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Abbreviations and Notations 
 
 
 
Symbol                               Description 
________________________________________________________________________ 
 

iΡ                                                 power output of i th unit  
min
iΡ , max

iΡ                                    lower and upper generation limits for i th unit 

DΡ                                                load demand  

LΡ                                                 transmission line losses  

ijΒ                                                transmission loss coefficient 

iiiii edcba ,,,,                               cost coefficients of  i th unit  

iiiii δηγβα ,,,,                          emission coefficients of i th unit 
Ν                                                 number of generating units 

itΡ                                                 power output of i th unit at time t  

DtΡ                                              load demand at time t  

LtΡ                                                transmission line losses at time t  

ijΒ                                                loss formula coefficients 

iUR , iDR                                       ramp-up and ramp-down rate limits of i th unit 
T                                                   number of hours in the time horizon 

sia , sib , sic , sid , sie                     cost coefficients of i th thermal unit  

siα , siβ , siγ , siη , siδ                      emission coefficients of i th thermal unit 

jC1 , jC2 , jC3 , jC4 , jC5 , jC6      power generation coefficients of j th hydro unit  

hjmΙ                                                inflow rate of j th reservoir at time m  

DmΡ                                                load demand at time m  

LmΡ                                                 total transmission line losses at time m  

simΡ                                   output power of i th thermal unit at time m  
min
siΡ , max

siΡ                                     lower and upper generation limits for i th thermal 
 unit 

hjmΡ                                      output power of j th hydro unit at time m  
min
hjΡ , max

hjΡ                                   lower and upper generation limits for j th hydro unit 

hjmQ                                          water discharge rate of j th reservoir at time m  
min
hjQ , max

hjQ                                  minimum and maximum water discharge rate of j th 
reservoir 

 
 
 
 
 



Symbol                               Description 
 

ujR                                           number of upstream units directly above j th hydro 
 plant  

hjmS                                          spillage of j th reservoir at time m  

ljt                                             water transport delay from reservoir l  to j  

hjmV                               storage volume of j th reservoir at time m  
min

hjV , max
hjV                               minimum and maximum storage volume of j th 

 reservoir 
0hjV                                           initial storage volume of j th reservoir 

ΜhjV                                          final storage volume of j th reservoir 
m , M                                      time index and scheduling period 

sΝ                                            number of thermal generating units 

hΝ                                            number of hydro generating units 

objΝ                                          number of objective functions 

ΡΝ                                            number of populations  
 

sia , sib , sic , sid , sie : cost curve coefficients of i th thermal unit  

simΡ : power output of i th thermal generator during subinterval m  
min
siΡ , max

siΡ : lower and upper generation limits for i th thermal unit  

mt : duration of subinterval m .  

hjmΡ : power output of  j th hydro unit during subinterval m  

DmΡ : load demand during subinterval m  

LmΡ  : transmission loss during subinterval m  

lrΒ : loss formula coefficients. 

hja0 , hja1 , and hja2 : coefficients for water discharge rate function of j th hydro generator 

hjW : prespecified volume of water available for generation by j th hydro unit during the 
scheduling period.  

min
hjΡ , max

hjΡ : lower and upper generation limits for j th hydro unit 

sΝ : number of thermal generating units 
:hΝ  number of hydro generating units 

imF : Fuel delivered to thermal unit i  in interval m  
maxmin , ii FF : Lower and upper fuel delivery limits of  thermal unit i  

DmF : Fuel delivered in interval m  

cF : Total fuel cost 

eF : Total fuel emission 

imΡ : Output power of thermal unit i  in interval m  
maxmin , ii ΡΡ : Lower and upper generation limits of thermal unit i  

DmΡ : Load demand in interval m  



mt : Duration of subinterval m . 

imV : Fuel storage of thermal unit i  in interval m  
maxmin , ii VV : Lower and upper fuel storage limits of thermal unit i  

0
iV : Initial fuel storage of thermal unit i  

iiiii edcba ,,,, : Cost coefficients of  i th thermal unit 

iiiii θσγβα ,,,, : Emission coefficients of i th thermal unit 

iii μδη ,, : Fuel consumption coefficients of thermal unit i  
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CHAPTER 1 

Introduction 

 

1.1 General Introduction 

The word ‘‘heuristic” is Greek and means ‘‘to know”, ‘‘to find”, ‘‘to discover” or ‘‘to 

guide an investigation”. Specifically, ‘‘Heuristics are techniques which seek good 

(near-optimal) solutions at a reasonable computational cost without being able to 

guarantee either feasibility or optimality, or even in many cases to state how close to 

optimality a particular feasible solution is.”  

Two common aspects in the population-based heuristic algorithms are exploration and 

exploitation. The exploration is the ability to expand search space, whereas the 

exploitation is the ability to find the optima around a good solution. In premier 

iterations, a heuristic search algorithm explores the search space to find new solutions. 

To avoid trapping in a local optimum, the algorithm must use the exploration in the 

first few iterations. Hence, the exploration is an important issue in a population-based 

heuristic algorithm. By lapse (drop) of iterations, exploration fades out and 

exploitation fades (weakens) in, so the algorithm tunes itself in semi-optimal points. 

To have a high performance search, an essential key is a suitable tradeoff between 

exploration and exploitation. However, all the population-based heuristic algorithms 

employ the exploration and exploitation aspects but they use different approaches and 

operators. In other words, all search algorithms have a common framework. 

Algorithms with stochastic components were often referred to as heuristic in the past, 

though the recent literature tends to refer to them as meta-heuristics. 
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Nature-inspired meta-heuristics can be broadly classified into two categories; 

evolutionary algorithm and swarm intelligence algorithm. 

To tackle complex computational problems, researchers have been looking into nature 

for years both as model and as metaphor for inspiration. Optimization is at the heart of 

many natural processes like Darwinian evolution itself. Through millions of years, 

every one   had to adapt physical structure to fit to the environment . A keen 

observation of the underlying relation between optimization and biological evolution 

led to the development of an important paradigm of computational intelligence known 

as evolutionary computing techniques for performing very complex search and 

optimization. Evolutionary computation uses iterative progress, such as growth or 

development in a population. This population is then selected in a guided random 

search using parallel processing to achieve the desired end. The paradigm of 

evolutionary computing techniques dates back to early 1950s, when the idea to use 

Darwinian principles for automated problem solving originated. It was not until the 

sixties that three distinct interpretations of this idea started to be developed in three 

different places. Evolutionary programming (EP) was introduced by Lawrence J. 

Fogel in the USA, while almost simultaneously I. Rechenberg and H.-P. Schwefel 

introduced evolution strategies (ESs) in Germany. Almost a decade later, John Henry 

Holland from University of Michigan, devised an independent method of simulating 

the Darwinian evolution to solve practical optimization problems and called it the 

genetic algorithm (GA). These areas developed separately for about 15 years. From 

the early 1990s on they are unified as different representatives of one technology, 

called evolutionary computing. 

Swarm Intelligence (SI) introduced by Gerardo Beni and Jing Wang in 1989, is the 

study of the collective behavior of different natural systems which consist of number 

of agents working together.  

Since the mid-eighties several multi-objective EAs have been developed, capable of 

searching for multiple pareto-optimal solutions concurrently in a single run. In spite 

of this variety, it is difficult to determine the appropriate algorithm for a given 

problem because it lacks extensive, quantitative comparative studies. 

After the first studies on evolutionary multi-objective optimization  in the mid-

eighties, a number of Pareto-based techniques were proposed in 1993 and 1994, e.g., 

multi-objective genetic algorithm , niched pareto genetic algorithm  and 
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nondominated sorting genetic algorithm , which demonstrated the capability of EMO 

algorithms to approximate the set of optimal trade-offs in a single optimization run. 

These approaches did not incorporate elitism explicitly, but a few years later the 

importance of this concept in multi-objective search was recognized and supported 

experimentally. A couple of elitist multi-objective evolutionary algorithms were 

presented at this time, e.g., strength pareto evolutionary algorithm  and pareto 

archived evolution strategy . Strength pareto evolutionary algorithm2 is developed 

later which outperforms . It provides good performance in terms of convergence and 

diversity. Nondominated sorting genetic algorithm suffers from high computational 

complexity of nondominated sorting and lack of elitism. Nondominated sorting 

genetic algorithm-II  overcomes these drawbacks. 

Later multi-objective differential evolution , a pareto-based approach, has been 

developed which also provides a set of solutions in parallel. 

Economic dispatch (ED) is one of the important optimization problems in power 

system operation. ED allocates the load demand among the committed generators 

most economically while satisfying the physical and operational constraints. 

The conversion of fossil fuel into electricity is an inefficient process. Even the most 

modern combined cycle plants are between 50-60% efficient. Most of the energy 

wasted in the conversion process is heat. The principle of combined heat and power, 

known as cogeneration, is to recover and make beneficial use of this heat and as a 

result the overall efficiency of the conversion process is increased. Combined heat 

and power generation has higher energy efficiency and less green house gas emission 

as compared with the other forms of energy supply. Recently, cogeneration units have 

been extensively used in utility industry. The heat production capacity of cogeneration 

units depends on the power generation and vice versa. The mutual dependencies of 

heat and power generation introduce a complication in the integration of cogeneration 

units into the power economic dispatch.   

Differential evolution with Gaussian mutation has been developed and applied to 

solve economic dispatch problem and combined heat and economic dispatch problem. 

Thermal generating units with non-smooth/non-convex cost functions due to valve-

point loading taking into account transmission losses and nonlinear generator 

constraints such as prohibited operating zones have been considered here. Differential 

evolution (DE) is a simple yet powerful global optimization technique. It exploits the 

differences of randomly sampled pairs of objective vectors for its mutation process. 
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This mutation process is not suitable for complex multimodal optimization. Here, 

Gaussian mutation is introduced in DE which improves search efficiency and 

guarantees a high probability of obtaining the global optimum without significantly 

impairing the simplicity of the structure of DE. The effectiveness of the proposed 

method has been verified on different test systems, both small and large. 

ED involves allocation of the load demand among the committed generators most 

economically while satisfying the physical and operational constraints in a single area.  

Generally, the generators are divided into several generation areas interconnected by 

tie-lines. Multi-area economic dispatch (MAED) is an extension of economic 

dispatch. MAED determines the generation levels and interchange powers between 

areas such that total fuel cost in all the areas is minimized while satisfying power 

balance constraints, generating limit constraints and tie-line capacity constraints. 

Here, improved differential evolution and group search optimization have been 

applied to solve MAED problem.  

The generation of electricity from fossil fuel-based power station releases sulfur 

oxides (SOx), nitrogen oxides (NOx), and carbon dioxide (CO2) into atmosphere. 

Atmospheric pollution affects not only human beings but also other life-forms such as 

animals, birds, fish and plants. It also causes damage to vegetation, acid rain, reducing 

visibility as well as causing global warming. The increased concern over 

environmental protection and the passage of the clean air act amendments of 1990 

have forced the power utilities to reduce their emissions.  So today’s concern is to 

produce electricity not only at the cheapest possible price, but also at the minimum 

level of pollution.  

Several strategies have been proposed to reduce the atmospheric pollution. These 

include installation of post combustion cleaning equipment, switching to low 

emission fuels, replacement of the aged fuel burners with cleaner ones, and 

dispatching with emission considerations. The first three options require installation 

of new equipment and/or modification of the existing ones that involve considerable 

capital outlay and hence they can be considered as long-term options. So, the latter 

option is preferred. 

The two objectives i.e. cost and emission are conflicting in nature and they both have 

to be considered simultaneously to find overall optimal dispatch. Multi-area economic 

environmental dispatch (MAEED) serves to schedule the committed generator outputs 
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with the predicted load demand so as to optimize both cost and emission 

simultaneously while fulfilling the operating constraints. 

Here, multi-objective differential evolution (MODE) has been proposed to solve 

MAEED problem. 

Economic emission dispatch involves the allocation of generation among the 

committed generating units so as to optimize both the fuel cost and emission level 

simultaneously while satisfying the several operating constraints. 

Some power utilities have encountered a new dispatch problem, perhaps more 

significant than economic emission dispatch problem because of the sudden concern 

over fuel shortages. Fuel suppliers have imposed increased constraints in their fuel 

supply contracts to the point that utilities have been forced to reschedule generation 

on the basis of fuel availability. This came about because certain fuels were no longer 

available or available only in a limited supply or cut off from certain power plants. 

Thus, strict economic emission dispatch became impossible. There were no automatic 

ties between unit fuel availability and desired power production for that unit. 

With the ever increasing proportion of the fuel budget in the total operating cost and 

increasing concern over the environmental consideration, fuel constrained economic 

emission dispatch problem has been popped up.  

Here, multi-objective differential evolution (MODE) has been used for solving fuel 

constrained economic emission dispatch (FCEED) problem of thermal generating 

units. 

Optimum scheduling of generation in a hydrothermal system is of great importance to 

electric utility systems. The insignificant marginal cost of hydroelectric operational 

cost of a hydrothermal system essentially reduces to that of minimizing the fuel cost 

for thermal plants under the various constraints on the hydraulic, thermal and power 

system network. 

The main constraints include: the time coupling effect of the hydro sub-problem, 

where the water flow in an earlier time interval affects the discharge capability at a 

later period of time, the cascaded nature of the hydraulic network, the varying hourly 

reservoir inflows, the physical limitations on the reservoir storage and turbine flow 

rate, prohibited operating zones of hydroelectric system, ramp-rate limits of thermal 

generators, the varying system load demand and the loading limits of both thermal 

and hydro plants.  
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The hydrothermal scheduling problem has been the subject of investigation for 

several decades. Most of the methods that have been used to solve the hydrothermal 

co-ordination problem make a number of simplifying assumptions in order to make 

the optimization problem more tractable. 

Here, modified evolutionary programming (MEP) has been developed and applied to 

solve variable head hydrothermal scheduling problem. Group search optimization 

(GSO)  has also been  used to solve variable head hydrothermal scheduling problem. 

Here, Group search optimization (GSO), opposition-based group search optimization 

(OGSO) and opposition based differential evolution (ODE) have been applied for 

optimal scheduling of generation in a fixed head hydrothermal system. Here, system 

with fixed head hydro plants whose water discharge rate curves are modeled as 

quadratic functions of the hydropower generation and thermal units with nonsmooth 

fuel cost function. Here, scheduling period is divided into a number of subintervals 

each having a constant load demand. 

 

1.2 Literature Survey 
Evolutionary algorithms (EAs) [1]-[2] are search algorithms based on the simulated 

evolutionary process of natural selection and genetics. Genetic algorithm (GA) [3] 

belongs to a class of evolutionary computation techniques [4]-[5] based on models of 

biological evolution. The main difficulty of GA is its binary representation which 

arises when dealing with continuous search space with large dimensions. In [6]-[7] 

real-coded genetic algorithm (RCGA) has been discussed which overcomes the 

difficulties of GA. 

Evolutionary Programming (EP) [4] is a technique in the field of evolutionary 

computation. It seeks the optimal solution by evolving a population of candidate 

solutions over a number of generations or iterations 

Differential evolution (DE) is a very simple and robust method originally proposed by 

Price and Stron [8] for optimization problem over a continuous domain. The basic 

idea of DE [9] is to adapt the search during the evolutionary process.  

Particle Swarm Optimization (PSO) [10]-[12] was introduced in 1995 by James 

Kennedy and Russell Eberhart as a global optimization technique. It is a population-

based self-adaptive stochastic search technique with reduced memory requirement. 



 

7 
 

Group search optimization (GSO) [13]-[14] is a population based optimization 

algorithm which is inspired by animal searching behavior and group living theory. 

Multi-objective evolutionary algorithms (MOEAs) have been discussed very well in 

[17]-[24]. Zitzler and Thiele [19] have developed strength pareto evolutionary 

algorithm (SPEA) in 1999.  In 2001 they have developed the improved version 

strength pareto evolutionary algorithm [20] i.e. strength pareto evolutionary algorithm 

2 (SPEA2). Deb et al. [21] have proposed nondominatd sorting genetic algorithm-II 

(NSGA-II) in 2002. Babu and Anbarasu have developed multi-objective differential 

evolution (MODE) [23] in 2005.  

The dynamic programming (DP) approach imposes no restriction on the nature of the 

cost curves and can solve ED problems with non-smooth and discontinuous cost 

curves. However, this method suffers from the curse of dimensionality or local 

optimality. 

Meta-heuristic algorithms are successfully applied to solve complex ED problems. 

Genetic algorithms (GAs) [32]-[34], Hopfield neural network (HNN) [37], simulated 

annealing (SA) [38]-[39], evolutionary programming (EP) [40]-[41], improved tabu 

search (ITS) [31], particle swarm optimization (PSO) [30], [42],[43], evolutionary 

strategy optimization (ESO) [35], ant colony optimization (ACO) [44], differential 

evolution (DE) [45], self -tuning hybrid differential evolution (SHDE) [46], artificial 

immune system (AIS) [47], bacterial foraging algorithm (BFA) [48], biogeography-

based optimization (BBO) [49], etc. have been developed so far and applied 

successfully to solve ED problems. Although these methods do not always guarantee 

global best solutions, they often achieve a fast and near global optimal solution. 

The advent of stochastic search algorithms has provided alternative approaches for 

solving combined heat and economic dispatch (CHPED) [50]-[51] problem. Improved 

ant colony search algorithm [52], evolutionary programming [53], genetic algorithm 

[54], harmonic search algorithm [55], multi-objective particle swarm optimization 

[56], self adaptive real-coded genetic algorithm [57], novel selective particle swarm 

optimization [58], mesh adaptive direct search algorithm [59], particle swarm 

optimization with time varying acceleration coefficients [62] and oppositional 

teaching learning based optimization [63] have been applied to solve CHPED 

problem. 

Doty and McEntire [67] solved a multi-area economic dispatch problem by using 

spatial dynamic programming and the result obtained was a global optimum. An 
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application of linear programming to transmission constrained production cost 

analysis was proposed in Ref. [68]. Helmick  [69] solved multi-area economic 

dispatch with area control error. Ouyang et al [70] proposed heuristic multi-area unit 

commitment with economic dispatch. Wang and Shahidehpour [71] proposed a 

decomposition approach for solving multi-area generation scheduling with tie-line 

constraints using expert systems. Network flow models for solving the multi-area 

economic dispatch problem with transmission constraints have been proposed by 

Streiffert [72]. An algorithm for multi-area economic dispatch and calculation of short 

range margin cost based prices has been presented by Wernerus and Soder [73], 

where the multi-area economic dispatch problem was solved via Newton–Raphson’s 

method. Yalcinoz and Short [74] solved multi-area economic dispatch problems by 

using Hopfield neural network approach. Jayabarathi [75] solved multi-area economic 

dispatch problems with tie line constraints using evolutionary programming. The 

direct search method for solving economic dispatch problem considering transmission 

capacity constraints was presented in [76]. Manoharan [77] explored the performance 

of the various evolutionary algorithms on multi-area economic dispatch (MAED) 

problems. 

Here, evolutionary algorithms such as the Real-coded Genetic Algorithm (RCGA), 

Particle Swarm Optimization (PSO), Differential Evolution (DE) and Covariance 

Matrix Adapted Evolution Strategy (CMAES) are considered. Multi-area economic 

environmental dispatch (MAEED) problem is proposed in [78]. Here, MAEED 

problem is handled by an improved multi-objective particle swarm optimization 

(MOPSO) algorithm for searching out the Pareto-optimal solutions. Sharma  [79] 

have presented a close comparison of classic PSO and DE strategies and their variants 

for solving the reserve constrained multi-area economic dispatch problem with power 

balance constraint, upper/lower generation limits, ramp rate limits, transmission 

constraints and other practical constraints. In [80] a discussion of ‘‘Reserve 

constrained multi-area economic dispatch employing differential evolution with time-

varying mutation” has been presented.  

The hydrothermal scheduling problem has been the subject of investigation for 

several decades. Most of the methods that have been used to solve the hydrothermal 

co-ordination problem make a number of simplifying assumptions in order to make 

the optimization problem more tractable. Some of these solution methods are 

mathematical decomposition [98], network flow [99], dynamic programming [100], 
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deterministic optimization algorithm [101], Lagrangian relaxation [102], and Benders 

decomposition [103].   

Since the mid 1990s, many techniques originated from Darwin’s natural evolution 

theory have emerged. These techniques are usually termed by “evolutionary 

computation methods” including evolutionary algorithms (EAs), swarm intelligence 

and artificial immune system.  

With the emergence of evolutionary computation methods, attention has been 

gradually shifted to application of such technology-based approaches to handle the 

complexity involved in real world problems. Stochastic search algorithms such as 

simulated annealing technique [104], evolutionary programming technique [105], 

[108], genetic algorithm [106]-[107], differential evolution [109]-[111], and particle 

swarm optimization [112], clonal selection algorithm [113] and teaching learning 

based optimization [114] have been applied for optimal hydrothermal scheduling 

problem and circumvented the above mentioned weakness. 

 

1.3 Motivation behind the work 
The valve-point loading, prohibited operating zones, ramp-rate limits and other 

constraints turn the decision space into disjoint subsets, transforming the most of the 

power system problems into  difficult non-smooth, non-convex optimization 

problems.  

The calculus-based methods fail to address these types of problems. The dynamic 

programming method has no restrictions on the shape of the objective function and 

can solve these types of problems. However, this method suffers from the curse of 

dimensionality or local optimality.  Modern meta-heuristic algorithms are  promising 

alternatives for the solution of complex power system optimization problems. 

Keeping this in mind, this work mainly focuses on complex power system 

optimization by using nature-inspired meta-heuristic techniques. 
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CHAPTER 2 

Nature-inspired Meta-heuristics Techniques 

 

2.1 Introduction 
Heuristic algorithms mimic physical or biological processes. Some of the most 

famous heuristic algorithms are genetic algorithm, simulated annealing, artificial 

immune systems, ant colony optimization, particle swarm optimization and bacterial 

foraging algorithm. Genetic algorithm (GA) is inspired from Darwinian evolutionary 

theory, simulated annealing (SA) is designed by use of thermodynamic effects, 

artificial immune systems (AIS) simulate biological immune systems, ant colony 

optimization (ACO) mimics the behavior of ants foraging (searching) for food, 

bacterial foraging algorithm (BFA) comes from search and optimal foraging of 

bacteria and particle swarm optimization (PSO) simulates the behavior of flock of 

birds. 

Nowadays, the field of nature-inspired meta-heuristics is mostly constituted by the 

evolutionary computing (EC) techniques or evolutionary algorithms (EAs) 

[comprising of genetic algorithm (GA), evolutionary programming (EP), evolutionary 

strategy (ES), genetic programming (GP), differential evolution (DE), and so on] as 

well as the swarm intelligence algorithms [e.g., ant colony optimization (ACO), 

particle swarm optimization (PSO), Bees algorithm, bacterial foraging algorithm,  

(BFA), and so on]. Also the field extends in a broader sense to include self-organizing 

systems, artificial life (digital organism), mimetic and cultural algorithms, harmony 

search, and artificial immune systems.Nature-inspired meta-heuristics deal with a set 

(i.e. a population) of solutions rather than with a single solution.  

 

 

2.2. Evolutionary algorithms  
Evolutionary algorithms (EAs) are stochastic search methods that mimic evolutionary 

processes encountered in nature. EAs are inspired by Darwin’s evolutionary theory. 
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The common conceptual base of these methods is to evolve a population of candidate 

solutions by simulating the main processes involved in the evolution of genetic 

material of organism (living being) populations, such as natural selection and 

biological evolution. EAs can be characterized as global optimization algorithms. 

Their population-based nature allows them to avoid getting trapped in a local 

optimum and consequently provides a great chance to find global optimal solutions. 

In general, every EA starts by initializing a population of candidate solutions 

(individuals). The quality of each solution is evaluated using a fitness function. A 

selection process is applied at each iteration of the EA to produce a new set of 

solutions (population). The selection process is biased toward the most promising 

traits of the current population of solutions to increase their chances of being included 

in the new population. At each iteration (generation), the individuals are evolved 

through a predefined set of operators, like mutation and recombination. This 

procedure is repeated until convergence is reached. The best solution found by this 

procedure is expected to be a near-optimum solution. 

Mutation and recombination are the two most frequently used operators and are 

referred to as evolutionary operators. The role of mutation is to modify an individual 

by small random changes to generate a new individual. Its main objective is to 

increase diversity by introducing new genetic material into the population, and thus 

avoid local optima. The 

recombination (or crossover) operator combines two, or more, individuals to generate 

new promising candidate solutions. The main objective of the recombination operator 

is to explore new areas of the search space.  

Evolutionary computation (EC) is the general term for several optimization 

algorithms that are inspired by the Darwinian principles of nature’s capability to 

evolve (develop) living beings well adapted to their environment. EC techniques (also 

called Evolutionary Algorithms (EAs)) include genetic algorithm, evolution strategy, 

evolutionary programming and genetic programming. Despite the differences between 

these techniques, they all share a common underlying idea of simulating the evolution 

of individual structures via processes of selection, recombination, and mutation, 

thereby producing better solutions.  

Every iteration of the algorithm corresponds to a generation, where a population of 

candidate solutions to a given optimization problem, called individuals, is capable of 

reproducing and is subjected to genetic variations followed by the environmental 
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pressure that causes natural selection (survival of the fittest). New solutions are 

created by applying recombination, that combines two or more selected individuals 

(the so-called parents) to produce one or more new individuals (the children or 

offspring), and mutation, that allows the appearance of new traits (qualities) in the 

offspring to promote diversity. The fitness (how good the solutions are) values  of the 

resulting solutions are evaluated and a suitable selection strategy is then applied to 

determine which solutions will be maintained into the next generation. As a 

termination condition, a predefined number of generations (or function evaluations) of 

simulated evolutionary process is usually used, or some more complex stopping 

criteria can be applied. 

A main issue in the application of EAs to a given optimization problem is to 

determine the values of the control parameters of the algorithm that will allow the 

efficient exploration of the search space, as well as its effective exploitation. 

Exploration enables the identification of regions of the search space in which good 

solutions are located. On the other hand, exploitation accelerates the convergence to 

the optimum solution. Inappropriate choice of the parameter values can cause the 

algorithm to become greedy or very explorative and consequently the search of the 

optimum can be hindered. For example, a high mutation rate will result in much of the 

space being explored, but there is also a high probability of losing promising 

solutions; the algorithm has difficulty in converging to an optimum due to insufficient 

exploitation. Several evolutionary computation approaches have been proposed that 

try to give a satisfactory answer to this exploration/exploitation dilemma (problem). 
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2.2.1 Genetic Algorithm 
Genetic algorithm (GA) is a search algorithm based on the mechanics of natural 

genetics and natural selection. It combines the adaptive nature of the natural genetics 

or the evolution procedures of organs with functional optimizations. By simulating 

“the survival of the fittest” of Darwinian evolution among chromosome structures, the 

optimal chromosome (solution) is searched by randomized information exchange. In 

every generation, a new set of artificial chromosomes is created by using bits and 

pieces of the fittest of the old ones. While randomized, GA is not a simple random 

walk. It efficiently exploits historical information to speculate on new search points 

with expected improved performance.    

GA is essentially derived from a simple model of population genetics. The three 

prime operators associated with the GA are reproduction, crossover and mutation. 

Reproduction is simply an operation whereby an old chromosome is copied into a 

“mating pool” according to its fitness value. More highly fitted chromosomes (i.e., 

with better values of the objective function) receive a higher number of copies in the 

next generation. Coping chromosomes according to their fitness values means that 

chromosomes with a higher value have  higher probability of contributing one or 

more offsprings in the next generation.   

Population initialization 

Offspring generation 
through random variation 

Fitness evaluation of 
candidate solutions 

Solutions update Terminate? 

No

Yes 

Fig. 1. A general flowchart of typical EAs. 
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Crossover is an extremely important component of the GA. It is a structured 

recombination operation. This operation is similar to two scientists exchanging 

information.  

Although reproduction and crossover effectively search and recombine existing 

chromosomes, they do not create any new genetic material in the population. 

Mutation is capable of overcoming this shortcoming. 

Due to difficulties of binary representation when dealing with continuous search 

space with large dimensions, real-coded genetic algorithm (RCGA) has been used in 

this thesis. The Simulated Binary Crossover (SBX) and polynomial mutation have 

been used. The crossover probability of 9.0=cp  and a mutation probability of 

npm /1=  (where n  is the number of decision variables) are used. Here, distribution 

indices for crossover and mutation operators as 10=cη and 10=mη are used 

,respectively. 

 

2.2.1.1 Simulated Binary Crossover (SBX) operator 

The procedure of computing child populations 1c  and 2c  from two parent populations 

1y  and 2y  under SBX operator is  as follows: 

 

1. Create a random number u between 0 and 1. 

2. Find a parameter γ  using a polynomial probability distribution as follows: 

 

 

              ( ) ( )11 +cu ηα  ,               if   
α
1

≤u                                                                    (2.1) 

γ  =      
              ( )( ) ( )+− cu ηα 121 ,      otherwise 
 

 

where ( )12 +−−= cηβα   and β  is calculated as follows: 

( ) ( )[ ]21
12

,min21 yyyy
yy ul −−

−
+=β                                                                    (2.2) 
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Here, the parameter y is assumed to vary in [ ]ul yy , . Here, the parameter cη  is the 

distribution index for SBX and can take any non-negative value. A small value of 

cη allows the creation of child populations far away from parents and a large value 

restricts only near-parent populations to be created as child populations. 

 

3.  The intermediate populations are calculated as follows: 

 

( ) ( )[ ]12211 5.0 yyyyc p −−+= γ  

( ) ( )[ ]12212 5.0 yyyyc p −++= γ                                                                               (2.3) 

 

Each variable is chosen with a probability cp  and the above SBX operator is applied 

variable-by-variable. 

 

2.2.1.2 Polynomial Mutation operator 
A polynomial probability distribution is used to create a child population in the 

vicinity of a parent population under the mutation operator. The following procedure 

is used: 

 

1. Create a random number u between 0 and 1. 

2. Calculate the parameter δ  as follows: 

 

     

           ( )( )( )[ ]( ) 11212 1
1

1 −−−+ ++
mmuu ηηφ ,                         if 5.0≤u                           (2.4) 

δ =  

           ( ) ( )( )( )[ ]( )1
1

115.02121 ++−−+−− mmuu ηηφ ,             otherwise 
 

 

where   
( ) ( )[ ]
( )lu

pulp

yy
cyyc

−

−−
=

,min
ϕ   

 

The parameter mη  is the distribution index for mutation and takes any non-negative 

value. 
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3. Calculate the mutated child as follows: 

 

( )lup yycc −+= δ11                                                                                                  (2.5) 

( )lup yycc −+= δ22  

 

The perturbance in the population can be adjusted by varying mη  and mp  with 

generations as given below: 

 

genmm += minηη                                                                                                       (2.6) 

 

 

                                                                                       (2.7) 

 

where minmη  is the user defined minimum value for mη , mp  is the probability of 

mutation, and n  is the number of decision variables. 

 

2.2.2. Evolutionary Programming 
Evolutionary Programming (EP) is a technique in the field of evolutionary 

computation. It seeks the optimal solution by evolving a population of candidate 

solutions over a number of generations or iterations. During each iteration, a second 

new population is formed from an existing population through the use of a mutation 

operator. This operator produces a new solution by perturbing each component of an 

existing solution by a random amount. The degree of optimality of each of the 

candidate solutions or individuals is measured by it’s fitness, which can be defined as 

a function of the objective function of the problem. Through the use of a competition 

scheme, the individuals in each population compete with each other. The winning 

individuals form a resultant population, which is regarded as the next generation. For 

optimization to occur, the competition scheme must be such that the more optimal 

solutions have a greater chance of survival than the poorer solutions. Through this the 

population evolves towards the global optimal point. The algorithm is described as 

follows: 

⎟
⎠
⎞

⎜
⎝
⎛ −+=

ngen
gen

n
pm

111

max
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2.2.2.1 Initialization 
The initial population of control variables is selected randomly from the set of 

uniformly distributed control variables ranging over their upper and lower limits. The 

fitness score if  is obtained according to the objective function and the environment. 

 

2.2.2.2 Statistics 

 The maximum fitness maxf , minimum fitness minf , the sum of fitness ∑ f , and 

average fitness avgf  of this generation are calculated. 

 

2.2.2.3 Mutation 

Each selected parent, for example iΧ , is mutated and added to its population with the 

following rule: 

 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+Χ=Χ +

max
, ,0

f
f

xxN i
jjijjmi γ ,    ΡΝ∈∈ iDj ,     (2.8) 

 

where D  is the number of decision variables in an individual, ΡΝ  is the population 

size, ijΧ  denotes the j th element of the i th individual; ( )2,σμN  represents a 

Gaussian random variable with mean μ  and variance 2σ ; maxf  is the maximum 

fitness of the old generation which is obtained in statistics; jx  and jx  are, 

respectively, maximum and minimum limits of the j th element; and γ  is the 

mutation scale, 10 ≤< γ , that could be adaptively decreased during generations. If 

any mutated value exceeds its limit, it will be given the limit value. The mutation 

process allows an individual with larger fitness to produce more offspring for the next 

generation. 

 

2.2.2.4 Competition 
Several individuals ( k ) which have the best fitness values are kept as the parents for 

the next generation. Other individuals in the combined population of size ( k−ΝΡ2 ) 
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have to compete with each other to get their chances for the next generation. A weight 

value iw  of the i th individual is calculated by the following competition: 

 

∑
Ν

=

=
t

t
tii ww

1
,           (2.9) 

 

where tΝ  is the competition number generated randomly; tiw ,  is either 0 for loss or 1 

for win as the i th individual competes with a randomly selected ( r th) individual in 

the combined population. The value of tiw ,  is given in the following equation: 

 
                1      if ri ff <  

tiw , =                                (2.10) 
                0      otherwise 
 

where rf  is the fitness of randomly selected r th individual, and if  is the fitness of 
the i th individual. When all ΡΝ2  individuals, get their competition weights, they will 
be ranked in a descending order according to their corresponding values iw . The first 
m  individuals are selected along with their corresponding fitness if  to be the bases 
for the next generation. The maximum, minimum and the average fitness and the sum 
of the fitness of the current generation are then calculated in the statistics. 
 

2.2.2.5 Convergence test 
 If the convergence condition is not met, the mutation and competition will run again. 

The maximum generation number can be used for convergence condition. Other 

criteria, such as the ratio of the average and the maximum fitness of the population are 

computed and generations are repeated until 

 

{ } δ≥maxff avg          (2.11) 

 

where δ  should be very close to 1, which represents the degree of satisfaction. If the 

convergence has reached a given accuracy, an optimal solution has been found for an 

optimization problem. 

Figure 2.1 shows the flowchart of evolutionary programming. 
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                         Fig. 2.1. Flowchart of evolutionary programming. 
 
 
2.2.3. Modified Evolutionary Programming 
In modified evolutionary programming (MEP), crossover and one-to-one competition 

of differential evolution (DE) are introduced in evolutionary programming (EP) to 

improve the speed of convergence and quality of solution. This one-to-one 

competition gives rise to faster convergence rate as the fittest offspring competes one-

to-one with that of corresponding parent.  The main stages are initialization, mutation, 

crossover and selection. These are listed below: 

 

2.2.3.1. Initialization:  The initial population ( 0
iΧ ) of control variables is selected 

randomly as follows: 

 

( )maxmin0
, ,~ jjji xxUx  ,  ΡΝ∈∈ inj ,                                                                     (2.12) 

 

where n  is the number of decision variables in an individual ; ΡΝ  is the population 

size; 0
, jix  denotes the initial j th variable of the i th population ; min

jx  and max
jx  are the 

Start 

Initialize population and evaluate fitness 

Create offspring and evaluate offspring fitness 

Individuals compete to form next iteration 

Is stopping 
rule satisfied? 

Stop 

Yes 

No 
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lower and upper bounds of the j th decision variable; ( )maxmin , jj xxU  denotes a uniform 

random variable ranging over [ ]maxmin , jj xx .  

All the populations should satisfy the constraints. Evaluate the objective function if  

of each population according to the objective function.  The maximum objective 

function value maxf  is calculated. 

 

2.2.3.2. Mutation: Each selected parent population ( k
iΧ ) is mutated and added to 

its population to create offspring ( k
i
/Χ )   with the following rule: 

 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+=

max

minmax
,

/
, ,0

f
f

xxNxx i
jj

k
ji

k
ji β ,     ΡΝ∈∈ inj ,  (2.13) 

where  ( )2,σμN  represents a Gaussian random variable with mean μ  and variance 
2σ ; maxf  is the maximum objective function value of the previous iteration; β  is the 

mutation scale.  

 

2.2.3.3. Crossover 

Perform crossover for each parent population k
iΧ  with its offspring  k

i
/Χ  and create a 

trial population k
i
//Χ such that  

 

 
                  k

i
/Χ   , if   RC≤ρ  

=Χ k
i
//                                      ,   ΡΝ∈i                                                                  (2.14) 

                  k
iΧ    ,  otherwise  

 

where ρ  is an uniformly distributed random number within [0, 1]. Here, binomial 

crossover is performed. The basic crossover process is a discrete recombination, 

which employs crossover rate [ ]1,0∈RC  to determine if the newly generated 

population is to be recombined. 

Each trial population should satisfy the constraints. Evaluate the objective function if  

of each trial population according to the objective function.   
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2.2.3.4. Selection 

Perform selection for each parent population, k
iΧ  by comparing its objective function 

value with that of the trial population, k
i
//Χ . The population that has lower objective 

function value of the two would survive for the next iteration. 

 
  
                 k

i
//Χ , if  ( ) ( )k

i
k

i ff Χ≤Χ //  
=Χ +1k

i                                               , ΡΝ∈i                                                          (2.15) 
                  k

iΧ    ,  otherwise  
 

The process is repeated until the maximum number of iterations or no improvement is 

seen in the best individual after many iterations.  

Figure 2.2 shows the flowchart of modified evolutionary programming. 

 

 
                         Fig. 2.2. Flowchart of modified evolutionary programming. 

Start

Set Iter.=1

Generate initial population 

Evaluate objective function value of each population 

Perform mutation of each parent population  

Perform crossover for each parent population to create trial population 

Evaluate objective function value of each trial population 

Select the survivor population which has lower objective function value of the two  

Iter. < Max. Iter. 
Iter.=Iter.+1

Yes

No

End
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2.2.4. Differential Evolution 
Differential Evolution (DE), originally proposed by Price and Storn in 1995-1997 at 

Berkley, is a population-based stochastic parallel direct search method for 

optimization problems over a continuous domain. DE outperforms other well-known 

EAs in a plethora of problems and has attracted the interest of the research 

community. DE is exceptionally simple, significantly faster, precise and robust.  

