need to have the filters 

changed more often than buildings without these dirt loads. Failure to replace these filters as 

needed will contribute to a lower heat exchange rate, resulting in wasted energy, shortened 

equipment life, and higher energy bills; low air flow can result in ‘iced-up’ or ‘iced-over’

evaporator coils, which can completely stop air flow. Additionally, very dirty or plugged filters 

can cause overheating during a heating cycle, and can result in damage to the system or even 

fire. Because an air conditioner moves heat between the indoor coil and the outdoor coil, both 

must be kept clean. This means that, in addition to replacing the air filter at the evaporator coil, it 
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is also necessary to regularly clean the condenser coil. Failure to keep the condenser clean will 

eventually result in harm to the compressor, because the condenser coil is responsible for 

discharging both the indoor heat (as picked up by the evaporator) and the heat generated by the 

electric motor driving the compressor.

2.4.1 HVAC system control

A second order plus dead-time model of HVAC is well established by Bi and Cai [136]. In real 

application however, both fans and dampers exhibit nonlinear properties for different working 

points, even a well-tuned PID controller may not be able to achieve a desired performance for 

set-point and process variations. It has been proved that fuzzy logic controller is very suitable for 

nonlinear system and even with unknown structure [137-139]. A typical cooling only HVAC 

system is shown in Fig. 2.7. In the system, the outside air is mixed with the building return air. 

Then the mixed air (supply air) is sucked through the cooling coil via a filter by a supply air fan. 

The cooled air is then supplied to different zones as shown in the figure.

Figure 2.7: A typical HVAC system.

2.4.2 Results and discussion

A supply air pressure loop of HVAC system is shown in Fig. 2.8. In this HVAC system, the 

supply air pressure is regulated by the speed of a supply air fan. Increasing the fan speed will 

increase the supply air pressure, and vice versa. The dynamics of the control signal feeding to the 
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fan to the supply air pressure can be modeled as a second order plus dead-time plant. The self-

tuning mechanism that already discussed in the previous section is applied to PI type fuzzy logic 

controller for investigation of this system [23]. In general, the transfer function of the supply air 

pressure loop is expressed as:  

                                           1 21 1

sKe
G s

s s



 




 

                                                  (2.9)

where, the term K is gain constant, 1  and 2 are time constants, and  is dead-time. 

Different performance parameters such as rise time (tr), settling time (ts), % peak overshoot 

(%OS), integral absolute error (IAE), integral of the time multiplied absolute error (ITAE) and 

integral square error (ISE) are observed to analyze the performances of different controllers. The 

integral criterions IAE, ISE and ITAE are considered because mere visual observations of 

response curves are not always enough to make a good comparison. Large errors contribute 

heavily to IAE; on the other hand ITAE penalizes errors that occur late in time. Thus IAE and 

ITAE reveal overall performance characteristics of the control system.

Figure 2.8: A supply air pressure loop of typical HVAC system.

In this section, performance analysis of STFPIC is made under normal condition and changing of 

HVAC process model.  We considered four variations for equation (2.9) that represent different 

HVAC models.
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a. Case 1: K=0.81,   =0.2, 1 =0.97 and 2 =0.1

b. Case 2: K=0.81,   =0.2, 1 =0.2 and 2 =2.0

c. Case 3: K=1.2,   =0.3, 1 =0.97 and 2 =0.1

d. Case 4: K=1.2,   =0.4, 1 =0.97 and 2 =0.1

Fig. 2.9(b), Fig. 2.10(b), Fig. 2.11(b) and Fig. 2.12(b) show that the STFPIC controls the supply 

air pressure loop of HVAC satisfactorily compare to FPIC, both under normal and as well as 

under model variations. Table 2.4 refers that both the rise time and settling time are very much 

satisfactory. Peak overshoots are also negligible when STFPIC is used. In all the four cases, we 

observe very less IAE, ITAE and ISE values, when STFPIC is applied. 

Case 1    G(s) =
0.20.81

(0.97 1)(0.1 1)

se

s s



 

Figure 2.9 (a): Performance of HVAC with FPIC.
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Figure 2.9 (b): Performance of HVAC with STFPIC.

Case 2    G(s) =
0.20.81

(0.2 1)(2 1)

se

s s



 

Figure 2.10 (a): Performance of HVAC with FPIC.
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Figure 2.10 (b): Performance of HVAC with STFPIC.

Case 3    G(s) =
0.31.21

(0.97 1)(0.1 1)

se

s s



 

Figure 2.11 (a): Performance of HVAC with FPIC.
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Figure 2.11 (b): Performance of HVAC with STFPIC.

Case 4    G(s) =
0.41.21

(0.97 1)(0.1 1)

se

s s



 

Figure 2.12 (a): Performance of HVAC with FPIC.
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Figure 2.12 (b): Performance of HVAC with STFPIC.

Table 2.4: Performance analysis for different models of HVAC supply air pressure loop

Process 
Model

Controller 
Type

tr(s) ts(s) %OS IAE ITAE ISE

FPIC 2.8 6.6 13.6 2.03 3.50 1.30Case 1

STFPIC 2.0 2.2 1.74 1.11 0.76 0.78

FPIC 5.2 12.6 12.7 3.68 12.10 2.28Case 2

STFPIC 5.5 6.6 0.0 2.09 3.50 1.23

FPIC 2.3 10.9 30.24 2.41 5.91 1.39Case 3

STFPIC 1.9 4.7 12.41 1.32 1.36 0.87

FPIC 2.3 11.9 37.6 2.87 8.78 1.60Case 4

STFPIC 1.9 7.9 21.69 1.67 2.93 0.97

The above four cases are also studied with load variations as presented in Fig. 2.13 to Fig. 2.16. 

These figures indicate that even with load variations HVAC supply air pressure loop is working 

satisfactorily under STFPIC.



57      
     

        Figure 2.13: Performance of HVAC (Case 1) with STFPIC for load variation at 15s.

        Figure 2.14: Performance of HVAC (Case 2) with STFPIC for load variation at 25s.
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           Figure 2.15: Performance of HVAC (Case 3) with STFPIC for load variation at 20s.

         Figure 2.16: Performance of HVAC (Case 4) with STFPIC for load variation at 20s.
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2.4.3 Comparative study

In order to demonstrate the effectiveness and robustness, the performance of the propose STFPIC 

is compared with those of existing methods like- PID controller, FPIC and Jian and Cai’s

Adaptive Neuro-Fuzzy (ANF) controller [140] for supply air pressure loop control. The study is 

made under changing process model and comparative results are provided in Table 2.5. Fig.

2.17 shows the characteristics of model
41.21

(0.97 1)(0.1 1)

se

s s



 
 for application of PID, FPIC and 

STFPIC.

Due to the application of STFPIC, substantial improvements are observed in settling time and 

also in peak overshoot. Moreover, it is important that when the process encounters large 

parameter variations, the proposed method provides much robustness compared to PID controller 

and even it outperforms Adaptive Neuro-Fuzzy (ANF) controller designed by Jian and Cai

[140], as shown in Table 2.5 and Fig. 2.17. 

Figure 2.17: Response of HVAC system under PID (dashed-dot), FPIC (dashed) and 
STFPIC (solid).
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Table 2.5: Performance comparison between PID, ANF, FPIC and STFPIC for model variation

2.5 Inverted pendulum
The inverted pendulum is an interesting topic to researchers for its strong degree of nonlinearity 

and inherent instability and yet simplicity of structure. So it can justifiably be used for 

determining the effectiveness of a control algorithm. Control of an inverted pendulum is a very 

common control engineering problem based on flight simulation of rockets and missiles during 

the initial stages of flight, wherein the aim is to stabilize the inverted pendulum such that the 

position of the carriage on the track is controlled quickly and accurately. The inverted pendulum 

is also incorporated in heavy cranes lifting containers in shipyards, self-balancing robots and in 

future transport systems like seaways and jetpacks.

Transfer Function Controller Type ts (s) %OS

PID 57.5 70.6

ANF 7.5 3.5

FPIC 13.2 2.44

20.81

(0.97 1)(0.1 1)

se

s s



 

STFPIC 7.3 1.16

PID 60.9 63.8

ANF 10.6 0.9

FPIC 10.3 1.04

                                                                                                                                                                                                                      

20.81

(0.2 1)(2 1)

se

s s



 

STFPIC 10.5 0.03

PID >100 78.0

ANF 19 56.0

FPIC 15.5 4.86

31.21

(0.97 1)(0.1 1)

se

s s



 

STFPIC 10.9 1.82

PID >100 103.4

ANF 32 59

FPIC 24.6 6.25

41.21

(0.97 1)(0.1 1)

se

s s



 

STFPIC 12.5 2.59
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Application of fuzzy logic for inverted pendulum control still by far remains most popular, as 

they do not require precise knowledge of the system parameters. However, performance of PI-

type FLC for higher order, nonlinear, and unstable systems, like inverted pendulum is not 

satisfactory due to large overshoot, excessive oscillation, and slower response. As already stated, 

the inverted pendulum model is nonlinear in nature and its parameters may vary with time. An 

expert defined fuzzy tuning scheme for PD type FLC is proposed here to control such a complex 

and nonlinear system [22, 141, 142]. 

2.5.1 Inverted pendulum and its mathematical model

The pendulum is a modern exemplary area of research for determining the effectiveness of 

various control algorithms. The pendulum experiment can be divided into two separate control 

problems. First is the crane control problem, in which the goal is to move the cart into a desired

position with as little oscillation of the load (pendulum arms) as possible. The other is to stabilize 

the inverted pendulums in an upright position [143, 144]. The crane control problem is very 

often encountered in industrial applications where load movement is incorporated. It is especially 

difficult to realize when cranes are placed on ships and the effect of waves is considered. The 

inverted pendulum task can be seen as a self-erecting control problem, which is present in 

missile launching and control applications. Furthermore, the pendulum application involves a 

swing-up control aspect if initially the pendulum hangs freely in the vertical position. These two 

control problems (inverted pendulum and crane control) have one very important difference, 

which is the stability. The pendulum serving as a crane is stable without a working controller. 

Due to energy loss through friction and air resistance it will always end up at an equilibrium 

point. The inverted pendulum is inherently unstable. Left without a stabilizing controller it will 

not be able to remain in an upright position when disturbed. Thus, the control objective is to 

apply a force to move the cart so that the pendulum arms remain in the vertical unstable position 

while simultaneously being driven to the desired cart location. Furthermore, as already 

mentioned it should also include a swing-up control aspect if initially the pendulum hangs freely 

in the vertical position. 



62      
     

Figure 2.18: Digital pendulum mechanical unit.

A laboratory scale inverted pendulum/crane set-up (FEEDBACK, UK) shown in Fig. 2.18

consists of a cart moving along the 1m length track and a load is attached with cart through shaft 

[143]. The cart can move back and forth causing the load to swing. The movement of the cart is 

caused by pulling the belt in two directions by the DC motor attached at the end of the rail. By 

applying a voltage to the motor we control the force with which the cart is pulled. The value of 

the force depends on the value of the control voltage. The two variables that are read using 

optical encoders are the load angle and the cart position on the rail is installed on the cart. The 

controller’s task will be to change the DC motor voltage depending on these two variables, in 

such a way that the desired control task is fulfilled (stabilizing in an upright position, swinging 

or crane control) [21]. An optical encoder consists of a light source, light detector and a slit disk 

placed between them. This way the relative position with respect to the initial point can be 

measured by counting the pulses on the light detector. Additionally, safety limit switches are 
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mounted on either side of the track which cut power to the motor when the cart crosses them. 

Initially the control signal is set to -2.5v to 2.5v and the generated force magnitude of around -

20N to +20N. The cart position is physically bounded by the rail length and is equal to -0.5m to 

+0.5m. The system is interfaced to a personal computer by means of a data acquisition card and 

is driven by Matlab/Simulink based real time software [144].

Mathematical model

d)

Figure 2.19: Free body diagrams of (a) the cart (b) and (c) the pendulum, (d) schematic of the
inverted pendulum system.

m is the mass of the pendulum rod in kg,

M is the mass of the moving cart in kg,

FV is the force applied to the cart in N, 

Ff is the force due to friction in N, 

b is the pendulum damping constant,

g is the acceleration due to gravity in m/s2,

l is the distance along the pendulum to the centre of gravity,
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x is the cart position on the rail in m,

θ is the angle of the inverted pendulum measured from the vertical y-axis in radians,

u is the control voltage in v.

Let us assume that the co-ordinates of the centroid (centre of gravity) of the pendulum, ( Gx , Gy ), 

are given by   

                                      sinGx x l                                                                                      (2.10)

                                      cosGy l                                                                                           (2.11)

      
For the horizontal and vertical motion of the cart, applying Newton’s second law of motion;

                                    
2
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For the horizontal motion of the cart   
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Where:

.f

dx
F K

dt


                                                                               
(2.14)

2

2
G

x

d x
F m

dt


                                                                            
(2.15)

Evaluating the derivative in equation (2.15)
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Thus equation 2.15 becomes
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Using equation (2.17), equation (2.18) can be simplified to give:
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                                           (2.18)

The final form for the horizontal motion of the cart can be given as:
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For the vertical motion of the pendulum, equation (2.12) can be written as
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Evaluating the derivative in equation (2.20)  
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Using equation (2.21), equation (2.20) can be rewritten to give

2 2

2
cos siny

d d
F mg m l l

dt dt

  
          

                                         (2.22)

Thus the vertical reaction force yF can be written as

2 2

2
cos siny

d d
F mg m l l

dt dt

  
          

                                     

   

(2.23)

Now we know,

Sum of moments 
2

2

d
I

dt


                                                                    (2.24)

Where the moment due to a given force is defined as:

M F r                                                                                  (2.25)

Where: F is the force vector,

r is the position vector of the object with respect to the point, about which the moments 

are being summed,

I is the angular momentum of the object

For the pendulum, summing the moment around its centre of gravity,

2

2
sin cosy x

d
F l F l I

dt

                                                                                 (2.26)

Substituting equation (2.23) for yF and equation (2.17) for xF into equation (2.26) gives 

2 2 2 2 2 2

2 2 2 2
cos sin sin sin cos cos

d d d x d d d
mg m l l l m l l l I

dt dt dt dt dt dt

         
                                       

The above equation can be simplified to get the equation for angular position
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Therefore the equations of motion for the inverted pendulum on a moving cart can be written as:
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(2.29)

The values of the constants in the above equations, considered henceforth are given by Table 2.6

Table 2.6: The value of the pendulum constants

m is the mass of the pendulum rod in kg 0.2 

M is the mass of the moving cart in kg 2.3 

g is the acceleration due to gravity in m/s2 9.81 

l is the distance along the pendulum to the centre of gravity in m 0.3 

I is the moment of inertia of the pole in kgm2 0.0099 

K is the cart friction coefficient 0.00005 

The inverted pendulum is an unstable system which, in terms of behavior, means that the plant 

left without any controller reaches an unwanted, very often destructive state. Thus for such plants 

it is useful to carry out simulation tests on the models before approaching the real plant.  For the 

purpose of controller design the model has to be linearized and presented in the form of transfer 

functions. But such a linear equivalent of the nonlinear model is valid only for small deviations 

of the state values from their nominal values also called the equilibrium point (for inverted 

pendulum θ = 0 = Δθ). Thus for the appropriate controller design we develop the nonlinear 

simulation model from the above equations of motion as given by Fig 2.20.
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Figure 2.20: The inverted pendulum simulink model using equations 2.28 and 2.29.

Inverted pendulum control problem is divided into two separate control schemes: First the swing 

up control that allows the pendulum to reach the upright position; and second is the inverted 

pendulum stabilization around the equilibrium point [6]. The control action begins in the swing 

up control mode if initially the pendulum arms are hanging free. The stabilization mode comes 

into effect once the pendulum reaches [-10°, +10°] of the final vertical upright position. 

2.5.2 Inverted pendulum control by PID, FPDC and STFPDC

The inverted pendulum is one of the most difficult systems to control in the field of control 

engineering. In this section the effectiveness of PID, FPDC and STFPDC is tested on inverted 

pendulum using dual control scheme.
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2.5.2.1 PID controller

The inverted pendulum system is nonlinear and unstable with one input signal and several output 

signals. Due to its importance in the field of control engineering, it has been, one of the most 

primitive areas of study, wherein the aim is to analyze its model and propose a linear

compensator according to the PID control law. From the dynamic equations of this system, it is 

found that there are two control parameters in the inverted pendulum-cart system. One is the 

inverted pendulum angle (θ) and the other is the cart position on the rail (x), however, there is 

only one control action allowed. Fig. 2.21 and Fig. 2.23 show the basic block diagram of the 

inverted pendulum controller system for stabilization.

Figure 2.21: Basic block diagram of the inverted pendulum control Scheme.

The system is controlled by two separate controller, pendulum angle controller and cart position 

controller. The control action ux for the cart subsystem and the control action uθ for the pendulum 

angle subsystem need to be combined into one control action u for the inverted pendulum 

system. It can be seen that to provide a control action to push the cart toward left-hand side will 

move the pendulum to the right-hand side. This instinctive knowledge indicates that the control 

actions to move the cart and pendulum to the same direction have opposite sign [143]. Since the 

main purpose for the position control of the inverted pendulum-cart system is to balance the 

pendulum at the straight upward direction, the combination of ux and uθ is defined as u = ux – uθ. 

The PID controller parameters (KP, KI, KD) for both the controllers have been adjusted to the 

optimum values for the desired control response. Two controller blocks (one is for inverted 

pendulum stabilization and another is for pendulum swing up control) as presented in Fig.2.21, 
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are proposed for efficient inverted pendulum control. Different simulation blocks for inverted 

pendulum control are shown in Fig. 2.22. Block diagram of the inverted pendulum controller 

system for stabilization and block diagram for the inverted pendulum swing up control scheme 

are shown in Fig.2.23 and 2.24 respectively.

Figure 2.22: Subsystem blocks for inverted pendulum (swing up and stabilization) control.

Figure 2.23: Block diagram of the inverted pendulum control scheme for stabilization.
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Figure 2.24: Block diagram of the inverted pendulum control scheme for swing up.

2.5.2.2 FPDC and STFPDC

The proposed hybrid controller, for efficient control of cart position and inverted pendulum angle 

is a PD type fuzzy logic controller (FPDC). As already mentioned the inverted pendulum control 

problem is divided into two separate control schemes [142], the swing up control (Fig. 2.24), 

which allows the pendulum to reach the upright position with as minimal angular velocity as 

possible; and the inverted pendulum stabilization (Fig.2.23) around the equilibrium point within 

a specified accuracy. Both these control objectives have to be attained simultaneously. A logical 

switch is used to change over between the swing up control mode and the inverted pendulum 

stabilization mode. The stabilization mode comes into effect once the pendulum reaches [-10°, 

+10°] of the final vertical upright position. The control action begins in the swing up control 

mode if initially the pendulum arms are hanging free. Here, zone detection signals in 

combination with a position controller acts on the inverted pendulum system to achieve desired 
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sway of the arms. Once in the stabilization mode, the system is acted upon by twin controllers; 

viz position controller and angle controller (Fig. 2.25).

Inverted pendulum control for stabilization:

Figure 2.25: Block diagram of FPDC twin controller for inverted pendulum stabilization.

Each of the fuzzy logic controller used for performing the control action consists of 5 

symmetrical triangular membership functions (MFs) of equal base and 50% overlap, hence 

generating a set of 52=25 fuzzy rules (Table 2.7). The inputs to the controller are, the amount of 

deviation in the cart position or pendulum angle from the desired set-point at a sampling instant k 

(denoted by e) and their corresponding change of error (denoted by ∆e). Depending upon these 

two input parameters each of the fuzzy logic controller is capable of generating a control voltage 

Figure 2.26: MFs of ex, ∆ex, ux. Figure 2.27: MFs of eɵ, ∆eɵ, uɵ.
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(denoted by u) that will effectively drive the system towards stability. The MFs of ex, ∆ex, ux for 

position controller are shown in Fig. 2.26 and MFs of eɵ, ∆eɵ, uɵ for angle controller are shown 

in Fig. 2.27.  

        Table 2.7: Fuzzy rules for position and angle control

∆e/e NB NM ZE PM PB

NB NB NB NB NM ZE

NM NB NB NM ZE PM

ZE NB NM ZE PM PB

PM NM ZE PM PB PB

PB ZE PM PB PB PB

The various input and output scaling factors play a role very similar to the gain coefficients in a 

conventional controller. The appropriate selection of these scaling factors is done based on the 

operator’s knowledge of the system under study to obtain the best performance of the control 

system. The relationships between scaling factors (Ge, G∆e, Gu) and the input and output 

variables (e, ∆e, u) are shown below. 

