

VHDL Modeling and Efficient FPGA

Implementation of Some Interleavers
for Applications in OFDM based
Wireless Communication Systems

 Thesis Submitted by Bijoy Kumar Upadhyaya

 Doctor of Philosophy (Engineering)

Department of Electronics & Telecommunication Engineering
Faculty Council of Engineering & Technology

 Jadavpur University
 Kolkata, India

2015

i

Dedicated to my
family

ii

Jadavpur University

 Kolkata, 700 032, India

INDEX NO. 113/11/E

 1. Title of Thesis:

 VHDL Modeling and Efficient FPGA Implementation of Some Interleavers
for Applications in OFDM based Wireless Communication Systems
 2. Name, Designation & Institution of the Supervisor:
Prof. Salil Kumar Sanyal
Professor
Department of Electronics and Telecommunication Engineering.
Jadavpur University, Kolkata-700 032
India
e-mail: s_sanyal@ieee.org and salil_sanyal@etce.jdvu.ac.in

iii

3. List of Publication:
 A) Journal Publication:

[1] B. K. Upadhyaya and S. K. Sanyal, “High throughput resource efficient
reconfigurable interleaver for MIMO WLAN application”, Computer &
Digital Techniques, IET, UK, 2015 (Communicated).

[2] B. K. Upadhyaya, P. K. Goswami and S. K. Sanyal, “Memory Efficient LUT

based Address Generator for OFDM-WiMAX De-interleaver”, International
Journal of Electronics and Electrical Engineering, Vol. 2, No. 1, USA, March,
2014, pp. 31-35.

[3] B. K. Upadhyaya and S. K. Sanyal, “Efficient FPGA Implementation of

Address Generator for WiMAX De-interleaver”, IEEE Transactions on
Circuits and Systems – II, Vol. 60, Issue 8, USA, August, 2013, pp. 492-496.

[4] B. K. Upadhyaya and S. K. Sanyal, “Novel design of WiMAX Multimode

Interleaver for Efficient FPGA Implementation using Finite State Machine
based Address Generator”, International Journal of Communications, Vol.
6, Issue 2, North Atlantic University Association (NAUN), USA, 2012, pp.
27-36.

[5] B. K. Upadhyaya and S. K. Sanyal, “An Improved LUT Based

Reconfigurable Multimode Interleaver for WLAN Application”,
International Journal on Recent Trends in Engineering and Technology,
Vol. 6, No. 2, ACEEE, USA, November, 2011, pp. 183-188.

[6] B. K. Upadhyaya and S. K. Sanyal, “VHDL Modeling of Convolutional

Interleaver- Deinterleaver for Efficient FPGA Implementation”,
International Journal of Recent Trends in Engineering, Academy Publisher,
Finland, Vol 2, No. 6, November, 2009, pp. 66-68.

[7] B. K. Upadhyaya and S. K. Sanyal, “FPGA based resource efficient QPP

interleaver address generator for LTE/LTE-A application”, Manuscript
under preparation.

B) Conference Publication:

[8] B. K. Upadhyaya and S. K. Sanyal, “Design of A Novel FSM based

Reconfigurable Multimode Interleaver for WLAN Application”
International Conference on Devices and Communications (ICDeCom-11),
Birla Institute of Technology, Mesra, India. 2011, pp. 1-5.

iv

 [9] B. K. Upadhyaya, I. S. Misra and S. K. Sanyal, “Novel Design of Address
Generator for WiMAX Multimode Interleaver using FPGA Based Finite
State Machine,” 13th International Conference on Computer and
Information Technology, 2010, (ICCIT-2010) Ahsanulla University of
Science and Technology, Dhaka, Bangladesh, pp. 153-158

4. List of Patents:
 Nil

v

5. List of Presentation in National / International
A) Conferences held in Abroad

[1] B. K. Upadhyaya, I. S. Misra and S. K. Sanyal, “Novel Design of Address

Generator for WiMAX Multimode Interleaver using FPGA Based Finite
State Machine,” 13th International Conference on Computer and
Information Technology, 2010, (ICCIT-2010) Ahsanulla University of
Science and Technology, Dhaka, Bangladesh, pp. 153-158.

[2] B. K. Upadhyaya, P. K. Goswami and S. K. Sanyal, “Memory Efficient LUT

based Address Generator for OFDM-WiMAX De-interleaver”,
International Journal of Electronics and Electrical Engineering, Vol. 2, No.
1, USA, March, 2014, pp. 31-35, presented in the International Conference
on Advances in Electronics Engineering (ICAEE 2014), 19-20th February,
2014 at Singapore.

B) Conferences held in India

 [1] B. K. Upadhyaya and S. K. Sanyal, “Design of A Novel FSM based
Reconfigurable Multimode Interleaver for WLAN Application”
International Conference on Devices and Communications (ICDeCom-11),
Birla Institute of Technology, Mesra, India. 2011, pp. 1-5.

vi

 CERTIFICATE FROM THE SUPERVISOR

 This is to certify that the thesis entitled “VHDL Modeling and Efficient
FPGA Implementation of Some Interleavers for Applications in OFDM based
Wireless Communication Systems”, submitted by Sri Bijoy Kumar Upadhyaya,
who got his name registered on 06/01/2011 for the award of Ph. D. (Engineering)
degree of Jadavpur University is absolutely based upon his own work under the
supervision of Prof. Salil Kumar Sanyal and that neither his thesis nor any part
of the thesis has been submitted for any degree/diploma or any other academic
award anywhere before.

………………………………………
Prof. Salil Kumar Sanyal

Supervisor,
Professor,

Department of Electronics and Telecommunication Engineering.
Jadavpur University, Kolkata-700 032

vii

Acknowledgements

 At the outset, I would like to express my deep sense of appreciation and
thanks to my supervisor Prof. Salil Kumar Sanyal, for his invaluable advice,
excellent ideas, outstanding cooperation and constructive comments during my
doctoral research endeavour. I would also like to thank him for encouraging me
to grow as a researcher to take up future challenges in research and development.
I feel honoured to get the opportunity to work under him as research fellow.

I would like to convey my sincere thanks to Prof. Iti Saha Misra, Head,
Electronics and Telecommunication Engineering (ETCE) Department, Jadavpur
University for her valuable advice and necessary support during the research
work. My special thanks to Prof. Amit Konar, Prof. Mrinal Kanti Naskar and to all
other faculty members of ETCE Department, Jadavpur University for their
encouraging words and valuable advice. Special thanks are also being accorded to
Sri Pratap Kumar Sarkar, Supdt. Tech. Asstt. (Retd.), DSP Laboratory for his
necessary support and encouragement during the initial stage of the work. I feel
myself privileged to have worked in the ETCE Department, Jadavpur University.
 I also like to offer my sincere thanks to fellow researchers Sri Budhaditya
Bhattacharyya, Sri Tamal Chakraborty and other scholars of OPNET Laboratory,
ETCE Department, Jadavpur University for their help and support in various
phases of the research work.
 Taking the opportunity, I express my sincere gratitude to Dr. B. Palit,
Director, Higher Education, Govt. of Tripura for permitting me to pursue Ph. D.
work at Jadavpur University, Kolkata. I am grateful to Prof. Sekhar Datta,
Principal, Tripura Institute of Technology, Narsingarh, Tripura for his valuable
advice and support in pursuing the thesis work. Being a faculty of Department
Electronics and Tele-communication Engineering of Tripura Institute of
Technology, Narsingarh, I received necessary support and help from fellow
colleagues within and outside the department at different point of time which I
like to sincerely acknowledge.

viii

 A special thanks to my family. I am grateful to my mother, father, mother-
in-law and father-in-law for all the sacrifice they made for me. Their prayers and
blessings have helped me to route my career up to this point. Thanks to my sisters
and brothers-in-laws for inspiring me. I acknowledge the best wishes of my dear
nieces Kabyasree and Aditi. I am grateful and indebted to my beloved wife
Mousumi who has displayed enormous patience and stood by me in difficult
moments apart from extending help in preparation of the thesis. Her enthusiasm
and constant encouragement have always been a source of inspiration to me.
Thanks to my sweet daughter Sreeja for allowing me to work by sharing her part
of time at home.
 Finally, I extend my sincere acknowledgement to one and all who have
helped me directly or indirectly in this research endeavour.

Date: 26.11.2015
Place: Jadavpur, Kolkata

Bijoy Kumar Upadhyaya INDEX NO. 113/11/E

ix

List of Abbreviations and Acronyms

Abbreviations/Acronyms Description

SPC Stored Program Control
DTMF Dual Tone Multi Frequency
CRT Cathode Ray Tube
VLSI Very Large Scale Integration
 EDA Electronic Design Automation
AMPS Advanced Mobile Phone Service
FCC Federal Communications Commission
FDMA Frequency Division Multiple Access
1G First generation
2G Second generation
TDMA Time Division Multiple Access
CDMA Code Division Multiple Access
GSM Global System for Mobile
GPRS General Packet Radio Service
EDGE Enhanced Data for Global Evolution
3G Third generation
W-CDMA Wideband CDMA
UWC Universal Wireless Communication
ISDN Integrated Services Digital Network
DSL Digital Subscriber Line
HFC Hybrid Fibre Coax
ADSL Asymmetric DSL
BWA Broadband Wireless Access
LAN Local Area Network
WLAN Wireless Local Area Network
STA Station
AP Access Point

x

Abbreviations/Acronyms Description

ISM Industrial, Scientific and Medicine
WMAN Wireless Metropolitan Area Network
WiMAX Worldwide Interoperability for Microwave Access
OEM Original Equipment Manufacturer
FBWA Fixed BWA
MBWA Mobile BWA
NLOS Non Line of Sight
LTE Long Term Evolution
LTE-A Long Term Evolution - Advanced
E-UTRAN Evolved Universal Terrestrial Access Network
UMTS Universal Mobile Telecommunication System
HSPA High Speed Packet Access
ITU International Telecommunication Union
OFDM Orthogonal Frequency Division Multiplexing
ICI Inter Channel Interference
ISI Inter Symbol Interference
CP Cyclic Prefix
DAB Digital Audio Broadcasting
DVB-T Digital Video Broadcasting for Terrestrial television
DVB-H Digital Video Broadcasting for Handheld terminals
ECC Error Correction Codes
BER Bit Error Rate
HDL Hardware Description Language
FPGA Field Programmable Gate Array
CLB Configurable Logic Block
ASIC Application Specific Integrated Circuit
OTP One-Time Programmable
ATSC Advanced Television System Committee

xi

Abbreviations/Acronyms Description

TAT Turn Around Time
LUT Look-up Table
IP Intellectual Property
FSM Finite State Machine
VHSIC Very High Speed Integrated Circuit
IC Integrated Circuit
VHDL VHSIC Hardware Description Language
IEEE Institute of Electrical and Electronic Engineers
PLD Programmable Logic Device
SPLD Simple Programmable Logic Device
CPLD Complex Programmable Logic Device
I/O Block Input Output Block
LB Logic Block
LC Logic Cell
STB Set Top Box
DCM Digital Clock Manager
IOB Input / Output Block
DDR Double Data-Rate
DCI Digitally Controlled Impedance
CMT Clock Management Tile
PLL Phase Locked Loop
MCB Memory Controller Block
AM Amplitude Modulation
FM Frequency Modulation
CD Compact Disc
MPEG Moving Pictures Experts Group
CA Conditional Access
SIPO Serial In Parallel Out
D-QPSK Differential Quadrature Phase Shift Keying

xii

Abbreviations/Acronyms Description

MUX Multiplexer
XST Xilinx Synthesis Technology
FEC Forward Error Correcting
ARQ Automatic Repeat Request
SRAM Static Random Access Memory
SRL16 16-bit shift register
AGB Address Generator Block
IMB Interleaver Memory Block
ISE Integrated Software Environment
CC Convolutional Coder
RS Reed Solomon
IFFT Inverse Fast Fourier Transform
DID Different Interleaver Depths
BRAM Block RAM
DRAM Distributed RAM
DSP Digital Signal Processing
CD Cyclic Delay
CDD Cyclic Delay Diversity
GI Guard Interval
4G Fourth Generation
MAP Maximum a Posteriori
QPP Quadrature Permutation Polynomial
DMB Digital Multimedia Broadcasting
IMT International Mobile Telecommunication
3GPP 3rd Generation Partnership Project

xiii

List of Figures

Chapter 1
Fig. 1.1 Fundamental Blocks of a Communication System 3
Fig. 1.2 OFDM and FDMA spectrum 9
Fig. 1.3 Code words (a) Un-interleaved (b) Interleaved (c) De-interleaved 11

Chapter 2
Fig. 2.1 Basic Elements of A VHDL Model 30
Fig. 2.2 (a) Block Diagram of a 4 to 1 Multiplexer (MUX) (b) Its Entity Declaration 31

Fig. 2.3 VHDL Modeling of a Full Adder in (a) Behavioral (b) Structural 32
Fig. 2.4 General Architecture of FPGA 33
Fig. 2.5 Simplified Diagram of a Typical Programmable Logic Block 34
Fig. 2.6 Internal Structure of a 4-input LUT Implementing (, , ,) = ∑ 1, 5,6,8,11,14,15 35
Fig. 2.7 Simplified Block Diagram of I/O Block 36
Fig. 2.8 Detailed View of Interconnection Routing Between Logic Blocks 36

Fig. 2.9 Detailed View of Programmable Switch Matrix Interconnection of FPGA 37

Fig. 2.10 Detailed view of Switch Matrix Interconnect Point Implemented using SRAM Technology 37

Fig. 2.11 Package marking of Xilinx Spartan 3 FPGA with part number XC3S400-4PQ208C 39
Fig. 2.12 Single Port and Dual Port Data Transfer of BRAM 39

xiv

Chapter 3
Fig. 3.1 Basic Blocks of a DAB Transmitter 45
Fig. 3.2 Generic Structure of a) Convolutional Interleaver b) Convolutional De-interleaver 47
Fig. 3.3 Internal Structure of SRLC16 48
Fig. 3.4 Block Diagram of Proposed 8-bit Convolutional Interleaver 48
Fig. 3.5 Flow Chart of 8-bit Convolutional Interleaver 50
Fig. 3.6 VHDL Model of 8-bit Convolutional INTERLEAVER_DEINTERLEAVER pair 51

Fig. 3.7 Simulation result with (a) input code word = 111111112 and (b) input code word = 111101112 52

Fig. 3.8 Bar chart showing row wise memory wastage of the three implementation techniques 54

Fig. 3.9 Memory wastage factors of the three implementation techniques 55
Chapter 4

Fig. 4.1 Internal Structure of a CLB in Spartan 3 FPGA 61
Fig. 4.2 Dual Port BRAM in Xilinx FPGA 62
Fig. 4.3 Top Level View of Interleaver 63
Fig. 4.4 Flow Chart of MATLAB Program used to Pre-compute WLAN Interleaver Addresses 64
Fig. 4.5 Modeling of LUT in FPGA’s Internal Memory 65
Fig. 4.6 Modeling of Interleaver Memory using Dual Port BRAM in FPGA

66

Fig. 4.7 State Diagram Representation View of Proposed Interleaver 66
Fig. 4.8 Detailed View of Proposed LUT Based Interleaver 67
Fig. 4.9 Timing Diagram Showing Swapping of Read/Write Operation Between Port A and port B using rw_sel 68

xv

Fig. 4.10 Schematic Diagram of Address Generator

69
Fig. 4.11 State Diagram of Preset Logic 70
Fig. 4.12 Schematic View of FSM Based Interleaver Memory Block 70
Fig. 4.13 Organization of 288-bit DRAM 71
Fig. 4.14 Write Enable Signal Generation for Various DRAM Blocks 71

Fig. 4.15
Simulation Result for (a) BPSK (mod_typ = 00), (b) QPSK (mod_typ = 01), (c) 16-QAM (mod_typ = 10) and (d) 64-QAM (mod_typ = 11) in LUT Based Interleaver 72

Fig. 4.16
Simulation Result for (a) BPSK (mod_typ = 00), (b) QPSK (mod_typ = 01), (c) 16-QAM (mod_typ = 10) and (d) 64-QAM (mod_typ = 11) in FSM Based Interleaver 73

Chapter 5
Fig. 5.1 Overview of WiMAX system 82
Fig. 5.2 Algorithm of MATLAB program used to pre-compute WiMAX

interleaver addresses 84
Fig. 5.3 FSM based Address Generation Scheme 86
Fig. 5.4 States in Preset Logic 87
Fig. 5.5 Single Port BRAM in Xilinx Spartan-3AN FPGA 88
Fig. 5.6 Flow chart of MATLAB program used to determine WiMAX de-

interleaver addresses 90

Fig. 5.7 Relationship Between De-Interleaver Memory Address with Various Ncbps(= N) and a) QPSK, b) 16-QAM and c) 64-QAM Modulation Scheme 91

Fig. 5.8 Detailed Hardware Structure of Proposed Address Generator 93

Fig. 5.9 Hardware Structure of Address Generator for (a) QPSK, (b) 16-QAM and (c) 64-QAM 97

Fig. 5.10 Top Level View of Complete De-Interleaver Address Generator 98

xvi

Fig. 5.11 Generation of First 32 Write Addresses with (a) MOD_TYP = 00, ID = 000, (b) MOD_TYP = 01, ID = 001 and (c) MOD_TYP = 10, ID = 001 99

Fig. 5.12 Interleaving Operation with (a) MOD_TYP = 00, ID = 000, (b) MOD_TYP = 01, ID = 001 and (c) MOD_TYP = 10, ID = 001 100

Fig. 5.13
Simulation result of LUT based De-interleaver Address Generator with (a) MOD_TYP = 00, CODE_RATE = 000 (b) MOD_TYP = 00, CODE_RATE = 010 and (c) MOD_TYP = 00, CODE_RATE = 011

101

Fig. 5.14 Simulation Result Showing the Addresses of Last Part of First Row (j=1) and First Portion of Second Row (j=2) for Ncbps = 576-bits, ¾ Code Rate, 64-QAM 102

Fig. 5.15 Photograph with (a) ID=000, MOD_TYP=00, (b) ID=001, MOD_TYP=01, (c) ID=001, MOD_TYP=10 104
Chapter 6

Fig. 6.1 Block Diagram of MIMO WLAN (a) Transmitter and (b) Receiver 112

Fig. 6.2 Block Diagram of Steps Involved in Interleaving Process for MIMO WLAN 113

Fig. 6.3 (a) Top Level View of Complete Interleaver (b) Arrangement of Memory Block 118

Fig. 6.4 Scheme Showing Generation of (a) Write Address (b) Row Count and (c) Column Count 120

Fig. 6.5 Arrangement Showing Generation of (a) Number of Rows, (b) ICOUNT<(C-Ix) and ICOUNT≥(C-Ix) (c) JCOUNT<(D-Jy) and JCOUNT≥(D-Jy) 120

Fig. 6.6 Circuit for Generation of Read Address (RAx) 121

Fig. 6.7 Circuit Diagram for Generation of Interleaver Write Addresses with (a) Ncbpsc=1 or 2 (b) Ncbpsc= 4 and (c) Ncbpsc = 6
123

Fig. 6.8 Write addresses (WAx) of Interleaver for (a) Nbpscs=1 (BPSK), N = 52, BW=20MHz (nbpscs=002, bw=02) and (b) Nbpscs=6 (64-QAM), N=648, BW=40MHz (nbpscs=112, bw=12)
125

xvii

Chapter 7

Fig. 7.1 Top Level View of the QPP Interleaver Address Generator 135
Fig. 7.2 Proposed Hardware of Raw Address Generator (a) LUT (b)

START signal Generator 136
Fig. 7.3 Modified MOD Circuit to Compute X mod Z 136

Fig. 7.4 Timing Simulation Showing Initial Addresses for (a) i=1 (K = 40, f1=3, f2=10), (b) i=91 (K = 1008, f1 = 171, f2 = 204) and (c)
i=188 (K= 6144, f1 = 263, f2 = 480) 137

Fig. 7.5 Bar Chart Representation of FPGA Device Utilization Summary 139

xviii

List of Tables
Chapter 1

Table 1.1 Some Features and Applications of Interleavers 12
Chapter 2

Table 2.1 Summary of Spartan-3 FPGA Attributes 38
Table 2.2 Summary of Spartan-3AN FPGA Attributes 41
Table 2.3 Summary of Spartan-6 FPGA Attributes 42

Chapter 3
Table 3.1 Scrambling Operation in Delay Unit of Convolutional Interleaver 49
Table 3.2 Comparative Analysis between Various Implementations 53
Table 3.3 Comparative analysis with respect to memory wastage 54
Table 3.4 HDL synthesis report 55
Table 3.5 Device utilization summary 56

Chapter 4
Table 4.1 Specifications of IEEE 802.11a and IEEE 802.11g based WLAN Interleaver 60
Table 4.2 Dual port BRAM interface signal 62
Table 4.3 Organization of BRAM in Spartan 3 FPGA 62
Table 4.4 First 32-Write Addresses for Four Modulation Schemes and Their Encoding 63
Table 4.5 Address Ranges of Various LUT Inside BRAM 65
Table 4.6 Condition for Generation of Write Enable Signals 72
Table 4.7 HDL Sythesis Report of LUT based WLAN Interleaver 75
Table 4.8 Device Utilization Summary of LUT based WLAN

Interleaver 75
Table 4.9 HDL Sythesis Report of FSM based WLAN Interleaver 76

xix

Table 4.10 Device Utilization Summary of FSM based WLAN
Interleaver 77

Table 4.11 Comparison Between Various Implementations 78
Chapter 5

Table 5.1 Permitted interleaver/de-interleaver depths in IEEE 802.16e for all code rates and modulation schemes 83

Table 5.2 First 32-permutation sample addresses for three code rates and modulation schemes 84

Table 5.3 Increment values for various interleaver depths and modulation schemes with their encoding 85
Table 5.4 Single Port BRAM Interface Signal 88
Table 5.5 First Five Rows of Addresses for (a) Ncbps = 576, ¾ Code Rate, QPSK, (b) Ncbps = 576, ¾ Code Rate, 16-QAM and (c) Ncbps = 576, ½ Code rate, 64-QAM 91
Table 5.6 Content of (a) ROM_00_000 and (b) ROM_01_X00 93
Table 5.7 First 4-rows and 5-columns of De-interleaver Sample Addresses for Three Code Rates and Modulation Types 95
Table 5.8 Determination of Co-relation between Addresses 95
Table 5.9 Comparative Analysis of Similar Implementations of Address Generator 103
Table 5.10 HDL Synthesis Report of FSM Based Address Generator 104
Table 5.11 Device Utilization Summary of FSM Based Address Generator 104
Table 5.12 HDL synthesis Report of the Complete Interleaver 104
Table 5.13 Device Utilization Summary of Complete Interleaver 105
Table 5.14 Device Utilization Summary of LUT based Address Generator of WiMAX De-interleaver 106
Table 5.15 HDL Synthesis Report of Low Complexity Address Generator 107
Table 5.16 Comparison Between Proposed and LUT Based Technique 108

Chapter 6
Table 6.1 Interleaver Specification of IEEE 802.11n Based MIMO WLAN 114

xx

Table 6.2 Interleaver write addresses with (a) Nbpscs=1, N=52, iss=4, BW = 20MHz, (b) Nbpscs =4, N = 208, iss = 2, BW = 20MHz and (c)
Nbpscs = 6, N = 312, iss = 3, BW = 20MHz 114

Table 6.3 Proposed algorithm for (a) Nbpscs=1/2 (BPSK/QPSK) with all
N, iss and BW (b) Nbpscs= 4 (16-QAM) with all N, iss and BW (c)
Nbpscs=6 (64-QAM) with all N, iss and BW

115

Table 6.4 Values of Jrot for all Modulation Schemes, Spatial Streams and BWs 118
Table 6.5 Encoding of (a) BW (b) Ncbpsc 119
Table 6.6 Definition of Ix and Jy for all Streams and BW 121
Table 6.7 Encryption of signals (a) II4 and JJ4 and (b) II6 and JJ6 122
Table 6.8 Minimum Hardware Requirement for the Interleaver 127
Table 6.9 Device Utilization Summary 127
Table 6.10 Comparative Study Between Similar Works 128

Chapter 7
Table 7.1 Address Sequences with (a) K = 40, f1=3, f2=10, (b) K = 1008, f1 = 171, f2 = 204 and (c) K = 6144, f1 = 263, f2 = 480 132

Table 7.2 Raw Address Sequences with (a) K = 40, f1=3, f2=10, (b) K = 1008, f1 = 171, f2 = 204 and (c) K = 6144, f1 = 263, f2 = 480 133
Table 7.3 Organization of LUT 135
Table 7.4 HDL Synthesis Report 138
Table 7.5 Comparative Device Utilization Summary 139

Chapter 8
Table 8.1 Summary of Interleaver applications and FPGA implementation platforms used in this research work 144

xxi

Contents

List of Publications iii
List of Patents iv
List of Presentation in International Conferences held in Abroad v
List of Presentation in International Conferences held in India v
Certificate from the Supervisor vi
Acknowledgements vii
List of Abbreviations and Acronyms ix
List of Figures xiii
List of Tables xviii
Contents xxi
Abstract xxv

Chapter 1 Introduction 1-27
 1.1 Background 2
 1.1.1 Communication System 2
 1.1.2 Wireless Communication System 4
 1.1.3 Orthogonal Frequency Division Multiplexing Technique 7
 1.2 Interleaver and its significance in OFDM System 10
 1.3 Historical Background of Interleaver 11
 1.4 Applications of Interleaver 12
 1.5 VHDL Modeling and FPGA 13
 1.6 Literature Survey 14
 1.7 Motivation behind the Work 21
 1.8 Objective of Research 22
 1.9 Challenges Faced During the Work 22
 1.10 Major Contribution in Wireless Communication Systems 23
 1.11 Methodology 25
 1.12 Organization of Thesis 26

xxii

Chapter 2 VHDL and FPGA Fundamentals 28-43
 2.1 Introduction 29
 2.2 Components of a VHDL Model 30
 2.3 FPGA Fundamentals 33
 2.3.1 Programmable Logic Block 34
 2.3.2 Input - Output Block 35
 2.3.3 Programmable Interconnect 36
 2.4 FPGA platform used in experimentation 37
 2.4.1 Spartan 3 38
 2.4.2 Spartan 3AN 40
 2.4.3 Spartan 6 41
 2.5 Discussion 43

Chapter 3 Convolutional Interleaver for D A B 44-56
 3.1. Introduction 45
 3.2. Convolutional Interleaver 46
 3.3. Hardware Description of FPGA 47
 3.4. Proposed Model of Convolutional Interleaver 48
 3.5 VHDL Modeling 49
 3.5.1 Interleaver 49
 3.5.2 De-interleaver 50
 3.5.3 Interleaver – De-interleaver pair 51
 3.6 Simulation Results 52
 3.7 Analysis of FPGA Implementation Results 53
 3.8 Discussion 56

Chapter 4 Interleaving in WLAN 57-78
 4.1 Introduction 58
 4.2 Interleaving in WLAN 59
 4.3 Modeling Memory in FPGA 60
 4.3.1 Distributed RAM 60
 4.3.2 Block RAM 61
 4.4. Hardware Models of Interleaver 63
 4.4.1 LUT based Interleaver 63

xxiii

 4.4.2 FSM based Interleaver 68
 4.4.2.1 Interleaver Memory 70
 4.5 Simulation Results 72
 4.6 Critical Analysis of FPGA Implementation 74
 4.6.1 FPGA Implementation of LUT based Interleaver 74
 4.6.2 FPGA Implementation of FSM based Interleaver 75

 4.7 Discussion 78

Chapter 5 Interleaving in WiMAX 79-108
 5.1 Introduction 80
 5.2 System Description 82
 5.3 Interleaving / De-interleaving in WiMAX System 82
 5.4 Hardware Modeling of FSM based Address Generator 84
 5.4.1 Preset Logic as Finite State Machine 86
 5.5 Modeling Memory in FPGA 88
 5.6 Hardware Model of LUT based De-interleaver 89
 5.6.1 Methodology of proposed design 89
 5.6.2 Proposed hardware for the address generator 92
 5.7 Proposed Algorithm for Low complexity De-interleaver 94
 5.7.1 Transformation into Circuit 96
 5.8 Simulation Results 98
 5.8.1 FSM based Address Generator of Interleaver 98
 5.8.1.1 Address Generator 98
 5.8.1.2 Complete Interleaver 99
 5.8.2 LUT based Address Generator of De-interleaver 101
 5.8.3 Low Complexity Address Generator of De-interleaver 102
 5.9 Critical Analysis of FPGA implementation Results 102
 5.9.1 FSM based Address Generator of Interleaver 102
 5.9.1.1 Address Generator 103
 5.9.1.2 Complete Interleaver 104
 5.9.2 LUT based Address Generator of Interleaver 105
 5.9.3 Low Complexity Address Generator of Interleaver 106
 5.10 Discussion 108

xxiv

Chapter 6 Interleaving in MIMO WLAN 109-128
 6.1 Introduction 110
 6.2 System Description of MIMO WLAN Transceiver 111
 6.3 Interleaving in IEEE 802.11n 112
 6.4 Proposed Algorithm for Address Generator of Interleaver 113
 6.5 Transformation into Hardware 118
 6.5.1 Memory Block 118
 6.5.2 Address Generator 119
 6.6 Simulation Results of MIMO WLAN Interleaver 125
 6.7 FPGA Implementation Results 126
 6.8 Discussion 128

Chapter 7 Implementation of QPP interleaver 129-140
 7.1 Introduction 130
 7.2 Interleaving in LTE/LTE-A 131
 7.3 Proposed Algorithm for QPP interleaver 132
 7.4 Hardware Realization 134
 7.5 Simulation Results for QPP Interleaver 136
 7.6 FPGA Implementation Result and Analysis 138
 7.7 Discussion 139

Chapter 8 Conclusion and Future Works 141-145
 8.1 Conclusive Remarks 142
 8.2 Prospective Future Work 144

Bibliography 146-159

xxv

Abstract

Error free digital wireless communication system is the ultimate goal to be
achieved by communication engineers. In pursing such quest, tremendous efforts
are being made by researchers to reduce the effect of channel noises. Presence of
channel noises increase Bit Error Rate (BER) and degrade the performance of the
communication systems considerably. Broadly, channel noises may be divided
into two groups: random bit errors and burst errors. Random errors have no
relation between one another whereas in burst errors a group of consecutive bits
become erroneous. Researchers have developed various error correcting
mechanisms to reduce the effect of such errors. Error Correcting Codes (ECC)
designed for random errors are not effective for burst errors and vice versa. In
most practical systems, both random and burst errors may exist together. Usually,
techniques to overcome burst error are applied before ECC in order to ensure data
fidelity from both types of errors. Interleaving technique is traditionally used to
enhance the quality of digital transmission over a bursty channel. Interleaving is a
process to rearrange code symbols so as to spread burst of errors into random like
errors and can be handled by ECCs. Convolutional and block are the most
popular types of interleavers being deployed in majority of the modern day
communication systems to protect data against burst error.

Interleavers help to preserve data integrity during transmission over noisy
channel against burst errors. The advantage is encompassed with drawbacks like
additional memory requirement, system complexity and increased delay.
Improved design of interleavers and efficient use of resources of the
implementation platform make the interleaver a good choice to protect data from
error bursts. In case of convolution interleaver being used in DAB applications,
memory wastage in the incremental shift registers is an issue to be addressed in
design and implementation along with the operating speed of the circuit. The
permutation steps as prescribed in the standard documents for block interleavers
of various OFDM based Broadband Wireless Access (BWA) applications like

xxvi

WLAN, WiMAX, MIMO WLAN and LTE/LTE-A involves complex mathematical
functions like floor, modulus and square. Implementation of these functions on
hardware platform is very difficult due to the absence of direct digital hardware.
Conventionally, Look-up Table (LUT) based approach is used which suffers from
the drawbacks like slower speed of operation and large resource (especially
memory) occupancy. Therefore, resource efficient and low latency block
interleaver design for the aforesaid applications is an important research area to
work and contribute.

In line with the formulation of research problem, efforts have been made to
resolve the bottlenecks by proposing novel algorithms / efficient designs of the
interleavers. MATLAB programmes are developed to verify the correctness of the
novel algorithms. The proposed algorithms / designs are then transformed into
digital hardware. VHDL models of these hardware have been prepared by
judicious use of embedded resources available inside the reconfigurable target
platform i.e. FPGA. Such efforts have clearly resulted in reduction of FPGA
resources requirement with important achievement of improved speed
performance. Consumption of lower power by the proposed designs is another
important outcome to be reported. Timing simulations of the interleaver address
generators / interleavers have been extensively carried out to verify functionality
of the proposed hardware designs.

In the work to design efficient convolutional interleaver for DAB
application, FPGA’s embedded Shift registers (SRLC16) are used to model the
incremental memory. This modelling lowers the hardware resource occupancy of
FPGA in addition to reduction in memory wastage over existing
implementations. In the issue of block interleaver design for IEEE 802.11 a/g
based WLAN transceiver, two approaches namely improved LUT based and
Finite State Machine (FSM) based have been proposed. The former technique
demonstrates reduction in resource utilization like slices, flip flop and LUTs over
conventional LUT based approach with improved operating speed of the
Interleaver. Similar results are also obtained for FSM based implementation with
further faster performance.

xxvii

WiMAX is based on IEEE 802.16 d/e standard which employs special type
of block interleaver. In this work, improved LUT based technique has been
designed to generate de-interleaver addresses. The improvement in terms of
memory saving and faster circuit operation over the conventional LUT based
approach could be achieved. In addition, the author designed FSM based
interleaver for the WiMAX application. Finally, a low-complexity and novel
technique is proposed to efficiently implement the address generation circuitry of
the 2-D de-interleaver used in the WiMAX transceiver. All these approaches result
in resource efficient and high speed interleaver/de-interleaver implementations
on FPGA platform. Transceiver used in MIMO WLAN employs multi stream
block interleaver. In this work, hardware efficient model of MIMO WLAN
interleaver eliminating the need for floor and modulus functions has been
designed. To improve the performance of the address generator, embedded DSP
blocks have been utilized. The work is also extended to model the interleaver
memory using FPGA’s embedded memory and thus provides complete hardware
interleaver solution. The proposed work shows noticeable improvement in terms
of maximum frequency and power consumption over the existing works. In the
final phase, hardware efficient Quadratic Permutation Polynomial (QPP)
interleaver address generator for LTE/LTE-A communication system is
demonstrated. The address generator involves a quadratic equation and modulus
function which do not have direct digital circuitry. A novel algorithm has been
proposed to eliminate the need of squarer and modulus function. The algorithm is
converted into efficient digital hardware and is implemented on FPGA platform
with improved test results over conventional implementations.