The basic idea of DE is to adapt the search during the evolutionary process. At the 

start of the evolution, the perturbations are large since parent populations are far away 

from each other. As the evolutionary process matures, the population converges to a 

small region and the perturbations adaptively become small. As a result, the 

evolutionary algorithm performs a global exploratory search during the early stages of 

the evolutionary process and local exploitation during the mature stage of the search. 

The optimization process in DE is carried out with three basic operations: mutation, 

crossover and selection. 

Like any evolutionary algorithm, a population of candidate solutions for the 

optimization problem to be solved is arbitrarily initialized. For each generation of the 

evolutionary process, new individuals are created by applying crossover and mutation. 

The fitness values of the resulting solutions are evaluated. Each individual (target 

individual) of the population competes against a new individual (trial individual) to 

determine which one will be maintained into the next generation. The trial individual 

is created by recombining the target individual with another individual created by 

mutation (called mutant individual). In DE the fittest  offspring competes one-to-one 

with that of corresponding parent which is different from other evolutionary 

algorithms. This one-to-one competition gives rise to faster convergence rate. 

Differential evolution exploits the differences of randomly sampled pairs of solution 

vectors for its mutation process. Consequently the variation between vectors will 

outfit the objective function toward the optimization process and therefore provides 

efficient global optimization capability. The key parameters of control in DE are 

population size, scaling factor and crossover rate. Price and Storn gave the working 

principle of DE with simple strategy . Later on, they suggested ten different strategies 

of DE. Strategy-7 (DE/rad/1/bin) is the most successful and widely used strategy.  
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2.2.4.1. Initialization 

The initial population of ΡΝ  vectors is randomly selected based on uniform 

probability distribution for all variables to cover the entire search uniformly. Each 

individual iΧ  is a vector that contains as many parameters as the problem decision 

variables D . Random values are assigned to each decision parameter in every vector 

according to: 

 

( )maxmin0 ,~ jjij U ΧΧΧ                                                               (2.16) 

where i =1,…., ΡΝ  and j =1,…., D ; min
jΧ  and max

jΧ  are the lower and upper bounds 

of the j th decision variable; ( )maxmin , jjU ΧΧ  denotes a uniform random variable 

ranging over [ ]maxmin , jj ΧΧ ; 0
ijΧ   is the initial j th variable of i th population. All the 

vectors should satisfy the constraints. Evaluate the value of the cost function ( )0
if Χ  

of each vector. 

 

2.2.4. 2. Mutation 
DE generates new parameter vectors by adding the weighted difference vector 

between two population members to a third member. For each target vector g
iΧ  at 

g th generation the noisy vector g
i
/Χ is obtained by 

 

( )g
c

g
b

g
a

g
i F Χ−Χ+Χ=Χ / ,           ΡΝ∈i                (2.17) 

 

where g
aΧ , g

bΧ  and g
cΧ  are selected randomly from ΡΝ  vectors at g th generation 

and icba ≠≠≠ . The scaling factor ( F ), in the range 2.10 ≤< F , controls the 

amount of perturbation added to the parent vector. The noisy vectors should satisfy 

the constraint. 

 

2.2.4. 3. Crossover 

Perform crossover for each target vector g
iΧ  with its noisy vector g

i
/Χ  and create a 

trial vector g
i
//Χ such that  
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                    g

i
/Χ   , if   RC≤ρ  

=Χ g
i
//                                                 ,              ΡΝ∈i                                   (2.18) 

                     g
iΧ    ,  otherwise  

 
 
where ρ  is an uniformly distributed random number within [0, 1].  The crossover 

constant ( RC ), in the range 10 ≤≤ RC , controls the diversity of the population and 

aids the algorithm to escape from local optima.  

 

2.2.4. 4. Selection 

Perform selection for each target vector, g
iΧ  by comparing its cost with that of the 

trial vector, g
i
//Χ . The vector that has lesser cost of the two would survive for the next 

generation. 

 
  
                    g

i
//Χ   , if   ( ) ( )g

i
g

i ff Χ≤Χ //  
=Χ +1g

i                                                              ,  ΡΝ∈i                (2.19) 
                     g

iΧ    ,  otherwise  
 
 
The process is repeated until the maximum number of generations or no improvement 

is seen in the best individual after many generations. 

Figure 2.3 shows the flowchart of differential evolution. 
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2.2.4.5. Parameter Selection 

In differential evolution, scaling factor ( FS ), crossover constant ( RC ), and population 

size ( ΡΝ ) are the three control parameters. Proper selection of control parameters is 

important for the performance of the algorithm. The scaling factor controls the 

amount of perturbation in the mutation process. Its value lies in the range of  [0, 2]. 

Lower value of FS  results premature convergence while higher value of FS  tends to 

slow down convergence speed. The crossover constant whose value is in the range of 

[0, 1], controls the diversity of the population. The diversity for searching the solution 

space depends on the population size. However, large population slows down 

convergence speed.  

Start 

Specify the DE parameters

Set Iter.=1

Generate initial population

Set target vector

Evaluate cost of target vector

Generate mutant vector by mutation operation

Generate trial vector by crossover operation

Evaluate cost of trial vector

The best vector survives by selection operation

Iter. < Max. Iter. 
Iter.=Iter.+1 

Yes

Stop

No

Fig. 2.3. Flowchart of Differential Evolution. 
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The optimal control parameters are problem dependent. Generally, parameter tuning 

is used to select control parameters. By thorough testing, parameter tuning adjusts the 

control parameters until the best settings are determined. 

 

2.2.5. Improved Differential Evolution 
As a relatively new member of EAs, DE is less known outside metaheuristic 

optimization area. Similar to other EAs, DE relies likewise on the initial population, 

mutation, crossover and selection to problem search space through iterative progress 

until the terminate criteria is met. The key parameters of control in DE are population 

size, scaling factor and crossover rate. In improved differential evolution (IDE), 

Gaussian random variable is taken instead of scaling factor.  The IDE algorithm is 

described as follows: 

 

2.2.5.1. Initialization 

The initial population of ΡΝ  vectors is randomly selected based on uniform 

probability distribution for all variables to cover the entire search uniformly. Each 

individual iΧ  is a vector that contains as many parameters as the problem decision 

variables D . Random values are assigned to each decision parameter in every vector 

according to: 

 

( )maxmin0 ,~ jjij U ΧΧΧ                                                                                                (2.20) 

 

where i =1,…., ΡΝ  and j =1,…., D ; min
jΧ  and max

jΧ  are the lower and upper bounds 

of the j th decision variable; ( )maxmin , jjU ΧΧ  denotes a uniform random variable 

ranging over [ ]maxmin , jj ΧΧ ; 0
ijΧ   is the initial j th variable of i th population. All the 

vectors should satisfy the constraints. Evaluate the value of the cost function ( )0
if Χ  

of each vector. 
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2.5.2. Mutation 
IDE generates new parameter vectors by adding the weighted difference vector 

between two population members to a third member. For each target vector g
iΧ  at 

g th generation the noisy vector g
i
/Χ is obtained by 

( ) ( )g
c

g
bi

g
a

g
i N Χ−Χ×+Χ=Χ 2/ ,0 σ ,       ΡΝ∈i                                                       (2.21) 

 

where g
aΧ , g

bΧ  and g
cΧ  are selected randomly from ΡΝ  vectors at g th generation 

and icba ≠≠≠ .  ( )2,0 iN σ  represents a Gaussian random variable with mean zero 

and standard deviation iσ .  

The standard deviation iσ  is given by the expression 
( )
minf

f i
i

Χ
=σ                       (2.22) 

where minf  is  the minimum cost value among ΡΝ  vectors. ( )if Χ  is the value of the 

objective function associated with i th vector. 

 

This Gaussian random variable controls the amount of perturbation added to the 

parent vector and aids the algorithm to escape from local optima. This maintains the 

diversity of the population throughout iterative process which guarantees a high 

probability of achieving the global optimum. 

 

2.2.5.3. Crossover 

Perform crossover for each target vector g
iΧ  with its noisy vector g

i
/Χ  and create a 

trial vector g
i
//Χ such that  

 
                    g

i
/Χ   , if   RC≤ρ  

=Χ g
i
//                                       ,    ΡΝ∈i                                                               (2.23) 

                     g
iΧ    ,  otherwise  

 
 

where ρ  is an uniformly distributed random number within [0, 1]. The basic 

crossover process is a discrete recombination, which employs constant [ ]1,0∈RC  to 

determine if the newly generated individual is to be recombined. 
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2.2.5. 4. Selection 

Perform selection for each target vector, g
iΧ  by comparing its cost with that of the 

trial vector, g
i
//Χ . The vector that has lesser cost of the two would survive for the next 

generation. 

 
  
              g

i
//Χ , if  ( ) ( )g

i
g

i ff Χ≤Χ //  
=Χ +1g

i                                            ,  ΡΝ∈i                                                            (2.24) 
              g

iΧ    ,  otherwise  
 
The process is repeated until the maximum number of generations or no improvement 

is seen in the best individual after many generations. 

 

2.2.6. Differential Evolution with Gaussian Mutation 
As a relatively new member of EAs, DE is less known outside metaheuristic 

optimization area. Similar to other EAs, DE relies likewise on the initial population, 

mutation, crossover and selection to problem search space through iterative progress 

until the terminate criteria is met. The key parameters of control in differential 

evolution with Gaussian mutation (DEGM) are population size and crossover rate. 

The DEGM algorithm is described as follows: 

 

2.2.6.1. Initialization 

The initial population of ΡΝ  vectors is randomly selected based on uniform 

probability distribution for all variables to cover the entire search uniformly. Each 

individual iΧ  is a vector that contains as many parameters as the problem decision 

variables D . Random value is  assigned to each decision parameter in every vector 

according to: 

 

( )maxmin0 ,~ jjij U ΧΧΧ                                                                                                (2.25) 

 

where i =1,…., ΡΝ  and j =1,…., D ; min
jΧ  and max

jΧ  are the lower and upper bounds 

of the j th decision variable; ( )maxmin , jjU ΧΧ  denotes a uniform random variable 
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ranging over [ ]maxmin , jj ΧΧ ; 0
ijΧ   is the initial j th variable of i th population. All the 

vectors should satisfy the constraints. Evaluate the value of the cost function ( )0
if Χ  

of each vector. 

 

 

2.2.6. 2. Mutation 
DEGM generates new parameter vectors by adding a Gaussian random variable to the 

parent vector. For each parent vector g
iΧ  at g th generation the offspring vector 

g
i
/Χ is obtained by 

 

( )2/ ,0 i
g
i

g
i N σ+Χ=Χ ,       ΡΝ∈i                                                                           (2.26) 

 

where  ( )2,0 iN σ  represents a Gaussian random variable with mean zero and standard 

deviation iσ .  

The standard deviation iσ  is given by the expression 
( )
minf

f i
i

Χ
=σ   ,                   (2.27) 

where minf  is  the minimum cost value among ΡΝ  vectors. ( )if Χ  is the value of the 

objective function associated with the  i th vector. 

 

This Gaussian random variable controls the amount of perturbation added to the 

parent vector and aids the algorithm to escape from local optima. This maintains the 

diversity of the population throughout iterative process which guarantees a high 

probability of achieving the global optimum. 

 

2.2.6. 3. Crossover 

Perform crossover for each target vector g
iΧ  with its offspring vector g

i
/Χ  and create 

a trial vector g
i
//Χ such that  
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                    g

i
/Χ   , if   RC≤ρ  

=Χ g
i
//                                        ,   ΡΝ∈i                                                              (2.28) 

                     g
iΧ    ,  otherwise  

 
 
where ρ  is an uniformly distributed random number within [0, 1]. The basic 
crossover process is a discrete recombination, which employs constant [ ]1,0∈RC  to 
determine if the newly generated individual is to be recombined. 
 
2.2.6. 4. Selection 
Perform selection for each target vector, g

iΧ  by comparing its cost with that of the 
trial vector, g

i
//Χ . The vector that has lesser cost of the two would survive for the next 

generation. 
 
 
 
  
              g

i
//Χ , if  ( ) ( )g

i
g

i ff Χ≤Χ //  
=Χ +1g

i                                               , ΡΝ∈i                                                          (2.29) 
              g

iΧ    ,  otherwise  
 
The process is repeated until the maximum number of generations or no improvement 

is seen in the best individual after many generations. 

 

2.2.7. Opposition-based Differential Evolution 
 

2.2.7.1. Opposition-based learning 
Opposition-based learning (OBL) was developed by Tizhoosh [25]-[27] to improve 

candidate solution by considering current population as well as its opposite population 

at the same time. 

Evolutionary optimization methods start with some initial population and try to 

improve them toward some optimal solution. The process is started with random 

guesses.  The process can be improved by starting with a closer i.e. fitter solution by 

simultaneously checking the opposite solution.  
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2.2.7.2. Definition of opposite point 

Let ( )nxxxX ,....,, 21=  be a point in n - dimensional space where [ ]iii ublbx ,∈  and 

ni ,...,2,1∈ . The opposite point  ( )nxxxX ,.....,, 21=  is completely defined by its 

components as in (2.30). 

 

iiii xublbx −+=                                                                                                     (2.30) 

 

2.2.7.3. Opposition-based optimization 

Let ( )nxxxX ,....,, 21=  be a point in n - dimensional space i.e. a candidate solution. 

Assume ( )•=f  is a fitness function which is used to measure the candidate’s fitness. 

According to the definition of the opposite point, ( )nxxxX ,.....,, 21=  is the opposite 

of ( )nxxxX ,....,, 21= .  Now, if ( ) ( )XfXf <  (for a minimization problem), then 

point X  can be replaced with X ; otherwise, the process is continued with X . 

Hence, the point and its opposite point are evaluated simultaneously in order to 

continue with the fitter one. 

 

In the present work, the concept of the opposition-based learning is incorporated in 

differential evolution. The original DE is chosen as a parent algorithm and the 

opposition-based ideas are embedded in DE. Figure 2.4 shows the flowchart of 

opposition-based differential evolution (ODE). 
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2.3. Swarm intelligence  
Swarm Intelligence (SI) is an innovative (novel or new) distributed intelligent 

paradigm (model) for solving optimization problems. It takes inspiration from the 

collective behavior of a group of social insect colonies and of other animal societies. 

SI is typically made up of a population of simple agents interacting locally with one 

Star

Specify the DE

Set

Generate and evaluate initial populations and its 
it b

Set target

Generate mutant vector by mutation 
ti

Generate trial vector by crossover

Evaluate cost of trial

The best vector survives by selection 
ti

Iter. < Max. Iter. 
Iter.=Iter.+1 

Yes

Sto

No

           Fig.2.4. Flowchart of ODE. 

If cost function value of opposite member is less than the cost 
function value of initial population replace the initial population 

Generate and evaluate the opposite members of the

If cost function value of opposite member is less than the cost 
function value of the best vector replace the best vector with its 
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another and with their environment. These entities (creatures) with very limited 

individual capability can jointly (cooperatively) perform many complex tasks 

necessary for their survival. Although there is normally no centralized control 

structure dictating how individual agent should behave, local interactions between 

such agents often lead to the emergence of global and self-organized behavior.  

Several optimization algorithms inspired by the metaphors (descriptions) of swarming 

behavior in nature are proposed. Ant colony optimization, particle swarm 

optimization, bacterial foraging algorithm, bee colony optimization, firefly algorithm 

and biogeography-based optimization are examples to this effect. 

 

2.3.1. Particle Swarm optimization 
Particle Swarm Optimization (PSO) was introduced in 1995 by James Kennedy and 

Russell Eberhart as a global optimization technique. It is a population-based self-

adaptive stochastic search technique with reduced memory requirement. The PSO 

method is becoming very popular due to its simplicity of implementation and ability 

to quickly converge to a reasonably good solution. 

The particle swarm optimization starts with the random initialization of a population 

of individuals called particles in the search space. Each particle is a candidate solution 

to the problem, and is represented by a velocity, a location in the search space and has 

a memory which helps it in remembering its previous best position. The PSO 

algorithm works on the social behavior of particles in the swarm. PSO finds the global 

best solution by simply adjusting the trajectory of each individual toward its own best 

location and toward the best particle of the entire swarm at each time step 

(generation).  

PSO is motivated by social behavior of organisms such as fish schooling and bird 

flocking. In PSO, individuals called particles change their positions or states with time 

and fly around in a multidimensional search space. During flight, each particle adjusts 

its position according to its own experience, and the experience of neighboring 

particles, making use of the best position encountered by itself and its neighbors. The 

swarm (group or crowd or flock) direction of a particle is defined by the set of 

particles neighboring the particle and its historical experience. 

Each particle moves based on its previous velocity, the particle’s location at which the 

best fitness so far has been achieved, and the population global location at which the 
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best fitness so far has been achieved. The particles have tendencies to move toward 

better search areas over the course of a search process.  

In the multidimensional space where the optimal solution is sought, each particle in 

the swarm is moved toward the optimal point by adding a velocity with its position. 

The velocity of a particle is influenced by three components, namely, inertial, 

cognitive and social. The inertial component simulates the inertial behavior of the bird 

to fly in the previous direction. The cognitive component models the memory of the 

bird about its previous best position and the social component models the memory of 

the bird about the best position among the particles. The particles move around the 

multidimensional search space until they find the food i.e. optimal solution. 

After each iteration the new velocity and hence the new position of each particle are 

updated on the basis of a summated influence of each particle’s present velocity, 

distance of the particle from its own best performance, achieve so far during the 

search process and the distance of the particle from the leading particle, i.e. the 

particle which at present is globally the best particle producing till now the best 

performance. 

Let x  and v  denote a particle’s position and its corresponding velocity in a search 

space, respectively. Therefore, the i th particle is represented as ( )idiii xxxx ,....,, 21=  

in the d dimensional space. The best previous position of the i th particle is recorded 

and represented as ( )idiii pbestpbestpbestpbest ,....,, 21= . The index for the  particle 

among all the particles in the group is represented by the dgbest . The  velocity for the 

particle i th particle  is represented as ( )idiii vvvv ,...,, 21= . The modified velocity and 

position of each particle can be calculated using the current velocity and the distance 

from idpbest  to dgbest  as shown in the following formulae: 

 
( ) ( ) ( ) ( ) ( ) ( )k

idd
k
idid

k
id

k
id xgbestrandcxpbestrandcvwv −∗∗+−∗∗+∗=+

21
1         (2.31) 

 
( ) ( )11 ++ += k

id
k
id

k
id vxx  , ΡΝ= ,...,2,1i , gd Ν= ,...,2,1      (2.32) 

 

where 

ΡΝ : number of particles in the swarm; 

gΝ : number of members in a particle; 
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k : pointer of iterations; 

w : inertia weight factor; 

21 ,cc : acceleration constant; 

( )rand : uniform random value in the range [0,1]; 
( )k
iv : velocity of a particle i  at iteration k , maxmin

d
k
idd vvv ≤≤ ; 

k
ix : current position of a particle i  at iteration k ; 

 

In the above procedures, the parameter maxv  determines the resolution, with which 

regions are to be searched between the present position and the target position. If maxv  

is too high, particles might fly past good solutions. If maxv  is too small, particles may 

not explore sufficiently beyond local solutions. 

The constants 1c  and 2c  represent the weights of the stochastic acceleration terms. 

Constant 1c  pulls the particle towards local best position ( pbest ) whereas 2c  pulls it  

towards the global best position ( gbest ). Low values allow particle to roam far from 

the target regions before being tugged back. On the other hand, high values result in 

abrupt movement toward or past target regions. Hence, the acceleration constants 1c  

and 2c  are  often set to be 2.0 according to past experiences. 

Suitable selection of inertia weight w  provides a balance between global exploration 

and local exploitation thus requiring less number of iterations to find a sufficiently 

optimal solution. A larger inertial weight is used during initial exploration and its 

value is gradually reduced as the search proceeds. As originally developed, w  often 

decreases linearly from about 0.3 to –0.2 during a run. In general, the inertia weight 

w  is set according to the following equation: 

 

iter
iter

ww
ww ×

−
−=

max

minmax
max                   (2.33) 

 

where maxiter  is the maximum number of iterations and iter  is the current number of 

iterations. 
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2.3.2. Group Search Optimization 
Group search optimization (GSO) is a population based optimization algorithm which 

is inspired by animal searching behavior and group living theory. The framework is 

based on the producer-scrounger (PS) model which assumes that group members 

search either for ‘finding’ or for joining opportunities. Based on this framework, 

concepts from animal scanning mechanisms are employed metaphorically for 

designing an optimum searching strategy in order to solve continuous optimization 

problems.   

The population of the GSO algorithm is called a group and each individual in the 

population is called a member. During each iteration, a member is defined by its 

position and head angle. In n-dimensional search space, the i th member of the GSO 

at the k th searching iteration has a current position nk
i R∈Χ and a head angle 

( )( ) 1
11 ,..., −
− ∈= nk

ni
k
i

k
i Rφφφ . The search direction of the i th member, 

( ) ( ) nk
in

k
i

k
i

k
i RddD ∈= ,....,1φ  that can be calculated from k

iφ  via polar to Cartesian 

coordinate transformation [15] 

Initialize positions and velocities of all particles randomly, number 
of particles in the swarm ΡΝ and set iteration count (IC) = 0 

Evaluate objective function of each particle in the swarm 

Is stopping 
criteria satisfied?End

Yes

No

Update particle’s best position pbest  and 
global best position of the entire swarm gbest  

Update velocities and positions of all particles 
using (9) and (10) respectively 

IC = IC + 1

Fig. 2.5. Flowchart of particle swarm optimization. 
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( )∏
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iq
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id φ  

( )( ) ( )∏
−

=
−=

1

1 cossin
n

jq

k
iq

k
ji

k
ijd φφ               ( )1,....,2 −= nj                                                (2.34) 

( )( )k
ni

k
ind 1sin −= φ  

 

GSO algorithm consists of three kinds of members, i.e., producers and scroungers 

whose behavior are based on the PS model; and rangers who perform random walk. 

For convenience of computation, it is assumed that there is only one producer at each 

iteration and the remaining members are scroungers and rangers. Here, simplest 

joining policy is used where all scroungers will join the resource found by the 

producer. In optimization problems, unknown optima can be taken as open patches 

randomly distributed in a search space. Group members therefore search for the 

patches by moving over the search space. It is also assumed that the producer and the 

scroungers do not differ in their relevant phenotypic characteristics. Therefore, they 

can switch between the two roles [16].                                   

At each iteration, a group member, which is located in the most promising area and 

adopts animal scanning to seek the optimal resource and conferred the best fitness 

value, is chosen as the producer. A number of group members except the producer are 

randomly selected as scroungers and then the rest of members are rangers. Scroungers 

perform area copying to join the resource found by the producer and do local 

searching around it. Rangers employ ranging behavior by random walk in the 

searching space to increase the chance of GSO to escape local optima. 

Producer by its vision ability scans the search space for the better states. Vision ability 

is the ability of testing some points around the producer current position. The 

producer scans three points around its position in certain distances and head angles.  

At the k th iteration, the producer behaves as follows: 

1) The producer scans at zero degree and tests three points toward its position 

using equations (2.35-2.37). 
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( )kk
p

k
z Dlr φmax1+Χ=Χ Ρ                                                                                          (2.35) 

⎟
⎠
⎞

⎜
⎝
⎛ ++Χ=Χ ΡΡ 2

max2
max1

θ
φ

r
Dlr kkk

r                                                                           (2.36) 

⎟
⎠
⎞

⎜
⎝
⎛ −+Χ=Χ ΡΡ 2

max2
max1

θ
φ

r
Dlr kkk

l                                                                           (2.37) 

Where ΡΧ  is position of the producer, 1r  is a normally distributed random number 

with mean 0 and standard deviation 1 and 2r is a uniformly distributed random 

number in the range of (0, 1), maxl is maximum pursuit distance and maxθ  is maximum 

pursuit angle. 

 

2) The producer will then find the best point. If the best point has a better value in 

comparison with its current position.The producer will fly to that point. If not, it will 

stay in its current position and turn its head using  (2.38). 

max2
1 αφφ rkk +=+                                                                                                    (2.38) 

where , 1
max R∈α  is the maximum turning angle. 

 

3) If the producer cannot find a better area after a iterations, it will turn its head back 

to zero degree as follows: 
kak φφ =+                                                                                                                 (2.39) 

where, 1Ra∈  is a constant. 

 

During each iteration, some of group members are selected as scroungers. The 

scroungers will keep searching for opportunities to join the resources found by the 

producer. At the k th iteration, the area copying behavior of the i th scrounger can be 

modeled as a random walk toward the producer using  (2.40)  

( )k
i

kk
i

k
i r Χ−Χ+Χ=Χ Ρ
+ o3

1                                                                                     (2.40)   

where k
iΧ  is the position of the i th scrounger at the k th iteration; 3r  is a uniform 

random number in the range of (0,1). Operator “ o ” is the Hadamard product or the 

Schur product, which calculates the entry-wise product of the two vectors. 
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At each iteration, some of group members are selected as rangers. Rangers are 

dispersed from their positions and they randomly walk at search space. At the k th 

iteration, a ranger generates a random head angle iφ   using (2.38), and then it chooses 

a random distance using (2.41) and move to the new point using (2.42). 

max1lbrli =                                                                                                                (2.41) 

( )11 ++ +Χ=Χ kk
ii

k
i

k
i Dl φ                                                                                           (2.42) 

where b is a constant and 1r  is a normally distributed random number with mean 0 

and standard deviation 1. 

 

Parameter setting 
The initial population of GSO is generated uniformly at random in the search space. 

The initial head angle 0φ  of each individual is set to be ( ).4,....,4 ΠΠ  The constant 

a  is given by ( )1+nround  where n is the dimension of the search space. The 

maximum pursuit angle maxθ  is 2aΠ . The maximum turning angle maxα  is set to be 

2maxθ . The maximum pursuit distance maxl  is calculated from the following 

equation. 

( )∑
=

−=
n

i
ii LUl

1

2
max                                                                                              (2.43) 

where iL  and iU  are the lower and upper bounds for the i th dimension. 

The most important control parameter that affects the search performance of GSO is 

the percentage of scroungers and rangers. In this paper scroungers are taken as 70% 

and rangers are taken as 30% of the total population. 

Figure 2.6 shows the flowchart of GSO algorithm. 
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                          Fig. 2.6. Flowchart of the GSO algorithm 
 
 
2.3.3. Opposition-based Group Search Optimization 
 

2.3.3.1. Opposition-based learning 
Opposition-based learning (OBL) was developed by Tizhoosh to improve candidate 

solution by considering current population as well as its opposite population at the 

same time. 

Evolutionary optimization methods start with some initial population and try to 

improve them toward some optimal solution. The process of searching terminates 

when some predefined criteria are satisfied. The process is started with random 

guesses in the absence of a priori information about the solution. The process can be 

improved by starting with a closer i.e. fitter solution by simultaneously checking the 

Generate and evaluate initial members 

Choose producer and perform producing  

Start

Choose scrounger and perform scrounging 

Dispersed the rest members to perform ranging  

Evaluate members 
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Terminate 

NO 
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opposite solution. By doing this, the fitter one (guess or opposite guess) may be 

chosen as an initial solution. According to the theory of probability, 50% of the time, 

a guess is further from the solution than its opposite guess. Therefore, process starts 

with the closer of the two guesses. The same approach can be applied not only to the 

initial solution but also continuously to each solution in the current population. 

 

2.3.3. 2. Definition of opposite number 

If x  be a real number between [ ]ublb, , its opposite number is defined as  

 

xlulbx −+=                                                                                                          (2.44)                               

 

Similarly, this definition can be extended to higher dimensions as stated in the next 

sub-section. 

 

2.3.3. 3. Definition of opposite point 

Let ( )nxxxX ,....,, 21=  be a point in n - dimensional space where [ ]iii ublbx ,∈  and 

ni ,...,2,1∈ . The opposite point  ( )nxxxX ,.....,, 21=  is completely defined by its 

components as in (2.45). 

 

iiii xublbx −+=                                                                                                     (2.45)                               

 

By employing the definition of opposite point, the opposition-based optimization is 

defined in the following sub-section. 

 

2.3.3.4. Opposition-based optimization 

Let ( )nxxxX ,....,, 21=  be a point in n - dimensional space i.e. a candidate solution. 

Assume ( )•=f  is a fitness function which is used to measure the candidate’s fitness. 

According to the definition of the opposite point, ( )nxxxX ,.....,, 21=  is the opposite 

of ( )nxxxX ,....,, 21= .  Now, if ( ) ( )XfXf <  (for a minimization problem), then 

point X  can be replaced with X ; otherwise, the process is continued with X . 
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Hence, the point and its opposite point are evaluated simultaneously in order to 

continue with the fitter one. 

 

2.3.3.5. Opposition-based Group Search Optimization 
In the present work, the concept of the opposition-based learning is incorporated in 

group search optimization method. The original GSO is chosen as a parent algorithm 

and the opposition-based ideas are embedded in GSO. Figure 2.7 shows the flowchart 

of opposition-based group search optimization (OGSO). 

 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                           
 
 
 
 
 
 
 
                                Fig. 2.7. Flowchart of the OGSO algorithm. 
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2.4. Principle of Multi-objective Optimization 
Most of the real-world problems involve simultaneous optimization of several 

objective functions which are not commensurable and often competing and 

conflicting. Multi-objective optimization having such objective functions gives rise to 

a set of optimal solutions, instead of one optimal solution because no solution can be 

considered to be better than any other with respect to all objectives. These optimal 

solutions are known as pareto-optimal solutions.   

Generally, multi-objective optimization problem consisting of a number of objectives 

and several equality and inequality constraints can be formulated as follows: 

 

Minimize  )(xfi     i  = 1,….., Nobj                       (2.46) 

 

Subject to  
⎩
⎨
⎧

≤
=

0)(
0)(

xh
xg

l

k   
Ll

k
,....,1
,....,1

=
Κ=

                                                        (2.47) 

 

where if  is the i th objective function; x  is a decision vector that represents a 

solution ; and Nobj  is the number of objectives. 

 

 

2.4.1. Multi-objective Differential Evolution  

Differential Evolution (DE) is a type of evolutionary algorithm for optimization 

problems over a continuous domain. DE is exceptionally simple, significantly faster 

and robust. The basic idea of DE is to adapt the search during the evolutionary 

process. At the start of the evolution, the perturbations are large since parent 

populations are far away from each other. As the evolutionary process matures, the 

population converges to a small region and the perturbations adaptively become 

small. As a result, the evolutionary algorithm performs a global exploratory search 

during the early stages of the evolutionary process and local exploitation during the 

mature stage of the search. In DE, the fittest offspring competes one-to-one with the 

corresponding parent which is different from other evolutionary algorithms. This one-

to-one competition gives rise to faster convergence rate. In multi-objective differential 
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evolution (MODE), a pareto-based approach is introduced to implement the selection 

of the best individuals. Firstly, a population of size,Ν , is generated randomly and 

objective functions are evaluated.  At a given generation of the evolutionary search, 

the population is sorted into several ranks based on non-domination. Secondly, DE 

operations are carried out over the individuals of the population. Trial vectors of size 

Ν  are generated and objective functions are evaluated. Both the parent vectors and 

trial vectors are combined to form a population of size Ν2 . Then, the ranking of the 

combined population is carried out followed by the crowding distance calculation. 

The best Ν  individuals are selected based on their ranking and crowding distances. 

These individuals act as the parent vectors for the next generation. The algorithm of 

MODE can be described in the following steps: 

 

Step1. Generate box, R, of size Ν . Parent vectors of size Ν  is randomly generated 

and kept in R. 

Step 2. Classify these vectors into fronts based on nondomination as follows: 

a) Create new empty box R/ of sizeΝ . 

b) Compare each vector with all other vectors in R. 

c) Start with 1=i .  

d) If i th vector is not dominated by any other vector in R, keep i th vector in R/ and 

go to (f). 

e) If i th vector is dominated by any other vector in R, go to (f). 

f) Increment i  by one. If Ν≤i , go to (d) otherwise go to (g). 

g) R/ now contains a sub-box (of size Ν≤ ) of nondominated vectors, referred to as 

the first front or sub-box. Assign it a rank number equal to one ( 1=Ι rank ). 

h) Create subsequent fronts or sub-boxes of R/ with the vectors remaining in R and 

assign these ,....3,2=Ι rank .  Finally, all Ν  vectors are in R/ into one or more 

fronts. 

Step 3. To calculate the crowding distance, disti ,Ι , for the i th vector in any front, F , of 

R/, sort all the vectors in front, F , according to each objective function value in 

ascending order of magnitude.  The crowding distance of the i th vector in its front F  

is the average side-length of the cuboid formed by using the nearest neighbors as the 
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vertices. Assign large values of crowding distance distΙ  to the boundary vectors 

(vectors with smallest and largest function values).  

The following procedure is adopted to identify the better of the two vectors. Vector i  

is better than vector j  (i) if rankjranki ,, Ι<Ι  or (ii) if rankjranki ,, Ι=Ι  and distjdisti ,, Ι>Ι . 

Step 4. Take a new empty box R/ / of sizeΝ . Perform DE operations overΝ  vectors 

in R/ to generate Ν  trial vectors and store these vectors in R//.   

a) Select a target vector, i  in R/. 

b) Start with 1=i . 

c) Choose two vectors, 1r  and 2r  at random from the Ν  vectors in R/. Find the 

vector difference between these two vectors and multiply this difference with the 

scaling factor sF  to get the weighted difference. 

d) Choose a third random vector 3r  from theΝ  vectors in R/ and add this vector to 

the weighted difference to obtain the noisy random vector. 

e) Perform crossover between the target vector and noisy random vector to find the 

trial vector. This is carried out by generating a random number and if random 

number RC>  (crossover factor), copy the target vector into the trial vector else 

copy the noisy random vector into the trial vector and put it in box R//.  

f) Increment i  by one. If Ν≤i , go to (c) otherwise go to Step 5. 

Step 5. Copy all Ν  parent vectors from R/ and all Ν  trial vectors from R// into box 

R///. Box R/// has Ν2  vectors. 

a) Classify these Ν2  vectors into fronts based on non-domination and calculate the 

crowding distance of each vector. Take the best Ν  vectors from Box R/// and put 

into Box R////.    

This completes one generation. Stop if generation number is equal to maximum 

number of generations, else copy Ν  vectors from Box R//// to the starting box R and 

go to Step2.    

 

 
Figure 2.8 shows the flowchart of multi-objective differential evolution. 
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2.4.2. Opposition-based Group Search Optimization 

 
2.4.3. Best Compromise Solution 

The best compromise solution is seen under an acceptability criterion, although an 

idea based on some kind of optimality should be more appropriate. The best solution 

is a good compromise which is accepted by the Decision Maker(DM) as the final 

solution. According to this definition, the concept of best compromise is relative to 

the set of solutions which is generated by the algorithm and depends on the effort 

dedicated by the DM to compare compromise solutions. Coello state the need of 
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Specify the DE parameters

Set Iter.=1

Generate ΡΝ initial parent population and calculate fuel cost and emission level of each population 

For each target population, generate noisy population by mutation operation 
and calculate fuel cost and emission level of each noisy population 

Combine parent population and  trial population. Total ΡΝ2  population 

Classify these ΡΝ2  combined populations into fronts based on non-domination and 

calculate the crowding distance of each population. Select the best ΡΝ  population 

Iter. < Max. Iter. Iter.=Iter.+1 

Yes 

Stop

No

Fig. 2.8. Flowchart of Multi-objective Differential Evolution 

Classify parent population into fronts based on non-domination and calculate the crowding distance 
of each population. Sort these populations according to front level and crowding distance 

Perform crossover for each target population with 
its noisy population and generate trial population  



 

47 
 

selecting a compromise solution satisfying the objectives as ‘‘best” possible. Hakanan  

identify the best compromise as the compromise solution which is the most preferred 

one.  

 

2.4.4. Fuzzy Sets 

Fuzzy sets were first introduced by Zadeh as an effective means of solving 

nonprobabilistic problems. The different objectives are easily integrated because all 

the membership function values of these objectives are in the same range [0, 1]. It is 

assumed that the decision maker (DM) has imprecise or fuzzy goals for each of 

objective functions. The fuzzy goals are quantified by defining their corresponding 

membership functions. The DM then specifies the reference membership values for 

each of the objective functions and the corresponding optimal noninferior solution can 

be obtained. Through the interaction the DM’s reference membership values are 

updated by considering the current values of the membership functions as well as the 

objectives until a satisfactory solution for the DM is obtained. 

 

2.4.4.1 Fuzzy Satisfying method 

Considering the imprecise nature of the decision-maker’s judgment, it is natural to 

assume that the decision-maker may have fuzzy or imprecise goals for each of the 

objectives. The fuzzy sets are defined by equations called membership functions. The 

higher the value of the membership function implies a greater satisfaction with the 

solution. The membership function consists of lower and upper boundary values 

together with a strictly monotonically decreasing and continuous function. Fig. 2.9 

illustrates the graph of the possible shape of a strictly monotonically decreasing 

membership function. The lower and upper bounds, ( )Χmin
qf , ( )Χmax

qf  of each of the 
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objective functions ( )Χqf , nq ,....,2,1=  under given constraints are established to 

elicit a membership  

 
 

( )Χfqμ  
 
1 
        : 
        :  
        : 
        : 
        : 
        : 
 
  0   min

qf                     max
qf     ( )Χqf  

   
Fig. 2.9 The membership function. 
 
 
 

function ( )Χfqμ  for each objective function ( )Χqf . The DM is fully satisfied with the 

objective value ( )Χqf  if ( ) 1=Χfqμ , and not satisfied at all if ( ) 0=Χfqμ . The q th 

membership function is now defined as: 

 

                           0,                    if ( )Χqf ≥ max
qf  

( )Χfqμ  =   
( )
minmax

max

qq

qq

ff
ff

−

Χ−
         if min

qf < ( )Χqf < max
qf             (2.48) 

                           1,                    if ( )Χqf ≤ min
qf  

After defining the membership functions, the DM is asked to specify the reference 

(desirable) levels of achievement of the membership functions, called the reference 

membership values rqμ , nq ,....,2,1= . Then to obtain the satisfying solution, the 

following minimax problem is solved. 
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( ){ }
nq

fqrq
,...,2,1

maxmin
=

Ω∈Χ
Χ− μμ                                                     (2.49) 

 

where Ω : the set of noninferior solutions. 

 

In this thesis the minimax problem is solved by using simulated annealing technique. 