∆e(t) = e(t) - e(t-1)

eN = Ge.e

∆eN = G∆e.∆e

u = Gu.uN

Inverted pendulum swing up control

Fig. 2.28 shows the block diagram of FPDC for swing up control. The output scaling factor (Gu) 

should be determined very carefully for the proper implementation of control logic; since it is 

directly related to the stability of the system. Authors in [22, 23] have proposed a self-tunable 

fuzzy based inference system to adjust the gain Gu on-line according to the current states of 

controlled processes. A very similar scheme is applied here for tuning of the FPDC position 

controller which is expected to give a better swing up control by modifying the controller gain by 
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a factor β, which is now given by equation (2.30). This self-tuning mechanism for FPDC will be 

denoted as STFPDC in our discussion henceforth (Fig. 2.29).

u = β .Gu*uN                                                                                                                  (2.30)

where, β  is a function of error(e) and change of error(∆e) of the system response. The fuzzy 

rule-base for computation of the gain updating factor β consists of 7 symmetrical triangular MFs 

of equal base and 50% overlap, hence generating a set of 72 =49 fuzzy rules as recorded in Table 

2.8. The MFs of e, ∆e and β are shown in Fig. 2.30 and Fig. 2.31 respectively.

                            

                     
Figure 2.28: Block diagram of FPDC for swing up control.

Figure 2.29: Block diagram of STFPDC for swing up control.
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Figure 2.30: MFs of e and ∆e. Figure 2.31: MFs for β.

Table 2.8:  Fuzzy rules for computation of β

∆e/e NB NM NS ZE PS PM PB

NB VB VB VB B SB S ZE

NM VB VB B B MB S VS

NS VB MB B VB VS S VS

ZE S SB MB ZE MB SB S

PS VS S VS VB B MB VB

PM VS S MB B B VB VB

PB ZE S SB B VB VB VB

2.5.3 Comparative study 

In this section we present the results of each of the control scheme discussed above and perform 

a comparative study to illustrate the effectiveness of our proposed scheme over the others. 

Figure 2.32: Plot of control voltage against time for PID.
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Fig. 2.32 depicts that PID control action (voltage) applied to the inverted pendulum assembly is 

oscillatory in nature. Fig. 2.33 and Fig.2.35 represent the variation in the pendulum cart position 

and pendulum sway angle respectively under the influence of the PID control action with

sampling time of 0.05s for 70s. The position response curve of Fig. 2.33 shows that under PID 

control action, the pendulum cart sub-system exhibits large initial overshoot as well as 

undershoot and the cart never comes in completely steady position. The pendulum sway angle

shown in Fig. 2.35 remains in a state of continued oscillation for a long period before eventually 

settling down. The inverted pendulum takes around 16s to swing up. 

Fig. 2.34 shows the plot of pendulum cart position against time. The results show that the 

pendulum cart is stabilized within approximately 8s in case of STFPDC while it takes much 

longer time in case of FPDC. The pendulum cart oscillation is also limited to 0.2m, which was 

much more in case of FPDC and PID controller. Fig. 2.36 and 2.37 show the plots of the inverted 

pendulum angle (in radian) against time for each of the control scheme separately for the sake of 

better observation. Figs. 2.35, 2.36 and 2.37 clearly reveal that in case of STFPDC the system 

takes the least time to reach and remain in its vertical upright position. The detailed performance 

indices are tabulated in Table 2.9 and Table 2.10. Note that various integral performance indices 

of the system response like IAE, ISE and ITAE are significantly reduced for STFPDC when 

compared to FPDC. 

Figure 2.33: Plot of pendulum cart position against time for PID control.



77      
     

Figure 2.34: Plot of pendulum cart position against time (dashed-FPDC; solid-STFPDC).

Figure 2.35: Plot of inverted pendulum sway angle against time during swing up for PID.
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Figure 2.36: Plot of inverted pendulum sway angle against time during swing up for FPDC.

Figure 2.37: Plot of inverted pendulum sway angle against time during swing up for STFPDC.

Table 2.9: Performance analysis of the controllers for inverted pendulum control

Type of controller tp(s) ts(s) Swing up time (s)

PID 4.2 >70 16

FPDC 1.3 35.71 12

STFPDC 0.5 8.12 7
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Table 2.10: Performance indices of the controllers for inverted pendulum control

2.6 Conclusion
In our self-tuning scheme for FLC’s, the output SF, which may be considered equivalent to the 

controller gain is tuned on-line by fuzzy rules defined on e and Δe. The most important feature of 

the proposed scheme is that it depends neither on the process being controlled nor on the 

controller used. Conceptually, our scheme differs from others as it attempts to implement the 

operator’s strategy while running a plant. The proposed self-tuning scheme is applied to both PI-

and PD-type FLC’s for controlling two practical processes. At first, we demonstrate the PI-type 

self-tuning fuzzy controller in a Heating, Ventilation and Air-conditioning system, which is a 

nonlinear and time variant system. The performance of STFPIC is successfully investigated in 

the supply air pressure loop for HVAC system. The usefulness of the self-tuning scheme is also 

tested in a laboratory based inverted pendulum, which is highly nonlinear and highly unstable 

system. The self-tuning fuzzy PD controller (STFPDC) is applied to stabilize the inverted 

pendulum, exhibits effective and improved performance compared to its conventional fuzzy and 

non-fuzzy controllers. Also, the proposed twin control scheme for inverted pendulum control 

reduces the computational complexity and processing time by decreasing the number of fuzzy if-

then rules.

Type of controller IAE ISE ITAE

FPDC 3.1523 0.0903 28.8326

STFPDC 0.1751 0.0019 0.4249
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Development of self-tuning fuzzy controller 
through relay feedback approach - STFPICα

3.1 Introduction
PID controllers are mostly used for different industrial applications [145]. In the absence of 

expert or the complete knowledge of the process these types of controllers are the best choices    

[146]. In a PID controller, the proportional part is responsible for following the desired set-point, 

while the integral and derivative part account for the accumulation of past errors and the rate of 

change of error in the process respectively. But, as discussed in previous chapter, these 

conventional controllers are not well suited for ill-defined and nonlinear systems. In such cases, 

we may think about some knowledge-based system [12, 147]. In chapter-2, we have noticed that 

depending on the input error (e) and change of error (Δe) of a process, an operator always tries to 

modify the output SF i.e. controller gain to enhance the system performance and to achieve 

stable control output using self-tuning fuzzy logic controller. In some earlier research [22, 23], it 

observed that the on-line fuzzy gain modifier (β) is further augmented by some multiplicative

factor which is chosen by trial in order to maintain almost the same rise time.

In our scheme to replace this arbitrary gain multiplier, a relay feedback approach is 

implemented [148]. The fuzzy gain modifier (β) [22] is further augmented by a multiplicative 

factor (α), which is directly related to the system dynamics and derived by relay feedback 

experiment. In 1984, Åström and Hägglund [149] presented a relay feedback system to generate 

sustained oscillation as an alternative to the conventional continuous cycling technique for 

controller tuning. The system dynamics like: ultimate period (Pu), ultimate gain (Ku) and ultimate 

frequency (ωu) can be found easily from the principal harmonic approximation. But, besides the 

C

 CHAPTER 3
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estimation of tuning parameters, identification of mathematical model in an auto-tune system is 

also desirable to achieve an improved control performance [150]. In our proposed scheme of 

STFPIC design, we have used the system dynamics to find out process specific appropriate gain 

multiplicative factor (α), instead of a fixed value (i.e., 3) used in [22, 23]. Here, the proposed

STFPIC that has used process specific appropriate gain multiplicative factor (α), is termed as 

STFPICα.

Apart from α determination, another highlighting point of our scheme is significant number of 

rule reduction. The proposed scheme of fuzzy controller is implemented with almost 50% 

reduced rules as compared to earlier design [22, 23]. Robustness of the STFPICα is demonstrated 

[148] for a wide range of processes including nonlinear and marginally stable system with a 

considerable variation in dead-time and also in a real time application. 

3.2 Relay feedback tuning
The performance of the control systems used for process industries depend on its proper design 

and tuning. The most crucial phase of a successful controller design is its tuning. More than 70 

years ago, in 1942 Ziegler and Nichols [151] proposed the ultimate cycling method for controller 

tuning. The PID controller tuning parameters are dependent on two factors, ultimate gain Ku and 

ultimate period Pu. However, this iterative tuning method is often difficult to apply in practice 

because it is time consuming, particularly for a process with large time constant. On the other 

hand, for designing model based controller, like internal model control (IMC), it is need to 

identify the process model, which is often based on the critical point, i.e., Ku and Pu. Therefore, 

estimation of critical point plays an important role on the performance of process control 

systems. Åström and Hägglund [149] developed an attractive and simple experimental relay 

feedback method to determine Ku and Pu. The relay feedback test has many positive features that 

led to its widespread use: 

i) Only one parameter has to be specified (relay height).

ii) The time it takes to run the test is short.

iii) The test is a closed loop, so the process is not driven away from the 

set-point. 
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However, the precision of this technique for normal processes is not very accurate. Many 

research works on modifying the relay feedback auto-tuning method have been reported in the 

literature [152-154]. An automatic tuning procedure can be divided into two stages: the 

identification phase and the controller design phase. 

In the identification phase, the Åström-Hägglund auto-tuner is based on the observation that a 

feedback system in which the output (y) lags behind the input (u) by - radian may oscillate with 

a period Pu. This is a well-known observation; however, the oscillation is carried out in a new 

manner. To generate the sustained oscillation, a relay feedback test is performed (Fig. 3.1). 

Initially, the input (u) is increased by h (u=uss + h), where uss is the steady-state value of u. As 

soon as the output is moving upward, the input is switched to the lower position (u=uss - h), as 

shown in Fig. 3.2. This procedure is repeated until the cycling reaches a steady form. From the 

relay feedback test, the familiar ultimate gain (Ku) and ultimate frequency (ωu,) are readily 

available. They can be approximated as: 

                                                             Ku = 4h/πA                                                                     (3.1)

                                                            ωu = Pu/2π                                                                     (3.2)

In equation (3.1) and (3.2), A is the amplitude of the oscillation and Pu is the period respectively 

as shown in Fig. 3.2. Following the identification phase, the controller can be designed, from Ku, 

and ωu.

In the design phase, the classical ZN method probably is the simplest and the most popular 

choice. The controller gain (Kc) and reset time (Ti) of a PI controller can be found from equation

(3.3) and (3.4) with the simple calculation as follows:

                         Kc = Ku/2.2                                                                     (3.3)

                        Ti = Pu/1.2                                                                      (3.4)
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Figure 3.1: Block Diagram of relay feedback test.

Figure 3.2: Relay feedback test response.

3.3 Self-tuning scheme with dynamic gain (α)
In this section, we incorporate a multiplicative factor (α) in the output of the controller that is 

obtained using relay feedback tuning. The block diagram of the self-tuning fuzzy PI controller 

(STFPIC) has already been shown in Fig. 2.3 in chapter-2. Here, the block diagram of the self-

tuning fuzzy PI controller with the process dynamics based multiplicative factor (STFPICα) is 

presented in Fig. 3.3. In this scheme, output SF of STFPIC is further modified by the process 

specific appropriate gain multiplicative factor (α) derived from relay feedback mechanism. 

Different design aspects are elaborated in the following subsections. 
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Figure 3.3: Block Diagram of STFPICα.

Fuzzy Membership Functions

The MFs for controller inputs error (e), change of error (Δe) and controller output (Δu) are 

defined on the normalized domain [-1, 1], whereas the MFs of β is defined on [0, 1] as shown in 

Fig. 3.4 and Fig. 3.5 respectively. The only difference with the earlier design (chapter-2) is that 

here we have used only five linguistic variables in place of seven. The term sets of e, e, Δu for 

PI type FLC contain the same linguistic expressions for the magnitude part of the linguistic 

values, i.e., LE = LE = LΔU {NB, NM, ZE, PM, PB}. Similarly, MFs of β are mapped to the

MFs {Z, S, M, B, VB}.  

              NB: Negative Big
              NM:  Negative Medium                               
              ZE: Zero        
              PM: Positive Medium  
              PB: Positive Big     

Figure 3.4:  MFs of e, Δe and Δu.

             Z:       Zero  
               S:       Small
             M:       Medium
               B:        Big
           VB:      Very Big

Figure 3.5: MFs of β.
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Scaling Factor

The normalized inputs (eN and ∆eN) and normalized output (∆uN) of the STFPICα are defined on 

the normalized domain [-1, 1]. The relationship between the SFs (Ge, G∆e, Gu) and the input and 

output variables of the STFPICα are as follows: 

eN  =   Ge.e  

∆eN = G∆e.∆e

∆u = (α.β.Gu).∆uN        

PI-type FLCs use output scaling factor Gu only, whereas the output SF of STFPICα is obtained 

by multiplying Gu with α and β.    

Rule-Bases

Fuzzy if-then rule-bases for computing ∆u and gain updating factor (β) are tabulated in Table 3.1 

and Table 3.2 respectively. The design rule-bases are flexible in nature and these can be 

modified according to process requirement. In STFPICα, 25 control rules and 25 gain rules are 

applied, instead of 49 control rules and 49 gain rules [22, 23] used in STFPIC. 

Table 3.1: Fuzzy rules for computation of Δu    

∆e/e NB NM ZE PM PB

NB NB NB NB NM ZE

NM NB NB NM ZE PM

ZE NB NM ZE PM PB

PM NM ZE PM PB PB

PB ZE PM PB PB PB

Table 3.2: Fuzzy rules for computation of β

∆e/e NB NM ZE PM PB

NB VB B M S Z

NM B M B M S

ZE S M Z M S

PM S M B M B

PB Z S M B VB
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Gain updating factor (β)

The computation of β is done using the 25 fuzzy rule-bases mentioned in Table 3.2 in the form:       

                                            If e is E and e is E Then β is .

Fig. 3.6 (a & b) illustrates the characteristics of β as a function of e and ∆e. The highly nonlinear 

rule-base for β is designed to achieve a lower overshoot, reduced settling time but not at the cost 

of increased rise time. Basically the rule-base for β should be developed by the designer 

according to the type of response one wishes to achieve.

Figure 3.6 (a): Variation of gain updating 
factor (β) with e and Δe.

Figure 3.6 (b): Variation of β with e and Δe
(in reverse direction).

Computation of multiplicative factor (α)

Earlier study [105, 155] reveals that a fixed value (i.e. 3) of α is considered irrespective of the 

type of controlled system though its influence to the process response is significant. In this 

design, we try to eliminate this problem by choosing a process specific value of α that depends 

on the process dynamics. For computation of α, relay feedback test is performed on the 

individual processes with various dead-times, to find out ultimate gain (Ku) and ultimate period 

(Pu) and then the following relation is proposed: 

                                                             α=(Ku.Pu)/2.5                                                                (3.5)

Control surface observation of FPIC and STFPICα

The control surfaces, i.e., controller output (Δu) versus inputs (e and Δe) for the FPIC and 

STFPICα are shown in Fig. 3.7 and Fig. 3.8 respectively. Careful observation reveals that the 

control surface of STFPICα (Fig. 3.8) is more nonlinear as well as smooth in nature due to 
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additional 25 gain rules as presented in Table 3.2 and Fig. 3.6. Fig. 3.7 indicates that the only 

limited number of rules in FPIC may not be sufficient to provide such nonlinear control action 

which may be needed for achieving desired performance. 

Figure 3.7: Control surface of FPIC.

Figure 3.8: Control surface of STFPICα.
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3.4 Simulation experiments with FPIC, STFPIC and 
STFPICα

The performance of STFPICα is compared with other controllers for various processes with 

different values of dead-time. The controllers are evaluated in terms of different performance 

indices. To establish the robustness of the proposed scheme, the same MFs (Fig. 3.4 and Fig. 3.5) 

and rule-bases (Table 3.1 and Table 3.2) are used for all the processes. As we know that rise time 

and peak overshoot normally cannot be reduce simultaneously because of their conflicting

nature. However, in self-tuning FLCs, we attempt to reduce peak overshoot without sacrificing 

the rise time.  

In this proposed scheme the value of α is not fixed, it is process dependent. Therefore, the value 

of α [α=(Ku.Pu)/2.5] is calculated for STFPICα, by applying relay feedback tuning mechanism 

to each of the investigating processes. For simplicity, irrespective of the controller its output SF 

is represented as Gu in Table 3.3 to Table 3.5. However, actually it will be as follows:  

                             Output SF of FPIC = Gu                                                                      (3.6)

                                                         Output SF of STFPIC = 3βGu                                                                 (3.7)

                                                       Output SF of STFPICα = αβGu                                                                 (3.8)

The above scheme is demonstrated in a linear, nonlinear and marginally stable system with 

varying dead-time. The performances are also checked with load disturbances. 

Second Order Linear Process

Consider a 2nd order linear process with dead-time L:

2

2
0.2 ( )

d y dy
y u t L

dt dt
                                                            (3.9)

The process is studied with unit step input for varying dead-time; L=0, 0.1 and 0.3. The

corresponding results for FPIC (with 49 rules), STFPIC (with 98 rules and constant gain i.e.3)

and STFPICα (with 50 rules) are tabulated in Table 3.3. Step responses of linear system with 

various dead-time are shown in Fig. 3.9 and the response due to load change (for L=0.2 at t=40s)

is plotted in Fig. 3.10. The results due to load variation are presented in Table 3.6. From Fig. 3.9

and Fig. 3.10, we have observed that STFPICα can control a linear system more efficiently as 
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compared to other controllers at normal condition and even with load disturbances. The

STFPICα with 50 rules is not only matched the STFPIC performance, but also improves the rise 

time.

         Figure 3.9: Responses of process (3.9) with STFPICα for L=0 (solid) and L=0.3 (dotted).

Figure 3.10: Responses of process (3.9) with L=0.2 with load disturbance at
t=40s (FPIC-dotted and STFPICα-solid).
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Table 3.3: Performance analysis for the linear 2nd order process (3.9)

L FLC Gu %OS tr(s) ts(s) IAE ITAE ISE

FPIC 0.02 25.97 5.8 20.1 4.81 24.13 2.70

STFPIC 0.06 15.01 5.6 19.6 4.15 17.81 2.42

0.0

STFPICα 0.073 16.76 5.3 18.1 4.15 18.69 2.39

FPIC 0.02 27.56 5.8 24.1 5.14 31.71 2.80

STFPIC 0.06 17.30 5.6 19.9 4.45 23.94 2.45

0.1

STFPICα 0.069 18.89 5.5 20.9 4.50 24.26 2.50

FPIC 0.02 32.10 5.9 42.0 6.44 79.93 3.05

STFPIC 0.06 23.24 5.6 30.1 5.38 44.19 2.74

0.3

STFPICα 0.064 23.65 5.6 31.5 5.42 44.88 2.75

Second Order Marginally Stable System

Let us consider a marginally stable system:  

2

2
( )

d y dy
u t L

dt dt
                                                         (3.10)

Marginally stable system with dead-time is a difficult system to control for the existence of poles 

on the imaginary (jω) axis. The performance indices with various dead-times are listed in Table 

3.4. Performance under load disturbance (applied at t = 55s) is shown in Fig. 3.12 and in Table

3.6. From Figs. 3.11 and 3.12, and from the Tables 3.4 and 3.6 we observe that in each case the 

proposed controller performs more satisfactorily compared to other controllers. Also STFPICα 

with almost 50% rules compared to STFPIC provides comparable results as shown in Table 3.4.

From this study, we find that STFPICα considerably decreases the overshoot though we knew 

that overshoot and rise time conflict each other.
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Figure 3.11: Responses of process (3.10) with STFPICα for L=0 (solid) and
L=0.3 (dotted).

Figure 3.12: Responses of process (3.10) with L=0.2 with load disturbance at t=55s
(FPIC-dotted and STFPICα-solid).
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Table 3.4: Performance analysis for the marginally stable 2nd order process (3.10)

L FLC Gu %OS tr(s) ts(s) IAE ITAE ISE

FPIC 0.016 40.85 6.1 31.9 7.23 64.86 3.43

STFPIC 0.048 21.36 5.9 28.0 5.07 32.69 2.70

0.0

STFPICα 0.060 22.48 5.6 24.8 4.91 29.30 2.63

FPIC 0.016 44.62 6.1 41.2 8.10 87.15 3.71

STFPIC 0.048 24.38 5.8 28.4 5.50 43.26 2.83

0.1

STFPICα 0.059 26.71 5.6 30.1 5.55 42.63 2.79

FPIC 0.012 54.79 6.9 64.3 12.54 220.20 5.33

STFPIC 0.036 34.73 6.5 47.1 7.69 96.93 3.52

0.3

STFPICα 0.041 36.00 6.5 48.9 8.05 100.75 3.58

Second Order Nonlinear Process

We have tested the performance of STFPICα and other controllers in a nonlinear process with 

different dead-times.  Consider the nonlinear process:  

    
2

2
2

0.25 ( )
d y dy

y u t L
dt dt

                                                             (3.11)

Performance of this nonlinear process for L=0.1 and 0.4 is observed. Fig. 3.13, Fig. 3.14 and

Table 3.5 reveal that in this case also STFPICα exhibits better performance over FPIC. STFPICα

reduces the ITAE value for different dead-times. The load disturbance is applied at t=30s and the 

corresponding response is plotted at Fig. 3.14. Table 3.6 clearly indicates that STFPICα have 

outperformed others, even at load disturbances. From Table 3.6, it is observed that at different 

dead-times STFPIC and STFPICα show almost identical performances. 
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Figure 3.13: Responses of process (3.11) with STFPICα for L=0.1 (solid) and
L=0.4 (dotted).