Chapter 1
Introduction

 Outline of this Chapter
1.1 Background
1.2 Interleaver and its Significance in Communication System
1.3 Historical Background of Interleaver
1.4 Applications of Interleaver
1.5 VHDL Modeling and FPGA
1.6 Literature Survey
1.7 Motivation Behind the Work
1.8 Objective of the Research
1.9 Challenges Faced During the Work
1.10 Major Contribution in Wireless Communication Systems
1.11 Methodology
1.12 Organization of Thesis

The basic idea behind this Chapter is to provide description about a chronological
evolution of communication systems starting from the age of Samuel Morse to
modern technologies like LTE and LTE-A. It introduces and highlights the
important aspects of several communication techniques including OFDM in
regards to high spectral efficiency, low ICI, and ISI. Importance of interleavers
used in various communication systems along with its working principle has also
been elaborated. In addition, historical background, types and applications of
interleavers have been incorporated. A brief discussion on VHDL and FPGA have
been placed to provide basic idea to the reader. This discussion is carried forward
in the next chapter more elaborately. Challenges faced during the design and
implementation of interleavers for different OFDM based wireless standards like
DAB, DVB, WLAN, WIMAX, MIMO WLAN and LTE / LTE-A are discussed.
Major contributions of this doctoral research work in the field of communication
systems have been highlighted. The chapter thereafter presents the report of

Chapter 1: Introduction

 2

extensive literature survey that has been carried out throughout this work. Finally,
the chapter is concluded with discussion on methodology adopted in the research
work along with organization of the thesis.

1.1 Background
1.1.1 Communication System

Communication systems have become an integral part of present day human life. It
becomes almost impossible to think about survival of human being without using some or
other type of communication systems [1]. Telegraph system [2] is considered to be one of
the successful oldest communication systems. The idea of sending electrical signal
through wire was conceptualized in France around 1798 [3], much earlier than the
invention of Telegraph system. The Telegraph system developed by Samuel Morse [4] in
the year 1832, became gradually popular due to the use of Morse coding technique [5] and
was widely accepted by the international community.

Telephony [6] is another popular communication system which has wide spread
impact in human life. Telephone was invented by Alexander Graham Bell in the year 1876
while trying to invent a talking Telegraph system [7]. “Mr. Watson, come here, I want
you.” was the first experimental voice signal transmitted by Bell over the telephone to call
his assistant Thomas Watson. Since then, Telephony has evolved through many
generations to arrive at the present shape. In 1877-78, the first telephone exchange had
been made operational. These types of exchanges were termed manual exchanges [8]
wherein an operator manually connected calls with cord pairs in the telephone
switchboard [9]. Automatic exchanges came into existence around in the early 1900s.
They did not require manual intervention, rather followed step by step method for
switching and were named after their inventor, A.B. Strowger [10]. Exchanges based on
crossbar technology [11] were the next to follow in which the electromechanical telephone
switchboards were arranged in matrix fashion. The first 100 line Crossbar exchange was
demonstrated by the designers in 1913 at London [12]. Later in 1938, AT & T
Laboratories in US introduced the crossbar-switching system commercially. Crossbar
exchanges offered advantages like faster switching time and improved pulse rate. Due to
the advancement in semiconductor research and invention of transistors, electronic switch
based exchanges started to replace the crossbar exchanges gradually. The electronic
switches are controlled by a computer through a Stored Program Control (SPC) [13]. The

Chapter 1: Introduction

 3

electronic exchanges started their operation since 1960s. Initial electronic exchanges were
analog type. After the invention of microprocessors in 1971, switching control mostly
relies on digital techniques leading to the introduction digital electronic exchanges [14].
Electronic exchanges offer advantages like lesser and easy maintenance, compact design,
supporting additional features at reduced cost over its predecessor. Likewise, the
telephone set, which is used to make call has also evolved through many changes right
from analog rotary type dial to modern Dual Tone Multi Frequency (DTMF) type [15].

Radio and Television are some of the popular broadcasting communication systems.
Radio broadcasting was experimented in 1905-06 but commercial broadcasting started
from 1920-21 [16]. In 1927, first demonstration of Television transmission was done by J.
L. Baird in UK and C. F. Jenkins in USA [17]. Rapid development in TV transmission
took place due to the inventions of Cathode Ray Tube (CRT) and Picture Tube which
were used both in the video camera and in the TV receiver set.

The fundamental blocks of a typical communication system [18] are shown in Fig.
1.1.

Fig. 1.1 Fundamental blocks of a Communication System

Sources of Information
There can be variety of information sources like audio signal,
video signal, data etc. which the user wants to send to the
destination. Suitable transducer is used to convert the signal to
be transmitted before feeding to the transmitter.

Transmitter A transmitter receives the information to be transmitted from
a source, converts it into suitable format for transmission over
the channel.

Channel Media, wire or wireless, through which signal travels from
transmitter to the receiver.

Noise
Unwanted disturbance may be superimposed on the signal
while transmission occurs over the channel.

Sources of
Information Transmitter Channel Receiver Destination of

Information

Noise

Chapter 1: Introduction

 4

Receiver
The receiver receives the signal with noise from channel,
removes noise to the extent possible, separates the signal from
its carrier and forwards the information to the intended
destination.

Destination of
Information

Destination information may be a loud speaker, a CRT/Picture
Tube, a Printer and so on which reproduces the original
information.

1.1.2 Wireless Communication System
Wireless communication is the most exciting area of communication engineering

today [19], [20]. Wireless communication system may be treated to be operational from
the era when Marconi had demonstrated transmission of three-dot Morse code for the
letter ‘S’ over a distance of three kilometres using electromagnetic waves signal [21].
Contribution of Sir J. C. Bose in early days of wireless communication for small
wavelength (6 mm) millimetre wave signal generator is being recognized worldwide [22].
Early wireless communication systems were analog type. Today, most of the wireless
communication systems transmit digital signal as a sequence of ones and zeros [23].

Wireless communication system is becoming more and more popular as it supports
mobility of the user [24], [25]. Advancement in other associated fields like Very Large
Scale Integration (VLSI) technology has provided small area, low power consuming
hardware to act as catalyst for further popularity of the wireless communication system
[26]. The VLSI designer is now empowered with multiple options in selecting supply
voltages and transistor threshold due to technology scaling [27]. In addition, other circuit
design techniques like use of dynamic power management meaning selective shut-off or
slow-down of system components that are idle or underutilized though complicated,
enables the designer to achieve the objectives of lower power and area efficient design of
VLSI chips with throughput and latency constraints, targeted for wireless communication
applications [28]. Use of Electronic Design Automation (EDA) tools assist the designer in
modeling and characterizing the hardware architectures that are described using various
levels of design abstraction and hence permit the designer to apply design optimizations
and explore the behaviour of alternative hardware architectures [29], [30].

Mobile telephony probably is the most popular type of wireless communication
system that mankind has been gifted with. Its journey started in 1947 from Bell laboratory
[31]. In the immediate next year, the concept of cellular telephone service was designed to

Chapter 1: Introduction

 5

cater the increasing demand of mobile telephony. But due to lack of implementation
technology, it could not become reality until 1983 when an AT&T subsidiary, Advanced
Mobile Phone Service Inc. (AMPS) [32], was granted commercial license by Federal
Communications Commission (FCC). AMPS was an early analog mobile phone system
based on Frequency Division Multiple Access (FDMA) [33] with frequency reuse concept
[34] and is known as first generation (1G) mobile telephony. Second generation (2G) was
introduced in early 90s and was based on digital access technology such as Time Division
Multiple Access (TDMA) and Code Division Multiple Access (CDMA). It offered text
messaging popularly known as Short Message Service (SMS). 2G communication is
generally associated with Global System for Mobile (GSM) services for unified single
standard and employs TDMA technology [35]. In order to respond to the increasing
demand for internet access on mobile phone, General Packet Radio Service (GPRS), a
packet oriented mobile data service has been incorporated in the 2G system and thereby
introducing 2.5G mobile service. Enhanced Data for Global Evolution (EDGE) also
known as Enhanced GPRS or EGPRS [36] is a data system used on top of GSM networks.
It provides nearly three times faster speeds than the GPRS system. IS-95 is another 2G
mobile telephony system which uses CDMA access technology and has become popular
with the brand name of CDMA One.

Third generation (3G) wireless technology represents the convergence of various 2G
wireless telecommunications systems into a single global system [35], [37]. It is
comprised of three air interface modes: Wideband CDMA (W-CDMA), CDMA2000 and
Universal Wireless Communication (UWC-136). W-CDMA is backward compatible with
2G GSM and CDMA2000 with IS-95 based 2G [38]. UWC-136 is TDMA based and is
backward compatible with IS-136 TDMA digital cellular phone system defined by the
ANSI-136 and IS-41 standards.

Recently, tremendous growth in wireless data networks has been witnessed [39].
Fundamentally there are two types of internet access technologies for accessing data:
narrowband and broadband [40]. Narrowband refers to technologies that deliver data at up
to 128 Kbps [41]. Dial up telephone connection, leased circuit using modem, Integrated
Services Digital Network (ISDN) etc. are examples of narrowband internet access
technologies.

On the contrary, broadband generally refers to technologies that offer high data
rates, but the exact boundary between broadband and narrowband is blurry. Many suggest
that broadband technologies deliver more than 1 Mbps but this is not always the case, and

Chapter 1: Introduction

 6

may mean any speed higher than dialup [41]. Examples of broadband wireless access
technologies are: Digital Subscriber Line (DSL), Cable modem, Hybrid Fibre Coax (HFC)
and Wireless access [41].

DSL access technology has been used to provide high speed data communication
services to the subscribers over a telephone line through exchange [42]. Asymmetric DSL
(ADSL) is the most widely used variant of DSL. Cable modem access technology [43] has
already utilized the available wiring of cable television. HFC system uses a combination
of optical fibers and coaxial cables. Fiber is used for the central facilities which demands
highest bandwidth and coaxial cable is used for connections to individual subscribers
requiring lesser bandwidth.

Presently popularity of Broadband Wireless Access (BWA) has been increased
tremendously as it supports user mobility [44]. Wireless Local Area Network (WLAN) is
the one of the oldest BWA which was originally intended to allow wireless connection to
their base Local Area Network (LAN) [45]. It provides network connectivity in areas
where wiring/cabling is neither cost effective nor feasible. They provide connectivity for
slow mobility with high throughput for both indoor and outdoor environments. In 1997,
IEEE has defined the 802.11 standard for WLAN [44]. The components of WLANs
consist of a wireless network interface card, known as station (STA), and a wireless
router/bridge, referred to as an Access Point (AP) [46]. The AP interfaces the wireless
network with the wired network. In an outdoor environment, network coverage of 100m is
typically available. The most widely used WLANs use the license free Industrial,
Scientific and Medical (ISM) frequency band around 2.4 GHz [47].

Wireless Metropolitan Area Network (WMAN) is a wireless network deployed for
network coverage in a wider area, targeted for covering both urban and remote areas [48].
IEEE 802.16, which defines the WMAN standards to provide cost-effective, spectrally
efficient connectivity for neighbourhoods, villages, and cities. Worldwide Interoperability
for Microwave Access (WiMAX) [49] [50], [51], is a WMAN technology developed by
an industrial working group, with an aim to promote deployment of BWA networks by
using global standards and also to provide the means for certifying interoperability of
products and technologies from various vendors and Original Equipment Manufacturers
(OEMs). WiMAX provides broadband connectivity over a much wider area than WLAN
and may or may not require a line-of-sight path between the subscriber terminal and the
APs. It claims to provide a theoretical data rate of up to 70Mbps with a range up to a
maximum of 50 km. IEEE 802.16d, now known as, IEEE 802.16-2004 [52] defines fixed

Chapter 1: Introduction

 7

BWA (FBWA) in the frequency band of 2 to 11GHz. Amended IEEE 802.16e [53] adds
the mobility support to IEEE 802.16 and defines standard for mobile BWA (MBWA) in
the frequency band 2 to 6 GHz. Typical data rate in IEEE 802.16e is 5 Mbps with
bandwidth 1.25 to 20 MHz. Both IEEE 802.16d and IEEE 802.16e permit Non Line of
Sight (NLOS) connectivity.

OFDM may be combined with multiple antennas at both the access point and
mobile terminal to increase the diversity gain and/or enhance system capacity on a time-
varying multipath fading channel, resulting in a Multiple Input Multiple Output (MIMO)
OFDM wireless system [54]. The MIMO technology is introduced in the IEEE 802.11n
protocol and brings the WLAN technology into a multi-antenna era. MIMO WLAN
utilizes the MIMO-OFDM transmission techniques to enable high speed data
communication with maximum throughput of 600 Mbps [55].

 Long Term Evolution (LTE), or Evolved Universal Terrestrial Access Network
(E-UTRAN), popularly marketed as 4G LTE, is a standard for wireless communication of
high-speed data for mobile phones and data terminals [56], [57]. It is based on the
GSM/EDGE and Universal Mobile Telecommunication System (UMTS)/High Speed
Packet Access (HSPA) network technologies, increasing the capacity and speed using a
different radio interface together with core network improvements. Long Term Evolution -
Advanced (LTE-A) [58], [59], [60] aims at even higher data rate than LTE with peak data
rate- downlink 3 Gbps and uplink 1.5 Gbps [61]. LTE-A is called true 4G as it actually
meets the International Telecommunication Union’s (ITU’s) specifications for 4th
generation wireless systems [62].

 Satellite communication is another type popular wireless communication system
having deployed in many applications like point to point communication, satellite
television/radio, satellite phone, remote sensing, imaging etc. [63], [64]. It has spread its
impact relatively in shorter period of time, starting with Sputnik in 1957 to sophisticated
and modern present day satellite. A satellite is a self-contained system for communication
which receives signal from the earth and retransmit the signals back to the earth with the
help of a transponder.
1.1.3 Orthogonal Frequency Division Multiplexing Technique

Orthogonal Frequency Division Multiplexing (OFDM) [65] is becoming a popular
solution for transmission of signal over a wireless channel. The basic principle of the
OFDM system is to decompose the high rate data stream (bandwidth = W) into N lower

Chapter 1: Introduction

 8

rate data streams [66]. These data streams thereafter are transmitted simultaneously over a
large number of subcarriers [67]. When the value of N is chosen to be sufficiently large,
the individual bandwidth (W/N) of subcarriers becomes narrower than the coherence
bandwidth (Bc) of the channel. In wireless channels, multiple copies of the same signal
arrive in the receiver with certain time delay due to multipath propagation which is also
known as delay spread. This delay spread in frequency domain shows a range of
frequency having approximately flat magnitude response and is termed as coherence
bandwidth (Bc) of the channel. If the bandwidth of a signal being transmitted through the
wireless channel is less than the Bc, there will be no distortion in the output and the
channel is known as flat fading channel. On the contrary, if signal bandwidth is larger than
that of the Bc of the channel, the signal undergoes distortion which is termed as frequency
selective fading. By definition, fading is the term used to refer variation in the received
signal power whereas variation in the amount of fading with radio frequency is known as
frequency selective fading [68].

Fundamentally, orthogonality between two signals xi(t) and xj(t) may be defined as:
() () = 1, =

0, ≠ (1.1)
The individual subcarriers are selected to be orthogonal to each other, which allow

the overlapping between them. Due to the orthogonality feature, separation of subcarriers
at the receiver end is ensured. OFDM results in a better spectral efficiency than that of
FDMA systems, where no spectral overlap of carriers is permitted. Fig. 1.2 shows the
spectral efficiency of OFDM pictorially. It explains the difference between the
conventional non-overlapping multicarrier technique such as Frequency Division Multiple
Access (FDMA) and the overlapping multicarrier modulation technique (e.g. OFDM).
From the fig. it is clear that OFDM requires = against BW=2R of FDMA for
N number of sub carriers.

The term orthogonal refers a precise mathematical relationship between
frequencies of subcarriers in the OFDM-based system. In a normal FDM system, many
carriers are spaced apart using guard band in such a way that the signals can be received
using conventional filters in the receiver. Use of guard band between carriers (to avoid
adjacent carrier interference), results in reduction of the spectrum efficiency. In an OFDM
system, it is possible to arrange the carriers such that the sidebands of the individual
subcarriers overlap and the signals are still received without adjacent carrier interference.

Chapter 1: Introduction

 9

To make OFDM robust against Inter Channel Interference (ICI), and Inter Symbol
Interference (ISI), Cyclic Prefix (CP) is used [70].

Fig. 1.2 OFDM and FDMA spectrum [69]

OFDM has been adopted by many standards, such as Digital Audio Broadcasting

(DAB) [71], Digital Video Broadcasting for Terrestrial television (DVB-T) [72], Digital
Video Broadcasting for Handheld terminals (DVB-H) [73], IEEE 802.11 based Wireless
Local Area Networks (WLANs) [74] and IEEE 802.16 based fixed [52] and mobile [53]
Broadband Wireless Access (BWA). Apart from these, OFDM is also used in latest
standards like MIMO-WLAN [75], LTE [76] and LTE-A [77].

-R R -R R

BW=2R BW=2R

BW=2R

-R R

-R R -R/3 R/3

BW=2R

-2R/3 2R/3
R/3 -R/3

BW=(3/2)R

BW=(4/3)R

OFDM FDMA

N = 1

N = 2

N = 3

f

f

f

f

f

f

R/4 -R/4 3R/4 -3R/4

-R R -R/2 R/2

BW=2R

-5R/8 5R/8
R/8

BW=(5/4)R

N = 4 f f

-R/8
3R/8 -3R/8

Chapter 1: Introduction

 10

1.2 Interleaver and its significance in OFDM System
In an OFDM system, the data is divided into multiple parallel sub-streams at a

reduced data rate, and each is modulated and transmitted on a separate orthogonal
subcarrier. This increases symbol duration and improves system robustness. Most of the
advanced high speed communication systems employ OFDM modulation along with
interleaver to protect data from burst errors [78]. Error Correction Codes (ECCs) [79] play
vital role in reducing the effect of random errors in communication channel. In doing so,
redundancy is added that helps to identify the erroneous bit(s) in the receiver. Error bursts
[80] may be defined as a group of consecutive error bits that may occur in the channel due
to deep fading. ECCs do not prove to be effective during error burst. A powerful ECC
however may correct the burst error but the overhead of using such ECC is very high and
it may be a waste in case there is no such error. In most practical systems, both random
and burst errors may exist. So, usually techniques to overcome burst error are applied
before ECC in order to ensure data fidelity from both types of errors [81].

Interleaving technique is traditionally used to enhance the quality of digital
transmission over a bursty channel. The principal idea behind interleaving is to mix up the
code symbols from different code-words so that when the code-words are reconstructed
(de-interleaved) at the receiving end error bursts encountered in the transmission are
spread across multiple code words [82]. Consequently, the errors occurred within one
code-word may be small enough to be corrected by using a simple random ECC. Thus
interleaving is a process to rearrange code symbols to spread burst of errors into random
like errors [81]. Interleaving is achieved when adjacent code symbols are separated by
more than the average duration of an error burst. It improves the performance of digital
transmission at the cost of increased memory requirement, system complexity, and delay.
Fig. 1.3(a) and (b) explains the basic interleaving technique. In the example of Fig. 1.3(a),
eight un-interleaved code words A-H, each with eight code symbols has been shown. Let,
the ECC can correct one bit of error within a code word. Fig. 1.3(b) shows the interleaved
code words in which one code symbol from each of the un-interleaved code word is
present. These code words are allowed to travel through the channel wherein noise may
superimpose. Let a burst error of eight code word length as shown in Fig. 1.3(b) occurs in
the interleaved code words 1 and 2. After de-interleaving, as shown in Fig. 1.3(c), the
original code words A-H with one code symbol erroneous each are obtained in the
receiver. The one code symbol error can be corrected with the help of the ECC.

Chapter 1: Introduction

 11

This simple example demonstrates the effectiveness of interleaving technique in

combating bursts of errors, i.e., how the interleaving spreads code symbols over multiple
code words so as to convert a burst of errors occurred in the interleaved array into
random-like errors in the de-interleaved array. In other words, the pair of interleaving and
de-interleaving can equivalently convert a bursty channel into a random-like channel.
Consequently, random error correction codes can be used efficiently to correct bursts of
errors.
1.3 Historical Background of Interleaver

Interleavers are broadly classified into two categories [83], [84], [85]: periodic
interleavers and pseudo-random interleaver [86]. In a periodic interleaver, symbols of a
code word are scrambled as a periodic function of time. The period, T determines length
of the error burst that can be effectively spread out into single bit error after de-
interleaving. A pseudo-random interleaver scrambles the code word symbols in random
fashion but at a distance greater than S, the separation threshold [87]. A pseudo-random
sequence is generated for scrambling the code word which is to be transmitted to the
receiver side for de-interleaving. Block and convolutional interleaving are the two main

A0 A1 A2 A3 A4 A5 A6 A7 B0 B1 B2 B3 B4 B5 B6 B7 C0 C1 C2 C3 C4 C5 C6 C7 D0 D1 D2 D3 D4 D5 D6 D7
Code Word A Code Word B Code Word C Code Word D

(a)
E0 E1 E2 E3 E4 E5 E6 E7 F0 F1 F2 F3 F4 F5 F6 F7 G0 G1 G2 G3 G4 G5 G6 G7 H0 H1 H2 H3 H4 H5 H6 H7

Code Word E Code Word F Code Word G Code Word H

A0 A1 A2 A3 A4 A5 A6 A7 B0 B1 B2 B3 B4 B5 B6 B7 C0 C1 C2 C3 C4 C5 C6 C7 D0 D1 D2 D3 D4 D5 D6 D7
Code Word A Code Word B Code Word C Code Word D

(c)
E0 E1 E2 E3 E4 E5 E6 E7 F0 F1 F2 F3 F4 F5 F6 F7 G0 G1 G2 G3 G4 G5 G6 G7 H0 H1 H2 H3 H4 H5 H6 H7

Code Word E Code Word F Code Word G Code Word H

Interleaved Code 0 Interleaved Code 1

(b)

Error Burst
A0 B0 C0 D0 E0 F0 G0 H0 A1 B1 C1 D1 E1 F1 G1 H1 A2 B2 C2 D2 E2 F2 G2 H2 A3 B3 C3 D3 E3 F3 G3 H3

Interleaved Code 2 Interleaved Code 3

A4 B4 C4 D4 E4 F4 G4 H4 A5 B5 C5 D5 E5 F5 G5 H5 A6 B6 C6 D6 E6 F6 G6 H6 A7 B7 C7 D7 E7 F7 G7 H7
Interleaved Code 4 Interleaved Code 5 Interleaved Code 6 Interleaved Code 7

Fig. 1.3 Code words (a) Un-interleaved (b) interleaved (c) de-interleaved

Chapter 1: Introduction

 12

types of periodic interleaving techniques [88]. In block interleaver, data enters the
memory in row wise manner and read out in column wise fashion. To achieve more
spreading of erroneous symbols in block interleavers, certain permutation patterns are
prescribed instead of simple row column combination for some applications. Similarly,
based on the application, variation in the structure of convolutional interleaver is available
in the literature. Table 1.1 shows important features and applications of periodic and
pseudo-random interleavers.

Table 1.1: Some Features and Applications of Interleavers

Category of
Interleavers

Name of the
Interleaver Important features Principal applications

Periodic
Block Memory requirement:mr* = 2MN

Delay incurred tee = (2MN – 2M + 2)
WLAN, WiMAX, MIMO WLAN,

LTE/LTE-A
Convolutional mr= M(N-1)

tee = M(N-1) DAB, DVB
Pseudo-random S-Random | − | ≤ | () − ()| > $ CDMA2000, WCDMA@

* M and N represents row and column numbers of interleaver memory respectively.
$ i and j are any two positions and s denotes the spread. Π(x) represents interleaved
symbols.
@ Wide Band CDMA

 Interleavers help to preserve data integrity during transmission over noisy channel
against burst errors. The advantage is encompassed with drawbacks like additional
memory requirement and increased delay. Improved design of interleaver and efficient use
of resources on the implementation platform make the interleaver a good choice to protect
data from error burst. In case of convolution interleaver, memory wastage in the
incremental shift registers is an issue to be addressed in design and implementation along
with the operating speed of the circuit. The permutation steps as prescribed in the standard
documents for block interleavers of various applications like WLAN, WiMAX, MIMO
WLAN, LTE/LTE-A [89] involves complex mathematical functions like modulus and
floor. Implementation of these functions on hardware platform is the important issue to be
addressed in the realization of block interleavers.
1.4 Applications of Interleaver

Interleavers are widely used in wireless communication system with principal
objective to reduce the effect of fading in the channel. Concatenation of random ECC with
interleavers is used in some of the communication systems to make the system more

Chapter 1: Introduction

 13

robust against both random and burst types of error. For example, DAB [90] transmitter
use a convolutional interleaver between the inner (convolutional code) and outer (Reed
Solomon code) encoder to achieve low Bit Error Rate (BER). In the receiver side, RS
decoder is placed first followed by the convolutional de-interleaver and finally the Viterbi
decoder. Convolutional code helps to reduce the random error whereas interleaver along
with Reed Solomon code ensures least possible effect of burst error [91]. DVB systems
also use convolutional interleaver with different parameters [72], [73]. On the other hand
block interleavers are widely used in applications like WLAN [74], WiMAX [52], [53],
MIMO-WLAN [75], LTE [76] and LTE-A [77]. These block interleavers generate the
interleaved code words based on certain permutation patterns as prescribed in their
standard document. The permutation patterns ensure separation between subsequent data
symbols to achieve maximum performance out of the interleaver. Some of these
interleavers are relatively simple to implement whereas some other have complex
structure.

1.5 VHDL Modeling and FPGA
VHDL stands for Very High Speed Integrated Circuit - Hardware Description

Language [92]. It is used to model digital electronic circuits / systems and is intended for
circuit synthesis as well as circuit simulation. The VHDL modeling of the digital system
can be done at different levels of abstraction: from algorithm to gate.

New or improved algorithms to be tested on hardware platform need to be
converted into a Hardware Description Language (HDL) model. VHDL is usually chosen
as one of the preferred alternative for such modelling. Once such model is prepared, it can
be simulated to test its functionality and verify its working using test benches. On
successful simulation, the model can be downloaded into reconfigurable hardware
platforms like FPGA for its hardware testing. Any discrepancy noticed at any stage may
be quickly rectified by making suitable changes in the VHDL model.

Field Programmable Gate Arrays (FPGAs) [93] are semiconductor devices that are
based around a matrix of configurable logic blocks (CLBs) connected via programmable
interconnects. FPGAs can be reprogrammed to desired application or functionality
requirements after manufacturing. This feature distinguishes FPGAs from Application
Specific Integrated Circuits (ASICs), which are custom manufactured for specific design
tasks. FPGAs are available in both versions: One-Time Programmable (OTP) and Static
Random Access Memory (SRAM) based which can be reprogrammed as the design

Chapter 1: Introduction

 14

evolves. The latter is more popular and widely acceptable for product design. Following
paragraphs present brief overview about three FPGAs being used in experimentation
during the course of the research pursued by the author.

Spartan 3 [94] is one of the low cost Xilinx FPGA produced on the 90nm process
technology whose design methodologies, tools, and architecture is aimed to address high-
density consumer oriented applications. It contains abundance of logic gates (up to
5000K) inside it to house fairly large digital circuits. Apart from Look-up Tables (LUTs),
Spartan 3 devices contain on chip dedicated 18x18 multipliers to enhance the performance
of computing operation. It also includes on chip memory called Block RAM and Digital
Clock Manager (DCM) to improve the performance of logic circuits implemented using
them.

Spartan 3AN [95] is another FPGA developed by Xilinx with certain additional
features like in-system flash memory for configuration and non-volatile data storage than
its predecessor, i.e. Spartan 3. It is suitable for applications where non-volatile, system
integration, security, large user flash are required and is ideal for space-critical or secure
applications as well as low cost embedded controllers. Some of the applications where this
FPGA is used are automotive, infotainment, telematics, GPS etc.

Spartan 6 [96] is one of the latest FPGA developed by Xilinx with aim to deliver
high logic densities and reduced power consumption. It is built on 45 nm low-power
technology. Some of the improved features are increased Block RAM, DSP blocks,
memory controllers, enhanced clock management blocks, power optimized high-speed
serial transceiver blocks etc.

1.6 Literature Survey
There are few works available in the literature addressing hardware design issues

of convolutional interleaver. Yang, Zhong and Yang [97] have developed a FPGA based
Forward Error Correction (FEC) decoder for Advanced Television System Committee
(ATSC) digital TV. This work includes the design and implementation of convolutional
de-interleaver in external dual port memory due to implementation difficulty of shift
registers inside the FPGA. The authors have used Finite State Machine (FSM) based
address generator for accessing the memory as convolutional de-interleaver. However,
FPGA implementation results are not available for comparison to fellow researchers.
Kim, Lim and Lee [98] have proposed a design for DAB transceiver for implementation
on FPGA platform. The authors have modelled the convolutional interleaver in external

Chapter 1: Introduction

 15

memory due to insufficiency of flip-flops in FPGA. Due to incremental memory
requirement in each subsequent row, a portion of the interleaver memory to the tune of
14% remains unutilized. In their work, the authors have worked for reduction of the
memory wastage.

Hardware design of convolutional interleaver for DVB application has been
proposed by Asghar & Liu in [99]. This work demonstrates unified architecture for block
and convolutional interleaver supporting WiMAX and DVB applications. As per the
authors, the implementation of convolutional interleaver or de-interleaver using First-In-
First-Out (FIFO) register cells would be hardware inefficient due to large consumption of
silicon area. Consequently, a RAM based implementation by partitioning memory with
appropriate read / write logic has been employed. To keep track about the addresses of
next memory location, cyclic pointers are used instead of FIFO shift registers. For each
branch of the convolutional interleaver write address is provided by the concerned pointer
register and the next address is computed by using an addition and a comparison with the
branch boundaries. The authors used on the fly computation technique for branch
boundaries using an adder and a multiplier in association with a branch counter. Due this
approach, the authors claim to implement a hardware efficient design on ASIC using
0.12µm standard CMOS technology.

Unnikuttan et. al [100] have reported a work of designing convolutional
interleaver using Verilog HDL in ModelSim software. In addition, this work includes
design of a ½ code rate convolutional encoder with constraint length, K = 8 with the aim
to meet the specification of DVB application. In order to test the design, the authors have
made a ‘test_wrap’ model combining interleaver and de-interleaver blocks together.
Simulation results obtained using the ModelSim software are incorporated in the paper.
However, exact design procedure of convolutional interleaver used in this work has not
been reported by the authors.

In addition, literature review shows some works on software platform too. One of
such work as reported by Gaetzi and Hawksford [101] describes about a Simulink-
MATLAB simulation model implementing complete DAB system involving the
convolutional interleaver. Result analysis in respect of BER performance of the DAB
system has been reported with and without involving interleaver. This analysis
recommends the involvement of convolutional interleaver in the DAB transmitter.

Chapter 1: Introduction

 16

In regard to the design and implementation of block interleaver for WLAN with
IEEE 802.11 a/g standard, Tell and Liu [102] propose a modified LUT based architecture
in which the memory is used as a special matrix. As per the authors, intra row permutation
is carried out externally before writing data in the memory. The desired intra column
permutation takes place externally after reading data bits out of the memory. Due to
simultaneous writing and reading of the interleaver memory, the proposed technique can
work relatively faster. In addition power consumption of the modified technique is also
claimed to be lower than the conventional LUT based implementation. The only drawback
reported by the authors is the minor loss of generality. The paper also states about de-
interleaver implementation adopting the modified LUT based approach. In order to
facilitate comparison, the authors has implemented conventional LUT based technique on
the same 130 nm standard cell library of ASIC.

Sghaier et. al [103] have presented a full FPGA implementation of the WLAN
OFDM transmitter based on IEEE 802.11a through VHDL modeling. In this work, the
authors have used the LUT based approach to model the interleaver address generator,
which otherwise require huge multiplexer along with memory. In IEEE 802.11a based
WLAN interleaver, four interleaver depths are permitted posing the requirement of four
LUTs. The authors have modelled the LUTs in the internal ROM available within the
FPGA. Details of memory modeling technique used to house these LUTs are not provided.
The design is implemented on Xilinx Virtex-II Pro FPGA occupying approximately 25%
of the total available FPGA fabric.

Another work describing design of a FPGA-based OFDM modulator for IEEE
802.11a is available in literature [104]. As per the authors, block interleaver used in IEEE
802.11a based WLAN has been implemented on FPGA platform, including other blocks
like mapper, IFFT and prefix adding module required in the transceiver. However, this
paper does not explain about the implementation technique adopted while designing or
implementing the block interleaver. In this work, FPGA implementation platform has been
preferred by the authors due to the flexibility of re-configuration feature over ASIC. The
paper has reported operating speed of 92MHz for the WLAN transceiver, when
implemented on Xilinx Virtex-2 FPGA.

Limited numbers of works are available in the literature describing hardware
implementation of block interleaver used in IEEE 802.16d/e based WiMAX transceiver. A
technique for converting 1-dimensional interleaver equations into 2-dimension is proposed

Chapter 1: Introduction

 17

by Asghar and Liu [105]. This is due to the fact that direct implementation of interleaver
function in WiMAX is not hardware efficient as it contains complex functions like floor
and modulus. In addition, the conventional method i.e. using memories for storing the
permutation tables is silicon consuming. Due to the mathematical translation of interleaver
equations from 1-dimension to 2-dimension, the authors claim to avoid the
implementation difficulty of these complex functions appearing in the interleaver
equations thereby facilitating low complexity hardware implementation. This design has
the capability to compute the interleaver addresses on the fly. However, the derivations in
[105], do not clearly explain the design issues for all modulation schemes and code rates.
The authors used 0.12µm CMOS technology as their implementation platform for the
experimentation on which operating speed of 200MHz for the interleaver design has been
reported.

Khater et. al [106] have described a VHDL based implementation of interleaver
address generation circuitry for IEEE 802.16e interleaver with ½ code rate. The proposed
technique is basically revolved around certain patterns that evolve during the address
computation of the interleaver. In order to draw comparison, the authors claim to
implement FSM based and direct method of designing WiMAX interleaver. As per the
authors, these two implementation techniques have consumed huge hardware resources of
the target platform. The patterns that evolved in the proposed technique of this paper is
basically implemented mostly using multiplexers along with few counters and registers.
FPGA implementation of the proposed technique is also reported on Altera Cyclone chip
with part number EP2C5Q208C. This paper claim to simulate the interleaver design using
Mentor Graphics ModelSim simulation tool through a test bench with 100 OFDMA
symbols, but no such results have been incorporated in the paper permitting to draw
comparison by fellow researchers.