If the DM is not satisfied with the current solution, then through the interaction, the 

reference membership values can be updated and the updating is done by considering 

the current values of the membership functions as well as the objectives. This 

interactive updating process is continued until the satisfactory solution for the DM is 

obtained.  
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CHAPTER 3 
 

Economic Dispatch of Thermal Power Plants 
 

 
 
3.1. Introduction 

Economic dispatch (ED) is an important optimization task in power system operation 

for allocating generation among the committed generating units in the most 

economical manner while satisfying various physical constraints. The input-output 

characteristics or cost functions of a generator are approximated by using quadratic or 

piecewise quadratic functions, under the assumption that the incremental cost curves 

of the units are monotonically increasing piecewise-linear functions. However, real 

input-output characteristics show higher-order nonlinearities and discontinuities due 

to valve-point loading in fossil fuel fired generating plants. The valve-point loading 

effect has been modeled in as a recurring rectified sinusoidal function, such as the one 

shown in Fig. 3.1. 

The discontinuous prohibited operating zones in the input-output performance curve 

for a typical thermal unit can be due to vibration in a shaft bearing caused by a steam 

valve or can be due to faults in the machines themselves or the associated auxiliary 

equipment, such as boilers, feed pumps etc. In practice, the shape of the input-output 

curve in the neighborhood   of a prohibited zone is difficult to determine by actual 

performance testing. In actual operation, the best economy is achieved by avoiding 

operation in these areas. Cost function that takes into account prohibited operating 

zones, can be represented as in Fig. 3.2. 

The valve-point loading, prohibited operating zones and other constraints turn the 

decision space into disjoint subsets, transforming the ED problem into a difficult non-

smooth, non-convex optimization problem.  

The calculus-based methods fail to address these types of problems. The dynamic 

programming (DP) approach imposes no restriction on the nature of the cost curves 

and can solve ED problems with non-smooth and discontinuous cost curves. 

However, this method suffers from the curse of dimensionality or local optimality.  
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Meta-heuristic algorithms are successfully applied to solve complex ED problems. 

Although these methods do not always guarantee global best solutions, they often 

achieve a fast and near global optimal solution. 

Since the mid 1990s, many techniques originated from Darwin’s natural evolution 

theory have emerged. These techniques are usually termed by “evolutionary 

computation methods” including evolutionary algorithms (EAs), swarm intelligence 

and artificial immune system. Differential evolution (DE), first proposed over 1995-

1997 by Storn and Price at Berkeley is a novel approach to numerical optimization. It 

is a population-based stochastic parallel search evolutionary algorithm which is very 

simple yet powerful. DE modifies individuals by using differences of randomly 

sampled pairs of individual vectors from the population during its mutation process. 

But this mutation process is not appropriate for complex multimodal optimization.  To 

overcome this drawback, this thesis proposes Gaussian mutation which maintains the 

diversity of the population, and guarantees a high probability of obtaining the global 

optimum. 

 

 

 

Fig. 3.1. Example of valve-point cost function with 5 valves; 
A - Primary Valve, B - Secondary Valve, C - Tertiary Valve, D - Quaternary Valve,  
E - Quandary Valve 
 

A 

B 

C 

D

 E 



 

52 
 

 
Fig. 3.2. Input-output curve with prohibited operating zones. 
 
 
In this study, the differential evolution with Gaussian mutation (DEGM) is applied to 

solve the non-smooth/non-convex complex ED problems considering the various 

physical constraints. This thesis considers three types of non-smooth/non-convex ED 

problems. These are 1) ED with prohibited operating zones and transmission loss:  

6-generator system, 2) ED with valve-point loading effect, prohibited operating zones 

and transmission loss:  40-generator system and 3) ED with valve-point loading effect 

and multi-fuel options without transmission loss: 10-generator systems. The 

performance of the proposed method has been compared with other previously 

developed stochastic optimization methods.   

 

3.2. Problem Formulation 

The objective of the ED is to minimize the total generation cost of a power system 

over some appropriate period while satisfying various constraints. The practical non-

smooth/non-convex ED problem considers generator nonlinearities such as valve-

point loading effects, prohibited operating zones and multi-fuel options along with 

system power demand, transmission loss and operational limit constraints. 

 

3.2.1. Economic dispatch with prohibited operating zones and transmission loss 

The ED problem can be described as a minimization problem with the objective: 

 

Min ( )∑ ∑
Ν

=

Ν

=

Ρ+Ρ+=Ρ
1 1

2

i i
iiiiiii cbaF                                                                              (3.1) 

Power output  

Prohibited operating zoneF 
u 
e 
l  
 
c 
o 
s 
t  
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where  ( )iiF Ρ  is the fuel cost function of i th unit; ia , ib  and ic  are the fuel cost 

coefficients of i th unit; Ν  is the number of committed units; iΡ is the power output of 

i th unit.  

 

Subject to the following constraints 

 

(i) Power balance constraint: 

 ∑
Ν

=

=Ρ−Ρ−Ρ
1

0
i

LDi                                                                                                   (3.2) 

 

The transmission loss LΡ  may be expressed by using Β -coefficients as 

00
1 1 1

0 Β+ΡΒ+ΡΒΡ=Ρ ∑∑ ∑
Ν

=

Ν

=

Ν

=
i

i j i
ijijiL                                                                           (3.3) 

where DΡ  is the system load demand. ijΒ , i0Β  and 00Β  are Β -coefficients. 

 

(ii) Generation capacity constraints 

The power generated by each unit should be within its lower limit min
iΡ and upper 

limit max
iΡ , so that 

maxmin
iii Ρ≤Ρ≤Ρ     Ν∈i                                                                                         (3.4) 

 

(iii) Prohibited operating zone 

The feasible operating zones of a unit with prohibited operating zones can be 

described as follows: 

 
l
iii 1,

min Ρ≤Ρ≤Ρ  

l
jii

u
ji ,1, Ρ≤Ρ≤Ρ − ,   inj ,...,3,2=                                                                                  (3.5) 

max
, ii
u
ni i

Ρ≤Ρ≤Ρ ,       Ν∈i  

where j  represents the number of prohibited operating zones of i th unit. u
ji 1, −Ρ  is the 

upper limit of ( )1−j th prohibited operating zone of i th unit. l
ji,Ρ  is the lower limit of 
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j th prohibited operating zone of  i th unit. Total number of prohibited operating zone 

of i the unit is in . 

 

3.2.2. Economic dispatch with valve-point loading effect, prohibited operating 

zones and transmission loss 

The ED problem can be described as a minimization process with the objective: 

 

Min ( )∑ ∑
Ν

=

Ν

=

Ρ+Ρ+=Ρ
1 1

2

i i
iiiiiii cbaF  + ( ){ }iiii ed Ρ−Ρ×× minsin                                (3.6) 

where  id  and ie are the fuel cost coefficients of i th unit with valve-point effects.  

 

The above objective function is to be minimized subject to constraints as mentioned 

in (3.2) - (3.5).  

 

2.3. Economic dispatch with valve-point loading effect and multi-fuel options  

Since generators are practically supplied with multi-fuel sources, each generator 

should be represented with several piecewise quadratic functions superimposed sine 

terms reflecting the valve-point effect and fuel type changes and the generator must 

identify the most economical fuel to burn. The fuel cost function of the i th generator 

with FΝ  fuel types is expressed as 

 

( ) 2
iijiijijiiF Ρ+Ρ+=Ρ γβα + ( ){ }iijijij Ρ−Ρ×× minsin δη                                         (3.7) 

 if maxmin
ijiij Ρ≤Ρ≤Ρ  for fuel type j  and Fj Ν= ,...,2,1  

where min
ijΡ and max

ijΡ are the minimum and maximum power generation limits of the 

i th unit with fuel type j  ,respectively. ijα , ijβ , ijγ , ijη  and ijδ  are the fuel-cost 

coefficients of  unit i  for fuel j . 

The problem can be described as minimization process with the objective: 

Min ( )∑
Ν

=

Ρ
1i

iiF                                                                                                           (3.8) 
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The above objective function is to be minimized subject to constraints as mentioned 

in (3.2) and (3.4). Here transmission loss ( LΡ ) is not considered.  

 

3.3. Numerical Results 

This section presents the computational results on three test systems which have been 

performed to evaluate the performance of the proposed DEGM method. ED problems 

for 6-, 10-, 40-unit power systems from the literature have been investigated. In order 

to simulate the valve-point effect of any generating unit, a recurring sinusoid 

component is added with the objective function of fuel cost. However, many practical 

constraints of generators, such as ramp rate limits, prohibited operating zones and 

power loss are considered in the optimization process. To verify the performance of 

the proposed method, these three test systems are repeatedly tested by the DEGM. 

The software has been written in MATLAB 7 on a PC (Pentium – IV, 80 GB, 3.0 

GHZ).  

 

Test System 1:  A 6-generator system with prohibited operating zones, ramp rate 

limits and transmission loss is considered here. The input data are taken from [30]. 

The total load demand of the system is 1263 MW. The ED problem is solved by using 

DEGM. Here, the population size ( ΡΝ ), crossover constant ( RC ) and maximum 

iteration number have been selected 10, 1 and 50 ,respectively. The computational 

results of the best fuel cost,  unit generations and power loss corresponding to the best 

fuel cost, average and the worst fuel cost, and average CPU time among 100 runs of 

solutions obtained from the proposed DEGM are summarized in Table 3.1.  The 

results obtained from different PSO techniques i.e. SOH_PSO [43], NPSO-LRS [42], 

NPSO [42] and PSO [30] have also been shown in Table 3.1. The convergence 

characteristic of the 6-generator system in case of DEGM is shown in Fig. 3.3. The 

fuel cost found in this thesis by using DEGM is lower than those of all other methods 

reported in the literature. 
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Table 3.1: Results of 6-generator system 

Unit Power (MW) DEGM SOH_PSO  NPSO-LRS  NPSO  PSO 

1Ρ  447.1284   438.21 446.9600 447.4734 447.4970 

2Ρ  173.0964   172.58 173.3944 173.1012 173.3221 

3Ρ  263.1827   257.42 262.3436 262.6804 263.4745 

4Ρ  139.5016   141.09 139.5120 139.4156 139.0594 

5Ρ  165.7462    179.37 164.7089 165.3002 165.4761 

6Ρ  86.7842 86.88 89.0162 87.9761 87.1280 

Power Loss (MW) 12.4395 12.55 12.9361 12.9470 12.9584 
Total generation 

(MW) 
1275.4395 1275.55 1275.94 1275.95 1276.01 

Best cost ($/h) 15443.08 15446.02 15450 15450 15450 
Average cost ($/h) 15443.09 - - - - 
Worst cost ($/h) 15443.10 - - - - 

Average CPU time 
(s) 

0.3281 0.0633 - - - 
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            Fig. 3.3. Convergence characteristic of DEGM for the  6-generator system 
 
 
Test System 2:  This system consists of ten generating units with valve-point loading 

and multi-fuel sources. The input data are taken from [6]. The load demand is 2700 
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MW. Transmission loss, prohibited operating zones and ramp rate limits have not 

been considered here. The ED problem is solved by using DEGM. Here, the 

population size ( ΡΝ ), crossover constant ( RC ) and maximum iteration number have 

been selected 20, 1 and 300, respectively. The computational results of the best fuel 

cost, unit generations and power loss corresponding to the best fuel cost, average and 

worst fuel costs, and average CPU time among 100 runs of solutions obtained from 

proposed IPSO is shown in Table II. The results obtained from different PSO 

techniques [42] and different GA [34] methods are also summarized in Table 3.2. The 

convergence characteristic of the ten generator system in case of DEGM is depicted in 

Fig. 3.4. It is seen from Table 3.2 that the fuel cost found in this paper by using 

DEGM is the lowest among all other methods. 

 
 
Table 3.2: Results of 10-generator system 

Unit Power 
Output 
(MW) 

DEGM NPSO-LRS   NPSO  IGA_MU  CGA_MU 

   F 
u 
e 
l 

 F 
u 
e 
l 

 F 
u 
e 
l 

 F 
u 
e 
l 

1Ρ  233.9161   2 223.33 2 220.657 2 219.126 2 222.0108 2 

2Ρ  215.1414   1 212.19 1 211.785 1 211.164 1 211.6352 1 

3Ρ  299.3166   1 276.21 1 280.402 1 280.657 1 283.9455 1 

4Ρ  137.9084   1 239.41 3 238.601 3 238.477 3 237.8052 3 

5Ρ  295.9636   1 274.64 1 277.562 1 276.417 1 280.4480 1 

6Ρ  240.3314   3 239.79 3 239.120 3 240.467 3 236.0330 3 

7Ρ  309.7218   1 285.53 1 292.139 1 287.739 1 292.0499 1 

8Ρ  241.1571   3 240.63 3 239.153 3 240.761 3 241.9708 3 

9Ρ  428.9392   3 429.26 3 426.114 3 429.337 3 424.2011 3 

10Ρ  297.6044 1 278.95 1 274.463 1 275.851 1 269.9005 1 

Best cost 
($/h) 

608.7234 624.1273 624.1624 624.5178 624.7193 

Average cost 
($/h) 

609.4653 - - - - 

Worst cost 
($/h) 

610.8972 - - - - 

Average CPU 
time (s) 

  2.8281 0.52 0.35 7.25 26.17 
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     Fig. 3.4. Convergence characteristic of 10- generator system. 
 
 
 
Test System 3:  This system consists of a practical 40- units Taiwan power system 

[33], with modification to incorporate the valve-point effect [40]. The total load 

demand of the system is 10500 MW. Generator constraints including ramp rate limits 

of all the generators and prohibited operating zones from unit number 10 to 14 are 

taken from [45]. These prohibited zones result in four disjoint feasible sub-regions for 

each of the units. Hence, those zones result in a non-convex decision space which 

consists of 1024 convex sub-spaces for this system. The ED problem is solved by 

using DEGM. Here, the population size ( ΡΝ ), crossover constant ( RC ) and maximum 

iteration number have been selected 50, 1 and 500, respectively. The computational 

results of the best fuel cost, unit generations and power loss corresponding to best fuel 

cost, average and worst fuel cost, and average CPU time among 100 runs of solutions 

obtained from proposed DEGM, SHDE [45], HDE [45] and DE [45]  are  shown in 

Table 3.3. The convergence characteristic of the forty generator system in case of 

DEGM is shown in Fig. 3.5. The fuel cost found in this paper by using DEGM is 

lower than those of other methods reported in the literature. 
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Table 3.3: Results of 40-generator system 

Output 
(MW) 

DEGM SHDE  HDE DE Output 
(MW) 

DEGM SHDE  HDE DE 
 

1Ρ  110.8507   110.8469 113.9783 113.5764 
21Ρ  523.2803   523.1869 524.4637 523.2794 

2Ρ  110.8252   112.1565 114.0000 113.7926 
22Ρ  523.2797   530.5903 526.8726 523.9855 

3Ρ  119.9993   120.0000 98.53020 97.4058 
23Ρ  523.2815   523.1463 524.7330 523.7207 

4Ρ  179.7335    179.4657 182.8223 180.0051 
24Ρ  523.2798   522.9946 523.2879 523.2843 

5Ρ  88.0155   93.1712 91.9957 89.6192 
25Ρ  523.2805   523.6739 524.1151 523.3065 

6Ρ  139.9991   139.6558 139.1252 139.9999 
26Ρ  523.2816   525.2442 523.2267 523.2793 

7Ρ  299.9991   299.9904 299.2042 299.9999 
27Ρ  10.0006    10.0000 10.1714 10.0000 

8Ρ  284.6021   292.9315 285.6743 284.7046 
28Ρ  10.0001    10.0271 10.0000 10.1671 

9Ρ  284.6030   284.5741 296.1914 284.6111 
29Ρ  10.0000    10.0000 10.6397 10.0000 

10Ρ  130.0015   130.000 200.0000 130.0000 
30Ρ  96.9977 89.0125 91.9425 91.1653 

11Ρ  168.7995    94.0099 94.6673 94.2149 
31Ρ  189.9990   188.8546 190.0000 189.9883 

12Ρ  94.0003   94.000 169.3861 168.7940 
32Ρ  189.9990   189.9981 187.2378 189.9996 

13Ρ  214.7597   125.0000 125.0000 304.4362 
33Ρ  189.9994   189.6139 190.0000 189.9956 

14Ρ  394.2795   393.6505 394.5668 394.2793 
34Ρ  164.8177   200.0000 165.6872 199.9996 

15Ρ  394.2798 478.7679 484.7173 394.2793 
35Ρ  199.9998   199.9993 200.0000 199.9997 

16Ρ  394.2802   393.1025 304.5127 304.5195 
36Ρ  164.8230   199.9172 174.8976 165.8468 

17Ρ  489.2797   489.1105 491.3617 489.2794 
37Ρ  109.9995   108.4430 110.0000 109.9999 

18Ρ  489.2822   489.0735 489.4712 489.2793 
38Ρ  109.9993   110.0000 109.9254 99.3086 

19Ρ  511.2824   511.2153 511.4723 511.2793 
39Ρ  109.9990   110.0000 109.8258 105.9249 

20Ρ  511.2804   511.0469 511.5457 511.2982 
40Ρ  511.2799 511.2681 512.1575 511.2793 

Power Loss  (MW) 117.7500 117.7404 117.4074 119.9064 

Total generation (MW) 10617.75 10617.740 10617.407 10619.906 

Best cost ($/h) 123100.00 123496.02 123598.76 125074.40 

Average cost ($/h) 123126.50 124007.10 124210.34 127399.36 

Worst cost ($/h 123175.90 124570.74 124855.80 129639.79 

Average CPU time (s) 57.4632 16.86025 17.94273 29.31566 
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          Fig. 3.5. Convergence characteristic of 40- generator system. 
 
 
 
3.4. Conclusion 

Here, the DEGM method has been developed and successfully implemented to solve the non-

smooth /non-convex economic dispatch problem with the generator constraints. It has been 

observed that DEGM method has the ability to converge to a better quality solution and 

possesses good convergence characteristics and robustness. Many nonlinear characteristics of the 

generator such as prohibited operating zones, valve-point loadings, multi-fuel options, etc have 

been considered. It is clear from the results obtained by different trials that the proposed DEGM 

method can avoid the shortcoming of premature convergence exhibited by other optimization 

techniques. Due to these properties, the DEGM method in future can be tried for the solution of 

complex power system optimization problems. 
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CHAPTER 4 

 
 

Combined Heat and Power Economic Dispatch 
 
 
 
4.1. Introduction 

The conversion of fossil fuel into electricity is not an efficient process. Even the energy 

efficiency of the most modern combined cycle plants is less than 60%. Most of the energy 

wasted in the conversion process is heat. But the fuel efficiency of combined heat and power 

generation unit can be as much as 90%. Also combined heat and power generation unit has less 

green house gas emission as compared with the other forms of energy supply. The principle of 

combined heat and power, known as cogeneration, is to recover and make beneficial use of this 

heat and as a result the overall efficiency of the conversion process is increased. Cogeneration 

units play an increasingly important role in the utility industry. For most cogeneration units, the 

heat production capacity depends on the power generation and vice versa. This introduces 

complexity due to the non-separable nature of electrical power and heat in the combined heat and 

power unit. The mutual dependencies of heat and power generation initiate a complication in the 

incorporation of cogeneration units into the power economic dispatch.   

Non-linear optimization methods, such as dual and quadratic programming and gradient descent 

approaches, such as Lagrangian relaxation, have been applied for solving combined heat and 

power economic dispatch (CHPED). However, these methods cannot handle non-convex fuel 

cost functions of the generating units. 

The advent of stochastic search algorithms has provided alternative approaches for solving 

CHPED problem. Since the mid 1990s, many techniques originated from Darwin’s natural 

evolution theory have emerged. These techniques are usually termed by “evolutionary 

computation methods”. Differential evolution (DE), a relatively new member in the family of 

evolutionary algorithms, first proposed over 1995-1997 by Storn and Price at Berkeley is a novel 

approach to numerical optimization. It is a population-based stochastic parallel search 

evolutionary algorithm which is very simple yet powerful. DE modifies individuals by using 
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differences of randomly sampled pairs of individual vectors from the population during its 

mutation process. But this mutation process is not appropriate for complex multimodal 

optimization.  To overcome this drawback, this paper proposes Gaussian mutation which 

maintains the diversity of the population, and guarantees a high probability of obtaining the 

global optimum. 

In this study, differential evolution with Gaussian mutation (DEGM) is applied to solve the 

complex non-smooth/non-convex combined heat and power economic dispatch (CHPED) 

problem considering the various constraints. Valve-point loading and prohibited zones of 

conventional thermal generators have been considered. Transmission loss is accounted  through 

the use of loss coefficients. To illustrate the performance of the proposed method, four test 

systems are used. The test results are compared with those obtained by other evolutionary 

methods reported in the literature. It is found that the proposed DEGM based approach provides 

better solution. 

 

4.2. Problem Formulation 

The system under consideration has conventional thermal generating units, cogeneration units, 

and heat-only units. The feasible heat-power operation region i.e. heat-power dependency 

characteristics of a combined cycle co-generation unit is depicted in Fig.1. For the co-generation 

unit, the heat and power outputs are non-separable and one output will affect the other.  

The heat-power feasible operation is enclosed by the boundary curve ABCDEF. Along the 

boundary curve BC, the heat capacity increases as the electric power generation decreases and 

the heat capacity declines along the curve CD. Along the boundary there is a trade-off between 

power generation and heat production from the unit. It can be seen that along the curve AB the 

unit reaches maximum output power. In contrast, the unit reaches maximum heat production 

along the curve CD. Therefore, power generation limits of the co-generation unit are the 

combined functions of the unit heat production and vice versa. 
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      Fig. 4.1. Heat-Power Feasible Operation Region for a Cogeneration unit. 
 
 
 
The power outputs of the conventional thermal generating units and the heat outputs of heat units 

are restricted by their own upper and lower limits. The power is generated by conventional 

thermal generating units and cogeneration units while the heat is generated by cogeneration units 

and heat-only units. The CHPED problem is to determine the unit power and heat production so 

that the system’s production cost is minimized while the power demand and heat demand and 

other constraints are met. The objective function and constraints of CHPED problem are 

described as follows: 

 

4.2.1. Objective 

The cost function of conventional thermal generating unit is obtained from data points taken 

during “heat run” tests, when input and output data are measured as the unit is slowly run 

through its operating region. Wire drawing effects, occurring as each steam admission valve in a 

turbine starts to open, produce a rippling effect on the unit curve. In reality, a sharp increase in 

fuel loss is added to the fuel cost curve due to wire drawing effects when steam admission valve 

starts to open. This procedure is named as valve point effect. To model the effect of valve-points, 

a recurring rectified sinusoid contribution is added to the quadratic function such as the one 

shown in Fig. 3.1. 
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The total heat and power production cost can be expressed as 
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where ΤC  is the total production cost; tiC , ciC , hiC  are the respective fuel characteristics of the 

conventional thermal generating units, cogeneration units and heat-only units. tiΡ  is the power 

output of i th conventional thermal generating unit. min
tiΡ  and max

tiΡ are the i th conventional 

thermal generating unit power capacity limits. ciΡ  and ciΗ  are ,respectively, the power output 

and heat output of i th cogeneration unit. hiΗ  is the heat output of i th heat-only unit. tΝ , cΝ  

and hΝ  are the numbers of conventional thermal generating units, cogeneration units and heat-

only units respectively, iiiii fedba ,,,,  are the cost coefficients of  i th conventional thermal 

generating unit. iiiiii ξεδγβα ,,,,,  are the cost coefficients of  i th cogeneration unit. iii ληϕ ,,  

are the cost coefficients of  i th heat-only unit. 

 

4.2.2. Constraints: 

Two types of constraints i.e. equality and inequality constraints are considered. Equality 

constraints are the power and heat balance constraints that cover the total heat and power 

demands including power losses in the transmission lines. Inequality constraints are the capacity 

limits on heat and power generated by each unit and the prohibited operating zones of 

conventional thermal generating unit. 
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4.2.2.1. Power balance constraint 

L
i i

Dciti

t c
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                                                (4.2) 

 

where DΡ  is the system power demand and LΡ  is the transmission loss. 

 

Transmission loss is a function of power productions of all units. There are two approaches to 

calculate transmission loss, i.e. load flow approach and Kron’s loss formula which is known as 

B-coefficient loss formula. Kron’s loss formula is used in this work. The transmission loss LΡ  

can be stated as follows 
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4.2.2.2. Heat balance constraint 

∑ ∑
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                                                                     (4.4) 

where DΗ  is the system heat demand. The heat demands are used within a short distance of 

cogeneration units and so the heat losses are negligible. 

 

4.2.2.3. Capacity limits of conventional thermal generating units 
maxmin
tititi Ρ≤Ρ≤Ρ                     ti Ν∈ ,...,2,1                                  (4.5) 

 

4.2.2.4. Capacity limits of cogeneration units 

The heat and power outputs of the cogeneration units are non-separable and one output will 

affect the other. ( )cc ΗΡmin , ( )cc ΗΡmax , ( )cc ΡΗmin  and ( )cc ΡΗmax  are the linear inequalities that 

define the feasible operating region of the cogeneration units 

 

( ) ( )cicicicici ΗΡ≤Ρ≤ΗΡ maxmin      ci Ν∈ ,...,2,1                                             (4.6) 

( ) ( )cicicicici ΡΗ≤Η≤ΡΗ maxmin      ci Ν∈ ,...,2,1                                              (4.7) 
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4.2.2.5. Production limits of heat-only units 
maxmin
hihihi Η≤Η≤Η                  hi Ν∈ ,...,2,1                                                (4.8) 

where min
hiΗ  and max

hiΗ are heat production limits of the i th heat-only unit. 

 

4.2.2.6. Prohibited operating zone 

The prohibited operating zones in the input-output performance curve for a typical conventional 

thermal generating unit can be due to vibration in a shaft bearing caused by a steam valve or can 

be due to faults in the machines themselves or the associated auxiliary equipment, such as 

boilers, feed pumps etc. In practice, the shape of the input-output curve in the neighborhood of a 

prohibited zone is difficult to determine by actual performance testing. In actual operation, the 

best economy is achieved by avoiding operation in these areas. Cost function that takes into 

account prohibited operating zones, can be represented as in Fig. 3.2. Prohibited zones generate 

disjoint feasible sub-regions for each of the conventional thermal generating units. These zones 

make a non-convex decision space.   

The feasible operating zones of a conventional thermal generating unit with prohibited operating 

zones can be described as follows: 

 
l
tititi 1,

min Ρ≤Ρ≤Ρ  

l
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u
jti ,1, Ρ≤Ρ≤Ρ − ,   inj ,...,3,2=                                                                                              (4.9) 

max
, titi

u
nti i

Ρ≤Ρ≤Ρ ,       ti Ν∈  

 

where j  represents the number of prohibited operating zones of i th conventional thermal 

generating unit. u
jti 1, −Ρ  is the upper limit of ( )1−j th prohibited operating zone of i th 

conventional thermal generating unit. l
jti ,Ρ  is the lower limit of j th prohibited operating zone of  

i th conventional thermal generating unit. Total number of prohibited operating zones of i th 

conventional thermal generating unit is in . 
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4.2.3. Calculation of Slack Generator 

In order to meet exactly the power balance constraint, a dependent unit should be selected. Due 

to the complex mutual dependencies of cogeneration units, the dependent unit is usually selected 

from the conventional thermal generating units. ( )ct Ν+Ν  committed units deliver their power 

outputs subject to the power balance constraint (4.2) and the respective capacity constraints (4.5) 

and (4.6). Assuming the power loading of cΝ  cogeneration units and first ( 1−Ν t ) conventional 

thermal generating units are known, the power level of the tΝ th conventional thermal generating 

unit (i.e. the slack generator) is given by  
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The transmission loss LΡ  is a function of all generator outputs including the slack generator and 

it is given by 
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Expanding and rearranging, (4.10) becomes 
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The loading of the slack generator (i.e. tΝ th conventional thermal generating unit) can then be 

found by solving (4.12) using standard algebraic method. 

 

4.3. Application of DEGM Method 

The proposed DEGM is applied to four test systems. The computational results are used to 

compare the performance of the proposed DEGM based approach with that of other evolutionary 
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methods.  The proposed DEGM and DE used in this paper are implemented by using MATLAB 

7.0 on a PC (Pentium-IV, 80 GB, 3.0 GHz). 

 

4.3.1. Test System 1 

This test system consists of one conventional thermal generator and two cogeneration units and a 

heat-only unit. Unit data have been taken from [62]. The power and heat demands of the test 

system are 250 MW and 115 MWth, respectively. Here, two cases are considered. 

 

Case 1 

Here, only valve point loading of conventional thermal generator has been considered. The 

problem is solved by using both DEGM and DE. Here, the population size ( ΡΝ ), crossover rate 

)( RC and the maximum iteration number ( maxΝ ) have been selected as 50, 1.0 and 100, 

respectively, for the test system under consideration. 

The power and heat generations corresponding to the best cost obtained from the proposed 

DEGM and DE are shown in Table 4.1. The best, average and the worst costs and average CPU 

time among 100 runs of solutions obtained from the proposed DEGM and DE are summarized in 

Table 4.2. The cost obtained from classical PSO (CPSO) [62] and time varying acceleration 

coefficients PSO (TVAC-PSO) [13] are also shown in Table 4.2. The cost convergence 

characteristic obtained from the proposed DEGM and DE is shown in Fig. 4.1. It is seen from 

Table 4.2 that the cost found by using DEGM is the lowest among all other methods. 
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                Fig. 4.1. Cost convergence characteristics for case 1 of test system 1. 
 
 
 
 
Table 4.1: Power generation (MW) and heat  
generation (MWth) for Case 1 of Test System 1 

               DEGM               DE   
1Ρ          113.4014        113.3946 

2Ρ           92.5986          92.5982 

3Ρ           44.0000          44.0072 

2Η         36.5216           36.5716 

3Η         78.4784           78.3954 

4Η              0                   0.0330 
 
  
 
 
Table 4.2: Comparison of performance for Case 1 of Test System 1 
Techniques DEGM DE TVAC-PSO  CPSO 
Best cost ($) 9235.1032 9236.1437 9257.07 9257.08 
Average cost ($) 9235.1110 9236.7422 - - 
Worst cost ($) 9235.1145 9237.0886 - - 
CPU time (s) 1.0827 1.0674 - - 
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Case 2 

Here, valve point loading of conventional thermal generator and prohibited operating zones of 

conventional thermal generator have been considered. The data of conventional thermal 

generator are  same as in [62] except the following modifications in Table A.1. Table A.1 lists 

the prohibited zones of conventional thermal generator. These prohibited zones result in four 

disjoint feasible sub-regions for the conventional thermal generator. Hence, those zones result in 

a non-convex decision space which consists of four convex sub-spaces for this system.   

The problem is solved by using both DEGM and DE. Here, the population size ( ΡΝ ), crossover 

rate )( RC and the maximum iteration number ( maxΝ ) have been selected as 50, 1.0 and 100, 

respectively, for the test system under consideration. 

The power and heat generations corresponding to the best cost obtained from proposed DEGM 

and DE is summarized in Table 4.3. The best, average and the worst cost and average CPU time 

among 100 runs of solutions obtained from the proposed DEGM and DE are shown in Table 4.4. 

The cost convergence characteristic obtained from the proposed DEGM and DE is depicted in 

Fig. 4.2. It is seen from Table 4.4 that the cost found by using DEGM is the lower than that 

obtained from DE.  
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             Fig. 4.2. Cost convergence characteristics for Case 2 of Test system 1 
  
 
 
Table 4.3: Power generation (MW) and heat  
 generation (MWth) for case 2 of Test System 1 

                DEGM               DE   
1Ρ           109.9997       109.9766 

2Ρ            96.0003         96.0202 

3Ρ             44.0000        44.0032 

2Η           36.5188        36.5172 

3Η           78.4812         78.4698 

4Η                0                 0.0130 
 
 
Table 4.4: Comparison of performances of DE & DEGM for Case 2 
 of Test System 1 
Techniques DEGM DE 
Best cost ($) 9290.4804 9291.1375 
Average cost ($) 9290.5331 9291.6290 
Worst cost ($) 9290.5810 9292.4286 
CPU time (s) 1.2403 1.2173 
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4.3.2. Test System 2 

This system consists of four conventional thermal generators, two cogeneration units and a heat-

only unit. Here, transmission loss is considered. Unit data are taken from [62]. The power and 

heat demands of this test system are 600 MW and 150 MWth, respectively. Here, two cases are 

considered. 

 

Case 1 

In this case , only valve point loading of conventional thermal generators has been considered. 

The problem is solved by using both DEGM and DE. Here, the population size ( ΡΝ ), crossover 

rate )( RC and the maximum iteration number ( maxΝ ) have been selected as 50, 1.0 and 100, 

respectively, for the test system under consideration. 

The power and heat generations corresponding to the  best cost obtained from the proposed 

DEGM and DE are shown in Table 4.5. The best, average and the worst costs and average CPU 

time among 100 runs of solutions obtained from proposed DEGM and DE are summarized in 

Table 4.6. The cost obtained from classical PSO (CPSO) [62], time varying acceleration 

coefficients PSO (TVAC-PSO) [13], teaching learning based optimization (TLBO) [63] and 

oppositional teaching learning based optimization (OBTLBO) [63] are also shown in Table 4.6. 

The cost convergence characteristics obtained from the proposed DEGM and DE are depicted in 

Fig. 4.3. It is seen from Table 11 that the cost found by using DEGM is the lowest among all 

other methods. 

 
 
 
Table 4.6: Comparison of performances of the algorithms for Case 1 of Test System 2 
Techniques DEGM DE TVAC-PSO  

 
CPSO OBTLBO  TLBO  

Best cost ($) 10094.2497 10094.3330 10100.3124 10325.3339 10094.3529 10094.8384 
Average cost ($) 10094.2515 10094.3884 - - 10099.4057 10114.1539 
Worst cost ($) 10094.2612 10094.4545 - - 10106.8314 10133.6130 
CPU time (s) 2.1836 2.1795 - - 3.06 2.86 
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Table 4.5: Power generation (MW) and heat  
 generation (MWth) for Case 1 of Test System 2 
                DEGM                 DE 

1Ρ            45.6710           45.6493 

2Ρ           98.5403           98.5412 

3Ρ         112.6738        112.6756 

4Ρ         209.8170        209.8143 

5Ρ           94.0477          94.0681 

6Ρ            40.0000           40.0013 

5Η          27.9800          27.8638 

6Η          75.0000           74.9902 

7Η          47.0200          47.1460 
Ploss        0.7498             0.7498  
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                 Fig. 4.3. Cost convergence characteristics  of DE & DEGM for Case 1 of Test system 2 
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Case 2 

Here, valve point loading of conventional thermal generators and prohibited operating zones of 

conventional thermal generators are considered. The data of conventional thermal generator are 

same as in [62] except the following modifications in Table A.2. Table A.2 lists the prohibited 

zones of conventional thermal generating units.  These prohibited zones result in three disjoint 

feasible sub-regions for each of the conventional thermal generators. Hence, those zones result in 

a non-convex decision space which consists of 81 convex sub-spaces for this system. 

The problem is solved by using both the DEGM and DE. Here, the population size ( ΡΝ ), 

crossover rate )( RC and the maximum iteration number ( maxΝ ) have been selected as 50, 1.0 and 

100 ,respectively, for the test system under consideration. 

The power and heat generations corresponding to the best cost obtained from proposed DEGM 

and DE is summarized in Table 4.7. The best, average and worst costs and average CPU time 

among 100 runs of solutions obtained from the  proposed DEGM and DE are shown in Table 

4.8. The cost convergence characteristics obtained from the proposed DEGM and DE are shown 

in Fig. 4.4. 

 
Table 4.7: Power generation (MW) and heat  
 generation (MWth) for Case 2 of Test System 2 
                 DEGM                 DE 

1Ρ              44.1139          44.1797 

2Ρ           100.0001         100.0029 

3Ρ           112.6736         112.6755 

4Ρ           209.8159         209.8103 

5Ρ             94.1462           94.0812 

6Ρ             40.0001           40.0000 

5Η            27.4001         27.7867 

6Η            74.9998          74.9999 

7Η            47.6001          47.2134 
Ploss          0.7497           0.7496 

 
Table 4.8: Comparison of performances  of DE & DEGM for Case 2 
 of Test System 2 
Techniques DEGM DE 
Best cost ($) 10101.2995 10101.3772 
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Average cost ($) 10101.3487 10101.4128 
Worst cost ($) 10101.3902 10101.4624
CPU time (s) 2.3176 2.2681 
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              Fig. 4.4. Cost convergence characteristics of DE & DEGM for Case 2 of Test system 2 
 
 
 
 
4.3.3. Test System 3 

This system consists of thirteen conventional thermal generators, six cogeneration units and five 

heat-only units. Unit data are taken from [62]. The power and heat demands of the test system 

are 2350 MW and 1250 MWth, respectively. Here, two cases are considered. 

 

Case 1 

Here, only valve point loading of conventional thermal generators has been considered. The 

problem is solved by using both the DEGM and DE. Here, the population size ( ΡΝ ), crossover 

rate )( RC and the maximum iteration number ( maxΝ ) have been selected as 100, 1.0 and 200, 

respectively, for the test system under consideration. 
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The power and heat generations corresponding to best cost obtained from proposed DEGM and 

DE is shown in Table 4.9. The best, average and worst costs and average CPU time among 100 

runs of solutions obtained from proposed DEGM and DE are summarized in Table 4.10. The 

cost obtained from classical PSO (CPSO) [62], time varying acceleration coefficients PSO 

(TVAC-PSO) [13], teaching learning based optimization (TLBO) [63] and oppositional teaching 

learning based optimization (OBTLBO) [63] are also shown in Table 4.10. The cost convergence 

characteristics obtained from the proposed DEGM and DE are shown in Fig. 4.5. It is seen from 

Table 4.10 that the cost found by using DEGM is the lowest among all other methods. 

 
 
 
Table 4.9: Power generation (MW) and heat generation (MWth) for  
Case 1 of Test System 3 
             DEGM               DE                           DEGM              DE 

1Ρ         405.8240        538.5518        16Ρ         91.9008         81.2732 

2Ρ        228.3453        298.6687        17Ρ          49.5467        40.0017 

3Ρ        232.2610        298.9085        18Ρ          14.3991         10.0002 

4Ρ         82.1304        110.0920         19Ρ          35.0000         35.0001 

5Ρ        180.0000        110.1545        14Η       145.4696       105.2221 

6Ρ        146.6926        110.0381        15Η         80.4921         76.5203 

7Ρ         60.0000        110.1044         16Η       104.8984       105.5137 

8Ρ        103.6535        110.2453        17Η         81.7680         75.4838 

9Ρ        141.2192        109.8992        18Η         37.1367         39.9997 

10Ρ         57.3959          77.3995        19Η         18.7811         18.3946 

11Ρ       107.4889          77.8361        20Η       154.8362       468.9049 

12Ρ       113.7753          55.0021        21Η       155.7581         59.9997 

13Ρ         90.2413          55.0107        22Η       155.1761         59.9996 

14Ρ       158.0832          81.0524        23Η       158.3652       119.9861 

15Ρ         52.0430          40.7615        24Η       157.3184       119.9755 
 
 
 
Table 4.10: Comparison of performancesof E & DEGM for Case 1 of Test System 3 
Techniques DEGM DE TVAC-PSO  

 
CPSO  OBTLBO  

 
TLBO  

Best cost ($) 57435.1423 57847.8251 58122.7460 59736.2635 57856.2676 58006.9992 
Average cost ($) 57445.4357 57858.5731 58198.3106 59853.478 57883.2105 58014.3685 
Worst cost ($) 57457.3845 57872.6723 58359.5520 60076.6903 57913.7731 58038.5273 
CPU time (s) 5. 1374 5.0187 7.84 8.00 5.82 5.67 
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               Fig. 4.5. Cost convergence characteristics of DE & DEGM for Case 1 of Test system 3. 
 