Figure 3.14: Responses of process (3.11) with L=0.3 with load disturbance at t=30s
(FPIC-dotted and STFPICα-solid).
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Table 3.5: Performance analysis for the nonlinear 2nd order process (3.11)

L FLC Gu %OS tr(s) ts(s) IAE ITAE ISE

FPIC 0.025 24.39 5.0 15.6 4.07 17.50 2.41

STFPIC 0.075 19.25 4.7 15.7 3.78 15.70 2.23

0.0

STFPICα 0.084 20.25 4.7 18.3 3.90 15.50 2.28

FPIC 0.025 26.67 5.0 19.0 4.42 26.57 2.51

STFPIC 0.075 22.33 4.7 19.1 4.07 20.70 2.32

0.2

STFPICα 0.081 22.61 4.8 19.2 4.20 19.00 2.40

FPIC 0.025 31.77 5.1 37.5 5.63 74.28 2.73

STFPIC 0.075 29.13 4.8 24.2 4.94 35.88 2.59

0.4

STFPICα 0.080 27.28 5.1 24.3 4.93 28.50 2.60

Table 3.6: Performance analysis for the 2nd order processes with load disturbance

Process L Load 
at t(s)

FLC Gu %OS tr(s) ts(s) IAE ITAE ISE

FPIC 0.02 29.68 5.9 28.8 11.52 325.21 5.84Linear
equn. (3.9)

0.2 40

STFPICα 0.067 24.21 5.6 27.8 9.44 243.48 4.38

FPIC 0.016 48.80 6.1 48.0 16.42 590.72 7.47Marginally 
Stable

equn.(3.10)

0.2 55

STFPICα 0.056 31.41 5.8 41.0 11.08 354.55 5.09

FPIC 0.025 29.13 5.1 23.0 10.08 228.87 5.48Nonlinear
equn. (3.11)

0.3 30

STFPICα 0.078 24.98 5.0 23.2 8.74 172.18 4.64

The above simulation study justifies the use of α. The proposed self-tuning fuzzy controller with 

dynamic gain variation (STFPICα) and with limited number of fuzzy if-then rules shows better 

performance compared to fuzzy PI and self-tuning fuzzy PI controllers. 
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3.5 Real time experiments on DC motor
            
High performance DC motor drives are used extensively in industrial applications for its good 

starting and braking performance. The DC motor drive is a highly controllable electrical motor 

drive suitable for robotic manipulators, guided vehicles, steel mills, mining machines; mine hoist 

machines and electrical traction [5]. Usually, precise, fast, effective speed references tracking 

with minimum overshoot/undershoot and small steady state error are essential control objectives 

of such a drive system. 

In the present speed control application as shown in Fig. 3.15 and 3.16, a small DC servo motor 

is used (Manufacturer: SHINKO ELECTRIC CO. LTD., Japan; Speed: 1500 R.P.M.). For speed 

measurement, a slotted opto-coupler is fitted with the wheel that contains an Infrared (IR) ray 

emitter at one end and a receiver with a photo sensor at the other end. If IR beam falls on the 

photo sensor, the output of the processing circuit becomes logic ‘0’ and it becomes logic ‘1’

when IR beam is blocked by some object. The slotted wheel rotates inside the slotted space of 

the opto-coupler and thus the IR beam cuts at regular interval of time as shown in Fig. 3.15. The 

processing circuit produces a series of pulse train, logic 0 and 1. The signal is then converted into 

voltage signal by F/V (frequency to voltage) converter that is found to be linear in nature as 

shown in Fig. 3.17. Voltage vs. rpm calibration curve is shown in Fig. 3.18.

Figure 3.15: Block diagram for set-up of speed control of DC motor.
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Figure 3.16: Experimental set-up for the speed control of DC motor.

Figure 3.17: Frequency (proportional to motor speed) vs. voltage curve.

Figure 3.18: Voltage vs. rpm curve.
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3.5.1 Relay feedback test

To generate the sustained oscillation, relay feedback test is performed on the motor as described 

in section 3.2. The ultimate gain (Ku) and ultimate period (Pu) are measured from the principal 

harmonic approximation shown in Fig. 3.19. The proposed STFPICα is designed by determining 

the value of α from the relation α = (Ku.Pu)/2.5. From the relay feedback experiment we get

     Ku = 1.958; and Pu = 5;

    Therefore, α = (Ku.Pu)/2.5 = 3.916;

To design the ZNPIC, its Kc and Ti are calculated from the relay feedback test, as follows:

Kc = Ku /2.2 = 0.89;

Ti = Pu /1.2 = 4.167;

Figure 3.19: Relay feedback response of a DC motor in close loop.
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3.5.2 Results and discussion  

The speed of the DC motor in terms of voltage is observed by using proposed STFPICα. From 

Fig. 3.23 and Table 3.7, we find that STFPICα efficiently controls the motor speed under varying

dead-time. Fig. 3.20, Fig. 3.21 and Fig. 3.22 represent speed vs. time response plots for applying 

ZNPIC, FPIC and STFPIC respectively. A comparative study has been done [156] as shown in 

Table 3.8 with FPIC (49 rules), STFPIC (98 rules) and with ZNPIC. From Table 3.8, we realize

the overall improved performance of STFPIC compared to conventional fuzzy and non-fuzzy 

controllers. The controller provides a comparable rise time with respect to ZNPIC and FPIC. 

Also STFPIC gives very low peak time, peak overshoot and it settles within 34.75s. Due to its 

self-tuning mechanism, STFPIC always tracks the reference value of motor speed, thus gives 

zero steady state error and negligible IAE and ITAE. However, comparing Table 3.7 and Table 

3.8, it is observed that STFPICα (50 rules) performs better than even STFPIC despite using lesser 

number of if-then rules.

Figure 3.20: Step response of the DC motor for ZNPIC.
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Figure 3.21: Step response of the DC motor for FPIC.

Figure 3.22: Step response of the DC motor for STFPIC.
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Figure 3.23: Step response of the DC motor for STFPICα.

Table 3.7: Performance analysis with STFPICα for the practical DC motor

Controller Type L tr(s) ts(s) %OS IAE ITAE

STFPICα 3.0 3.76 4.64 0.96 114 534

Table 3.8: Performance comparison for different controllers

Controller Type tr(s) tp(s) ts(s) %OS

ZNPIC 5.26 8.66 61.28 5.1

FPIC 5.29 6.25 58.83 5.1

STFPIC 5.62 5.82 34.75 3.6
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3.6 Conclusion
A simple self-tuning fuzzy PI controller with dynamic gain (STFPICα) has been proposed in this 

chapter. The output SF of the STFPIC is updated on-line based on the process trend as well as 

the dynamics of the system. STFPICα has shown significantly improved performance compared

to its conventional fuzzy and non-fuzzy controllers for high-order and nonlinear systems with 

varying dead-time. Even STFPICα with almost 50% reduced rules exhibited almost similar 

performances to that of STFPIC with fixed multiplicative factor. The performance comparison 

showed that the proposed STFPICα also offers a better load regulation. One of the highlights of 

the proposed scheme is relay feedback tuning, which is performed on-line on the motor. The 

tuning method used here is rather simple to understand by the control engineer. The results 

revealed that the STFPICα has improved the close loop performance by minimizing the steady 

state error and other performance criterions. 
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Development of Adaptive fuzzy PD controller-
AFPDC

4.1 Introduction
Over the past two decades, the application of knowledge-based systems in process control has 

been growing, especially in the field of fuzzy control, in which linguistic descriptions of human 

expertise are represented as fuzzy rules or relations [147]. This knowledge-base is used by an 

inference mechanism, in conjunction with some knowledge of the states of the process in order 

to determine control actions. Among the various types of hybrid controllers [157], PD-type fuzzy 

logic controller (FPDC) is very common and practical because its derivative control action, when 

added to a proportional controller, provides a means of obtaining a controller with high 

sensitivity. An advantage of using derivative control action is that it responds to the rate of 

change of the actuating error and can produce a significant correction before the magnitude of 

the actuating error becomes too large. Derivative control thus anticipates the actuating error, 

initiates an early corrective action, and tends to increase the stability of the system. PD-type 

FLCs are suitable for systems [127], like non-minimum phase systems, systems with integrating 

elements and few nonlinear systems. 

PID controllers may be tuned in a variety of ways, including hand-tuning, Ziegler Nichols 

tuning, loop shaping, analytical methods, by optimization, pole placement, or auto tuning. When 

the control problem is to regulate the process output around a set-point, it is natural to consider 

error as an input, even to a fuzzy controller, and it follows that the integral of the error and the 

derivative of the error may be useful inputs as well. In a fuzzified PID controller, however, it is 

C

 CHAPTER 4
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difficult to tell the effect of each gain factor on the rise time, overshoot, and settling time, since it 

is most often nonlinear and has more tuning parameters than a PID controller. The objective in 

this section is to find a systematic tuning procedure for fuzzy controller. A systematic tuning 

procedure would make it easier to install fuzzy controllers, and it might pave the way for auto-

tuning of fuzzy controllers. As discussed in chapter-2, Mudi et al [22, 23] proposed a robust self-

tuning scheme for PD-type FLC. In their scheme of self-tuning, an on-line fuzzy gain modifier is 

determined by 49 fuzzy if-then rules based on operator’s knowledge. However, in our proposed 

controller, a simple non-fuzzy adaptive scheme is used to update the controller gain 

continuously with the help of process error and change of error.

Motivated by the encouraging results of [142], instead of a fuzzy rule based tuning scheme [22, 

23], here a simple non-fuzzy adaptive technique is proposed. In the proposed adaptive fuzzy PD 

controller (AFPDC), output SF is continuously updated by a gain updating factor β, which is 

related to the normalized error (eN) and normalized change of error (∆eN) of the process under 

control. Here, the output of the controller is modified in accordance with the present situation of 

the process under control, thus, it is expected that the proposed AFPDC will improve the close-

loop performance. Another important point of our scheme is that it uses significantly lesser

number of rules compared to other FLCs [22, 155] reported in the literature. The proposed 

scheme is demonstrated on different second order models with variable dead-time and also its 

effectiveness is tested on a practical overhead crane set-up [158, 159].

The overhead cranes are commonly employed in the transport industry for the loading and 

unloading of freight, in construction industry for the movement of raw materials and in the 

manufacturing industry for the assembling of heavy equipment [160]. In such applications, 

external and internal excitations at the suspension point can produce in-plane and out-of plane 

pendulations as well as vertical oscillations of the payload. This problem of pendulations in the 

crane is aggravated due to its lightly damped nature that means any transient motion takes a long 

time to dampen out. Suppression of payload oscillations is especially important for offshore 

cranes due to wave-induced motions of the crane-platform. Onshore cranes may also experience 

base excitations, leading to a complex dynamic response of the free swinging load, due to variety 

of reasons, such as wave breaking on the shore and the interaction between the payload motion 
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and the platform support system. However, this problem is most pronounced in offshore cranes 

[161]. 

Anti-sway and position control have become the requirements as a core technology for 

automated crane system. The purpose of crane control is to reduce the pendulum type motion of 

the loads while moving the trolley to the desired position as fast as possible. Crane operators, 

often aided with automatic anti-sway systems, are always involved, and the resulting 

performance, in terms of swiftness and safety, heavily depends on their experience and 

capability. Thus, the need for faster cargo handling requires the precise control of crane motion 

so that its dynamic performance is improved [162, 163].

Various attempts have been made to solve the problem of swing of load [164-169]. Most of them 

focus the control on suppression of load swing without considering the position error in crane 

motion [170]. Liu et al. [171] investigated an adaptive sliding mode fuzzy control approach for a 

linearized two dimensional overhead crane system. But the methods based on the linearized 

crane dynamics may lose the sufficient accuracy of information about position and swing angle,

so some uncertainty may arise that can reduce the performance of these crane control systems. 

Besides, several authors have considered optimization techniques to control the cranes. They 

have used minimal time control technique to minimize the load swing [172, 173]. Since the 

swing of load depends on the motion and acceleration of the trolley, minimizing the cycle time 

and minimizing the load swing are partially conflicting requirements. 

In this study, we attempt to provide a practical solution for the anti-swing and precise position 

control of an overhead crane. The position of trolley, swing angle of load and their 

differentiations are applied to derive the proper control input of the trolley crane. Two PD-type 

fuzzy logic controllers are used to deal separately with the feedback signals, swing angle and 

trolley position and their differentiations [174]. The fuzzy rules can be designed according to the 

experience of crane workers. The main advantage of this separated approach is to greatly reduce 

the computational complexity of the crane control system. The total number of fuzzy rules for 

the complete control system is therefore less than the number of rules used by conventional 

fuzzy system. Thus, the proposed algorithm is very easy to implement.
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4.2 Design of the proposed controller - AFPDC
A skilled operator always tries to eliminate the error within the shortest possible time by 

changing controller output. Considering the role of a human operator, the output scaling factor 

should be considered a very important parameter of the FLC since its function is similar to that 

of the controller gain. So the output SF should be determined very carefully for the successful 

implementation of a FLC. Thus, depending on the process trend, an expert operator or a control 

engineer tries to modify the control action of the controller. Control action should be modified by 

changing the output SF to improve the system performance maintaining the stability of the close 

loop system. Following such an operator’s policy, here, we suggest a simple adaptive scheme of 

Fuzzy PD Controller (FPDC) [142], where an on-line gain modifier β is determined from the 

relation β = K(1+α). The parameter α is obtained from the multiplication of eN and ΔeN. The 

block diagram of the proposed AFPDC is shown in Fig. 4.2. The block diagram of Fig. 4.2,

without the β function can be considered as a figure of PD type FLC as shown in Fig. 4.1. Other 

design considerations are discussed in the next subsections. 

Figure 4.1: Block Diagram of FPDC.

4.2.1 Fuzzy membership functions

Membership functions (MFs) for controller inputs error (e), change of error (Δe) and controller 

output (u) are defined on a common normalized domain [-1, 1], as shown in Fig. 4.3. Symmetric 

triangles with equal base-width and 50% overlap with neighboring MFs are used here due to its 
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natural and unbiased nature. The term sets of e, e and u for PD type FLC contain the same 

linguistic expressions for the magnitude part of the linguistic values, i.e., LE = LE = LU {NB-

Negative Big, NM- Negative Medium, ZE- Zero, PM- Positive Medium, PB- Positive Big}. 

Figure 4.2: Block Diagram of AFPDC.

Figure 4.3:  MFs of e, Δe and u.

4.2.2 Scaling factors 

The normalized inputs (eN and ∆eN) and normalized output (uN) of the AFPDC as shown in Fig. 

4.2 are defined on the normalized domain [-1, 1]. The input variables e and ∆e are mapped onto 

normalized interval [-1, 1] by the input SFs Ge and G∆e, respectively. Normalized output (uN) of 

FPDC is mapped onto actual output (u) by the output SF Gu. However, the actual output of the

proposed AFPDC is obtained by applying effective SF (β.Gu) as shown in Fig. 4.2. Thus proper 

selections of these scaling factors are very important and are made based on the knowledge about 

the process to be controlled. The relationship between the SFs (Ge, G∆e, Gu) and the input and 

output variables of the AFPDC are as follows: 
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eN  =   Ge.e

∆eN = G∆e.∆e and 

u = (β.Gu).uN ; where, β = K(1+α).

Here, β is the on-line calculated parameter for the output scaling factor Gu. Observe that the PD-

type FLCs use output scaling factor Gu only, whereas the output SF of AFPDC is obtained by 

multiplying Gu with β.    

4.2.3 Gain updating factor 

The output scaling factor (Gu) is constant for a particular application of FLC, but it does not 

remain constant for the proposed adaptive fuzzy controller while in operation. The output SF of 

the AFPDC is modified in each sampling instant by β, which depends on the instantaneous 

process condition. The gain updating factor (β) as shown in Fig. 4.2 is calculated using the 

following relation:

                                             β = K(1+α)                                                                                    (4.1)

                                 α = (eN .ΔeN)                                                                                  (4.2)

In the above relation, α is derived from the product of eN and ∆eN. In equation (4.1), ‘K’ is a 

positive constant, used to provide the appropriate range of variation of β. Equation (4.2)

illustrates the characteristic of α as a function of eN and ∆eN. Thus functional relationship of β 

can be viewed as:

                                                       β(k) = f(eN(k),ΔeN(k))                                                          (4.3)

Where f is a nonlinear function of eN and ΔeN. The nonlinear surface of α (Fig. 4.4) indicates that, 

if e is +ve and Δe is -ve or vice versa (i.e. α is -ve), then the system approaches towards set-point

and hence the controller gain becomes very small which will help to avoid large overshoot. 

Similarly, when both the inputs of the controller are of the same sign (-ve, -ve or +ve, +ve), (i.e.,

α is +ve), that indicates the system is moving away from the set-point) then the controller gain 

becomes large, which will help to achieve a faster recovery of the system. These useful 

observations are shown in the table format below.
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eN ∆eN α β (for K=1) Observations

- + - <1

+ - - <1

System approaches towards set-point and hence the 
controller gain becomes very small, which will help to 
avoid large overshoot.

- - + >1

+ + + >1

System is moving away from the set-point and hence the 
controller gain becomes large, which will help to achieve 
a faster recovery of the system.

Figure 4.4: Variation of β with eN and ΔeN.

4.2.4 The rule-bases

Table 4.1: Fuzzy control rules for computation of u

∆e/e NB NM ZE PM PB

NB NB NB NB NM ZE

NM NB NB NM ZE PM

ZE NB NM ZE PM PB

PM NM ZE PM PB PB

PB ZE PM PB PB PB
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The fuzzy PD controller uses rules of the form: 

                           If e is E and Δe is ΔE then u is U.

The rule-base shown in Table 4.1 is designed with a two-dimensional phase plane in mind where 

the FLC drives the system in sliding mode. The designed rule-base is flexible in nature and it can 

be modified according to the process requirement. The control surface, i.e., controller output (u) 

vs. inputs e and Δe for the fuzzy PD controller (FPDC) is shown in Fig. 4.5. The control surface 

of FPDC is nonlinear and bumpy in nature. In this chapter to solve this problem, instead of using 

additional fuzzy rules [22] we propose an alternative method for gain adjustment. Control 

surface of AFPDC is shown in Fig. 4.6 with same number of fuzzy rules. After a careful 

inspection of the two surfaces it can be realized that the control surface of the proposed AFPDC 

is more nonlinear but smooth in nature than that of FPDC. This smoothness is very much 

essential for practical implementation. 

Performance of the proposed AFPDC is compared with conventional PID and FPDC through 

simulation study on nonlinear and unstable systems. To ensure the robustness of the scheme 

same value of K (K=2) in the relation of β (equation 4.1), is used for all the examples. 

Figure 4.5: Control surface of FPDC.
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Figure 4.6: Control surface of AFPDC.

4.3 Simulation experiments
The performance of AFPDC is evaluated here with respect to conventional PID and FPDC 

through simulation study on wide variety of second order systems, i.e., non-minimum phase, 

nonlinear, integrating and unstable systems with variable dead-time. To establish the robustness 

of the proposed scheme same MFs (Fig. 4.3) and same rule-base (Table 4.1) are used for all the 

processes. We have used Mamdani type interfacing and height method of defuzzification [42] in 

all the cases. In the proposed scheme the value of β is dependent on the process dynamics and it 

is not a fixed value. Therefore, the effective control action generated by AFPDC is varied in 

accordance with the β value as shown by the control surface of β in Fig. 4.4. 

Non-minimum Phase System

We have considered a 2nd order unstable system described by: 

2

2
( )

d y
y u t L

dt
                                                            (4.4).

This simplified linear model of inverted pendulum is unstable in nature due to the presence of a 

non-minimum phase pole at right hand side of the s-plane. It is very difficult to control a non-
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minimum phase system using conventional PID controller. To eliminate the effect of this right 

hand side pole and to make the system stable by pole-zero cancellation, it is better to choose a 

PD controller, which introduces a zero in the left hand side of s-plane.  

Fig. 4.7 shows the response of equation (4.4) for an impulse input with PID controller. 

Corresponding results for PID controller with different dead-time is tabulated in Table 4.2. Fig. 

4.8 and Fig. 4.9 depict the impulse responses of the system (4.4) for FPDC and AFPDC with 

scaling factors (Ge=0.9 and GΔe=2.7). The effect of dead-times (0 and 0.1) and load disturbances 

(at 10s and 15s) in FPDC and AFPDC are effectively demonstrated in Fig. 4.8 and Fig. 4.9.