In continuation to the work described in [104], the authors have reported another
work related to design of an FPGA based OFDM modulator for IEEE 802.16-2004 [107].
During the implementation of the modulator, the authors have implemented the block
interleaver along with other associated blocks required in Fixed WiMAX transceiver. The
work is reported to be implemented on Xilinx Virtex-2 FPGA without mention about
detailed design approach. The design is claim to work with 98.376 MHz operating
frequency. During the work, MATLAB-Simulink compatibility with Xilinx System
Generator has been exploited to simulate the model.

Chapter 1: Introduction

 18

Ahmadi et. al [108] presented a work on design and implementation of a bit
interleaver for MIMO OFDM system based on IEEE 802.22 standard. IEEE 802.22 is
defined for Wireless Regional Area Network (WRAN) which involves a block interleaver.
The permutation steps of the interleaver includes floor and mod function similar to
WiMAX interleaver. The authors claim to implement the address generator of the
interleaver using two techniques viz. fully combinational and combinational-sequential.
For verification purpose test data has been generated by the authors using a MATLAB
program which is given as input to the VHDL program of the interleaver. Based on the
simulation results, the authors conclude that the combinational-sequential technique
performs better over the other technique in terms of power and area while both methods
meet the IEEE 802.22 standard timing requirements. However, implementation details of
the floor and mod functions are not provided in the paper.

Apart from hardware implementation, a software model implementation of the
WiMAX transceiver prepared on MATLAB-Simulink has been reported by Khan and
Ghauri [109]. The model implements block interleaver as prescribed in the literature
supporting all modulation schemes and code rate along with other blocks of the
transceiver. The performance of the design has been evaluated through BER versus SNR
logarithmic plot, time scatter plot and Signal-to-Noise Ratios plot using extensive
simulation inputs. These test results are presented in the paper with inference that the
model works well on SNR above 20dB.

Literature survey related to interleaver/de-interleaver design for MIMO OFDM
based system results in some works in recent past having special reference to IEEE 802.16
application. Chang [110] proposed a divided memory bank architecture for the
implementation of the IEEE 802.16e based de-interleaver. In addition, he proposed a dual
mode architecture incorporating convolutional de-interleaver within the same design.
Zafar et al. [111] have demonstrated performance analysis and design of channel encoder
followed by interleaver for IEEE 802.16-2009 based 2x2 MIMO OFDM system. The
authors used four different architectures of FEC mechanism involving convolutional
encoder and interleaver which were simulated in MATLAB and Simulink environment
[112]. Finally, the design is implemented on FPGA with reduced memory requirement and
initial delay.

A recent work on the design and hardware implementation of MIMO OFDM system
receiver including interleaver is available in the literature [113]. During the

Chapter 1: Introduction

 19

implementation of the receiver, the authors have used Intellectual Property (IP) core
offered by Altera for various modules. As a result top level views of the different blocks
of the receiver are only available in the paper without further implementation details. As
per the authors it has some advantages of occupying less hardware resources, fast running
with good stability, but not supported by any implementation result.

Another recent work [114] on the design of reconfigurable address generation
circuitry for Interleaver to support multiple standards systems based on IEEE 802.11a/g
and IEEE 802.16e has been reported. This work demonstrates a similar approach as done
in [115] to obtain efficiency in the use of FPGA resources. This work is implemented on
Xilinx Spartan 3 FPGA with necessary implementation results through Verilog HDL
modeling. Software simulation results obtained using Xilinx ISE are presented by the
authors to verify the design.

In the context of MIMO WLAN transceiver implementation on hardware platform,
the literature review unveils some research. A work as reported in [116], demonstrated the
development of a prototype transceiver for IEEE 802.11a and then upgraded to 1x4
MIMO WLAN. The authors claim to implement the transceiver on Xilinx FPGA Virtex
V. Setiawan et al. [117] have demonstrated prototyping of 2x2 MIMO WLAN system
using register transfer level (RTL) design. The authors use model-based design process for
developing the RTL design of the transceiver and implemented on Altera FPGA Stratix-II.
ASIC implementations of MIMO-OFDM / IEEE 802.11n transceiver are described by
some researchers in [118], [119]. However, the implementations of [116], [117], [118],
[119] are not focused to interleaver/de-interleaver and don’t contain detailed
implementation results.

In [120], Zhang et. al have presented a de-interleaver address generator
implementation on 0.13µm CMOS platform. This paper does not explain the details about
transition from de-interleaver expressions prescribed in IEEE 802.11n standard into the
hardware architecture. The authors claim that the implementation is also done on FPGA
platform but without any implementation result. 2-D translation with recursion of the
interleaver equations for hardware simplicity is proposed by Asghar and Liu [121]. Due to
this translation, alternative way to implement the complex functions as available in
literature becomes possible. The final expressions derived are very complex and do not
clearly explain about the hardware design issues especially for 64-QAM. The
implementation platform of this work is reported to be 65nm CMOS technology. Another

Chapter 1: Introduction

 20

recent work [122] reported by the authors of [120] claim betterment over their previous
work in terms of reduction in complexity and improvement in maximum operating
frequency keeping the same implementation platform. The improvement claimed by the
authors is due to exchanging steps between interleaver and de-interleaver.

In connection with the design of address generator for QPP interleaver used in
LTE / LTE-A transceiver, literature survey shows limited number of works. A unified
approach of Turbo decoder design suitable for mobile WiMAX and 3GPP-LTE
applications has been proposed by Kim and Park [123]. The authors have considered dual
mode approach of designing Almost Regular Permutation (ARP) and QPP interleavers to
avoid huge area overhead caused by separate RAM based interleavers. This work includes
design of QPP interleaver with the support of radix-4 single-binary turbo decoding. The
authors claim to use retiming approach to reduce the critical path delay at the cost of
increased hardware requirement to enhance the operating frequency of the circuit. Unlike
RAM based approach, it facilitates on the fly address generation feature. The work is
claimed to be implemented on 0.13μm CMOS technology. However, separate
implementation result of QPP interleaver is not available in the paper.

Sun and Cavallaro [124] proposes a low complexity QPP interleaver of LTE /
LTE-A and implemented using 65nm CMOS technology. This work includes algebraic
description of the QPP interleaver leading to listing of three algebraic properties which is
supposed to ease the interleaver design process. Recursive method of interleaver address
computation is implemented by manipulating the underlying equations of the interleaver
as proposed in the literature. As per the authors, this approach is adopted to make the
design to consume lesser hardware resources. In addition, this approach require some
parameters to be pre-computed and to be stored in LUTs. Also, the design has the
capability to compute interleaver addresses in descending order for backward address
generation with the overhead of re-computation of parameters stored in LUTs. One of the
drawback of the work is that it lacks clarity about the design of circuitry to compute
modulus function. The authors extended the work to design Turbo code decoder to be used
in 3GPP LTE / LTE-A.

Recursive approach of QPP interleaver design for 3GPP-LTE parallel turbo code
decoder has also been adopted in [125]. The authors have implemented a memory based
architecture of the interleaver supporting the bandwidth required by LTE. In addition, a
general architecture of the QPP interleaver design approach for contention free

Chapter 1: Introduction

 21

applications has been proposed. Like the work in [123], this work also uses radix-4 Soft
Input Soft Output (SISO) approach to design the Turbo code decoder for prototyping in
ASIC. As per the authors, the QPP interleaver design proposed by them supports the
radix-4 architecture.

Another work of designing QPP interleaver for high throughput HSPA/LTE Multi-
Standard turbo decoder is proposed in [126] by the same group of researchers of [124].
The work shows improved LUT based approach where inter row and inter column
parameters are pre-computed and stored in memory. Based on the input parameter, and the
inputs received from various intermediate pre-processing units, desired interleaver
addresses are generated. The work is reported to be implemented on 45nm CMOS
technology.

1.7 Motivation Behind the Work
As discussed in Section 1.2, interleavers play an important role in reducing the

effect of channel noise especially burst noise. The performance of interleaver depends on
many factors like type of interleaver and their specifications. As an example, improvement
to the tune of 2 dB due to use of block interleaving over no interleaving is recorded by the
authors in WLAN application [127].

Different communication standards use different interleavers. As a result, design of
interleaver hardware for different standards like DAB, DVB, WLAN, WIMAX, MIMO-
WLAN and LTE / LTE-A is not a unique approach. Moreover, operating speed of
hardware interleavers is a critical issue and need to be carefully dealt with during the
design process. FPGA is one of the most preferred platforms for testing and prototyping
digital hardware due to its re-configurability feature and shorter design time. Looking at
the importance of interleavers in digital communication systems, and popularity of the
FPGA platform to design and test newer algorithms, the author is motivated to the design
and implement of different types of interleavers especially the address generators by
proposing novel and improved approach. Such approaches are expected to deliver low
latency and resource efficient hardware design of the different interleavers on FPGA
platform.

Chapter 1: Introduction

 22

1.8 Objective of the Research
Importance of interleaver to preserve data integrity from burst error encountered in

the channel has been discussed in previous sections. Protection from such error become
more significant in the context of OFDM based high data rate wireless communication
system. To cater such demand, efficient design of interleaver is an important issue to be
addressed. Detailed literature review as discussed in section 1.6, suggests that not much
work so far has been carried out in the issue of efficient hardware design of interleaver for
implementation on FPGA platform. The main bottleneck in designing convolutional
interleaver for DAB / DVB or other similar communication systems is to have low latency
and memory efficient model. One of the objectives of this work is to remove such
deficiency from convolutional interleaver. The block interleavers employed in
applications like WLAN, WiMAX, MIMO WLAN, LTE/LTE-A can be divided into two
parts: address generator and interleaver memory. Working principle of the address
generator is guided by certain permutation patterns as prescribed in the literature.
Resource efficient design of the interleaver address generator for FPGA implementation
with improved speed performance is an important objective to be fulfilled through this
research work. Alongside, judicious use of embedded memory blocks of FPGA while
designing interleaver memory module is another important objective to be satisfied. Such
objective if fulfilled properly, reduces the memory requirement which may be utilized by
other sub-blocks of the transceiver, thereby providing opportunity for System on Chip
(SOC) implementation of the BWA transceiver on the same FPGA.

1.9 Challenges Faced During the Research Work
Increasing use of multimedia services and growth of graphics based internet

related contents lead to rising demand of high speed broadband wireless systems. Newer
standards are being proposed to cater this demand. There are many issues related to the
implementation of these standards. Software platforms like MATLAB [128] etc. are
convenient for implementation but the desired performance may not be achieved due to
the constraints like maximum processor clock frequency etc. In addition, the processor
architectures are usually meant for general applications and may not yield the desired
performance for certain high speed applications. For such high speed applications,
hardware platforms are most practical solution. Presently FPGA has been considered to be
the most preferred hardware platform for testing and implementation of such standards

Chapter 1: Introduction

 23

due to its shorter Turn Around Time (TAT), ease of future up-gradation, obsolescence free
design etc.

An interleaver / de-interleaver comprises of two sub-sections namely address
generator and interleaver memory. Design of digital hardware of the interleaver address
generator used in OFDM based wireless standards like DAB, DVB, WLAN, WIMAX,
MIMO-OFDM based WLAN and LTE are challenging due to the presence of complex
functions like floor and modulus. These complex functions do not have any corresponding
digital hardware for implementation. In addition, VHDL doesn’t support such functions
directly. As a result, challenges are faced in preparing the VHDL model of the interleaver
/ de-interleaver circuitry due to unavailability of such functions. Conventional LUT based
approaches are found to be consuming large amount of logic resources apart from
slowness in operation. This leads to low speed design with inefficient use of resources.
For example, the LUT based address generator for WiMAX de-interleaver consumes
approximately 80% more logic resources and works at half of speed than an improved
technique proposed in [115]. During literature survey it has been noticed that not much
work so far has been carried out in designing hardware efficient digital circuit for
implementation of the interleavers especially the address generator on reconfigurable
platform like FPGA. Efficient implementation on FPGA platform offers advantages like
reduced logic circuit requirement, better operating speed than the conventional
approaches. Taking the opportunity, the author during his investigation, has designed
several hardware efficient interleavers including the address generator for the aforesaid
applications on FPGA platform. The efficiency has been established by reducing the logic
circuit requirement and slowness in operation.

1.10 Major Contributions in Wireless Communication Systems

The principal focus of the work is to design hardware efficient interleaver for
various OFDM based high speed wireless communication systems. In this thesis work,
efficient hardware implementations of both types of interleavers, i.e. convolutional and
block, have been carried out. Firstly, block level representation of the designs is prepared.
Each block is decomposed into most suitable digital circuits which thereafter are
converted into appropriate VHDL models using Xilinx Integrated Software Environment
(ISE) for FPGA implementation.
The contributions made by the author as embodied in the thesis are highlighted as follows.

Chapter 1: Introduction

 24

 In one of the works, much effort has been given to design efficient
convolutional interleaver for DAB applications. The proposed design
utilizes FPGA’s embedded Shift registers (SRLC16) to model the
incremental memory. This modelling provides significant improvement in
the operating speed of the convolutional interleaver followed by lower
power consumption, requirement of lesser hardware resources and memory
wastage compared to existing implementations.

 Two approaches have been followed by the author in designing the
hardware for the IEEE 802.11 a/g based WLAN interleaver namely
improved LUT based and FSM based. The former technique demonstrates
significant reduction in resource utilization like slices, flip-flop and LUTs
over the conventional LUT based approach. Similar results are also
obtained for FSM based implementation. In addition, the FSM based
technique offers further fast performance over the conventional LUT based
method.

 WiMAX is another BWA based on IEEE 802.16 d/e standard which uses

special type of block interleaver. Conventionally, LUTs are used to
generate the interleaver addresses. The author has proposed improved LUT
based technique to generate de-interleaver addresses. The improvement in
terms of saving above 81% of memory blocks and 30% faster circuit
operation than the conventional LUT based approach have been achieved.
The author has also proposed FSM based interleaver address generator for
WiMAX system. The work has been carried forward to design the
complete FSM based interleaver (with memory) for the WiMAX
application. Finally a low-complexity and novel technique is proposed to
efficiently implement the address generation circuitry of the 2-D de-
interleaver used in the WiMAX transceiver using the Xilinx FPGA with
significantly lesser amount of hardware resources followed by higher speed
improvement for different modulations and code rates.

 In the work related to speed power improved hardware design of

interleaver address generator for use in MIMO WLAN, significant

Chapter 1: Introduction

 25

contributions have been made for the design of hardware efficient model of
MIMO WLAN interleaver eliminating the need for floor and modulus
functions for various higher order modulations and code rates. The
fundamental aspect behind the development of such efficient hardware lies
in the removal of these two functions during implementation phase. The
work is also extended to model the interleaver memory using FPGA’s
embedded memory and thus provides complete hardware interleaver
solution. The proposed design when compared with recent works shows
noticeable betterment in terms of maximum operating frequency, power
consumption and hardware resources.

 Finally the work related to the design of hardware efficient Quadratic

Permutation Polynomial (QPP) interleaver address generator for LTE /
LTE-A communication system is taken up. A novel algorithm has been
proposed to eliminate the need of squarer and modulus functions. The
algorithm is converted into digital hardware which is implemented on a
reconfigurable platform with improved test results in terms of FPGA
resource utilization including lesser requirement of BRAM and speed of
operation in comparison with conventional implementations.

1.11 Methodology

The principal focus of the works carried out in this research is to design low
complexity; hardware efficient models of interleavers deployed in OFDM based BWA.
The algorithms used in interleaving processes have been reviewed. Conventional
approaches like LUT based and others have been surveyed. The algorithms have been re-
designed to obtain efficiency in structure. Proposed hardware structures were modelled
into VHDL employing Xilinx ISE. While designing VHDL model, effort was given to use
the target FPGA’s embedded resources like shift register, memory, multiplier etc. to make
the design faster and more resource efficient.

The proposed designs were primarily implemented and tested on three FPGA
platforms namely Spartan 3, Spartan 3AN and Spartan 6, all from Xilinx Inc. Software
simulation of the works were carried out using ModelSim software. MATLAB has been
used for initial testing of the proposed algorithms on software platform.

Chapter 1: Introduction

 26

1.12 Organization of Thesis

This thesis is divided into eight Chapters. Chapter 2 gets started with brief
historical background of VHDL followed by its advantages. Similarly evolution of
hardware implementation platforms of digital circuits right from discrete ICs to SPLDs, to
CPLDs and finally to FPGA has been narrated. It gives idea about components of a VHDL
model and describes about different methodology used while preparing VHDL a model.
Next FPGA fundamentals, its architecture with details has been presented. Finally, brief
overviews of Xilinx Spartan 3, Spartan 3AN and Spartan 6 FPGA used in the research
work have been reported.

Chapter 3 describes about design and implementation of convolutional interleaver
and de-interleaver for DAB application. Interleaving operation of convolutional
interleaver with necessary diagrams has been presented elaborately. The chapter provides
brief introduction about embedded shift register of FPGA used to model the incremental
memory of the interleaver. Use of such shift register has reduced hardware resource
requirement of FPGA in addition to reduction in memory wastage. VHDL model of the
proposed interleaver and de-interleaver pair along with simulation result in the form of
timing diagram have been presented.

Chapter 4 introduces WLAN fundamentals along with the block interleaver used in
the transceiver. It describes technique of modeling distributed and block RAM available
inside Xilinx FPGA. In this work, two approaches namely improved LUT based and FSM
based have been followed in designing the hardware for the IEEE 802.11 a/g based
WLAN interleaver. Both design approaches along with their hardware models, simulation
diagrams have been presented. Modeling of interleaver memory in FPGA using block
RAM and critical analysis of FPGA implementation results of the two techniques have
also been described.

Design and efficient implementation issues of WiMAX block interleaver has been
described in Chapter 5. Overview of WiMAX transceiver along with interleaver / de-
interleaver background has been discussed. In this chapter, three works related to design
of WiMAX hardware interleaver and de-interleaver are presented. The first work is all
about the design of a novel FSM based multimode, high speed and hardware efficient
technique to implement the address generation circuitry of WiMAX interleaver based on
IEEE 802.16e standard on FPGA platform. An LUT based de-interleaver design approach

Chapter 1: Introduction

 27

is presented next. In this approach, the conventional LUT based technique for address
generation has been re-designed to use the FPGA memory blocks efficiently. The third
technique is about design of a low complexity and resource efficient hardware de-
interleaver for use in IEEE 802.16e based WiMAX. Transformation of address generator
algorithms into digital circuits, based on mathematical formulations and the relevant
simulation results have also been described in this chapter. Comparative study of
implementation results with previous researcher / conventional techniques has been
incorporated for each of the approaches.

Chapter 6 reports about efficient design and implementation of MIMO WLAN
interleaver on Xilinx Spartan 6 FPGA. It presents back ground information about MIMO
WLAN followed by brief description on MIMO WLAN transceiver employing multi
stream block interleaver. Interleaving operation along with its detailed specification has
been discussed next. Novel algorithm for the address generator of the interleaver including
its mathematical formulation, transformation into digital hardware is presented. Like
previous investigations, timing simulation and FPGA implementation results have been
discussed at length.

The concluding research work of this doctoral thesis have been carried out on the
design of hardware efficient QPP interleaver address generator for LTE/LTE-A
communication system and has been described in Chapter 7. Working principle followed
by proposed algorithm of the interleaver has been discussed. Hardware realization along
with software simulation has been presented next. FPGA implementation result along with
comparative analysis with conventional technique is described to demonstrate supremacy
of the proposed design.

Finally a conclusive remark has been drawn for incorporation in the Conclusion
section of the thesis work with a direction to future work in the areas of interleaver design
for dual mode operation between MIMO WLAN - LTE/LTE-A, speech signal processing,
advanced image transmission, 5G MIMO, Optical/Quantum Wireless systems and
Massive MIMO Signal Processing applications. An exhaustive Bibliography has also been
included.

Chapter 2
VHDL & FPGA Fundamentals

 Outline of this Chapter
2.1 Introduction
2.2 Components of a VHDL Model
2.3 FPGA Fundamentals
2.4 FPGA Platform used in Experimentation
2.5 Discussion

The core objective of this chapter is to disseminate fundamental concepts of
VHDL and FPGA owing to their ever increasing importance as design platform in
general and also in this particular research work. The chapter begins with
introductory remarks on VHDL and FPGA in continuation with Chapter 1. In the
first part of the chapter, it discusses fundamental elements of a VHDL model. In
addition, it presents various types description that are usually employed while
preparing the VHDL model of a given digital circuit. The later part of the chapter
deals with the discussion on general architecture of FPGA. The three essential
blocks of the architecture i.e. Programmable Logic Block, I/O Block and
Programmable Interconnect Block have been described with supporting figures.
The chapter ends with brief overview of three different latest Xilinx FPGAs used
in the research work.

Chapter 2: VHDL & FPGA Fundamentals

 29

2.1. Introduction
VHDL is the language for describing digital electronic systems [92]. It arose out of the
United States Government’s Very High Speed Integrated Circuits (VHSIC) program,
initiated in 1980. During the course of this program, it became clear that there was a
definite need for a standard language for describing the structure and function of
integrated circuits (ICs). As a consequence, the VHDL was developed, and
subsequently adopted as a standard by the Institute of Electrical and Electronic
Engineers (IEEE) in the US.

VHDL is designed to fill a number of needs required in the design process. Firstly,
it allows description of the structure of a design i.e. how it is decomposed into sub-designs
[129], and how those sub-designs are interconnected. Secondly, it allows the specification
of the function of designs using popular programming language forms. Thirdly, as a result,
it allows a design to be simulated before being manufactured, so that designers can
quickly compare possible alternatives and test for correctness without the delay thereby
reducing the expense of hardware prototyping as well as design turn around time [130].

In the beginning, digital circuits were designed with 74XX series ICs. Designing
moderately large circuit with these ICs was not an efficient way due to numerous reasons
like larger real estate occupancy of the circuit board, increased power consumption, lack
of compactness etc. Programmable Logic Devices (PLDs) [131] were introduced to solve
the problem. A PLD is supplied to the user with no logic function programmed in it. It is
up to the designer to make the PLD to perform whatever way a design requires. Only the
resources required by the design are utilized. Since several functions can usually be
combined in the design and programmed on to a single chip, the chips count, real estate
occupancy of PCB and power consumption, all are reduced considerably. Being
reprogrammable, any change required during the design can be incorporated, often
without removing it from the circuit.

PLDs such as PROM, PLA and PAL, also known as Simple Programmable Logic
Devices (SPLDs) [132] have limited number of inputs, product terms, and outputs, which
are insufficient to implement fairly complex logic circuits. A new sophisticated type chips,
called Complex Programmable Logic Devices (CPLDs) [132] were developed to cater the
increasing requirement. CPLDs consist of multiple SPLD like blocks connected together
by a programmable switching matrix housed altogether inside a single chip. Though

Chapter 2: VHDL & FPGA Fundamentals

 30

CPLDs provide logic capacity which is higher than 50 typical SPLD devices, but
increasing the logic density of CPLD further becomes difficult due to interconnection
complexity. To increase the logic density and to add more functionality in a single
programmable device, alternative architecture have been developed which are known as
Field Programmable Gate Arrays (FPGAs). FPGAs comprise of an array of unconnected
circuit elements and interconnect resources which are utilized for the implementation of
logic functions by end user through programming.

2.2. Components of a VHDL Model
The purpose of VHDL descriptions is to provide a model for digital circuits and
systems. This abstract view of the real physical circuit is referred to as entity [133]. An
entity normally consists of five basic elements, or design units, as shown in Fig. 2.1
below. In VHDL, one generally distinguishes between the external view of a module
and its internal description. The external view is reflected in entity declaration which
represents an interface description of a ‘black box’. The important part of this interface
description consists of signals over which the individual modules communicate with
each other. Fig. 2.2 explain the format of entity declaration with an example of 4 to 1
multiplexer.

Fig. 2.1 Basic Elements of A VHDL Model.

The internal view of a module and, therefore its functionality is described in the
architecture body. This can be achieved in various ways. One possibility is given by

PACKAGE
DECLARATION

PACKAGE

BODY

ENTITY
(interface description)

ARCHITECTURE
(functionality)

CONFIGURATION
(connection entity architecture)

Chapter 2: VHDL & FPGA Fundamentals

 31

coding of a behavioral description with a set of concurrent or sequential statements.
Another possibility is a structural description which serves as a base for the
hierarchically designed circuit architectures. Fig. 2.3 explains the two types of
architectures with the example of full adder. Naturally these two kinds of architectures
can also be combined. The lowest hierarchy level however must consist of behavioral
descriptions.

Fig. 2.2 (a) Block Diagram of a 4 to 1 Multiplexer (MUX) (b) Its Entity Declaration

One of the major VHDL features is the capability to deal with multiple
different architectural bodies belonging to the same entity declaration. In this case, it is
necessary to bind one of the architectures to the entity in order to have a unique
hierarchy for simulation or synthesis. Being able to investigate different architectural
alternatives, the development of the systems could be done in an efficient top-down
manner. The ease of switching between different architectures has another advantage,
namely quick testing. This also includes switching between behavioral descriptions
based on the different algorithms, as well as switching to gate level net lists, for
example, after a partial synthesis is performed. Which architecture should be used for
simulation or synthesis in conjunction with a given entity is specified in the
configuration section. If the architecture body consists of structural description, then
the binding architecture and entities of the instantiated sub modules, the so called
components, can also be fixed by the configuration statement.

The package is the last element mentioned here. It contains declarations of
frequently used data types, components, functions and so on. The package consists of a
package declaration and a package body. The declaration is used, like the name

MUX
I0
I1
I2
I3

S0 S1

Y

entity MUX is
-- (After a double minus sign (-) the
rest of the line is
-- treated as a comment)

(a) (b)

Chapter 2: VHDL & FPGA Fundamentals

 32

implies, for declaring the above mentioned objects. This means, they become visible to
other design units. In the package body, the definition of these objects can be carried
out, for example the definitions of functions or the assignments of a value to a
constant. Packages are language elements which can be compared with header files
and the belonging codes, or objects files, found in programming language C. The
portioning of a package into its declaration and body provides advantages in compiling
the model descriptors.

Fig. 2.3 VHDL Modeling of a Full Adder in (a) Behavioral (b) Structural

library IEEE;
use IEEE.std_logic_1164.all;

entity full_adder is
 port(in1, in2, c_in: in std_logic;
 sum, c_out: out std_logic);
end full_adder;
architecture structural of full_adder is
 component half_adder is
 port (x,y: in std_logic;
 sum, carry: out std_logic); end component;
 component or_2 is
 port (x,y: in std_logic;
 z: out std_logic); end component;

signal s1, s2, s3: std_logic;

begin
 H1: half_adder port map(x=>in1, y=>in2, sum=>s1,
carry=>s3);
 H2: half_adder port map(x=>s1, y=>c_in,
sum=>sum, carry=>s2);
 O1: or_2 port map(x=>s2, y=>s3, z=>c_out);

end structural;

(a) (b)

library IEEE;
use IEEE.std_logic_1164.all;
 entity full_adder is
 port(in1, in2, c_in: in std_logic;
 sum, c_out: out std_logic);
end full_adder;

architecture behavioural of full_adder is

begin process(in1, in2, c_in)
 begin if (in1=’0’ and in2=’0’ and c_in=’0’) then
 sum <= ‘0’; c_out <=’0’; elsif (in1=’0’ and in2=’0’ and c_in=’1’) then
 sum <= ‘1’; c_out <=’0’;
 elsif (in1=’0’ and in2=’1’ and c_in=’0’) then
 sum <= ‘1’;

c_out <=’0’;
 elsif (in1=’0’ and in2=’1’ and c_in=’1’) then
 sum <= ‘0’;

c_out <=’1’;
 elsif (in1=’1’ and in2=’0’ and c_in=’0’) then
 sum <= ‘1’;

c_out <=’0’;
 elsif (in1=’1’ and in2=’0’ and c_in=’1’) then
 sum <= ‘0’; c_out <=’1’;
 elsif (in1=’1’ and in2=’1’ and c_in=’0’) then
 sum <= ‘0’; c_out <=’1’;
 else sum <= ‘1’;

c_out <=’1’;
 end if;
 end process;
end behavioural;

Chapter 2: VHDL & FPGA Fundamentals

 33

2.3 FPGA Fundamentals
Fig. 2.4 shows the typical FPGA architecture [93]. There are three key parts of its

structure: Programmable Logic Blocks, I/O Blocks, and Programmable Interconnect. The
I/O Blocks form a ring around the outer edge of the part. Each of these provides
individually selectable input, output, or bi-directional access to one of the general-purpose
I/O pins on the exterior of the FPGA package. Inside the ring of I/O Blocks lies a
rectangular array of logic blocks. Programmable interconnect steers the output of one
logic block to the input of another logic block or I/O Blocks to logic blocks and vice
versa. The logic blocks within an FPGA can be as small and simple as the macrocells in a
PLD called Fine Grained or larger and more complex called Coarse Grained [134].
However, they are never as large as an entire PLD, as the logic blocks of a CPLD are.

 Fig. 2.4 General Architecture of FPGA.

Programmable
Logic Block

I/O Block

Horizontal
Routing
Channel

Vertical
Routing
Channel

Chapter 2: VHDL & FPGA Fundamentals

 34

2.3.1 Programmable Logic Block

Fig. 2.5 Simplified Diagram of a Typical Programmable Logic Block
A typical Programmable Logic Block of FPGA is shown in Fig. 2.5. The Logic

Block consists of a 4-input Look Up Table (LUT), a register, a clock signal and a user
programmable multiplexer (MUX) [135]. The 4-input LUT is basically used as function
generator which is capable of realizing any arbitrarily defined Boolean function of four
inputs. Next paragraph will discuss about a 4-input LUT in detail. Each register could be
configured to initialize with logic 0 or logic 1 and also to act as a flip-flop or latch. If the
flip-flop option is selected, the register can further be configured to be triggered by
positive edge or negative edge of the clock. The MUX feeding the flip-flop can be
configured to accept the output from the LUT or a separate input to the logic block. All
these programming can be done by configuring the SRAM cell or the EEPROM cell or the
antifuse whatever technology is implemented. Most of the FPGAs available in the market
are SRAM based. Combinatorial output is available at y whereas registered output is at q.

Fig. 2.6. shows internal structure of a 4-input LUT. It shows implementation of the
four input Boolean function, (, , ,) = ∑ 1, 5,6,8,11,14,15 . The truth table
representation of the Boolean function is to be implemented in the LUT is provided. As
shown in Fig. 2.6, 15 numbers of 2-input multiplexers are required to implement the LUT.
Inputs of the first level multiplexers are set or reset as per the output to be generated and
should be identical with the output Y. For example, Y = 1, for a=1, b=0, c=0 and d=0.
This implementation in the LUT has been shown with a free hand solid line.

 a

b
c
d
e

clock

 y

 q

4-Input
LUT

M
U
X

FLIP
FLOP

Chapter 2: VHDL & FPGA Fundamentals

 35

Fig. 2.6 internal structure of a 4-input LUT implementing

 (, , ,) = ∑ 1, 5,6,8,11,14,15

2.3.2 Input - Output Block
The Input Output Block (I/O Block) provides a programmable bi-directional

interface between an I/O pin and FPGA’s internal logic. Fig. 2.7 shows the simplified
block diagram of I/O Block. There are three signal paths available in the I/O Block: Input
path, Output path and Control path. The Input path carries data from the I/O pin to
FPGA’s internal logic through Buffer. Data from FPGA’s internal logic to the I/O pin is
carried by the output path. The Control path determines when the output driver would
function in natural mode or in high impedance state. When it is in high impedance state
(Control = Low) the I/O pin works as input line otherwise the pin works as output line. It
is evident from Fig. 2.7 that output is active low.

Boolean Function to be implemented: (, , ,) = ∑ 1, 5,6,8,11,14,15

a b c d y
0 0 0 0 0
0 0 0 1 1
0 0 1 0 0
0 0 1 1 0
0 1 0 0 0
0 1 0 1 1
0 1 1 0 1
0 1 1 1 0
1 0 0 0 1
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 0
1 1 1 0 1
1 1 1 1 1

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1
0
0
0
1
0
0
1
0

1
1

0
1
0
0

d c b a

Y

Chapter 2: VHDL & FPGA Fundamentals

 36

Fig. 2.7 Simplified Block Diagram of I/O Block.
2.3.3 Programmable Interconnect

In addition to its logic, an important feature that distinguishes individual FPGAs is

the Programmable Interconnect structure. As shown in Fig. 2.8, the Programmable
Interconnect structure is basically horizontal and vertical routing channels [136], [137].
Each channel contains short wire segments (singles) that span a single Logic Block (LB)
[138] and longer segments spans two LBs (doubles). In addition, there are some very long
segments (not shown in Fig. 2.8) that span’s the entire FPGA length or width [139].

Fig. 2.8 Detailed view of interconnection routing between Logic Blocks.

Programmable Switch Matrix is used to connect LB’s inputs and outputs to the
wire segments or to connect one wire segment with the other. Inside the Switch Matrix,

Buffer

I/O Pin

Programmable
Output Driver Control

Output

Input

 Doubles
 Singles
 Doubles

LB LB

LB LB

LB LB

LB

LB

 LB

PSM

PSM

PSM

PSM

Chapter 2: VHDL & FPGA Fundamentals

 37

each wire can connect the other three wires as shown in Fig. 2.9. Fig. 2.10 shows an
interconnect point implemented using SRAM based technology fuse [134]. In this
technique, an SRAM cell controls the ON/OFF status of the transistor. During
programming of the FPGA, the desired SRAM through which connection is to be
established, receives a ‘1’ whereas others will receive ‘0’.

Fig. 2.9 Detailed view of Programmable Switch Matrix Interconnection of FPGA

Fig. 2.10 Detailed view of Switch Matrix Interconnect Point implemented using SRAM

Technology
2.4 FPGA platform used in the experimentation of Interleaver

This section describes some of important features of Xilinx FPGAs used in relevant
experimentations during the research studies.

0/1

0/1

Six Pass Transistors
Per Switch Matrix
Interconnect Point

Chapter 2: VHDL & FPGA Fundamentals

 38

2.4.1 Spartan 3
The Spartan-3 is one of the low cost FPGAs produced on the 90nm process

technology [94] whose design methodologies, tools, and architecture are aimed at
addressing high-density consumer oriented applications such as Set Top Box (STB), MP3
based personnel digital player, vending machine etc. The eight-member family offers
densities ranging from 50,000 to five million system gates, as shown in Table 2.1. Fig.
2.11 shows one of the package marking of Xilinx Spartan 3 FPGA with part number
XC3S400-4PQ208C.