 
 
 
Case 2 

Here, valve point loading of conventional thermal generators and prohibited operating zones of 

conventional thermal generators are considered. The data of conventional thermal generator is 

same as in [62] except the following modifications in Table A.3. Table A.3 lists the prohibited 

zones of conventional thermal generating units 1, 2, 3, 10 and 11. These prohibited zones result 

in four disjoint feasible sub-regions for each of conventional thermal generating units 1, 2, and 3 

and three disjoint feasible sub-regions for each of the conventional thermal generating units 10 

and 11. Hence, those zones result in a non-convex decision space which consists of 576 convex 

sub-spaces for this system. 
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The problem is solved by using both the DEGM and DE. Here, the population size ( ΡΝ ), 

crossover rate )( RC and the maximum iteration number ( maxΝ ) have been selected as 100, 1.0 

and 200, respectively, for the test system under consideration. 

The power and heat generations corresponding to the  best cost obtained from the proposed 

DEGM and DE are summarized in Table 4.11. The best, average and worst costs and average 

CPU time among 100 runs of solutions obtained from the proposed DEGM and DE are given in 

Table 4.12. The cost convergence characteristics obtained from the proposed DEGM and DE are  

depicted in Fig. 4.6. 

 
 
 
Table 4.11: Power generation (MW) and heat generation (MWth) for  
Case 2 of Test System 3 
               DEGM             DE                       DEGM             DE 

1Ρ          352.6891       538.5583     16Ρ         85.5662       98.5144 

2Ρ         236.8071      299.2039      17Ρ         45.8052        45.5971 

3Ρ         304.6099       149.6013     18Ρ         14.9670         10.0001 

4Ρ           65.4600      159.7337      19Ρ         44.9197        40.1097 

5Ρ         164.1774       159.7336     14Η      120.1593      115.0561 

6Ρ         158.5786         60.0009     15Η        74.4085        79.6944 

7Ρ        164.1946          60.0000     16Η        91.9492      114.6300 

8Ρ         103.3653       159.7327     17Η        60.0778         79.8603 

9Ρ           61.2580       159.7336     18Η         40.7192        40.0003 

10Ρ          85.6485         40.0011     19Η         11.8679        22.3225 

11Ρ          57.9012       114.8002     20Η       238.9227      438.4368 

12Ρ          86.4798         55.0000     21Η         82.5488        59.9998 

13Ρ        114.0153         55.0005     22Η       150.3922        60.0000 

14Ρ        156.2659         99.2738     23Η       191.9765      119.9999 

15Ρ          47.2913         45.4050     24Η       186.9779      120.0000 
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Table 4.12: Comparison of performance of DE & DEGM for Case 2 
 of Test System 3 
Techniques DEGM DE 
Best cost ($) 57818.3785 58075.9543 
Average cost ($) 57830.5122 58084.9919 
Worst cost ($) 57841.9561 58095.7992 
CPU time (s) 5.2148 5.1974 
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             Fig. 4.6. Cost convergence characteristics  of DE & DEGM for Case 2 of Test system 3 

 
 
 
4.3.4. Test System 4 

This system consists of twenty six conventional thermal generators, twelve cogeneration units 

and ten heat-only units. Data of this test system are  obtained by duplicating data of test system 

3. Characteristics of conventional thermal generating units 1-13 and 14-26 in this test system are 

same as units 1-13 in test system 3. Characteristics of cogeneration units 27-32 and 33-38 are 
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same as units 14-19 in case of test system 3. Also characteristics of heat-only units 39-43 and 44-

48 are same as units 19-24 in case of test system 3. The power and heat demands of this test 

system are 4700 MW and 2500 MWth, respectively. Total number of decision variables is sixty. 

Here, two cases are considered. 

 

Case 1 

 In this case ,only valve point loading of conventional thermal generators has been considered. 

The problem is solved by using the proposed DEGM. The problem is solved by using both the 

DEGM and DE. Here, the population size ( ΡΝ ), crossover rate )( RC and the maximum iteration 

number ( maxΝ ) have been selected as 200, 1.0 and 300 ,respectively for the test system under 

consideration. 

The power and heat generations corresponding to best cost obtained from proposed DEGM is 

shown in Table 4.13. The best, average and worst costs and average CPU time among 100 runs 

of solutions obtained from proposed DEGM are summarized in Table 4.14. The cost obtained 

from classical PSO (CPSO) [62], time varying acceleration coefficients PSO (TVAC-PSO) [62], 

teaching learning based optimization (TLBO) [63] and oppositional teaching learning based 

optimization (OBTLBO) [63] are also shown in Table 4.14. The cost convergence characteristics 

obtained from the proposed DEGM & DE are depicted in Fig. 4.7. It is seen from Table 4.14 that 

the cost found by using DEGM is the lowest among all other methods. 
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                 Fig. 4.7. Cost convergence characteristics of DE & DEGM for Case 1 of Test system4 
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Table 4.13: Power generation (MW) and heat generation (MWth) for  
Case 1 of Test System 4 
              ODE                DE                              ODE              DE 

1Ρ         628.3929        448.9126        31Ρ         10.0067        10.0212 

2Ρ        152.5706        150.5151        32Ρ         35.2229        37.7288 

3Ρ         225.0390         80.7660         33Ρ        84.3443         92.0380 

4Ρ        159.7318       160.0923         34Ρ         52.4982        50.4524 

5Ρ          60.1085        109.9592        35Ρ         88.3203         95.2834 

6Ρ        159.8778        159.8520        36Ρ         52.6043         52.3657 

7Ρ        159.8202        160.1104        37Ρ         10.0031        10.0683 

8Ρ          60.2052        159.8453        38Ρ         41.3405         45.7741 

9Ρ        159.7669        160.0219        27Η      110.0733       109.8046 

10Ρ       114.9815        114.9957         28Η       80.5513         83.3599 

11Ρ       114.8295        115.1906        29Η      105.4872       104.9610 

12Ρ         55.0982          92.6482        30Η        88.2216         80.8014 

13Ρ         55.4608          55.0420         31Η       40.0032         39.9976 

14Ρ       269.2848        269.4783         32Η       20.0959         21.2295 

15Ρ       299.7439        299.4636         33Η     106.6740        110.9901 

16Ρ       299.5403        299.7175         34Η       85.8196          84.0301 

17Ρ         60.0000        159.9635         35Η     108.9010        112.7913 

18Ρ       109.9347        159.8998         36Η       85.9112          85.6985 

19Ρ         60.0133        159.7568         37Η       39.9970          40.0211 

20Ρ       159.7334          60.0218        38Η        22.8801          24.8763 

21Ρ       159.7326        160.0075        39Η      461.4785        458.7095 

22Ρ       159.8841       159.9142         40Η        59.9991          59.9975 

23Ρ         40.0244       114.9146         41Η        59.9991          60.0000 

24Ρ       114.8484         40.1116         42Η      119.9983        119.9632 

25Ρ         92.7310         93.8700         43Η      119.9995        119.9990 

26Ρ       119.9937         93.6315         44Η      423.9159        422.7929 

27Ρ         90.3997         89.9223          45Η       59.9989          59.9792 

28Ρ         46.4014         49.6516          46Η       59.9998          59.9974 

29Ρ         82.2287         81.2954          47Η     119.9997        120.0000 

30Ρ         55.2821         46.6966          48Η     119.9958        120.0000 
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Table 4.14: Comparison of performance of DE & DEGM for Case 1 of Test System 4 
Techniques DEGM DE TVAC-PSO 

 
CPSO  OBTLBO  

 
TLBO  

Best cost ($) 116406.2452 116457.9578 117824.8956 119708.8818 116579.2390 116739.3640 
Average cost ($) 116411.4248 116464.2643 - - 116613.6505 116756.0057 
Worst cost ($) 116417.0139 116472.3293 - - 116649.4473 116825.8223 
CPU time (s) 9.4681 9.1073 - - 10.93 10.38 

 
 
Case 2 

In this case, valve point loading of conventional thermal generators and prohibited operating 

zones of conventional thermal generators are considered. The data of conventional thermal 

generator are same as in case 1 except the following modifications in Table A.4. Table A.4 lists 

the prohibited zones of conventional thermal generating units 1, 2, 3, 10, 11, 14, 15, 16, 23 and 

24. These prohibited zones result in four disjoint feasible sub-regions for each of conventional 

thermal generating units 1, 2, 3, 14, 15 and 16 and three disjoint feasible sub-regions for each of 

the conventional thermal generating units 10, 11, 23 and 24. Hence, those zones result in a non-

convex decision space which consists of 331776 convex sub-spaces for this system. 

The problem is solved by using the proposed MPSO. The problem is solved by using both the 

DEGM and DE. Here, the population size ( ΡΝ ), crossover rate )( RC and the maximum iteration 

number ( maxΝ ) have been selected as 200, 1.0 and 200, respectively for the test system under 

consideration. 

The power and heat generations corresponding to the best cost obtained from proposed DEGM is 

summarized in Table 4.15. The best, average and worst costs and average CPU time among 100 

runs of solutions obtained from the proposed DEGM are shown in Table 4.16.  

 
 
 
Table 4.16: Comparison of performance of DE & DEGM for 
Case 2 of Test System 4 
Techniques DEGM DE 
Best cost ($) 116681.5578 116977.2048 
Average cost ($) 116689.4748 116988.8263 
Worst cost ($) 116699.8950 116996.4316 
CPU time (s) 10.5638 10.2793 
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Table 4.15: Power generation (MW) and heat generation (MWth) for  
Case 2 of Test System 4 
                ODE               DE                           ODE              DE 

1Ρ          628.3352         0.0471       31Ρ          10.1295        10.9795 

2Ρ             0.0153     360.0000       32Ρ          35.7065        43.1498 

3Ρ         359.9893      359.1999      33Ρ          91.9319         82.6940 

4Ρ        159.8018      160.0293       34Ρ          57.5933        47.7510 

5Ρ          60.1367      160.3777       35Ρ          81.0980        85.2154 

6Ρ          60.0099      161.0244       36Ρ          47.3499        45.2857 

7Ρ         60.0770      159.7844       37Ρ          10.0254        10.1040 

8Ρ        159.7174        61.5254       38Ρ          35.0302        35.4258 

9Ρ        159.7489      160.0464       27Η       118.8178      105.2132 

10Ρ       114.6906        40.0234       28Η         78.9442        87.4681 

11Ρ       114.7044      117.2796       29Η       110.6110      105.1607 

12Ρ         55.0000        55.0000       30Η         82.5351        80.2841 

13Ρ         55.0009        96.0207       31Η         40.0419        39.7728 

14Ρ       179.4172      627.4600       32Η         20.3118        22.9621 

15Ρ       299.3710      150.4142       33Η       110.7778      104.4973 

16Ρ       359.9722      359.5863       34Η         90.2101        80.9460 

17Ρ         60.0213      162.4424       35Η      104.7815       106.6665 

18Ρ       159.8378        60.0000       36Η        81.3584         79.5110 

19Ρ       109.9424      161.8982       37Η        40.0036         39.7946 

20Ρ      159.7331        60.1077       38Η         20.0126         20.1340 

21Ρ       159.9230      162.0103       39Η      433.6195       441.6983 

22Ρ      159.7265        60.6194       40Η        59.9453         59.9941 

23Ρ      114.8838        115.6517     41Η        59.9982         59.8580 

24Ρ      115.3210      114.0506       42Η      120.0000       119.8318 

25Ρ        55.0122      56.3107         43Η      119.9627       119.8444 

26Ρ      119.9559      92.1742         44Η      448.0942       467.1149 

27Ρ      106.0168       81.8378        45Η        59.9968         60.0000 

28Ρ        44.6073       54.7657        46Η        60.0000         59.7449 

29Ρ        91.4706       83.4146        47Η      119.9959       119.9997 

30Ρ        48.6959       46.2928        48Η      119.9814       119.5034 
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4.4. Conclusion 

Here, DEGM method has been successfully implemented to solve the five test problems and 

four complex non-smooth /non-convex combined heat and power economic dispatch 

problem. The results have been compared with those obtained by other evolutionary 

algorithms reported in the literature. It is seen from the comparisons that the proposed DEGM 

performs better than other evolutionary algorithms in the literature. It is clear from the results 

obtained by different trials that the proposed DEGM can avoid the shortcoming of premature 

convergence. Due to these properties, in future DEGM can be tried for solution of complex 

power system optimization problems. 

 

4. 5. Application of IDE Method 

The proposed improved differential evolution (IDE) is applied to four test systems. The 

computational results have been used to compare the performance of the proposed IDE based 

approach with those evolutionary methods. The proposed IDE and DE used in this paper are 

implemented by using MATLAB 7.0 on a PC (Pentium-IV, 80 GB, 3.0 GHz). 

 

4.5.1. Test System 1 

 

This test system consists of one conventional thermal generator and two cogeneration units 

and a heat-only unit. Unit data are taken from [62]. The power and heat demands of the test 

system are 250 MW and 115 MWth, respectively. Here, two cases are considered. 

 

Case 1 

In this case, only valve point loading of conventional thermal generator has been considered. 

The problem is solved by using both the proposed IDE and DE. In case of IDE and DE, the 

population size ( ΡΝ ), crossover rate )( RC and the maximum iteration number ( maxΝ ) have 

been selected as 50, 1.0 and 100, respectively, for this test system under consideration. In 

case of DE, scaling factor )(F  has been selected 1.0. 

The power and heat generations corresponding to the best cost obtained from the proposed 

IDE and DE are  shown in Table 4.17. The best, average and the worst costs and average 

CPU time among 100 runs of solutions obtained from the proposed IDE and DE are 

summarized in Table 4.18. The cost obtained from classical PSO (CPSO) [62] and time 

varying acceleration coefficients PSO (TVAC-PSO) [62] are also shown in Table 4.18. The 
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cost convergence characteristics obtained from the proposed IDE and DE are shown in Fig. 

4.8. It is seen from Table 4.18 that the total production cost found by using IDE is the lowest 

among all other methods. 
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                 Fig. 4.8. Cost convergence characteristics of DE & IDE for Case 1 of Test system 
1 
 
 
 
 Table 4.17: Power generation (MW) and heat  
generation (MWth) for Case 1 of Test System 1 

                IDE               DE   
1Ρ          113.4009      113.3946 

2Ρ           92.5991        92.5982 

3Ρ           44.0000         44.0072 

2Η         36.5188         36.5716 

3Η         78.4812         78.3954 

4Η             0                   0.0330 
 
Table 4.18: Comparison of performance for Case 1 of Test System 1 
Techniques IDE DE TVAC-PSO  CPSO  
Best cost ($) 9235.0999 9236.1437 9257.07 9257.08 
Average cost ($) 9235.1011 9236.7422 - - 
Worst cost ($) 9235.1127 9237.0886 - - 
CPU time (s) 1.0716 1.0674 - - 
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Case 2 

In this case, the valve point loading of conventional thermal generator and prohibited 

operating zones of conventional thermal generator are  considered. The data of conventional 

thermal generator is same as in [62] except the following modifications in Table A.1. Table 

A.1 lists the prohibited zones of conventional thermal generator. These prohibited zones 

result in four disjoint feasible sub-regions for the conventional thermal generator. Hence, 

those zones result in a non-convex decision space which consists of four convex sub-spaces 

for this system.   

The problem is solved by using both the proposed IDE and DE. In case of IDE and DE, the 

population size ( ΡΝ ), crossover rate )( RC and the maximum iteration number ( maxΝ ) have 

been selected as 50, 1.0 and 100, respectively, for this test system under consideration. The 

scaling factor )(F  has been selected 1.0 in case of DE. 

The power and heat generations corresponding to best cost obtained from the proposed IDE 

and DE is summarized in Table 4.19. The best, average and the worst costs and average CPU 

time among 100 runs of solutions obtained from the proposed IDE and DE are shown in 

Table 4.20. The cost convergence characteristics obtained from the  proposed IDE and DE is 

depicted in Fig. 4.9. It is seen from Table 4.20 that the total production cost found by using 

IDE is the lower than that found by DE. 

 
 
 Table 4.19: Power generation (MW) and heat  
 generation (MWth) for Case 2 of Test System 1 

                 IDE               DE   
1Ρ           109.9935       109.9766 

2Ρ            96.0065         96.0202 

3Ρ             44.0000        44.0032 

2Η           36.5188         36.5172 

3Η           78.4812         78.4698 

4Η                0                 0.0130 
 
Table 4.20: Comparison of performance for Case 2 
 of Test System 1 
Techniques IDE DE 
Best cost ($) 9290.5796 9291.1375 
Average cost ($) 9290.5800 9291.6290 
Worst cost ($) 9290.5815 9292.4286 
CPU time (s) 1.2308 1.2173 
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                Fig. 4.9. Cost convergence characteristics of DE & IDE for Case 2 of Test system 1 
 
 
 
4.5.2. Test System 2 

This system consists of four conventional thermal generators, two cogeneration units and a 

heat-only unit. Here, transmission loss is considered. Unit data are taken from [62]. The 

power and heat demands of this test system are 600 MW and 150 MWth respectively. Here, 

two cases are considered. 

 

Case 1 

In this case , only valve point loading of conventional thermal generators has been 

considered. 

The problem is solved by using both the proposed IDE and DE. In case of IDE and DE, the 

population size ( ΡΝ ), crossover rate )( RC and the maximum iteration number ( maxΝ ) have 

been selected as 50, 1.0 and 100, respectively, for this test system under consideration. In 

case of DE, scaling factor )(F  has been selected 1.0. 
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The power and heat generations corresponding to best cost obtained from the proposed IDE 

and DE are shown in Table 4.21. The best, average and the worst costs and average CPU time 

among 100 runs of solutions obtained from proposed IDE and DE are summarized in Table 

4.22. The cost obtained from classical PSO (CPSO) [62], time varying acceleration 

coefficients PSO (TVAC-PSO) [13], teaching learning based optimization (TLBO) [63] and 

oppositional teaching learning based optimization (OBTLBO) [63] are also shown in Table 

4.22. The cost convergence characteristics obtained from the proposed IDE and DE is 

depicted in Fig. 4.10. It is seen from Table 4.22 that the total production cost found by using 

IDE is the lowest among all other methods. 

 
 
Table 4.21: Power generation (MW) and heat  
 generation (MWth) for Case 1 of Test System 2 
                 IDE                 DE 

1Ρ             45.6583          45.6493 

2Ρ            98.5398           98.5412 

3Ρ          112.6735         112.6756 

4Ρ          209.8158         209.8143 

5Ρ            94.0624           94.0681 

6Ρ            40.0000           40.0013 

5Η          27.8933          27.8638 

6Η          75.0000           74.9902 

7Η          47.1067           47.1460 
Ploss        0.7499             0.7498  

 
 
Table 4.22: Comparison of performanceof the algorithms  for Case 1 of Test System 2 
Techniques IDE DE TVAC-PSO  

 
CPSO OBTLBO  

 
TLBO  

Best cost ($) 10094.2370 10094.3330 10100.3124 10325.3339 10094.3529 10094.8384 
Average cost ($) 10094.3226 10094.3884 - - 10099.4057 10114.1539 
Worst cost ($) 10094.3852 10094.4545 - - 10106.8314 10133.6130 
CPU time (s) 2.1914 2.1795 - - 3.06 2.86 
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  Fig. 4.10. Cost convergence characteristics of DE & IDE for Case 1 of Test system 2 
 
 
 
Case 2 

In this case , valve point loading of conventional thermal generators and prohibited operating 

zones of conventional thermal generators have been considered. The data of conventional 

thermal generator is same as in [62] except the following modifications in Table A.2. Table 

A.2 lists the prohibited zones of conventional thermal generating units.  These prohibited 

zones result in three disjoint feasible sub-regions for each of the conventional thermal 

generators. Hence, those zones result in a non-convex decision space which consists of 81 

convex sub-spaces for this system. 

The problem is solved by using both the proposed IDE and DE. In case of IDE and DE, the 

population size ( ΡΝ ), crossover rate )( RC and the maximum iteration number ( maxΝ ) have 

been selected as 50, 1.0 and 100, respectively, for this test system under consideration. The 

scaling factor )(F  has been selected 1.0 in case of DE. 

The power and heat generations corresponding to the best cost obtained from proposed IDE 

and DE is summarized in Table 4.23. The best, average and the worst costs and average CPU 

time among 100 runs of solutions obtained from proposed IDE and DE are shown in Table 
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4.24. The cost convergence characteristics obtained from the  proposed IDE and DE is shown 

in Fig. 4.11. It is seen from Table 4.24 that the total production cost obtained from IDE is the 

lower than that obtained from DE. 
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              Fig. 4.11. Cost convergence characteristics of DE & IDE for Case 2 of Test system 2 
 
 
Table 4.24: Comparison of performance of algorithms for Case 2 
 of Test System 2 
Techniques IDE DE 
Best cost ($) 10101.2941 10101.3772 
Average cost ($) 10101.3598 10101.4128 
Worst cost ($) 10101.4165 10101.4624 
CPU time (s) 2.2751 2.2681 
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Table 4.23: Power generation (MW) and heat  
 generation (MWth) for Case 2 of Test System 2 
                 IDE                 DE 

1Ρ              44.1425          44.1797 

2Ρ           100.0000        100.0029 

3Ρ           112.6735          112.6755 

4Ρ           209.8158         209.8103 

5Ρ             94.1178          94.0812 

6Ρ             40.0000           40.0000 

5Η            27.5673         27.7867 

6Η            75.0000          74.9999 

7Η            47.4327          47.2134 
Ploss          0.7496            0.7496 

 
 
 
4.5.3. Test System 3 

This system consists of thirteen conventional thermal generators, six cogeneration units and 

five heat-only units. Unit data has been taken from [62]. The power and heat demands of the 

test system are 2350 MW and 1250 MWth respectively. Here, two cases are considered. 

 

Case 1 

Here, only valve point loading of conventional thermal generators has been considered. 

The problem is solved by using both the proposed IDE and DE. In case of IDE and DE, the 

population size ( ΡΝ ), crossover rate )( RC and the maximum iteration number ( maxΝ ) have 

been selected as 100, 1.0 and 200 respectively for this test system under consideration. The 

scaling factor )(F  has been selected 1.0 in case of DE. 

The power and heat generations corresponding to best cost obtained from proposed IDE and 

DE is shown in Table 4.25. The best, average and worst cost and average CPU time among 

100 runs of solutions obtained from proposed IDE and DE are summarized in Table 4.26. 

The cost obtained from classical PSO (CPSO) [62], time varying acceleration coefficients 

PSO (TVAC-PSO) [62], teaching learning based optimization (TLBO) [63] and oppositional 

teaching learning based optimization (OBTLBO) [63] are also shown in Table 4.26. The cost 

convergence characteristic obtained from proposed IDE and DE is shown in Fig. 4.12. It is 

seen from Table 4.26 that the total production cost found by using IDE is the lowest among 

all other methods. 

 



 

93 
 

Table 4.25: Power generation (MW) and heat generation (MWth) for Case 1  
of Test System 3 
               IDE                 DE                              IDE                DE 

1Ρ        535.7328         538.5518        16Ρ        147.1269         81.2732 

2Ρ         87.9941         298.6687        17Ρ          45.4364         40.0017 

3Ρ         88.4237         298.9085        18Ρ          18.5330          10.0002 

4Ρ       166.7972         110.0920        19Ρ          48.4332         35.0001 

5Ρ        155.0323        110.1545        14Η       115.5126       105.2221 

6Ρ        167.5964        110.0381        15Η         84.4229         76.5203 

7Ρ       101.1912        110.1044         16Η        73.4368       105.5137 

8Ρ          90.1035        110.2453        17Η         79.3906         75.4838 

9Ρ        179.0407        109.8992        18Η         43.2269         39.9997 

10Ρ         85.1536          77.3995        19Η         25.8061         18.3946 

11Ρ       109.1897          77.8361        20Η       255.7989       468.9049 

12Ρ         96.7976          55.0021        21Η       159.0120         59.9997 

13Ρ         69.3873          55.0107        22Η       152.9706         59.9996 

14Ρ       102.9362          81.0524        23Η       105.1496       119.9861 

15Ρ         55.0940          40.7615        24Η       155.2730       119.9755 
 
 
 
 
 
Table 4.26: Comparison of performance of  Case 1 of Test System 3 
Techniques IDE DE TVAC-PSO  

 
CPSO] OBTLBO  

 
TLBO  

Best cost ($) 57500.1658 57847.8251 58122.7460 59736.2635 57856.2676 58006.9992 
Average cost ($) 57512.3457 57858.5731 58198.3106 59853.478 57883.2105 58014.3685 
Worst cost ($) 57526.8475 57872.6723 58359.5520 60076.6903 57913.7731 58038.5273 
CPU time (s) 5.0217 5.0187 7.84 8.00 5.82 5.67 
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               Fig. 4.12. Cost convergence characteristics of DE & IDE  for  Case 1 of Test 
system 3 
 
 
 
Case 2 

Here, valve point loading of conventional thermal generators and prohibited operating 

zones of conventional thermal generators have been considered. The data of 

conventional thermal generator is same as in [62] except the following modifications 

in Table A.3. Table A.3 lists the prohibited zones of conventional thermal generating 

units 1, 2, 3, 10 and 11. These prohibited zones result in four disjoint feasible sub-

regions for each of conventional thermal generating units 1, 2, and 3 and three disjoint 

feasible sub-regions for each of the conventional thermal generating units 10 and 11. 

Hence, those zones result in a non-convex decision space which consists of 576 

convex sub-spaces for this system. 

The problem is solved by using both the proposed IDE and DE. In case of IDE and 

DE, the population size ( ΡΝ ), crossover rate )( RC and the maximum iteration number 

( maxΝ ) have been selected as 100, 1.0 and 200 respectively for this test system under 

consideration. In case of DE, the scaling factor )(F  has been selected 1.0. 
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The power and heat generations corresponding to best cost obtained from proposed 

IDE and DE is summarized in Table 4.27. The best, average and worst cost and 

average CPU time among 100 runs of solutions obtained from proposed IDE and DE 

are given in Table 4.28. The cost convergence characteristic obtained from proposed 

IDE and DE is depicted in Fig. 4.13. It is seen from Table 4.28 that the total 

production cost found by using IDE is the lower than that obtained from DE. 

 
 
 
Table 4.27: Power generation (MW) and heat generation (MWth) for  
Case 2 of Test System 3 
                IDE                DE                          IDE              DE 

1Ρ         149.4434       538.5583     16Ρ         95.8221       98.5144 

2Ρ        304.6058        299.2039    17Ρ         58.0163        45.5971 

3Ρ         258.0091       149.6013     18Ρ        11.4125        10.0001 

4Ρ          72.0967       159.7337     19Ρ         71.9769        40.1097 

5Ρ         107.7057       159.7336     14Η     125.2448      115.0561 

6Ρ         118.1354         60.0009     15Η       77.7217       79.6944 

7Ρ        177.6320         60.0000     16Η      100.2979     114.6300 

8Ρ         180.0000       159.7327     17Η       89.3979       79.8603 

9Ρ         156.5191       159.7336     18Η       39.5096       40.0003 

10Ρ        117.1895         40.0011     19Η       33.0278       22.3225 

11Ρ          62.8599      114.8002     20Η      205.3785     438.4368 

12Ρ        116.9323        55.0000      21Η     167.3824       59.9998 

13Ρ        114.3197        55.0005     22Η      158.5770       60.0000 

14Ρ        127.7132        99.2738     23Η      163.3474     119.9999 

15Ρ          49.6102        45.4050     24Η        90.1151     120.0000 
 
Table 4.28: Comparison of performance of DE & IDE for Case 2 
 of Test System 3 
Techniques IDE DE 
Best cost ($) 57626.8083 58075.9543 
Average cost ($) 57641.0265 58084.9919 
Worst cost ($) 57655.6638 58095.7992 
CPU time (s) 5.2028 5.1974 
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               Fig. 4.13. Cost convergence characteristics of DE & IDE for Case 2 of Test 
system 3 
 
 

 

4.5.4. Test System 4 

This system consists of twenty six conventional thermal generators, twelve 

cogeneration units and ten heat-only units. Data of this test system is obtained by 

duplicating data of test system 3. Characteristics of conventional thermal generating 

units 1-13 and 14-26 in this test system are same as units 1-13 in test system 3. 

Characteristics of cogeneration units 27-32 and 33-38 are same as units 14-19 in case 

of test system 3. Also characteristics of heat-only units 39-43 and 44-48 are same as 

units 19-24 in case of test system 3. The power and heat demands of this test system 

are 4700 MW and 2500 MWth respectively. Total number of decision variables is 

sixty. Here, two cases are considered. 

 

Case 1 

Here, only valve point loading of conventional thermal generators has been 

considered. 
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The problem is solved by using both the proposed IDE and DE. In case of IDE and 

DE, the population size ( ΡΝ ), crossover rate )( RC and the maximum iteration number 

( maxΝ ) have been selected as 200, 1.0 and 300 respectively for this test system under 

consideration. The scaling factor )(F  has been selected 1.0 in case of DE. 

The power and heat generations corresponding to best cost obtained from proposed 

IDE and DE is shown in Table 4.29. The best, average and worst cost and average 

CPU time among 100 runs of solutions obtained from proposed IDE and DE are 

summarized in Table 4.30. The cost obtained from classical PSO (CPSO) [62], time 

varying acceleration coefficients PSO (TVAC-PSO) [62], teaching learning based 

optimization (TLBO) [63] and oppositional teaching learning based optimization 

(OBTLBO) [63] are also shown in Table 4.30. The cost convergence characteristic 

obtained from proposed IDE and DE is depicted in Fig. 4.14. 

 

 

Table 4.30: Comparison of performance for Case 1 of Test System 4 
 
Techniques IDE DE TVAC-PSO 

 
CPSO OBTLBO  

 
TLBO  

Best cost ($) 116395.7388 116553.8786 117824.8956 119708.8818 116579.2390 116739.3640 
Average cost ($) 116404.4248 116566.2643 - - 116613.6505 116756.0057 
Worst cost ($) 116417.0139 116581.3293 - - 116649.4473 116825.8223 
CPU time (s) 9.1204 9.1073 - - 10.93 10.38 
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Table 4.29: Power generation (MW) and heat generation (MWth) for  
Case 1 of Test System 4 
              IDE                   DE                              IDE               DE 

1Ρ         448.7989        628.3788        31Ρ          10.0013        10.0000 

2Ρ        306.3151        300.7263        32Ρ         37.4216         42.9297 

3Ρ        149.8257          69.5038         33Ρ         81.6484        86.9998 

4Ρ        159.7516        159.8836         34Ρ         44.3481        44.2322 

5Ρ        110.3379        111.0085         35Ρ         84.8291         93.0621 

6Ρ        159.7393        161.3487         36Ρ         45.8490         44.1610 

7Ρ        160.1196        159.7830        37Ρ         10.0001         10.0000 

8Ρ        159.7383          60.1759        38Ρ          36.7439         35.3042 

9Ρ        161.2440        111.0732        27Η       105.7972       115.9058 

10Ρ         78.4224          40.5821        28Η         83.2074         78.7522 

11Ρ       114.8455        115.4596        29Η       107.9138       105.1800 

12Ρ       119.9998          93.1656        30Η         83.5528         78.5260 

13Ρ         92.4058          94.1436        31Η         40.0011         40.0006 

14Ρ       269.2796        449.8255        32Η         21.1007         23.6042 

15Ρ       300.1488        224.8231        33Η       105.1644       108.1677 

16Ρ       299.2742         82.6100         34Η         78.7817         78.6816 

17Ρ       159.7625        159.7870        35Η       106.9498       111.5700 

18Ρ       109.8995        160.0493        36Η         80.0776         78.6202 

19Ρ         60.0141          64.9357        37Η         40.0004         40.0005 

20Ρ       109.0102        162.3119        38Η         20.7926         20.1380 

21Ρ         64.0415        110.5421        39Η       480.0298       484.5378 

22Ρ       110.4698       161.2920        40Η         60.0000         60.0000 

23Ρ         77.4349        114.8351       41Η          59.9999        60.0000 

24Ρ       114.8022         77.7608        42Η       120.0000       120.0000 

25Ρ         92.4082         96.0141        43Η       119.9999       119.9999 

26Ρ         92.4006         92.4619        44Η       426.6309       416.3160 

27Ρ         82.7754       100.7881        45Η         60.0000         59.9995 

28Ρ         49.4732         44.3139        46Η         60.0000         60.0000 

29Ρ         86.5469         81.6757        47Η       120.0000       120.0000 

30Ρ         49.8731         44.0520        48Η       120.0000       119.9998 
 
 
 



99 
 

0 50 100 150 200 250 300
1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5
x 105

C
os

t (
$)

Iteration

IDE
DE

 
                 Fig. 4.14. Cost convergence characteristics of DE & IDE for Case 1 of Test 
system 4 
 
 
 
Case 2 

Here, valve point loading of conventional thermal generators and prohibited operating 

zones of conventional thermal generators have been considered. The data of conventional 

thermal generator is same as in case 1 except the following modifications in Table A.4. 

Table A.4 lists the prohibited zones of conventional thermal generating units 1, 2, 3, 10, 

11, 14, 15, 16, 23 and 24. These prohibited zones result in four disjoint feasible sub-

regions for each of conventional thermal generating units 1, 2, 3, 14, 15 and 16 and three 

disjoint feasible sub-regions for each of the conventional thermal generating units 10, 11, 

23 and 24. Hence, those zones result in a non-convex decision space which consists of 

331776 convex sub-spaces for this system. 

The problem is solved by using both the proposed IDE and DE. In case of IDE and DE, 

the population size ( ΡΝ ), crossover rate )( RC and the maximum iteration number ( maxΝ ) 
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have been selected as 200, 1.0 and 300 respectively for this test system under 

consideration. In case of DE, the scaling factor )(F  has been selected 1.0. 

The power and heat generations corresponding to best cost obtained from proposed IDE 

and DE is summarized in Table 4.31. The best, average and worst cost and average CPU 

time among 100 runs of solutions obtained from proposed IDE and DE are shown in 

Table 4.32. The cost convergence characteristic obtained from proposed IDE and DE is 

shown in Fig. 4.15. . It is seen from Table 4.32 that the total production cost found by 

using IDE is the lower than that obtained from DE. 
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               Fig. 15. Cost convergence characteristics of DE & IDE for Case 2 of Test 
system 4 
 
 
Table 4.32: Comparison of performance for 
Case 2 of Test System 4 
Techniques IDE DE 
Best cost ($) 116781.0812 116977.2048 
Average cost ($) 116789.4748 116988.8263 
Worst cost ($) 116799.8950 116996.4316 
CPU time (s) 10.2856 10.2793 
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Table 4.31: Power generation (MW) and heat generation (MWth) for  
Case 2 of Test System 4 

                 IDE               DE                           IDE               DE 
1Ρ           89.7716         0.0471       31Ρ          10.0000        10.9795 
2Ρ        299.6422     360.0000       32Ρ          35.6009        43.1498 
3Ρ        299.2076      359.1999      33Ρ          82.5980        82.6940 
4Ρ        159.7589     160.0293       34Ρ          44.0334        47.7510 
5Ρ          60.0910      160.3777       35Ρ          81.2598       85.2154 
6Ρ        159.7752      161.0244       36Ρ          45.0500       45.2857 
7Ρ       159.9963      159.7844       37Ρ          10.0004        10.1040 
8Ρ        159.8186        61.5254       38Ρ          35.1071        35.4258 
9Ρ        167.7682      160.0464       27Η       106.4146      105.2132 
10Ρ       114.8354        40.0234       28Η         80.3886        87.4681 
11Ρ       115.2708      117.2796       29Η       110.4245      105.1607 
12Ρ         92.5386        55.0000       30Η         79.2001        80.2841 
13Ρ         92.4524        96.0207       31Η         40.0005        39.7728 
14Ρ       259.9997      627.4600       32Η         20.2731        22.9621 
15Ρ       299.2173      150.4142       33Η       105.6974      104.4973 
16Ρ       299.4302      359.5863       34Η         78.5099        80.9460 
17Ρ       159.7344      162.4424       35Η       104.9466      106.6665 
18Ρ       109.9216        60.0000       36Η         79.3876        79.5110 
19Ρ       159.7389      161.8982       37Η         40.0002        39.7946 
20Ρ      155.5700        60.1077       38Η          20.0485        20.1340 
21Ρ       109.8835      162.0103       39Η       520.7487      441.6983 
22Ρ      159.8539        60.6194       40Η         60.0000         59.9941 
23Ρ      115.5359      115.6517       41Η         59.9999         59.8580 
24Ρ        78.1970      114.0506       42Η       120.0000       119.8318 
25Ρ      120.0000        56.3107       43Η       119.9996       119.8444 
26Ρ        92.4022        92.1742       44Η       393.9605       467.1149 
27Ρ        83.8763        81.8378       45Η         59.9998         60.0000 
28Ρ        46.2093        54.7657       46Η         59.9999         59.7449 
29Ρ        91.0207        83.4146       47Η       119.9997       119.9997 
30Ρ        44.8326        46.2928       48Η       120.0000       119.5034 

 
 

 

 

 



102 
 

4.6. Conclusion 

Here, IDE algorithm has been successfully implemented to solve two test problems and 

four non-smooth/non-convex combined heat and power economic dispatch problems. It 

has been observed that IDE algorithm has the ability to converge to a better quality 

solution and exhibit more robustness. It is clear from the results obtained by different 

trials that the proposed IDE algorithm can avoid the shortcoming of premature 

convergence. Due to these properties, the IDE algorithm in future can be tried for 

solution of complex power system optimization problems. 
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CHAPTER 5 
 

Multi-area Economic Dispatch 
 
 

5.1. Introduction 

Economic dispatch (ED) is one of the important optimization problems in power system 

operation. ED allocates the load demand among the committed generators most 

economically while satisfying the physical and operational constraints in a single area.  

Generally, the generators are divided into several generation areas interconnected by tie-

lines. Multi-area economic dispatch (MAED) is an extension of economic dispatch. 