Table 4.3 shows the performance analysis of the non-minimum phase system considering 

different performance criterion for different dead-times. Responses of the system indicate a 

remarkable improvement in the performance using AFPDC over PID and FPDC. The designed 

controller is also working satisfactorily in load disturbances as shown in Fig. 4.8 and Fig. 4.9. 

However, such types of systems are found to be uncontrollable even with self-tuning schemes for 

higher values of dead-time.

                     Figure 4.7: Responses of (4.4) with PID for L= 0.0 (solid) and L=0.1 (dotted).
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Figure 4.8: Responses of (4.4) with FPDC (dotted) and AFPDC (solid) for
L=0 with load disturbance at 10s.

Figure 4.9: Responses of (4.4) with FPDC (dotted) and AFPDC (solid) for
L=0.1 with load disturbance at 15s.
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Table 4.2: Performance analysis of the non-minimum phase system (4.4) with PID

L %OS tr(s) ts(s) IAE ITAE ISE

0.0 133.26 1.1 67.1 14.44 240.49 7.51

0.1 161.56 1.1 - 77.59 3423.19 82.18

Table 4.3: Performance analysis of the non-minimum phase system (4.4) with FLCs

L FLC Gu %OS tr(s) ts(s) IAE ITAE ISE

FPDC 6 44.14 1.1 3.7 0.36 1.06 0.650.0

AFPDC 6β 26.58 0.8 3.0 0.36 0.45 0.42

FPDC 4.2 70.16 1.4 25.3 0.61 1.70 1.590.1

AFPDC 4.2β 52.80 1.7 8.3 0.57 1.05 1.39

Nonlinear Process

We have tested the performance of AFPDC for nonlinear process: 

                                                       
2

2
0.3 ( )

d y dy
y u t L

dt dt
                                                      (4.5).  

Note that widely used relay-feedback (Fig. 4.10) tuned PID controller exhibits very poor 

performance and produces very large overshoots for this nonlinear process as shown in Fig. 4.11

and Table 4.4. A comparative study is made between PID and AFPDC in Fig. 4.12 with load 

disturbance at t=20s. The performances of AFPDC and FPDC (with Ge=0.9 and GΔe=11) are 

observed for nonlinear process (4.5) for various dead-time by applying a unit step input. Load 

disturbances are applied at t=20s as shown in Fig. 4.13 and Fig. 4.14. Table 4.5 provides the 

quantitative performance analysis of AFPDC, FPDC and PID for different values of dead-time. 

From the analysis of nonlinear process (4.5), we find that the AFPDC with only 25 fuzzy rules 

always outperforms FPDC and PID controllers. This indicates that proposed on-line gain 

adjustment scheme through gain updating factor β is working satisfactorily for the nonlinear 

process also. 
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Figure 4.10: Relay feedback tuning graph of d2y/dt2+0.3.y.dy/dt=u(t-L).

Figure 4.11: Responses of (4.5) with PID for L=0 (solid), L=0.1(dotted) and
L=0.2 (dash-dot).
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Figure 4.12: Responses of (4.5) with PID (dashed) and AFPDC (solid) for L=0 with
load disturbance at 20s.

Figure 4.13: Responses of (4.5) with FPDC (dotted) and AFPDC (solid) for L=0
with load disturbance at 20s.
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Figure 4.14: Responses of (4.5) with FPDC (dotted) and AFPDC (solid) for
L=0.3 with load disturbance at 20s.

Table 4.4: Performance analysis of (4.5) with PID without load disturbance

L %OS tr(s) ts(s) IAE ITAE ISE

0.0 85.04 1.8 49.8 8.89 123.74 3.45

0.1 95.12 1.8 - 15.45 346.96 6.18

0.2 107.02 1.9 - 48.52 2071.79 32.54

Table 4.5: Performance analysis of the nonlinear process (4.5)

L Controller Type %OS tr(s) ts(s) IAE ITAE ISE

PID 85.04 1.8 68.6 13.68 292.16 5.16

FPDC 7.85 3.4 6.7 3.25 32.50 1.56

0.0

AFPDC 0.0 2.7 3.0 1.71 12.50 0.82

PID 95.12 1.8 - 23.96 707.21 10.99

FPDC 12.07 3.7 8.1 3.74 35.90 1.81

0.1

AFPDC 2.17 2.6 2.8 1.88 14.24 0.96

FPDC 19.66 4.4 11.0 4.97 47.21 2.480.3

AFPDC 12.42 2.7 5.1 2.25 13.75 1.22
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Integrating and Unstable System

Let us consider a 2nd order integrating system: 

2

2
( )

d y dy
u t L

dt dt
                                                          (4.6).

The process is unstable in nature because one of its poles is located at the right-half of the s-

plane. Here, the PD controller plays an important role in converting this integrating and unstable 

process (4.6) into a stable one, because PD controller introduces a zero in the left-half s-plane. It 

is observed that conventional controllers are unable to provide satisfactory performance as 

indicate by Fig. 4.15 and Table 4.6. As shown in Fig. 4.16, AFPDC is found to be able to provide 

stable performance for increased dead-time, i.e., L= 0.1, but the PID and even FPDC fail to do 

so. Response characteristics of (4.6) are depicted in Fig. 4.15 and Fig. 4.16 with disturbance at

t=30s. Table 4.6 provides a detail performance comparison of the system with different 

controllers. Like previous results, here also, AFPDC exhibits highly improved performance 

compared to others. 

Figure 4.15: Responses of the system (4.6) with PID (dashed), FPDC (dotted)
and AFPDC (solid) for L=0 with load disturbance at 30s.
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Figure 4.16: Response of the system (4.6) with AFPDC for L=0.1 with load
disturbance at 30s.

Table 4.6: Performance analysis of the integrating process (4.6)

L Controller Type %OS tr(s) ts(s) IAE ITAE ISE

PID 106.2 0.6 10.0 4.41 61.75 1.94

FPDC 77.44 1.6 17.7 6.92 100.71 2.64

0.0

AFPDC 11.84 1.5 2.8 1.31 13.65 0.64

0.1 AFPDC 44.90 1.3 4.1 2.89 65.04 0.90

4.4 Real time experiments on overhead crane
In this section, experimentation with an overhead crane is carried out to verify the performance 

of proposed non-fuzzy tuning scheme. The overhead cranes have been widely employed in many 

industrial fields such as harbors and factories, where they should be operated to transfer cargoes 

as quickly and safely as possible within a given time for high transportation efficiency [161, 

163]. The overhead cranes have one control input (trolley driving force) and two output variables 

(horizontal trolley position and load swing angle). This property results in a coupling effect 

between the load swing and cart position. In addition, uncontrolled load sway dynamics causes 

safety problems in crane systems, which makes it much more challenging to control. These 

integrating and pendulum type control problems of crane systems have attracted much interest 
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among control engineers. Thus, the need for faster cargo handling requires the precise control of 

crane motion so that its dynamic performance is improved.

Overhead crane set-up

A laboratory scale crane set-up (FEEDBACK, UK) shown in Fig. 4.17 consists of a cart, moving 

along the 1m length track and a load is attached with the cart through shaft [142, 143]. The cart 

can move back and forth causing the load to swing. The movement of the cart is caused by 

pulling the belt in two directions by the DC motor attached at the end of the rail as shown in Fig. 

4.18. By applying a voltage to the motor we control the force with which the cart is pulled. The 

value of the force depends on the value of the control voltage. The two variables that are read 

using optical encoders are the load angle and the cart position on the rail. The controller’s task 

will be to change the DC motor voltage depending on these two variables, in such a way that the 

desired crane control task is fulfilled. An optical encoder consists of a light source, light detector 

and a slit disk placed between them. This way the relative position with respect to the initial 

point can be measured by counting the pulses on the light detector. Additionally, safety limit 

switches are mounted on either side of the track which cut power to the motor when the cart 

crosses them. Initially the control signal is set to -2.5v to 2.5v and the generated force magnitude 

of around -20N to +20N. The cart position is physically bounded by the rail length and is equal to 

-0.5m to +0.5m. 

Figure 4.17: Overhead crane set-up.
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Figure 4.18: Crane control diagram.

Model of the overhead crane 

Fig. 4.19 shows the schematic of an overhead crane traveling on a rail, where x, θ and u are the 

cart position, load swing angle and cart driving force respectively. The model is a SIMO plant –

single-input multiple-outputs. The cart mass (M), load mass (m), pole length (l) and gravitational 

force (g) are given by 2.4kg, 0.23kg, 0.36m and 9.81m/s2 respectively. Here, the stiffness and 

mass of the rope are neglected and the load is considered as a point mass. The proposed scheme 

is focused on anti sway tracking control of an indoor overhead crane; therefore, the hoisting 

motion and the effects of wind disturbance are not considered. The phenomenological model of 

the overhead crane is nonlinear, meaning that at least one of the states (x and its derivative or θ

and its derivative) is an argument of a nonlinear function [158]. 

We use Langrangian approach to derive the equations of motion. It follows from Fig. 4.19 that 

the load and cart position vector are given by 

 sin , - coslx x l l  


 and  ,0cx x


                                               (4.7)

Then the kinetic and potential energy of the granty crane system is given by K and P 

respectively:
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                                                             (4.8)

                                                 and cosP mgl                                                                      (4.9)

Figure 4.19: Model of the overhead crane system.

Let the generalized forces corresponding to the generalized displacements

                                             ,q x 


 be  ,0xu u


.

Then construct Lagrange’s equations for i =1, 2 

                                                                                                                

                                                        (4.10)                 

Where, L = K – P and ui is the external force to the trolley. 

Then, the equations of motion of the overhead crane system without uncertainty [157, 160] with 

respect to x and θ are obtained through equation (4.11) and (4.12) are: 

2( ) cos sin 2 cos - sin xM m x ml ml ml ml u                                                  (4.11)

sin 2 cos 0l g l x                                                                                                    (4.12)

The main difficulty in controlling the overhead crane system basically lies in the handling of the 

coupled nature between the sway angle and cart movement. The dynamic model represented in 

equations (4.11) and (4.12) are nonlinear in nature, that means the cart position and its derivative 

 x  or swing angle and its derivative   are nonlinear functions. To carry out analysis of the 

- i
i i

d L L
u

dt q q

  
   

1 1
2 2. .c c l lK M x x m x x 
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model dynamics for open loop as well as closed loop system, the model has to be linearized for 

conventional controllers, which is not essential for our proposed scheme. Linearization of a 

given phenomenological model also can be carried out by using state-space model. For small 

angle of deviations and negligible change in rope length, the above dynamic model can be 

transformed to state space form as: 

                                x Ax Bu 

                                 y Cx .

The state space model with 1 2 3 4, , ,
T

x x x x x   ; where 1x x , 2x   and 3 4,x x are the derivatives 

of 1 2,x x  respectively. Then the matrices A , B and C are represented by

Controller design for overhead crane  

Figure 4.20: Dual control structure (position x and angle θ) for overhead crane control.
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Fig. 4.20 shows the block diagram of dual control structure for the proposed overhead crane 

control. The feedback signals from the overhead crane act as the input variables of the controller 

as shown in the Fig. 4.20. Fig. 4.21 shows the two similar fuzzy logic controllers, which deal 

separately with the cart position and swing angle to drive the overhead crane. In this design, the 

normalized values of position error (e) and change of position error (Δe) are selected as the input 

linguistic variables of fuzzy position controller. The input linguistic variables of fuzzy angle 

controller are selected as normalized values of swing angle error (eθ) and its derivative (Δeθ). 

Figure 4.21: Diagram of FPDC for overhead crane control.

Our proposed adaptive scheme is applied in FPDC as shown in Fig. 4.22. In this scheme, the 

output of FPDC (Fig. 4.21) is further modified by an automatic gain updating factor (β) to 

achieve satisfactory control performance. 

In our design, the left swing of the load is defined as positive swing, while the right swing of the 

load is negative swing. The output of the AFPDC for position and swing angle control are up and 

uθ respectively as indicated in Fig. 4.22. For the overhead crane control using AFPDC, we 

incorporate the proposed gain adaptive scheme through an on-line gain modifier β, which is 

determined by the relation β=K(1+α), where α is obtained from the multiplication of the 

normalized controller inputs. The actual control action to drive the cart by AFPDC is uAFPDC,

whereas, the actual control action to drive the cart using FPDC is uFPDC. The controller output 
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uFPDC and uAFPDC of FPDC and AFPDC respectively are used to drive the DC motor of the 

overhead crane for position and angle control as shown in Fig. 4.21 and Fig. 4.22.  Fig. 4.23

denotes the MFs of e, Δe and uP for position controller and MFs of eθ, Δeθ and uθ for angle 

controller.  Error (e) due to position and error (eθ) due to angle are obtained respectively from the 

cart position encoder and swing angle encoder. The ranges selected of input-output variables for 

position and angle controller are [-0.5, +0.5] and [-20°, +20°] respectively.  

Figure 4.22: Diagram of AFPDC for overhead crane control.

Figure 4.23:  MFs for position [-0.5, +0.5] and angle [-20o, +20o] controller.

Each of the position and angle controllers consists of similar 25 fuzzy if-then rules as shown in 

Table 4.1. We have observed highly nonlinear but identical three dimensional control surfaces 

(Fig. 4.5 and Fig. 4.6) for position and angle controller both in FPDC and AFPDC. 
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Note that, here in dual control structure, both the controllers have only i/2 fuzzy atomic clauses 

in the antecedent part of each rule, where ‘i=4’ refers 4 input linguistic variables (ep, Δep, eθ and 

Δeθ). In FPDC or AFPDC, each input variable of position and angle controller has ‘n’ linguistic

terms, here n=5 (Fig. 4.23), thus the number of control rules required is 2.ni/2 = 50. However, a 

single conventional fuzzy controller for the same purpose may need ni, i.e., 54=625 rules, which 

is very much greater than the total number of rules required for the present dual control scheme 

(i.e., 50). 

Results and discussion  

The proposed gain adaptive scheme is tested on an overhead crane (Fig. 4.17) with square input 

and step input with different amplitudes [162, 171]. Mainly the step and square signals are used 

as reference because this type of signals matches the real situation, where the cart with payload is 

driven from home position to the desired position and back to the home position [175, 176]. The 

system is at first tested with PID controller. The cart position control response using PID for step 

and sine input are shown in Fig. 4.24 and Fig. 4.25 respectively. Fig. 4.26 and Fig. 4.27 show 

that the load sway for application of conventional PID controller is not smooth for different 

inputs, which is one of the most desirable parameters for overhead crane control in industry.

Figure 4.24: Overhead crane position control using PID controller for step input (0.3m).
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Figure 4.25: Overhead crane position control using PID controller for sine input (±0.3m).

Figure 4.26: Overhead crane swing angle control using PID controller for step input (0.3m).

Figure 4.27: Overhead crane swing angle control using PID controller for sine input (±0.3m).
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The controller output (uFPDC / uAFPDC) of FPDC and AFPDC are separately applied to the 

overhead crane to control the crane position and as well as swing angle of the load attached. The 

AFPDC outperforms the PID and FPDC for different types of input applied as shown in Fig. 4.28

and Fig. 4.29. Real time experiments for position control of the overhead crane illustrate the 

advantages of proposed self-tuning scheme for various types of inputs.  Fig. 4.28 and Fig. 4.29

show that proposed adaptive fuzzy controller tracks the set-point very efficiently and placed the 

trolley in desired position. From Table 4.7, we find that different performance parameters such 

as IAE, ITAE and ISE are reduced by a large percentage when controlled by AFPDC compared to 

FPDC. In case of step response rise time is decreased to 1s compared to 1.6s for FLC.  

Figure 4.28: Position control for step input (0.3m) using FPDC (dotted line) and
AFPDC (solid line).

Figure 4.29: Position control for square input (dash-dot) using FPDC (dotted) and
AFPDC (solid line).
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Table 4.7: Performance analysis of the proposed controllers in overhead crane control

Reference input Controller Type IAE ITAE ISE

FPDC 7.51 75.57 0.70Step (amplitude 0.3m)

AFPDC 3.67 26.62 0.39

FPDC 31.10 847.40 6.77Square (amplitude 

±0.2m) AFPDC 24.20 698.23 6.05

The proposed dual control scheme positions the cart in almost exact location with negligible 

offset as shown in Fig. 4.28 and Fig. 4.29. Responses due to step and pulse type inputs as 

presented in Fig. 4.30 and Fig. 4.31, illustrate that proposed AFPDC makes negligible sway 

angle for horizontal movement of the trolley crane. Also we find that swinging angle is very less 

(maximum around 5°) even with vertical movement of the crane trolley. We have also 

successfully demonstrated our proposed scheme for step input with different amplitudes as 

shown in Fig. 4.32 and in all the cases, we observe negligible sway angle [177]. 

                  
Figure 4.30: Overhead crane swing angle control for step input using AFPDC.



130      
     

Figure 4.31: Overhead crane swing angle control for square input using AFPDC.

Figure 4.32: Overhead crane position control for step input using AFPDC for
different amplitude (0.2m, 0.3m and 0.35m) at constant speed.
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We have also studied the effectiveness of our scheme with other inputs like sinusoidal input and 

saw tooth input.  The performance of FPDC and AFPDC are well demonstrated in Fig. 4.33 to 

Fig. 4.40 for both position and angle control. The corresponding performance analysis is made in 

Table 4.8. The study proves the superiority of AFPDC over PID and FPDC. We have also 

successfully demonstrated our proposed scheme in Fig. 4.41 with sinusoidal input with different 

amplitudes and subsequently Fig. 4.42 indicates that even variation in speed does not hamper the 

quality of position control of the overhead crane when we apply our proposed non-fuzzy 

adaptive scheme.
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Figure 4.33: Position control for sine input 
using FPDC.
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Figure 4.34: Position control for sine input 
using AFPDC.

0 10 20 30 40 50 60 70 80
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

time

p
o

s
it

io
n

Figure 4.35 Position control for saw tooth 
input using FPDC.

0 10 20 30 40 50 60 70 80
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

time

p
o

s
it

io
n

Figure 4.36: Position control for saw tooth 
input using AFPDC.
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Figure 4.37: Overhead crane swing angle 
control for sine input using FPDC.
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Figure 4.38: Overhead crane swing angle 
control for sine input using AFPDC.

0 10 20 30 40 50 60 70 80
-20

-15

-10

-5

0

5

10

15

20

time

a
n

g
le

Figure 4.39: Overhead crane swing angle 
control for saw tooth input using FPDC.
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Figure 4.40: Overhead crane swing angle 
control for saw tooth input using AFPDC.

Table 4.8: Performance analysis of AFPDC for sine and saw tooth inputs

Reference input Controller Type IAE ITAE ISE

FPDC 32.64 799.22 2.89Sine (amplitude ±0.3m)

AFPDC 10.43 253.39 0.28

FPDC 47.18 2236.3 6.08Saw tooth (amplitude ±0.2m)

AFPDC 35.45 1714.1 4.92
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Figure 4.41: Overhead crane position control for sine input using AFPDC for
different amplitude (±0.2m, ±0.3m and ±0.35m) at constant speed.

Figure 4.42: Overhead crane position control for sine input using AFPDC at
different speed (with constant amplitude ±0.3m).

The above study reveals that the proposed gain adaptive scheme for fuzzy controller can fix the 

overhead crane in its desired position with negligible sway angle.
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4.5 Conclusion
A simple gain adaptive or self-tuning scheme for a PD-type FLC has been proposed in this 

chapter [177]. In this study, the close loop gain of the proposed AFPDC is continuously updated 

by an on-line gain modifying parameter β defined on the normalized error (eN) and change of 

error (ΔeN). The most important feature of the proposed scheme is that it depends neither on the 

process being controlled nor on the controller used. Even with significant reduction of rule-base, 

proposed AFPDC exhibited effective and improved performance compared to its conventional 

fuzzy and non-fuzzy controllers for wide variety of second order integrating, nonlinear and non-

minimum phase systems with varying dead-time. This study also justified the usefulness of the 

dual control scheme to control the overhead crane. The proposed twin control scheme for 

overhead crane reduces the computational complexity and is easy to understand. By applying the 

proposed self-tuning method and dual control scheme the load swing angle of the crane comes to

a minimum. Experimental results proved that the proposed AFPDC not only positioned the 

trolley in the desired location, it also significantly reduced the load swing during movement. 
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Fuzzy rule-based system identification using     
self-organizing map

5.1 Introduction
In chapter-2, for self-tuning fuzzy controller development, we used 49 fuzzy rules for a 

conventional FLC design and further 49 rules were used for its tuning. But the question is, do we 

really need so much of fuzzy rules or can we realize the same level of controller performance 

even with much smaller set of rules? We have successfully investigated this issue in chapter-3

and chapter-4 by using smaller number of fuzzy rules and also by applying non-fuzzy adaptive 

scheme. In this chapter, and also in chapter-6, we investigate this issue and propose a rule 

extraction scheme that can pick a smaller but adequate rule-base from a set of input-output 

data. 