Table 2.1: Summary of Spartan-3 FPGA Attributes

Attributes XC3S
50

XC3S
200

XC3S
400*

XC3S
1000

XC3S
1500

XC3S
2000

XC3S
4000

XC3S
5000

System Gates 50K 200K 400K 1M 1.5M 2M 4M 5M

Logic Cells (LC) 1,728 4,320 8,064 17,280 29,952 46,080 62,208 74,480

CLBs 192 480 896 1,920 3,328 5,120 6,912 8,320

Dedicated Multipliers 4 12 16 24 32 40 96 104

Block RAM Bits 72K 216K 288K 432K 576K 720K 1,728
K

1,872
K

Distributed RAM 12K 30K 56K 120K 208K 320K 432K 520K
Digital Clock Manager

(DCM) 2 4 4 4 4 4 4 4

Maximum User I/O 124 173 264 391 487 565 712 784
 * The author has used FPGA kit in the Laboratory based on XC3S400 device of Spartan-3 Family.

A Logic Cell (LC) as shown in Fig. 2.5, also known as LB contains RAM based 4-
input Look-Up Table (LUT) and a D flip flop. Configurable Logic Blocks (CLBs)
comprises of eight such LCs to implement logic and storage elements that can be used as
flip-flops or latches. CLBs can be programmed to perform a wide variety of logical
functions as well as to store data.

Spartan 3 devices supports on chip dedicated 18x18 multipliers to enhance the
performance of computing operation. Use of dedicated multiplier improves the
performance of a FPGA based design by reducing interconnection delay in the CLBs and

Chapter 2: VHDL & FPGA Fundamentals

 39

makes the design resource efficient by permitting CLBs to use by other circuitry. In
addition to basic multiplication functions, the embedded multiplier block can be used as a
shifter or to generate magnitude or two’s-complement return of a value. The multipliers
can be cascaded with each other or CLB logic for larger or more complex functions.

Fig. 2.11 Package marking of Xilinx Spartan 3 FPGA with part number XC3S400-

4PQ208C (Courtesy Xilinx Inc.)

Fig. 2.12 Single port and dual port data transfer of BRAM

In order to support requirement of large, on-chip memories for various

applications, Spartan-3 Generation FPGAs provides memory blocks namely Block RAM.
Using various configuration options [94], these embedded memory blocks can be used to
utilize the Block RAM fully as RAM, ROM, FIFOs, large look-up tables, data width
converters, circular buffers, and shift registers. The Block RAMs support dual port feature
as well. Fig. 2.12 shows the internal structure of a dual port BRAM permitting
independent access to common RAM block which has maximum capacity of 18KB or
16KB when no parity lines are used. Each port has its own dedicated set of data, control

Write Read
Read Write

Write

PORT A

PORT B

Spartan-3
Dual Port

Block
RAM Read

Write

Read

4
3

1 2

Chapter 2: VHDL & FPGA Fundamentals

 40

and clock line for synchronous read and write operations. The BRAM of Spartan-3
supports the features of dual-port memory as well as all data flow operations
simultaneously. The four possible schemes (Fig. 2.12) of data transfer to/from the BRAM
[94] are as follows:
a) Port A behaves as an independent single-port RAM supporting simultaneous read

and write operations using a single set of address lines.
b) Port B behaves as an independent single-port RAM supporting simultaneous read

and write operations using a single set of address lines.
c) Port A is the write port with a separate write address and Port B is the read port

with a separate read address. The data widths for port A and Port B need not be
same also.

d) Port B is the write port with a separate write address and Port A is the read port
with a separate read address. The data widths for port A and Port B need not be
same also.

CLBs of Spartan 3 FPGA contain up to 64 bits of single-port RAM or 32 bits of

dual-port RAM. This RAM is distributed throughout the FPGA and is commonly called
“distributed RAM” to distinguish it from block RAM. Distributed RAM is fast, localized,
and ideal for small data buffers, FIFOs, or register files.

Digital Clock Managers (DCMs) provide advanced clocking capabilities to
Spartan-3 FPGA applications. DCMs optionally multiply or divide the incoming clock
frequency to synthesize a new clock frequency. DCMs also eliminate clock skew, thereby
improving system performance. Similarly, a DCM optionally phase shifts the clock output
to delay the incoming clock by a fraction of the clock period.

Input / Output Blocks (IOBs) control the flow of data between the I/O pins and the
internal logic of the device. Each IOB supports bidirectional data flow with 3-state
operation. Double Data-Rate (DDR) registers are included. The Digitally Controlled
Impedance (DCI) feature provides automatic on-chip terminations, simplifying board
designs.
2.4.2 Spartan 3AN

Spartan 3AN is the family of Xilinx FPGA which combines all the features of the
Spartan-3A FPGA family with additional features like in-system flash memory for

Chapter 2: VHDL & FPGA Fundamentals

 41

configuration and non-volatile data storage. It provides up to 11MB of flash memory
which can be used for both device configuration as well as a valuable system resource. It
is suitable for applications like automotive, infotainment, telematics, GPS etc. It contains
five devices with the attributes listed in Table 2.2

Table 2.2 Summary of Spartan-3AN FPGA Attributes

Attributes XC3S
50AN

XC3S
200AN

XC3S
400AN

XC3S
700AN

XC3S
1400AN*

System Gates 50K 200K 400K 700K 1400K
Logic Cells (LC) 1,584 4,032 8,064 13,284 25,344

CLBs 176 448 896 1,472 2,816
Dedicated Multipliers 3 16 20 20 32

Block RAM Bits 54K 288K 360K 360K 576K
Distributed RAM 11K 28K 56K 92K 176K

Digital Clock Manager (DCM) 2 4 4 8 8
Maximum User I/O 108 195 311 372 502

 * The author has also used FPGA kit in the Laboratory based on XC3S1400AN device of Spartan-3AN
Family.
2.4.2 Spartan 6

The Spartan-6 is a thirteen-member family of FPGA that aims to delivers
expanded densities ranging from 3,840 to 147,443 logic cells, with half the power
consumption of previous Spartan families, and faster, more comprehensive connectivity. It
is built on 45 nm low-power copper process technology. The Spartan-6 family offers a
new, more efficient, dual-register 6-input LUT logic and a rich selection of built-in
system-level blocks. These include 18 Kb (2 x 9 Kb) block RAMs, second generation
DSP48A1 slices, SDRAM memory controllers, enhanced mixed-mode clock management
blocks, power optimized high-speed serial transceiver blocks etc. These features provide a
low cost programmable alternative to custom ASIC products with relatively ease of use.
Spartan-6 FPGAs offer the better solution for high-volume logic designs, consumer-
oriented DSP designs, and cost-sensitive embedded applications. Some of the important
attributes of Spartan 6 FPGA family is listed in Table 2.3.

Spartan 6 FPGAs contain up to six number of Clock Management Tile (CMT). A
CMT is consisting of two Digital Clock Managers (DCMs) and one Phase Locked Loop
(PLL), which can be used individually or cascaded. The PLL can serve as a frequency

Chapter 2: VHDL & FPGA Fundamentals

 42

synthesizer for a wider range of frequencies and as a jitter filter for incoming clocks in
conjunction with the DCMs.

Table 2.3 Summary of Spartan-6 FPGA Attributes

Att
rib

ute
s

XC
6S

LX
4

XC
6S

LX
9

XC
6S

LX
16

XC
6S

LX
25

XC
6S

LX
45

XC
6S

LX
75

XC
6S

LX
100

XC

6S
LX

150

XC
6S

LX
25T

XC

6S
LX

45T

XC
6S

LX
75T

XC

6S
LX

100
T

XC
6S

LX
150

T

Log
ic

Cel
ls

(LC
)

384
0

915
2

145
79

240
51

436
61

746
37

101
26 1 147
44 3 240
51

436
61

746
37

101
26 1 147
44 3

Co
nfig

ura
ble

 Lo
gic

 Bl
ock

s (C
LB

s) slic
es 600

143
0

227
8

375
8

682
2

116
62

158
22

230
38

375
8

682
2

116
62

158
22

230
38

Flip
 flo

p
480

0

114
40

182
24

300
64

545
76

932
96

126
576

184
304

300
64

545
76

932
96

126
576

184
304

Ma
x. d

ist.
 RA

M
75 90 136

229

401

692

976

135
5

229

401

692

976

135
5

DS
P48

A
1 S

lice
s

8 16 32 38 58 132

180

180

38 58 132

180

180

Blo
ck

RA
M

Blo
cks

Ma

x K
b

216

576

576

936

208
8

309
6

482
4

482
4

936

208
8

309
6

482
4

482
4

18
Kb

12 32 32 52 116

172

268

268

52 116

172

268

268

CM
T 2 2 2 2 4 6 6 6 2 4 6 6 6

Me
mo

ry
Co

ntro
ller

Blo

cks

0 2 2 2 2 4 4 4 2 2 4 4 4

Ma
x u

ser

I/O

132

200

232

266

358

408

480

576

250

296

348

498

540

* The author has also used FPGA kit in the Laboratory based on XC6SLX25 device of Spartan-6 Family.

Chapter 2: VHDL & FPGA Fundamentals

 43

Most Spartan-6 devices include dedicated memory controller blocks (MCBs), each
targeting a single-chip DRAM (either DDR, DDR2, DDR3, or LPDDR), and supporting
access rates of up to 800 Mb/s. The MCB has dedicated routing to predefined FPGA I/Os.
If the MCB is not used, these I/Os are available as general purpose FPGA I/Os.
 DSP applications use many binary multipliers and accumulators, best implemented
in dedicated DSP slices. All Spartan-6 FPGAs have many dedicated, full-custom, low-
power DSP slices, combining high speed with small size, while retaining system design
flexibility. Each DSP48A1 slice consists of a dedicated 18 × 18 bit two's complement
multiplier and a 48-bit accumulator, both capable of operating at up to 390 MHz. The
DSP48A1 slice provides extensive pipelining and extension capabilities that enhance
speed and efficiency of many applications, even beyond digital signal processing, such as
wide dynamic bus shifters, memory address generators, wide bus multiplexers, and
memory-mapped I/O register files. The accumulator can also be used as a synchronous
up/down counter. The multiplier can perform barrel shifting.

2.5 Discussion
VHDL has proven to be a standard language describing structure and function of

Digital ICs. It offers multiple advantages like ability to decompose a design into sub-
designs with their interconnections, provision for simulation of a design before being
manufactured, thus reducing the hardware prototype expenses, capability to deal with
multiple different architectural bodies belonging to the same entity declaration etc.
Elaborate discussion on these aspects has been carried out in the first part of the chapter.
Fundamental architecture of FPGA with its three key parts namely Programmable Logic
Blocks, I/O Blocks, and Programmable Interconnect have been discussed in second part of
the chapter. Attributes of latest Xilinx Spartan 3, Spartan 3AN and Spartan 6 which are
used as implementation platform during this research work have been discussed in detail.
Subsequent chapters will refer to these discussions while developing the VHDL models of
different interleavers including the convolutional one and their efficient FPGA
implementations.

Chapter 3
Convolutional Interleaver for

D A B
 Outline of this Chapter

3.1 Introduction
3.2 Convolutional Interleaver
3.3 Hardware Description of FPGA
3.4 Proposed Model of Convolutional Interleaver
3.5 VHDL Modeling
3.6 Simulation Results
3.7 Analysis of FPGA Implementation Results
3.8 Discussion

Design and implementation of convolutional interleaver for DAB application using
VHDL/FPGA has been discussed in this chapter. Working principle of convolutional
interleaver with progressively increasing delay units has thoroughly been explained.
In continuation with the discussion made in Chapter 2, brief introduction to embedded
shift register of Xilinx FPGA has been incorporated. The work utilizes FPGA’s
embedded Shift registers (SRLC16) to model the incremental memory of the
interleaver. Such approach helps to reduce the hardware resource requirement of
FPGA in addition to reduction of memory wastage over the existing implementation.
Exhaustive simulations have been carried out to verify the functionality of the
convolutional interleaver. Simulations results have critically been observed and
analysed.

Chapter 3: Convolutional Interleaver for D A B

 45

3.1. Introduction
ECCs play very important role in modern digital communication systems. BER of the

transmitted data can be minimized using a good ECC, of course at the cost of redundancy
[80]. Interleaving technique is traditionally used to enhance the quality of digital
transmission over a bursty channel [81]. Interleaving is a process to rearrange code symbols
so as to spread burst of errors into random like errors and thereafter ECC can be applied to
correct them. Interleaving improves [140] the performance of digital transmission at the cost
of increased memory requirement, system complexity, and delay. In most of the applications
increased memory requirement and system complexity can be accommodated with
advancement in technology. However, the increased delay as a result of increased memory
requirement may make interleaving a non-practical solution in some applications. So, an
interleaver with low delay is a practical way to deal with the error burst.

DAB is an audio broadcasting system in which analog audio signal is converted into
a digital signal and transmitted in the assigned Amplitude Modulation (AM) / Frequency
Modulation (FM) frequency band. DAB offers compact disc (CD) quality audio on the FM.
It is very well suited for mobile reception and provides very high robustness against
multipath reception [90]. The working principle of DAB is completely different from that
of conventional broadcast system. The fundamental blocks of a DAB transmitter may be
described by Fig. 3.1.

Fig. 3.1 Basic blocks of a DAB transmitter

DAB system uses Moving Pictures Experts Group (MPEG) Audio Layer II encoding.

The encoder receives input audio signal in Pulse Coded Modulation (PCM) format, sampled
at 48 kHz or 24 kHz, and produces the compressed audio bit stream of different bit rates
ranging from 8 kbps to 384 kbps [141]. The next block, scrambler permits the signal to be
made available only to the authorized users by incorporating Conditional Access (CA)
feature. Punctured convolutional codes with different code rates are used to provide
protection against the channel noise. Interleavers are used to save the data frame from error
burst arising out of deep fade in the channel. The performance of convolutional code gets
improved working in association with interleavers. DAB system uses convolutional

To RF
Stage

Audio
Signal MPEG

Encoder Scrambler Convolutional
Encoder Interleaver Mapper OFDM Symbol

Generator

Chapter 3: Convolutional Interleaver for D A B

 46

interleaver with progressive delay elements as shown in Fig. 3.2. Convolutional interleaver
offers dual advantage over block interleaver such as reduced latency and lesser memory
requirement. The mapper block converts the interleaved code words into QPSK symbols.
The final block is responsible for the generation of OFDM symbols involving the processes
of Differential Quadrature Phase Shift Keying (D-QPSK), frequency interleaving, and D-
QPSK symbols frequency multiplexing.

The work presented in this chapter is directed towards the efficient FPGA
implementation of the convolutional interleaver being used in the DAB application by
utilizing embedded FPGA resources. The convolutional interleaver requires progressively
increasing memory units to model the delay unit. The author used embedded shift register
(SRL16) of Xilinx Spartan 3 FPGA to model the delay unit of the interleaver. Such approach
has resulted in two noticeable improvements over external memory based approach [98]:
reduction in wastages of memory being used in the delay unit and higher operating speed
due to reduced interconnection delay. Initially, 8-bit and 32-bit versions of general purpose
convolutional interleavers have been modeled in VHDL and implemented on FPGA using
SRL16. Comparison in terms of FPGA slice utilization by these implementations and that
without use of SRL16 shows noticeable saving in favour of the former.

3.2. Convolutional Interleaver
A convolutional interleaver [140], [142] consists of N rows of shift registers, with

different delay in each row. In general, each successive row has a delay which is J symbols
duration higher than the previous row as shown in Fig. 3.2. The zeroth row has no delay
elements. The code word symbol from the encoder is fed into the array of shift registers,
one code symbol to each row. With each new code word symbol the commutator switches
to a new register and the new code symbol is shifted out to the channel. The i-th (1 ≤ i ≤ N-
1) shift register has a length of (i-1)J stages where J = M/N and the last row has M-1
numbers of delay elements.

The convolutional de-interleaver performs the inverse operation of the interleaver and
differs in structure of the arrangement of delay elements. Zeroth row of interleaver becomes
the N-1 row in the de-interleaver. First row of the former becomes N-2 row of latter and so
on. Minimum end to end delay (tee) and memory requirement (mr) due to the convolutional
interleaver and de-interleaver pair are

Chapter 3: Convolutional Interleaver for D A B

 47

 tee = M(N-1) code symbol (3.1)
and

 mr = M(N-1) symbols (3.2)

(a) (b)

Fig. 3.2 Generic structure of a) Convolutional interleaver b) Convolutional de-interleaver

3.3. Hardware Description of FPGA
In our experimentation, Spartan-3 (device XC3S 400) with 400K gate count FPGA

has been used [94]. It has total 896 numbers of configurable logic blocks (CLBs) arranged
in 32 x 28 matrix fashion. Each CLB has four slices and two of them are named as SLICEM
and rest two as SLICEL. Each of these slices is having logic function generator, flip-flop,
multiplexer carry logic and arithmetic gates. Besides these, SLICEM supports two
additional functions: storing data using distributed RAM (DRAM) and 16-bit shift register
(SRL16). So, total 896 x 2 = 1792 numbers of SRL16 (embedded shift register) are available
in addition to other logic resources. DAB application requires a convolutional interleaver of
array size [98] of 17 x j (j = 0, 1, …, 11) = 1122 numbers of delay elements. Numbers of
SRL16 required to implement the interleaver is 77 which is only 4.3% of available SRL16.
Because of our efficient FPGA implementation technique, sufficient FPGA resources are
made available for implementing other circuitry of the transmitter/receiver.

An SRLC16 [143] which is cascadable version of SRL16 is constructed from a 4-bit
LUT of Xilinx Spartan 3 FPGA. The internal structure of SRLC16 is presented in Fig. 3.3

J

J J

J J J

J J J J

 0

 1

 2

 3

 N-1

J J J J

J J J

J J

J

 0

 N-4

 N-3

 N-2

 N-1

Delay
Element

From
Encoder To

Channel
From
Channel To

Decoder

Chapter 3: Convolutional Interleaver for D A B

 48

which is basically a 16-bit shift register but its length can be dynamically varied by changing
value in MUX select input (i.e. ADDR). Our proposed design of convolutional interleaver /
de-interleaver utilizes the SRLC16 to implement a progressive delay elements of Fig. 3.2(a)
and (b).

Fig. 3.3 Internal structure of SRLC16.

3.4. Proposed Model of Convolutional Interleaver

Fig. 3.4 Block diagram of proposed 8-bit convolutional interleaver.

The proposed model of an 8-bit convolutional interleaver with J = 1 is presented in
Fig. 3.4. The code word symbols (Draw) received in serial form from an encoder is converted
into an 8-bit parallel code word by a Serial Input Parallel Output (SIPO) register. The 8-bit
code word is then supplied to a delay unit through a buffer register. The SIPO output
changes its value with each clock which is not desirable at the input of the delay unit. The
buffer unit delivers a word to the delay unit after every 8 clock cycles. The delay unit is
comprised of eight rows and is having the structure as narrated in Fig. 3.2(a). Embedded
shift registers with casacdable feature, viz. SRLC16, available in Xilinx Spartan 3 FPGA
(as described in Section 3.3) have been utilized to model the memory elements with
progressively increasing delay unit of the convolutional interleaver. Approaches which do
not use such feature (i.e. without SRLC16) require more FPGA slices to model the delay
unit. This is because, each slice contains a flip-flop as shown in Fig. 2.5. If the flip-flop of
a slice is used, the rest of the resources of that particular slice cannot be used again for some
other purpose. Each code symbols of the 8-bit code word is applied to the respective row of

D Q
 #0

D Q
#1

D Q
#15

MUX

DIN
 CLK

OUT
ADDR

 C15

 SIPO
register

Buffer

 Delay
unit

 8:1
MUX

Clock
circuit

 Counter

 8

3

Draw

Clock

 8 8 Dint

Chapter 3: Convolutional Interleaver for D A B

 49

the delay unit. The code word gets scrambled with every clocking events (Tx) as it
progresses through the delay unit. Table 3.1 shows the scrambling operation of the delay
unit where the input code word applied is 111111112 before any clock is applied. The
subsequent code words are assumed to be 000000002 for clarity. The scrambled code word
then applied to the input of an 8 line to 1 line multiplexer (MUX) which converts it into
stream of serial data (Dint). The interleaver circuit requires a clock signal to drive the SIPO
register, a clock circuit and a 3-bit counter. The clock circuit basically divides the system
clock frequency by 8 which is used to drive the buffer and delay unit. The 3-bit counter
generates the select input for the MUX.

Table 3.1 Scrambling Operation in Delay Unit of Convolutional Interleaver

Inputs to Delay Unit Outputs of Delay Unit
Clock event D7D6D5D4D3D2D1D0 O7O6O5O4O3O2O1O0
Before T1 11111111 1xxxxxxx
After T1 00000000 01xxxxxx
After T2 00000000 001xxxxx
After T3 00000000 0001xxxx
After T4 00000000 00001xxx
After T5 00000000 000001xx
After T6 00000000 0000001x
After T7 00000000 00000001

The block diagram representation of the de-interleaver is exactly similar to Fig. 3.4

except the use of delay unit of Fig. 3.2(b) in place of Fig. 3.2(a). The functional description
of interleaver and de-interleaver can easily be extended to higher number of bits with or
without higher values of J.

3.5. VHDL Modeling
This section describes the VHDL modeling [92] of an 8-bit interleaver, de-interleaver

and the interleaver & de-interleaver pair together using Xilinx ISE software [144] and is
presented in the form of flow charts.
3.5.1 Interleaver

In Fig. 3.5, the entity of the interleaver model contains D_IN (input code word stream)
and CLK (clock) as input signal and D_OUT (scrambled code word stream) as output signal.
The input code word stream enters the SIPO_I block one bit at a time in synchronization
with clock. The CLK signal is also read by two VHDL programs; one for generating CLK8
(= CLK÷8) synchronization signal and the other for generating COUNT3BIT, functions as

Chapter 3: Convolutional Interleaver for D A B

 50

select input signal to MUX. BUFFER_I is another VHDL program to implement the 8-bit
buffer register and is synchronized by CLK÷8 signal. The output from the BUFFER_I block
is supplied to DEL_UNIT_I block, a VHDL program to realize the delay unit required in
the interleaver. This is the heart of the interleaver. It consists of seven VHDL program
internally to implement the variable length shift registers. SRLC16s have been utilized to
model the variable length shift register. It is synchronized by CLK8 signal. The output of
the DEL_UNIT_I block is supplied to the VHDL program to implement 8:1 MUX
(MUX_8x1) which converts the 8-bit scrambled code word into serial stream of code
symbols and is finally taken out from D_OUT line.

Fig. 3.5 Flow chart of 8-bit Convolutional Interleaver

3.5.2 De-interleaver

Externally the VHDL model of the 8-bit convolutional de-interleaver is identical to
that of the interleaver. But internally the two models differ in the structure of the delay unit
(for de-interleaver it is DEL_UNIT_D). The shift register for row N-1 in DEL_UNIT_I is
used in zeroth row of the DEL_UNIT_D. Similarly shift register of N-2 row in
DEL_UNIT_I is connected to 1st row of the DEL_UNIT_D and so on. The delay unit of
proposed de-interleaver model also utilizes SRLC16 owing to its advantage in saving FPGA
slices in a similar manner as done for the proposed convolutional interleaver.

Start

Read D_IN and CLK

Declare D_IN, CLK as input signals and D_OUT
as output signal

SIPO_I
COUNT3BITCLK8

MUX_8X1
DEL_UNIT_I

BUFFER_I

Stop

Chapter 3: Convolutional Interleaver for D A B

 51

3.5.3 Interleaver – De-interleaver pair
This section describes about a VHDL model prepared by combining the proposed

convolutional interleaver and de-interleaver described in previous two sections. The
objective of such combination is to verify the functionality of proposed interleaver and de-
interleaver models. As the two constituents of this combined model utilize SRLC16, the
advantage of lesser resource utilization of FPGA is also available in the combined model
too. The combined VHDL model is designated as INTERLEAVER_DEINTERLEAVER
and is presented in the form of flowchart in Fig. 3.6. INTERLEAVER and
DEINTERLEAVER are the designations used to refer our proposed interleaver and de-
interleaver in Fig. 3.6. The INTERLEAVER block receives raw data from input source
which get spread out when progressing through it. The scrambled code words from the
output of the INTERLEAVER are then applied as input to the DEINTERLEAVER block
along with CLK as synchronization signal. It has been observed that the scrambled code
word is converted into its original (raw) form at the output of the DEINTERLEAVER block
thus verifying the functionality of the proposed convolutional interleaver and de-interleaver.
Simulation results in Section 3.6 present such verification. The author has repeated the
entire design of proposed convolutional INTERLEAVER, DEINTERLEAVER and the
INTERLEAVER_DEINTERLEAVER pair using SRLC16 as discussed in this section
(Section 3.5) with 32-bit word length whose FPGA implementation results are used in
Section 3.7 for the purpose of comparison.

Fig. 3.6 VHDL model of 8-bit Convolutional INTERLEAVER_DEINTERLEAVER pair.

Start

Read DATA_IN and CLK

Declare DATA_IN, CLK as input signals and
DATA_OUT as output signal

INTERLEAVER

DEINTERLEAVER

Stop

Chapter 3: Convolutional Interleaver for D A B

 52

3.6 Simulation Result
This section verify the functionality of the proposed convolutional interleaver and de-

interleaver (8-bit) using timing simulation obtained from ModelSim Xilinx Edition-III,
version 6.0a shown in Fig. 3.7(a) and (b). The system clock frequency applied to the model
is 5 MHz for simulation. Input set up time and output valid delay time are chosen to be 10ns
each. The 8-bit (=111111112) input signal is applied at data_in input of the interleaver as
shown in Fig. 3.7(a). This data word when passes through the interleaver gets scrambled
and can be observed in Fig. 3.7(a) at d_out. This clearly verify the interleaver operation
taking place in the convolutional interleaver. In addition, the timing diagram verify the
operation of convolutional de-interleaver as well. The interleaved code word as available at
the output of interleaver (at d_out) is applied as input to the de-interleaver which rearranges
them in such a way that the original code word is generated at its output (data_out). Figure
3.7(b) further endorses the working of convolutional interleaver and de-interleaver with
input code word = 111011112.

 (a)

(b)

Fig. 3.7 Simulation result with (a) input code word = 111111112 and (b) input code
word = 111101112

Chapter 3: Convolutional Interleaver for D A B

 53

3.7 Analysis of FPGA Implementation Results
The VHDL model of Convolutional interleaver-de-interleaver pairs (both 8-bit and

32-bit) are implemented and tested into Xilinx Spartan-3 (Device: XC3S400) FPGA
platform in the laboratory. The FPGA implementation of the convolutional interleaver-de-
interleaver pair without SRLC16 feature is a very hardware-intensive application in
comparison with SRLC16. Implementation without SRLC16 involves slice flip-flop to
model the delay unit of the interleaver/de-interleaver. As shown in Fig. 2.5, when the flip-
flop of a slice is used, the 4-input LUT of the slice remain unutilised leading to wastage of
FPGA resources. Table 3.2 shows a comparative analysis of the FPGA resource
requirement in the delay units of interleaver and de-interleaver taken together for the two
implementations - with and without SRLC16 for both 8-bit and 32-bit versions.

Table 3.2 Comparative Analysis between Various Implementations
Interleaver word

length
1-bit delay units
required

FPGA slices required Slice saving in
% without

SRLC16
with

SRLC16#
8-bit 8 x 7 = 56 56 ÷ 2 =

28 14 50.00 %
32-bit 32 x 31 =

992
992 ÷ 2

= 496 92 81.45 %

Proposed technique.

Table 3.2 clearly signifies that our proposed implementation technique of

convolutional interleaver and de-interleaver pair with SRLC16 saves 50 % and above 81 %
of FPGA resources compared to the flip-flop based technique without SRLC16 for 8-bit and
32-bit cases respectively. Use of lesser slices leads to reduced delay in the interconnection
network inside the FPGA. This further implies reduction in power consumption too.

Table 3.3 makes comparison of our proposed technique with Kim et. al [98] in the
issue of reduction in memory wastage for interleaver implementation. Pictorial
representation of Table 3.3 is provided through a bar chart in Fig. 3.8 including comparison
between General Structure [98], Kim et. al and our proposed technique highlighting row
wise wastage of memory bits. Our proposed work shows significant reduction in memory
wastage issue over the general structure in all most all rows. This technique results in
significant saving of memory bits in row no. 1 and 2 in comparison with [98]. In other rows,
work in [98] has performed better mostly due to merging of rows which may lead to more
complexity in addressing of the memory. However, our proposed technique reduces overall
memory wastage by 30.38 % for DAB application over [98]. As shown in Table 3.3, Row

Chapter 3: Convolutional Interleaver for D A B

 54

no. 1 requires 17-bit delay units which is modeled using two 16-bit SRLC16 leading to non-
utilization of 15-bits of the 2nd SRLC16. Similarly, to model the 34-bit delay units for Row
no. 2, three numbers of SRLC16 are required. In this case, 14-bits of 3rd SRLC16 remain
utilized. In similar line, with increase in row nos., the number of unutilized bits get
progressively reduced.

Another bar chart comparison between the three techniques with respect to memory
wastage factor is shown in Fig. 3.9. The latter chart is normalized against our proposed
technique. It is evident from Fig. 3.9 that our proposed technique is most efficient as far as
overall memory wastage is concerned. In addition, obviously the access time of embedded
shift register is lower than that of external memory used in [98].

Table 3.3 Comparative analysis with respect to memory wastage

row
no.

1-bit
delay
units

required

using Kim et. al. technique our proposed
technique

RAM size wasted
memory

no. of
SRLC16
required

wasted
memory

1 17 128 (R1+R3) 60 2 15
2 34 256 (R2+R8) 86 3 14
3 51 merged with R1 --- 4 13
4 68 256 (R4+R11) 1 5 12
5 85 256 (R5+R10) 1 6 11
6 102 256 (R6+R9) 1 7 10
7 119 128 9 8 9
8 136 merged with R2 --- 9 8
9 153 merged with R6 --- 10 7

10 170 merged with R5 --- 11 6
11 187 merged with R4 --- 12 5

Total wastage 158 110

Fig. 3.8. Bar chart showing row wise memory wastage of the three implementation

techniques

0
20
40
60
80

100
120
140

1 2 3 4 5 6 7 8 9 10 11
Row number

Me
mo

ry w
ast

age

General Structure Kim et. al. Our proposed technique

Chapter 3: Convolutional Interleaver for D A B

 55

Fig. 3.9 Memory wastage factors of the three implementation techniques

The HDL Synthesis Report and Device utilization summary generated using XST

(Xilinx Synthesis Technology), version G. 35, a Xilinx tool that synthesizes HDL designs
for the VHDL models (both 8-bit and 32-bit) are given in Table 3.4 and 3.5 respectively.
The 32-bit design needs two 5-bit adders in the 5-bit counters of interleaver and de-
interleaver each. As evident from Table 3.4 that 8-bit and 32-bit interleaver and de-
interleaver pair needs 14 and 92 numbers of SRLC16, which matches with Table 3.2. Other
registers are required for constructing SIPOs, internal storage in counters and in clock
circuits.

Table 3.4 HDL synthesis report
For 8-bit For 32-bit

Adder/Subtractor 2 # Adder/Subtractor 2
3-bit adder 2 5-bit adder 2
Registers 28 # Registers 80

1-bit register 24 1-bit register 76
8-bit register 2 32-bit register 2
3-bit register 2 5-bit register 2

Shift Registers 14 # Shifter Register 92
SRLC16_1 14 SRLC16_1 92

Multiplexer 2 # Multiplexer 2
 8-to-1 multiplexer 2 32-to-1 multiplexer 2

The Device Utilization Summary shows that the Convolutional interleaver and de-

interleaver pair uses very few FPGA resources thus making room for other associated
circuitry to be implemented on the same FPGA chip. The estimated power consumption of
the 32-bit model is found to be 125mW (using Xilinx XPower SoftwareVersion:G.35)
making the circuit suitable for battery powered applications also.

5.22

1.44 1

0
1
2
3
4
5
6

Techniques

No
rma

lise
d m

em
ory

 wa
sta

ge
fac

tor

General Structure Kim et. al. Our proposed technique

Chapter 3: Convolutional Interleaver for D A B

 56

Table 3.5 Device utilization summary
Selected Device : 3s400pq208-5

FPGA Resources For 8-bit For 32-bit
Number of Slices: 31 out of 3584

(0.86%)
133 out of 3584

(3.71%)
Number of Slice Flip

Flops:
46 out of 7168

(0.64%)
151 out of 7168

(2.11%)
Number of 4 input

LUTs:
34 out of 7168

(0.47%)
146 out of 7168

(2.04%)
Number of bonded

IOBs:
3 out of 141

(2.12%)
3 out of 141

(2.12%)
Number of GCLKs: 1 out of 8

(12.5%)
1 out of 8
(12.5%)

3.8 Discussion
This chapter emphasized the use of convolutional interleaving techniques to maintain

data fidelity against burst errors in digital communication. An efficient design of
convolutional interleaver and de-interleaver utilising SRLC16 of Xilinx FPGA has been
proposed. VHDL model of the proposed design is prepared using Xilinx ISE and is
implemented on Spartan 3 FPGA. Simulation results in the form of timing diagram obtained
using ModelSim software is presented which verify the functionality of the proposed
interleaver design. Reduction in FPGA resource utilization up to 81 % compared to other
implementation technique has been recorded due to our efficient design utilising SRLC16.
Lesser power consumption and reduced FPGA interconnection delay are the obvious
implications of this technique. It also lowers the overall memory wastage by 30 % compared
to a popular implementation technique for DAB application. Encouraged with the results
obtained while implementing convolutional interleaver, the researcher undertook the design
of block interleaver for WLAN application using the same FPGA platform. The design
issues for the block interleaver are presented in the next chapter.

Chapter 4

Interleaving in WLAN
 Outline of this Chapter

4.1 Introduction
4.2 Interleaving in WLAN
4.3 Modeling Memory in FPGA
4.4 Hardware Models of Interleaver
4.5 Simulation Results
4.6 Critical Analysis of FPGA Implementation
4.7 Discussion

After successful implementation of convolutional interleaver with embedded shift
register SRLC16 on FPGA platform providing better results in terms of lesser
memory wastage and lesser hardware resources, effort has now been made to
develop improved design and efficient implementation of block interleaver used in
IEEE 802.11 a/g based WLAN. This chapter initially describes the necessary
background of the block interleaver used in WLAN transceiver. In this thesis work
two approaches namely improved LUT based and Finite State Machine based have
been followed in designing the hardware for the block interleaver. The former
technique demonstrates reduction in resource utilization like slices, flip-flop and
LUTs over the conventional LUT based approach. Similar results are also obtained
for FSM based implementation but with faster performance.