MAED determines the generation levels and interchange powers between areas such that 

total fuel cost for all the areas is minimized while satisfying power balance constraints, 

generating limits constraints and tie-line capacity constraints. 

Here, improved differential evolution (IDE) and group search optimization (GSO) have 

been applied to solve MAED problem.  Here, three types of MAED problems have been 

considered. These are A) multi-area economic dispatch with quadratic cost function, 

prohibited operating zones and transmission losses B) multi-area economic dispatch with 

valve point loading C) multi-area economic dispatch with valve point loading, multiple 

fuel sources and transmission losses. 

The proposed methods have been validated by application to three different test systems. 

The performance of the proposed methods in terms of solution quality has been compared 

with differential evolution (DE), evolutionary programming (EP) and real coded genetic 

algorithm (RCGA). 

 

5.2. Problem Formulation 

The objective of MAED is to minimize the total production cost of supplying loads to all 

areas while satisfying power balance constraints, generating limits constraints and tie-line 

capacity constraints. 

Three different types of MAED problems have been considered. 
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5.2.1. Multi area economic dispatch with quadratic cost function, prohibited 

operating zones and transmission losses  

The objective function tF , total cost of committed generators of all areas, of MAED 

problem may be written as 

 

( ) ( )∑ ∑∑∑
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where  ( )ijijF Ρ  is the cost function of j th generator in area i  and is usually expressed as 

a quadratic polynomial; ija , ijb  and ijc are the cost coefficients of j th generator in area 

i ; Ν  is the number of  areas, iΜ  is the number of committed generators in area i ; ijΡ is 

the real power output of j th generator in area i . The MAED problem minimizes tF  

subject to the following constraints. 

 

5.2.1.1. Real power balance constraint: 

∑ ∑
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The transmission loss LiΡ  of area i  may be expressed by using Β -coefficients as 

iij
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           (3) 

where DiΡ  real power demand of area i ; ikΤ   is the tie line real  power transfer from area 

i  to area k . ikΤ  is positive when power flows from area i  to area k  and ikΤ  is negative 

when power flows from area k  to area i . 

 

5.2.1.2. Tie line capacity constraints 

The tie line real power transfer ikΤ  from area i  to area k  should not exceed the tie line 

transfer capacity for security consideration. 
maxmax
ikikik Τ≤Τ≤Τ−                    (4) 
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where max
ikΤ is the power flow limit from area i  to area k  and - max

ikΤ  is the power flow 

limit from area k  to area i . 

 

5.2.1.3. Real power generation capacity constraints 

The real power generated by each generator should be within its lower limit min
ijΡ and 

upper limit max
ijΡ , so that 

 
maxmin
ijijij Ρ≤Ρ≤Ρ      Ν∈i   and ij Μ∈                               (5) 

 

5.2.1.4. Prohibited Operating Zones 

The prohibited operating zones are the ranges of power outputs of a generator where the 

operation causes undue vibration of the turbine shaft bearing caused by opening or 

closing of the steam valve. This undue vibration might cause damage to the shaft and 

bearings. Normally operation is avoided in such regions. The feasible operating zones of 

unit can be described as follows: 

 
l
ijijij 1,

min Ρ≤Ρ≤Ρ  

l
mijij

u
mij ,1, Ρ≤Ρ≤Ρ −  ;   ijnm ,...,3,2=                                              (6) 

max
, ijij

u
nij ij

Ρ≤Ρ≤Ρ  

 

where m  represents the number of prohibited operating zones of j the generator in area 

i ; u
mij 1, −Ρ  is the upper limit of ( )1−m th prohibited operating zone of j the generator in 

area i , l
mij ,Ρ  is the lower limit of m th prohibited operating zone of  j the generator in 

area i . Total number of prohibited operating zone of j the generator in area i  is ijn . 
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5.2.2. Multi-area economic dispatch with valve point loading  

The generator cost function is obtained from data points taken during “heat run” tests, 

when input and output data are measured as the unit is slowly run through its operating 

region. Wire drawing effects, occurring as each steam admission valve in a turbine starts 

to open, produce a rippling effect on the unit curve. To model the effect of valve-points, a 

recurring rectified sinusoid contribution is added to the quadratic function [22]. The fuel 

cost function considering valve-point loading of the generator is given as 
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where ijd  and ije  are cost coefficients of i th generator in area i  due to valve-point 

effect. The objective of MAEDVPL is to minimize tF  subject to the constraints given in 

(5.2), (5.4) and (5.5). Here transmission loss ( LΡ ) is not considered.  

 

5.2.3. Multi-area economic dispatch with valve point loading multiple fuel sources 

and transmission losses 

Since generators are practically supplied with multi-fuel sources, each generator should 

be represented with several piecewise quadratic functions superimposed sine terms 

reflecting the effect of fuel type changes and the generator must identify the most 

economical fuel to burn. The fuel cost function of the i th generator with FΝ  fuel types, 

considering valve-point loading, is expressed as: 

 

( ) 2
ijijmijijmijmijij cbaF Ρ+Ρ+=Ρ  + ( ){ }ijijmijmijm ed Ρ−Ρ×× minsin      (8) 

 if maxmin
ijmijijm Ρ≤Ρ≤Ρ  for fuel type m  and Fm Ν= ,...,2,1  

 

The objective function tF  is given by 
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The objective function tF  is to be minimized subject to the constraints given in (2), (4) 

and (5).   

 

5.3. Determination of Generation Level of slack generator 

iΜ  committed generators in area i  deliver their power output subject to the power 

balance constraint (5.2), tie line capacity constraints (5.4) and the respective generation 

capacity constraints (5.5). Assuming the power loading of first ( 1−Μ i ) generators are 

known, the power level of the iΜ th generator (i.e. the slack generator) is given by  
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The transmission loss LiΡ  is a function of all generator outputs including the slack 

generator and it is given by 
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Expanding and rearranging, (5.10) becomes 
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The loading of the slack generator (i.e. iΜ th) can then be found by solving equation 

(5.12) using standard algebraic method. 
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5. 4. Application of IDE Algorithm 

Here, the performance of the proposed improved differential evolution (IDE) algorithm 

has been evaluated by using three test systems. In order to show the effectiveness of the 

proposed IDE algorithm, differential evolution (DE), evolutionary programming (EP) and 

real coded genetic algorithm (RCGA) have been applied to the same three test systems. 

All the algorithms i.e. IDE, DE, EP, and RCGA used in this paper for solving multi-area 

economic dispatch (MAED) problem are implemented by using MATLAB 7.0 on a PC 

(Pentium-IV, 80 GB, 3.0 GHz). 

 

5.4.1. Test System 1: This system consists of two areas. Each area consists of three 

generators with prohibited operating zones. Transmission loss is considered here. The 

generator data have modified from [30].  The generator data and B-coefficients are given 

in the Appendix-1. The percentage of the total load demand in area 1 is 60% and 40% in 

area 2. The total load demand is 1263 MW and power flow limit of the system is 100 

MW. 

The problem is solved by using IDE algorithm. For this test system, Here, the population 

size ( ΡΝ ), crossover constant ( RC ) and maximum iteration number have been selected 

100, 1 and 50, respectively.  

To validate the proposed IDE based approach, the same test system is solved using 

differential evolution (DE), evolutionary programming (EP) and real coded genetic 

algorithm (RCGA). The population size, scaling factor and crossover constant have been 

selected as 100, 1.0 and 1.0 ,respectively ,in case of DE.  In case of EP, the population 

size and scaling factor have been selected 100 and 0.1 ,respectively. In RCGA, the 

population size, crossover and mutation probabilities have been selected as 100, 0.9 and 

0.2 ,respectively.  Maximum number of iterations has been selected as 50 for DE, EP and 

RCGA. 

Results obtained from the proposed IDE, DE, EP and RCGA have been summarized in 

Table 5.1. The cost convergence characteristics of this test system obtained from IDE, 

DE, EP and RCGA are shown in Fig. 5.1. 
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Table 5.1: Simulation results for Test system 1 
 
 IDE DE EP RCGA 

 
1,1Ρ (MW) 500.0000 500.0000 500.0000 500.0000 

2,1Ρ (MW) 200.0000 200.0000 200.0000 200.0000 

3,1Ρ (MW) 149.9999 150.0000 149.9919 149.6328 

1,2Ρ (MW) 204.3352 204.3341 206.4493 205.9398 

2,2Ρ (MW) 154.7092 154.7048 154.8892 155.8322 

3,2Ρ (MW) 67.5716 67.5770 65.2717 65.2209 

12Τ (MW) 82.7731 82.7731 82.7652 82.4135 

1LΡ (MW) 9.4268 9.4269 9.4267 9.4193 

2LΡ (MW) 4.1981 4.1890 4.1754 4.2064 
Cost ($/h) 12255.38 12255.42 12255.43 12256.23 
CPU time 
(second) 

5.9012 5.9219 8.8906 9.6094 
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                          Fig. 5.1. Cost convergence characteristics of IDE,DE,EP,RCGA of Test 
system 1 
 
5.4.2.Test System 2: This system comprises ten generators with valve-point loading and 

multi-fuel sources having three fuel options. Transmission loss is considered here. The 

generator data are taken from [34].  The total load demand is 2700 MW. The 10- 

generators are divided into three areas. Area 1 consists of the first four units; area 2 

includes the next three units and area 3 includes the last three units. The load demand in 

area 1 is assumed as 50 % of the total demand. The load demand in area 2 is assumed as 

25 % and in area 3 is taken as 25 % of the total demand. The power flow limit from area 

1 to area 2 or from area 2 to area 1 is 100 MW. The power flow limit from area 1 to area 

3 or from area 3 to area 1 is 100 MW. Also the power flow limit from area 2 to area 3 or 

from area 3 to area 2 is 100 MW. The B-coefficients are given in the appendix. 

IDE algorithm is used to solve the problem. Here, the population size ( ΡΝ ), crossover 

constant ( RC ) and maximum iteration number have been selected 100, 1 and 100 

respectively for this test system under consideration.  
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In order to validate the proposed IDE based approach, the same test system is solved 

using DE, EP and RCGA. In DE, the population size, scaling factor and crossover 

constant have been selected as 100, 1.0 and 1.0, respectively.  The population size and 

scaling factor have been selected 100 and 0.1, respectively in case of EP. In RCGA, the 

population size, crossover and mutation probabilities have been selected as 100, 0.9 and 

0.2, respectively.  Maximum number of iterations has been selected as 100 for DE, EP 

and RCGA. 

Results obtained from the proposed IDE, DE, EP and RCGA have been presented in 

Table 5.2. The cost convergence characteristics of this test system obtained from IDE, 

DE, EP and RCGA are shown in Fig. 5.2. 
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Table 5.2: Simulation results for Test system 2 
 

 
 

            IDE DE EP RCGA 
 

 Fu
el 

 Fu
el 

 Fu
el 

 Fu
el 

1,1Ρ (MW) 225.2091 2 225.4448 2 223.8491 2 239.0958 2 

2,1Ρ (MW) 212.6498 1 210.1667 
 

1 209.5759 1 216.1166 1 

3,1Ρ (MW) 488.0654 2 491.2844 
 

2 496.0680 2 484.1506 2 

4,1Ρ (MW) 241.2988 3 240.8956 
 

3 237.9954 3 240.6228 3 

1,2Ρ (MW) 247.7606 1 251.0049 
 

1 259.4299 1 259.6639 1 

2,2Ρ (MW) 236.4360 3 238.8603 
 

3 228.9422 3 219.9107 3 

3,2Ρ (MW) 266.3883 1 264.0906 
 

1 264.1133 1 254.5140 1 

1,3Ρ (MW) 236.1927 3 236.9982 
 

3 238.2280 3 231.3565 3 

2,3Ρ (MW) 330.9512 1 326.5394 
 

1 331.2982 1 341.9624 1 

3,3Ρ (MW) 250.5790 1 250.3339 
 

1 246.6025 1 248.2782 1 

21Τ (MW) 99.9665 99.4680 
 

100 93.1700 

31Τ (MW) 99.9696 100 
 

100 
 

93.8739 
 

32Τ (MW) 34.0383 30.2810 
 

32.5231 43.7824 
 

1LΡ (MW) 17.2000 17.2680 17.4884 17.0297 

2LΡ (MW) 9.6567 9.7688 10.0085 9.7010 

3LΡ (MW) 8.7150 8.5905 8.6056 8.9408 
Cost ($/h) 653.8516 654.0184 

 
655.1716 657.3325 

CPU time 
(second) 

64.9987 65.0351 78.0625 
 

83.8438 
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                        Fig. 5.2. Cost convergence characteristic of IDE ,DE,EP,RCGA of Test 
system 2 
 
 
5.4.3. Test System 3: This system comprises forty generators with valve-point loading. 

The generator data have been taken from [41]. The total load demand is 10500 MW. The 

forty generators are divided into four areas. Area 1 includes first ten units and 15 % of the 

total load demand. Area 2 has second ten generators and 40 % of the total load demand. 

Area 3 consists of third ten generators and 30 % of the total load demand. Area four 

includes last ten generators and 15 % of the total load demand. The power flow limit 

from area 1 to area 2 or from area 2 to area 1 is 200 MW. The power flow limit from area 

1 to area 3 or from area 3 to area 1 is 200 MW. The power flow limit from area 2 to area 

3 or from area 3 to area 2 is 200 MW. The power flow limit from area 4 to area 1 or from 

area 1 to area 4 is 100 MW. The power flow limit from area 4 to area 2 or from area 2 to 

area 4 is 100 MW. The power flow limit from area 4 to area 3 or from area 3 to area 4 is 

100 MW. Transmission loss is neglected here. 
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The problem is solved by using IDE algorithm. . For this test system, the population size 

( ΡΝ ), crossover constant ( RC ) and maximum iteration number have been selected 200, 1 

and 500, respectively.  

To validate the proposed IDE based approach, the same test system is solved using DE, 

EP and RCGA. The population size, scaling factor and crossover constant have been 

selected as 200, 1.0 and 1.0, respectively in case of DE.  In EP, the population size and 

scaling factor have been selected 200 and 0.1, respectively. In case of RCGA, the 

population size, crossover and mutation probabilities have been selected as 200, 0.9 and 

0.2, respectively.  Maximum number of iterations has been selected as 500 for DE, EP 

and RCGA. 

Results obtained from the proposed IDE, DE, EP and RCGA have been depicted in Table 

5.3. The cost convergence characteristics of this test system obtained from IDE, DE, EP 

and RCGA are shown in Fig. 5.3. 
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Table 5.3: Simulation results for Test system 3 
Power 
(MW) 

IDE DE EP RCGA Power 
(MW)

IDE DE EP RCGA 

1,1Ρ  111.0210 111.5448 107.6644 95.7552 
4,3Ρ  523.3661 523.4073 525.7752  518.1120 

2,1Ρ  111.2493 111.7092 112.0673 88.5828 
5,3Ρ  523.3068 523.7703 531.2092 538.1994 

3,1Ρ  97.4051 98.2429 91.8132 97.6063 
6,3Ρ  523.3044 523.5424 513.5659 527.4775 

4,1Ρ  179.7467 179.8834 175.3171 126.4966 
7,3Ρ  10.0000 10.1621 11.3612  24.4133 

5,1Ρ  92.2492 95.9500 92.4242 71.0127 
8,3Ρ  10.0267 10.1326 10.0000 28.9856 

6,1Ρ  139.9723 139.3533 112.5634 116.3866 
9,3Ρ  10.0188 10.6366  10.0000 28.8571 

7,1Ρ  259.6164 259.3395 257.5370 244.5857 
10,3Ρ  88.9325 88.1189 78.3523 87.9016 

8,1Ρ  284.6065 285.3569 297.3619 210.6920 
1,4Ρ  189.9994 161.2220 162.4480 159.7482 

9,1Ρ  284.6489 284.9627 285.2035 236.1685 
2,4Ρ  190.0000 189.5668 166.3508 153.6255 

10,1Ρ  130.0838 130.2217 134.5862 130.1286 
3,4Ρ  189.9957 189.9240 190.0000 160.4706 

1,2Ρ  94.00477 243.6005 162.4313 367.4862 
4,4Ρ  165.1003 165.6621 178.4541 169.9359 

2,2Ρ  243.6037 95.3890 217.8387 297.9501 
5,4Ρ  165.0921 165.4321 168.0752 168.5220 

3,2Ρ  214.7675 214.5171 125.0000 394.9246 
6,4Ρ  165.0804 164.9868 174.4529 172.2638 

4,2Ρ  394.3151 394.0808 384.0187 370.3473 
7,4Ρ  89.2760 109.8137 77.3875 91.2423 

5,2Ρ  394.2897 394.2481 397.6902 455.7123 
8,4Ρ  109.99459 109.7935 90.1059 86.4778  

6,2Ρ  394.2725 394.4360 407.4993 393.9673 
9,4Ρ  90.76587 90.1543 109.5654 88.3627 

7,2Ρ  489.2777 489.9552 500.0000 424.1994 
10,4Ρ  458.7993 459.1140 549.0335 279.2691 

8,2Ρ  489.2944 488.8885 480.8874 484.5498 
12Τ  181.4527 172.0652 200 

 
- 71.7855 

9,2Ρ  511.2936 511.4713 524.8487 528.4148 
31Τ  20.2524 -36.3060 17.5885 161.9336 

10,2Ρ  511.3452 511.4125 499.7857 511.3403 
32Τ  188.1426 191.1128 200 

 
95.2833 

1,3Ρ  523.2950 523.2896 523.4522 525.4497 
41Τ  45.6004 86.8070 90.8733 -76.1340 

2,3Ρ  523.2812 523.2950 526.5051 510.7391 
42Τ  93.9398 98.8231 100 

 
-52.3900 

3,3Ρ  523.2996 523.4129 537.3675 533.6399 
43Τ  99.5636 45.0391 100 83.4418 

Cost ($) 121682.59 121794.8 
 

123591.9 
 

128046.5 
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     Fig. 5.3. Cost convergence characteristic of IDE ,DE,EP,RCGA of Test system 3 
 
 
 
5.5. Conclusion 

Here, IDE algorithm has been successfully implemented to solve MAED problems. The 

effectiveness of the proposed method is illustrated by using three different test systems 

and the test results are compared with those obtained from DE, EP and RCGA. It has 

been observed from the comparison that the proposed IDE has the ability to converge to a 

better quality solution and exhibit more robustness than DE, EP and RCGA. It is also 

clear from the results obtained by different trials that the proposed IDE algorithm can 

avoid the shortcoming of premature convergence. Due to these properties, the IDE 

algorithm in future can be tried for the solution of complex power system optimization 

problems. 
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5.6. Application of GSO method 

Here, the performance of the proposed group search optimization (GSO) method has 

been evaluated by using three test systems. In order to show the effectiveness of the 

proposed GSO method, differential evolution (DE), evolutionary programming (EP) and 

real coded genetic algorithm (RCGA) have been applied to the same three test systems. 

All the algorithms i.e. GSO, DE, EP, and RCGA used in this paper for solving multi-area 

economic dispatch (MAED) problem are implemented by using MATLAB 7.0 on a PC 

(Pentium-IV, 80 GB, 3.0 GHz). 

 

5.6.1. Test System 1: This system consists of two areas. Each area consists of three 

generators with prohibited operating zones. Transmission loss is considered here. The 

generator data has modified from [30].  The generator data and B-coefficients are given 

in the Appendix-1. The percentage of the total load demand in area 1 is 60% and 40% in 

area 2. The total load demand is 1263 MW and power flow limit of the system is 100 

MW. 

The problem is solved by using GSO. For this test system, Here, the population size ( ΡΝ ) 

and maximum iteration number have been selected 100 and 50, respectively.  

To validate the proposed GSO based approach, the same test system is solved using 

differential evolution (DE), evolutionary programming (EP) and real coded genetic 

algorithm (RCGA). The population size, scaling factor and crossover constant have been 

selected as 100, 1.0 and 1.0 ,respectively, in case of DE.  In case of EP, the population 

size and scaling factor have been selected 100 and 0.1 respectively. In RCGA, the 

population size, crossover and mutation probabilities have been selected as 100, 0.9 and 

0.2 respectively.  Maximum number of iterations has been selected 50 for DE, EP and 

RCGA. 

Results obtained from proposed GSO, DE, EP and RCGA have been summarized in 

Table 5.4. The cost convergence characteristics of this test system obtained from GSO, 

DE, EP and RCGA are shown in Fig. 5.4. 
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Table 5.4: Simulation results for Test system 1 
 GSO DE EP RCGA 

 
1,1Ρ (MW) 500.0000 500.0000 500.0000 500.0000 

2,1Ρ (MW) 200.0000 200.0000 200.0000 200.0000 

3,1Ρ (MW) 150.0000 150.0000 149.9919 149.6328 

1,2Ρ (MW) 204.3345 204.3341 206.4493 205.9398 

2,2Ρ (MW) 154.7030 154.7048 154.8892 155.8322 

3,2Ρ (MW) 67.5784 67.5770 65.2717 65.2209 

12Τ (MW) 82.7731 82.7731 82.7652 82.4135 

1LΡ (MW) 9.4269 9.4269 9.4267 9.4193 

2LΡ (MW) 4.1890 4.1890 4.1754 4.2064 
Cost ($/h) 12255.38 12255.42 12255.43 12256.23 
CPU time 
(second) 

5.0324 5.9219 8.8906 9.6094 
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                          Fig. 5.4. Cost convergence characteristic of GSO ,DE,EP,RCGA Test 

system 1 
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5.6.2. Test System 2: This system comprises ten generators with valve-point loading and 

multi-fuel sources having three fuel options. Transmission loss is considered here. The 

generator data have been taken from [34].  The total load demand is 2700 MW. The ten 

generators are divided into three areas. Area 1 consists of the first four units; area 2 

includes the next three units and area 3 includes the last three units. The load demand in 

area 1 is assumed as 50 % of the total demand. The load demand in area 2 is assumed as 

25 % and in area 3 is taken as 25 % of the total demand. The power flow limit from area 

1 to area 2 or from area 2 to area 1 is 100 MW. The power flow limit from area 1 to area 

3 or from area 3 to area 1 is 100 MW. Also the power flow limit from area 2 to area 3 or 

from area 3 to area 2 is 100 MW. The B-coefficients are given in the appendix. 

GSO method is used to solve the problem. Here, the population size ( ΡΝ ) and maximum 

iteration number have been selected 100 and 100, respectively, for this test system under 

consideration.  

In order to validate the proposed GSO based approach, the same test system is solved 

using DE, EP and RCGA. In DE, the population size, scaling factor and crossover 

constant have been selected as 100, 1.0 and 1.0, respectively.  The population size and 

scaling factor have been selected 100 and 0.1 respectively in case of EP. In RCGA, the 

population size, crossover and mutation probabilities have been selected as 100, 0.9 and 

0.2, respectively.  Maximum number of iterations has been selected 100 for DE, EP and 

RCGA. 

Results obtained from proposed GSO, DE, EP and RCGA have been presented in Table 

5.5. The cost convergence characteristic of this test system obtained from GSO, DE, EP 

and RCGA is shown in Fig. 5.5. 
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Table 5.5: Simulation results for Test system 2 
            GSO DE EP RCGA 

 
 Fu

el 
 Fu

el 
 Fu

el 
 Fu

el 
1,1Ρ (MW)   225.7002  220.2200 2 223.8491 2 239.0958 2 

2,1Ρ (MW) 212.1994  212.1510 1 209.5759 1 216.1166 1 

3,1Ρ (MW) 487.3917  493.2287 2 496.0680 2 484.1506 2 

4,1Ρ (MW) 242.1126  242.3742 3 237.9954 3 240.6228 3 

1,2Ρ (MW) 250.8376  251.5901 1 259.4299 1 259.6639 1 

2,2Ρ (MW) 234.9589  234.5500 3 228.9422 3 219.9107 3 

3,2Ρ (MW) 264.0710  268.1343 1 264.1133 1 254.5140 1 

1,3Ρ (MW) 236.7312  234.9833 3 238.2280 3 231.3565 3 

2,3Ρ (MW) 332.0932  328.5371 1 331.2982 1 341.9624 1 

3,3Ρ (MW) 249.4448  250.1525 1 246.6025 1 248.2782 1 

21Τ (MW) 99.7121 99.4945 100 93.1700 

31Τ (MW) 100 99.9849 100 93.8739 

32Τ (MW) 34.5573 30.0535 32.5231 43.7824 

1LΡ (MW) 17.1160 17.5000 17.4884 17.0297 

2LΡ (MW) 9.7127 9.8334 10.0085 9.7010 

3LΡ (MW) 8.7118 8.6345 8.6056 8.9408 
Cost ($/h) 654.0572 654.0811 655.1716 657.3325 
CPU time 
(second) 

64.0387 65.0351 78.0625 
 

83.8438 
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                        Fig. 5.5. Cost convergence characteristic of  ,GSO ,DE,EP,RCGA for Test 

system 2 
 
 
 
Test System 3: This system comprises forty generators with valve-point loading. The 

generator data have been taken from [41]. The total load demand is 10500 MW. The forty 

generators are divided into four areas. Area 1 includes first ten units and 15 % of the total 

load demand. Area 2 has second ten generators and 40 % of the total load demand. Area 

3 consists of third ten generators and 30 % of the total load demand. Area four includes 

last ten generators and 15 % of the total load demand. The power flow limit from area 1 

to area 2 or from area 2 to area 1 is 200 MW. The power flow limit from area 1 to area 3 

or from area 3 to area 1 is 200 MW. The power flow limit from area 2 to area 3 or from 

area 3 to area 2 is 200 MW. The power flow limit from area 4 to area 1 or from area 1 to 

area 4 is 100 MW. The power flow limit from area 4 to area 2 or from area 2 to area 4 is 

100 MW. The power flow limit from area 4 to area 3 or from area 3 to area 4 is 100 MW. 

Transmission loss is neglected here. 
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The problem is solved by using GSO. For this test system, the population size ( ΡΝ ) and 

maximum iteration number have been selected 200 and 500, respectively.  

To validate the proposed GSO based approach, the same test system is solved using DE, 

EP and RCGA. The population size, scaling factor and crossover constant have been 

selected as 200, 1.0 and 1.0, respectively, in case of DE.  In EP, the population size and 

scaling factor have been selected 200 and 0.1, respectively. In case of RCGA, the 

population size, crossover and mutation probabilities have been selected as 200, 0.9 and 

0.2, respectively.  Maximum number of iterations has been selected 500 for DE, EP and 

RCGA. 

Results obtained from the proposed GSO, DE, EP and RCGA have been depicted in 

Table 5.6. The cost convergence characteristic of this test system obtained from GSO, 

DE, EP and RCGA is shown in Fig. 5.6. 
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Fig. 5.6. Cost convergence characteristic of GSO,DE,EP,RCGA for Test system 3 
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Table 5.6: Simulation results for Test system 3 
 
Power 
(MW) 

GSO DE EP RCGA Power 
(MW)

GSO DE EP RCGA 

1,1Ρ  113.1055 111.5448 107.6644 95.7552 
4,3Ρ  523.2764 523.4073 525.7752  518.1120 

2,1Ρ  111.4605 111.7092 112.0673 88.5828 
5,3Ρ  523.2811 523.7703 531.2092 538.1994 

3,1Ρ  97.4011 98.2429 91.8132 97.6063 
6,3Ρ  523.2820 523.5424 513.5659 527.4775 

4,1Ρ  179.7327 179.8834 175.3171 126.4966 
7,3Ρ  10.0021 10.1621 11.3612  24.4133 

5,1Ρ  88.0580 95.9500 92.4242 71.0127 
8,3Ρ  10.0001 10.1326 10.0000 28.9856 

6,1Ρ  139.9988 139.3533 112.5634 116.3866 
9,3Ρ  10.0006 10.6366  10.0000 28.8571 

7,1Ρ  259.6082 259.3395 257.5370 244.5857 
10,3Ρ  96.9950 88.1189 78.3523 87.9016 

8,1Ρ  284.6292 285.3569 297.3619 210.6920 
1,4Ρ  189.9978 161.2220 162.4480 159.7482 

9,1Ρ  284.6025 284.9627 285.2035 236.1685 
2,4Ρ  160.5677 189.5668 166.3508 153.6255 

10,1Ρ  130.0060 130.2217 134.5862 130.1286 
3,4Ρ  189.9996 189.9240 190.0000 160.4706 

1,2Ρ  168.8025 243.6005 162.4313 367.4862 
4,4Ρ  164.8009 165.6621 178.4541 169.9359 

2,2Ρ  168.7990 95.3890 217.8387 297.9501 
5,4Ρ  164.8567 165.4321 168.0752 168.5220 

3,2Ρ  304.5216 214.5171 125.0000 394.9246 
6,4Ρ  164.8847 164.9868 174.4529 172.2638 

4,2Ρ  394.2822 394.0808 384.0187 370.3473 
7,4Ρ  109.9983 109.8137 77.3875 91.2423 

5,2Ρ  394.2821 394.2481 397.6902 455.7123 
8,4Ρ  94.4214 109.7935 90.1059 86.4778  

6,2Ρ  304.5222 394.4360 407.4993 393.9673 
9,4Ρ  109.9990 90.1543 109.5654 88.3627 

7,2Ρ  489.2911 489.9552 500.0000 424.1994 
10,4Ρ  458.8241 459.1140 549.0335 279.2691 

8,2Ρ  489.2790 488.8885 480.8874 484.5498 
12Τ  164.2681 172.0652 200 

 
- 71.7855 

9,2Ρ  511.2789 511.4713 524.8487 528.4148 
31Τ  6.9173 -36.3060 17.5885 161.9336 

10,2Ρ  511.2980 511.4125 499.7857 511.3403 
32Τ  199.3783 191.1128 200 

 
95.2833 

1,3Ρ  523.2852 523.2896 523.4522 525.4497 
41Τ  43.7481 86.8070 90.8733 -76.1340 

2,3Ρ  523.2845 523.2950 526.5051 510.7391 
42Τ  99.9969 98.8231 100 

 
-52.3900 

3,3Ρ  523.2835 523.4129 537.3675 533.6399 
43Τ  89.6051 45.0391 100 83.4418 

Coat ($) 121722.35 121794.8 
 

123591.9 
 

128046.5 
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5.7. Conclusion 

Here, GSO has been successfully implemented to solve MAED problems. The 

effectiveness of the proposed method is illustrated by using three different test systems 

and the test results are compared with those obtained from DE, EP and RCGA. It has 

been observed from the comparison that the proposed GSO has the ability to converge to 

a better quality solution than DE, EP and RCGA. Due to this property, the GSO method 

in future can be tried for the solution of complex power system optimization problems. 
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CHAPTER 6 
 

Multi-area Economic Environmental Dispatch 
 
 

1. Introduction 

The generation of electricity from fossil fuel releases sulfur oxides (SOx), nitrogen oxides 

(NOx), and carbon dioxide (CO2) into atmosphere. Atmospheric pollution affects not only 

human beings but also other life-forms such as animals, birds, fish and plants. It also 

causes damage to vegetation, acid rain, reducing visibility as well as causing global 

warming. The increased concern over environmental protection and the passage of the 

clean air act amendments of 1990 have forced the power utilities to reduce their 

emissions.  So today’s concern is to produce electricity not only at the cheapest possible 

price, but also at minimum level of pollution.  

Several strategies have been proposed to reduce the atmospheric pollution. These include 

installation of post combustion cleaning equipment, switching to low emission fuels, 

replacement of the aged fuel burners with cleaner ones, and dispatching with emission 

considerations. The first three options require installation of new equipment and/or 

modification of the existing ones that involve considerable capital outlay and hence they 

can be considered as long-term options. So,the  latter option is preferred. 

The two objectives i.e. cost and emission are conflicting in nature and  both of them have 

to be considered simultaneously to find overall optimal dispatch. Economic 

environmental dispatch (EED) shows how  to schedule the committed generator outputs 

with the predicted load demand in a single area so as to optimize both cost and emission 

simultaneously while fulfilling the operating constraints. Different techniques have been 

reported in the literature pertaining to EED problem. 

Generally, the generators are divided into several generation areas interconnected by tie-

lines. Multi-area economic dispatch (MAED) determines the generation levels and 

interchange powers between areas such that total fuel cost considering  all the areas 

minimized while satisfying power balance constraints, generating limits constraints and 

tie-line capacity constraints. Several researches have been conducted to deal with MAED. 
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Multi-area economic environmental dispatch (MAEED) is an extension of economic 

environmental dispatch. MAEED determines the generation levels and interchange power 

between areas such that total fuel cost and emission levels in all areas are optimized 

simultaneously while satisfying power balance constraints, generating limit constraints 

and tie-line capacity constraints. 

Here, multiobjective differential evolution (MODE) is proposed for multi-area economic 

environmental dispatch (MAEED) problem. This problem is formulated as a nonlinear 

constrained multiobjective optimization problem. In order to show the effectiveness of 

the proposed approach, a 4-area test system is used in this thesis. Results obtained from 

the proposed approach have been compared with those obtained from strength pareto 

evolutionary algorithm 2 (SPEA 2). 

 

6.2. Problem Formulation 

The objective of MAEED is to optimize the total cost and emission level simultaneously 

of supplying loads to all areas while satisfying power balance constraints, generating 

limits constraints and tie-line capacity constraints. The following objectives and 

constraints are taken into account in the formulation of MAEED problem. 

 

Objectives: 

(i) Cost 

The fuel cost function of each fossil fuel fired generator, considering the valve-point 

effect, is expressed as the sum of a quadratic and a sinusoidal function. The total fuel cost 

of committed generators of all areas can be expressed as 
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cbaFF + ( ){ }ijijijij ed Ρ−Ρ×× minsin                  (6.1)         

 

where  ( )ijcijF Ρ  is the cost function of j th generator in area i ; ija , ijb , ijc , ijd  and ije are 

the cost coefficients of j th generator in area i ; Ν  is the number of  areas, iΜ  is the 
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number of committed generators in area i ; ijΡ is the real power output of j th generator in 

area i . 

 

(ii) Emission 

The atmospheric pollutants such as sulfur oxides (SOx), nitrogen oxides (NOx) and 

carbon dioxide (CO2) caused by fossil fuel fired generator can be modeled separately. 

However, for comparison purposes, the total emission of these pollutants is expressed as 

the sum of a quadratic and an exponential function.  The total emission of committed 

generators of all areas can be expressed as  
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γβα  + ( )ijijij Ρδη exp                   (6.2) 

where ( )ijeijF Ρ  is the emission function of j th generator in area i ; ijα , ijβ , ijγ , ijη  and 

ijδ  are the emission coefficients of j th generator in area i . 

 

Constraints: 

(i) Real power balance constraint 

 

∑ ∑
Μ

= ≠

Τ+Ρ+Ρ=Ρ
i

j ikk
ikLiDiij

1 ,

       Ν∈i                          (6.3) 

where DiΡ  is the real power demand of area i ; ikΤ   is the tie line real  power transfer from 

area i  to area k . ikΤ  is positive when power flows from area i  to area k  and ikΤ  is 

negative when power flows from area k  to area i . 

 

(ii) Tie line capacity constraints 

The tie line real power transfer ikΤ  from area i  to area k  should not exceed the tie line 

transfer capacity for security consideration. 

 
maxmax
ikikik Τ≤Τ≤Τ−                                            (6.4) 
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where max
ikΤ is the power flow limit from area i  to area k  and - max

ikΤ  is the power flow 

limit from area k  to area i . 

 

(iii) Real power generation capacity constraints 

The real power generated by each generator should be within its lower limit min
ijΡ and 

upper limit max
ijΡ , so that 

 
maxmin
ijijij Ρ≤Ρ≤Ρ      Ν∈i   and ij Μ∈                               (6.5) 

 

6.3. Simulation Results 

 

A 4-area test system consisting of four generators in each area with nonsmooth fuel cost 

and emission level functions is used in this paper to demonstrate the performance of the 

proposed MODE method. The generator data and tie line transfer limits are given in 

Table A-1 and Table A-2 in the Appendices. Load demands in area 1, area 2, area 3 and 

area 4 are 30 MW, 50 MW, 40 MW and 60 MW ,respectively.  The software has been 

written in MATLAB 7 on a PC (Pentium – IV, 80 GB, 3.0 GHZ). 

Total fuel cost and emission objectives are minimized individually by using differential 

evolution (DE) in order to explore the extreme points of the trade-off surface.   

The population size, maximum number of generations, scaling factor and crossover 

constant have been selected as 100, 500, 1.0 and 0.7, respectively,for this test system 

under consideration. It is seen that under the cost minimization criterion, fuel cost is 

1521.94 $/hr and emission is 277.1573 /lb hr. But cost increases to 2855.31 $/hr and 

emission decreases to 250.6933 /lb hr for the case of emission minimization. Fig. 6.1 

shows convergence of cost and emission. 

MODE has been applied to optimize both cost and emission objectives simultaneously. In 

this case the population size, maximum number of generations, scaling factor and 

crossover constant have been selected as 20, 50, 1.0 and 0.7, respectively for this test 

system. It is seen that cost is 2132.72 $/hr which is more than 1521.94 $/hr and less than 
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2855.31 $/hr and emission is 261.4986 /lb hr which is less than 277.1573 /lb hr and 

more than 250.6933 /lb hr. 

In order to show the effectiveness of the proposed MODE, SPEA 2 has been applied to 

solve MAEED problem. The population size, crossover and mutation probabilities and 

the maximum number of generations have been selected as 20, 0.9, 0.2 and 50 

respectively.  

Results obtained from proposed MODE and SPEA 2 corresponding to the best 

compromise solution of the last generation are summarized in Table 6.1. Minimum cost 

and minimum emission obtained by using DE are also given in Table  6.1. 