Usually, any fuzzy model is developed by a number of fuzzy if-then rules and each of the rules 

has two parts: antecedent part and consequent part. Different methodologies have been proposed 

which generate fuzzy if-then rules to design an effective fuzzy model from the available input-

output numerical data. However, the construction of fuzzy rules is not an easy task, especially for 

ill-defined, complex and unknown systems [14, 17, 105]. Though, this problem may easily be 

tackled by taking suggestions from the domain experts, but, unfortunately it is very difficult to 

locate such typical domain experts in reality. Every working system produces an output for any 

given input. Once the input-output behavior of a system is available, then it is possible to identify 

the system using fuzzy rules [27-29, 178], even in absence of domain expert. Given a set of 

input-output data, identification of a computational scheme capturing the relation between the 

input and output is an important problem and is known as system identification.

C

 CHAPTER 5
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To understand this, let us consider a system having ‘n’ number of inputs and corresponding ‘n’ 

number of outputs, described by:

                              1 2{ } p
n X x ,x ,.................x and 1 2{ } q

n Y y ,y ,..................y .

A convenient method for representing the input-output data *X is 

          * * *, 1,2,......., , , , .k p q p q p q
k

k

k n                
     

xX
X x X Y X

yY

Here,  1 2, ,.........., p
k k k kpx x x x  is the kth input vector and  1 2, ,.........., q

k k k kqy y y y is 

the corresponding kth output vector of a multiple-input multiple-output system. Thus the kth

input-output vector can be represented by * , 1,2,.......,k p q
k

k

k n 
   
 

x
x

y
. For simplicity 

henceforth we will consider p+q = m i.e.  * * , 1, 2,.......,m
k k n  X x .

There exists an unknown system that transforms x to y. Let the system be denoted by S, thus y =

S(x). Such a definition realizes systems like controllers to classifiers. The problem here is to find 

an explicit (mathematical) or implicit (computational schemes/algorithms) model for S. Such 

system can be described by a mathematical function (like regression), by neural networks or by 

fuzzy rule-based systems [179]. Here we consider only identification of fuzzy rule-based systems 

through exploratory data analysis.    

Our objective is to develop an approximate fuzzy model from the input-output data that performs 

like S [180, 181]. Firstly, to design a fuzzy model, it is essential to extract suitable number of 

fuzzy rules from the input-output data using a suitable clustering method that can be able to 

describe the system properly [182, 183]. Several attempts have been made earlier to characterize 

the input-output relationship using various clustering concepts [82, 85]. We will briefly review 

some of the methods in this chapter. 

In this chapter, first we review some existing methods for rule extraction using clustering. Then 

we explain our rule extraction scheme that uses self-organizing map (SOM) algorithm. In this 

study, we also propose three different methods for estimating peaks of the initial membership 

functions. The base-widths of the MFs are determined such that completeness of the rule-base is 

guaranteed. Finally, the initial rule-base thus extracted is tuned using gradient decent. In our 
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scheme, we guess the appropriate number of fuzzy rules required for identifying the unknown 

system. Usually, depending on the requirement of rules, user selects the number of clusters, 

although it is possible to select them by using error function [120]. The proposed scheme is first 

applied to illustrate how the gain rule-base with 49 rules for STFPIC [22, 23] can be drastically 

reduced maintaining almost the same level of performance. Similarly, we investigate the rule 

extraction scheme in STFPIC that contains 98 rules (49 gain rules and 49 control rules). The 

advantages of the scheme are also demonstrated to control a real time water pressure control loop 

and a laboratory based overhead crane [184] in the next chapter. Since most of the subjects that 

we discuss in this chapter are dependent on results of clustering the training data by SOM

algorithm, we discuss it next. 

5.2 Self-Organizing Map - SOM

5.2.1 Introduction to SOM

Learning (training) is a process in which the network adjusts its parameters (synaptic weights) in 

response to input stimuli so that the actual output response converges to the desired output 

response. When the actual output response is the same as the desired one, the network has 

completed the learning phase and the network has acquired knowledge. Learning methods in 

neural networks can be broadly classified into three basic types: Supervised, Unsupervised and

Reinforced. There are two types of unsupervised learning: Hebbian and Competitive. When the 

learning is based on the input data and is independent of the desired output, in such cases the 

network may respond to several output categories on training. But only one of the several 

neurons has to respond. The mechanism by which only one unit of the network is chosen to make 

a decision to respond is called competition. The mostly used competition among group of 

neurons is Winner-Takes-all. Here only one neuron in the competing group will have a non-zero 

output signal when the competition is completed. In this procedure, during training of the 

network, the network selects the output unit that is the best match for the current input vector; the 

weight vector for the winner is then adjusted with respect to the network’s learning algorithm.

Among the different competitive learning algorithm, here we discuss about Kohonen learning 

approach, called Self-Organizing Map (SOM). In this learning approach, the units update their 

weights by forming a new weight vector that is a linear combination of the old weight vector and 
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the current input vector. The unit whose weight vector is closest to the input vector is allowed to 

learn. 

Kohonen Self-Organizing map can also be termed as topology preserving map [185]. 

Dimensionality reduction with preservation of topological information is common in normal 

human subconscious information processing. A good example is that of biological vision where 

three-dimensional visual images are routinely mapped into a two-dimensional retina and 

information is preserved in a way that permits perfect visualization of a three-dimensional world. 

As Kohonen pointed out, the purpose of intelligent information processing possibly lies in the 

creation of simplified internal representations of the external world at different levels of 

abstractions [116, 125]. In self-organizing map, large dimensional input vectors are projected 

down on the two-dimensional map in a way that maintains the natural order of the input vectors. 

The dimensionality reduction could allow us to visualize easily important relationships among 

the data that otherwise might go unnoticed. In short, SOM algorithm can be regarded as a fast, 

nonlinear, ordered, and smooth mapping of higher dimensional input space to lower dimensional 

output space. 

A distinguish feature of SOM is that it enforces neighborhood relationships on the resulting 

cluster centroids. Because of this, clusters that are neighbors are more related to one another than 

clusters that are not. Such relationships facilitate the interpretation and visualization of the 

clustering results. Indeed, this aspect of SOM has been exploited in many areas of engineering 

and medical science. 

Even though SOM is similar to K-means or other prototype-based approaches, there is a 

fundamental difference. Centroids used in SOM have a predetermined topographic ordering 

relationship. During the training process, SOM uses each data point to update the closest 

centroid and centroids that are nearby in the topographic ordering. In this way, SOM produces 

an order set of centroids for any given data set. In other words, the centroids that are close to 

each other in the SOM grid are more closely related to each other than to the centroids that are 

further away. Because of this constraint, the centroids of a two-dimensional SOM can be viewed 

as lying on a two-dimensional surface that tries to fit the n-dimensional data as well as possible. 



139      
     

5.2.2 The SOM algorithm

Clustering an unlabeled input-output data *X

                                                * * *, 1, 2,.........., ,m m
k k n   X x X                            (5.1)

is a partitioning of *X and hence, to the objects generating *X , into c subgroups such that each 

subgroup represents a natural substructure present in *X . In other words, clustering finds 

homogeneous groups in *X . The definition of ‘natural’ substructures or ‘homogeneous’ groups 

often depends on the problem at hand. Formally, clustering can be described as the assignment of 

labels to the vector in *X , and hence, to the objects generating *X so that similar objects get 

similar labels [186, 101]. If the labels are hard (crisp), we hope they identify c natural subgroups 

in *X . 

There are many types of SOM neural networks, in a two-dimensional rectangular SOM, each 

node or neuron is assigned a pair of coordinates (i, j) as shown in Fig. 5.1. The architecture of 

Kohonen self-organizing map is shown in Fig.5.2, which has two layers; input layer and output 

layer.

Figure 5.1: Two-Dimensional 3 by 3 
rectangular SOM neural network.

Figure 5.2: Kohonen Self-Organizing Map.

The SOM algorithm is primarily a competitive vector quantizer in which real valued patterns are 

presented sequentially to a linear or planar array of neurons which have Mexican hat kind of 

interactions. These interactions allow clusters of neurons to win the competition rather than one 
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single neuron. Then the weights of winning neurons are adjusted to bring about a better response 

to the current input. Iterative application of the competition – adaptation process to a sequence of 

input patterns eventually results in weights that specify clusters of network neurons that are 

topologically close, being sensitive to clusters of inputs that are physically close in the input 

space. The spatial location of a neuron in the array corresponds to a specific domain of inputs. In 

other words, we say that the map preserves the topology of the input. To generate the self-

organizing map we require:

 input neurons be exposed to a sufficient number of different inputs;

 for a given input, only the winning neuron and its neighbors adapt their connections;

 a similar weight update procedure be employed on many adjacent neurons which 

comprise topologically related subsets; and

 the resulting adjustment be such that it enhances the responses to the same or to a similar 

input that occurs subsequently.

We now proceed to formalize the algorithm. Assume that the input-output data

 * , 1,2,..........,m
k k n  *X x is presented to a (i x j) field of neurons as shown in Figs. 5.1 

and 5.2. Due to planar nature of the field, each neuron will be identified by the double row-

column index ij. The ijth neuron has an incoming weight vector 1 2[ , ,......., ] m
ij ij ij ijmw w w w .

The first step is to find the best matching weight vector , ,ij i jw for the present input, and then 

to identify a neighborhood hij around the winning neuron cij.

One can find the best matching weight vector by two ways:

 Comparing the inner product  *T
k ijx w of the impinging input *

kx with each weight 

vector , ,ij i jw . The winning neuron is the one that has the largest inner product. 

 Equivalently, with normalized weight vectors we have seen that the maximum inner 

product criterion reduces to a minimum Euclidean distance criterion: the winning neuron 

is the one that minimizes the distance * ,k ij i j x w .
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Kohonen suggested using the latter since it is more general and applies to natural signals in 

metric vector spaces. Therefore the winning neuron (cij) corresponding to the input vector *
kx is 

determined by 

                                                              *

,
arg minij k ij

i j
c  x w                                             

We define the topological neighborhood hij in a region surrounding the winning neuron with 

index ij. The shape of this neighborhood might be either rectangular or hexagonal, and the width 

of the region around the winning neuron cij is specified by a radius r measured discretely in terms 

of the number of neurons. The width of the neighborhood is a function of time: as epochs of 

training elapse, the neighborhood shrinks as shown in Fig. 5.3. 

Figure 5.3: Neighborhood scheme for SOM (rectangular).

For time step t, let  *
k tx be the present input vector and has the weight vector wij(t), then, for 

time step t+1, the weight of the ijth neuron is updated by using the following equation: 

                                                       wij(t+1) = wij(t) + η(t)hij(t)[
* ( )k tx –wij(t)]                            (5.2)   

Thus, wij(t) is updated by adding a term η(t)hij(t)[
* ( )k tx –wij(t)], which is proportional to [ * ( )k tx –

wij(t)], the difference between wij(t) and present input * ( )k tx . Here, η(t)= η0 exp(-t/τ1) is the 

learning rate parameter in the range 0 < η(t) < 1, which decreases monotonically with time and 

controls the rate of convergence depending on the value of time constant (τ1). hij(t) determines 

the effect that the difference [ * ( )k tx –wij(t)] will have and is chosen so that

r = 0r = 2
r = 1
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(i) it diminishes with time.  

(ii) typically hij is chosen as Gaussian function as shown in Fig. 5.4.

Figure 5.4: Gaussian neighborhood function.

                                                    
2

2( ) exp
2 ( )

ij
ij

d
h t

t
 

  
 

                                                   (5.3)                            

For cooperation among neighboring neurons to hold, it is necessary that topological 

neighborhood hij as described in equation 5.3, be dependent on the lateral distance dij between 

the winning neuron cij and the excited neuron around cij in the output space, rather than some 

distance measure in the original input space. In the case of two-dimensional lattice, dij is defined 

by

                                                                         
22 r rij c ijd  

where the discrete vector rij defines the position of excited neuron around cij and rc defines the 

position of the winning neuron cij, both of which are measured in the discrete output space. In 

equation 5.3, σ(t) is defined by

                                                                          σ(t)= σ0 exp(-t/τ2),                                                

is the typical Gaussian variance parameter with time constant τ2 that controls the width of the 

neighborhood, i.e., a small σ will yield a small neighborhood, while a large σ will yield a wide 

neighborhood as shown in Fig. 5.4. Table below presents an operational summary of the self-

organizing map algorithm.
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Operational Summary of the SOM Algorithm

Given For time step t, let * ( )k tx be the current object

Initialize  The ijth neuron with weight vector

1 2[ , ,......., ] ,m
ij ij ij ijmw w w i j  w

 Value of neighborhood function hij(t)

 Learning rate ( )t

Iterate Repeat

      {

Selection: pick dataset * m
k x

Similarity matching: Find the winning neuron cij,

*

,
arg min{ ( , )}ij ij k ij

i j
c d x w

        where Euclidean distance * 2

1

( )( , )kij

m

kl ijl
l

ij x wd


 x w

Adaptation: Update weights,

     *( 1) ( ) ( ) ( )[ ( ) ( )]ij ij ij k ijt t t h t t t   w w x w

      ( ) ( 1)ij ijt t w w

Update hij(t), ( )t

        }

 until convergence criterion is satisfied

In general, the learning rate η(t) in the beginning should be close to unity. During this initial 

period, a general topological ordering of weight vectors takes place. Apart from careful 

adjustment of η(t), the width of the neighborhood σ(t) and its rate of contraction should be given 

due consideration in order for the network to converge. The learning scheme continues until 

sufficient number of iterations is completed or specified convergence criterion is satisfied [187, 

188].
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5.3 Rule extraction from clusters
In this section, first we review some existing techniques of rule-extraction before we explain our 

SOM-based rule extraction scheme. Sugeno and Yasukawa [14] was possibly the first to use 

clustering to determine an initial structure of the system. They used Fuzzy C-Means (FCM)

algorithm [186] and clustered the output domain. The membership values of the input clusters 

were obtained by projecting the membership values of the extracted cluster on the X axis. The 

number of clusters, c, (i.e., the number of rules) is determined by minimizing the following 

validity function suggested by Fukuyama and Sugeno [189]:

                                       22

1 1

( )
mn c

ik k i i
k i

S c 
 

    y v v y                                             

Here, n = total number of data points to be clustered, c = number of clusters, μik = membership 

value of the kth data point, yk, to the ith cluster, m = the fuzzy exponent used in the FCM 

algorithm, vi= ith cluster center and 
_

y  = the grand mean vector of all data points. The number of 

clusters is determined minimizing S(c) with respect to c. The process starts with c = 2 and is 

continued up to some maximum c = cmax. For each c, the FCM centroids V and the partition 

matrix U are first obtained and then used them to compute S(c). The value c c at which S(c) 

attains the minimum value is taken as the right number of rules. 

Let the c clusters obtained from Y by the FCM be denoted by C1, C2,…..,Cc and the associated 

set of centroids be  1 2, ,....., cV v v v . Let ik be the membership of yk to the ith output cluster. In 

order to define the MFs on the input variables the following strategy is followed. The point yk is

associated with xk. First xk is assigned the membership value of ik . If there are several 

* k
k

k

 
  
 

x
x

y
 such that the xk parts are the same but the yk parts are different, then such conflict can 

be resolved. With this scheme each distinct p
k x will get a unique membership value. Now to 

define the MFs on each input feature, say the jth feature, they used max as the aggregation 

operator O; i.e.,  ( ) max ( )kj i ij
i

x x x x    x . In this way, from each of the c clusters we 

can get a MF (and hence a fuzzy set) on each of the feature (linguistic variable). 
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Sugeno and Yasukawa [14] approximated these clusters by trapezoidal fuzzy sets. They used a 

heuristic method to adjust the parameters of different trapezoidal MFs with a view to achieving a 

set of parameters which provides the best model in terms of mean square error of the output. 

Their algorithm also provides a step for selection of input variables using a heuristic algorithm. 

To get a good subset of input variables, they use a regularity criterion, RC.

For a given I/O pair (xi, yi) with , ,i ix X y Y   where i = 1, 2,……..,n, Sin and de Figueiredo

[92] used FCM algorithm for clustering and suggested to use Xie-Beni index [93] for selecting 

the number of clusters. Each cluster obtained from X* is presented by a TS-type rule. Let the 

membership and consequent functions for the ith rule (cluster) be i and ui respectively. Here i

is not any fixed membership value, but is the FCM membership formula defined in terms of the 

ith centroid *
iv . The consequent functions are estimated by minimizing the objective functions

                             * 2

1

( ( ) )
n

i
k k i k i i

i i

E u


  
    

  


x
x x y

y
; k=1,2,……,c.                                  

For a given p
k x , the firing strength, αi, of the ith rule is computed as 

*

( )i k
i

 
  

     

x
x

y u x
. This computation is a two step process. First they compute the 

output of the ith rule as y=ui(x). This yi is then augmented to x and the augmented vector is used 

to find the firing strength of the ith rule. Thus, each rule uses a different *

( )

  
    i

x
x

y u x
 to 

get the firing strength. The yi values are then combined, as in the TS model, to get the final 

predicted value 1

1

( )
c

i i
i

c

i
i










α u x
y

α
.

Yager and Feliv [87] used the mountain clustering method (MCM) on X*. The optimal number of 

clusters is chosen based on a user defined threshold on the mountain potential. Consider a multi-

input single-output system with input p
k x and output y . A cluster 
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centroid *
x p
i

i y
i

 
  

 

v
v

v
, i = 1, 2…c is then converted into a fuzzy rule of the form: If x is 

CLOSE to x
iv then y is CLOSE to y

iv . Writing Ai = CLOSE to x
iv and Bi = CLOSE to y

iv , we get a 

set of c rules: If x is Ai then y is Bi; i = 1, 2…c. Each antecedent clause, ‘If x is’ then translated 

into p atomic clauses, xk is Aik; k = 1,….,p, connected by AND. They used Gaussian type MF to 

model Aij and Bij:

                 2

2

1
( ) exp

2
x

ij j j ij
ij

 
   

 
A x x v  and  2

2

1
( ) exp

2
y

i i
   
 

B y y v .

Here ij is the spread of the jth antecedent fuzzy set of the ith rule and σ is the spread of the 

consequents. They used the height method of defuzzification and Mamdani-Assilian (MA) model

[40]. This can equivalently be viewed as the Takagi-Sugeno (TS) model of zero order [17]. The 

initial estimates of the parameters ij are taken as
1

2
, where β is a parameter used in the 

mountain function for clustering. All parameters of the system  , ,x y
ij i ijv v are then further tuned 

with gradient descent to minimize the total square error. Although, MCM determines the number 

of clusters automatically, it is strongly influenced by the parameters of the mountain potential 

function and the threshold value used to stop the clustering process. Therefore, in absence of an 

appropriate choice of these parameters the number of rules may be over-determined. 

Chiu [88] proposed a modified method of MCM known as Subtractive Clustering Method 

(SCM) for a group of ni training data points  1 2, ,...., p
n x x x representing a particular class.

SCM considers each data point as a potential cluster centroid xi with 

potential  2

1

exp
in

i i j
j

P 


   x x . After calculating the potential of all data points, the point 

with the highest potential is selected as first cluster center. The potential of each data point is 

then revised by  2* *
1 1expi i iP P P    x x where *

1P and *
1x are the potential value and 

location of the first cluster. After revision, the data point with the highest remaining potential is 

selected as second cluster center. For kth such operations, the potential of each data point was 
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revised by  2* *expi i k i kP P P    x x where, *
kP and *

kx are the potential and location of the 

kth cluster. If the ith cluster center *
ix is found in the group of data for class c1, then the 

corresponding rule can be written as Ri: If x is CLOSE to *
ix then class is c1. The fuzzy set 

CLOSE to *
ix is modeled by a Gaussian type MF. The rule Ri can be written in a more familiar 

form: If x1 is 1
k
iA and x2 is 2

k
iA and …..then the class is k, where xj is jth input feature and k

ijA is the 

MF in the ith rule associated with the jth input feature for class k. The MF ijA is defined by 

2*
1

( ) exp
2

j ij
ij j

ij

A


           

x x
x where *

ijx is the jth element of *
ix , and 2 1

2ij


 . After obtaining 

the initial rule set, gradient descent technique is used to tune *
ijx and ij with a view to 

minimizing the classification error measure  2

,max ,max

1
1

2 c cE     ; where ,maxc is the 

maximum degree of fulfillment among all rules that infer the correct class c and ,maxc denotes 

the maximum firing strength of all rules that infer the class c. No explicit cluster validity index is 

used here. The number of clusters SCM settles to is dependent on the parameters of the mountain 

function. 

Babuska and Kaymak [90] used clustering in the input-output space for TS modeling. The 

identification process starts with clustering X* using Gustafson-Kesel’s [96] fuzzy c-means 

(GKFCM) algorithm with a large value of c. Then the compatible cluster merging (CCM) 

criterion is used to merge compatible clusters. After this, GKFCM is again run with the reduced 

number of clusters. The process is repeated until no more clusters can be merged. The merging 

technique requires a user specified threshold. The fuzzy partition thus obtained is projected on to 

the input axes to generate MFs for the antecedent variables and hence the rules. Finally the 

consequent parameters are estimated using least square technique. 