Chapter 4: Interleaving in WLAN

 58

4.1. Introduction
BWA is the most challenging segment of the wireless revolution since it has

demonstrated a viable alternative to the cable modem and digital subscriber line in the last
mile access environment [145]. High processing speed, design flexibility and fast design
TAT are the important requirements of BWA to meet the challenges poised to it. These
requirements force the designers to choose reconfigurable hardware platform like FPGA.
A product implemented on FPGA can easily be upgraded by making necessary changes in
the HDL code and thus becomes obsolescence free. In addition, the TAT of FPGA based
circuits is almost instantaneous meaning prototyping and physical validation of a digital
design in real world conditions, when compared to the weeks-long wait required to
manufacture the design as ASIC [146].

A WLAN interconnects two or more communicating devices using some wireless
distribution method and usually provides a connection through an AP [44] to the wider
internet. During the past few years, the IEEE 802.11 WLAN has emerged as a prevailing
broadband indoor wireless networking technology [145]. IEEE 802.11a [74] and IEEE
802.11g [147] based WLAN use OFDM [67] PHY layer that greatly increases the overall
throughput at the AP. OFDM technique is gaining popularity due to its high transmission
capability and also for alleviating the adverse effects of ISI and ICI.

In many communication channels, two types of errors namely random and burst
occur. Random errors are dealt with FEC codes like Convolutional, Turbo etc. A burst
error or error burst is a contiguous sequence of bits or symbols, received in erroneous
condition over a data transmission channel. Burst error causes performance degradation of
the communication system with increased value of BER. Re-transmission of erroneous
frames using conventional techniques like Automatic Repeat Request (ARQ) may be
employed but may not be suitable in many applications as it demands duplex channel
[148]. The effect of burst error is more efficiently mitigated by interleaving technique
[24]. Interleaving [80] plays a vital role in improving the performance of FEC codes in
terms of BER. Interleaving is a process to rearrange code symbols so as to spread the burst
of errors into random like errors. Hence FEC techniques could be applied to correct them.
Block interleaving [19] is one of the widely used techniques in which the bits received
from the encoder are stored row wise in the interleaver’s own memory and read column
wise. WLAN based on IEEE 802.11a and IEEE 802.11g uses special type of block

Chapter 4: Interleaving in WLAN

 59

interleaver [102] of various specifications depending on the modulation type to combat
error burst.

In this chapter, we describe two techniques involving LUT and FSM to model
multimode interleaver for OFDM based WLAN. As per IEEE 802.11a and IEEE 802.11g
standard, ½, ⅔ and ¾ are the allowed code rates whereas BPSK, QPSK, 16-QAM and 64-
QAM are the permitted modulation schemes. Our work includes multimode interleaver
design on Xilinx Spartan 3 FPGA with all possible modulation scheme permitted as per
[44],[74]. The address generator of the interleaver is governed by two equations which
includes complex functions like modulus and floor. Due to the absence of corresponding
digital hardware for these functions, hardware design of the interleaver is more
challenging. Moreover, VHDL does not support such functions directly as well.
Consequently, the LUT based technique is conventionally used in which the ‘address
LUTs’ are usually housed in external memory. Use of external memory makes the design
slower due to long memory access time. Our work describes improved LUT based
technique employing FPGA’s internal memory to house the addressing LUTs. Memory
partitioning is employed to reduce the memory wastage. As a result, the proposed LUT
based technique shows better performance in terms of operating frequency with efficient
resource utilization. On the contrary, the FSM based technique shows two different
approaches involving BRAM and DRAM of FPGA to model the interleaver memory.
Critical analysis of the results of FPGA implementation including software simulation of
both approaches has been made.

4.2. Interleaving in WLAN
IEEE 802.11a and IEEE 802.11g based WLAN uses identical interleaving

technique in which a special type of block interleaver [102] is used. Specification of a
block interleaver is referred as it interleaver depth, computed by multiplying number of
rows with number of columns of the memory block used as the block interleaver. The
interleaver depth varies with modulation scheme. The interleaver action can be expressed
in terms two sets of equations which ensures the following two design rules:

i) The adjacent coded bits are mapped into non-adjacent subcarriers.
ii) Adjacent coded bits are mapped alternately into less and more significant bits of
the constellation to avoid long run of lowly reliable bits.

Chapter 4: Interleaving in WLAN

 60

Let Ncbps is the block size corresponding to the number of coded bits per allocated
sub-channels per OFDM, d represents number of columns of the block interleaver which
is typically chosen to be 16 [44]. mk is the output after first level of permutation and k
varies from 0 to Ncbps-1. s is a parameter defined as s=max{1, Ncpc/2}, where Ncpc is the
number of coded bits per sub-carrier as shown in Table 4.1.

 d
kdkd

Nm cbps
k)%)(((4.1)

 sN
mxdNms

msxj
cbps

kcbpskkk)%(

 (4.2)

where % and signify modulo and floor functions respectively.

Table 4.1 Specifications of IEEE 802.11a and IEEE 802.11g based WLAN Interleaver
Modulation

Scheme Ncpc s Ncbps No. of Rows in
interleaver memory

BPSK 1 1 48 3
QPSK 2 1 96 6

16-QAM 4 2 192 12
64-QAM 6 3 288 18

4.3 Modeling Memory in FPGA
SRAM based FPGAs [149] offer internal (embedded) storage for potential

applications like local storage, FIFO, data buffers, stack, large LUT etc. Xilinx offers two
types of such internal storage called Distributed RAM (DRAM) and Block RAM (BRAM)
in its FPGAs [94],[150].
4.3.1 Distributed RAM
 In our experimentation we have used Xilinx Spartan-3 FPGA (device XC3S400)
[94] having 896 CLBs. Each CLB contains four slices and each slice contains two LCs.
Each LC contains a 4-input LUT. The LUT performs any possible logic function of its
four inputs and forms the basis of the Spartan-3 logic architecture. Two slices of a CLB
are termed as SLICEM and the other two as SLICEL as shown in Fig. 4.1. The two LCs of
a SLICEM slice contain storage elements and can be utilized as two 16 x 1 bit DRAM in
addition to using it as 16-bit shift register (SRL16) or only as logic generator. The LCs of
slice, SLICEL can be used as ROM/logic generator. Each 16 x 1 RAM can be cascaded

Chapter 4: Interleaving in WLAN

 61

for deeper and wider memory applications. Spartan-3, Device XC3S400 FPGA offers
56Kbits of DRAM.

Fig. 4.1 Internal structure of a CLB in Spartan 3 FPGA

4.3.2 Block RAM
The Block RAM available in Spartan 3 FPGA can be configured to work as single

port or dual port memory. Single port memory can be either be read or written depending
on the control signal but not simultaneously. Dual port BRAM has the advantage of
performing both read as well as write operation on a single memory block simultaneously
using two different ports as shown in Fig. 4.2. Table 4.2 lists all the interface signals of a
dual port BRAM, their direction and the port to which they are associated with. Pictorial
view and interface signals of single port BRAM are implied from Fig 4.2. In our
experimentation we have used Xilinx Spartan-3 FPGA (device XC3S400) [94] having 16
nos. of 18KB (16KB data and 2KB parity) memory size each. The memory blocks can be
organized in various ways as shown in Table 4.3 using VHDL programming. The
proposed design uses single port memory with 1K x 16-bit organization to store
interleaver addresses whereas interleaver memory is modeled using a dual port BRAM
with 16K x 1-bit organization.

CLB

SLICEL
X1Y1

SLICEL
X1Y0

SLICEM
X0Y1

SLICEM
X0Y0

Switch
Matrix

Interconnect to
neibours

Left Hand SLICEM (Logic or
Distributed RAM or Shift register)

Right Hand SLICEL
(Logic only)

Chapter 4: Interleaving in WLAN

 62

Fig. 4.2 Dual port BRAM in Xilinx FPGA

Table 4.2 Dual port BRAM interface signal

Signal Function Port A Port B Direction Brief description
Data Input Bus DIA DIB Input The memory block receives input data to be written in the selected

location of Port A / Port B through these lines.
Parity Data Input

Bus DIPA DIPB Input The memory block receives parity data input to be written in the
selected location of Port A / Port B through these lines.

Data Output Bus DOA DOB Output The memory block transmits data from a selected location of Port
A / Port B through these lines.

Parity Data Output DOPA DOPB Output The memory block transmits parity data from a selected location of Port A / Port B through these lines.
Address Bus ADDRA ADDRB Input Through these lines, a memory location is addressed for either

read or write operation of Port A / Port B.
Write Enable WEA WEB Input This signal when made active (logic 1) permits the data write

operation in a selected memory location of Port A / Port B.
Clock Enable ENA ENB Input This signal when made active (logic 1) enables the memory block.

This signal can be treated as master control of the memory block.

Synchronous Set/Rest SSRA SSRB Input

The synchronous set/reset input, SSR, forces the data output
latches to the value specified by the SRVAL attribute. When SSR
and the enable signal, EN, are High, the data output latches for the DO and DOP outputs are synchronously set to a ‘0’ or ‘1’
according to the
SRVAL parameter.

Clock CLKA CLKB Input This signal clocks Port A / Port B for all synchronous operations. Clock polarity is configurable and is rising edge triggered by
default.

Table 4.3 Organization of BRAM in Spartan 3 FPGA
Total RAM bits, including parity 18,432 (16K data + 2K parity)

Memory Organizations

16Kx1
8Kx2
4Kx4
2Kx8 (no parity)
2Kx9 (x8 + parity)
1Kx16 (no parity)
1Kx18 (x16 + 2 parity) 512x32 (no parity)
512x36 (x32 + 4 parity)
256x72 (single-port only)

WEA
ENA
SSRA
CLKA

ADDRA[rA-1:0]
DIA[wA-1:0]

DIPA[3:0]

WEB
ENB
SSRB
CLKB

ADDRB[rB-1:0]
DIB[wB-1:0]

DIPB[3:0]

DOPA[pA-1:0]

DOA[wA-1:0]

DOPB[pB-1:0]

DOB[WB-1:0]

RAM16_w
A _w

B

Chapter 4: Interleaving in WLAN

 63

4.4. Hardware Models of Interleaver
The proposed hardware models of OFDM based WLAN interleaver consist of two

sections: address generator and interleaver memory as shown in Fig. 4.3. The address
generator is basically the simultaneous implementation of (4.1) and (4.2) which is the
write address along with provision for generation of read address for interleaver memory.
Block interleaver uses two memory blocks out of which one memory block is written and
the other is read based on the value of select (sel) signal. In this work, two different
interleaver design approaches namely LUT and FSM based for IEEE 802.11a and IEEE
802.11g WLAN have been proposed. In both approaches, a MATLAB program is
developed implementing (4.1) and (4.2) to generate the interleaver write addresses. Part of
such addresses (first 32) with four different modulation schemes are shown in Table 4.4.

Fig. 4.3 Top level view of interleaver

Table 4.4 First 32-Write Addresses for Four Modulation Schemes and Their Encoding

Ncbps=48 bits,
BPSK

(mod_typ =00)

0 3 6 9 12 15 18 21
24 27 30 33 36 39 42 45
1 4 7 10 13 16 19 22

25 28 31 34 37 40 43 46
Ncbps=96 bits,

QPSK
(mod_typ =01)

0 6 12 18 24 30 36 42
48 54 60 66 72 78 84 90
1 7 13 19 25 31 37 43

49 55 61 67 73 79 85 91
Ncbps=192 bits,

16-QAM
(mod_typ =10)

0 13 24 37 48 61 72 85
96 109 120 133 144 157 168 181
1 12 25 36 49 60 73 84

97 108 121 132 145 156 169 180
Ncbps=288 bits,

64-QAM (mod_typ =11)

0 20 37 54 74 91 108 128
145 162 182 199 216 236 253 270
1 18 38 55 72 92 109 126

146 163 180 200 217 234 254 271

4.4.1 LUT based Interleaver
In this approach of interleaver design, the write addresses are pre-computed

implementing (4.1) and (4.2) through the MATLAB program described in the form of
flow chart in Fig. 4.4 and stored in LUTs. The program accepts Ncbps, s, k and d (defined
in Section 4.2) as inputs, computes one set of values of b, c, g, mk, a, e, h, f, i and jk in

raw data

interleaved data
sel

write address
read address

 Address
Generator

 Interleaver
Memory

Chapter 4: Interleaving in WLAN

 64

every iteration till k < Ncbps as described in Fig. 4.4. The values of jk obtained in every
iteration represents the interleaver addresses which are to be stored in respective LUTs.
As shown in Table 4.1, WLAN supports four different interleaver depths one for each
modulation scheme with the dimension described there. Conventionally, four separate
memory modules are required to house these four LUTs. In this work, the author has used
embedded single and dual port BRAM memory available in the target FPGA. One of such
single port BRAM module having dimension 1K x 16-bit is partitioned as shown in Fig.
4.4 to model these LUTs. The first partition having the address range 0-02FH holds the
interleaver addresses with depth Ncbps = 48-bits. Similarly, the interleaver addresses with
Ncbps = 96-bits are also stored in memory locations with address ranges 030H-08FH and so
on. An up-counter is used to read these addresses from the appropriate LUT, based on the
value of Ncbps stored in the variable MOD_TYP as shown in Table 4.5. Partitioning of the
memory eliminates the need of four different memory blocks to model the four LUTs.
Table 4.5 shows the complete range of addresses of each LUT inside a single port BRAM.

 Fig. 4.4 Flow chart of MATLAB program used to pre-compute WLAN interleaver
addresses

Yes

Start

Define Ncbps, s and d. Initialize
k=0

k=k+1

b=k/d c=mod (k, d)
g=floor (b)

mk= (Ncbps/d)*c + g a=floor (mk/S)
e= (d*mk)/Ncbps h=floor (e)
f=mk+ Ncbps-h
i=mod (f, s)
jk=s*a + i

Print jk

Is
K< Ncbps

Stop
No

Chapter 4: Interleaving in WLAN

 65

 The memory requirement of block interleaver has been modelled using a dual port
BRAM of FPGA in the proposed work. The use of memory is optimized in the sense that
one dual port memory have been utilized to model the two memory blocks required in
OFDM based WLAN block interleaver. As shown in Fig. 4.6, the memory block is
configured in such a manner that when one port is in write mode the other is in read mode
and vice versa. The first memory module occupies 0-287 bit locations whereas the other
module is placed from 512 to 799 bit location in the 16K x 1 dual port BRAM.

Fig. 4.5 Modeling of LUT in FPGA’s internal memory

Table 4.5 Address Ranges of Various LUT Inside BRAM

Interleaver Depth (Ncbps)
Modulation type (MOD_TYP) Address Range (10 bit) Memory Size in bit

48 BPSK (00B) 000h-02FH 48x16
96 QPSK(01B) 030h-08FH 96x16

192 16-QAM (10B) 090h-14FH 192x16
288 64-QAM (11B) 150h-26FH 288x16

The interleaver action can be described in terms of a local FSM as shown in Fig.

4.7. This FSM enters in the START state on reset. Based on the value of modulation type
(mod_typ) the counter is initialized to a preset value (e.g. for mod_typ = 01B,
counter_preset = 030H; for mod_typ = 11B, counter_preset = 150H etc.). The FSM
thereafter allows the counter to progress through its natural count sequence till the
terminal value. On reaching the terminal value the FSM alters the state of rw_sel signal
causing the read and write mode of two memory blocks to swap. The counter gets auto
initialized to its respective preset value and then starts counting up again.

interleaver address
(QPSK, Ncbps = 96) interleaver address (16-QAM, Ncbps = 192) interleaver address

(64-QAM, Ncbps = 288)
unused

000H

030H

090H

150H

270H

3FFH

FPGA’s internal memory (BRAM)

interleaver address
(BPSK, Ncbps = 48)

Chapter 4: Interleaving in WLAN

 66

Fig. 4.6 Modeling of interleaver memory using dual port BRAM in FPGA

Fig. 4.7 State diagram representation view of proposed interleaver

Fig. 4.8 shows the detailed picture of the proposed interleaver. The Address

Generator Block (AGB) is responsible for generating two types of addresses, one for
writing and the other for reading the interleaver memory in Interleaver Memory Block
(IMB). The read addresses (rd_address) are obtained from a 10 bit counter. In order to
generate the write addresses the appropriate LUT for a mod_typ is to be read as per Table
4.5. The 10-bit counter output is added with a preset value in the adder A1. The
appropriate preset value is selected by a multiplexer (M1) based on the value of mod_typ
as shown in Fig. 4.7. For example, with mod_type = 01B, preset = 030H which is the
starting address of the LUT with interleaver depth 96-bits. The counter gets reset
signal with the help of a comparator after the last address of the said LUT is read. With

288 x 1bit

 288 x 1bit

P O
R
T
A

ADDRA
WEA
ENA

CLKA
DINA

DOUTA

ADDRB
WEB
ENB

CLKB
DINB

DOUTB

P
O R
T

B

…

…

mod_typ = 00
START

counter_preset
 = 000H

RESET

counter_preset
 = 090H

counter_preset
 = 150H 01 10

11

counter =
counter + 1

counter_preset = 030H

counter = counter + 1
counter =

counter + 1 togglerw_sel

counter = 2FH

togglerw_sel

counter = 8FH

togglerw_sel

counter = 14FH togglerw_sel

counter = 26FH

counter =
counter + 1

Chapter 4: Interleaving in WLAN

 67

mod_typ = 01B, the multiplexer (M2) attached to the comparator select the input value
05FH. The comparator generates a high reset pulse when the counter output reaches 05FH.

Fig. 4.8 Detailed view of proposed LUT based interleaver

 The lower 10-bit of the output received from the single port BRAM is used as the
write address of the interleaver. The multiplexers (M3 and M4) attached to the dual port
BRAM with rw_sel input sends the read and write addresses to the appropriate ports. For
example, when rw_sel = 1, Port A receives write address where as Port B gets the read
address. When writing/reading of Port A/Port B is over, status of rw_sel gets changed to
0. As a result Port A now receives read address and Port B receives write address. This
phenomenon has been explained with the help of timing diagram in Fig. 4.9. In this
manner every time when rw_sel status gets changed, the read/write operation between Port
A and Port B gets swapped. A toggle flip-flop is used to generate the rw_sel signal and is

10

GND

write
address

rd address

clk preset

 +

00
 01
 10
 11

mod_typ

000H
030H
090H
150H

02FH
05FH
0BFH
11FH

counter
reset

Comparator

 WE
 EN
 CLK DO[15:0]
 DI[15:0]

 ADDR[9:0]

clk
Vcc
GND

X”0000”

 WEA
 ENA
 CLKA DOA
 DIA[0:0]
 ADDRA[13:0]

 WEB
 ENB
 CLKB DOB
 DIB[0:0]
 ADDRB[13:0]

0

1

rw_sel

 0

1

0

 1

rw_sel

 + 200H

rw_sel
Vcc

Vcc
clk

clk
din

dout

Interleaver Memory Block
(IMB) Address Generator Block

(AGB)

10

10

10

10

10

10

14

00
 01
 10
 11

mod_typ

10

read
address

Port A

Port B

single port
BRAM

dual port BRAM

M1

M2

M3

M4

M5

A1

A2 4

Chapter 4: Interleaving in WLAN

 68

synchronized to the reset input of the counter. As shown in Fig. 4.6, the two memory
blocks required for interleaver memory are housed in a single dual port BRAM of Spartan
3 FPGA with a capacity of 1K x 16-bit. The first memory block is placed through Port A
within the address space of 0-287. A bias value of 200H needs to be added to the
read/write address of Port B as the second memory block is placed in the address space of
512-800 with starting address 200H. The multiplexer (M5) attached to the dual port
BRAM output sends the interleaved data bit out from the memory block being read.

Fig. 4.9 Timing diagram showing swapping of read/write operation between
 Port A and Port B using rw_sel

4.4.2 FSM based Interleaver
This section describes FSM based hardware interleaver especially the address

generator design for IEEE 802.11a and IEEE 802.11g based WLAN. Careful examination
of the write addresses in Table 4.4 reveals that the subsequent addresses are not equally
spaced for all the cases. Within a particular modulation scheme, the increment values
follow a fixed type of pattern. In case of BPSK and QPSK (with s = 1) the increments are
linear having the values 3 and 6 respectively. 16-QAM and 64-QAM have nonlinear
increments e.g. 13, 11 and 20, 17, 17 respectively.

Our proposed design of address generator block is described in the form of
schematic diagram in Fig. 4.10. Bulk of the circuitry is used for the generation of write
address. It contains three multiplexers (muxs): mux-1 and mux-2 implement the unequal
increments required in 16-QAM and 64-QAM whereas mux-3 routes the outputs received
from mux-1 and mux-2 along with equal increments of BPSK and QPSK. The select input
of mux-1 is driven by a T flip-flop named qam16_sel whereas that of mux-2 is controlled
by a mod-3 counter, qam64_sel. The two lines of mod_typ (modulation type) are used as
select input of mux-3. The 6-bit output from the mux-3 acts as one input of the 9-bit adder

206H 203H
02FH

200H
02CH 029H 023H

rw_selʹ = 0
rw_sel = 1

CLK

ADDRA
ADDRB
WEA
WEB rw_selʹ = 1

rw_sel = 0

026H
215H 212H 20FH 209H 20CH

002H 001H
22FH

000H
22EH 22DH 22BH 22CH

007H 006H 005H 003H 004H Write addresses
Write addresses Read addresses
Read addresses

Chapter 4: Interleaving in WLAN

 69

after zero padding. The other input of the adder comes from accumulator, which holds the
previous address. After addition a new address is written in the accumulator.

Fig. 4.10 Schematic diagram of address generator

The preset logic is a hierarchical FSM whose principal function is to generate the
correct beginning addresses for all subsequent iterations and is shown in the form of state
diagram in Fig. 4.11. This block contains a 4-bit counter keeping track of end of states
during the iteration. The FSM enters into the first state (SF) with clr = 1. Based on the
value in mod_typ it makes transition to one of the four possible next states (SMT0, SMT1,
SMT2 or SMT3). Each state in this level represents one of the possible modulation schemes.
The FSM thereafter makes transition to the next level of states (e.g. S000, S001 and so on)
based on the value in the accumulator. When the FSM at this level reaches to the terminal
value of that iteration (e.g. 45 in SMT0), it makes transition to a state (e.g. S000) in which it
loads the accumulator with the initial value (e.g. preset=1) of the next iteration. This
process continues till all the interleaver addresses are generated for the selected mod_typ.
If no changes take place in the values of mod_typ, the FSM will follow the same route of
transition and the same set of interleaver addresses will be continually be generated. Any
change in mod_typ value causes the interleaver to follow a different path. In order to
facilitate the address generator with on the fly address computation feature, we have made
the circuit to respond to clr input followed by mod_typ inputs at any stage of the FSM.
With clr=1 it comes back to SF state irrespective of its current position and there after
transits to the desired states in response of new value in mod_typ.

The read addresses are linear in nature and are generated using a 9-bit up counter
as shown in Fig. 4.10. The counter is reset whenever it reaches to the terminal count for a

clr

9

9

9
6

9

clr clk

clk

 preset logic

acc
um

ula
tor

mu
x-1

mu

x-2

mu
x-3

add
er

clr

clk
qam16_sel

2
clk qam64_sel

13
11

20
17
17

3
6

3 (MSB)

write address

9 bit up counter
clk clr

read
address

sel generator
clk

sel
mod_typ

2

Chapter 4: Interleaving in WLAN

 70

desired modulation scheme. For example, in case of 16-QAM, the counter counts from 0
to 191 and then repeats. The sel generator is basically a T flip-flop used to generate the
select (sel) signal and is initialized to zero using clr input.

Fig. 4.11 State diagram of preset logic

4.4.2.1 Interleaver Memory
The interleaver memory block comprises of two memory modules (RAM-1 and

RAM-2), three muxs and an inverter as shown in Fig. 4.12. In block interleaving when one
memory block is being written the other one is read and vice-versa. Each memory module
receives either write address or read address with the help of the mux connected to their
address inputs (A) and sel line. RAM-1 at the beginning receives the read address and
RAM-2 gets the write address with write enable (WE) signal of RAM-2 active. After a
particular memory block is read / written up to the desired location, the status of sel
changes and the operation is reversed. The mux at the output of the memory modules
routes the interleaved data stream from the read memory block to the output.

Fig. 4.12 Schematic view of FSM based Interleaver Memory block

SMT3

SMT2SMT1

preset =1

preset =2
preset

=3

0

clr
45

46
47

1 2

 3
acc=0

mod_typ
? SF

acc=? SMT0
S000

S001
S002

9

9

9

interleaved
data CLK

 DIN
 WE DOUT
 A

 DIN

WE DOUT
 A

0
 1

0
 1

0
 1

RAM-1

RAM-2

raw data

read address
write address

sel

9

Chapter 4: Interleaving in WLAN

 71

The maximum memory required for OFDM based WLAN interleaver is 288 bits.
Two identical memory blocks each of capacity 288-bits are required for the
implementation of block interleaver. To model this memory in FPGA we have followed
two techniques: one using DRAM and the other using BRAM. To model 288-bits memory
we require four 64 x 1-bit and one 32 x 1-bit DRAM as shown in Fig. 4.13. The write
enable (WE) logic is designed with the help of a 3 to 5 decoder as shown Fig. 4.14. Table
4.6 shows the conditions in which the WE signals for various DRAM blocks are
generated. Modeling the interleaver memory using BRAM is relatively simpler than
DRAM approach. BRAM of 16K x 1 bit has been utilized to model the memory.

Both approaches have their own merits and demerits. The DRAM technique makes
the embedded memory free for other requirement in the system. In this technique exact
amount of memory requirement can be modeled. DRAM is available at the cost of slices
which otherwise used to implement digital logic. As a result FPGA resources available to
implement other logic functions, if required are crunched. However, this drawback can be
mitigated with modern day FPGAs which contains abundance of logic resources due to
advancement in VLSI Technology. On the contrary, the BRAM technique uses dedicated
memory leaving slices free to implement digital logic. It does not require logic circuit like
that of Fig. 4.14 for WE. Moreover BRAM based interleaver can operate at higher
frequency than its DRAM counterpart. The only drawback is that out of 16Kbits only 288-
bits are used keeping rest unutilized.

Fig. 4.13 Organization of 288 bit DRAM

Fig. 4.14 Write Enable signal generation for various DRAM blocks

64X1
B#0

64X1
B#1

64X1
B#2

64X1
B#3

32X1
B#4

A(5:0) A(5:0) A(5:0) A(5:0) A(4:0) WE0 WE1 WE2 WE3 WE4

D
E
C
O
D
E
R

WE0
WE1

WE2
WE3

WE4

A(8)

A(7)

A(6)

A(5)

Chapter 4: Interleaving in WLAN

 72

Table 4.6 Condition for Generation of Write Enable Signals

4.5 Simulation Results
Simulation results of the proposed LUT and FSM based interleavers for OFDM

based WLAN are presented in the form of timing diagram in Fig. 4.15 (a)-(d) and Fig.
4.16 (a)-(d) respectively. In both cases, the diagrams are obtained using ModelSim Xilinx
Edition-III, version 6.0a. In these figures, 4.15(a) is identical with 4.16(a) as both displays
interleaver output for BPSK (mod_typ = 00). Similarly, Fig. 4.15(b) and 4.16(b) are
identical as both the simulation results are obtained with mod_typ = 01 (i.e. QPSK) and so
on. In all the figures of 4.15 and 4.16, first 16-bits of raw data input (data_in) are held
high. The effect of interleaver is visible as the consecutive 1’s are dispersed by certain bit
positions in the data output (data_out) line. In case of BPSK, the spread is uniform and by
three positions. For QPSK, the bits are spread by six positions uniformly. On the contrary,
16-QAM and 64-QAM show non-uniform spread by 13/11 and 20/17/17 respectively.
This is because the write address sequences in BPSK and QPSK modulation schemes are
uniformly distributed whereas, for 16-QAM and 64-QAM they are non-uniform as
highlighted in Table 4.4. The CLR signal is used to reset (= 1) the interleaver at the
beginning of an operation.

Fig. 4.15(a) Simulation result for BPSK (mod_typ = 00) in LUT based interleaver

B#0 B#1 B#2 B#3 B#4
A8A7A6 = 000

A8A7A6 = 001 A8A7A6 = 010 A8A7A6 = 011 A8A7A6A5 = 1000
WE0=1 WE1=1 WE2=1 WE3=1 WE4=1

Chapter 4: Interleaving in WLAN

 73

Fig. 4.15(b) Simulation result for QPSK (mod_typ = 01) in LUT based interleaver

Fig. 4.15(c) Simulation result for 16-QAM (mod_typ = 10) in LUT based interleaver

Fig. 4.15(d) Simulation result for 64-QAM (mod_typ = 11) in LUT based interleaver

Fig. 4.16(a) Simulation result for BPSK (mod_typ = 00) in FSM based interleaver

Chapter 4: Interleaving in WLAN

 74

Fig. 4.16(b) Simulation result for QPSK (mod_typ = 01) in FSM based interleaver

Fig. 4.16(c) Simulation result for 16-QAM (mod_typ = 10) in FSM based interleaver

Fig. 4.16(d) Simulation result for 64-QAM (mod_typ = 11) in FSM based interleaver

4.6 Critical Analysis of FPGA Implementation
This section describes FPGA implementation results and their analysis for the

proposed two techniques of interleaver design.
4.6.1 FPGA Implementation of LUT based Interleaver

The proposed VHDL model of the LUT based interleaver is prepared using Xilinx
ISE and is implemented on Xilinx Spartan-3 FPGA. Table 4.8 shows the HDL synthesis
report for the implementation. The M1 of Fig. 4.8 has been modeled in a ROM of size 4 x

Chapter 4: Interleaving in WLAN

 75

10-bit. Three adders are being used by the circuit, two as A1 and A2 and the third in the
counter. A2 is 14-bit while other two are 10-bit. Three 10-bit registers are used to hold the
read address, rd address and the count value in counter respectively in addition to one d
flip-flop as rw_sel. The 10-bit 4-to-1 multiplexer models the M2 mux. Device utilization
summary of this implementation on Xilinx Spartan-3 FPGA (XC3S400) has been
described in Table 4.8. As seen, the proposed technique utilizes only 1.53% of available
slices, 0.42% of available slice flip-flop, and 1.42% of available 4 input LUTs. The
estimated power consumption of the implementation is found to be as low as 56mW.

Table 4.7 HDL Sythesis Report of LUT based WLAN Interleaver
Logic Circuit used Quantity

4x10-bit ROM 1
10-bit adder 2
14-bit adder 1

10-bit register 3
1-bit register 1

10-bit 4-to-1 multiplexer 1

Table 4.8 Device Utilization Summary of LUT based WLAN Interleaver
FPGA Resources Utilization in Number Utilization in %

Number of Slices 55 out of 3584 1.53
Number of Slice Flip-flops 30 out of 7168 0.42
Number of 4 input LUTs 102 out of 7168 1.42
Number of Bonded IOBs 06 out of 141 3.55

Number of BRAMs 2 out of 16 12.50
Number of GCLKs 1 out of 8 12.50

4.6.2 FPGA Implementation of FSM based Interleaver

The proposed VHDL model of the FSM based interleaver has been developed
using Xilinx ISE and has also been implemented on Xilinx Spartan-3 FPGA. Two
versions of the memory model, (i.e. BRAM and DRAM) along with FSM based common
address generator have been implemented. Table 4.9 shows the HDL synthesis report of
both the implementations. It is evident that except the use of embedded memory, logic
circuit requirement is lesser in case of the technique using BRAM. The DRAM technique
uses two ROM, some register/latches in excess compared to the technique using BRAM.
The write enable logic for the two sets of memory module of Fig. 4.13 are modelled by the
two 4 x 1-bit ROM. The 2-bit adder is used in the 2-bit counter, qam64_sel whereas the 9-
bit adder is used to generate the write address of interleaver as shown in Fig. 4.10. The 4-

Chapter 4: Interleaving in WLAN

 76

bit up counter in preset logic keeps track of the end of iteration. Read addresses for the
interleaver are generated by the 9-bit up counter. The accumulator is implemented by the
9-bit register whereas the other registers are required for qam64_sel and qam16_sel. The
latches are used to store some internal signals. The mux-3 of Fig. 4.10 is implemented
using the 5-bit 4-to-1 mux whereas 9-bit 4-to-1 mux is required in preset logic and the 1-
bit 4-to-1 mux implements the switch over condition between reading and writing of RAM
blocks.

Device utilization summary of both the implementations has been described in
Table 4.10. As seen the DRAM technique utilizes 37.27% excess slices, 32.81% excess
slice flip-flops and 47.39% excess 4 input LUTs in comparison with BRAM technique.
Out of the 206 nos. of 4 input LUTs, 170 nos. (82.52%) are used in the logic circuits of the
entire interleaver and rest 36 nos. (17.48%) are used to model the two numbers of 288-bit
RAM modules. The BRAM technique uses 2 out of available 16nos. of BRAM leaving
rest 14 blocks for other uses if required in the associated circuits. The BRAM technique
can operate at a maximum frequency of 154.879 MHz (propagation delay of 6.457ns)
whereas that of DRAM technique is 116.21 MHz (propagation delay of 8.605ns). The
former technique provides 24.97% faster performance over the later. As far as estimated
power consumption is concerned both the techniques show similar results and each
consumes 56mW of power. Low power consumption is an important advantage for the
equipments used in wireless communication as they are being run by battery power.

Table 4.9 HDL Sythesis Report of FSM based WLAN Interleaver
WITH BRAM WITH DRAM

 2-bit adder : 1
 9-bit adder : 1

 4x1-bit ROM : 2

 2-bit adder : 1
 9-bit adder : 1

 4-bit up counter : 1
 9-bit up counter : 1 4-bit up counter : 1

 9-bit up counter : 1
 1-bit register : 1
 2-bit register : 1
 9-bit register : 1

 1-bit register : 1
 2-bit register : 1
 9-bit register : 1

 1-bit latch : 1
 9-bit latch : 1

 1-bit latch : 3
 9-bit latch : 1

 1-bit 4-to-1 mux : 1
 5-bit 4-to-1 mux : 1
 9-bit 4-to-1 mux : 1

 1-bit 4-to-1 mux : 1
 5-bit 4-to-1 mux : 1
 9-bit 4-to-1 mux : 1

Chapter 4: Interleaving in WLAN

 77

Table 4.10 Device Utilization Summary of FSM based WLAN Interleaver
WITH BRAM WITH DRAM

%
of e

xce
ss u

se
by

DR
AM

me

tho
d

FP
GA

Re

sou
rce

s

Uti
liza

tion
 in

No
.