The distribution of 20 nondominated solutions obtained in the last generation of proposed 

MODE and SPEA 2 is shown in Fig.6.2.  
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Fig. 6.1. Cost and emission convergence characteristics of MODE & SPEA2 
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Table 6.1: Simulation results for MODE & SPEA-2 Test system 
 Minimum 

cost 
Minimum 
emission 

MODE SPEA 2 

1,1Ρ (MW) 6.4086 0.0500 0.0500 3.7801 

2,1Ρ (MW) 0.0889 0.0500 0.0500 1.9565 

3,1Ρ (MW) 0.0500 13.0000 13.0000 9.0004 

4,1Ρ (MW) 11.4642 11.9042 11.3288 9.0604 

1,2Ρ (MW) 8.4984 25.0000 4.8129 13.9816 

2,2Ρ (MW) 0.5204 11.9068 12.0000 8.0030 

3,2Ρ (MW) 20.0000 9.3987  19.8703 17.5303 

4,2Ρ (MW) 17.9927 11.4347 15.5994 15.6876 

1,3Ρ (MW) 0.0500 12.4807 8.2807 14.2898 

2,3Ρ (MW) 22.2896 9.7328  6.3315  6.8935 

3,3Ρ (MW) 10.5197 10.9974  7.8585  3.3478 

4,3Ρ (MW) 15.5179 10.4942 17.0962 18.2130 

1,4Ρ (MW) 4.8804 11.0000 7.4932 7.1157 

2,4Ρ (MW) 13.3469 16.9329 19.3730 13.0403 

3,4Ρ (MW) 29.7653 13.8588 16.4536 18.8948 

4,4Ρ (MW) 18.6070 11.7588 20.4019 19.2051 

21Τ (MW) 5.9952   5.7402 6.0000 4.3529 

13Τ (MW) -3.9935 0.6949 1.7021 -1.5756 

14Τ (MW) -1.9997 0.0495 -1.2733 -0.2741 

32Τ (MW) 3.4837 3.5000 1.1060 1.0910 

24Τ (MW) -5.5000 5.5000 -2.6114 1.9407 

34Τ (MW)   0.9000 0.9000 0.1629 0.0775 
Cost ($/hr) 1521.94 2855.31 2132.72 2294.82 
Emission 
( /lb hr) 

277.1573 250.6933 
 

261.4986 
 

263.5606 

CPU Time 
(Sec) 

30.2435 
 

32.3674 
 

2.0254 2.8543 

 
 
 
 



131 
 

254 256 258 260 262 264 266 268 270 272
1600

1800

2000

2200

2400

2600

2800

C
os

t($
/h

)

Emission(lb/h)

 

 

MODE
SPEA 2

 
Fig.6.2. Pareto-optimal front obtained from proposed MODE and SPEA 2 in the last generation 
 
 
 
6.4. Conclusion 

Here, multi-objective differential evolution has been implemented to solve multi-area 

economic environmental dispatch problem. Results obtained from the proposed approach 

have been compared to those obtained from strength pareto evolutionary algorithm 2. The 

proposed multi-objective differential evolution is simple, robust and efficient. It does not 

impose any limitation on the number of objectives and can be extended to include more 

objectives.  
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CHAPTER 7 
 

Fuel Constrained Economic Emission Dispatch  
 
 
 

1. INTRODUCTION 

Economic emission dispatch involves the allocation of generations among the committed 

generating units so as to optimize both the fuel cost and emission level simultaneously 

while satisfying the several operating constraints. 

Some power utilities have encountered a new dispatch problem, perhaps more significant 

than economic emission dispatch problem because of the sudden concern over fuel 

shortages. Fuel suppliers have imposed increased constraints in their fuel supply contracts 

to the point that utilities have been forced to reschedule generation on the basis of fuel 

availability. This has occurred about because certain fuels are no longer available or 

available only in a limited supply or cut off from certain power plants. Thus, strict 

economic emission dispatch has become impossible. There are no automatic ties between 

unit fuel availability and desired power production for that unit. 

With the ever increasing proportion of the fuel budget in the total operating cost and 

increasing concern over the environmental consideration, fuel constrained economic 

emission dispatch problem has popped up.  

Several papers have been published in the area of fuel scheduling of thermal units [94]-

[97].  The fuel constrained economic emission dispatch problem is a multi-objective 

mathematical programming problem which is concerned with the attempt to optimize 

both the fuel cost and emission level simultaneously while satisfying the standard load 

constraints and fuel constraints. The fuel constrained economic emission dispatch 

problem may be solved by dividing the total time period involved into discrete time 

increments. Each of the objectives is a function of one or more variables from only one 

time step. Some constraints are made up of variables drawn from one time step whereas 

others span two or more time steps. 

Over the past few years, several researches have been done on the development of multi-

objective evolutionary search strategies. Non-dominating sorting genetic algorithm II 
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(NSGA II), multi-objective evolutionary algorithm (MOEA), multi-objective particle 

swarm optimization, fuzzy clustering-based particle swarm optimization (FCPSO) etc., 

constitute the pioneering multi-objective approaches that have been applied to solve the 

economic emission dispatch (EED) problem. These methods are population-based 

techniques and multiple pareto-optimal solutions can be found in one single run.  

Here, multi-objective differential evolution (MODE) is proposed for solving fuel 

constrained economic emission dispatch (FCEED) problem of thermal generating units. 

This problem is formulated as a nonlinear constrained multi-objective optimization 

problem. The proposed method is validated by applying it to a test system. Results 

obtained from the proposed method are compared with those obtained from strength 

pareto evolutionary algorithm 2 (SPEA 2). 

 

7.2. PROBLEN FORMULATION 

For convenience the entire scheduling period is divided into a number of sub intervals 

each having a constant load demand. The system has N thermal generating units over M 

time intervals. The following objectives and constraints are taken into account in the 

formulation of fuel constrained economic emission dispatch (FCEED) problem. 

 

7.2.1. Objectives 

7.2.1.1. Economy 

The total fuel cost in terms of power output considering the valve-point effect, can be 

expressed as  

 

[∑∑
Μ

=

Ν

=

Ρ+Ρ+=
1 1

2

m i
imiimiimc cbatF + ( ){ }]imiii ed Ρ−Ρminsin                                                (7.1) 

 

7.2.1.2. Emission 

The fossil-based generating stations are the primary sources of nitrogen oxides. The total 

NOx emission level from all the units in the system can be expressed as 
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7.2.2. Constraints  

7.2.2.1. Power balance constraints 

At each interval, the total active power generation must balance the predicted power 

demand. 

  

∑
Ν
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1
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i

Dmim , Μ∈m                                                                                              (7.3) 

 

7.2.2.2 Fuel delivery constraints 

At each interval, summation of fuel delivered to all units must be equal to fuel supplied 

by the supplier. 

 

0
1

=−∑
Ν

=i
Dmim FF , Μ∈m                                                                                             (7.4) 

 

7.2.2.3. Fuel storage constraints 

The volume of fuel at each unit at the beginning of each interval plus delivery of fuel to 

that unit minus the fuel burned at that unit gives the fuel remaining at the beginning of 

the next interval. 

 

( ) immiim FVV += −1 ( )2
imiimiimt Ρ+Ρ+− μδη , Ν∈i , Μ∈m                                             (7.5) 

 

7.2.2.4. Generation limits 

The power generated by each unit at each interval should be within its lower limit minΡ  

and upper limit maxΡ . So that 

 
maxmin
iimi Ρ≤Ρ≤Ρ , Ν∈i , Μ∈m                                                                                 (7.6) 
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7.2.2.5. Fuel delivery limits 

The fuel delivered to each unit at each interval should be within its lower limit minF  and 

upper limit maxF . So that 
maxmin

iimi FFF ≤≤  , Ν∈i , Μ∈m                                                                               (7.7) 

 

7.2.2.6. Fuel storage limits 

The fuel storage limit of each unit at each interval should be within its lower limit minV  

and upper limit maxV . So that 

 
maxmin

iimi VVV ≤≤ , Ν∈i , Μ∈m                                                                                 (7.8) 

 
7.3. SIMULATION RESULTS 

The proposed multi-objective differential evolution (MODE) method has been applied to 

a test system with five coal-burning generating units which remain on line for a 3-week 

period. All the generator data containing coefficients of cost, emission and coal 

consumption, fuel delivery limits, fuel storage limits, load demand and fuel delivered 

during the scheduling period are given in the Appendix. 

In order to show the effectiveness of the proposed MODE approach, strength pareto 

evolutionary algorithm 2 (SPEA 2) has been applied to solve the problem. All the 

algorithms i.e. MODE, SPEA 2, and DE, used in this paper for solving fuel constrained 

economic emission dispatch problem are implemented by using MATLAB 7.0 on a PC 

(Pentium-IV, 80 GB, 3.0 GHz). 

Here, four cases are considered.  In Case 1 economic dispatch, emission dispatch and 

economic emission dispatch are done without considering fuel constraints. In Case 2 

economic fuel dispatch, emission fuel dispatch and economic emission fuel dispatch are 

done considering fuel constraints when all the units have sufficient coal. Case 3 and case 

4 are purposely structured to show the interaction of the fuel deliveries and different 

types of dispatch of the generating units when there is fuel shortage. In Case 3 there is 

fuel shortage at unit 4 and in case 4 there is fuel shortage at unit 5. Table 7.1 shows 

description of all cases. 
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In order to explore the extreme points of the trade-off surface, fuel cost and emission 

objectives are minimized individually by using differential evolution (DE) for all the four 

cases. In case of DE, the population size, maximum number of iteration, scaling factor 

and crossover factor have been selected as 100, 100, 0.75 and 1.0, respectively for all the 

four cases of the test system. 

MODE has been applied to optimize both cost and emission objectives simultaneously 

for all the four cases. The population size, maximum number of iteration, scaling factor 

and crossover factor have been selected as 20, 50, 0.75 and 1.0, respectively in the 

proposed MODE for all the four cases of the test system. 

For comparison, SPEA 2 has been applied to solve the problem. In case of SPEA 2, the 

population size, maximum number of iteration, crossover and mutation probabilities have 

been selected as 20, 50, 0.9 and 0.2 respectively for all the four cases of the test system. 

Table 7.1 shows the dispatch solutions for Case 1. Fig. 7.1 depicts cost and emission 

convergence obtained from case 1 using DE. The distribution of 20 non-dominated 

solutions obtained in the last generation of proposed MODE and SPEA 2 for Case 1 is 

shown in Fig. 7.2. 

The dispatch solutions for Case 2 are summarized in Table 7.2. Cost and emission 

convergence obtained from Case 2 using DE are shown in Fig. 7.3. The distribution of 20 

non-dominated solutions obtained in the last generation of proposed MODE and SPEA 2 

for Case 2 is depicted in Fig. 7.4. 

The dispatch solutions for Case 3 are shown in Table 7.3. Fig. 7.5 depicts cost and 

emission convergence obtained from Case 3 using DE. The distribution of 20 non-

dominated solutions obtained in the last generation of proposed MODE and SPEA 2 for 

Case 3 is depicted in Fig. 7.6.  

Table 7.4 summarizes the dispatch solutions for case 4. Fig. 7.7 depicts cost and emission 

convergence obtained from Case 4 using DE. The distribution of 20 non-dominated 

solutions obtained in the last generation of proposed MODE and SPEA 2 for Case 4 is 

shown in Fig. 7.8. 
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                 Fig. 7.1. Cost and emission convergence for Case 1 
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      Fig. 7.2. Pareto-optimal front of the last generation for Case 1 
 



138 
 

 

0 10 20 30 40 50 60 70 80 90 100
1.04

1.06

1.08

1.1
x 106

C
os

t (
$)

Generation
0 10 20 30 40 50 60 70 80 90 100

5.6

5.8

6

6.2
x 105

E
m

is
si

on
 (l

b)
 

                Fig. 7.3. Cost and emission convergence for Case 2 
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        Fig. 7.4: Pareto-optimal front of the last generation for Case 2 
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                 Fig. 7.5. Cost and emission convergence for Case 3 
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         Fig. 7.6.. Pareto-optimal front of the last generation for Case 3 
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                     Fig. 7.7. Cost and emission convergence for Case 4 
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          Fig. 7.8. Pareto-optimal front of the last generation for Case 4 
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Table 7.1. DISPATCH SOLUTION FOR CASE 1 WITHOUT CONSIDERING FUEL 
CONSTRAINTS  
 
 Inter- Economic dispatch   Emission dispatch     Economic emission dispatch  Economic emission dispatch 
 val               (DE)                         (DE)                               (MODE)                                  (SPEA2) 
       Generation  Objective  Generation  Objective      Generation   Objective         Generation    Objective 
             (MW)                           (MW)                               (MW)                                    (MW)       
 1   1Ρ = 50.3045    Cost=           1Ρ =  75.0000    Cost=             1Ρ =  70.3819   Cost=                 1Ρ =  62.7705     Cost=                

       2Ρ =125.000    1057633 $      2Ρ =107.5394    1127536 $       2Ρ =121.5701   1085076 $           2Ρ =110.6314    1086926 $          

       3Ρ =175.000  Emission=     3Ρ = 148.3539  Emission=     3Ρ = 151.2118   Emission=       3Ρ =158.9422     Emission=  

       4Ρ = 49.6955    854052 lb   4Ρ = 208.4844     561219 lb     4Ρ = 145.6957    637173 lb        4Ρ =139.9314      624523 lb     

      5Ρ = 300.000                           5Ρ =160.6224                             5Ρ = 211.1404                               5Ρ =227.7245                    

2   1Ρ  = 75.0000                           1Ρ =  75.0000                             1Ρ =   69.6273                                1Ρ =  74.8493                       

     2Ρ =125.0000                          2Ρ =120.3204                            2Ρ = 117.1540                               2Ρ =121.2990                               

     3Ρ =175.0000                           3Ρ =162.6283                             3Ρ =  160.8912                              3Ρ =174.0485                    

     4Ρ =125.0000                         4Ρ =234.2381                             4Ρ = 170.3515                               4Ρ =174.1388                   

     5Ρ = 300.0000                         5Ρ =207.8132                             5Ρ = 281.9759                                5Ρ =255.6644   

 3  1Ρ =   31.8215                         1Ρ =  75.0000                             1Ρ =   63.7779                                1Ρ =  53.9416                       

     2Ρ =120.0214                         2Ρ =100.0806                            2Ρ =  110.764                                2Ρ =119.1979                                

     3Ρ =175.0000                          3Ρ =140.2288                             3Ρ = 142.2972                               3Ρ =153.1367                    

     4Ρ = 40.0000                          4Ρ =193.4620                            4Ρ =118.8558                               4Ρ =139.2248                  

     5Ρ = 283.1571                         5Ρ = 141.2286                           5Ρ = 214.3050                                5Ρ =184.4991     
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Table 7.4. FUEL CONSTRAINED DISPATCH SOLUTION FOR CASE 4 WITH INITIAL FUEL STORAGE (tons) 0
1V = 2000, 0

2V =5000, 0
3V =5000, 0

4V =8000, 
0

5V =500    
Inter-          Economic dispatch (DE)                            Emission dispatch (DE)                     Economic emission dispatch (MODE)         Economic emission dispatch (SPEA2) 
 val    Generation  Fuel delivered  Objective      Generation  Fuel delivered  Objective          Generation  Fuel delivered  Objective          Generation  Fuel delivered  Objective 
               (MW)          (tons )                                     (MW)              (tons)                                    (MW)            (tons)                                       (MW)            (tons) 
1      1Ρ =   64.6327   1F =   959.6     Cost=              1Ρ =  73.6410    1F = 370.03    Cost=               1Ρ =  68.8702   1F =  625.8    Cost=               1Ρ =   56.4094    1F =  302.1    Cost= 

         2Ρ =121.5749   2F =   897.1   1072011 $         2Ρ =112.3754   2F =  321.7    1126446 $         2Ρ =114.7729   2F = 236.3    1096650 $         2Ρ =116.0625   2F =  330.4     1096509 $            

         3Ρ =174.5428    3F =1994.6    Emission=     3Ρ =150.7188    3F =1395.2    Emission=      3Ρ =166.3807   3F =  738.3   Emission=      3Ρ =159.7154    3F =1606.5   Emission= 

         4Ρ =101.2611   4F =   151.3    694273 lb      4Ρ =201.5249    4F =2188.4     562921 lb      4Ρ =143.4241   4F =2497.8     596646 lb      4Ρ =160.5276   4F =1826.7   618125 lb  

         5Ρ =237.9886    5F =2997.5                             5Ρ =161.7399     5F =2724.7                               5Ρ =206.5521   5F =2901.9                              5Ρ =207.2852    5F =2934.3   

2       1Ρ = 74.8386     1F =  982.8                              1Ρ =  74.9254     1F =   994.9                               1Ρ =  74.2855    1F =  659.7                              1Ρ =   73.4619    1F =  999.1   

         2Ρ =124.9129   2F =   17.5                              2Ρ =120.1896    2F =      8.2                               2Ρ =121.4536  2F =  928.1                             2Ρ =110.6655    2F =  377.9                                

         3Ρ =174.7765     3F =    0.1                              3Ρ =161.1406     3F =    51.7                               3Ρ =170.0481   3F =1477.8                              3Ρ = 174.4181    3F =  717.7  

         4Ρ =168.3754    4F =2999.9                           4Ρ =236.1880    4F =2991.8                                4Ρ =208.1990  4F =1294.0                             4Ρ =219.8668     4F =2663.9 

         5Ρ = 257.0966    5F = 2999.7                          5Ρ =207.5564     5F =2953.3                                5Ρ =226.0138   5F =2640.5                             5Ρ =221.5877      5F =2241.5   

3       1Ρ =  57.4434     1F =   499.9                          1Ρ =  72.2428      1F =  288.2                                 1Ρ =  62.6368    1F =  952.5                             1Ρ =  59.0782       1F =  808.5 

         2Ρ =124.7904    2F =  935.6                          2Ρ =  98.6504     2F = 701.4                                 2Ρ =104.5039   2F =  193.1                            2Ρ =  84.7793      2F = 556.8                               

         3Ρ =175.0000     3F = 1818.7                         3Ρ =131.3219      3F =1227.1                                 3Ρ =158.7797   3F =1916.9                             3Ρ =170.6290      3F =1323.7   

         4Ρ =  63.5782    4F = 756.5                          4Ρ =196.2013     4F =2994.2                                 4Ρ =144.5260   4F =1164.5                             4Ρ =114.8903     4F =1459.2 

         5Ρ =229.1879     5F =2989.2                          5Ρ =151.5836     5F =1789.1                                 5Ρ =179.5516     5F =2773.1                             5Ρ =220.6232     5F =2851.9       
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7.4. CONCLUSION 

Here, the usefulness of the multi-objective differential evolution is examined for solving fuel 

constrained economic emission dispatch problem of thermal generating units. The results show 

that fuel consumption can be adequately controlled to satisfy constraints imposed by suppliers 

using the proposed method. Optimum economic emission dispatch is not achieved always, but 

this is generally much less than the penalty that could be imposed for violating the fuel system 

constraints. 
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CHAPTER 8 
 

Short-term Scheduling of Variable Head Hydrothermal  
Power system 

 
 
 
8.1. Introduction 

The hydro thermal generation scheduling problem is a nonlinear constrained dynamic 

optimization problem which plays an important role to electric utility systems. With the 

insignificant marginal cost of hydroelectric power, operational cost of a hydrothermal system 

essentially reduces to that of minimizing the fuel cost for thermal plants under the various 

constraints on the hydraulic, thermal and power system network. 

The main constraints include: the time coupling effect of the hydro sub problem, where the water 

flow in an earlier time interval affects the discharge capability at a later period of time, the 

cascaded nature of the hydraulic network, the varying hourly reservoir inflows, the physical 

limitations on the reservoir storage and turbine flow rate, the varying system load demand and 

the loading limits of both thermal and hydro plants.  

Modified evolutionary programming (MEP) and group search optimization (GSO) have been 

applied to solve the short-term optimal scheduling of generation in a hydrothermal system which 

involves the allocation of generations among the multi-reservoir cascaded hydro plants having 

prohibited operating zones and thermal units with valve point loading so as to minimize the fuel 

cost of thermal plants while satisfying the various constraints on the hydraulic, thermal and 

power system. The ramp-rate limits of thermal generators are taken into consideration. The 

transmission losses are also accounted for through the use of loss coefficients. To illustrate the 

performance of the proposed MEP method, two test problems and two hydrothermal test systems 

reported in the literature are used. Test results are compared with those obtained by other 

evolutionary methods. From numerical results, it is found that the proposed MEP based approach 

provides better solution. 
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8.2. Problem Formulation 

The hydrothermal scheduling problem is aimed to minimize the fuel cost of thermal plants, while 

making use of the availability of hydro power as much as possible. The objective function and 

associated constraints of the hydrothermal scheduling problem are formulated as follows.  

 

8.2.1. Objective function 
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8.2.2. Constraints 

(i) Power balance constraints: 

The total active power generation must balance the predicted power demand and transmission 

loss, at each time interval over the scheduling horizon 
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The hydroelectric generation is a function of water discharge rate and reservoir water head, 

which in turn, is a function of storage                
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The transmission loss LtΡ  is given by 
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         (8.4) 

 

(ii) Generation limits:        
maxmin
hjhjthj Ρ≤Ρ≤Ρ , hj Ν∈  Τ∈t                                                                                               (8.5)                

and 
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maxmin
sisitsi Ρ≤Ρ≤Ρ , si Ν∈ , Τ∈t                                                                                               (8.6)                                 

 

(iii) Ramp rate limits of thermal generating unit  

The power generated, iΡ , by the i th thermal unit in certain interval may not exceed that of 

previous interval by more than a certain amount iUR , the up-ramp limit and neither may it be 

less than that of the previous interval by more than some amount iDR  the down-ramp limit of 

the unit. These give rise to the following constraints. 

 

itsisit UR≤Ρ−Ρ − )1( ,   si Ν∈ ,  Τ∈t                                                                                           (8.7)                                

isittsi DR≤Ρ−Ρ − )1( ,  si Ν∈   Τ∈t                                                                                            (8.8)                                 

 

(iv) Hydraulic network constraints              

The hydraulic operational constraints comprise the water balance equations for each hydro unit 

as well as the bounds on reservoir storage and release targets. These bounds are determined by 

the physical reservoir and plant limitations as well as the multipurpose requirements of the hydro 

system. These constraints include: 

 

(a) Physical limitations on reservoir storage volumes and discharge rates,are given by 

 
maxmin

hjhjthj VVV ≤≤  ,  hj Ν∈ , Τ∈t                                                                                          (8.9)                                 

maxmin
hjhjthj QQQ ≤≤   hj Ν∈ , Τ∈t                                                                                          (8.10)                                

 

b) The continuity equation for the hydro reservoir network is given by   

hjthjthjthjtthj SQVV −−Ι+=+ )1( + ( ) ( )( )∑
=

−− +
uj

ljlj

R

l
thlthl SQ

1
ττ  ,    hj Ν∈ , Τ∈t                                (8.11)                           

c) Initial and final reservoir storage volume are as follows : 

 
begin

hjhj VV =0 ,  hj Ν∈                                                                                                                  (8.12) 

end
hjhj VV =Τ ,   hj Ν∈                                                                                                                  (8.13) 
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 (v) Prohibited operating regions of water discharge rates  are as follows :       

⎪
⎪
⎩

⎪⎪
⎨

⎧

≤≤

≤≤

≤≤

∈ −

max
,

,1,
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U
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L
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U
khj

L
hjhjhj

hj

QQQ

QQQ

QQQ

Q

j

,     jnk ,..,2=                                                                            (8.14)                              

 
8.3. Application of MEP Method 

The proposed modified evolutionary programming (MEP) has been applied to solve two  

hydrothermal multi-reservoir cascaded hydroelectric test systems having prohibited operating 

zones and thermal units with valve point loading. For each case 100 runs are conducted to 

compare the solution quality. The computational results have been used to compare the 

performance of the proposed MEP approach with that of other evolutionary methods reported in 

the literature. The proposed MEP used in this paper is implemented by using MATLAB 7.0 on a 

PC (Pentium-IV, 80 GB, 3.0 GHz). 

Two hydrothermal test systems are considered to inspect and verify the proposed MEP method. 

 

8.3.1. Test System 1 

The system considers a multi-chain cascade of four reservoir hydro plants and three thermal 

plants. The entire scheduling period is 1 day and divided into 24 intervals. The valve point 

loading effect and transmission loss are taken into account. For this test system, two cases are 

considered. In the first case prohibited operating zones of hydro plants and ramp rate limits of 

thermal generators are not taken into consideration but in the second case both are taken into 

account. The detailed parameters are given in the Appendix. 

 

Case 1: The problem is solved by using MEP. Here, parameters are taken as 100=ΝΡ , 5.0=β , 

1=RC  and 300max =iter .  

The optimal hourly discharges and hydrothermal generation obtained by the proposed MEP 

method are provided in Table 8.1 and Table 8.2 respectively. Figure 8.1 shows the reservoir 

storage volumes of four hydro plants obtained from MEP. The best, average and the worst costs 

and average CPU time among 100 runs of solutions obtained from proposed MEP are shown in 

Table 8.3. The costs obtained from clonal selection algorithm (CSA) [113] and teaching learning 
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based optimization (TLBO) [114] is also shown in Table 8.3. The cost convergence 

characteristic in case of MEP is depicted in Fig. 8.2. Results show that the best cost for this test 

system as obtained by MEP is less compared to those obtained from CSA [113] and TLBO 

[114]. Moreover, the best, the worst, average costs obtained by MEP out of certain number of 

trials are quite close to each other. It establishes better robustness of the algorithm. 

 
 
Table 8.1: Optimal Hydro Discharge ( 3410 m× ) 
 for Case 1 of Test system 1 

  1    8.3137     9.4629   22.5907   11.0102 
  2   12.0381  10.7128   24.2330     7.8830 
  3   10.2607    8.2215   18.4826     8.3539 
  4    6.9790     7.2737   24.2664   11.3111 
  5    5.6008     7.3567   24.6145   13.7302 
  6    5.8274     6.7404   14.6097   14.7870 
  7    8.7252     7.2394   14.8602   17.9333 
  8    5.6972     6.8517   29.2682   10.0631 
  9    6.8871     7.8676   11.5319   13.2347 
10  11.5933     6.6753   16.1021     6.0494 
11  11.4489   10.3040   15.3343   16.7608 
12    5.4383   10.4748   25.4544   17.3946 
13    5.0471     8.5465   17.4615   16.8455 
14  10.3692   10.1086   21.2560   20.0000 
15  12.7068     9.2567   12.0091   19.3661 
16    5.8504     7.5990   10.6866   10.8001 
17    7.6697     6.6162   12.5960   17.6331 
18    5.8233     6.1733   12.2395   14.7619 
19    9.0188   13.6679   15.5357   19.3778 
20    5.1454     7.1701   15.7034   18.1969 
21    7.2424     6.9259   19.4917   19.2632 
22  14.2528     9.1624   14.1855   10.7292 
23    6.0377     7.8139   10.0000   13.2968 
24    7.0265     9.7785   16.9681   16.8537 
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Table 8.2: Optimal Hydrothermal generation (MW) for Case 1 
of Test system 1 

Hour  1hΡ         2hΡ           3hΡ          4hΡ            1sΡ          2sΡ          3sΡ  
  1   77.0487   69.9893   32.1728  191.8366  104.2184    55.0345  229.6572 
  2   94.3289   74.8225   16.7056  148.3780  103.6019  209.9259  139.8579 
  3   86.6656   60.6198   40.8487  148.4766  104.7717  125.5186  139.4297 
  4   67.2427   55.4408     6.9818  172.7214  174.6274    42.7177  139.4118 
  5   56.7620   57.0493     4.0827  180.2028    54.9352  182.7057  139.6454 
  6   58.7012   53.4707   48.0078  199.5433  102.3673  118.7307  229.5069 
  7   78.7864   56.8691   49.1421  232.3317  103.0065  212.5113  229.1587 
  8   57.7659   53.6031         0       168.4012    20.0000  124.9980  243.4758 
  9   67.7585   60.0509   46.9654  214.8638    20.0000  125.2033  307.6816 
10   93.7034   52.6100   43.9487  143.2654  102.3089  106.5135  492.4429 
11   92.9852   74.3911   44.8133  265.0220  108.1098  213.0840  320.2285 
12   57.0308   74.2981         0       267.5719    20.1121  195.9729  498.3319 
13   54.3633   63.0963   37.5156  275.7953  173.3571  209.7612  318.1784 
14   92.0493   70.6222   22.8742  291.0220    30.0043  220.4909  319.5045 
15 101.2885   65.7579   47.1504  283.1017  138.4388    72.9871  319.6155 
16   62.1615   56.3550   48.4995  206.8452    83.7333   40.0875  228.7123 
17   76.8908   50.3619   52.1451  283.0372    89.6146  198.2788  317.0089 
18   62.4432   47.5945   55.2213  259.6838    20.1566  120.0839  312.2452 
19   86.2813   82.5634   54.2511  301.1373    33.7892  126.9923  409.1162 
20   56.3641   49.6264   54.1656  285.9255    97.2084  122.9434  408.9512 
21   74.0465   48.6592   42.6745  284.7750  117.3128  125.1093  228.9323 
22 106.1392   62.9251   54.9258  205.5468  101.1637  293.4938    50.1541 
23   63.7403   55.4195   54.5068  233.3604  100.1694  123.5292  229.7527 
24   72.0016   65.9572   53.5398  265.6134  172.8562    40.0000  139.5193 

 
 
Table 8.3: Comparison of performance for Case 1 of Test system 1 
 

Techniques Best cost ($) Average cost ($) Worst cost ($) CPU time (S) 
MEP 41704.98 41742.14 41771.12 101.52 
CSA 42440.57 - - - 

TLBO  42385.88 42407.23 42441.36 - 
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      Fig.  8.1. Hydro reservoir storage volumes for Case 1 of Test system 1 
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        Fig.  8.2. Cost convergence characteristics for Case 1 of Test system 1 
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Case 2: The problem is solved by using MEP. Here, parameters are taken as 100=ΝΡ , 5.0=β , 

1=RC  and 300max =iter .  

The optimal hourly discharges and hydrothermal generation obtained by the proposed MEP 

method are provided in Table 8.4 and Table 8.5 respectively. Figure 8.3 shows the reservoir 

storage volumes of four hydro plants obtained from MEP. The best, average and worst cost and 

average CPU time among 100 runs of solutions obtained from proposed MEP are shown in Table 

8.6. The cost convergence characteristic in case of MEP is depicted in Fig. 8.4. 

 
 
 
Table 8.4: Optimal Hydro Discharge ( 3410 m× )  
for Case 2 of Test system 1 

Hour   1hQ        2hQ       3hQ         4hQ  

  1  11.7012    8.3383   29.9999   13.2560 
  2    7.6046    6.0001   13.4436     8.9722 
  3  11.1345    6.8522   19.1919     8.5532 
  4  13.4743    9.2913   16.4968   19.6001 
  5    6.8706  11.0735   29.6399   14.2180 
  6  11.2900    9.0272   15.8359   10.3870 
  7  12.3397    8.0459   21.3733   10.5360 
  8    5.3016    6.0003   21.1498     6.3047 
  9    5.1180    8.6659   13.4586     8.7915 
10    7.9769    9.0539   28.3579   15.4097 
11    5.4565    6.0001   14.0775   18.2466 
12  10.2535    6.7587   17.1459   15.1010 
13    7.8906  13.9984   17.7219   19.8992 
14    7.7823    6.0000   16.6551   15.5421 
15    5.8835    6.1088   17.1686   18.7010 
16    7.7244    6.0000   12.2951   15.9921 
17    5.0029    8.0445   19.8803   18.0055 
18    7.0031    6.0011   10.0610   14.1998 
19    5.2009  12.4074   14.6564     8.8970 
20    6.1788    8.1388   10.6560   14.1843 
21    7.8476    6.9769   13.1601   15.9596 
22    9.5373  11.8528   11.8787   15.3522 
23    6.5095    8.3099   12.3214   19.9802 
24    9.9177  13.0540   13.0304   19.9765 
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Table 8.5: Optimal Hydrothermal generation (MW) for Case 2 of  
 Test system 1 

Hour  1hΡ           2hΡ          3hΡ         4hΡ           1sΡ          2sΡ           3sΡ  
  1   92.6100   63.9615         0       213.6601  122.1689  125.2868  139.7785 
  2   72.0690   48.8005   53.9559  158.9365  102.1068  124.9066  229.5288 
  3   90.5573   55.8236   39.3585  147.3153    22.3948  209.8356  139.7956 
  4   95.2653   71.4961   46.8511  226.7319   37.4826   124.9118    50.3266 
  5   64.4403   79.5934         0       168.2443  103.4868  209.7797    50.0244 
  6   86.4464   68.0254   45.6081  155.0956  102.6608  209.8791  139.7594 
  7   87.0237   61.2782   27.9579  160.1385  102.5044  294.8457  229.5773 
  8   49.2803   46.8086   28.2529  120.8731  174.9965  294.7645  319.2813 
  9   49.1387   64.1123   51.9322  161.4573  175.0000  209.8045  409.0575 
10   71.2390   65.7464         0       247.9682  102.8565  209.7914  409.1246 
11   54.4256   46.9804   49.8889  268.9013  174.9520  124.9140  408.9994 
12   86.6665   54.0037   43.1493  249.0915  101.1599  233.6258  409.1566 
13   73.9668   87.2270   41.9211  288.9727    21.3038  294.7193  319.2980 
14   74.1884   45.8833   45.3111  252.3226  101.2632  209.7447  319.2779 
15   61.1788   48.5052   44.8146  288.6069    54.3860  209.8203  319.3000 
16   76.0425   49.4609   51.7633  264.2455  102.5348  300.0000  229.5336 
17   54.5668   63.9598   39.2267  280.3727  101.6611  294.2266  229.5039 
18   71.8442   50.0229   51.4094  249.6692  102.6795  294.6845  319.2968 
19   56.7906   83.3577   53.5455  194.2653  174.9987  209.8079  319.2752 
20   65.5160   60.4779   52.9102  259.2640  100.7737  209.7701  319.2732 
21   78.3576   53.2899   55.3335  273.3419    20.8830  124.9627  319.0909 
22   88.8353   79.0570   55.1741  271.7308    20.0101  124.8635  229.5576 
23   67.9998   60.8176   57.2467  300.3369    20.0000  209.8037  139.7718 
24   91.0733   80.6164   58.3263  294.6325    20.0000  209.6778    50.0052 

 
 
 
Table 8.6: Cost and CPU time for Case 2 of  
Test system 1 
 
Techniques MEP 
Best cost ($) 43719.08 
Average cost ($) 43748.13 
Worst cost ($) 43788.21 
CPU time (s) 136.45 
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          Fig. 8.3. Hydro reservoir storage volumes for Case 2 of Test system 1 
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           Fig. 8.4. Cost convergence characteristics for Case 2 of Test system 1 
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8.3.2. Test System 2 

The system considers a multi-chain cascade of four reservoir hydro plants and ten thermal plants. 

The entire scheduling period is 1 day and divided into 24 intervals. The effect of valve point 

loading is taken into account. The hydro plant data is same as in test system 1 and the thermal 

plant data is given in the appendix. 

The problem is solved by using MEP. Here, parameters are taken as 100=ΝΡ , 5.0=β , 1=RC  

and 600max =iter .  

The optimal hourly discharges and hydrothermal generation obtained by the proposed MEP 

method are provided in Table 8.7 and Table 8.8 respectively, Figure 8.5 shows the reservoir 

storage volumes of four hydro plants obtained from MEP. The best, average and worst cost and 

average CPU time among 100 runs of solutions obtained from proposed FCEP are summarized 

in Table 8.9. The cost obtained from differential evolution (DE) [110] method is also shown in 

Table 8.9. The cost convergence characteristic in case of MEP is depicted in Fig. 8.6. Results 

show that the best cost for this test system as obtained by MEP is less than those obtained from 

DE [110]. Moreover, the best, worst, average costs obtained by MEP out of certain number of 

trials are quite close to each other. It establishes the improved robustness of the algorithm. 
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Table 8.7: Optimal Hydro Discharge ( 3410 m× )  
for Test system 2 

Hour  1hQ       2hQ      3hQ       4hQ  

  1    7.8833    6.6397  30.000     8.285 
  2    12.904    6.7961  19.013   11.707 
  3    5.3944    7.4013  15.646   10.551 
  4    6.1076    6.5282  21.477     9.478 
  5    5.9737    6.8022  30.000     8.144 
  6    6.9325    6.0589  12.761   15.093 
  7    8.8653    8.0255  15.560     6.682 
  8    5.0001    6.0093  27.122   10.452 
  9  10.1801  10.0930  10.063   13.289 
10  11.7320    6.0008  10.002   11.807 
11    7.8904  12.3461  16.155   14.939 
12    7.7506    9.5169  18.092   18.056 
13    9.9329    6.0557  20.684   11.143 
14    8.6058  11.0472  10.977   13.675 
15    5.0061  10.0483  15.431   14.983 
16    9.6209    8.2951  24.294   19.223 
17  11.4310  11.9580  10.014   17.666 
18    9.7916    6.8591  17.201   13.939 
19    6.0958   9.5813   15.938   19.970 
20    8.4204   6.1953   12.360   18.201 
21    5.0000   8.2018   10.137   19.932 
22    8.2182  12.9871  14.437   12.583 
23  10.7490  10.2610   20.011  20.000 
24    5.5137    8.2937   14.131  19.778 
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Table 8.8: Optimal Hydrothermal generation (MW) for Test system 2 
Hour 1hΡ           2hΡ           3hΡ          4hΡ         1sΡ             2sΡ           3sΡ           4sΡ          5sΡ           6sΡ            7sΡ          8sΡ            9sΡ         10sΡ  
  1   74.3811   53.4191         0       161.1561  229.4918  199.3606   94.9902  119.6121  274.3415  189.2577    45.0098    84.8895    98.2500  125.8405 
  2   96.7439   55.2736   41.9161  193.1701  139.8012  349.1918   20.2030    20.0022  174.4235  239.4293  163.5059    84.7458    25.0000  176.5935 
  3   55.4954   59.9003   48.0375  171.4724  229.2625  124.6643   95.5600  119.9075  324.3470  139.6317    45.0267    84.9201    25.0730  176.7015 
  4   61.9277   55.0861   24.8062  150.2950  319.0316    50.0001   20.0004  119.8904  124.7640  239.2678  104.2990  178.9790    25.0558  176.5970 
  5   61.0675   58.3209         0       124.9159  139.7358  273.6890   94.2244  119.7487  174.6065    40.0449  223.3538    85.0589    98.4727  176.7610 
  6   68.3906   53.7998   45.3094  215.9834  229.4193  125.1702   20.0000  120.2536  124.7198  289.1639  222.1683  134.2248    25.0000  126.3967 
  7   80.8140   67.2851   43.3817  134.0935  319.2095  274.4587   94.2960  119.6850  173.8420  189.0789  104.2134  134.6693    97.8724  117.1004 
  8   52.6940   52.8663         0       187.4420  229.7633  349.2578   94.6387    69.7966  324.1460  287.1512  104.1468    84.6620    98.1583    75.2771 
  9   88.5164   77.8345   42.3013  227.0123  318.9880  348.6034   20.0000    69.8373  124.7022  189.6397  222.7823  134.9166    98.5611  126.3049 
10   94.5742   52.2096   44.1260  227.7515  229.2607  347.6756   20.1319    69.9257  224.2217  239.2966  222.9305    35.0367    98.4181  174.4411 
11   75.5537   87.5986   41.4255  259.1608  319.4205  199.4831   94.8218  119.7352  323.0090    40.0006  281.7792    84.8624    98.1757    74.9741 
12   75.6297   73.5535   35.9179  284.1861  229.4701  124.5714   20.0058  119.6885  373.3563  239.2792  104.1592  183.7503  159.9221  126.5099 
13   88.9545   51.5721   26.9853  229.1679  139.6887  423.1678   94.6534    69.6805  423.9153  139.5681  163.5473    35.0051    97.4705  126.6236 
14   81.8635   80.8717   47.4727  255.1393  229.2460  348.7871   94.8599    20.0255  274.1660  139.6729  222.7474    84.0564    25.0013  126.0903 
15   54.7486   75.1676   48.7010  264.1232  139.9014  423.6967   94.6401  119.7889  174.8115    40.0294  103.9937  184.3588  159.9997  126.0392 
16   89.6371   65.3307   12.0227  297.4801  229.8796  124.8048   94.7917  119.7629    25.0400  189.4061  341.1465  134.6513  160.0000  176.0465 
17   98.3834   82.2172   49.6345  285.8024  140.0193  199.3870   20.4951    20.1612  124.7868  339.3083  282.0454  234.4866    98.2815    74.9913 
18   90.1868   53.2709   47.0367  257.1652  229.4313  423.9930   94.7168    69.9551  323.7187  139.9808  104.1276  135.3306    25.0005  126.0858 
19   64.5535   68.2912   51.4123  300.8917  409.0538  199.8691   20.0001    69.5723    74.5428  239.4277  163.5398  234.6874    98.1449   76.0135 
20   81.9364   46.6343   55.7243  285.0431    50.0000  200.0078   94.3709  119.8313  324.0908    40.0000  281.1232  134.4220  159.9998  176.8164 
21   54.7444   60.4544   55.5549  302.2867  229.7679  274.3812   94.8104    20.0633  274.5393    89.9110    45.0000  184.5704    98.1656  125.7504 
22   80.5452   81.5119   58.4872  233.7478  319.2161  349.1525   20.0583    69.7106    25.0000    40.0004  223.1170  134.7023    98.4035  126.3471 
23   94.5605   68.7179   46.3529  297.0912  139.8009  199.6968   94.3613    20.1141    74.6949  415.5009  163.1718    35.0003    25.0000  175.9365 
24   59.3956   57.2693   58.2317  291.4354  319.2163  274.2234   91.0358    69.5051  124.7541  139.4959    45.0011    35.0009  159.9996    75.4360 

 
 
 
Table 8.9: Comparison of performance for Test system 2 
 
Techniques MEP DE  
Best cost ($) 170344.24 170964.15 
Average cost ($) 170403.51 - 
Worst cost ($) 170578.40 - 
CPU time (s) 157.06 - 
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         Fig. 8.5. Hydro reservoir storage volumes for Case 1 of Test system 2 
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        Fig. 8.6. Cost convergence characteristics for Case 1 of Test system 2 
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8.4. Conclusion 

In this paper, MEP has been developed and applied to solve the two test problems and two 

hydrothermal multi-reservoir cascaded hydroelectric test systems having prohibited operating 

zones and thermal units with valve point loading. It has been observed that MEP method has the 

ability to converge to a better quality solution and robustness. MEP has both good exploration 

and exploitation ability. It is clear from the results obtained by different trials that the proposed 

MEP method can avoid the shortcoming of premature convergence. 