Delagdo et al. [100] presented several methods for fuzzy modeling that use clustering. The first 

method clusters X* using FCM. Consider a p-input   1,....,
T

px xx  and single output (y) 
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system. Let the centroids obtained by clustering be * 1; , ; 1,....,
x

p x p yi
i i iy

i

v v i c 
     
 

v
v

v
. 

Each such cluster is transformed into a rule of the form Rk: If x is Ak then y is Bk; k = 1,…,c

where the membership values of fuzzy sets Ak and Bk are defined by the FCM membership 

formula [186] with x
i kv v and  y

i kv v , respectively. For the TS model the kth rule takes the form 

Rk: If x is Ak then y is y
iv . The firing strength of the kth rule is computed using the FCM formula 

defined in terms of x p
iv  . Sin and de Figueiredo [92] also used the same multidimensional 

FCM membership functions for computing the firing strength but they used the FCM formula 

defined using * p q
kv  . It requires getting an approximate value of the output y before the firing 

strength of any rule can be computed. 

There are several other clustering methods that are used for rule generation. For example, Huang 

and Chang [190] used clustering for obtaining qualitative rules of the form If x is Ai then y is Bj, 

where Ai and Bj represent fuzzy sets of the type ‘CLOSE TO x’ and ‘CLOSE TO y’. Wong and

Chen [103] used switching regression model for extracting of TS rules. Chak et al. [191] 

developed a fuzzy neural network hybrid algorithm with a hierarchical space partitioning method 

to generate rules for a MIMO system. They used the normalized root mean square error 

(NRMSE) as the performance index. The performance index should be less than some pre-

assumed value. 

Cho and Wang [192] proposed a neuro-fuzzy system called Radial Basis Function Network 

(RBFN) based Adaptive Fuzzy Systems (AFS) to learn fuzzy rules from input-output data. Three 

different architectures of RBF based AFS have been proposed to accommodate both TS and MA 

type models. They proposed a Hierarchally Structural Self-Organizing Learning (HiSSOL) 

method to train the RBF based AFS. Initially, the number of rules is unknown- using HiSSOL; it 

is determined by incrementally recruiting the RBF unit. The incremental addition of nodes in 

HiSSOL is based on the control of effective radius of an individual basis function and adjustment 

of its mean and variance vectors. The learning algorithm updates the network parameters using 

gradient decent method. 
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Kim et al. [193] suggested a new fuzzy modeling algorithm using fuzzy c-regression model 

(FCRM) clustering in the case of a MISO system and used coarse tuning to determine 

approximately the consequent parameters. For a set of n sample data (xk, yk), for k , they 

clustered the input data using FCM and used them as initial parameters for FCRM. For fine 

tuning they used gradient descent algorithm.

Wong et al. [194] proposed a technique to extract fuzzy rules directly from input-output pairs. 

They used a self-organizing neural network and association rules to construct the fuzzy rule base. 

The self-organizing neural network was first used to classify the output data by realizing the 

probability distribution of the output space. Association rules are then used to find the 

relationships between the input space and the output classification, which are subsequently 

converted to fuzzy rules. For a given data set with k inputs, the given input-output data pairs with 

n patterns are:  1 2, ,...... ; ; 1,2,...,i i i i
kx x x y i n . Then from the association rules and the 

membership functions calculated, they constructed the relation:      1 1 2 2
i i iA x A x B y  .

From the above relation, a fuzzy rule can be constructed as:

If x1 is A1 and x2 is A2, then y is B.

Barreto and Araújo [123] introduced a general modeling technique, called vector-quantized 

temporal associative memory (VQTAM), which used SOM as an alternative to multilayer 

perceptron (MLP) and radial basis function (RBF) neural models for dynamical system 

identification and control. They demonstrated that the estimation errors decrease as the SOM 

training proceeds, allowing the VQTAM scheme to be understood as a self-supervised gradient-

based error reduction method. The model accuracy is evaluated through root mean square error. 

The performance of the proposed approach is evaluated on a variety of complex tasks, namely: 

(i) time series prediction; (ii) identification of SISO/MIMO systems; and (iii) nonlinear 

predictive control. For all tasks, the simulation results produced by the SOM are as accurate as 

those produced by the MLP network and better than those produced by the RBF network. The 

SOM has also shown to be less sensitive to weight initialization than MLP networks.

Moreno et al. [195] presents clustering techniques (K-means, Fuzzy C-means, and Subtractive) 

applied on specific databases and extracted production rules using Mamdani as well as Takagi-
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Sugeno-Kang fuzzy logic inference systems. Chen et al. [181] clustered the training data from 

the jth class, p
jX  into nj clusters. They used the K-means clustering algorithm. Since their 

main objective was to investigate the simultaneous feature selection and rule extraction, 

therefore they did not address the issue of choice of optimal number of rules for a class. Instead, 

they assumed a fixed number of rules for a class and demonstrate the effectiveness. They 

converted each such cluster into a fuzzy rule. For example, if the center of the ith cluster in 

jX is p
jv  , then this cluster is converted into the rule Ri: if x is CLOSE TO vi, then the class is 

j. The fuzzy set “CLOSE TO” is modeled by a multidimensional membership function such 

as
2

2
( ) exp i

CLOSETO i
i






x v

v x . Such a multidimensional membership function is difficult to 

interpret (less readability) and may not perform always well, particularly when different features 

have considerably different variances. Thus, such a rule is expanded as a conjunction of p atomic 

clauses

                 Ri: If x1 is CLOSE TO vi1 AND …. . . AND xp is CLOSE TO vip , then class is j.

Liu et al. [196] introduced a new type of coherence MF to describe fuzzy concepts, which builds 

upon the theoretical findings of the Axiomatic Fuzzy Set theory. The proposed algorithm 

consists of three major steps: (a) generating fuzzy decision trees by assuming some level of 

specificity quantified in terms of threshold; (b) pruning the obtained rule-base; and (c) 

determining the optimal threshold resulting in a final tree. Each path starting from the root 

traversing down to a classification node (terminal node) is converted to a rule. The rules are 

directly extracted from the axiomatic fuzzy set decision tree. However, they may include 

redundant structures as well as poorly performing rules, and therefore they pruned the rule-base.

Gao et al. [197] proposed a fuzzy-based support vector machine (SVM) classification algorithm 

for blast furnace black-box models. Hashimoto et al. [122] approached an identification 

procedure that is divided into three steps, which are (i) Self-Organizing Map (SOM) based 

clustering of the regression vectors consisting of observed input and output signals, (ii) Local 

system identification by using genetic programming, and (iii) Model fusion of local models by 

fuzzy inference to provide the global model.
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Yang and Bose [121] generated fuzzy membership function via SOM. Instead of two step 

procedure, they showed that it was possible to integrate the two-step procedure and generate the 

fuzzy membership function directly during the learning phase. A key step in the proposed 

technique is to combine the input feature vector  1 2, ,....
T

n n n ndx x x x with the vector 

 1 2, ,....
T

n n n ncy y y y coding the class labeling information. The dimensions of xn and yn are 

respectively, the number of input features d and the number of class labels c. That is, a new 

vector zn of dimension c+d is constructed according to      0 0
T T T

n n n n n  z x y x y . In the 

learning phase, the newly constructed zn will be the input feature vector to SOM. After the 

learning phase, the SOM can be considered as a membership generation network just like its 

counterpart, the feedforward multilayer neural network trained with a supervised learning 

algorithm. However, in the retrieving phase, it is not as straightforward as in the case of the 

feedforward multilayer neural network. In the retrieving phase, the input feature vector is only

xn. Therefore, the input feature vector will find the best matching neuron q by considering only 

the weight sub-vector 1,....,
T

jd j jd   w w w  related to input features, that is, 

  minn n jd
j

q  x x w . After finding the winning neuron q, the output of SOM is the weight 

sub-vector ( 1) ( ),......,
T

qc q d q d c    w w w , associated with the labeling information. Also, it is the 

fuzzy membership generated by SOM. 

Among the different clustering models, the SOM has been selected since it operates in an 

unsupervised manner, thus minimizing the requirement for human guidance in labeling the nodes 

following training. In SOM, the projected data preserves the topological relationship of the 

original data; therefore, this ordered grid could be used as a convenient visualization surface for 

showing various features of the training data. In our proposed scheme, SOM is first used to 

cluster the data and after that, some computational steps have been suggested to extract fuzzy 

rules from each cluster. 

It’s important to select a proper clustering domain. There are choices like: individual clustering 

of X or Y and clustering of X*. Here, clustering of X* have been used to generate the initial rule-

base because it is better to consider X* (the input-output data) in place of individual X or Y. In 
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individual clustering, it is difficult to establish correspondence between clusters of X and clusters 

of Y. 

Clustering algorithm generate a set of centroids

* * ; 1,.........,
x p
i

i y q
i

i c
       

   

v
V v

v
.

These clustering results can be used to extract if-then rules. If there is a cluster in the input space 

with centroid x
iv and we assume a smooth relationship between the input and output, then the 

points in the output space corresponding to the input cluster are likely to form a cluster 

around y
iv . This local input-output relationship can be represented by a fuzzy if-then rule of the 

form,

Ri: If x is Ai then y is Bi,

where the membership functions (MFs) Ai and Bi are defined using x
iv and y

iv respectively [104]. 

The number of clusters is usually predefined, but it can also be a part of the error function [120]. 

Refining of the extracted rule-based model may be done through various parameter adjustments 

or optimization schemes.

5.3.1 The proposed rule extraction scheme

In this study, we propose a novel approach for fuzzy rule-based system identification that 

automatically generates fuzzy rules as well as the MFs for the antecedent and consequent parts of 

the rule [198]. A Self-Organizing Map (SOM) based clustering technique is used for structure 

identification and prototype generation with initial MFs picked up from the clustering results. 

This identified prototype model is fine tuned using gradient descent technique. The proposed

method has a provision of selecting essential number of rules from any system, if its input-output 

data are available. Outline of the proposed method is presented in Fig.5.5. Next we describe the 

computational steps of the different layers associated with the proposed fuzzy rule-based 

modeling of an unknown system having its input-output data.

Layer 1:

The computational steps to identify the centroid by finding the winning neuron ( ijc ) using the 

self-organizing map (SOM) algorithm have already been elaborated in section 5.2.2. By this 
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process, weight vectors (wij) move towards the input vectors *( )kx and tend to follow the 

distribution of input vectors [188].  The Euclidean distance * ,( )kij ijd wx between the input vector 

*
kx  and the updated weight wij in the network  is found out from the equation:

* 2

1

, ( )( )ij k

m

kl ijl
l

ij ij x wd d


  wx

Figure 5.5: Outline flow diagram of the proposed scheme
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Layer 2:

In order to get fuzzy model from the clustered data we convert each node into a fuzzy rule. This 

needs appropriate MFs of each input-output feature [104, 105]. The most important information 

that can be extracted from the clustered data is the location of their centroids and the distribution 

of the data around them. 

The * *( )k ij kdx x  plot shown in Fig. 5.6(a) does not give direct information about the shape of the

MFs. Moreover, from this plot we are unable to get the highest membership value of a MF. 

However, the clustering information may be used to define approximate but simple MFs 

(symmetric triangle or Gaussian with equal base-width) for the extracted / identified fuzzy 

model. In order to define such MFs we propose the following steps:

Figure 5.6 (a): * *( )k ij kdx x plot. Figure 5.6(b): * *( )k kijx x plot.

After clustering the input-output data using SOM algorithm, we propose to form Gaussian

type MFs from the clustered information. The multidimensional MF can be modeled from 

the relation, 

*

2

( ) expk

ij ijd c

ij 
 
 
 
  
 


x .

Where, ij is the membership value of *
kx in the ijth node, and 
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,
min{ }ij ij

i j
c d , where * 2

1

, ( )( )ij k

m

kl ijl
l

ij ij x wd d


  wx .

Therefore, at ijth node, 

when ij ijd c , we get the peak of the ijth MF ( . ., 1)iji e   .

A typical * *( )k kijx x  plot is shown in Fig. 5.6(b). After we obtain the peak of different 

nodes, the next step is to get an initial estimate of the base width (σ) of each MF, so that 

the rule-base becomes complete (i.e., every *X fires at least one rule). Also, observe that 

the spread of the base-width (σ) will depend on the number of extracted rules and range 

of *X .  

 Assign the MF  *
ij k x  for each of the individual data to form data pairs in the form of 

* *( )k kijx x in all the respective nodes.

After assigning MF, it is observed that there are several *
kx , where kx (input) parts are the 

same but the ky (output) parts are different. This conflict can be resolved by applying

max as the  aggregation operator O; then say for the jth node it will be, 

                                                        kj ij
l

O    *
kx x x x x

Membership Function Generation
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 Assign MF:   *
ij k x

 Arrange MF in ascending order and form pairs

                   * *( )k kijx x

 In *
kx , if kx  parts are same but ky  parts are different, 

this conflict is resolved by applying max as the 

aggregation operator O,

                       kj ij
l

O    *
kx x x x x

Layer 3:

The above information can be used to extract fuzzy rules [179, 198]. Use of clustering results for 

fuzzy rule extraction is motivated by the fact that if there is a cluster in the input space with 

centroid x
ijc and we assume a smooth relationship between the input and the output, then the 

points in the output space corresponding to the input cluster are likely to form a cluster centroid 

y
ijc . This local input-output relation can be represented by a fuzzy if-then rule of the form:

                                   Rij: If x is ( )ij x then y is ( )ij y .

Since we use Height method of defuzzification and consider symmetric MF [22, 104], peaks of 

the MFs for antecedent and consequent of the thij  rule are computed as follows:

Peaks can be determined by taking weighted average of kx  and their 

corresponding MF, ( )ij k x . ij  is the membership of kx in the thij  node. We 

denote these MFs by MF1.

However, occasionally throughout the spread, all the data might not get 

enough support. For efficient computing, it is wiser to ignore such data, 

which do not have adequate support for the node.

Calculate peaks by taking weighted average of those data having membership 

values, ( )ij k x 0.3. We call such MFs as MF2.
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     Lastly, centroids ( )ijc as extracted by the SOM algorithm are taken as peak.

   This type of MFs is referred to as MF3.

After getting the peak, it is required to decide the base-width, so that the every input fires at least 

one rule. The choice of the base-width largely depends on the number of MFs for a particular 

linguistic variable. To check our initial guess as well as to boost our confidence regarding rule 

completeness, we may go through the following steps:

StepI Uniformly quantize with high resolution, each domain of 

input-output variables within its range.

StepII Calculate the firing strength for every quantized kx . Existence of at 

least one rule with non-zero firing strength for every kx , ensures 

completeness of the rule-base.

StepIII Increase the width of all MFs by a small percentage (say 5%), if 

condition of completeness is not satisfied. Again the rule 

completeness is checked for this new base-width and this process 

will continue until the completeness is achieved. 

           

Our main objective is to describe or model the original system by extracting proper rules from 

the input-output data. For successful system identification, tuning or parameter adjustment of 

the prototype model is very important. In the next section, the extracted rule-base model is tuned 

using gradient decent tuning algorithm [104]. 

5.3.2 Fine tuning of extracted fuzzy rule-base model

If x is the p-dimensional input variables and y is the output variable of a system, then thj rule is 

represented by:

Rj : if x1 is μj(x1), x2 is μj(x2),..…….……..….,and xp is μj(xp) then y is μj(y);

where, j = 1,2,…….n    and i =1,2,…..…p.

The firing strength or MF ( j ) of the antecedent part of thj rule is computed as:
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Where aji and bji represent the peak and corresponding support of a symmetric triangular MF in 

the universe of discourse and xi is the crisp input. If output MF is a fuzzy singleton set defined by 

real number yj, then the final non-fuzzy output realized from the thj rule is: 1
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If different input variables are 1 2, ,................,r r r
px x x , then for a desired control output of ry , it is 

required to optimize the parameters (aji, bji, yj) associated with the jth rule.

The steepest descent algorithm [42, 70] is used to minimize the objective function E, given by 

equation 5.4.

                                                          2

1

n
r

j

y yE


                                                               (5.4)

The applied gradient decent algorithm always intends to decrease the value of the objective 

function (E) by updating the associated parameters aji, bji, yj through equation 5.5 to 5.7.

                                    1( 1) ( )ji ji
ji

E
a t a t

a
   


                                                                     (5.5)

                                    2( 1) ( )ji ji
ji

E
b t b t

b
   


                                                                    (5.6)

                                   3( 1) ( )j j
j

E
y t y t

y
   


                                                                     (5.7)

Where 1 , 2  and 3 are respective learning coefficients for aji(t), bji(t) and yj(t).
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This process of optimization is continued till the change of error is suitably small or zero, as a 

result the modified values of peak, width and control output are obtained.

The identified rules after tuning may not always be same as the actual rules due to lack of 

knowledge of the investigated system. But the closeness can be verified by checking mean 

square error (MSE). One of the important applications of system identification is controller 

design. The controller works in tandem with the system and is designed to modify the response 

of the system to meet the overall specification. Here, we generate the input-output data X* from a 

highly nonlinear self-tuning fuzzy PI controller (STFPIC) [22]. Our proposed scheme is 

illustrated to identify the fuzzy rules required for updating the gain factor (β) of STFPIC. Finally, 

the effectiveness of our proposed scheme is demonstrated in different linear, nonlinear and 

marginally stable systems.

5.4 Study of the gain surface of STFPIC
In this section, the utility of the proposed rule extraction scheme is demonstrated in a gain 

surface of self-tuning fuzzy PI controller (STFPIC), which is highly nonlinear in nature. 

Figure 5.7: Block Diagram of STFPIC.
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The block diagram of the STFPIC is shown in Fig. 5.7, where eN (normalized error) and ΔeN

(normalized change of error) are two inputs and u is the output of the controller, and β is the gain 

updating factor in this self-tuning mechanism [23]. The relationships between the scaling factors 

(Ge, G∆e and Gu), and the input-output variables of the STFPIC are as follows: 

eN = Ge.e, 

∆eN = G∆e.∆e, 

and Δu = (βGu).ΔuN

The rule-bases for computing Nu and β are already shown in Table 2.3 and Table 2.4

respectively. Steps for rule extraction scheme of β using the proposed scheme are summarized 

below:

Rule extraction scheme steps

Step 1 Generate input-output data.

Step 2 Cluster the data by SOM algorithm.

Step 3 Obtain centroids, find MFs and translate each cluster into a rule.

Step 4 Tune the MFs using gradient descent technique.

Mamdani type interfacing and Height method of defuzzification for generation of input-output 

data are used here. We have generated data of 625 triplets  , ,e e   and  , ,e e u , when e and 

∆e are uniformly quantized using equation 5.8 within their normalized domain [-1, 1] as follows:

                                 240( ) :i i  
1 0.0833

1 0.0833
e i

e i
 
 
 

  
                                                           (5.8)

The value of β (gain updating factor) and u (control output) for every  ( , )e e  pair is determined 

and the respective gain surface and control surface of STFPIC are plotted in Fig. 5.8(a) and Fig.

5.8(b).

Initially input-output data  , ,e e  of the gain surface of STFPIC are clustered in a two 

dimensional (55) plane using self-organizing map. Then we extract MFs for e, ∆e and β from 
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each of the 25 nodes according to the steps described in section 5.3.1.  MFs thus extracted are 

shown in Fig 5.9.

Figure 5.8(a): Gain surface of STFPIC with 49 rules.

Figure 5.8(b): Control surface of STFPIC with 98 rules.
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Node-11 Node-12

Node-13 Node-14

Node-15 Node-21

Node-22 Node-23

Node-24 Node-25
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Node-31 Node-32

Node-33 Node-34

Node-35 Node-41

Node-42 Node-43

Node-44 Node-45
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Node-51 Node-52

Node-53 Node-54

Node-55

Figure 5.9: MF plots of 25 nodes for  , ,e e  .

The plots for input data (e and Δe) have smooth shapes and these can be modeled easily, but it is 

difficult to model gain factor (β) as shown in Fig. 5.9. For extracting MFs, it is important to 

identify their centroids (or peak) and to choose proper base-width from the cluster formation as 

discussed in section 5.3.1. After extracting MFs for all the 25 clusters, we obtain 25 rules of the 

form:

Rk: if e is  k e  and Δe is  k e  then β is  k  .

In our scheme, it is possible to identify 25 distinct MFs for each input (e and ∆e) of 25 rules. The 

study of the plots (Fig. 5.9), corresponding to 25 nodes reveals that many of the MFs are almost 

the same. For example, the MF of e for node-11, node-12, node-13, node-14 and node-15 is 
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almost same. Similarly, the MF of ∆e for node-11, node-21, node-31, node-41 and node-51 is 

almost identical, though each of the clusters represents a separate rule. From all the 25 clusters 

we observe that there is a possibility of 5 distinct MFs for each of the input variables e and ∆e.