Uti
liza

tion
 in

% FP
GA

Re

sou
rce

s

Uti
liza

tion
 in

No
.

Uti
liza

tion
 in

%

Number of Slices 61 out of
3584 1.70 Number of Slices 97 out of

3584 2.71 37.27
Number of Slice

Flip-flops
31 out of

7168 0.43 Number of Slice
Flip-flops

46 out of
7168 0.64 32.81

Number of 4 input LUTs 108 out of 7168 1.51 Number of 4 input LUTs 206 out of 7168 2.87 47.39

Number of
bonded IOBs

6 out of
141 4.26

Number used as
logic

170 out of
206 82.52 --

Number used as
RAM

36 out of
206 17.48 --

Number of BRAMs 2 out of 16 12.50 Number of bonded IOBs 6 out of 141 4.26 nil
Number of GCLKs 1 out of 8 12.50 Number of GCLKs 1 out of 8 12.50 nil

Comparative study of the proposed implementations in terms of FPGA resources
and operating speed is shown in Table 4.11. The LUT and BRAM based techniques show
better performance over the DRAM technique in terms of FPGA resources along with the
operating frequency. Comparison between LUT and BRAM techniques shows very
competitive result in all parameters with some betterment in favour of the BRAM
technique. The improvement obtained is due to optimization in BRAM requirement and
hence eliminating the associated logic circuits. The BRAM technique shows marginal
betterment in terms of operating speed by a factor of 8.56%. In BRAM technique the
address generator is implemented using logic circuits whereas in LUT based
implementation the address generator is LUT based implemented in FPGA’s internal
memory. DRAM technique does not require any BRAM.

Efforts have been made by the author to compare the FPGA implementation
results of our proposed work with that of other researchers. Direct comparison with [103]
is not possible as the author describes the FPGA implementation of the complete OFDM
transmitter for IEEE 802.11a based WLAN. However, in [103] interleaver address
generation is done by modeling LUT using FPGA based single port DRAM. The DRAM
based technique consumes larger FPGA resources with single advantage that it does not
use the dedicated FPGA memory (BRAM).

Chapter 4: Interleaving in WLAN

 78

Table 4.11 Comparison Between Various Implementations
FPGA

parameter
Performance of
LUT technique

Performance of BRAM
technique

Performance of DRAM
technique

Slices 1.53% used 1.70% used 2.71% used
Flip-flop 0.42% used 0.43% used 0.64% used

LUT 1.42% used 1.51% used 2.87% used
BRAM 12.5% used 12.5% used nil

Operating
frequency 141.63 MHz 154.88 MHz 116.21 MHz

4.7 Discussion
In this chapter two novel LUT and FSM based techniques have been proposed to

model the block interleavers used in IEEE 802.11a and IEEE 802.11g based WLAN. The
proposed hardware models of the interleaver are completely implemented in Spartan-3
FPGA. Unlike the conventional technique which uses external memory, the LUT based
technique uses FPGA’s own internal memory to house the addressing sequences. Single
memory module is partitioned to eliminate the requirement of four memory blocks. Due to
this partitioning, the proposed technique shows better result in terms of operating
frequency and hardware resources. In the FSM based approach, two different techniques
to model the required memory in the interleaver using internal resources of FPGA have
been shown. Critical analysis of implementation results of both approaches has been made
to ease the decision making of a system designer regarding the technique to adopt in
WLAN applications. Both the techniques make efficient use of FPGA’s internal resources.
Finally, all the approaches have been compared and concluded that BRAM-FSM based
technique shows better result among them. Methodology adopted in this work is extended
further to develop improved design and implementation of WiMAX interleavers on
reconfigurable platform.

Chapter 5
Interleaving in WiMAX

 Outline of this Chapter
5.1 Introduction
5.2 System Description
5.3 Interleaving / De-interleaving in WiMAX System
5.4 Hardware Modeling of FSM based Address Generator
5.5 Modeling Memory in FPGA
5.6 Hardware Model of LUT based De-interleaver
5.7 Proposed Algorithm for Low complexity De-interleaver
5.8 Simulation Results
5.9 Critical Analysis of FPGA implementation Results
5.10 Discussion

This chapter presents in depth the analysis of various issues related to the design
and implementation of WiMAX interleaver / de-interleaver on FPGA platform in
maintaining logical extension of the similar work on WLAN as reported in the
previous chapter. Multiple designs supported with algorithmic and mathematical
background have been proposed. Importance of WiMAX with brief technical
specifications, system overview and interleaver specifications have also been
incorporated. Detailed discussion on the proposed FSM based interleaver,
improved LUT based de-interleaver and low complexity de-interleaver along with
their hardware models, simulation waveforms and FGPA implementation results
have been made. This discussion includes design of address generator of the
interleaver / de-interleaver. Noticeable performance improvement in terms of
FPGA resource utilization and operating speed in comparison with existing
implementation available in literature have been recorded.

Chapter 5: Interleaving in WiMAX

 80

5.1. Introduction
Tremendous increase in the use of internet in the last decade has put the quest of

BWA. It is increasingly gaining popularity as an alternative solution to DSL or cable
modem for internet access. BWA has stringent requirements like high processing speed,
flexibility and fast design TAT. These requirements make the choice of the reconfigurable
hardware platform like FPGA as the obvious option. Moreover, any new technology like
WiMAX needs some time to mature. Thus a product implemented on FPGA can easily be
upgraded by making necessary changes in the HD code only and thus becomes
obsolescence free. In addition, the TAT of FPGA based circuits is much shorter compared
to ASIC based design. Design flexibility is another important advantage of FPGA based
implementations. The proposed system could have also been implemented using software.
The principal drawback of such approach is that a powerful computer is to be used to run
the program for achieving high processing speed which is a prerequisite for WiMAX
system. Employing such powerful computer may be a costly solution which may be
detrimental to the popularity of WiMAX.

WiMAX is based on the IEEE 802.16 standard for BWA system. IEEE 802.16d,
now known as, IEEE 802.16-2004 defines fixed WiMAX in the frequency band of 2 to
11GHz [49]. Amended IEEE 802.16e adds mobility support to IEEE 802.16 and defines
standard for mobile WiMAX in the frequency band 2-6 GHz. Typical data rate in IEEE
802.16e is 5Mbps with bandwidth 1.25 to 20 MHz up to 2048 sub-carriers, as opposed to
the OFDM version with 256 sub-carriers (of which 200 are used) in 802.16-2004. Both
IEEE 802.16-2004 and IEEE 802.16e permit NLOS connectivity [67]. The WiMAX air
interface adopts Orthogonal Frequency Division Multiple Access (OFDMA) for improved
multi-path performance. Scalable OFDMA (SOFDMA) [151] is introduced in the IEEE
802.16e amendment to support scalable channel bandwidths from 1.25 to 20 MHz.

OFDM [67] technique offers promising solution that has gained tremendous
research interest in recent years due to its high transmission capability and alleviating the
adverse effects of ISI and ICI. In an OFDM system, the data is divided into multiple
parallel sub-streams at a reduced data rate, and each is modulated and transmitted on a
separate orthogonal subcarrier. This increases symbol duration and thereby improves
system robustness. OFDM is achieved by providing multiplexing on users’ data streams
on both uplink and downlink transmissions. OFDM is the fundamental building block of
the IEEE 802.16 standard.

Chapter 5: Interleaving in WiMAX

 81

In digital communication systems, presence of interleavers improve the
performance of FEC codes in terms of bit error rate. Interleaving process basically
changes the arrangement of an input code symbol into a new one so that occurrences of
burst errors will be spread out and FEC techniques of random error correction become
effective. Block interleaving is one of the popular techniques to counter burst error in the
channel and are being employed in many modern day wireless communication system
applications. In a block interleaver, input bit streams are stored row wise in the interleaver
memory and read column wise and vice versa. WiMAX uses a special type of block
interleaver in which the interleaver depth and pattern vary depending on the code rate and
modulation type.

In this chapter, three works related to the design of WiMAX hardware interleaver
and de-interleaver are being presented. The interleaver / de-interleaver contains complex
functions like modulus and floor due to which the design is challenging. These complex
functions do not have any corresponding digital hardware for implementation. In addition,
VHDL doesn’t support such functions directly. Consequently, challenges are faced in
preparing the VHDL model of the interleaver / de-interleaver circuitry due to
unavailability of such functions. Conventional LUT based approaches are found to be
consuming large amount of logic resources apart from slowness in operation. This leads to
low speed design with inefficient use of resources. The first work is all about the design of
a novel FSM based multimode, high speed and hardware efficient technique to implement
the address generation circuitry of WiMAX interleaver based on IEEE 802.16e standard
on FPGA platform. An LUT based de-interleaver design approach is presented next. In
this approach, the conventional LUT based technique for address generation has been re-
designed to use the FPGA memory blocks efficiently. The third technique is about design
of a low complexity and resource efficient hardware de-interleaver for use in IEEE
802.16e based WiMAX. This work includes design of a novel algorithm for the de-
interleaver with user-friendly mathematical representation and its general validity. Use of
FPGA’s embedded multiplier provides performance improvement by reducing
interconnection delay, efficient resource utilization and lesser power consumption
compared to CLB based multiplier. This work shows betterment over LUT technique in
terms of maximum operating frequency.

Chapter 5: Interleaving in WiMAX

 82

5.2 System Description
The system level overview of IEEE 802.16e based WiMAX system is described in Fig.
5.1. In this system, the input binary data stream obtained from a source is randomized to
prevent a long sequence of 1s and 0s, which will cause timing recovery problem at the
receiver. The randomized data bits are thereafter encoded using Reed Solomon (RS)
encoder followed by Convolutional Coder (CC). The former is suitable for correction of
burst type of errors [152] whereas the latter is for random errors [153]. After RS-CC
encoding, all encoded data bits are to be interleaved by a special type block interleaver. In
the block interleaver of WiMAX system, data is written in a random manner based on
certain permutation in the memory and read sequentially [154]. Thereafter data passes
through the mapper block in which modulation takes place. The resulting data symbols are
used to construct one OFDM symbol by performing Inverse Fast Fourier Transform
(IFFT). CP is used to reduce ISI and ICI [67]. The receiver section as shown in Fig. 5.1
works exactly in reverse order.

Fig. 5.1 Overview of WiMAX system

5.3 Interleaving / De-interleaving in WiMAX System

The block interleaver used in WiMAX system has different interleaving patterns
for different code rates and modulation schemes. Different Interleaver Depths (IDs) are
required to incorporate various code rates and modulation schemes. Table 5.1 describes
permitted interleaver depths in IEEE 802.16e [52]. Bits in WiMAX are interleaved in two
steps. The first step ensures that the adjacent coded bits are mapped onto nonadjacent
subcarriers, which provides frequency diversity and improves the performance of the
decoder. The second step ensures that the adjacent bits are alternately mapped to less and
more significant bits of the modulation constellations to avoid long run of lowly reliable
bits.

Source Randomizer
RS-CC
Encoder Mapper IFFT

 Ch
ann

el

Interleaver

Sink De-Randomizer

RS-CC
Decoder De-mapper FFT De-interleaver

Chapter 5: Interleaving in WiMAX

 83

Let Ncbps is the block size corresponding to the number of coded bits per allocated
sub-channels per OFDM, d represents number of columns of the block interleaver which
is typically chosen to be 16 for WiMAX [155]. mk is the output after first level of
permutation and k varies from 0 to Ncbps -1. s is a parameter defined as s = Ncpc/2, where
Ncpc is the number of coded bits per sub-carrier, i.e., 2, 4 or 6 for QPSK, 16-QAM or 64-
QAM respectively [154]. Thus for QPSK, s=1, for 16-QAM, s = 2 and for 64-QAM, s = 3.
The first and second levels of permutation are given by (5.1) and (5.2) respectively are as
follows:

 d
kdkd

Nm cbps
k)%)(((5.1)

sN
mxdNms

msxj
cbps

kcbpskkk)%(

 (5.2)

where % and signify modulo and floor functions respectively.
The de-interleaver, which performs the inverse operation, is also defined by two

permutations. Within a received block of Ncbps bits, let j be the index of received bits
before the first permutation; mj be the index of that bit after the first and before the second
permutation; and let kj be the index of that bit after the second permutation, just prior to
delivering the block to the decoder. Equation (5.3) and (5.4) define the first and second
level of permutations for de-interleaver.

= . + + . % (5.3)

= . − − 1 . . (5.4)
As per [52], (5.3) and (5.4) performs inverse operation of (5.2) and (5.1) respectively.

Table 5.1 Permitted interleaver/de-interleaver depths in IEEE 802.16e for all code rates
and modulation schemes

Modulation

Scheme QPSK (s=1) 16-QAM (s=2) 64-QAM (s=3)

Code Rate ½ ¾ ½ ¾ ½ ⅔ ¾

Interleaver
Depth Ncbps

in bits

96 144 192 288 288 384 432
192 288 384 576 576 - -
288 432 576 - - - -
384 576 - - - - -
480 - - - - - -
576 - - - - - -

Chapter 5: Interleaving in WiMAX

 84

5.4 Hardware Modeling of FSM based Address Generator
The address generation circuit of the block interleaver for WiMAX system is

basically the simultaneous implementation of (1) and (2). A MATLAB program has been
developed implementing (1) and (2) for pre-computation of the interleaver address
sequences and is being described by an algorithm shown in Fig. 5.2. Execution of this
program with permissible values of Ncbps for different modulations, we find all the values
of interleaver memory addresses, designated by jk, out of which first 32 of each category
are only listed in Table 5.2. Careful examination of the values of jk, confirms that the
subsequent values are not equally spaced for all cases. Within a modulation scheme, the
increment values follow a fixed type of pattern irrespective of coding rate. Encoding of
ID, Modulation Type (MOD_TYP) and increment values from implementation point of
view are presented in Table 5.3.

Fig. 5.2 Algorithm of MATLAB program used to pre-compute WiMAX
interleaver addresses

Table 5.2 First 32-permutation sample addresses for three code rates and

modulation schemes
Ncbps=96 bits, ½
code rate, QPSK

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90
1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91

Ncbps=288 bits, ¾
code rate, 16-QAM

0 19 36 55 72 91 108 127 144 163 180 199 216 235 252 271
1 18 37 54 73 90 109 126 145 162 181 198 217 234 253 270

Ncbps=384 bits, ⅔
code rate, 64-QAM

0 26 49 72 98 121 144 170 193 216 242 265 288 314 337 360
1 24 50 73 96 122 145 168 194 217 240 266 289 312 338 361

Input Ncbps, s and d.
Initialize k=0

Rep: Compute k=k+1
b=k/d
c=mod (k, d)
g=floor (b) mk= (Ncbps/d)*c + g
a=floor (mk/S)
e= (d*mk)/Ncbps h=floor (e)
f=mk+ Ncbps-h
i=mod (f, s)
jk=s*a + i

Print
jk

If k< Ncbps then go to Rep
Else End

Chapter 5: Interleaving in WiMAX

 85

The address generation concept of the proposed block interleaver is described in
the form of schematic diagram as shown in Fig. 5.3. Unlike [106], our design includes all
possible code rates and modulation type permitted under IEEE 802.16e. As shown in Fig.
5.3, the design concept contains three levels of multiplexer (MUX). The first level MUXs
implement the unequal increments required in 16-QAM and 64-QAM. The four-
interleaver depths of 16-QAM as shown in Table 5.3 are implemented by the first four
MUXs from the top in level 1. The select inputs of these four MUXs are tied together and
are driven by a T flip-flop named QAM16_SEL. Similarly, the last four MUXs are for 64-
QAM modulation. The select inputs are driven by a mod-3 counter, QAM64_SEL. The
second level MUXs basically pick up one inputs based on the values of ID. The topmost
MUX in level 2 implements the eight interleaver depths of QPSK modulation scheme
available by concatenation of sub-channels [52]. The second and third MUXs in level 2
are for 16-QAM and 64-QAM respectively. The outputs from level 2 MUXs are routed to
the next section by level 3 MUX based on MOD_TYP value. The 7-bit output from the
level 3 MUX acts as one input to the 10-bit adder circuit after zero padding. The other
input of the adder comes from Accumulator, which holds the previous address. After
addition a new address is written in the Accumulator. The preset logic is a FSM whose
principal function is to generate the correct beginning addresses for all subsequent
iterations and is described at length in the next section.

Table 5.3 Increment values for various interleaver depths and modulation schemes with
their encoding

Modulation MOD_TYP Interleaver
Depth ID* Increment

values
Whether equally

spaced

QPSK 00

96 000 6 Yes
144 001 9 Yes
192 010 12 Yes
288 011 18 Yes
384 100 24 Yes
432 101 27 Yes
480 110 30 Yes
576 111 36 Yes

16-QAM 01
192 X00 13,12 No
288 X01 19,17 No
384 X10 25,23 No
576 X11 37,35 No

64-QAM 1X
288 X00 20,17,17 No
384 X01 26,23,23 No
432 X10 29,26,26 No
576 X11 38,35,35 No

 * Also referred as CODE_RATE.

Chapter 5: Interleaving in WiMAX

 86

As a case study the algorithm for modeling of QPSK MUX in VHDL is described
below.

If ID = 0 then MUX_OUT <= 6
else if ID = 1 then MUX_OUT <=
9
else if ID = 2 then MUX_OUT <=
12
…
else MUX_OUT <= 36.

Fig. 5.3 FSM based Address Generation scheme
5.4.1 Preset Logic as Finite State Machine

The Preset Logic block of Fig. 5.3 is the heart of the Address Generator of
WiMAX interleaver. It is basically a hierarchical FSM and the state diagram is shown in

10

10

10 10

3 (MSB)

7

7

7

2
7
7
7

7

7

7
7

7

6

CLK

CLK

CLK CLR 11
13 M

17
19 M

23
25 M

35
37 M

M

M

Ad

der

Ac
cum

ula
tor

Preset Logic

QAM16_SEL

CLK CLR

Address

ID

9
12
18
24
27
30
36

7

3 2
MOD_TYP

MUX LEVEL 1
MUX LEVEL 2

MUX LEVEL3

M

17
17
20 M

23
23
26 M

26
26
29 M

35
35
38 M

M

QAM64_SEL

Chapter 5: Interleaving in WiMAX

 87

Fig. 5.4. This block contains a 4-bit counter which keeps track of end states during an
iteration. The FSM enters into the first state (SF) with CLR=1. Based on the value in
MOD_TYP it makes transition to one of the three possible next states (SMT0, SMT1 or
SMT2). Each state in this level represents one of the possible modulation schemes. The
FSM thereafter makes transition to one of the next level states (SID0 to SID7 from SMT0, SID0
to SID3 from SMT1 or SMT2) based on the value in ID. The various states of this level signify
one of the interleaver depths. From these states it branches to the next level of states based
on the value in the accumulator. When the FSM at this level reaches to the terminal value
of that iteration (e.g. 90 in SID0 of SMT0), it makes transition to a state (e.g. S000) in which it
loads the accumulator with the initial value (e.g. Preset=1) of the next iteration. This
process continues till all the interleaver addresses are generated for the selected ID and
MOD_TYP. If no changes take place in the values of ID and MOD_TYP, the FSM will
follow the same route of transition and the same set of interleaver addresses will be
continually generated. Any change in ID and MOD_TYP value causes the interleaver to
follow a different path. In order to facilitate the address generator with on the fly address
computation feature, the designed circuit responds to CLR followed by ID and
MOD_TYP inputs at any stage of the FSM. With CLR = 1 it comes back to SF state
irrespective of its current position and there after transits to desired states in response to
new values in ID and MOD_TYP.

Fig. 5.4 States in preset logic

Acc
=?

Acc
=?

Acc
=? Acc

=?
Acc
=?

Acc =?
S

Acc
=? S

Acc
=?

Acc
=?

Acc
=?

Acc
=?

Preset=
1 S000

Preset=
2 S001

Preset
=3 Preset=4

Preset
=5

Preset=
0 S005

CLR=1

MOD_TYP=0

 1

 2

 90
 91 92 93

 94 95

 0
 1

 2 3
 4

 5 6
 7

 0 1
 2

 3

 0
 1

 2
 3

Acc
=0
SF

ID=? SMT0
ID=?
SMT1

ID=?
SMT2

Acc =?
S Acc

=?

Acc =?
S

Acc
=? S

Acc
=? SID3

Chapter 5: Interleaving in WiMAX

 88

5.5 Modeling Memory in FPGA
Modern FPGAs are equipped with different types of embedded resources to support

efficient implementation of circuitry related to various applications like local storage,
FIFO, data buffers, stack, large LUT etc. One of such internal resource offered in Xilinx
FPGAs is BRAM [150]. Table 5.4 and Fig. 5.5 list all the interface signals of a single port
BRAM and their directions. In our experimentation, Xilinx Spartan-3/Spartan-3AN FPGA
(device XC3S1400AN) [94] having 16/32 nos. of 18KB (16KB data and 2KB parity)
single port BRAM block is used. Out of these, 3 BRAM blocks are used to store the
address LUTs for three different modulation schemes of WiMAX de-interleaver address
generator.

Fig. 5.5 Single Port BRAM in Xilinx Spartan-3AN FPGA

Table 5.4 Single Port BRAM Interface Signal

Signal Description Port Name Direction Brief Description
Data Input Bus DI Input The memory block receives input data to be

written in the selected location through these lines.
Parity Data Input Bus DIP Input The memory block receives parity data input to be

written in the selected location through these lines.
Data Output Bus DO Output The memory block transmits data from a selected

location through these lines.
Parity Data Output DOP Output The memory block transmits parity data from a

selected location through these lines.
Address Bus ADDR Input Through these lines, a memory location is

addressed for either read or write operation.
Write Enable WE Input This signal when made active (logic 1) permits the data write operation in a selected memory location.
Clock Enable EN Input

This signal when made active (logic 1) enables the
memory block. This signal can be treated as master
control of the memory block.

Synchronous Set/Rest SSR Input

The synchronous set/reset input, SSR, forces the
data output latches to the value specified by the
SRVAL attribute. When SSR and the enable signal, EN, are High, the data output latches for the
DO and DOP outputs are synchronously set to a
‘0’ or ‘1’ according to the SRVAL parameter.

Clock CLK Input
This signal clocks for all synchronous operations.
Clock polarity is configurable and is rising edge
triggered by default.

WE
EN
SSR

CLK
ADDR

DI
DIP

P
w

w
w
r

DOP
DO

RAM16_Sw

Chapter 5: Interleaving in WiMAX

 89

5.6 Hardware Model of LUT based De-interleaver
5.6.1 Methodology of proposed design

In general, the design methodology of hardware interleaver / de-interleaver is
classified into two categories, LUT based and incremental address generation based FSM.
The former technique is relatively simple but consumes large logic resources, particularly
memory, whereas the latter involves complex design methodology but requires relatively
less logic resources. In this work, the author proposes an improved design methodology to
implement the LUT based address generator for WiMAX de-interleaver on reconfigurable
platform. As per IEEE 802.16e standard [53], ½, ⅔ and ¾ are the allowed code rates
where as QPSK, 16-QAM and 64-QAM are the permitted modulation schemes.
Accordingly, there are eight, four and four interleaver depths in QPSK, 16-QAM and 64-
QAM modulation schemes respectively [155] to implement all the permissible code rates
and modulation schemes. In conventional LUT based approach, to implement the de-
interleaver address generator, 16 numbers of memory blocks of varying size are required
to house all the interleaver addresses. During this work, a relationship between the de-
interleaver memory addresses of various Ncbps within a modulation scheme is identified. It
has been found that, the memory addresses of a larger Ncbps encompass the same of smaller
Ncbps. This relationship between the address LUTs is exploited to propose a memory
efficient LUT based address generator for WiMAX de-interleaver. Using our proposed
design, the number of memory blocks used has been reduced to 3 only ensuring saving of
81.25% critical resource.

A MATLAB program is developed using (5.3) and (5.4) of to determine the write
addresses of the de-interleaver for all code rates and modulation schemes. Flow chart
representation of the program is presented in Fig. 5.6. Among these addresses, first 5 rows
for each modulation schemes with Ncbps = 576-bits are presented in Table 5.5(a)-(c). The
first 6 columns in Table 5.5(a), describe the memory addresses of first 5 rows with Ncbps =
96-bits and QPSK modulation scheme. Similarly, the first 5 rows of interleaver memory
addresses with Ncbps = 144-bits and QPSK modulation scheme are represented by the first
9 columns in Table 5.5(a). Likewise, the addresses for other Ncbps with QPSK modulation
scheme can be determined from the same Table where the number of columns is defined
as Ncbps/d (d = 16). A similar approach can be applied in Table 5.5(b) and (c) to determine
the memory addresses with various interleaver depths for 16-QAM and 64-QAM
modulation schemes respectively. Pictorial representation of this relationship of memory

Chapter 5: Interleaving in WiMAX

 90

addresses between various interleaver depths are given in Fig. 5.7(a)-(c). For example, all
the 32 numbers of columns in Table 5.7(a) are represented by the entire cylinder of Fig.
5.7(a). First six columns in Table 5.7(a) represents the sample de-interleaver addresses for
Ncbps = 96-bits and are marked with pink colour. Similarly, the first section of the cylinder
in Fig. 5.7(a) also being marked with pink colour to signify the representation the same
de-interleaver addresses. Likewise, next three columns in Table 5.7(a) are marked with
black colour, which represents the sample de-interleaver addresses for Ncbps = 144-bits
along with the first six pink coloured columns. As seen in Fig. 5.7(a), next portion of the
cylinder is also painted with black colour. It is evident from Fig. 5.7(a) that the pink
followed by black coloured cylinder actually signify the first nine columns of Table 5.7(a)
representing the de-interleaver addresses for Ncbps = 144-bits. This discussion can be
extended further to explain the relationship between remaining part of the Fig. 5.7(a)-(c)
with rest part Table 5.7(a)-(c).

Fig. 5.6 Flow chart of MATLAB program used to determine WiMAX de-interleaver

addresses

Yes

Start

Define Ncbps, s and d. Initialize j=0

j=j+1

b=d*j
c=floor (b, Ncbps) e=j+c f=mod(e, s)

g=s*floor(j, s)
mj= g+f
h=d*mj

l=floor(h, Ncbps)
n=(Ncbps – 1)*l

kj=d*mj - n

Print kj

Is
j< Ncbps

Stop
No

Chapter 5: Interleaving in WiMAX

 91

Table 5.5(a) First Five Rows of Addresses for Ncbps = 576, ¾ Code Rate, QPSK
0 16 32 48 64 80 96 1 12 12 8 14 4 160 176 1 92 2 08 224 2 40 2 56 27 2 28 8 30 4 32 0 336 35 2 3 68 3 84 400 4 16 43 2 44 8 46 4 48 0 49 6 512 5 28 5 44 560
1 17 33 49 65 81 97 1 13 12 9 14 5 161 177 1 93 2 09 225 2 41 2 57 27 3 28 9 30 5 32 1 337 35 3 3 69 3 85 401 4 17 43 3 44 9 46 5 48 1 49 7 513 5 29 5 45 561
2 18 34 50 66 82 98 1 14 13 0 14 6 162 178 1 94 2 10 226 2 42 2 58 27 4 29 0 30 6 32 2 338 35 4 3 70 3 86 402 4 18 43 4 45 0 46 6 48 2 49 8 514 5 30 5 46 562
3 19 35 51 67 83 99 1 15 13 1 14 7 163 179 1 95 2 11 227 2 43 2 59 27 5 29 1 30 7 32 3 339 35 5 3 71 3 87 403 4 19 43 5 45 1 46 7 48 3 49 9 515 5 31 5 47 563
4 20 36 52 68 84 1 00 1 16 13 2 14 8 164 180 1 96 2 12 228 2 44 2 60 27 6 29 2 30 8 32 4 340 35 6 3 72 3 88 404 4 20 43 6 45 2 46 8 48 4 50 0 516 5 32 5 48 564

Table 5.5(b) First Five Rows of Addresses for Ncbps = 576, ¾ Code Rate, 16-QAM
0 16 3 2 4 8 64 80 9 6 1 12 128 1 44 1 60 1 76 1 92 2 08 2 24 2 40 25 6 27 2 28 8 30 4 32 0 33 6 35 2 36 8 384 40 0 41 6 432 448 4 64 4 80 496 5 12 5 28 544 5 60
1 7 1 4 9 3 3 81 65 1 13 9 7 145 1 29 1 77 1 61 2 09 1 93 2 41 2 25 27 3 25 7 30 5 28 9 33 7 32 1 36 9 35 3 401 38 5 43 3 417 465 4 49 4 97 481 5 29 5 13 561 5 45
2 18 3 4 5 0 66 82 9 8 1 14 130 1 46 1 62 1 78 1 94 2 10 2 26 2 42 25 8 27 4 29 0 30 6 32 2 33 8 35 4 37 0 386 40 2 41 8 434 450 4 66 4 82 498 5 14 5 30 546 5 62
1 9 3 5 1 3 5 83 67 1 15 9 9 147 1 31 1 79 1 63 2 11 1 95 2 43 2 27 25 9 27 5 30 7 29 1 33 9 32 3 37 1 35 5 387 40 3 43 5 419 467 4 51 4 99 483 5 15 5 31 563 5 47
4 20 3 6 5 2 68 84 1 00 1 16 132 1 48 1 64 1 80 1 96 2 12 2 28 2 44 26 0 27 6 29 2 30 8 32 4 34 0 35 6 37 2 388 40 4 42 0 436 452 4 68 4 84 500 5 16 5 32 548 5 64

Table 5.5(c) First Five Rows of Addresses for Ncbps = 576, ½ Code rate, 64-QAM

0 16 3 2 4 8 64 80 9 6 11 2 128 14 4 16 0 1 76 1 92 2 08 2 24 2 40 2 56 2 72 2 88 3 04 3 20 33 6 35 2 36 8 384 40 0 41 6 432 448 46 4 48 0 496 5 12 5 28 544 5 60
1 7 33 1 6 5 81 49 11 3 12 9 97 16 1 17 7 1 45 2 09 2 25 1 93 2 57 2 73 2 41 3 05 3 21 2 89 35 3 36 9 33 7 401 41 7 38 5 449 465 43 3 49 7 513 4 81 5 45 561 5 29
3 4 2 1 8 8 2 50 66 13 0 9 8 114 17 8 14 6 1 62 2 26 1 94 2 10 2 74 2 42 2 58 3 22 2 90 3 06 37 0 33 8 35 4 418 38 6 40 2 466 434 45 0 51 4 482 4 98 5 62 530 5 46
3 19 3 5 5 1 67 83 9 9 11 5 131 14 7 16 3 1 79 1 95 2 11 2 27 2 43 2 59 2 75 2 91 3 07 3 23 33 9 35 5 37 1 387 40 3 41 9 435 451 46 7 48 3 499 5 15 5 31 547 5 63

2 0 36 4 6 8 84 52 11 6 13 2 100 16 4 18 0 1 48 2 12 2 28 1 96 2 60 2 76 2 44 3 08 3 24 2 92 35 6 37 2 34 0 404 42 0 38 8 452 468 43 6 50 0 516 4 84 5 48 564 5 32

(a)

(b)

N=96

N=144

N=192

N=288

N=384

N=432

N=480

N=576

N=192

N=288

N=384

N=576

Chapter 5: Interleaving in WiMAX

 92

(c)

Fig. 5.7 Relationship between de-interleaver memory address with various Ncbps (= N) and
(a) QPSK modulation scheme (b) 16-QAM modulation scheme (c) 64-QAM modulation

scheme
5.6.2 Proposed hardware for the address generator

The hardware structure of the proposed LUT based address generator for WiMAX
de-interleaver is shown in Fig. 5.8. The complete hardware is divided into two parts: LUT
address generator block and LUT block. The former consists of ROMs, multiplexers and
an up counter responsible for generating the memory address (icount) required to read the
address LUTs. The ROMs store the terminal values of each row as input and the starting
values of the next row as the output. The column counter counts up to the desired column
and then gets reloaded with another preset value representing the starting memory address
of the next row from the appropriate ROM selected by mod typ and code rate signals. The
content of ROMs used to implement Ncbps = 96 of QPSK (ROM_00_000) and Ncbps = 192
of 16-QAM (ROM_01_X00) are presented in Table 5.6 (a) and (b). Similar contents are
available in other ROMs.

The latter block contains the three address LUTs storing the de-interleaver
addresses for the three modulation schemes. The multiplexer arrangement along with
values in the mod typ ensures selection of proper address LUT for a particular modulation
scheme. The selected address LUT is read using icount and the de-interleaver addresses
are made available at the address output line.

N=288

N=384

N=432

N=576

Chapter 5: Interleaving in WiMAX

 93

 Fig. 5.8 Detailed hardware structure of proposed address generator

Table 5.6 (a) Content of ROM_00_000

Table 5.6 (b) Content of ROM_01_x00

Input Output Input Output
5 36 293 324

41 72 329 360
77 108 365 396
113 144 401 432
149 180 437 468
185 216 473 504
221 252 509 540
257 288 545 0

Input Output Input Output
11 36 299 324
47 72 335 360
83 108 371 396
119 144 407 432
155 180 443 468
191 216 479 504
227 252 515 540
263 288 551 0

ROM_00_011

 0 1 3 4 5 6 2

Column
Counter

preset
icount clk

code rate

ROM_00_100
ROM_00_101
ROM_00_110

ROM_00_010
ROM_00_001
ROM_00_000

 0 1 2

ROM_01_x10
ROM_01_x01
ROM_01_x00

 0 1 2

ROM_10_x10
ROM_10_x01
ROM_10_x00

 0 1 2

LUT_0

LUT_1

LUT_2

EN0 EN1 EN2 IN0 IN1 IN2

address

mod typ

1 0

1 0

0

0

0 0 1 2

1

0
LUT address
generator block

LUT block

Chapter 5: Interleaving in WiMAX

 94

5.7 Proposed Algorithm for Low complexity De-interleaver
In this section, the proposed algorithm for Address Generator of WiMAX de-

interleaver along with its mathematical background has been described. The MATLAB
program as done in LUT based approach and also as described by Fig. 5.6 is used to get
the de-interleaver addresses for all modulation schemes and code rates. Due to the
presence of floor function in (5.3) and (5.4), direct implementation of them on FPGA chip
is not feasible. Table 5.7 shows the de-interleaver addresses for first 4 rows and 5 columns
of each modulation type. As d =16 [155] is chosen, the number of rows are fixed (=d) for
all Ncbps whereas the number of columns are given by Ncbps/d.