 

8.5. Application of GSO method 

Three hydrothermal test systems are investigated and the computational results have been used to 

compare the performance of the proposed GSO method with that of other evolutionary methods. 

The algorithm used in this paper is implemented by using MATLAB 7.0 on a PC (Pentium-IV, 

80 GB, 3.0 GHz). 

Three hydrothermal test systems are considered to inspect and verify the proposed GSO method. 

 

8.5.1. Test System 1: This test system considers a multi-chain cascade of four reservoir hydro 

plants and an equivalent thermal plant. The entire scheduling period is 1 day and divided into 24 

intervals. Here, two cases are considered. 

 

Case 1: Here fuel cost is considered as a quadratic function of the power from the composite 

thermal plant. The detailed parameters for this case come from [108]. 

The problem is solved by using GSO. Here, the population size ( ΡΝ ) and maximum iteration 

number have been selected 100 and 200 respectively for this case. 

The optimal hourly discharges and hydrothermal generation obtained by the proposed GSO 

method are provided in Table 8.10 and Table 8.11 respectively. Figure 8.7 depicts the reservoir 

storage volumes of four hydro plants obtained from GSO. The best, average and the worst cost 

and average CPU time among 100 runs of solutions obtained from the proposed GSO are 

summarized in Table 8.12. The cost obtained from modified differential evolution (MDE) [123], 

improved particle swarm optimization (IPSO) [125], teaching learning based optimization 

(TLBO) [114], improved fast evolutionary programming (IFEP) [108] and genetic algorithm 
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(GA) [106] methods are also shown in Table 8.12. The cost convergence characteristic in case of 

GSO is shown in Fig. 8.8. 
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       Fig. 8.7. Hydro reservoir storage volumes for Case 1 of Test system 1 
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              Fig. 8.8. Cost convergence characteristics for Case 1 of Test system 1 
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Table 8.10: Optimal Hydro Discharge ( 3410 m× )  
for Case 1 of Test System 1 

Hour   1hQ       2hQ       3hQ           4hQ  

  1    9.3207    6.0007   29.8079    6.0000 
  2    8.1025    6.1972   30.0000    6.0000 
  3    8.1651    6.0036   17.4038    6.0824 
  4    8.6098    6.0000   16.3785    6.2337 
  5    8.2380    6.0274   16.5929    6.4178 
  6    7.1368    6.0297   16.2300    6.9001 
  7    8.9886    6.0720   16.7684   10.2395 
  8    8.7364    6.8314   16.6709   13.6340 
  9    8.7740    7.3950   16.2860   15.8907 
10    8.8471    7.7045   16.0385   16.9213 
11    8.5867    7.6832   15.7894   16.7272 
12    8.3218    7.7423   16.6544   16.0383 
13    8.0765    7.7875   19.0441   16.6773 
14    8.1759    8.8526   19.3577   16.0927 
15    8.4697    8.2522   19.0018   17.0796 
16    8.9454    8.7810   18.6988   17.1725 
17    7.6274    8.8878   16.5303   18.1705 
18    7.5446    9.5904   16.8461   18.4444 
19    7.9694   10.7311   14.3550   19.1983 
20    7.6817   11.2308   13.7930   20.0000 
21    8.2990   10.9637   10.3630   20.0000 
22    7.2589   11.6870   10.9224   19.4549 
23    6.7623   12.5093   11.7597   20.0000 
24    6.3617   13.0396   13.6474   19.6723   

Table 8.11: Optimal Hydrothermal generation (MW) for  Case 1 of Test system 1 
Hour  1hΡ         2hΡ        3hΡ          4hΡ         sΡ           
  1    82.681    49.005       0          131.88    1106.4 
  2    75.963    52.696       0          129.03    1132.3 
  3    76.616    52.315    39.644    126.84    1064.6 
  4    79.234    53.882    41.024    124.62    991.24 
  5    76.530    55.604    40.342    120.91    996.62 
  6    68.693    56.583    41.596    149.02    1094.1 
  7    80.042    57.354    41.077    209.98    1261.5 
  8    78.317    62.673    41.527    252.43    1565.1 
  9    78.618    66.505    41.969    275.42    1777.5 
10    79.446    68.783    42.476    284.45    1844.8 
11    78.685    69.278    42.966    282.27    1756.8 
12    78.128    70.280    41.118    276.71    1843.8 
13    77.049    70.687    33.496    282.50    1766.3 
14    78.408    77.162    32.679    277.38    1734.4 
15    81.124    73.722    34.038    285.24    1655.9 
16    84.550    77.185    35.186    284.72    1588.4 
17    76.191    77.417    42.049    291.50    1642.8 
18    75.809    80.288    42.236    294.26    1647.4 
19    78.850    83.882    48.143    300.15    1729.0 
20    76.707    83.878    49.736    304.88    1764.8 
21    80.591    80.816    50.222    303.54    1724.8 
22    73.201    82.464    53.076    296.68    1614.6 
23    69.578    83.560    55.877    297.14    1343.8 
24    66.684    82.021    57.991    289.15    1094.2 
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Table 8.12: Comparison of performance for Case 1 of Test System 1 
 

Techniques GSO TLBO IPSO MDE IFEP GA  
Best cost ($) 916869.96 922373.39 922553.49 922556.44 930129.82 926707.00 
Average cost ($) 917001.20 922462.24 - - 930290.13 - 
Worst cost ($) 917022.33 922873.81 - - 930881.92 - 
CPU time (s) 354.2781 - - - 1033.20 - 

 
 
 
Case 2: Here prohibited operating zones of hydro plants and valve point loading of thermal 

generator are considered.  The detailed parameters for this case come from [108]. 

The problem is solved by using GSO.Here, the population size ( ΡΝ ) and maximum iteration 

number have been selected 100 and 200 ,respectively for this case. 

The optimal hourly discharges and hydrothermal generation obtained by the proposed GSO 

method are provided in Table 8.13 and Table 8.14 respectively. Figure 8.9 shows the reservoir 

storage volumes of four hydro plants obtained from GSO. The best, average and worst cost and 

average CPU time among 100 runs of solutions obtained from the proposed GSO are 

summarized in Table 8.15. The cost obtained from improved fast evolutionary programming 

(IFEP) [108], improved particle swarm optimization (IPSO) [125] and teaching learning based 

optimization (TLBO) [114] method are also shown in Table 8.15. The cost convergence 

characteristic in case of GSO is depicted in Fig. 8.10. 

 
 
Table 8.15: Comparison of performance for Case 2 of Test system 1 
 

Techniques GSO TLBO IPSO  IFEP 
Best cost ($) 922838.19 924550.78 925978.84 933949.25 
Average cost ($) 922882.64 924702.43 - 938508.87 
Worst cost ($) 922966.62 925149.06 - 942593.02 
CPU time (s)  381.5471 - - 1450.90 
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Table 8.13: Optimal Hydro Discharge ( 3410 m× )  
for Case 2 of Test system 1 

Hour   1hQ        2hQ       3hQ         4hQ  

  1    7.4898    6.9473   19.5968     6.7572 
  2  10.4231    6.5828   21.9846     6.0889 
  3  11.3134    6.1767   20.0759     6.0960 
  4    9.3925    8.6856   29.9608     6.0380 
  5    7.1830    6.0905   15.9483     8.4937 
  6    9.0076    9.3469   18.2507     6.2724 
  7    7.8955    6.9913   17.7056   11.0662 
  8    9.2724    8.9670   16.7099   13.4913 
  9    9.3371    6.5613   17.2705   15.7099 
10    5.9732    6.0006   15.8547   14.4682 
11    9.7379    6.3226   16.2620   18.0152 
12    6.6540    6.0573   18.7716   15.9977 
13    7.5780    6.9812   17.9492   18.6503 
14    5.0727  10.7346   16.1525   18.8333 
15    9.0183    8.1430   17.4240   13.7201 
16  12.0758  10.2880   21.9906   19.8576 
17    7.6567    8.3800   14.2722   18.4646 
18    9.3625  11.4929   14.7963   15.9875 
19    6.7271    8.2192   16.0289   19.9939 
20    6.1177  10.9451   15.7040   19.4079 
21    7.0894    8.7609   11.2012   18.5244 
22    5.0784    9.0879   10.2714   20.0000 
23    6.5126  12.9916   13.8940   20.0000 
24    9.4855  10.9554   10.2551   18.9738 
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      Fig. 8.9. Hydro reservoir storage volumes for Case 2 of Test system 1 
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Table 8.14: Optimal Hydrothermal generation (MW) for 
 Case 2 of Test system 1 

Hour   1hΡ         2hΡ        3hΡ         4hΡ          sΡ          
  1    71.807    55.457    46.472    141.94    1054.3 
  2    88.780    53.662    31.683    129.53    1086.3 
  3    91.746    51.685    36.266    126.24    1054.1 
  4    82.269    69.128         0        121.23    1017.4 
  5    68.347    52.830    43.273    145.42    980.13 
  6    78.964    73.989    38.319    129.10    1089.6 
  7    71.885    58.764    40.704    200.99    1277.7 
  8    79.576    70.007    44.089    233.96    1572.4 
  9    79.786    54.195    42.644    269.47    1793.9 
10    58.692    51.105    46.617    258.75    1904.8 
11    83.938    55.038    46.185    291.22    1753.6 
12    65.901    54.569    39.518    275.34    1874.7 
13    73.303    61.985    40.914    296.01    1757.8 
14    54.377    83.410    46.642    295.84    1719.7 
15    84.813    68.958    43.192    251.55    1681.5 
16    99.319    80.874    22.682    301.79    1565.3 
17    76.073    69.574    46.957    291.85    1645.5 
18    87.047    83.915    48.728    272.73    1647.6 
19    69.223    64.661    48.892    301.09    1756.1 
20    64.376    77.455    50.454    294.91    1792.8 
21    72.002    65.093    53.597    291.91    1757.4 
22    55.301    66.987    54.389    296.63    1646.7 
23    67.925    82.738    57.433    290.96    1350.9 
24    88.558    72.147    56.295    280.62    1092.4 
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              Fig. 8.10. Cost convergence characteristics for Case 2 of Test system 1 
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8.5.2. Test System 2: This system considers a multi-chain cascade of four reservoir hydro plants 

and three thermal plants. The entire scheduling period is 1 day and divided into 24 intervals. The 

effect of valve point loading is considered. Transmission loss is also considered. Here, two cases 

are considered. 

 

Case 1: Here prohibited operating zones of hydro plants and ramp rate limits of thermal 

generators are not considered. The detailed parameters for this case are taken from [110]. 

The problem is solved by using GSO. Here, the population size ( ΡΝ ) and maximum iteration 

number have been selected 100 and 200 respectively for this case. 

The optimal hourly discharges and hydrothermal generation obtained by the proposed GSO 

method are provided in Table 8.16 and Table 8.17 respectively. Figure 8.11 shows the reservoir 

storage volumes of four hydro plants obtained from GSO. The best, average and worst cost and 

average CPU time among 100 runs of solutions obtained from the proposed GSO are shown in 

Table 8.18. The cost obtained from modified differential evolution (MDE) [123], clonal selection 

algorithm (CSA) [113] and teaching learning based optimization (TLBO) [114] are also shown 

in Table 8.18. The cost convergence characteristic in case of GSO is depicted in Fig. 8.12. 
 
 
 
Table 8.18: Comparison of performance for Case 1 of Test system 2 
 

Techniques GSO TLBO CSA MDE 
Best cost ($) 42316.39 42385.88 42440.574 43435.41 
Average cost ($) 42339.35 42407.23 - - 
Worst cost ($) 42379.18 42441.36 - - 
CPU time (s) 617.36 - - - 
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Table 8.16: Optimal Hydro Discharge ( 3410 m× )  
for Case 1 of Test system 2 

Hour   1hQ         2hQ       3hQ         4hQ  

  1   11.7993    7.1449   30.0000     7.6659 
  2     5.9325    6.8499   29.9757     6.5549 
  3   11.4742    9.3709   29.7421   10.3072 
  4     5.0019    6.2129   20.4887     9.6863 
  5     8.5132    6.0097   10.0000     8.4503 
  6     9.1282    6.7017   17.6091   10.4643 
  7     6.8646    7.4826   10.0568   14.9192 
  8     7.8009    6.0002   17.6538   12.3589 
  9   10.0992    6.3307   14.0775   17.9668 
10     5.6734  10.2662   18.8554   11.8789 
11   10.2460    7.0654   20.2200   11.4409 
12     5.2613    6.0093   13.6258   11.8636 
13   11.8242    6.0103   15.9895   19.8410 
14     6.1295  12.9566   16.3355   19.8356 
15     6.8119  14.0000   10.0000   16.4685 
16     9.8751    6.1626   17.9912   16.4937 
17     5.5286    9.5098   29.2693   10.8819 
18   10.9777  11.7961   14.1740   18.8395 
19     5.8392    8.1255   14.5868   19.9943 
20     5.2688  11.2726   10.7198   16.9838 
21     5.7397    7.9265   12.5406   19.5902 
22     9.7474    7.3261   13.5104   18.8458 
23     8.6849    8.7383   10.8830   17.7032 
24   10.7782  12.7314   12.7362   19.1362 

Table 8.17: Optimal Hydrothermal generation (MW) for Case 1 of Test system 2 
Hour    1hΡ         2hΡ           3hΡ          4hΡ           1sΡ           2sΡ           3sΡ  
  1     92.9170   56.7357         0       153.5424    20.0859  294.3998  138.7168 
  2     59.8990   55.3298         0       134.8516    20.0018  124.6736  408.5219 
  3     92.3743   70.7927         0       175.1130  102.5884    40.0044  228.9469 
  4     52.0329   51.4571   20.5900  159.1629    20.0047  125.1561  229.8831 
  5     78.1663   51.5997   40.5012  134.8991  104.5505    40.0160  229.9579 
  6     80.7310   57.5201   35.6610  180.0767  102.5262    40.3496  319.1720 
  7     66.0599   62.7948   44.5356  242.5705    20.2328  294.5374  230.0391 
  8     72.7030   51.9763   38.9242  232.8835  102.3008  294.8682  229.7055 
  9     85.5131   54.8651   46.7771  289.3656  102.7033  294.8192  229.6595 
10     57.6052   78.7446   34.4928  227.9884  174.5848  295.0858  229.3351 
11     88.0720   60.0656   27.3119  228.0775  102.5632  294.4701  319.1498 
12     55.6598   53.8275   45.4523  231.5432  174.7684  293.5248  319.1802 
13     96.4554   54.8569   41.6027  303.7958  102.6171  294.5824  229.9690 
14     63.6529   91.9548   43.9481  297.7683    20.0009  294.5678  229.3138 
15     69.9805   92.4030   47.3566  273.6624  102.4510  294.4136  139.3255 
16     90.5602   52.2215   42.6548  277.4700  174.9796  209.3063  228.9159 
17     59.7794   73.5932         0       220.6096  101.6658  295.0208  319.0892 
18     96.6357   82.0140   47.4006  296.7394  174.9860  209.6134  228.9350 
19     62.5461   60.9118   50.6503  301.3292  172.5992  208.6725  229.3000 
20     57.5274   75.3514   50.6731  271.1026  174.7675  294.6420  139.8677 
21     61.8007   56.8489   54.3700  289.3822    20.0223  294.2171  140.3575 
22     90.5670   53.9499   55.9288  294.9577    20.1260  124.1832  229.6206 
23     84.0251   63.2512   55.3422  282.4407    20.0032  124.5925  229.5589 
24     95.4774   79.4479   58.0089  288.7071    20.0000    40.0046  227.4394 
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          Fig. 8.11. Hydro reservoir storage volumes for Case 1 of test system 2 
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                 Fig. 8.12. Cost convergence characteristics for Case 1 of Test system 2 
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Case 2: Here prohibited operating zones of hydro plants and ramp rate limits of thermal 

generators are considered. Hydro plants data is taken from [108]. The data of thermal plants 

considered here is same as in [110] except the following modifications in Table 8.19. The other 

parameters for this case are taken from [110]. 

The problem is solved by using GSO. Here, the population size ( ΡΝ ) and maximum iteration 

number have been selected 100 and 200 respectively for this case. 

The optimal hourly discharges and hydrothermal generation obtained by the proposed GSO 

method are provided in Table 8.20 and Table 8.21 respectively. Figure 8.13 shows the reservoir 

storage volumes of four hydro plants obtained from GSO. The best, average and the worst cost 

and average CPU time among 100 runs of solutions obtained from proposed GSO are shown in 

Table 8.22. The cost convergence characteristic in case of GSO is depicted in Fig. 8.14. 

 
Table 8.19: Ramp-rate limits of thermal  
generators for Case 2 of Test system 2 

Unit 1 2 3 
UR  (MW/h ) 80 90 100 
DR (MW/h ) 80 90 100 

 
 
 
 
Table 8.22: Cost and CPU time for  
Case 2 of Test system 2 

Techniques GSO 
Best cost ($) 43774.75 
Average cost ($) 43781.16 
Worst cost ($) 43799.08 
CPU time (s) 692.56 
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              Fig. 8.13 Hydro reservoir storage volumes for Case 2 of Test system 2 
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                    Fig. 8.14. Cost convergence characteristics for Case 2 of Test system 2 
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Table 8.20: Optimal Hydro Discharge ( 3410 m× )  
for Case 2 of Test system 2 

Hour   1hQ         2hQ       3hQ         4hQ  

  1    5.0022    6.0000   21.8889   18.0744 
  2    7.6741    6.0000   27.3248     6.7778 
  3  14.9422  14.0000   29.7236     8.4532 
  4    7.9967    6.0595   13.5291     6.0000 
  5  13.5833    6.0064   19.5864   19.2826 
  6    7.2906    6.8220   21.5786   18.1877 
  7    6.2453    9.3678   16.3958   10.2862 
  8    9.0029    8.7083   19.2798     6.1596 
  9    7.3276    9.3516   18.3507     6.0005 
10  10.4621    9.2971   19.6994   19.7656 
11    7.9773    6.0000   14.8063   15.3276 
12    7.8944    6.4903   14.8618   19.1044 
13    5.1299    6.5289   21.0918   18.4728 
14    5.0234  11.2937   18.9006   14.1483 
15    9.5472    6.0006   18.1416   11.1422 
16  11.2730  12.4542   10.0000   19.7209 
17  11.8342  11.3973   10.0816   20.0000 
18    5.2603  13.9985   11.1896   13.0295 
19  10.8954    6.8402   13.4471   14.9644 
20    6.2619    6.2340   10.0003   15.7475 
21    6.0023    6.0000   14.1569   20.0000 
22    5.6803    6.0001   29.9249   11.9390 
23    5.7410    9.0908   14.9247   11.4638 
24    6.9523  12.0588   10.5727   12.6300 

 
Table 8.21: Optimal Hydrothermal generation (MW) for Case 2 of Test system 2 

Hour    1hΡ           2hΡ          3hΡ         4hΡ          1sΡ          2sΡ           3sΡ  
  1     52.5198   49.0000   36.0076  249.9305    20.0000  121.8730  229.3679 
  2     74.3746   50.1642         0       127.7152    99.9957  209.8170  229.5065 
  3   101.5216   89.3760         0       143.3878    20.0000  124.8957  229.4525 
  4     74.9124   48.8266   43.8749  106.3947    29.8837  124.9499  229.5217 
  5     96.3242   50.1756   27.8428  213.2713    22.3687  124.8622  139.7530 
  6     67.5342   56.9413   19.5322  211.7184  102.3605  209.7682  139.7393 
  7     60.0816   72.0747   42.8313  162.1264  102.0268  294.7090  229.2949 
  8     78.1917   66.4954   35.4813  132.8511  102.6692  294.7107  319.2485 
  9     68.2906   68.8056   37.5856  137.1086  102.6636  294.6694  409.0199 
10     86.0345   67.6461   30.2632  282.7028  102.6528  209.7789  319.2740 
11     73.5362   47.4312   45.3048  253.9524  174.9994  124.9056  408.9281 
12     74.3013   52.6395   46.0040  282.1173  102.7070  209.8180  408.9789 
13     53.9676   53.7910   27.1335  278.3916  102.6098  294.6888  319.2202 
14     54.0458   80.3876   37.3269  244.8019  102.6426  294.7446  229.4708 
15     87.9594   49.6335   39.4027  219.5364  102.6870  294.6769  229.4714 
16     96.4449   85.0593   47.3212  295.7992    22.7066  209.7730  319.3186 
17     98.1964   78.3257   48.3967  292.1468    20.0002  294.7109  229.5504 
18     56.7472   83.1132   52.8259  239.2710    99.6411  288.4889  319.2301 
19     94.5174   46.4018   55.2527  262.8101    99.9742  209.8106  319.2742 
20     65.0969   42.5200   55.2920  272.5335    20.0011  209.7822  409.0589 
21     62.9371   42.1274   59.2242  296.9141    20.0022  124.8878  319.2493 
22     60.3696   44.1224         0        222.1697   20.0000  209.8192  319.2826 
23     61.1830   64.8979   58.1670  216.4727    20.0009  124.8946  319.2746 
24     71.4254   76.8184   56.8657  230.3650    20.0221    40.0002  319.2846 
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8.5.3. Test System 3: This system considers a multi-chain cascade of four reservoir hydro plants 

and ten thermal plants. The entire scheduling period is 1 day and divided into 24 intervals. The 

effect of valve point loading is taken into account. Here transmission loss is not considered. The 

prohibited operating zones of hydro plants and ramp rate limits of thermal generators are not 

considered. The detailed data for this system is taken from [110]. 

The problem is solved by using GSO. Here, the population size ( ΡΝ ) and maximum iteration 

number have been selected 100 and 600, respectively for this case. 

The optimal hourly discharges and hydrothermal generation obtained by the proposed GSO 

method are provided in Table 8.23 and Table 8.24 respectively. Figure 8.15 shows the reservoir 

storage volumes of four hydro plants obtained from GSO. The best, average and the worst cost 

and average CPU time among 100 runs of solutions obtained from the proposed GSO are 

summarized in Table 8.25. The cost obtained from differential evolution (DE) [110] method are 

also shown in Table 8.25. The cost convergence characteristic in case of GSO is shown in Fig. 

8.16. 

 
Table 8.23: Optimal Hydro Discharge ( 3410 m× )  
for Test system 3 

Hour  1hQ        2hQ       3hQ           4hQ  

  1    7.5577    8.0585   22.8612     6.0000 
  2    6.4444    8.5873   21.5338   12.3138 
  3    5.0002    6.0007   18.6591     6.1247 
  4    6.6913  10.6902   14.8013     7.3935 
  5  10.6590    6.0000   10.0052   10.9356 
  6    6.3560    6.0000   29.9996   10.2606 
  7  10.2523    8.4295   21.3387   14.2211 
  8    8.4169    7.7590   19.7126   19.9994 
  9    5.0734  12.2299   19.7473   18.2140 
10    8.9442    6.0000   23.2289   13.9644 
11  14.9999  10.0815   20.0240     6.0000 
12    5.5153    6.3749   17.0962   16.9200 
13    9.9712    6.6623   25.6696   18.6404 
14    7.7850    8.5880   15.0575   18.3978 
15    8.6514    6.3156   11.7309   17.7684 
16    5.0002  13.8791   19.0578   17.8808 
17    9.1944    6.0027   10.0147   18.2795 
18  12.9994  11.4764   18.7304   19.9999 
19    5.0010    6.0101   10.0000   10.9960 
20    7.3047  10.0714   11.3912   13.8901 
21    5.0063    6.0086   12.5867   14.6602 
22    6.0075    6.3902   10.0001   15.2083 
23    8.8456  10.8083   10.0000   19.5912 
24  13.3228  13.5758   13.1107   19.8000 
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                   Fig. 8.15. Hydro reservoir storage volumes for Test system 3 
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                     Fig. 8.16. Cost convergence characteristics for Test system 3 
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Table 8.24: Optimal Hydrothermal generation (MW) for Test system 3 
Hour   1hΡ           2hΡ          3hΡ            4hΡ          1sΡ             2sΡ            3sΡ           4sΡ            5sΡ            6sΡ            7sΡ            8sΡ            9sΡ          10sΡ  
  1     72.2601   62.3442   30.6161   131.8801   319.3551     50.0109   94.9296   119.6769   174.7456   189.5279     45.0000    184.5191    98.0315   177.1027 
  2     64.9278   65.3247   32.9477   201.4856   139.7063   423.8989   94.8070     20.0003   174.7278   139.6300   163.2579     35.0004     98.0943   126.1913 
  3     53.4467   48.6219   41.0743   121.4353  139.6312   124.9215   94.6318      69.8439     74.9719   239.5347   282.0520   134.7605     98.0828   176.9914 
  4     67.9989   77.2332   48.6841   132.9646   318.9741    50.0058   20.0003      20.1742   224.4839   139.8490   163.4484   184.4845     25.0003   176.6987 
  5     91.7137   49.3896   49.3821   163.7640   139.7657   274.3774   94.7265     69.8314   224.4709     40.0001   163.3234     84.8241     98.0541   126.3770 
  6     64.5189   50.5430         0        170.2728   229.5086   124.8692   94.5753     20.0000   224.4086   339.0431   222.9347     35.0207     98.0502   126.2549 
  7     88.6340   66.7197   23.9621   220.0439   229.4893     50.0000   94.3835   119.7408   222.9151   139.7808   222.7886   134.7395   159.9630   176.8398 
  8     78.2847   61.3151   33.3120   263.6588   408.9686   124.7360   20.0000   129.9994   174.5873   189.2430   104.2007     84.6737   159.9548   177.0660 
  9     53.6710   81.9124   30.9598   247.6043   319.5553   349.1525   20.0058     69.8129   124.7554     89.7646   281.9429   134.9208   160.0000   125.9423 
10     82.9143   46.7281   10.2562   207.6945   229.5166   274.3251   20.0230     69.8238   274.2518   289.2822   104.1828   134.0206   159.9999   176.9811 
11   103.0109   72.4873   26.2456   136.4138   408.7956   199.5924   94.5593     20.0000   124.7086   438.9464   104.0969     84.8143   159.9993   126.3296 
12     58.2287   50.5122   35.2667   265.4916   409.0818     50.0091   94.7881   119.7262   373.6642   189.5478     45.0000   234.4624     97.9500   126.2714 
13     89.3332   53.4438         0        280.1900   409.0638   274.5701   94.6998   119.8329   124.7295   189.6488   104.2496   134.6591   160.0000     75.5795 
14     76.6911   66.0687   42.5896   279.8282   139.7277   349.1097   94.0867   119.4470   274.2975   239.4445   163.3329     84.7565     25.0000     75.6198 
15     83.1311   52.1162   46.6587   280.6343   319.3016   274.2278   20.0000     69.7605   469.9900     40.0000     45.0095     84.8819     98.0588   126.2295 
16     54.9590   89.2367   34.9740   283.7200   139.7005   274.3465   94.8615     20.0375   324.2143   239.4445     45.0000   184.5966     97.8885   177.0205 
17     87.6191   48.0309   46.9321   285.6586   229.5316   274.3415   94.6829     69.7073   174.5832    40.0000    340.7829   184.5322      98.0492    75.5485 
18   104.2707   78.4404   38.8418   304.1160   139.8034   124.8011   94.9481   119.6707   124.4632   139.6831   341.4470   234.4153     97.9888   177.1104 
19     54.9565   45.3003   47.9668   222.1599   229.5208   274.3298   94.7433     69.7420   274.3045   189.5576   163.4458   134.6431     97.7758   171.5538 
20     74.5065   69.4777   53.0071   252.9794   229.4922   274.3338   94.6885   119.7096   224.4505   239.5236   104.2217     35.0895   152.3784  126.1415 
21     55.0419   44.5934   55.5466   264.7787   319.2777   124.7947   20.0001     69.8404   224.2817   139.7319   222.1884     84.5163   160.0000   125.4081 
22     64.1434   49.1351   54.3869   265.5061   319.1151   124.6251   94.7981     20.0000   274.3385   189.2662     45.0003     84.8897     97.8277   176.9678 
23     85.4137   75.1225   55.2928   301.4979   229.4050   274.3244   94.8180   129.2892     25.0001   289.2480   104.2107     35.0062     25.0068   126.3647 
24   105.0841   82.3791   59.2108   292.6400     50.0238   199.5332   94.8087     69.9823     25.0000   239.4523   222.7865   134.4310     98.4056   126.2627 

 
 
Table 8.25: Comparison of performance for Test system 3 

Techniques GSO DE  
Best cost ($) 170302.86 170964.15 
Average cost ($) 170350.19 - 
Worst cost ($) 170411.26 - 
CPU time (s) 652.35 - 
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8.6. Conclusion 

A novel approach based on group search optimization has been presented to solve the three 

hydrothermal test systems. The results have been compared with those obtained by other 

evolutionary algorithms reported in the literature. It is seen from the comparisons that the 

proposed group search optimization method performs better than other evolutionary algorithms 

reported in the literature. 
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CHAPTER 9 

 
Short-term Scheduling of Fixed Head Hydrothermal  

Power system 
 
 
 
9.1. Introduction 

Optimal scheduling of power plant generation is of great importance to electric utility systems. 

Because of insignificant marginal cost of hydroelectric power, the problem of minimizing the 

operational cost of hydrothermal system essentially reduces to minimizing the fuel cost of 

thermal plants.  

Here, group search optimization (GSO), opposition-based group search optimization (OGSO) 

and opposition-based differential evolution (ODE) have been proposed for optimal scheduling of 

generation in a fixed head hydrothermal system. Here, system with fixed head hydro plants 

whose water discharge rate curves are modeled as  quadratic functions of the hydropower 

generations and thermal units with nonsmooth fuel cost function are considered. Here, 

scheduling period is divided into a number of subintervals each having a constant load demand. 

The proposed methods are validated by testing on two test systems. The test results are compared 

with those obtained by using of differential evolution (DE), particle swarm optimization (PSO) 

and evolutionary programming (EP) techniques.  

 

9.2. Problem Formulation 

Hydrothermal scheduling problem with hΝ  hydro units and sΝ  thermal units over M time 

subintervals is described as follows:  

 

The fuel cost function of each thermal generator, considering valve-point effect, is expressed as a 

sum of quadratic and sinusoidal functions. The superimposed sine components represent rippling 

effect produced by steam admission valve opening. The problem minimizes following total fuel 

cost given by 9.1. 
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where sia , sib , sic , sid , and sie  are cost coefficients of i th thermal generator ; simΡ  is real power 

output of i th thermal generator during subinterval m ; min
siΡ  is lower limit of generation of  i th 

thermal generator ; mt  is the duration of subinterval m .  
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(i) Power balance constraints: 
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where hjmΡ  is real power output of  j th hydro unit during subinterval m ; DmΡ  is load demand 

during subinterval m ;  LmΡ  is transmission loss during subinterval m ; lrΒ is loss formula 

coefficients. 

 

 (ii) Water availability constraints: 
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where hja0 , hja1 , and hja2  are coefficients for water discharge rate function of j th hydro 

generator. hjW  ; is prespecified volume of water available for generation by j th hydro unit 

during the scheduling period.  

 

(iii) Generation limits:  
maxmin
hjhjmhj Ρ≤Ρ≤Ρ         hj Ν∈ , Μ∈m          (9.5) 
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and 
maxmin
sisimsi Ρ≤Ρ≤Ρ        si Ν∈ , Μ∈m       (9.6) 

 

where min
hjΡ and max

hjΡ  are lower and upper generation limits of j th hydro unit ; max
siΡ  is upper limit 

of generation of i th thermal generator.  

 

Determination of Generation Level of Slack Generator 

Thermal generators and hydro generators deliver their power outputs subject to the power 

balance constraint (9.2), water availability constraint (9.4) and respective capacity constraints 

(9.5) and (9.6). Assuming the power loading of hΝ  and first ( )1sΝ −  generators are known, the 

power level of the sΝ th generator (i.e. the slack generator) is given by  
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The transmission loss LmΡ  is a function of all the generators including the slack generator and it 

is given by 
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Expanding and rearranging, (7) becomes 
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The loading of the slack generator (i.e. sΝ th) can then be found by solving equation (9.9) using 

standard algebraic method. 
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9.3. Application of GSO method 

The proposed GSO algorithm has been applied to two test systems. In order to show the 

effectiveness of the proposed GSO algorithm, DE, PSO and EP have been applied to solve these 

two test systems. The algorithms used in this paper have been implemented by using MATLAB 

7.0 on a PC (Pentium-IV, 80 GB, 3.0 GHz). 

 

9.3.1. Test System 1 

Test system 1 consists of two hydro plants and two thermal plants whose characteristics and load 

demands are given in Appendix-18,19. Transmission loss formula coefficients are also given in 

the appendix-1. Hydro plant data are taken from [115].  

The problem is solved by using GSO. Here, the population size ( ΡΝ ) and the maximum iteration 

number ( maxΝ ) have been selected as 100 and 100, respectively for this test system. Results 

obtained by using the proposed GSO algorithm, are shown in Table 9.1.  

To validate the proposed GSO based approach, the same test system is solved by using DE, PSO 

and EP. In case of DE, the population size ( ΡΝ ), scaling factor ( F ) and crossover constant ( RC ) 

have been selected as 300, 0.35 and 1.0, respectively.  The population size ( ΡΝ ) and scaling 

factor ( F ) are taken 100 and 0.01 respectively in case of EP. In case of PSO parameters are 

taken as ΡΝ = 100, 9.0max =w , 4.0min =w , 11 =c  and 12 =c . Maximum number of iterations has 

been selected 100 for DE, PSO and EP. 

Tables 9.2, 9.3 and 9.4 summarize the generation schedules and total costs obtained from DE, 

PSO and EP, respectively. From tables 9.1, 9.2, 9.3 and 9.4 it is seen that the proposed GSO-

based approach achieves the  lowest cost. Figure 9.1 shows the cost convergence obtained from 

GSO, DE, PSO and EP. 

 
 
Table 9.1: Results obtained from group search optimization for Test  
system 1 
Subin-       1hΡ             2hΡ             1sΡ             2sΡ          
terval      (MW)        (MW)        (MW)       (MW)       

Cost 
($) 

  1        243.4698     92.0913   179.8065    424.3732 
  2        306.0539   164.2677   227.7667    571.4884 
  3        287.8832   137.0735   211.6398    522.2039 

 
66031 
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Table 9.2: Results obtained from differential evolution for Test  
system 1 
Subin-       1hΡ             2hΡ             1sΡ             2sΡ          
terval      (MW)        (MW)        (MW)       (MW)       

Cost 
($) 

  1        244.5113     90.1677   185.4240    419.7421 
  2        307.8611   162.4868   226.8048    572.5680 
  3        284.9912   140.7026   204.3000    528.5755  

 
66036 

 
 
Table 9.3: Results obtained from particle swarm optimization for  
Test system 1 
Subin-       1hΡ             2hΡ             1sΡ             2sΡ          
terval      (MW)        (MW)        (MW)       (MW)       

Cost 
($) 

  1        248.2268     88.6941   183.2422    419.7770 
  2        297.8146   173.8526   231.1074    566.0421 
  3        291.6767   130.3988   191.4772    545.8811  

 
66050 

 
 
Table 9.4: Results obtained from evolutionary programming for Test  
system 1 
Subin-       1hΡ             2hΡ             1sΡ             2sΡ          
terval      (MW)        (MW)        (MW)       (MW)       

Cost 
($) 

  1        237.6474     97.7308   183.3124    420.6857 
  2        310.2027   170.4667   226.3238    562.0064 
  3        289.1620   124.9021   212.3097    533.4285  

 
66054 
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Fig. 9.1. Cost convergence curves of GSO,DE,PSO & EP for Test system 1 
 
 
9.3.2. Test System 2 

Test system 2 comprises of two hydro plants and four thermal plants whose characteristics and 

load demands are given in Appendix-21,22. Transmission loss formula coefficients are also 

given in the Appendix-20.  