Each domain of e and ∆e is uniformly quantized for 5 MFs within the range [-1, 1] as we did for 

training data generation. If we consider MFs are symmetric triangles with equal base-width and 

having nearly 50% overlap between neighboring MFs for each of e and ∆e, then the average 

base-width of each MF comes around 0.8. As discussed in section 5.3.1, for every quantized pair 

{e, ∆e} the rule completeness is checked. If the condition of completeness is not satisfied the 

base-width of all MFs is increased by a small percentage (say 5%) of its previous value and 

again the rule completeness is checked with the new base-width and this iterative process is 

continued until the completeness is achieved. In this way we transform the 25 rule-bases into a 

complete one as shown in Fig. 5.10.

Rules(i,j) E Δe β

R11
0.66666 0.66666 0.875

R12
0.66666 0.416661 0.875

R13
0.66666 -0.083337 0.750

R14
0.66666 -0.416669 0.375

R15
0.66666 -0.666668 0.250

R21
0.416661 0.66666 0.875

R22
0.416661 0.416661 0.750

R23
0.416661 - 0.083337 0.750

R24
0.416661 - 0.416669 0.375

R25
0.416661 - 0.666668 0.250

R31
-0.000004 0.66666 0.375

R32
-0.000004 0.416661 0.625

R33
-0.000004 -0.083337 0.625

R34
-0.000004 -0.416669 0.625
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R35
-0.000004 -0.666668 0.375

R41
-0.416669 0.66666 0.250

R42
-0.416669 0.416661 0.375

R43
-0.416669 -0.083337 0.750

R44
-0.416669 -0.416669 0.875

R45
-0.416669 -0.666668 -0.875

R51
-0.666668 0.66666 0.250

R52
-0.666668 0.416661 0.375

R53
-0.666668 -0.083337 0.750

R54
-0.666668 -0.416669 0.875

R55
-0.666668 -0.666668 0.875

    Figure 5.10: Representation of 25 fuzzy if-then rules for e, Δe and β obtained using rule-
extraction scheme.

Observe that the gain modifying scheme of STFPIC having 49 rules is modeled by the proposed 

SOM based algorithm with only 25 fuzzy if-then rules out of 625 input-output data. The 

corresponding gain surface of the model is shown in Fig. 5.11(a). To find out the accuracy of the 

identified model, a comparison is made between the original (Fig. 5.8a) and the model gain 

surface (Fig. 5.11a) using mean square error (MSE) as stated in equation (5.9).

                                                  
1

2( )
n

i
a

i

i
mMSE ny y



                                                         (5.9)

Where n is the number of data, ay  is the actual output and my is the model output. Though the 

output MF is not smooth in shape, yet we have obtained similar type of gain surface and the 

MSE is calculated 0.0274. The closeness between original gain surface and identified gain 

surface is reflected in error surface (Fig. 5.11b), which is almost flat in nature.
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Figure 5.11(a): Gain surface of STFPIC with 25 identified rules.

Figure 5.11(b): Error surface (difference between original and identified gain surface).

5.5 Study of the control surface of STFPIC
Like the gain surface of STFPIC, the validity of the proposed scheme is established through the 

study of control surface of STFPIC.  In this section, input-output data  , ,e e u are clustered in a 

two dimensional (55) plane using self-organizing map, then we determine peak and 

corresponding MFs for all the 25 nodes.

Few plots are shown in Fig.5.12. Like gain surface of STFPIC, its control surface is also 

modeled with only 25 fuzzy if-then rules from 625 input-output data. The validity of the
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proposed scheme is established through the study of control surfaces as shown in Fig. 5.8b

(which is reproduced here for close comparison) and Fig. 5.13. Study reveals that the closeness 

between the original control surface (Fig. 5.8b) and the identified control surface (Fig. 5.13) 

increases as the number of iteration in SOM clustering increases.

Node-15

Node-24
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Node-35

Node-54

Figure 5.12: MF plots of 4 nodes out of 25 for e, ∆e and u after 1000 iteration.
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Figure 5.8(b): Original control surface of STFPIC with 98 rules.
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(a) Control surface (after 50 epochs).
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(b) Control surface (after 100 epochs).
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(c) Control surface (after 200 epochs)
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(d) Control surface (after 1000 epochs)

Figure 5.13(a, b, c, d): Control surface of identified FLC with 25 rules after different number of 
iterations.
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5.6 Simulation study with the identified STFPIC 

5.6.1 With reduced gain rules

Usefulness of the identified model of the gain surface is judged by comparative study between 

original (with 49 gain rules) and identified model (with 25 gain rules) in different systems. By 

using the reduced gain rules of STFPIC, the responses of linear, nonlinear and marginally stable 

systems with dead-time are observed. As discussed in section 5.3.1, 25 gain rules are identified 

for STFPIC and they are termed as, SOM-STFPIC1, SOM-STFPIC2 and SOM-STFPIC3 for three 

types of membership functions MF1, MF2 and MF3 respectively. 

Second Order Linear Process

Response characteristics of the linear process 

                                            
2

2
0.2 ( )

d y dy
y u t L

dt dt
                                                               (5.10) 

is shown in Fig. 5.14 for L=0.3, when disturbance is applied at 40s. Comparative study and 

tabulation of various performance indices of the process for STFPIC, SOM-STFPIC1, SOM-

STFPIC2 and SOM-STFPIC3 are shown in Fig. 5.14 and in Table 5.1. Fig. 5.14 shows 

satisfactory performances of SOM-STFPIC1, SOM-STFPIC2 and SOM-STFPIC3 using only 25 

extracted rules for β. Table 5.1 shows that the performance indices of SOM-STFPIC1, SOM-

STFPIC2 and SOM-STFPIC3 are almost same and very close to STFPIC, except settling time ts.

Table 5.1: Performance analysis of linear process (5.10)

Controller Type tr(s) ts(s) %OS IAE ITAE ISE

STFPIC 5.9 29.9 24.55 11.46 365.12 5.04

SOM-STFPIC1 6.2 17.8 23.05 10.61 317.91 5.14

SOM-STFPIC2 6.0 21.1 23.69 10.63 320.10 5.14

SOM-STFPIC3 6.1 21.1 23.47 10.67 321.40 5.17
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Figure 5.14: Responses of the linear process (5.10) with load disturbance for STFPIC 
(blue) and SOM-STFPIC1, SOM-STFPIC2 and SOM-STFPIC3 (black).

Second Order Nonlinear Process

The effectiveness of the proposed scheme is studied on a nonlinear process (5.11) with different 

dead-time (i.e., L=0.3, 0.5 and 0.1).                             

          
2

2
2

0.25 ( )
d y dy

y u t L
dt dt

                                                         (5.11)        

Fig. 5.15 and Table 5.2 provide relative performances of the controllers with the extracted gain 

rules. In Fig. 5.15, we observe the comparable and satisfactory performance of SOM-STFPIC1, 

SOM-STFPIC2 and SOM-STFPIC3 for dead-time of 0.3 and 0.5. We also analyze the 

performance of nonlinear system (5.11) in Fig. 5.16 with dead-time 0.1 and for a load variation 

at 28s. Table 5.2 provides relative performances of the controllers and we find that the FLCs that 

model with extracted gain rules even perform better than the original STFPIC, though 

performance enhancement is not our objective in this present study. 
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Figure 5.15 (a, b, c): Responses of (5.11) for SOM-STFPIC1, SOM-STFPIC2

and SOM-STFPIC3 respectively (blue for L=0.5 and black for L=0.3).

Figure 5.16: Responses of (5.11) with load disturbance at 28s for STFPIC (blue)
and SOM-STFPIC1, SOM-STFPIC2 and SOM-STFPIC3 (black).
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Table 5.2: Performance analysis of nonlinear process (5.11) at different dead-time

Table 5.3: Performance analysis of (5.11) with the controllers developed by Pal et al.[105] 

Pal et al.[105] applied FCM for extraction of a small but adequate set of rules to realize the self-

tuning mechanism and they demonstrated their scheme in nonlinear process (5.11). They denoted 

their controllers by TFPICwav1, TFPICwav2 and TFPICcent. The system was tested with variable 

dead-time (i.e., L=0.3s and L=0.5s) and load variation (at 50s). We presented their findings in 

Table 5.3 for reference. Comparative study of Table 5.2 and Table 5.3 reveals that the SOM-

L(s) Controller Type tr(s) ts(s) %OS IAE ITAE ISE

STFPIC 5.5 13.3 20.3 4.24 16.39 2.56

SOM-STFPIC1 5.8 11.0 18.05 4.23 14.13 2.74

SOM-STFPIC2 5.7 10.6 18.50 4.20 14.30 2.70

0.3

SOM-STFPIC3 5.7 10.7 18.00 4.20 14.20 2.70

STFPIC 5.5 17.1 25.2 4.83 23.40 2.78

SOM-STFPIC1 5.9 12.2 23.42 4.67 18.22 2.95

SOM-STFPIC2 5.7 11.1 23.30 4.59 19.02 2.89

0.5

SOM-STFPIC3 5.8 11.2 22.70 4.58 18.59 2.90

With load variation at 28s

STFPIC 5.2 13.1 16.58 7.68 146.68 4.33

SOM-STFPIC1 5.8 10.2 13.14 7.39 120.80 4.39

SOM-STFPIC2 5.6 10.1 14.03 7.41 122.75 4.53

0.1

SOM-STFPIC3 5.7 10.1 13.58 7.52 125.80 4.59

L(s) Controller Type tr(s) ts(s) %OS

TFPICwav1 5.8 13.8 19.50

TFPICwav2 5.8 13.3 19.60

0.3

TFPICcent 5.8 13.3 19.60

TFPICwav1 5.9 14.2 23.90

TFPICwav2 6.0 17.6 23.90

0.5

TFPICcent 6.0 14.0 19.60
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based rule extraction scheme performs better than the FCM-based rule extraction scheme [105] 

for this nonlinear example. 

Second Order Marginally Stable System

The proposed rule extraction scheme is demonstrated on a marginally stable system (5.12) with a 

pole at origin and having dead-time (L) of 0.1 and 0.2.                             

          
2

2
( )

d y dy
u t L

dt dt
                                               (5.12)   

The comparative study of the responses with proposed controllers is shown in Fig. 5.17 and 

Table 5.4 with variable dead-time and load disturbance (at 30s).  From the study, we do not find 

any distinct differences between FLCs with reduced gain rules and original STFPIC with larger

number of rules. We present a comparative study between STFPIC and the proposed controllers 

in Fig. 5.18 and Table 5.5 for a load disturbance at 25s.

Figure 5.17 (a, b, c): Responses of system (5.12) for SOM-STFPIC1, 
SOM-STFPIC2 and SOM-STFPIC3 (blue for L=0.1 and black for L=0.2).
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Table 5.4: Performance analysis of marginally stable process (5.12)

Figure 5.18: Responses of system (5.12) with load disturbance for STFPIC (dotted-black)
and SOM-STFPIC1, SOM-STFPIC2 and SOM-STFPIC3 (solid-colour).

L(s) Controller Type tr(s) ts(s) %OS IAE ITAE ISE

STFPIC 6.3 32.0 27.52 10.5 210.00 4.69

SOM-STFPIC1 6.1 19.4 27.96 9.09 177.08 4.57

SOM-STFPIC2 6.0 18.9 27.10 8.95 175.21 4.52

0.1

SOM-STFPIC3 6.0 19.2 27.53 9.03 176.38 4.55

STFPIC 6.3 37.8 30.02 11.50 273.15 4.94

SOM-STFPIC1 6.0 22.6 31.97 10.14 238.78 4.82

SOM-STFPIC2 6.0 21.9 31.41 9.90 235.91 4.77

0.2

SOM-STFPIC3 6.0 22.3 31.61 10.07 237.54 4.80



177      
     

Table 5.5: Performance analysis of marginally stable process (5.12) with load disturbance

5.6.2 With reduced control rules

In this section, the performance of identified FLC with only 25 rules in place of 98 rules of 

STFPIC, is tested with both linear and nonlinear systems. Comparative study between STFPIC 

with original 98 rules (49 control rules and 49 gain rules) and FLC with 25 identified overall 

rules (SOM-FLC1) are investigated.  

From gain surface study in previous section (section 5.6.1), we observe almost similar 

performance for all the three types identified controllers (SOM-STFPIC1, SOM-STFPIC2 and 

SOM-STFPIC3) corresponding to their different types MFs (MF1, MF2 and MF3) as termed in 

section 5.3.1. Therefore in this section, instead of three types, we only consider the first type of 

MF (MF1) for controller (SOM-FLC1) design.

Linear System

Response characteristics of the linear process 

                                                             
2

2
0.8 ( )

d y dy
y u t

dt dt
                                              (5.13) 

is studied and comparative study of the system is provided in Fig. 5.19 and Table 5.6. Responses

and detail performance analysis with original STFPIC (98 rules) and FLC with only 25 identified 

fuzzy rules (SOM-FLC1) are presented in Fig. 5.19 and Table 5.6 respectively. Study reveals 

SOM-FLC1 shows a comparable performance with respect to different performance criteria.

Controller Type tr(s) ts(s) %OS IAE ITAE ISE

STFPIC 5.3 40.8 32.92 11.60 381.11 5.18

SOM-STFPIC1 6.4 25.1 34.86 10.80 325.28 5.04

SOM-STFPIC2 6.3 24.4 34.11 10.52 316.14 4.95

SOM-STFPIC3 6.3 24.8 34.45 10.66 320.63 4.99
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Figure 5.19: Responses of (5.13); dashed line for STFPIC (98 rules) and solid line for 
SOM-FLC1 (identified 25 rules).

Nonlinear System

The performance of our rule extraction scheme is investigated on the below nonlinear process:      

                                         )(25.0 2
2

2

Ltuy
dt

dy

dt

yd
                                                       (5.14).

From Fig. 5.20 and Table 5.6, we observe that the SOM-FLC1 performs satisfactorily for 

nonlinear system (5.14) with dead-time (L) of 0.3.

Table 5.6: Performance analysis of linear (5.13) and nonlinear (5.14) system

System Controller Type %OS tr(s) ts(s) IAE ITAE

SOM-FLC1 (with 
25 identified rules)

10.39 4.7 8.3 3.15 11.132

2
0.8 ( )

d y dy
y u t

dt dt
  

STFPIC  (98 rules) 8.15 4.9 11.8 3.17 8.41

SOM-FLC1 (with 
25 identified rules)

7.08 6.6 11 4.43 22.48
)(25.0 2

2

2

Ltuy
dt

dy

dt

yd


STFPIC  (98 rules) 14.7 6.6 11.7 4.58 15.13
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Figure 5.20: Responses of (5.14); dashed line for STFPIC (98 rules) and solid line for 
SOM-FLC1 (25 rules).

5.7 Rule merging
After rule extraction as proposed through Fig. 5.5 in section 5.3.1, we observed many of the 

fuzzy sets are similar or overlapping in nature.  So, there is a further scope for optimizing the 

size of the rule-base. Various methods, like interpolation approach have been adopted for fuzzy 

rule-base reduction [199-202]. Efforts in rule reduction have been made in this field using 

orthogonal transformation [203, 204]. Setnes et al. [205, 206] applied similarity measure scheme 

between fuzzy sets for simplification and reduction of rule-base. Several neural network and GA-

based techniques are also implemented for this purpose [208]. 

5.7.1 Similarity measurement and fuzzy rule minimization 

The validity of the rule extraction scheme is already established on STFPIC in close loop

(section 5.5) by identifying 25 fuzzy if-then rules. In this section, a similarity measure scheme is 

introduced to further reduce the number of rules by merging similar fuzzy sets to model the 

system more simple [204, 205]. The technique is implemented on the control surface of STFPIC

and the system is modeled by triangular type MFs with equal base-width as shown in Fig. 5.21. 

The study of the fuzzy sets reveals that some of the fuzzy sets are almost identical while many 

are very close to each other. 
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Figure 5.21: MF plots of 25 identified fuzzy sets for{ , , }e e u .

Concept of similarity measurement

Figure 5.22: Fuzzy sets A, B and C Figure 5.23: Fuzzy sets A and B

In Fig. 5.22, A, B and C are three similar triangular fuzzy sets. If we compare fuzzy sets A and 

B, they are similar in shape but conceptually different in nature. But B and C fuzzy sets are not 

only similar in shape but also similar in nature due to their closeness.  It can be said that B and C 

fuzzy sets have high degree of equality. Using this concept of equality in Fig. 5.21, it is possible 

to reduce the effective numbers of fuzzy sets. If two triangular normal fuzzy sets A and B, as 

shown in Fig. 5.23, are described by A=(a1, a2, a3) and B=(b1, b2, b3), then the Degree of 

Similarity between Fuzzy Sets (DSFS) can be determined using equation 5.15. From the 

equation, it is observed that if a1=b1, a2=b2 and a3=b3, then DSFS =1, means complete matching;

and mismatch of these points indicate dissimilarity [194, 205, 207]. 
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                                            3
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,    (0,1)DSFS                                    (5.15)

Using this principal of similarity, declare the sets are similar, if DSFS is greater than any 

predefined value ξ, where 0 < ξ ≤ 1. In this process of similarity measurement, if A and B are 

two fuzzy sets found similar in nature, e.g. DSFS (A, B) = 0.95 or more, then they may be 

replaced by a new fuzzy set C, 

                                       where, C = (c1, c2, c3) = 3 31 1 2 2, ,
2 2 2

a ba b a b   
 
 

.

Rule- base reduction

Figure 5.24: Two Fuzzy rules in the form of{ , , }e e u .

In case of multi input-single output (MISO) system, as shown in Fig. 5.24 (a and b), it is found 

that inputs e and e1 are similar, but other inputs Δe and Δe1 are not very similar, still their outputs 

u and u1 are almost similar. In such cases, we can merge the fuzzy sets by planning the following 

process:

Consider two rules (R1 and R2): 

R1: if x1 is A1 and x2 is B1 then y is D1

R2: if x1 is A1 and x2 is C1 then y is D1

(a) (b)
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Then the Degree of Similarity between two Fuzzy Rules Ri and Rj (DSFRij) in terms of DSFS can 

be computed using equation (5.16) [207]. 

                                                 
( )

n

ik jk
k=1

ij

DSFS R ,R
DSFR =

n


                                                 (5.16)

where,
1

( , )
n

ik jk
k

DSFS R R

 is the summation of DSFS of two fuzzy rules (Ri and Rj) and n is the 

total number of input and output parameters in a rule. In the above example, there are two inputs 

and one output, therefore n = 3. Using equation 5.16, DSFR values are computed between all 25 

rules as presented in Fig. 5.21.  Different considerations of DSFR value yields different number 

of fuzzy rules, e.g. DSFR = 0.8 yields 14 rules as shown in Fig. 5.25. 

Figure 5.25: Conversion of 25 to 14 rules{ , , }e e u after similarity measurement.
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5.7.2 Results 

We examine this rule merging scheme on linear, nonlinear and on a numerical example.

Linear System

Let us consider a linear system 

                                                                
2

2
0.8 ( )

d y dy
y u t

dt dt
                                               (5.17).

We study the linear system (5.17) with original STFPIC (with 98 rules), SOM-FLC1 (with 25 

rules) and Reduced SOM-FLC1 (14 rules). Results are presented in Fig. 5.26 and Table 5.7. The 

results indicate that the system gives satisfactory performance only with 14 rules. 

Figure 5.26: Responses of (5.17); dotted line for STFPIC, dashed line for SOM-FLC1

and solid line for Reduced SOM-FLC1.
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Nonlinear System

From Fig. 5.27 and Table 5.7, we observe that the proposed similarity measure scheme works 

satisfactorily for the nonlinear system

                                                              )(25.0 2
2

2

Ltuy
dt

dy

dt

yd
                                    (5.18).

Figure 5.27: Responses of (5.18) for L=0.3; dotted line for STFPIC, dashed line for 
SOM-FLC1 and solid line for Reduced SOM-FLC1.

Table 5.7: Performance analysis of linear and nonlinear system

System Controller Type %OS tr(s) ts(s) IAE ITAE

Reduced SOM-
FLC1 (14 rules)

11.65 4.1 7.8 3.05 20.92

SOM-FLC1 (25 
rules)

10.39 4.7 8.3 3.15 11.13

2

2
0.8 ( )

d y dy
y u t

dt dt
  

STFPIC  (98 rules) 8.15 4.9 11.8 3.17 8.41

Reduced SOM-
FLC1 (14 rules)

7.08 6.6 11.0 4.43 22.48

SOM-FLC1 (25 
rules)

2.32 8.0 8.5 4.55 14.68

2
2

2
0.25 ( )

d y dy
y u t L

dt dt
   

STFPIC  (98 rules) 14.7 6.6 11.7 4.58 15.13
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5.8 Generalization of the proposed scheme
Though the proposed scheme has been studied with STFPIC, it is applicable for other problems 

also. To generalize the scheme we have studied a function approximation problem [14] and to 

substantiate the scheme as a general one, next we apply this scheme for a function approximation 

problem. The nonlinear numerical example has two inputs (x and y) and one output (z). The 

nonlinear function is represented by equation (5.19).