Close examination of the addresses in Table 5.7 reveals that the co-relation
between them follows the manner as shown in Table 5.8. The mathematical foundation of
the co-relation between the addresses, as derived in this work is represented by (5.5)-(5.7).

kn,QPSK = ∗ + for ∀ and ∀ (5.5)

kn,16-Q AM=
∗ + for %2 = 0 and for ∀

∗ + 1 + for %2 = 1 and for %2 = 0
∗ − 1 + for %2 = 1 and for %2 = 1

 (5.6)

kn,64-Q AM=
∗ + for %3 = 0 and for ∀

∗ − 2 + for %3 = 1 and for %3 = 2
∗ + 1 + for %3 = 1 and for %3 ≠ 2
∗ + 2 + for %3 = 2 and for %3 = 0
∗ − 1 + for %3 = 2 and for %3 ≠ 0

 (5.7)

where j = 0,1,…d-1 and i = 0,1,…, -1 represent the row and column numbers
respectively of Table 5.8. Also, kn represents the de-interleaver addresses.

General validity of (5.5)-(5.7) to represent the co-relation between the addresses of
Table 5.8 has formally been proved using the algebraic analysis in [155] which lacks the
involvement of (5.5)-(5.7). The outcome of this analysis using (5.5)-(5.7) provides the
same result as shown in Table 5.8. Thus (5.5)-(5.7) play the pivotal role in establishing
formal mathematical foundation of our proposed algorithm.

From Table 5.8 and mathematical representation by (5.5)-(5.7), following three
algorithms for the three modulation schemes are proposed. These algorithms eliminate the
requirement of floor function while generating write addresses and have also been tested
on MATLAB. Results obtained are verified with the previous MATLAB program for all
code rates and modulation schemes of WiMAX de-interleaver.

Chapter 5: Interleaving in WiMAX

 95

Table 5.7 First 4-rows and 5-columns of De-interleaver Sample Addresses for Three Code

Rates and Modulation Types
Ncbps, code rate and
modulation type De-interleaver addresses
Ncbps = 96-bits, ½ code rate,

QPSK

0 16 32 48 64
1 17 33 49 65
2 18 34 50 66
3 19 35 51 67

Ncbps = 192-bits,
½ code rate,

16-QAM

0 16 32 48 64
17 1 49 33 81
2 18 34 50 66

19 3 51 35 83
Ncbps = 576-bits, ¾

code rate,
64-QAM

0 16 32 48 64
17 33 1 65 81
34 2 18 82 50
3 19 35 51 67

Table 5.8 Determination of Co-relation between Addresses

Row no.(j) Column no. (i) 0 1 2 3 4
0 Ncbps = 96-bits, ½ code

rate,
QPSK

d.0+0=0 d.1+0=16 d.2+0=32 d.3+0=48 d.4+0=64
1 d.0+1=1 d.1+1=17 d.2+1=33 d.3+1=49 d.4+1=65
2 d.0+2=2 d.1+2=18 d.2+2=34 d.3+2=50 d.4+2=66
3 d.0+3=3 d.1+3=19 d.2+3=35 d.3+3=51 d.4+3=67
0 Ncbps = 192-

bits,
½ code rate,

16-QAM

d.0+0=0 d.1+0=16 d.2+0=32 d.3+0=48 d.4+0=64
1 d.1+1=17 d.0+1=1 d.3+1=49 d.2+1=33 d.5+1=81
2 d.0+2=2 d.1+2=18 d.2+2=34 d.3+2=50 d.4+2=66
3 d.1+3=19 d.0+3=3 d.3+3=51 d.2+3=35 d.5+3=83
0 Ncbps = 576-

bits, ¾ code rate,
64-QAM

d.0+0=0 d.1+0=16 d.2+0=32 d.3+0=48 d.4+0=64
1 d.1+1=17 d.2+1=33 d.0+1=1 d.4+1=65 d.5+1=81
2 d.2+2=34 d.0+2=2 d.1+2=18 d.5+2=82 d.3+2=50
3 d.0+3=3 d.1+3=19 d.2+3=35 d.3+3=51 d.4+3=67

QPSK

initialize Ncbps and d
for j = 0 to d-1, j++

for i = 0 to (Ncbps/d) – 1, i++
 kn = d * i + j

end for
end for

Chapter 5: Interleaving in WiMAX

 96

16-QAM
initialize Ncbps and d
for j = 0 to d-1, j++

 for i = 0 to (Ncbps/d) – 1, i++
if (j mod 2 = 0)

 kn = d * i + j
else

 if (i mod 2 = 0)
kn = d * (i+1) + j

 else
kn = d * (i-1) + j

 end if
end if

 end for
end for

64-QAM
initialize Ncbps and d
for j = 0 to d-1, j++

for i = 0 to (Ncbps/d) – 1, i++
if (j mod 3= 0)

 kn = d * i + j
 elseif(j mod 3= 1)

if (i mod 3 = 2)
kn = d * (i-2) + j

 else
 kn = d * (i+1) + j

 end if
 else
 if (i mod 3 = 0)
 kn = d * (i+2) + j
 else
 kn = d * (i-1) + j
 end if
 end if
 end for

 end for

5.7.1 Transformation into Circuit
In order to test the proposed algorithms for Address Generator of WiMAX de-

interleaver with all modulation schemes, transformation of these algorithms into digital
circuits are made and are shown in Fig. 5.9(a)-(c). The QPSK hardware shown in Fig.
5.9(a), has a row counter (RWC0) to generate row numbers between 0 to d-1. A column
counter (CLC0) with multiplexer (M0) and comparator (C0) generate the variable column

Chapter 5: Interleaving in WiMAX

 97

numbers to implement permissible Ncbps. A multiplier (ML0) and an adder (A0) perform
the desired operations to implement (5.5). The Address Generator for 16-QAM follows
similar structure, like that of QPSK with few additional modules. These modules are
designed with an incrementer, a decrementer, two modulo-2 blocks and two multiplexers
as shown in Fig. 5.9(b). As per Table 5.7, in 64-QAM modulation scheme, the Address
Generator has to implement three different progressive patterns for the column numbers.
The design procedure used in 16-QAM is extended in 64-QAM to meet this requirement
with the use of additional hardware and is shown in Fig. 5.9(c). A simple up counter
generates the read addresses for the 2D-de-interleaver.

The top-level structure of the de-interleaver Address Generator is shown in Fig.
5.10. Logic circuits shown inside the dashed line in Fig. 5.9(a)-(c) are presented here as
QPSK block, 16-QAM block and 64-QAM block. Our design is optimized in the sense
that common logic circuits like multiplier, adder, row counter and column counter are
shared while generating addresses for any modulation type. In addition, the design also
shares the incrementer and decrementer required in 16-QAM and 64-QAM blocks.

Fig. 5.9(a) Hardware structure of Address Generator for QPSK

Fig. 5.9(b) Hardware structure of Address Generator for 16-QAM

5 8
11 17 23 26 29 35

A0

M0

CLC0

C0

reset

0 1 2 3 4 5 6 7

code rate

Comparator

Column
Counter, i clk

d

Row Counter,j

Comparator
reset

clk
kn d-1

QPSK

ML0
C1 RWC0

3

16-QAM
Block

MO1
d-1

C3

MO0

A2

A1

M2 1

1

reset

 0
1
2
3

2
code

11
17 23
35

Comparator

Column Counter, i clk

d

Row
Counter, j

Comparator
reset

clk

 0
1

 0
1

Mod 2

Mod 2

M1

M3

C2

A3 ML1
RWC1 CLC1

kn

Chapter 5: Interleaving in WiMAX

 98

Fig. 5.9(c) Hardware structure of Address Generator for 64-QAM

Fig. 5.10 Top level view of complete de-interleaver Address Generator

5.8 Simulation Results
5.8.1 FSM based Address Generator of Interleaver

The simulation results are obtained in the form of timing diagram using ModelSim
Xilinx Edition-III version 6.0a software. In order to have a clear picture of the proposed
technique the simulation result of the address generator and the complete interleaver have
been presented separately.
5.8.1.1 Address Generator

Simulation results of address generator are described in Fig. 5.11(a), (b) and (c).
Fig. 5.11(a) is for MOD_TYP = 00 and ID = 000 i.e. QPSK with Ncbps = 96 as described
in Table 5.3. In Fig. 5.11(b) simulation result of 16-QAM with Ncbps = 288 (MOD_TYP =

M4 A8

64-QAM
Block

MO3
d-1

A7

A6

A5

A4
MO2

2

1

reset

 0
1
2
3

2
code rate

17
23 26
35

Comparator

Column Counter, i clk

d

Row
Counter,j

Comparator
reset

clk

2

0
1

Mod 3

Mod 3

2

1

 0
2

1

1

2
M5

M6

M7

C4

C5
ML2

RWC2 CLC2
kn

0

CLC3

mod typ code rate

A9

ML3
M8

Column
Counter, i

Row
Counter, j

QPSK Block

16-QAM Block

64-QAM Block

2

1

0

d 2

RWC3

kn

Chapter 5: Interleaving in WiMAX

 99

01 and ID=001) is presented. Similarly address generation for 64-QAM with Ncbps = 384
(MOD_TYP = 10 and ID=001) is shown in Fig. 5.11(c). In all the figures, initially CLR
= 1 to ensure that the counter in preset logic and accumulator are reset. In order to
maintain clarity, only first two iterations for the three situations have been presented.
Addresses generated in Fig. 5.11(a), (b) and (c) clearly conform to Table 5.2. The author
has simulated and tested the address generation circuitry for all other values of ID and
MOD_TYP, however to avoid repetition other situations are not shown.
5.8.1.2 Complete Interleaver

Fig. 5.12(a), (b) and (c) explain the interleaving operation of the proposed
interleaver for WiMAX system. In these figures the modulation types and interleaver
depths chosen are identical with Fig. 5.11(a), (b) and (c) respectively. The raw data input
(data_in) into the interleaver in Fig. 5.12(a), (b) and (c) are held high for first 16
consecutive bit duration and made low thereafter to have clear view of the interleaving
operation. As seen in figures these consecutive bits are dispersed by a predefined interval
which is 6 in Fig. 5.12(a), 19, 17 in Fig. 5.12(b) and 26, 23, 23 in Fig. 5.12(c) and
conforms to Table 5.7.

Fig. 5.11(a) Generation of first 32 write addresses with MOD_TYP = 00, ID = 000

Fig. 5.11(b) Generation of first 32 write addresses with MOD_TYP = 01, ID = 001

Chapter 5: Interleaving in WiMAX

 100

Fig. 5.11(c) Generation of first 32 write addresses with MOD_TYP = 10, ID = 001

Fig. 5.12(a) Interleaving operation with MOD_TYP = 00, ID = 000

Fig. 5.12(b) Interleaving operation with MOD_TYP = 01, ID = 001

Fig. 5.12(c) Interleaving operation with MOD_TYP = 10, ID = 001

Chapter 5: Interleaving in WiMAX

 101

5.8.2 LUT based Address Generator of De-interleaver
The simulation results in the form of timing diagram obtained using ModelSim

Xilinx Edition-III, version 6.0a of LUT based address generator of WiMAX de-interleaver
are shown in Fig. 5.13(a)-(c). In Fig. 5.13(a), MOD_TYP = 0 (002) and CODE_RATE = 0
(0002). The sequence of addresses generated are 0, 16, 32, 48, 64, 80, 1, 17, 33, 49, 65, 81,
2 …. which clearly conform to Ncbps = 96 with QPSK modulation and ½ code rate.
Similarly, Fig. 5.13(b) and (c) show generation of de-interleaver address sequence for
Ncbps = 192 with QPSK modulation, ½ code rate (MOD_TYP = 00, CODE_RATE = 010)
and Ncbps = 288 with QPSK modulation, ¾ code rate (MOD_TYP = 00, CODE_RATE =
011) respectively.

The author has simulated and tested the address generation circuitry for all other
values of CODE_RATE, MOD_TYP, however in order to avoid repetition, other
situations are not shown.

(a)

(b)

Chapter 5: Interleaving in WiMAX

 102

(c)
Fig.5.13 Simulation result of LUT based De-interleaver Address Generator with

(a) MOD_TYP = 00, CODE_RATE = 000 (b) MOD_TYP = 00, CODE_RATE = 010 and
(c) MOD_TYP = 00, CODE_RATE = 011

5.8.3 Low Complexity Address Generator of De-interleaver
The proposed hardware of the low complexity address generator is converted into

a VHDL program using Xilinx ISE. Simulation results are obtained for all permissible
modulation types and code rates using ModelSim XE-III and a part of the same for Ncbps =
576-bits, ¾ code rate, 64-QAM has been presented in Fig. 5.14. The initial portion of Fig.
5.14 shows the last part of addresses for first row (j=1) and the later part (from ruler)
shows the addresses for second row (j=2). The simulation results are verified with the
output obtained from the MATLAB program described in Table 5.2.

Fig. 5.14 Simulation result showing the addresses of last part of first row (j=1) and first

portion of second row (j=2) for Ncbps = 576-bits, ¾ code rate, 64-QAM
5.9 Critical Analysis of FPGA implementation Results
5.9.1 FSM based Address Generator of Interleaver

The proposed hardware model of FSM based WiMAX interleaver is implemented
and tested on Xilinx Spartan-3 (Device: XC3S400) FPGA platform in the laboratory. The

Chapter 5: Interleaving in WiMAX

 103

FPGA implementation of the interleaver is carried out in two phases; firstly the address
generator and thereafter the complete interleaver and presented accordingly.
5.9.1.1 Address Generator

A VHDL model of the proposed FSM based address generation hardware is
prepared using Xilinx ISE 8.1i and thereafter implemented in the said FPGA. In order to
make comparative analysis we have also designed and implemented address generator
circuitry for the interleaver depths listed in [106] and result is presented in Table 5.9. Our
approach shows approximately 30% improvement in terms of maximum operating clock
frequency, approximately 46% improvement in FPGA flip-flop used with negligible (less
than 3%) loss in terms of Logic Cells (LCs) used. Careful design of the preset logic
provides this improvement. Table 5.10 and 5.11 shows the HDL synthesis report and
device utilization summary corresponding to the implementation of the circuit shown in
Fig. 5.3. Minimum propagation delay of the circuit is measured to be 5.234ns and
maximum operating frequency is 191.05MHz. The estimated power consumption of the
circuit is found to be 56mW using Xilinx XPower I.25.

The address generator circuit when implemented on recent FPGAs like Virtex 4
shows further betterment in terms of operating frequency (278.30MHz) but at the cost of
increased power consumption (224mW). As these FPGAs offer a large number of
resources the utilization percentage as shown in Table 5.11 further goes down.
 Fig. 5.15(a), (b) and (c) show the moments captured (second addresses) during the
progress of address generation circuitry on FPGA platform with ID and MOD_TYP
shown in Fig. 5.15(a), (b) and (c) respectively. As shown in Fig. 5.15(b), the first toggle
switch is used as CLR (clear) input, next three implements ID (interleaver depth) and last
two represents MOD_TYP (modulation type) whose values are described in Table 5.3.
Similarly, the first 10 LEDs from the left represents the address generated with rightmost
LED representing the MSB.

Table 5.9 Comparative analysis of similar implementations of address generator
Implementation Technique Number of LCs used Number of flip-flops used Improvement in flip-flop used Maximum Clock Frequency (MHz) Improvement in Max. Clock Frequency

Khater et. al. [106] 105 54
45.95%

147.9
29.14% Our

implementation 108 37 191.05

Chapter 5: Interleaving in WiMAX

 104

Table 5.10 HDL synthesis report of FSM based address generator
Logic Circuit used Quantity

8x7-bit ROM 1
10-bit adder 2
2-bit adder 1

4-bit up counter 1
Flip-flops 18

10-bit latch 1
7-bit latch 1

7-bit 4-to-1 multiplexer 2
7-bit 8-to-1 multiplexer 1 Table 5.11 Device utilization summary of FSM based address generator

FPGA Resources Utilization in Number Utilization in %
Number of Logic Cell (LC) 242 out of 3584 6.75
Number of Flip-flops 48 out of 7168 0.67
Number of Bonded IOBs 17 out of 141 12.06
Number of GCLKs 2 out of 8 25.00

Fig. 5.15(a) Photograph with
ID=000, MOD_TYP=00

Fig. 5.15(b) Photograph
with ID=001,

MOD_TYP=01
Fig. 5.15(c) Photograph

with ID=001,
MOD_TYP=10

5.9.1.2 Complete Interleaver
 This section makes the critical analysis of FPGA implementation results of the
entire interleaver including the proposed FSM based address generator. The HDL
synthesis report of the complete interleaver is presented in Table 5.12. It shows additional
requirement of few flip-flops/latches and multiplexers which are used in designing the
memory module of the interleaver.

Table 5.12 HDL synthesis report of the complete interleaver
Logic Circuit used Quantity

8x7-bit ROM 1
10-bit adder 2
2-bit adder 1

4-bit up counter 1
Flip-flops 23

10-bit latch 1
7-bit latch 3
1-bit latch 1

7-bit 4-to-1 multiplexer 2
7-bit 8-to-1 multiplexer 1
1-bit 4-to-1 multiplexer 5

CLR ID MOD_TYP

0000000110
0000010011 0000011010

Chapter 5: Interleaving in WiMAX

 105

Device utilization summary of the complete interleaver implementation is
described in Table 5.13. The utilization percentage of LCs and flip-flops are marginally
increased because of the associated circuitry in the memory module of the interleaver.
Number of Input Output Blocks (IOBs) has been dropped by 8 as because the 10-bit
address output lines of address generator have been replaced by 2 lines; one carrying raw
input data and the other sending out the interleaved data. The interleaver utilizes two
BRAMs which is 12.5% of the available BRAM blocks in Spartan-3 FPGA. Minimum
propagation delay and maximum operating frequency of the FPGA based interleaver is
found to be 7.442ns and 134.381MHz respectively. Due to efficient modeling, the
interleaver circuitry uses very few FPGA resources thereby making room for other
associated circuitry like randomizer, encoder etc to be implemented on the same FPGA
chip. Because of the presence of floor and mod function in (5.1) and (5.2), direct
implementation of the address generation circuitry is very complex and consumes large
amount of logic resources. Instead, our state machine based approach provides a faster and
resource efficient implementation of WiMAX interleaver on FPGA platform.

Table 5.13 Device Utilization Summary of Complete Interleaver

FPGA Resources Utilization in Number Utilization in %
Number of LCs 267 out of 3584 7.45

Number of Flip-flops 54 out of 7168 0.75
Number of Bonded IOBs 9 out of 141 12.06

Number of GCLKs 2 out of 8 25.00
Number of BRAMs 2 out of 16 12.50

5.9.2 LUT based Address Generator of Interleaver
The proposed hardware structure of LUT based de-interleaver address generator is

transformed into VHDL model using Xilinx Integrated Software Environment (ISE 8.1)
and is implemented on Xilinx Spartan 3 FPGA (XC3S400). Additionally, the hardware
structure is also implemented on Xilinx Spartan-3AN FPGA (XC3S1400AN) using ISE
12.1. Table 5.14 shows the device utilization summary for both implementations. The two
implementations are almost identical in terms of FPGA resource utilizations, but differ
significantly in operating frequency and estimated power consumption. It is observed that
the design implemented on advanced FPGA (Spartan-3AN) works faster by 30% than the
other, but also consumes double amount of power. The principal advantage of our
proposed technique is that it requires only 3 BRAMs of capacity 18KB instead of 16,
saving 81.25% of critical FPGA internal resource.

Chapter 5: Interleaving in WiMAX

 106

Based on the equivalence drawn between FPGA and ASIC implementations in
[156] our work is compared with that of [105] by converting the later in FPGA equivalent
implementation. This comparison shows our implementation on Spartan 3 FPGA is at par
with [105] in terms of operating frequency. But, the implementation on Spartan 3AN
shows improvement of almost 30% over [105] as FPGA equivalent maximum frequency
of the later is found to be 62.5MHz.

Table 5.14 Device Utilization Summary of LUT based Address Generator of WiMAX

De-interleaver

FPGA Resources / Parameters Resource Utilization /
Parameters in Spartan 3

Resource Utilization /
Parameters in Spartan

3AN
Number of slices 633 out of 3584 626 out of 11264

Number of slice Flip-flops 56 out of 7168 41 out of 22528
Number of 4 input LUTs 1229 out of 7168 1205 out of 22528
Number of bonded IOBs 16 out of 141 16 out of 502

Number of BRAMs 3 out of 16 3 out of 32
Number of GCLKs 1 out of 8 1 out of 24

Maximum clock speed 62.5 MHz 88.72 MHz
Power consumption 32mW 68mW

5.9.3 Low Complexity Address Generator of Interleaver
The VHDL program developed for the proposed WiMAX de-interleaver Address

Generator is downloaded on Xilinx Spartan-3 (Device XC3S400) FPGA [94]. Table 5.15
shows the HDL synthesis report. The two blocks, MO0 and MO1 of Fig. 5.9(b) are
implemented using mod 2n function of VHDL. Requirement of i mod 3 (MO2) and j mod 3
(MO3) functions in 64-QAM circuit of Fig. 5.9(c) are fulfilled by designing two small
ROMs of dimension 16x3-bit and 64x3-bit respectively as MOD 3 function is not
supported in VHDL. The use of rest of the logic circuits is obvious in the design.

As FPGA based implementation of WiMAX de-interleaver Address Generator has
not been found in the literature, direct comparison of the results of our proposed work
could not be carried out. However, implementation of the conventional LUT based
technique of address generation for WiMAX 2D-de-interleaver on the same FPGA is
made in the similar manner as proposed in [157]. In the latter case, the LUTs are modeled
using FPGA’s embedded memory, Block RAM [94], to reduce the memory access time.
For fairness of comparison, three Block RAMs are used, one for each modulation scheme
to house the address LUT of various interleaver depths. Efficient use of Block RAMs is

Chapter 5: Interleaving in WiMAX

 107

made possible by exploring the feature that, within a modulation scheme the address LUT
of a smaller Ncbps is the subset of the address LUT of larger Ncbps.

Table 5.16 shows the comparison between the two implementations in respect to
FPGA resources. In spite of smart use of Block RAM in LUT based approach, the present
work results in significant reduction in occupancy of FPGA slices (by 80.24%), flip-flops
(by 35.9%) and 4 input LUTs (by 80.47%). This comparison clearly proves the low
complexity and hardware efficiency of our design over the conventional technique.
Further, to make the design more hardware efficient, embedded multiplier of Xilinx
Spartan-3 FPGA is used to implement the ML3 block of Fig. 5.10. In addition, the Address
Generator using the proposed technique can work 48.69% faster than the later.

Further, based on the equivalence drawn between FPGA and ASIC
implementations in [156], our work is again compared with that of [105], by converting
the later in FPGA equivalent implementation. This comparison also shows almost 48.69%
improvement in our work with respect to operating frequency over [105] as FPGA
equivalent maximum frequency of the later is found to be 62.5MHz. The reasons behind
these improvements are low complexity, optimized and shared hardware design and use of
FPGA’s embedded multiplier which in turn reduces interconnection delay inside FPGA.
Similar comparison with [158] is not useful as this work is not focused on our target
design only. Both CTC and Long Term Evolution (LTE) interleavers do not use floor
function for FPGA implementation, while the present work involves use of floor function
for such realization in an efficient manner. The work in [159] is based on FSM based
technique for designing Address Generator using FPGA for channel interleaver employed
in WiMAX transmitter. However, this work involves multiplier based Address Generator
in FPGA platform for designing channel de-interleaver in WiMAX receiver. The
conventional LUT based approach and our proposed algorithm, both targeting same
Address Generator is implemented on the identical FPGA platform and accordingly
effective comparison as in Table 5.16 becomes possible.

Table 5.15 HDL Synthesis Report of Low Complexity Address Generator

Logic Circuits Used Quantity Logic Circuits Used Quantity
16x3-bit ROM 1 4-bit register 1
64x3-bit ROM 1 6-bit register 1

10-bit adder 1 4-bit 4-to-1

3
18-bit adder 2 4-bit 8-to-1

1

18-bit subtractor 2 6-bit 4-to-1 3
4-bit adder 1 6-bit 8-to-1

multiplexer
1

6-bit adder 1

Chapter 5: Interleaving in WiMAX

 108

Table 5.16 Comparison Between Proposed and LUT Based Technique
FPGA

Parameters
Performance
of proposed
technique

Performance
of LUT based

technique

% Reduction /
improvement in

resource
utilization

Remarks

Slices 3.49 % 17.66 % -80.24 Significant
reduction

Flip-flops 0.50 % 0.78 % -35.90 Reduction
4 input LUTs 3.35 % 17.15 % -80.47 Significant reduction

Operating
frequency 121.82 MHz 62.51 MHz 94.88 Significant

improvement

5.10 Discussion
This chapter describes three different techniques of modelling hardware interleaver

/de-interleaver used in IEEE 802.16e based WiMAX transceiver. An interleaver/de-
interleaver comprises of two sections: Address generator and Memory module. Due to the
presence of modulo and floor functions implementing the address generator, design of
hardware module for the same is a difficult task. This is due to the fact that corresponding
digital hardware for the two complex functions are not available. Conventionally, LUT
based approach is used in which all the addressing sequences are precomputed and stored
in external memory. Such approaches consumes external memory blocks and the slow in
operation.

In this work, firstly design of a FSM based high speed and hardware efficient
technique to implement the address generation circuitry of WiMAX interleaver on FPGA
platform has been demonstrated. Secondly, an improved LUT based de-interleaver address
generator circuitry is proposed. In this approach, the conventional LUT based technique
for address generation has been re-designed to use the FPGA memory blocks efficiently.
Design of a low complexity and resource efficient hardware de-interleaver including a
novel algorithm for the de-interleaver with user-friendly mathematical representation and
its general validity is presented thereafter. This work shows significant performance
improvement over LUT technique in terms of enhanced maximum operating frequency
and reduced FPGA resource utilization. The low complexity model of interleaver design is
carried forward in Chapter 6 for the implementation on MIMO WLAN interleaver due to
its attractive performance.

Chapter 6

Interleaving in MIMO WLAN
 Outline of this Chapter

6.1 Introduction
6.2 System Description of MIMO WLAN Transceiver
6.3 Interleaving in IEEE 802.11n
6.4 Proposed Algorithm for Address Generator of Interleaver
6.5 Transformation into Hardware
6.6 Simulation Results of MIMO WLAN Interleaver
6.7 FPGA Implementation Results
6.8 Discussion

The approach described in Chapter 5 while designing low complexity model of
WiMAX de-interleaver is adopted in this chapter for the design and
implementation of novel interleaver hardware on FPGA platform to be used in
OFDM based MIMO WLAN applications. After initial remarks on MIMO WLAN,
the chapter briefs about the work done with important contribution made through
this research. Novel algorithm with mathematical formulation for the address
generator of the interleaver is the key contribution of this chapter. The chapter
thereafter describes hardware transformation of the novel algorithm, its timing
simulation and FPGA implementation results using the DSP blocks of FPGA
unlike the previous implementations. Comparative analysis of the implementation
results demonstrates superiority of the proposed design in terms of operating
frequency, throughput and power consumption/resource occupancy.

Chapter 6: Interleaving in MIMO WLAN

 110

6.1 Introduction
Increasing use of multimedia services and growth of graphics based internet

related contents lead to the rising demand of high speed broadband wireless systems. Use
of more than one antenna at the transmitter and / or at the receiver aims to improve the
transmission / reception rate substantially. OFDM is becoming a popular technique for
high data rate wireless transmission [160]. OFDM may be combined with multiple
antennas at both the access point and mobile terminal to increase the diversity gain and/or
enhance system capacity on a time-varying multipath fading channel, resulting in a MIMO
OFDM system [66].

The IEEE 802.11n, an amendment to IEEE 802.11 standard, is based on MIMO-
OFDM transmission techniques to enable high speed data communication with maximum
throughput of 600 Mbps [161]. The aim of interleaving [162] is to reorder the incoming
data and make the adjacent bits non-adjacent by a factor, to cope with the burst errors
occurring during the high throughput transmission of data over the channel. Such
rearrangement of data bits helps to improve the performance of FEC techniques. In a
fading channel, diversity is the technique adopted to improve the performance of a
communication system. In such cases, interleavers are used to improve the system
performance by exploiting spatial and frequency diversities.

In this chapter, novel design of interleaver used in 4 x 4 MIMO WLAN transceiver
has been described. In general term, an interleaver consists of two parts; address generator
and interleaver memory. Literature [75] recommends three steps of permutation involving
floor function for the implementation of the address generator. Conventional approach of
MIMO WLAN interleaver implementation is LUT based [163] due to the non-availability
of corresponding digital hardware for floor function. The LUT based technique is in
general unattractive [115], as it requires large number of memory blocks to house the
address LUTs with various modulation schemes, bandwidths (BWs) and spatial streams.
In addition, large access time of memory results in slower operation of the address
generator using LUT. In this work, we propose a novel algorithm with necessary
mathematical background including its general validity for the address generation of
MIMO WLAN interleaver which eliminates the requirement for floor function. The
proposed algorithm is also transformed into digital hardware and is modelled in VHDL
using Xilinx ISE 12.1. The model utilizes embedded Digital Signal Processing (DSP)
blocks of Xilinx Spartan 6 FPGA [96] to implement the multiplier. The memory

Chapter 6: Interleaving in MIMO WLAN

 111

requirement of the interleaver is also met by configuring the available embedded memory
(Block RAM) [96] within the target FPGA. The use of DSP blocks and Block RAM of
FPGA makes our design novel and highly resource efficient in comparison with other
similar implementations [121], [120], [122]. Further, LUT based technique of interleaver
design is modelled and implemented on the same FPGA platform for comparison. In this
case also, our proposed design shows improvement in terms of operating frequency and
memory utilization over LUT based technique. Necessary hardware required for read
address generation is also designed and included in the VHDL model. Simulation results
in the form of timing diagram for the address generator is obtained using ModelSim XE-
III software and are also verified with the theoretical results. Our design performs better in
terms of operating frequency, throughput, and power consumption, compared to the few
recent ASIC implementations [121], [120], [122] when they are converted into equivalent
FPGA counterparts using [156]. Our proposed design satisfies the maximum throughput
requirement of MIMO WLAN of IEEE 802.11n.

6.2 System Description of MIMO WLAN Transceiver
Essential blocks of an MIMO WLAN transceiver are shown in Fig. 6.1(a)-(b)

[161], [164]. In the transmitter, input data stream is randomized using a scrambler. The
scrambled data passes through a convolutional encoder to reduce the effect of random
error in the channel. A parser [164] routes the consecutive data bits based on the number
of coded bits per sub-carrier into four (or less) different spatial streams. Every spatial data
stream uses one block interleaver to reduce the effect of burst error in the channel. The bit
stream thereafter are mapped into QAM symbols. A spatial stream dependent Cyclic
Delay (CD) followed by spatial mapping matrix has been applied to each subcarrier to
convert Nss spatial stream inputs into Ntx transmitter outputs. To provide transmit Cyclic
Delay Diversity (CDD) and to prevent undesired beam-forming effects, an additional
cyclic delay per transmitter can be applied. Each transmitter thereafter applies an IFFT,
inserts a Guard Interval (GI), up-converts and transmits the signal. In the receiver of
MIMO WLAN, blocks with reverse function are applied to obtain the original data stream.

Chapter 6: Interleaving in MIMO WLAN

 112

(a)

(b)

Fig. 6.1 Block diagram of MIMO WLAN (a) transmitter and (b) receiver
6.3 Interleaving in IEEE 802.11n

The encoded data bits received from convolutional encoder and parser are
interleaved by a special type of block interleaver. Interleaving in 802.11n is a three step
process in which the first two steps provide spatial interleaving and the final step performs
frequency interleaving [161]. The interleaving steps are defined in the form of three blocks
shown in Fig. 6.2. The first step (B1) ensures that adjacent coded bits are mapped onto
non-adjacent subcarriers, while the second step (B2) is responsible for alternating mapping
of adjacent coded bits onto less or more significant bits of constellation, thus avoiding
long runs of lowly reliable bits. If more than one spatial stream exists in the 802.11n
physical layer, the third step called frequency rotation (B3) would be applied to the
additional spatial streams. The frequency rotation ensures that the consecutive carriers
used across the spatial streams are not highly correlated.

Input data
stream

Scrambler Convolutional
Encoder

Parser Block
interleaver

QAM
Mapping CDD

Spatial
Mapping

Up
Converter

IFFT
& GI CDD

Block
interleaver

QAM
Mapping CDD Up

Converter
IFFT
& GI CDD

Nss spatial stream NTX spatial
stream

Output data
stream

De-scrambler Convolutional
Decoder

Reverse
Parser Block De-

interleaver
QAM
De-

Mapping
CDD

Spatial
De-

Mapping

Down
Converter

FFT &
GI

remove
CDD

Block De-
interleaver

QAM
De-

Mapping
CDD FFT & GI

remove
CDD

Nss spatial stream NTX spatial
stream

Down
Converter

Chapter 6: Interleaving in MIMO WLAN

 113

Fig. 6.2 Block diagram of steps involved in interleaving process for MIMO WLAN

Here N is the block size corresponding to number of coded bits per allocated sub-
channels per OFDM symbol. C represents number of columns in the interleaver, whose
value is 13 and 18 for 20MHz and 40MHz BW [162] respectively. The parameter s is
defined as s = max (1, NBPSCS), whereas NBPSCS is the number of coded bits per sub-carrier,
and takes value 1, 2, 4 or 6 for BPSK, QPSK, 16-QAM or 64-QAM respectively. Iss is the
index of the spatial stream and Nrot is the parameter used for defining different rotation
with value 13 and 29 for 20MHz and 40MHz BW respectively. The operators % and ,
represent the modulo and floor functions respectively.

6.4 Proposed Algorithm for Address Generator of Interleaver
The permutation steps as described in B1-B3 blocks of Fig. 6.2 involve floor

function. LUT based technique is conventionally used due to unavailability of appropriate
logic circuit for floor function. Such technique being memory intensive makes the
implementation resource inefficient [163]. Also, the interleaver involving LUT based
address generator may exhibit slower operation due to large memory access time. In this
work, a novel low complexity algorithm for the address generator of channel interleaver
used in 4 x 4 MIMO WLAN eliminating the need for floor function has been proposed.
The algorithm aims at offering efficient hardware design of the address generator on
FPGA platform with an objective to satisfy the throughput requirement for the application.