The problem is solved by using GSO. Here, the population size ( ΡΝ ) and the maximum iteration 

number ( maxΝ ) have been selected as 100 and 200, respectively for this test system. Results 

obtained by using the proposed GSO algorithm, are shown in Table 9.5. 

To validate the proposed GSO based approach, the same test system is solved by using DE, PSO 

and EP. In case of DE, population size ( ΡΝ ), scaling factor ( F ) and crossover constant ( RC ) 

have been selected as 300, 0.35 and 1.0. PSO control parameters are 11 =c , 12 =c , 9.0max =W , 

4.0min =W  and 100=ΝΡ . In case of EP, scaling factor ( )β  is 0.04 and population size ( ΡΝ ) is 

100. Maximum number of iterations ( maxΝ ) has been selected 200 for DE, PSO and EP.   
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Results obtained from DE, PSO and EP have been presented in Table 9.6, Table 9.7 and Table 

9.8 ,respectively. From tables 9.5, 9.6, 9.7 and 9.8 it is seen that proposed GSO-based approach 

achieves the lowest cost. Figure 9.2 depicts the cost convergence obtained from GSO, DE, PSO 

and EP. 

 
 
Table 9.5: Results obtained from group search optimization for Test system 2 
Subin-    1hΡ             2hΡ             1sΡ               2sΡ            3sΡ               4sΡ       
terval    (MW)       (MW)        (MW)         (MW)       (MW)         (MW) 

Cost 
($) 

  1      180.8024    310.0646    90.2007   174.9568   112.3003    50.1058 
  2      242.2065   413.9211   124.9257   174.9033   122.4442    50.0762 
  3      203.9131   356.4540   117.1073   174.9483   120.5008    50.0395 
  4      249.6967   499.8905   125.0000   174.9823   135.2275    50.2552 

 
82454  

   
 
 
Table 9.6: Results obtained from differential evolution for Test system 2 
Subin-    1hΡ              2hΡ               1sΡ            2sΡ            3sΡ             4sΡ        
terval   (MW)        (MW)          (MW)       (MW)       (MW)        (MW) 

Cost 
($) 

  1      182.8655   301.6497     95.7823   175.0000   111.8177    51.1751 
  2      244.5562   415.5654   125.0000   175.0000   117.8218    50.5832 
  3      200.6844   362.6198   109.3270   175.0000   123.7448    51.6890 
  4      248.5012   499.8208   124.8401   175.0000   135.4351    51.4319 

 
82644 

 
 
 
Table 9.7: Results obtained from particle swarm optimization for  Test system 2 
Subin-    1hΡ             2hΡ             1sΡ              2sΡ             3sΡ             4sΡ      
terval   (MW)        (MW)        (MW)        (MW)        (MW)        (MW) 

Cost 
($) 

 1      214.5427   332.7399    83.1521    139.9089     98.6144    50.0000 
 2      220.5221   430.6452  125.0000    174.9998   127.4662    50.0000 
 3      212.0450   373.1574    90.2184    175.0000   122.2852    50.7310 
 4      231.7915   450.6662  125.0000    175.0000   196.9212    54.4280 

 
84767 

 
 
Table 9.8: Results obtained from evolutionary programming for Test system 2 
Subin-    1hΡ             2hΡ             1sΡ            2sΡ               3sΡ             4sΡ      
terval   (MW)        (MW)        (MW)       (MW)         (MW)        (MW) 

Cost 
($) 

  1     167.3948   313.3530   100.5135   174.2207   112.5857    50.2814 
  2     242.1179   413.6478   123.3193   174.6693   123.6975    51.0171 
  3     217.9242   354.6699   109.4371   174.8655   115.8588    50.3171 
  4     248.5116   499.0005   123.0134   174.9305   137.8363    51.7244 

  
 82663 
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Fig. 9.2. Cost convergence curves  of GSO,DE,PSO & EP for Test system 2 
 
 
              
9.4. Conclusion 

A novel approach based on group search optimization has been presented to solve the fixed head 

hydrothermal scheduling problem. The results have been compared with those obtained by 

differential evolution, particle swarm optimization and evolutionary programming technique. It 

is seen from the comparisons that the proposed group search optimization method performs 

better than differential evolution, particle swarm optimization and evolutionary programming 

technique. 

 

9.5. Application of OGSO method 

Two test systems are investigated and the computational results have been used to compare the 

performance of the proposed OGSO method with other evolutionary methods. The proposed 

OGSO algorithm and GSO algorithms used in this paper are implemented by using MATLAB 

7.0 on a PC (Pentium-IV, 80 GB, 3.0 GHz). 
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9.5.1. Test System 1 

This system consists of two hydro plants and two thermal plants whose characteristics and load 

demands are given in Appendix-18,19. Transmission loss formula coefficients are also given in 

the Appendix. Hydro plant data is taken from [115].  

The problem is solved by using both OGSO and GSO. Here, the population size ( ΡΝ ) and the 

maximum iteration number ( maxΝ ) have been selected as 100 and 100,respectively for this test 

system.  

The optimal hydrothermal generation obtained by the proposed OGSO method and GSO method 

are provided in Table 9.9 and Table 9.10, respectively. The best, average and the worst costs and 

average CPU time among 100 runs of solutions obtained from the proposed OGSO method and 

GSO method are summarized in Table 9.11. The costs obtained from artificial immune system 

(AIS), particle swarm optimization (PSO) and evolutionary programming (EP) are also shown in 

Table 9.11. The cost convergence characteristics obtained from the proposed OGSO and GSO 

are shown in Fig. 9.3.  

 
 
Table 9.9: Results obtained from OGSO for Test system 1 
Subin-       1hΡ             2hΡ             1sΡ             2sΡ          
terval      (MW)        (MW)        (MW)       (MW)       
  1        244.9386     90.7338   179.2973    424.8595 
  2        306.6517   163.7245   228.0283    571.2122 
  3        285.8694   138.9314   211.6712    522.1936 
 

 
 
Table 9.10: Results obtained from GSO for Test system 1 
Subin-       1hΡ             2hΡ             1sΡ             2sΡ          
terval      (MW)        (MW)        (MW)       (MW)       
  1        233.1555     83.3467   166.3713    460.6468 
  2        315.3488   170.9049   225.9303    556.7394 
  3        290.8319   138.5059   221.8515    507.4179 
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Table 9.11: Comparison of performance for Test System 1 
Techniques Best cost 

($) 
Average 
cost ($) 

Worst 
cost ($) 

CPU 
time (s) 

OGSO 66030.75 66031.41 66033.52 42.61 
GSO 66065.44 66066.01 66069.04 37.95 
AIS 66117 - - 53.43 
PSO  66166 - - 71.62 
EP  66198 - - 75.48 
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                                      Fig. 9.3. Cost convergence curves of  OGSO & GSO  for Test system 1 
 
 
 
 
9.5.2. Test System 2 

This system comprises of two hydro plants and four thermal plants whose characteristics and 

load demands are given in Appendix-21,22. Transmission loss formula coefficients are also 

given in the Appendix-20.  
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The problem is solved by using both OGSO and GSO. Here, the population size ( ΡΝ ) and the 

maximum iteration number ( maxΝ ) have been selected as 100 and 200 ,respectively for this test 

system. 

The optimal hydrothermal generation obtained by the proposed OGSO method and GSO method 

are provided in Table 9.12 and Table 9.13 respectively. The best, average and the worst cost and 

average CPU time among 100 runs of solutions obtained from proposed OGSO method and GSO 

method are summarized in Table 9.14. The cost obtained from artificial immune system (AIS), 

particle swarm optimization (PSO) and evolutionary programming (EP) are also shown in Table 

9.14. The cost convergence characteristic obtained from proposed OGSO and GSO is depicted in 

Fig. 9.4.  

 
 
 Table 9.12: Results obtained from OGSO for Test system 2 
Subin-     1hΡ              2hΡ              1sΡ              2sΡ             3sΡ            4sΡ        
terval     (MW)        (MW)         (MW)        (MW)        (MW)       (MW) 
  1       178.2594    309.8640     90.1466    174.9133   115.1804   50.0487 
  2       244.1894    414.8758   122.9172    174.5022   121.8108   50.2252 
  3       203.9455    355.5239   119.0391    174.7680   119.5966   50.0658 
  4       249.9875    499.9671   119.0391    174.9214   220.0110   70.3489 

   
 
 
Table 9.13: Results obtained from GSO for Test system 2 
Subin-     1hΡ              2hΡ              1sΡ              2sΡ             3sΡ            4sΡ        
terval     (MW)        (MW)         (MW)        (MW)        (MW)       (MW) 
  1       186.9940    304.6033     87.9787    174.6272   114.0842   50.1157 
  2       248.4656    407.9398   122.2465    174.2861   124.7968   50.6900 
  3       192.1784    367.8174   112.5050    174.1396   125.3678   51.0776 
  4       248.7385    499.9457   125.0000    174.9793   227.3411   64.1132 

 
 
Table 9.14: Comparison of performance for Test System 2 
Techniques Best cost 

($) 
Average 
cost ($) 

Worst 
cost ($) 

CPU 
time (s) 

OGSO 92798.04 92800.22 92803.38 48.97 
GSO 93061.96 93065.32 93071.02 43.03 
AIS  93950 - - 59.14 
PSO  94126 - - 83.54 
EP  94250 - - 67.82 
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                                        Fig. 9.4. Cost convergence curves of GSO & OGSO  for Test system 2 
 
 
 
9.6. Conclusion 

Here, opposition-based group search optimization has been has been developed and applied to 

solve five test problems and two fixed head hydrothermal scheduling problems. The results have 

been compared with those obtained by other evolutionary algorithms reported in the literature. It 

is seen from the comparisons that the proposed opposition-based group search optimization 

method provides better solution. Due to this property, opposition-based group search 

optimization method can be tried for the solution of complex power system optimization 

problems in future. 

 

9.7. Application of ODE method 

Two fixed head hydrothermal systems are investigated. The computational results have been 

used to compare the performance of the proposed ODE method with other evolutionary methods. 
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The proposed ODE algorithm and DE algorithm used in this paper are implemented by using 

MATLAB 7.0 on a PC (Pentium-IV, 80 GB, 3.0 GHz). 

 

9.7.1. Test System 1 

This system consists of two hydro plants and two thermal plants whose characteristics and load 

demands are taken from [12].  

The problem is solved by using both the proposed ODE and DE. Here, the population size ( ΡΝ ), 

scaling factor )(F , crossover rate )( RC and the maximum iteration number ( maxΝ ) have been 

selected as 100, 1.0, 1.0 and 100, respectively for the test system under consideration. 

The optimal hydrothermal generation obtained by the proposed ODE and DE are provided in 

Table 9.15 and Table 9.16, respectively. The best, average and the worst costs and average CPU 

time among 100 runs of solutions obtained from the proposed ODE and DE method are 

summarized in Table 9.17. The costs obtained from artificial immune system (AIS), particle 

swarm optimization (PSO) and evolutionary programming (EP) are also shown in Table 9.17. 

The cost convergence characteristics obtained from the proposed ODE and DE is shown in Fig. 

9.5. It is seen from Table 9.17 that the cost found by using ODE is the lowest among all other 

methods. 

 
Table  9.15: Results obtained from ODE of Test system 1  
Subin-       1hΡ             2hΡ             1sΡ             2sΡ             
terval      (MW)        (MW)        (MW)       (MW)        
  1        244.5860     90.7689    179.4953    424.9773 
  2        307.3581   163.3383    228.7850    570.1572 
  3        285.4852   139.2931    211.2739    522.5895 

 
 
 
Table 9.16: Results obtained from DE for Test system 1  
Subin-       1hΡ             2hΡ             1sΡ              2sΡ         
terval      (MW)        (MW)        (MW)        (MW)       
  1         240.3807    85.6583    206.3934    407.6673 
  2        310.1176   167.5754   206.3934    585.2895 
  3        286.6845   139.7912   206.3934    525.7479 
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Table 9.17: Comparison of performance for Test System 1  

Techniques Best cost 
($) 

Average 
cost ($) 

Worst cost 
($) 

CPU 
time (s)

ODE 66030.85 66031.68 66032.46 40.31 
DE 66060.74 66061.44 66064.14 36.01 
AIS 66117 - - 53.43 
PSO 66166 - - 71.62 
EP 66198 - - 75.48 
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                        Fig. 9.5. Cost convergence  curves of DE & ODE  for  Test system 1  
 
 
 
9.7.2. Test System 2 

This system comprises of two hydro plants and four thermal plants whose characteristics and 

load demands are taken from  [12]. 
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The problem is solved by using both the proposed ODE and DE. Here, the population size ( ΡΝ ), 

scaling factor )(F , crossover rate )( RC and the maximum iteration number ( maxΝ ) have been 

selected as 100, 1.0, 1.0 and 200, respectively for the test system under consideration. 

The optimal hydrothermal generation obtained by the proposed ODE and DE are provided in 

Table 9.18 and Table 9.19 respectively. The best, average and the worst costs and average CPU 

time among 100 runs of solutions obtained from the proposed ODE and DE are summarized in 

Table 9.20. The cost obtained from artificial immune system (AIS), particle swarm optimization 

(PSO)  and evolutionary programming (EP) are also shown in Table 9.20. The cost convergence 

characteristics obtained from the proposed ODE and DE is depicted in Fig. 9.6. It is seen from 

Table 9.20 that the cost found by using ODE is the lowest among all other methods. 

 
 
Table 9.18: Results obtained from ODE of Test system 2  
Subin-     1hΡ              2hΡ              1sΡ              2sΡ             3sΡ            4sΡ        
terval     (MW)        (MW)         (MW)        (MW)        (MW)       (MW) 
  1       172.6478    317.8272     93.6207    174.7438   109.2596   50.3779 
  2       243.8370    411.3216   124.8716    174.6929   123.6025   50.1150 
  3       209.7780    351.8750   116.1764    174.7282   120.3243   50.0519 
  4       249.8641    499.8741   124.8642    174.9127   222.4536   68.0992 

   
 
Table 9.19: Results obtained from DE of Test system 2  
Subin-     1hΡ              2hΡ              1sΡ              2sΡ             3sΡ            4sΡ        
terval     (MW)        (MW)         (MW)        (MW)        (MW)       (MW) 
  1       184.4627    303.6346     88.3611    174.7233   116.2664   50.9170 
  2       241.0344    419.5791   117.4402    174.8712   124.7407   50.9397 
  3       201.9931    357.2371   123.3403    173.9739   115.3547   51.0280 
  4       249.3076    499.1428   124.0676    174.7184   221.4260   71.3501 

 
 
Table 9.20: Comparison of performance for Test System 2  
Techniques Best cost 

($) 
Average 
cost ($) 

Worst 
cost ($) 

CPU 
time (s) 

ODE 92817.01 92819.81 92822.68 46.09 
DE 93107.34 93110.45 93114.07 41.53 
AIS  93950 - - 59.14 
PSO  94126 - - 83.54 
EP  94250 - - 67.82 
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                       Fig. 9.6. Cost convergence curves of DE & ODE  for  Test system 2  
 
 
 
 
9.8. Conclusion 

Here, opposition-based differential evolution is demonstrated and presented to solve the fixed 

head hydrothermal scheduling problem. Test results have been compared with those obtained by 

other evolutionary algorithms reported in the literature. It is seen from the comparisons that the 

proposed opposition-based differential evolution method performs better than other evolutionary 

algorithms in the literature. 
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CHAPTER 10 
 

(a) Overall Conclusion  
 
 
In this thesis nature-inspired meta-heuristics techniques like Differential evolution with Gaussian 

mutation, Improved differential evolution, Group search optimization, Modified evolutionary 

algorithm, Opposition–based group search optimization, Opposition-based differential evolution, 

have been applied to solve different complex power system optimization problems such as 

economic dispatch, combined heat and power economic dispatch, multi area economic dispatch, 

short-term hydrothermal scheduling problem of fixed head and variable head hydrothermal 

power systems.  

Also multi-objective optimization techniques have been applied for multi-area economic 

environmental dispatch problem and fuel constrained economic environmental dispatch problem. 

Results obtained from all the techniques were compared with the results obtained from other 

computation intelligent technique from the literature. It was found that here the results are 

competitive and quite encouraging. 

 

Chapter wise conclusion has been presented below. 

 

Chapter-3   

 The DEGM method has been developed and successfully implemented to solve the non-smooth 

/non-convex economic dispatch problem with the generator constraints. It has been observed that 

DEGM method has the ability to converge to a better quality solution and possesses good 

convergence characteristics and robustness. 

 

Chapter-4  

Here, DEGM   & IDE method has been  implemented to solve the  complex non-smooth /non-

convex combined heat and power economic dispatch problem.It is seen from the comparisons 

that the proposed DEGM & IDE method performs better than other evolutionary algorithms in 

the literature. It is clear from the results obtained by different trials that the proposed DEGM can 
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avoid the shortcoming of premature convergence. Due to these properties, in future DEGM can 

be tried for solution of complex power system optimization problems. 

It has also been observed that IDE algorithm has the ability to converge to a better quality 
solution and exhibit more robustness. It is clear from the results obtained by different trials that 
the proposed IDE algorithm can avoid the shortcoming of premature convergence. Due to these 
properties, the IDE algorithm in future can be tried for solution of complex power system 
optimization problems. 
 
 
 

Chapter-5 

 Here, IDE algorithm has been successfully implemented to solve MAED problems. It has been 

observed from the comparison that the proposed IDE has the ability to converge to a better 

quality solution and exhibit more robustness than DE, EP and RCGA. It is also clear from the 

results obtained by different trials that the proposed IDE algorithm can avoid the shortcoming of 

premature convergence. Due to these properties, the IDE algorithm in future can be tried for the 

solution of complex power system optimization problems. 

 

Here, GSO has also  been successfully implemented to solve MAED problems. The effectiveness 

of the proposed method is illustrated by using three different test systems and the test results are 

compared with those obtained from DE, EP and RCGA. It has been observed from the 

comparison that the proposed GSO has the ability to converge to a better quality solution than 

DE, EP and RCGA. Due to this property, the GSO method in future can be tried for the solution 

of complex power system optimization problems. 

 

Chapter -6 

Here, multi-objective differential evolution has been implemented to solve multi-area economic 

environmental dispatch problem. Results obtained from the proposed approach have been 

compared to those obtained from strength pareto evolutionary algorithm 2. The proposed multi-

objective differential evolution is simple, robust and efficient. It does not impose any limitation 

on the number of objectives and can be extended to include more objectives.  

 
 
 



194 
 

Chapter-7 
 

Here, the usefulness of the multi-objective differential evolution is examined for solving fuel 

constrained economic emission dispatch problem of thermal generating units. The results show 

that fuel consumption can be adequately controlled to satisfy constraints imposed by suppliers 

using the proposed method. Optimum economic emission dispatch is not achieved always, but 

this is generally much less than the penalty that could be imposed for violating the fuel system 

constraints. 

 
 
Chapter-8 
 

In this paper, MEP has been developed and applied to solve the two test problems and two 

hydrothermal multi-reservoir cascaded hydroelectric test systems having prohibited operating 

zones and thermal units with valve point loading. It has been observed that MEP method has the 

ability to converge to a better quality solution and robustness. MEP has both good exploration 

and exploitation ability. It is clear from the results obtained by different trials that the proposed 

MEP method can avoid the shortcoming of premature convergence. 

 

A novel approach based on GSO has been presented to solve the three hydrothermal test systems. 

The results have been compared with those obtained by other evolutionary algorithms reported in 

the literature. It is seen from the comparisons that the proposed group search optimization 

method performs better than other evolutionary algorithms reported in the literature. 

 

Chapter-9 

A novel approach based on GSO has been presented to solve the fixed head hydrothermal 

scheduling problem. The results have been compared with those obtained by DE, PSO and EA 

technique. It is seen from the comparisons that the proposed GSO method performs better than 

DE, PSO and EA technique. 

 

Here, OGSO has been has been developed and applied to solve fixed head hydrothermal 

scheduling problems. The results have been compared with those obtained by other EA’s 
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reported in the literature. It is seen from the comparisons that the proposed OGSO method 

provides better solution. Due to this property, opposition-based group search optimization 

method can be tried for the solution of complex power system optimization problems in future. 

 

Here, ODE is demonstrated and presented to solve the fixed head hydrothermal scheduling 

problem. Test results have been compared with those obtained by other EA ‘s reported in the 

literature. It is seen from the comparisons that the proposed ODE method performs better than 

other evolutionary algorithms in the literature. 

 
 

(b)    Future Scope 

 DE GM can avoid the shortcoming of premature convergence. Due to these properties, in future    

DEGM can be tried for solution of complex power system optimization problems.   

  

IDE algorithm can avoid the shortcoming of premature convergence. Due to these properties, the 
IDE algorithm in future can be tried for solution of complex power system optimization 
problems. 
 
GSO has the ability to converge to a better quality solution than. Due to this property, the GSO 

method in future can be tried for the solution of complex power system optimization problems. 

 

The proposed multi-objective differential evolution is simple, robust and efficient. It does not 

impose any limitation on the number of objectives and can be extended to include more 

objectives.  

 

MEP has both good exploration and exploitation ability. MEP method can avoid the shortcoming 

of premature convergence. So, it can be be tried for solution of complex power system 

optimization problems. 

 

OGSO method provides better solution. Due to this property, this  method can be tried for the 

solution of complex power system optimization problems in future 
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Appendices 
 
 

Table A.1: Prohibited zones of conventional thermal generator 
 for test system 1 

Unit Zone 1, MW Zone 2, MW Zone 3, MW 
1 [30, 40] [70, 80] [110, 120] 

 
 
Table A.2: Prohibited zones of conventional  
thermal generators  for test system 2 

Unit Zone 1, MW Zone 2, MW 
1 [20, 30] [50, 60] 
2 [40, 50] [90, 100] 
3 [50, 70] [120, 140] 
4 [70, 90] [180, 200] 

 
 
Table A.3: Prohibited zones of zones of conventional  
thermal generators for test system 3 

Unit Zone 1, MW Zone 2, MW Zone 3, MW 
1 [180, 200] [260, 335] [390, 420] 
2 [30, 40] [180, 220] [305, 335] 
3 [30, 40] [180, 220] [305, 335] 
10 [45, 55] [65, 75] - 
11 [45, 55] [65, 75] - 

 
 
 
Table A.4: Prohibited zones of zones of conventional  
thermal generators for test system 4 

Unit Zone 1, MW Zone 2, MW Zone 3, MW 
1 [180, 200] [260, 335] [390, 420] 
2 [30, 40] [180, 220] [305, 335] 
3 [30, 40] [180, 220] [305, 335] 
10 [45, 55] [65, 75] - 
11 [45, 55] [65, 75] - 
14 [180, 200] [260, 335] [390, 420] 
15 [30, 40] [180, 220] [305, 335] 
16 [30, 40] [180, 220] [305, 335] 
23 [45, 55] [65, 75] - 
24 [45, 55] [65, 75] - 
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Table A.5: Data for 2 area system 
Generator ij   ija        ijb            ijc             min

ijΡ     max
ijΡ           Prohibited zones 

           $/h    $/MWh   $/(MW)2h  MW    MW                   MW 
    1,1G            550       8.10       0.00028      100     500          [210 240]  [350 380] 
    2,1G           350       7.50       0.00056        50     200          [90 110]  [140 160] 
    3,1G           310       8.10       0.00056        50     150           [80 90]  [110 120] 
    1,2G           240       7.74       0.00324        80     300           [150 170]  [210 240] 
    2,2G           200       8.00       0.00254        50     200           [90 110]  [140 150] 
    3,2G           126       8.60       0.00284        50     120           [75 85]  [100 105] 
 
 
 
The transmission loss formula coefficients of two-area system are: 
 

 
 

 
 
 
 B001 = 0.045 
 
 

 
 
 

 
 
 
   B002 = 0.056 
 
 
 

B02= -0.0591 -0.6635 0.2161 X10-3

B2 = 

24 
X10-6

 -6    -8 

-6 129
14

   -2 
 -8  -2 150 

B01= --0.3908  0.7047 -0.1297 X10-3

B1 = 

17 

X10-6 

12  7 

12 14  9 
 7  9 31 
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The transmission loss formula coefficients of three-area system are: 
 

 
 

 
 
   B001 = 0.056 
 
 
 

 
 

 
          
    B002 = 0.045 
           
  

 
 

 
 
 B003 = 0.055 
  

B03= --0.3216  0.3503 0.4635 X10-3

B3 = 

1.20 
X10-5

-0.96 0.56 

-0.96 4.93  -0.30 

 0.56 -0.30 5.99 

B02= -0.2161  0.5034  -0.6635 X10-3

B2 = 

8.60 
X10-5

-0.80 0.37 

-0.80 9.08  -4.90 

 0.37 -4.90 8.24 

B01= --0.3908  0.7047 -0.1297 X10-3
0.0591

B1 =  

8.70 

X10-5

0.43 -4.61 0.36 

0.43 8.30 -0.97 0.22

-4.61 -0.97 9.00 -2.00 

0.36 0.22 -2.00 5.30
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Table A.6: Generator characteristics 
Generator ij   min

ijΡ  max
ijΡ   ija        ijb            ijc            ijd      ije            ijα             ijβ               ijγ                 ijη               ijδ  

           MW MW $/h    $/MWh    $/(MW)2h  $/h  rad/MW    lb /h      lb /MWh    lb /(MW)2h      lb /h          1/MW         
 
 
   11G             0.05     14     0     38.53900    0.15247   100    0.084    13.85932    0.32767    0.004190      1.310000    0.056900  
   12G            0.05      10     0     46.15916    0.10587   150    0.063    13.85932    0.32767    0.004190      0.914200    0.045400 
   13G            0.05      13     0     40.39655    0.02803   120    0.077    40.26690   -0.54551    0.006830      0.993600    0.040600 
   14G            0.05      12     0     38.30553    0.03546   200    0.042    40.26690   -0.54551    0.006830      0.655000    0.028460 
   21G            0.05      25     0     36.32782    0.02111   300    0.035    42.89553   -0.51116    0.004610      0.503500    0.020750 
   22G            0.05     12      0     38.27041   0.01799   150     0.063   42.89553   -0.51116    0.004610      0.914200    0.045400 
   23G            0.05      20     0         2.0000    0.00375   18.0    0.037   40.91000   -0.05554    0.006490     0.000200     0.002857   
   24G           0.05      18      0         1.7500   0.01750   16.0    0.038      2.54300   -0.06047   0.005638      0.000500    0.003333  
   31G            0.05      30     0         3.0000    0.02500   13.5    0.041     6.13100   -0.05555    0.005151      0.000010    0.006667 
   32G            0.05      30     0         2.0000    0.00375   18.0    0.037     3.49100   -0.05754    0.006390      0.000300    0.002657 
   33G            0.05      30     0         1.0000    0.06250   14.0    0.040     4.25800   -0.05094    0.004586      0.000001    0.008000   
   34G            0.05      30     0         1.7500    0.01950   15.0    0.039     2.75400   -0.05847    0.005238      0.000400    0.002875 
   41G            0.05      11     0         3.2500    0.00834   12.0    0.045     5.32600   -0.03550     0.003380     0.002000    0.002000 
   42G           0.05       20     0         3.2500    0.00834   12.0    0.045    5.32600   -0.03550     0.003380      0.002000    0.002000 
   43G            0.05      30     0         1.7500    0.01950   15.0    0.039     2.75400   -0.05847    0.005238      0.000400    0.002875   
   44G           0.05      30      0         1.0000    0.06250   14.0    0.040     4.25800  -0.05094     0.004586      0.000001    0.008000 
 



212 
 

 
 
Table A.7: Tie-line transfer limits 
 
Tie line ik      max

ikΤ−           max
ikΤ  

                      (MW)          (MW) 
 
    12Τ              -6.0               6.0   
    13Τ               -4.0              4.0  
    14Τ              -2.0              2.0 
    23Τ              -3.5              3.5 
    24Τ              -5.5              5.5 
    34Τ              -0.9              0.9    
 
 
 
 
Table A.8.  LOAD DEMAND AND FUEL DELIVERED  
DURING SCHEDULING PERIOD 
 

Inter-  Duration   Load demand   Fuel delivered 
val        (h)           DΡ  (MW)         DF (ton) 
1       168           700               7000 
2       168           800               7000 
3       168           650               7000 
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Table A.9. GENERATOR CHARACTERISTICS 
Unit  min

iΡ
max
iΡ ia    ib          ic           id     ie          iα        iβ            iγ             iσ          iθ               iη               iδ             iμ               min

iF  max
iF    min

iV  max
iV  

         MW   MW   $/h  $/MWh  $/(MW)2h  $/h  rad/MW lb /h  lb /MWh  lb /(MW)2h lb /h     1/MW         ton/h         ton/MWh   ton/(MW)2h     ton       ton         ton     ton 

1   20   75  25 2.0  0.0080  10 0.012  80  -0.805  0.0180 0.008 0.0735 0.83612 0.066889 0.00026756 0  1000   0  10000 
2   20  125  60 1.8  0.0030  20 0.010  50  -0.555  0.0150 0.009 0.0655 2.00669 0.060200 0.00010033 0  1000   0  10000 
3   30  175 100 2.1  0.0012  30 0.009  70  -0.955  0.0115 0.010 0.0504 3.34448 0.070230 0.00004013 0  2000   0  20000 
4   40  250 120 2.2  0.0040  40 0.008  45  -0.600  0.0080 0.015 0.0340 4.01338 0.073578 0.00013378 0  3000   0  30000 
5   50  300  40 1.8  0.0015  50 0.007  30  -0.555  0.0120 0.017 0.0285 1.33779 0.060200 0.00005017 0  3000   0  30000 
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                               1hΙ                      2hΙ  
                      - - - - - -             - - - - - -  
Reservoir 1    - - - - - -             - - - - - -    Reservoir 2 
                          1hQ                               2hQ  
                 3hΙ  
          Reservoir 3      - - - - - - - 
                                 - - - - - - -  
                                  3hQ  
                      4hΙ  
                                  - - - - - - -  
         Reservoir 4       - - - - - - -  
                                  4hQ  
 
 
 
where: 

hjΙ : natural inflow to reservoir j  

hjQ : discharge of plant j  
 
Table A.10: Hydraulic system network 
 
 Plant       1          2          3          4     
 
   uR          0          0          2          1     
   dt           2          3          4          0     
     uR : no of upstream plants 
     dt : time delay to immediate  
           downstream plant 
  
  
Table A.11: Load demand for Test system 1 
Hour DΡ (MW) Hour DΡ (MW) Hour DΡ (MW)

1 
2 
3 
4 
5 
6 
7 
8 

750 
780 
700 
650 
670 
800 
950 
1010 

9 
10 
11 
12 
13 
14 
15 
16 

1090 
1080 
1100 
1150 
1110 
1030 
1010 
1060 

17 
18 
19 
20 
21 
22 
23 
24 

1050 
1120 
1070 
1050 
910 
860 
850 
800 
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Table A.12: Hydro power generation coefficients 
Plant 1C  2C  3C  4C  5C  6C  

1 
2 
3 
4 

-0.0042 
-0.0040 
-0.0016 
-0.0030 

-0.42 
-0.30 
-0.30 
-0.31 

0.030 
0.015 
0.014 
0.027 

0.90 
1.14 
0.55 
1.44 

10.0 
9.5 
5.5 

14.0 

-50 
-70 
-40 
-90 

 
 
Table A.13: Reservoir inflows ( 3410 m× ) 
Hour Reservoir 

 
Hour Reservoir Hour Reservoir 

1 2 3 4 1 2 3 4 1 2 3 4 

1 
2 
3 
4 
5 
6 
7 
8 

10 
9 
8 
7 
6 
7 
8 
9 

8 
8 
9 
9 
8 
7 
6 
7 

8.1 
8.2 
4 
2 
3 
4 
3 
2 

2.8 
2.4 
1.6 
0 
0 
0 
0 
0 

9 
10 
11 
12 
13 
14 
15 
16 

10 
11 
12 
10 
11 
12 
11 
10 

8 
9 
9 
8 
8 
9 
9 
8 

1 
1 
1 
2 
4 
3 
3 
2 

0 
0 
0 
0 
0 
0 
0 
0 

17 
18 
19 
20 
21 
22 
23 
24 

9 
8 
7 
6 
7 
8 
9 
10 

7 
6 
7 
8 
9 
9 
8 
8 

2 
2 
1 
1 
2 
2 
1 
0

0 
0 
0 
0 
0 
0 
0 
0 

 
 
Table A.14: Reservoir storage capacity limits, plant discharge limits,  
reservoir end conditions ( 3410 m× ) and plant generation limits (MW) 
Plant minV  maxV  iniV  endV  minQ  maxQ  min

hΡ
max
hΡ

1 
2 
3 
4 

80 
60 
100 
70 

150 
120 
240 
160 

100 
80 
170 
120 

120 
70 
170 
140 

5 
6 
10 
6 

15 
15 
30 
20 

0 
0 
0 
0 

500 
500 
500 
500 

 
 
 
Table A.15: Cost curve coefficients and operating limits of  
thermal generators for Test system 1 
 
 Unit   sa      sb            sc           sd       se      min

sΡ    max
sΡ  

          $/h  $/MWh  $/(MW)2h  $/h  rad/MW  MW   MW 
  
  1    100    2.45       0.0012     160   0.038    20      175 
  2    120    2.32       0.0010     180   0.037    40      300 
  3    150    2.10       0.0015     200   0.035    50      500 
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Transmission loss coefficients for test system 1 are given as below: 
 
 
B = ×−410  [ 0.34  0.13    0.09  -0.01  -0.08  -0.01  -0.02 
                   0.13   0.14    0.10   0.01  -0.05  -0.02  -0.01 
                   0.09   0.10    0.31   0.00  -0.11  -0.07  -0.05 
                  -0.01   0.01   0.00    0.24  -0.08  -0.04  -0.07      per MW 
                  -0.08  -0.05  -0.11  -0.08   1.92    0.27 -0.02 
                  -0.01  -0.02  -0.07  -0.04  0.27     0.32  0.00 
                  -0.02  -0.01  -0.05  -0.07  -0.02    0.00 1.35] 
      
 
 B0 =  ×−610  [-0.7500   -0.0600    0.7000   -0.0300    0.2700   -0.7700   -0.0100] 
 
 
 B00 = 0.55 MW 
 
Table A.16: Cost curve coefficients and operating limits of  
thermal generators for Test system 2 
Unit  min

sΡ    max
sΡ    sa      sb            sc           sd       se       

         MW   MW   $/h  $/MWh  $/(MW)2h  $/h  rad/MW   

  1     50      455   150     1.89      0.0050     300    0.035 
  2     50      450   115     2.00      0.0055     200    0.042 
  3     20      130     40     3.50      0.0060     200    0.042 
  4     20      130   122     3.15      0.0050     150    0.063 
  5     25      470   125     3.05      0.0050     150    0.063 
  6     40      460   120     2.75      0.0070     150    0.063 
  7     45      465     70     3.45      0.0070     200    0.053     
  8     25      160   130     2.45      0.0050     180    0.043 
  9     25      180   130     2.45      0.0050     100    0.062 
10     35      300     70     3.45      0.0070     150    0.063 

 
Table A.17: Load demand for Test system 2 
Hour DΡ (MW) Hour DΡ (MW) Hour DΡ (MW)

1 
2 
3 
4 
5 
6 
7 
8 

1750 
1780 
1700 
1650 
1670 
1800 
1950 
2010 

9 
10 
11 
12 
13 
14 
15 
16 

2090 
2080 
2100 
2150 
2110 
2030 
2010 
2060 

17 
18 
19 
20 
21 
22 
23 
24 

2050 
2120 
2070 
2050 
1910 
1860 
1850 
1800 
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 Table A.18: Fixed Head Hydro system data of Test system 1 
Unit    ha0              ha1                 ha2                hW       min

hΡ      max
hΡ  

        MCF/h  MCF/MWh   MCF/(MW)2h     MCF    MW      MW 
  1     1.980       0.306              0.000216        2500       0         400 
  2     0.936       0.612              0.000360        2100       0         300 

 
   
Table A.19: Thermal generator data of Test system 1 

Unit  min
sΡ   max

sΡ   sa         sb            sc           sd      se        
         MW  MW   $/h   $/MWh  $/(MW)2h  $/h  1/MW   
  1      50    300     25       3.2        0.0025       0       0     
  2      50    700     30       3.4        0.0008       0       0       

 
 
Table A.20: Load demands  
of Test system 1 

 
 
 
 
 

 
The transmission loss formula coefficients of test system 1 are  
 
 
                0.000140  0.000010 0.000015 0.000015 
     B =     0.000010  0.000060 0.000010 0.000013 
                0.000015  0.000010 0.000068 0.000065 
                0.000015  0.000013 0.000065 0.000070 
 
 
Table A.21: Hydro system data of Test system 2 
Unit       ha0                ha1                      ha2                  hW           min

hΡ        max
hΡ  

          acre-ft/h     acre-ft/MWh    acre-ft/(MW)2h      acre-ft       MW        MW 
  1         260                 8.5                  0.00986           125000         0            250 
  2         250                 9.8                  0.01140           286000         0            500 

 
Table A.22: Thermal generator data of Test system 2 
Unit   min

sΡ   max
sΡ   sa        sb             sc           sd        se       

         MW   MW   $/h   $/MWh   $/(MW)2h   $/h   rad/MW  
  3      20     125     10      3.25        0.0083      12     0.0450      
  4      30     175     10      2.00        0.0037      18     0.0370  
  5      40     250     20      1.75        0.0175      16     0.0380   
  6      50     300     20      1.00        0.0625      14     0.0400   

        

  Sub-     Duration       PD 
interval     (hr)        (MW) 
    1            8             900 
    2            8           1200 
    3            8           1100       
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Table A.23: Load demands of Test  
system 2 
  Sub-       Duration         PD 
interval        (hr)          (MW) 
    1               12             900 
    2               12           1100 
    3               12           1000   
    4               12           1200  

 
 
The transmission loss formula coefficients are of Test system 2 
 
 
           0.000049  0.000014  0.000015  0.000015  0.000020  0.000017 
           0.000014  0.000045  0.000016  0.000020  0.000018  0.000015 
B =     0.000015  0.000016  0.000039  0.000010  0.000012  0.000012     per MW 
           0.000015  0.000020  0.000010  0.000040  0.000014  0.000010 
           0.000020  0.000018  0.000012  0.000014  0.000035  0.000011 
           0.000017  0.000015  0.000012  0.000010  0.000011  0.000036 
 
  
 
 
 
 
 
 
 
 