2 1.5 2(1 )z x y    ,   1 , 5x y                                                             (5.19)

Initially, 50 datasets (x, y, z) in the range (0 - 6, 0 - 6, and 0 – 10) are generated using equation

(5.19) to model the nonlinear system using our proposed rule extraction technique. The 

corresponding surface plot for the equation (5.19) is shown in Fig. 5.28.  

We have applied our proposed rule extraction scheme as described in section 5.3.1 to the above 

numerical example to extract 25 fuzzy if-then rules. The triangular MFs with equal base-width 

are presented in Fig. 5.29. The surface plot of equation (5.19) by extracted 25 fuzzy if-then rules 

is depicted in Fig. 5.30.

Figure 5.28: Surface plot of the nonlinear equation 5.19.
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Figure 5.29: MFs for the identified fuzzy model of the nonlinear system (equation 5.19).

Figure 5.30: Surface plot of the nonlinear equation (5.19) with extracted 25 fuzzy rules.
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Figure 5.31: Error surface [difference between original surface (Fig. 5.28)
and model surface (Fig. 5.30)].

Figure 5.32: Comparative plot of equation (5.19) for actual output (solid line) and
model output with 25 identified fuzzy rules (dotted line).

Study of Fig. 5.30 reveals that only 25 rules are sufficient to model a highly nonlinear equation 

(5.19) using our proposed scheme. We observe the error surface [difference between original 

output (zoriginal) and model output (zmodel) with 25 rules] for the numerical example in Fig. 5.31. 

Using equation (5.9), MSE is calculated and the result is found 0.1582 only. Wong et al. [194]

extracted 14 rules and the corresponding MSE was 0.253 for their set-up. The actual output 

and model output (using 25 rules) of equation (5.19) for same input data are plotted graphically 

in Fig. 5.32 and we observe a close resemblance between the two outputs.  The identified model 

of the nonlinear system of (5.19) is found to be a satisfactory model considering the plots (Fig. 

5.28, Fig. 5.30, Fig. 5.31 and Fig. 5.32) and MSE values. 
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Rule Merging

To generalize the rule merging scheme proposed in section 5.7 is illustrated here in the function 

approximation problem (equation 5.19). The extracted fuzzy if-then rules from the input-output 

data (x, y, z) of equation (5.19) are already presented in Fig. 5.29. For DSFR=0.8 in equation 

5.16, a total of 12 rules are developed using rule minimization scheme as represented in Fig. 5.33

and the corresponding surface plot of the identified model of the function approximation 

problem is depicted in Fig. 5.34(c).

Figure 5.33: Representation of 12 fuzzy if-then rules obtained using rule-
extraction and similarity measure scheme.
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Figure 5.35: Output determination (z) for given inputs (x and y) from
Model FLC designed using 12 fuzzy if-then rules.

        Figure 5.36: Comparative plot of actual output (dotted line) and model output (solid line)

Figure 5.34: Surface plots of (a) original model, (b) model with 25 fuzzy rules, and (c) model 
with 12 rules.
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The highly nonlinear equation (5.19) is effectively modeled with only 12 identified rules and 

MSE is found 0.2064, whereas Wong et al. [194] extracted 14 rules from the same equation 

and their corresponding MSE was 0.253. The model FLC shown in Fig. 5.35 is used to 

calculate output (z) from any input data (x, y) within the modeling range. The identified model 

quality and closeness is also verified by plotting the actual and model output for same set of 

inputs in Fig. 5.36. 

5.9 Conclusion
In this Chapter, we proposed a SOM based technique for fuzzy rule extraction. The proposed 

method can extract required number of rules to model an unknown system having its input-

output data. The scheme has been tested successfully in controller design as well as function 

approximations, which were highly nonlinear in nature. Even with significant reduction of rule-

base, controllers designed by using our rule-extraction scheme exhibited close performance 

compared to its original fuzzy counterpart. The proposed scheme has been found to be equally 

well for function approximation problem. Comparative study with experimental results, control 

surfaces and MSE values ensured that the proposed rule extraction and fuzzy modeling technique 

can be used to model any complex system. In this study, we also suggested a rule merging 

scheme in order to further simplify the identified fuzzy model. The effectiveness of the rule 

merging scheme using similarity measure between fuzzy sets has also been established through

different simulated examples.
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Real time implementation of SOM-based self-
tuning fuzzy controller

6.1 Introduction
It is a challenging task to generate efficient fuzzy rules from the input-output data of ill-defined 

systems. In this chapter, the novel SOM-based approach for system identification which is 

integrated with rule extraction method presented in chapter-5 is demonstrated in real time 

systems. The Self-Organizing Map based clustering technique already discussed in previous 

chapter is used here. The effectiveness of the proposed scheme is successfully tested on different 

real time processes like overhead crane control and water pressure control. 

We already discussed about overhead crane control in section 4.4 of chapter-4, where anti-sway 

and position control have become the requirements as a core technology. The overhead crane has

one control input (trolley driving force) and two output variables (horizontal trolley position and 

load swing angle). This property results in a coupling effect between the load swing and cart 

position. In addition, uncontrolled load sway dynamics causes safety problems in crane systems, 

which makes it much more challenging to control. Thus the purpose of crane control is to reduce 

the pendulum type motion of the loads while moving the trolley to the desired position as fast as 

possible [163, 164]. Initially, two PD-type self-tuning fuzzy controllers (with 98 rules each) are 

used to deal separately with the feedback signals, swing angle and cart position and their 

derivatives. 

C

 CHAPTER 6



192      
     

The advantage of the scheme is also demonstrated to control a real time water pressure control 

loop [184]. The proposed rule extraction scheme is well tested in a real water pressure control 

loop for set-point variation and load disturbance.

In the next sections two practical systems (i.e., Overhead Crane and Water Pressure Loop) are 

addressed. In each case, first we provide a brief statement about the system description. Then we 

illustrate the effectiveness of the proposed SOM-STFPDC1/SOM-STFPIC1 for such systems. 

6.2 Real time systems

6.2.1 Demonstration on an overhead crane

In this section, experiments on an overhead crane are carried out to verify the performance of 

proposed rule extraction scheme. The laboratory scale crane set-up (FEEDBACK, UK) is shown 

in Fig. 6.1. The set-up is already discussed in chapter-4.

Figure 6.1: Mechanical unit of overhead crane set-up.
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The equations of motion of the overhead crane system are already derived in chapter-4 with 

respect to x and θ, are presented through equation (4.11) and (4.12).

        2( ) cos sin 2 cos - sin xM m x ml ml ml ml u                                         (4.11)

        sin 2 cos 0l g l x                                                                                       (4.12)

The different parameters [143] of the SIMO system are provided in Table 6.1.

Table 6.1: Parameters and their values of overhead crane

Parameter Value

g - gravity 9.81 m/s2

l – pole length 0.36 to 0.4 m (depending on the configuration)

M – cart mass 2.4 kg

m – pole mass 0.23 kg

I – moment of inertia of the pole about 0.099kg.m2 (depends on the configuration)

b – cart friction coefficient 0.05 Ns/m

d – pendulum damping 
      coefficient

Although negligible, necessary in the model–0.005 
Nms/rad

It is difficult to control such system, which is oscillating in nature during its movement. It is 

essential to linearize such system for application of conventional controllers, which is not 

requiring for our proposed scheme. The fuzzy PD controller (FPDC), self-tuning fuzzy PD 

controller (STFPDC) and SOM based self-tuning fuzzy PD controller (SOM-STFPDC1) are used 

to control the position and swing angle of the overhead crane. The advantage of derivative action 

is utilized here as derivative control anticipates the actuating error, initiates an early corrective 

action, and tends to increase the stability of the system. 

The position controller and angle controller as shown in Fig. 6.2 deal separately with the cart 

position and swing angle to drive the overhead crane by using two similar STFPDC (with 49 

gain rules and 49 control rules) or  SOM-STFPDC1 (with 25 gain rules and 49 control rules). The 
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presented scheme of Fig. 6.2 can also be used as FPDC by eliminating the automatic gain 

updating factor (β) portion.

In our design, the left swing of the load is defined as positive swing, while the right swing of the 

load is negative swing. The output of the controller for position and swing angle control are up

and uθ respectively as indicated in Fig. 6.2. Thus the actual control action (up-uθ) to drive the cart 

by FPDC, STFPDC and SOM-STFPDC1 are uFPDC, uSTFPDC and uSOM-STFPDC1 respectively. The 

controllers output are used to drive the DC motor of the overhead crane for position and angle 

control.  Error (e) due to position and error (eθ) due to angle are obtained respectively from the 

cart position encoder and swing angle encoder. The ranges selected of input-output variables for 

position and angle controller are [-1, +1] and [-20°, +20°] respectively. Each SOM-STFPDC1 is 

used only 25 gain rules instead of 49 gain rules used by STFPDC. The proposed dual control 

structure for crane control divides the input antecedents of fuzzy rules into two parts. Therefore, 

the present control scheme makes the system easier to understand. Also both the controllers are 

used identical control rules.  

Figure 6.2: Diagram of STFPDC/SOM-STFPDC1 for overhead crane control.
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The proposed scheme is tested with square input and step input, where the load is transferred 

from initial position to the destination and back to the starting position. The control actions

(uFPDC / uSTFPDC  / uSOM-STFPDC1) are applied to the overhead crane to control the crane position 

and as well as swing angle of the load attached. The STFPDC and SOM-STFPDC1 outperform 

the FPDC for different types of input applied as shown in Fig. 6.3 and Fig. 6.4.  SOM-STFPDC1

tracks the set-point very efficiently to place the trolley in its desired position. From Table 6.2, we 

find that different performance parameters such as IAE and ITAE are reduced by significant

percentage in case of STFPDC or SOM-STFPDC1 compared to FPDC. The performance of PID 

controller on overhead crane is already evaluated in chapter-4. 

Table 6.2: Performance analysis of the controllers in overhead crane control

Reference input Controller Type IAE ITAE

FPDC 16.79 220.05

STFPDC 5.11 54.86

Step (amplitude +0.3m)

SOM-STFPDC1 6.66 79.61

FPDC 47.15 1283.00

STFPDC 35.30 993.40

Square (amplitude ±0.3m)

SOM-STFPDC1 29.62 837.30

Figure 6.3: Position control for step input (0.3m) using FPDC (dashed line),
STFPDC (dotted line) and SOM-STFPDC1 (solid line).
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Figure 6.4: Position control for square input (± 0.3m) using FPDC (dotted-black),
STFPDC (blue line) and SOM-STFPDC1 (solid-black).

Figure 6.5: Swing angle control for step input using STFPDC (blue line) and
SOM-STFPDC1 (black line).
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From Fig. 6.5 and Fig. 6.6, we observe that the load swing is minimum and especially in case of 

step input the swing angle approaches to almost zero for our proposed rule extraction scheme. 

Fig. 6.5 and Fig. 6.6 illustrate that SOM-STFPDC1 makes negligible sway angle for horizontal 

movement of the trolley crane for application of step and pulse type input. The study reveals that 

the proposed rule extraction scheme for fuzzy controller works well and it can fix the overhead 

crane in its desired location with negligible sway angle.

6.2.2 Demonstration on water pressure control loop 

Pressure control is an important parameter in most of the process plants. Different portions of a 

pressure and flow control loop are shown in Fig. 6.7 to Fig. 6.9. As shown in Fig. 6.10, the water 

pressure control loop consists of:

1) Water reservoir 

2) Pump 

3) Process pipe 

4) Orifice plate 

Figure 6.6: Swing angle control for square input using STFPDC (blue line) and
SOM-STFPDC1 (black line).
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5) Control valve with electro-pneumatic positioner 

6) Pressure header 

7) Manual Valve 

8) 3-way manifold 

9) Compressor  

10) Flow and pressure transmitters 

11) Controllers, etc. 

Pressure Header

The important portion of the system, pressure header is presented in Fig. 6.11, whose pressure is 

to be controlled using our scheme. Pressure head is a term used in fluid mechanics to represent 

the internal energy of a fluid due to the pressure exerted on its container. It is mathematically 

expressed as:

                                                 ψ=p/γ=p/ρg                                                                   (6.1)

where,

ψ is pressure head

p is fluid pressure

γ is the specific weight

ρ is the density of the fluid 

    and, g is acceleration due to gravity

In this system, the opening of the control valve depends on the control action provides by the 

controller. Initially, the valve is in close position, when there is no control signal. The pressure 

header in the loop, which is being constantly pressurized by a discharge pump, is continuously 

monitored by pressure transmitter and pressure gauge. The desired pressure is obtained by 

applying suitable control action to the valve. The set-up has a provision of controlling the loop 

manually with conventional PID controllers. However, to make the system automatic and tune it 

on-line, we interface the system with the controller (designed in LABVIEW environment). The 

PCI6236 DAQ card is used for receiving and transmitting the data. We choose the input and 

output of the DAQ card, i.e., 4 to 20 mA and 0 to 10 V DC respectively. 
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Figure 6.7: Hardware set-up of real time pressure loop.

Figure 6.8: Pneumatic control valve with positioner in real time pressure loop.
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Figure 6.9: Real time pressure loop connected with PC for operation.

Figure 6.10: Schematic diagram of pressure loop.
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Figure 6.11: Pressure header in pressure loop.

Pressure vs. control valve opening characteristic is found inverse in nature as plotted in Fig. 6.12

and the corresponding values are shown in Table 6.3. Current (amp) vs. pressure (psi) calibration 

curve of the system is represented graphically in Fig. 6.13 based on the data presented in Table 

6.4, which is linear in nature.

Figure 6.12: Control valve characteristics.
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Figure 6.13: Pressure vs. current calibration curve.

Table 6.3: Valve opening and corresponding pressure

% Valve Opening Pressure (psi)

0 40
0 39
5 32
18 25
25 21
30 19
50 12
58 8
70 5
75 4
80 3
90 2.5
100 2

Table 6.4: Pressure transmitter and corresponding pressure gauge output

Transmitter output (mA) Pressure (psi)

6 9
7 13
8 17
10 25
12 33
14 41
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In this set-up, to obtain the desired pressure, it is required to give suitable control action to the 

valve. Initially, we test the loop with FPIC (with 49 rules) and STFPIC (with 49 control rules and 

49 gain rules) in LABVIEW environment. Input and output of the DAQ card are 4 to 20 mA and 

0 to 10 V DC respectively. Then the proposed SOM-STFPIC1 (with 25 identified gain rules) is 

tested on the pressure control system with a constant set-point of 25 psi (10 mA). The SOM-

STFPIC1 provides almost identical performance as original STFPIC, but it outperforms the 

conventional Fuzzy PI controller as shown in Fig. 6.14, Fig. 6.15 and Table 6.5. Real-time 

experiment on the system further illustrates the advantages of the proposed rule-extraction 

scheme. From Table 6.5, we observe that the different performance parameters such as IAE, 

ITAE, and ISE are reduced significantly when controlled by STFPIC or SOM-STFPIC1

compared to FPIC. 

Figure 6.14: Process response for a set-point of 25 psi (10 mA) with STFPIC.
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Figure 6.15: Process response for a set-point of 25 psi (10 mA) with SOM-STFPIC1.

Table 6.5: Performance analysis of the process

The study of SOM-STFPIC1 with sudden load change is depicted in Fig. 6.16. The study reveals

that it can fix the system in its desired pressure easily even at load change. The pressure 

evolution for a set-point change from 25 to 33 psi and again from 33 to 25 psi using SOM-

STFPIC1 is presented in Fig. 6.17.

Controller Type IAE ITAE ISE

FPIC 65.1666 2639.100 0.2920

STFPIC 32.2104 715.446 0.1383

SOM-STFPIC1 32.3511 915.940 0.1138
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Figure 6.16: Pressure evolution using SOM-STFPIC1 after load change at 100s.

Figure 6.17: Pressure evolution after set-point changes from 25 to 33 psi and 33
to 25 psi for SOM-STFPIC1.
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6.3   Conclusion
The technique of rule extraction, which is integrated with system identification to model any 

unknown system, is discussed in the previous chapter. The proposed method can extract required 

number of rules to model an unknown system from its input-output data. In this chapter, the gain 

part of the fuzzy controllers are modeled using the proposed scheme and is tested in two practical 

real processes. Even with a significant reduction of rule-base, the developed controller exhibits

effective and improved performance in real time systems compared to its conventional fuzzy 

counterpart. The proposed twin control scheme for overhead crane reduces the computational 

complexity and is easy to understand. 
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Conclusion 

7.1 Thesis contributions

In this chapter overall conclusion is made by highlighting the contributions. The thesis has 

investigated on few key problems associated with high order, nonlinear and complex systems.

The following are the salient contributions of the thesis:

Developed efficient self-tuning scheme for fuzzy controller for application in different 

important processes like HVAC system and Inverted Pendulum. In this proposed scheme 

as discussed in chapter-2, we implemented an operator’s strategy while running a plant. 

In this scheme, one can design the fuzzy if-then rules for fuzzy controller and as well as 

the fuzzy rule-base for gain updating factor according to their knowledge.

In chapter-2 of the thesis, a fuzzy self-tuning scheme has been studied, in which a 

constant SF multiplier has been considered irrespective of the process. To parameterize 

the output gain of STFPIC, relay feedback tuning approach has been proposed in 

chapter-3. Instead of fixed gain, this technique helped us to update the output SF of the 

self-tuning fuzzy controller on-line based on the process trend as well as the dynamics of 

the system. This modification of tuning method worked effectively in different linear and 

nonlinear systems with varying dead-time. Even a considerable reduction of rule-base did 

not deteriorate the performance compared to its conventional fuzzy and non-fuzzy 

controllers. The scheme has also been successfully implemented for the speed control of 

a DC motor. 

C

 CHAPTER 7
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A new non-fuzzy auto-tuning method has been proposed and its application to real time 

process control has been investigated in chapter-4. Gain updating fuzzy rules used to 

tune the controllers adds some processing time, in view of that in chapter-4 a non-fuzzy 

tuning scheme has been implemented. The most important feature of the proposed 

scheme was that it depends neither on the process being controlled nor on the controller 

used. Even with significant reduction of rule-base, adaptive fuzzy controller exhibited 

effective and improved performance compared to its conventional fuzzy and non-fuzzy 

controllers for wide variety of second order integrating, nonlinear and non-minimum 

phase system with varying dead-time. Other contribution of this chapter was the twin 

control scheme for overhead crane that reduced the computational complexity to a great 

extent. 

In chapter-2, 49 control rules and 49 gain rules were used to realize a system. But the 

question was- did we really need that much of rules? In chapter-5, we tried to find the 

answer of this query using SOM-based rule extraction scheme. Identification of ill-

defined and uncertain system is a very difficult task. In such cases, it is required to extract 

input-output relationship based on the information obtained from the system, so that one

can describe the input-output behavior of a given system by a set of fuzzy rules. In this 

context, in chapter-5, we proposed a technique of rule extraction which was integrated 

with system identification to model any unknown system. The proposed method could

extract required number of rules for an unknown system form its input-output data. The 

proposed scheme has been tested successfully in controller design, even with significant 

reduction of rule-base; controllers exhibited improved performance in different simulated

systems. Comparative performance study ensured that the proposed rule extraction 

technique could be successfully implemented to model any complex process. In the 

proposed rule extraction scheme we observed many similar type of fuzzy sets or MFs 

identified in the rule-base. To reduce the number of MFs in chapter-5, we have also 

suggested a similarity measure based technique to refine the extracted fuzzy model.

In chapter-6, the performance of rule extraction scheme has been studied in different real 

time systems like overhead crane control and water pressure control. 
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7.2. Future scope
It has been established that self-tuning and adaptive fuzzy PI and PD controller can be useful for 

complex systems, however further work is require to understand the extent of its usefulness. 

Some proposals in this regard are presented next. 

 The utility of the proposed self-tuning and adaptive fuzzy scheme can be demonstrated in

other complex processes and with others types of fuzzy controllers (e.g., Type-2 Fuzzy 

Controller).

 We know that the output scaling factor or gain of the fuzzy controller is a very important 

parameter. We implemented the concept of dynamic gain in chapter- 3 in this regard. In 

place of relay feedback tuning other adaptive or tuning schemes may be checked for 

further fine tuning of output gain.

 A new adaptive scheme for fuzzy controller is proposed in this thesis, but still there is 

scope for further research on development of more effective adaptive fuzzy schemes. 

 Investigation can also be made to check the stability of the nonlinear systems discussed.

 The proposed system identification or rule extraction scheme is based on unsupervised 

SOM clustering technique. Other clustering techniques can be tried for this purpose.

 Apart from the possibilities mentioned above, the work carried out in the present thesis 

can be extended in many directions. However we like to emphasis on rule reduction 

scheme. In this regard, we have highlighted similarity measure scheme in chapter- 5.
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