Table 6.1 shows complete interleaver specifications with all permissible values of
modulation schemes, spatial streams and BWs as per IEEE 802.11n [75], [121]. Initially, a
MATLAB program has been developed by implementing B1-B3 blocks of Fig. 6.2 to
determine the interleaver addresses in similar manner as described in previous two

Frequency Rotation

Spatial Interleaving

= ∗ % + = ∗ + + − ∗ %

= − − 1 ∗ 2 %3 + 3 − 1
3 ∗ ∗ % Memory addresses for 2nd,

3rd and 4th spatial streams

Memory addresses for 1st
spatial streams

B1: Step 1 B2: Step 2

B3: Step 3

Chapter 6: Interleaving in MIMO WLAN

 114

chapters. Table 6.2(a)-(c) show such interleaver write addresses for three cases out of the
entire set of 32, e.g. Nbpscs=1, N=52, iss=4; Nbpscs=4, N=208, iss=2; and Nbpscs=6, N=312,
iss=3; all with 20MHz BW respectively. Careful examination of these write addresses
reveals the appropriate correlation among them, which is being utilized to develop new
algorithms for the purpose of successful implementation of write address generator
required for MIMO WLAN interleaver as described in Table 6.3(a)-(c). The read
addresses could be generated in a conventional manner.

Table 6.1 Interleaver specification of IEEE 802.11n based MIMO WLAN
Modulation Scheme Spatial Stream (iss) BW Interleaver Depth (N)

BPSK (Nbpscs=1) 1,2,3,4 20MHz 52
40MHz 108

QPSK (Nbpscs=2) 1,2,3,4 20MHz 104
40MHz 216

16-QAM (Nbpscs=4) 1,2,3,4 20MHz 208
40MHz 432

64-QAM (Nbpscs=6) 1,2,3,4 20MHz 312
40MHz 648

 Table 6.2(a) Interleaver write addresses with Nbpscs=1, N=52, iss=4, BW=20MHz

 Column no(i)
Row no(j) 0 1 2 … 9 10 11 12

0 13 17 21 … 49 1 5 9
1 14 18 22 … 50 2 6 10
2 15 19 27 … 51 3 7 11
3 16 20 28 … 0 4 8 12

 Table 6.2(b) Interleaver write addresses with Nbpscs=4, N=208, iss=2, BW=20MHz

 Column no(i)
Row no(j) 0 1 2 … 6 7 8 … 12

0 104 121 136 … 200 9 24 … 88
1 105 120 137 … 201 8 25 … 89
2 106 123 138 … 202 11 26 … 90

… … … … … … … … …
7 111 126 143 … 207 14 31 … 95
8 112 129 144 … 0 17 32 … 96
9 113 128 145 … 1 16 33 … 97

10 114 131 146 … 2 19 34 … 98
… … … … … … … … …
15 119 134 151 … 7 22 39 … 103

Chapter 6: Interleaving in MIMO WLAN

 115

Table 6.2(c) Interleaver write addresses with Nbpscs=6, N=312, iss=3, BW=20MHz

 Column no(i)
Row no(j) 0 1 2 3 4 5 6 … 12

0 234 260 283 306 20 43 66 … 210
1 235 258 284 307 18 44 67 … 211
2 236 259 282 308 19 42 68 … 212

… … … … … … … … …
5 239 262 285 311 22 45 71 … 215
6 240 266 289 0 26 49 72 … 216
7 241 264 290 1 24 50 73 … 217
8 242 265 288 2 25 48 74 … 218
9 243 269 292 3 29 52 75 … 219

… … … … … … … … … …
23 257 280 303 17 40 63 89 … 233

Table 6.3(a) Proposed algorithm for Nbpscs=1/2 (BPSK/QPSK) with all N, iss and BW

Column no. (i)

 0 1 2 3 … C-4 C-3 C-2 C-1
Row no. (j) i<(C-I) i>=(C-I)

0
j<(D-J) D*(i+I)+(j+J) … D*{i-(C-I)}+(j+J) 1

2
3

… i<(C-I-1) i>=(C-I-1)
D-4

j>=(D-J) D*(i+I+1)+ {j-(D-J)} … D*{i-(C-I-1)}+{j-(D-J)} D-3
D-2
D-1

Table 6.3(b) Proposed algorithm for Nbpscs= 4 (16-QAM) with all N, iss and BW

Column no. (i)

0 1 2 3 … C-4 C-3 C-2 C-1

Row no. (j) {i<(C-I)} &(i%2=0) {i<(C-I)} &(i%2=1) i>=(C-I) &(i%2=0) i>=(C-I) &(i%2=1)

0

{j<(D-J)}
&(j%2=0)

D*(i+I)+
(j+J)

D*(i+I)+
(j+J+1)

…
D*{i-(C-I)}+

(j+J)
D*(i-(C-I))+

(j+J+1) 1
2 {j<(D-J)}

&(j%2=1)
D*(i+I)+

(j+J)
D*(i+I)+
(j+J-1)

D*(i-(C-I))+
(j+J)

D*(i-(C-I))+
(j+J-1) 3

… i < (C-I-1)
&(i % 2=0)

{i < (C-I-1)}
&(i % 2=1) i >= (C-I-1)

&(i % 2=0)
i >= (C-I-1)
&(i % 2=1)

D-4

{j>=(D-J)}
&(j%2=0)

D*(i+I+1)+
{j-(D-J)} D*(i+I+1)+

{j-(D-J-1)}
…

D*{i-(C-I-1)}+
{j-(D-J)} D*{i-(C-I-1)}+

{j-(D-J-1)} D-3
D-2 {j>=(D-J)}

&(j%2=1)
D*(i+I+1)+

(j-(D-J))
D*(i+I+1)+
{j-(D-J+1)}

D*{i-(C-I-1)}+
{j-(D-J)}

D*{i-(C-I-1)}+
{j-(D-J+1)} D-1

Chapter 6: Interleaving in MIMO WLAN

 116

Table 6.3(c) Proposed algorithm for Nbpscs=6 (64-QAM) with all N, iss and BW

Column no. (i)

0 1 2 3 … C-4 C-3 C-2 C-1

Row no. (j) {i<(C-I)}
&(i%3=0)

{i<(C-I)}
&(i%3=1)

{i<(C-I)}
&(i%3=2) i>=(C-I)

&(i%3=0)
i>=(C-I)

&(i%3=1)
i>=(C-I)

&(i%3=2)
0

{j<(D-J)}
&(j%3=0)

D*(i+I)+
(j+J)

D*(i+I)+
(j+J+2)

D*(i+I)+
(j+J+1)

…

D*{i-(C-I)}+
(j+J)

D*{i-(C-I)}+
(j+J+2)

D*{i-(C-I)}+
(j+J+1)

1
{j<(D-J)} &(j%3=1) D*(i+I)+ (j+J) D*(i+I)+ (j+J-1) D*(i+I)+ (j+J+1) D*{i-(C-I)}+ (j+J) D*{i-(C-I)}+ (j+J-1) D*{i-(C-I)}+ (j+J+1) 2
{j<(D-J)}
&(j%3=2)

D*(i+I)+
(j+J)

D*(i+I)+
(j+J-1)

D*(i+I)+
(j+J-2)

D*{i-(C-I)}+
(j+J)

D*{i-(C-I)}+
(j+J-1)

D*{i-(C-I)}+
(j+J-2) 3

… i<(C-I-1)
&(i%3=0)

{i<(C-I-1)}
&(i%3=1)

{i<(C-I-1)}
&(i%3=2) i>=(C-I-1)

&(i%3=0)
i>=(C-I-1)
&(i%3=1)

i>=(C-I-1)
&(i%3=2)

D-4

{j>=(D-J)}
&(j%3=0)

D*(i+I+1)
+ {j-(D-J)} D*(i+I+1)+

{j-(D-J-2)}
D*(i+I+1)+
{j-(D-J-1)}

…

D*{i-(C-I-1)}+
{j-(D-J)} D*(i-(C-I-1))+

(j-(D-J-2))
D*(i-(C-I-1))+

(j-(D-J-1))
D-3

{j>=(D-J)}
&(j%3=1)

D*(i+I+1)
+ (j-(D-J))

D*(i+I+1)+
(j-(D-J+1))

D*(i+I+1)+
(j-(D-J-1))

D*(i-(C-I-1)+
(j-(D-J))

D*(i-(C-I-
1))+(j-(D-J+1))

D*(i-(C-I-
1))+(j-(D-J-1)) D-2

{j>=(D-J)}
&(j%3=2)

D*(i+I+1)
+(j-(D-J))

D*(i+I+1)+
(j-(D-J+1))

D*(i+I+1)+
(j-(D-J+2))

D*(i-(C-I-1))+
(j-(D-J))

D*(i-(C-I-1))+
(j-(D-J+1))

D*(i-(C-I-1))+
(j-(D-J+2)) D-1

 The mathematical formulation of the proposed algorithms in Table 6.3(a)-(c)
including all modulation schemes, spatial streams and BWs are represented by (6.2)-(6.4).

kn(QPSK-BPSK) =
D*(i+I)+(j+J) when j < (D-J) and i < (C-I)
D*{i-(C-I)}+(j+J) when j < (D-J) and i ≥ (C-I)
D* i+I+1 + j- D-J when j ≥ (D-J) and i < (C-I-1)
D*{i-(C-I-1)}+{j-(D-J)} when j ≥ (D-J) and i ≥ (C-I-1)

 (6.2)

kn 16-QAM =

D*(i+I)+(j+J) when {j<(D-J)}&[{i<(C-I)}&(i%2=0)]
D*(i+I)+(j+J+1) when [{j<(D-J)}&(j%2=0)]&[{i<(C-I)}&(i%2=1)]

D*{i-(C-I)}+(j+J) when {j<(D-J)}& [{i ≥(C-I)}&(i%2=0)]
D*(i-(C-I))+(j+J+1) when [{j<(D-J)}&(j%2=0)]& [{i≥ (C-I)}&(i%2=1)]
D*(i+I)+(j+J-1) when [{j<(D-J)}&(j%2=1)]&[{i<(C-I)}&(i %2=1)]
D*(i-(C-I))+(j+J-1) when [{j<(D-J)}&(j%2=1)] & [{i≥(C-I)}&(i%2=1)]

D*(i+I+1)+{j-(D-J)} when {j≥ (D-J)} & [{i<(C-I-1)}&(i%2=0)]
D*(i+I+1)+{j-(D-J-1)} when [{j≥(D-J)}&(j%2=0)] & [{i<(C-I-1)}&(i%2=1)]

D*{i-(C-I-1)}+{j-(D-J)} when {j>=(D-J)} & [{i≥(C-I-1)}&(i%2=0)]
D*{i-(C-I-1)}+{j-(D-J-1)} when [{j≥(D-J)}&(j%2=0)]& [{i≥(C-I-1)}&(i%2=1)]
D*(i+I+1)+{j-(D-J+1)} when [{j≥(D-J)} &(j%2=1)] & [{i<(C-I-1)}&(i%2=1)]
D*{i-(C-I-1)}+{j-(D-J+1)} when [{j≥(D-J)}&(j%2=1)] & [{i≥(C-I-1)}&(i%2=1)]

 (6.3)

Chapter 6: Interleaving in MIMO WLAN

 117

kn 64-QAM =

D*(i+I)+(j+J) when {j<(D-J)}&[{i<(C-I)}&(i%3=0)]
D*(i+I)+(j +2) when [{j<(D-J)}&(j%3=0)]&[{i<(C-I)}&(i%3=1)]
D*(i+I)+(j+J+1) when [{j<(D-J)}&(j%3≠2)]&[{i<(C-I)}&(i%3=2)]
D*{i-(C-I)}+(j+J) when {j<(D-J)}&[{i≥(C-I)}&(i%3=0)]
D*{i-(C-I)}+(j+J+2) when [{j<(D-J)}&(j%3=0)]&[{i≥ (C-I)}&(i%3=1)]
D*{i-(C-I)}+(j+J+1) when [{j<(D-J)}&(j%3≠2)]&[{i≥ (C-I)}&(i%3=2)]
D*(i+I)+(j+J-1) when [{j<(D-J)}&(j%3≠0)]&[{i<(C-I)}&(i%3=1)]
D*{i-(C-I)}+(j+J-1) when [{j<(D-J)}&(j%3≠0)]&[{i≥ (C-I)}&(i % 3=1)]
D*(i+I)+(j+J-2) when [{j<(D-J)}&(j%3=2)]&[{i<(C-I)}&(i%3=2)]
D*{i-(C-I)}+(j+J-2) when [{j<(D-J)}&(j%3=2)]&[{i≥ (C-I)}&(i%3=2)]
D*(i+I+1)+{j-(D-J)} when {j≥ (D-J)}&[{i<(C-I-1)}&(i%3=0)]
D*(i+I+1)+{j-(D-J-2)} when [{j≥ (D-J)}&(j%3=0)]&[{i<(C-I-1)}&(i%3=1)]
D*(i+I+1)+{j-(D-J-1)} when [{j≥ (D-J)}&(j%3≠2)]&[{i<(C-I-1)}&(i%3=2)]
D*{i-(C-I-1)}+{j-(D-J)} when {j≥ (D-J)}&[{i≥ (C-I-1)}&(i%3=0)]
D*{i-(C-I-1)}+{j-(D-J-)} when [{j≥ (D-J)}&(j%3=0)]&[{i≥ (C-I-1)}&(i%3=1)]
D*{i-(C-I-1)}+{j-(D-J-1)} when [{j≥ (D-J)}&(j%3≠2)]&[{i≥ (C-I-1)}&(i % 3=2)]
D*(i+I+1)+{j-(D-J+1)} when [{j ≥ (D-J)}&(j%3≠0)]&[{i<(C-I-1)}&(i%3=1)]
D*{i-(C-I-1)}+{j-(D-J+1)} when [{j≥ (D-J)}&(j%3≠0)]&[{i≥ (C-I-1)}&(i%3=1)]
D*(i+I+1)+ {j-(D-J+2)} when [{j≥ (D-J)}&(j%3=2)] &[{i<(C-I-1)}&(i%3=2)]
D*{i-(C-I-1)}+{j-(D-J+2)} when [{j≥ (D-J)}&(j%3=2)] &[{i≥ (C-I-1)}&(i%3=2)]

 (6.4)

The general validity of the proposed mathematical formulation could be established
with the help of [105]. As far as spatial permutation is concerned, the steps involved in
IEEE 802.16e [105] and in IEEE 802.11n [75] are identical. Additionally, the spatial
streams of the latter undergoes frequency rotation using B3 of Fig. 6.2, except the first
stream. Further, analysis of the 3rd step results that the entire term beyond jk (i.e. Jrot)
remains constant for a particular spatial stream and can be expressed as [121]

= − % (6.1)
where Jrot = − 1 ∗ 2 %3 + 3 ∗ ∗

As the first stream for all modulation schemes undergoes no frequency rotation, hence
= − 0 % = % =

For subsequent streams, the value of Jrot as shown in Table 6.4, differs for each spatial
streams, modulation schemes and BWs. The expression of jk so derived for all modulation
schemes in [105] if substituted in (6.1) gives three new equations. The final expressions so
obtained and the proposed mathematical formulations developed in this work, generate the
same results which are identical with results obtained through direct implementation of
B1-B3 steps.

Chapter 6: Interleaving in MIMO WLAN

 118

Table 6.4 Values of Jrot for all modulation schemes, spatial streams and BWs
Modulation Scheme

(Ncbpsc)
BW=20MHz BW=40MHz

Iss=1 Iss=2 Iss=3 Iss=4 Iss=1 Iss=2 Iss=3 Iss=4
BPSK (Ncbpsc=1) 0 26 13 39 0 58 29 87
QPSK (Ncbpsc=2) 0 52 26 78 0 116 58 174

16-QAM (Ncbpsc=4) 0 104 52 156 0 232 116 348
64-QAM (Ncbpsc=6) 0 156 78 234 0 348 174 522

6.5 Transformation into Hardware
This section describes the transformation of the proposed algorithm into digital

hardware for the address generator of block interleaver in connection with IEEE 802.11n
based WLAN. The top level view of the complete interleaver consisting of proposed
address generator and memory block is shown in Fig. 6.3(a).

Fig. 6.3 a) Top level view of complete interleaver b) arrangement of memory block

6.5.1 Memory Block

The detailed arrangement of the memory block for one spatial stream having
similar structure as in [157] is shown in Fig. 6.3(b). The structure is generic and is
applicable to all spatial streams. It receives three inputs from the address generator block;
write address (WAx), read address (RAx) and selx. The requirement of two memory blocks
for block interleaving is accomplished with the help of a dual port memory (with Port A
and B) where read and write operation can be performed simultaneously. As a result, the
interleaver memory block design is lesser complex than [111]. As seen in Fig. 6.3(b), the
first 288H locations are used as Port A and next 288H locations as Port B. An adder is

6

6

6

6

6

6

6

6

24 10

2

Iss1

Iss2

Iss3

Iss4

CLK

RESET

BW

Ncbpsc

10
 WR

 RD

MEM 1
10

10
 WR

 RD

MEM 2
10

 WR
 RD

MEM 3
10

10
 WR
 RD

MEM 4

CLK

Dss1

Dss2

Dss3

Dss4

DIN

Memory Block

WA1

RA1
WA2

RA2
WA3

WA4

RA4

Address Generator

10 RA3

sel1

sel2

sel33

sel43

selx WEA

WEB

CLKA

CLKB

ADDA

ADDB
DINB

DINA

selx

0

1

CLK

CLK

selx

0

1

selx
1

288H

WAx

RAx

DIN
6

6

6

Port A

Port B

6

10

10

Dual port
memory

10

10

10 Dssx

0

(a) (b)

Chapter 6: Interleaving in MIMO WLAN

 119

used to insert the bias of 288H while generating addresses for Port B. When one port is
being written, other one is read and vice versa. Swapping between read/write operations at
the end of a cycle is performed using the signal selx which is generated using a toggle flip-
flop.
6.5.2 Address Generator

The address generator is the heart of the interleaver. The encoding schemes used in
this work for the two inputs, BW and Ncbpsc of the address generator are described in Table
6.5. The iss1-iss4 represent the four different spatial streams each consisting of write (WAx),
read (RAx) addresses and select signal (selx) output. As shown in Fig. 6.4(a), a multiplexer
is used in the write address generator to route the desired WAx from four possible sources
based on the value of Ncbpsc for a particular spatial stream, Issx.

Fig. 6.4(b) and (c) show the hardware used for generation of row count (JCOUNT)
and column count (ICOUNT) respectively using up-counters and comparators. Circuit
arrangement for generation of row number, D using BW and Ncbpsc is shown in Fig. 6.5(a).
Similarly, Fig. 6.5(b) and (c) describe hardware used for generation of ICOUNT<(C-Ix),
ICOUNT≥(C-Ix), JCOUNT<(D-Jx) and JCOUNT≥(D-Jx) signals. Here Ix and Jy is the
column and row offset value respectively, used while computing the addresses and is
defined in Table 6.6.

Table 6.5(a) Encoding of BW

Bandwidth (BW) Encoded bit

20MHz 0
40MHz 1

Table 6.5(b) Encoding of Ncbpsc

 Modulation Scheme
(Ncbpsc)

Encoded bits
BPSK (Ncbpsc=1) 00

QPSK (Ncbpsc=2) 01
16-QAM (Ncbpsc=4) 10
64-QAM (Ncbpsc=6) 11

Chapter 6: Interleaving in MIMO WLAN

 120

 (a)

 (b)

 (c)

Fig. 6.4 Scheme showing generation of (a) write address (b) row count and (c) column
count

 (a)

0

1

2
3

10
10
10
10

10
WAx

2
Ncbpsc

WAx for Ncbpsc = 1
WAx for Ncbpsc = 2
WAx for Ncbpsc = 4
WAx for Ncbpsc = 6

Row
Counter, J

Comparator
reset

CLK

D-1
CCy

JCOUNT 6

6

Column
Counter, I

Comparator
reset

CLK

C-1
RCx

ICOUNT
6

6

2

0
 1

0
 1
 2

3

Ncbpsc

6
6
6
6

0
 1
 2

3

6
6
6
6

4
8

16
24

6
12
24
36

BW

6

6

6
D

Chapter 6: Interleaving in MIMO WLAN

 121

 (b)

 (c)
 Fig. 6.5 Arrangement showing generation of (a) number of rows, (b) ICOUNT<(C-Ix) and

ICOUNT≥(C-Ix) (c) JCOUNT<(D-Jy) and JCOUNT≥(D-Jy)

Table 6.6 Definition of Ix and Jy for all streams and BW
Stream BW=20MHz, C=13 BW=40MHz, C=18

Iss1 I1=0, J1=0 I1=0, J1=0
Iss2 I2=6, J2=NBPSC*2 I2=8, J2=NBPSC*2
Iss3 I3=9, J3=NBPSC*3 I3=13, J3=NBPSC
Iss4 I4=3, J4=NBPSC I4=3, J4=NBPSC*3

Hardware required for the generation of read addresses (RAx) is shown in Fig. 6.6.

Like the write address generator, the structure developed for generation of RAx is also
generic and is applicable to all the spatial streams. The first and second level multiplexers
select one of the values of interleaver depth from the inputs with the help of BW and
mod_typ signal. The rd_count is a 10-bit up counter and generates RAx. While progressing
through the count values, when the rd_count value equals the output of M1, a reset pulse is
generated by the comparator and rd_count goes to initial state to start another cycle.

Fig. 6.6 Circuit for generation of read address (RAx)

Comparator C-Ix ICOUNT

ICOUNT
< (C-Ix)

ICOUNT ≥
(C-Ix)

6 6 6 6

Comparator D-Jy JCOUNT

JCOUNT
< (D-Jy)

JCOUNT
≥ (D-Jy)

6 6 6 6

10 clk
reset

Comparator

10
00

 01
 10
 11

mod_typ

10

M1
 0
 1

BW

 0
 1

 0
 1

 0
 1

52
108

104
216
208
432
312
648

RAx rd_count

2

10

10

10

Chapter 6: Interleaving in MIMO WLAN

 122

Fig. 6.7(a) and (b) show the rest of the circuit details required to generate interleaver
write addresses with BPSK/QPSK, 16-QAM and 64-QAM modulation schemes. In these
figures, the adders (A1-A3) receive two inputs; one from the row count part (purple
coloured) and the other from the column count part (blue coloured) of the circuit. In Fig.
6.7(a), the JCOUNT+Jy signal is generated by adder (A4) whereas the two subtractors (S1
and S2) generate the signal JCOUNT-(D-Jy). Based on the value of JCOUNT<(D-Jy)
signal, the multiplexer (M2) routes one of these signals to the input of the A1. Similar
hardware structure can be found for generation of signals like ICOUNT+Ix,
ICOUNT+Ix+1, ICOUNT–(C-Ix) etc. in the column count part. The output of the column
count part gets multiplied with D in the multiplier (ML1) to generate the second input of
A1. In Fig. 6.7(b) and (c), the circuit details for generation of signals like ICOUNT+Ix,
ICOUNT–(C-Ix), JCOUNT+Jy, JCOUNT-(D-Jy) etc. are not shown to avoid repetition and
clumsiness. The condition for generation of select inputs (II4, JJ4, II6 and JJ6) for the
multiplexers of Fig. 6.7(b) and (c) are described and encoded in Table 6.7(a) and (b).

Table 6.7(a) Encryption of signals II4 and JJ4
Condition II4 Condition JJ4

ICOUNT<(C-Ix) and iXMOD = 0 00 JCOUNT<(D-Jy) and jXMOD=0 00
ICOUNT<(C-Ix) and iXMOD = 1 01 JCOUNT<(D-Jy) and jXMOD=1 01
ICOUNT≥(C-Ix) and iXMOD = 0 10 JCOUNT≥(D-Jy) and jXMOD=0 10
ICOUNT≥(C-Ix) and iXMOD = 1 11 JCOUNT≥(D-Jy) and jXMOD=1 11

 Table 6.7(b) Encryption of signals II6 and JJ6
Condition II6 Condition JJ6

ICOUNT<(C-Ix) and iXMOD=0 000 JCOUNT<(D-Jy) and jXMOD=0 000
ICOUNT<(C-Ix) and iXMOD=1 001 JCOUNT<(D-Jy) and jXMOD=1 001
ICOUNT<(C-Ix) and iXMOD=2 010 JCOUNT<(D-Jy) and jXMOD=2 010
ICOUNT≥(C-Ix) and iXMOD=0 011 JCOUNT≥(D-Jy) and jXMOD=0 011
ICOUNT≥(C-Ix) and iXMOD=1 100 JCOUNT≥(D-Jy) and jXMOD=1 100
ICOUNT≥(C-Ix) and iXMOD=2 101 JCOUNT≥(D-Jy) and jXMOD=2 101

Chapter 6: Interleaving in MIMO WLAN

 123

 (a)

S1

ICOUNT

INT
_AD

D BP
SK

-QP
SK

_x

1
 0 Ix

1

C
1

 0

1
 0

JCOUNT
Jy

D

1
 0

ICOUNT < (C-Ix)

ICOUNT <
(C-Ix-1)

JCOUNT
< (D-Jy)

A1
A4

S2
M2

ML1

1

A5

A6

A7
S3

S4

M3

M4

M5

Chapter 6: Interleaving in MIMO WLAN

 124

 Fig. 6.7 Circuit diagram for the generation of interleaver write addresses with
 (a) Ncbpsc=1 or 2 (b) Ncbpsc=4 and (c) Ncbpsc=6

0
1
2
3
4
5

II6

0 1
2
3 4
5

0
1
2
3
4
5

0 1
2
3 4
5

0 1
2
3
4
5

0
1
2
3
4
5

0
1
2
3
4
5

INT
_AD

D_
x 0

1
2
3
4
5

0
1 2
3
4 5

JJ6

0
1
2
3
4
5

JCOUNT + Jx

ICOUNT + Ix

JCOUNT + Jx + 1

JCOUNT + Jx - 1

ICOUNT – (C- Ix)
JCOUNT + Jx + 2)

JCOUNT + Jx - 2)

JCOUNT – (D- Jx)

ICOUNT + Ix + 1

JCOUNT– (D- Jx-1)

JCOUNT– (D- Jx+1)

JCOUNT– (D- Jx+2)

ICOUNT– (C- Ix-1)

JCOUNT– (D- Jx-2)

II4

0
 1
 2
 3

0
 1
 2
 3

0
 1
 2
 3

0
 1
 2
 3

0
 1
 2
 3

0
 1
 2
 3

JCOUNT + Jx
ICOUNT + Ix

JCOUNT + Jx + 1

JCOUNT + Jx - 1

ICOUNT – (C- Ix)

JCOUNT – (D- Jx)

ICOUNT– (C- Ix-1)

ICOUNT + Ix + 1

JCOUNT– (D- Jx-1)

JCOUNT– (D- Jx+1)

0
 1
 2
 3

JJ4

D
INT

_AD
D_

x

0
 1
 2
 3

A2

A3

(b)

(c)

D

Chapter 6: Interleaving in MIMO WLAN

 125

6.6 Simulation Results of MIMO WLAN Interleaver
This section describes generation of simulation result in the form of timing diagram

containing the desired write address sequences of our proposed interleaver address
generator. The timing simulation so obtained using ModelSim XE-III software, enables
the author to verify the working of the proposed interleaver address generator with the
standard document of IEEE 802.11n [75]. The address generation circuitry is tested for all
BWs, spatial streams and modulation schemes, out of which one such result with Nbpscs = 1
(BPSK), N = 52, BW = 20MHz (nbpscs = 002, bw = 02,) having all four spatial streams is
presented in Fig. 6.8(a). The first four signals i.e. clk, reset, bw and nbpscs are input to the
address generator. All the operations of the circuit are synchronized with respect to the clk
signal. The last four signals (int_add_1 to int_add_4) of Fig. 6.8(a) are the output of the
address generator displaying the sequence of write addresses generated for the four
different spatial streams (iss1-iss4) of the interleaver. Among these, the bottom most signal
(int_add_4) generates the address sequence with values 13, 17, 21,…, 49, 1, 5, 9, 14, 18,
22, …, 50, 2, 6, … which is identical with the address sequence of Table 6.2(a). This
verifies the working of our proposed interleaver as per the standard [75]. Another timing
simulation with Nbpscs = 6 (16-QAM), N = 648, BW = 40MHz (nbpscs = 112, bw = 12) has
been presented in Fig. 6.8(b). In this case too, the address sequences displayed at the
bottom four signals exactly match with the output of the MATLAB program with input
parameters Nbpscs = 6 (16-QAM), N = 648, BW = 40MHz. Such verifications have been
carried out exclusively with address sequences for all possible combination of the MIMO
WLAN interleaver specification as per Table 6.1. However, comparison of these
simulation results with other works could not be made as timing simulations have not been
provided by the others.

 (a)

Chapter 6: Interleaving in MIMO WLAN

 126

 (b)

Fig. 6.8 Write addresses (WAx) of interleaver for (a) Nbpscs=1 (BPSK), N=52,
BW=20MHz (nbpscs=002, bw=02) and (b) Nbpscs=6 (64-QAM), N=648, BW=40MHz

(nbpscs=112, bw=12)
6.7 FPGA Implementation Results

The proposed design of the interleaver is transformed into a VHDL model using
Xilinx ISE 12.1 and is implemented on Xilinx Spartan-6 FPGA. Table 6.8 shows the
minimum hardware requirement for the implementation of the proposed design obtained
by HDL synthesis irrespective of implementation platform e.g. FPGA or ASIC. The two
ROMs of sizes 64 x 2 bit are used to store initial value of Ix and Jy as per Table 6.6. The
10-bit adders are used at the final stage of the address generator one at each bit stream for
addition of row count value with the column count value. For the computation of signals
like ICOUNT+Ix, ICOUNT+Ix+1, ICOUNT–(C-Ix) etc, the design uses 6-bit adder, 6-bit
subtractor with borrow input & 6-bit subtractor without borrow input circuits. The design
models two 6-bit counters for the implementations of Fig. 6.4(b) and (c). Internal storage
requirement is met up by the 1-bit and 6-bit latches as described in Table 6.8. In order to
implement the less than and greater than equal to condition as listed in Table 6.7 (a) and
(b), the design uses the 6-bit less and great-equal circuits. The proposed hardware
structure of the address generator requires large number of multiplexers of different
widths. To implement them on FPGA platform, the design requires the multiplexers as
mentioned in Table 6.8.

In spite of our exhaustive literature survey, similar implementations on FPGA
platform have not yet been noticed for the purpose of comparison. As a result, the
conventional LUT based approach [157], [103], [165] has been redesigned and
implemented for MIMO WLAN interleaver on the same FPGA platform utilizing BRAM
to house the address LUTs for the sake of comparison only. Four dual port BRAM
memory blocks have been used to implement the interleaver memory in both the designs

Chapter 6: Interleaving in MIMO WLAN

 127

in a manner similar to [115]. Comparative analysis of the two implementations in terms of
device utilization is made in Table 6.9 wherein betterment of the proposed novel
technique can be quantified in terms of embedded memory utilization (88.9% memory
saving) and operating speed (27.43% speed improvement) with approximately 4% overuse
of slice LUTs. Such marginal overuse occurs as the logic circuit associated with LUT
based approach is relatively simpler [157] than our proposed technique. As modern
FPGAs like Spartan 6 contain abundance of such slice LUTs, minor overuse does not
affect the design in comparison with the use of critical and limited resources like BRAM.
Significant reduction in BRAM use by our proposed design, enables the designer to meet
other memory requirement while implementing the complete MIMO WLAN transceiver
on the same FPGA. Use of DSP blocks as multiplier improves the performance of the
circuit by reducing the delay. The circuit works at maximum clock speed of 208.7MHz
with 28.62mW of power consumption. As the design has four parallel spatial streams, the
throughput of the proposed interleaver may reach upto 834.8Mbps on Spartan 6 FPGA
thereby capable of delivering 28.14% higher throughput than the maximum requirement
[75].

Table 6.8 Minimum hardware requirement for the interleaver

Logic Circuits Used Quantity Logic Circuits Used Quantity

64x2-bit ROM 2 1-bit latch 26
10-bit adder 4 6-bit comparator great 12
6-bit adder 22 6-bit comparator less equal 1

6-bit sub borrow in 4 1-bit 2-to-1 multiplexer 659
6-bit subtractor 50 6-bit 4-to-1 multiplexer 178
6-bit up counter 2

Table 6.9 Device Utilization Summary

FPGA Resources This work LUT Based technique [157], [103], [165]
Utilization in Number Utilization in % Utilization in Number Utilization in %

Number of Slices Registers 30 out of 30064 0.10 35 out of 30064 0.12
Number of Slices LUTs 864 out of 15032 5.75 201 out of 15032 1.34

Number of BRAMs 4 out of 52 7.69 36 out of 52 69.23
Number of DSP48A1s 4 out of 38 10.53 0 out of 38 0 %

Number of BUFG/BUFGCTRLs 2 out of 16 12.50 2 out of 16 12.50

In addition, comparison with few works has been done based on the equivalence
drawn between FPGA and ASIC implementations in [156]. The comparative study of the
proposed implementation in respect of key FPGA parameters shows betterment over other

Chapter 6: Interleaving in MIMO WLAN

 128

similar recent works and is presented in Table 6.10. The proposed circuit shows
betterment over [121], [120], [122] and LUT based technique in terms of maximum
operating frequency. Our implementation has been found to be the most efficient among
the designs in references [121], [120], [122] of Table 6.10 in terms of power consumption.
Similar comparison has been drawn by Zafar et al. [111] with previous work [110] in
terms of resource requirement while implementing interleaver for 2 x 2 MIMO WiMAX
system. However, direct comparison between our proposed and work in [110], [111] may
not be possible, as the interleaver specification for both standards are not identical,
especially the former involves a third step of permutation called frequency rotation.

Table 6.10 Comparative study between similar works

FPGA Parameters This work [120] [121] [122] LUT Based [157], [103],

[165]
Maximum clock frequency 208.7 MHz

109.38MHz
(Improvement over [120]:

47.59%)

70.31MHz
(Improvement over [121]:

66.31%)

125MHz
(Improvement over [122]:

40.1%)
151.45MHz (Improvement over LUT method: 27.43%)

Power
consumption 28.62mW

111.24mW
(Reduction over
[120]: 74.27%)

48mW (Reduction
over [121]:

40.38%)
Not available 28.62mW (at par with LUT

based method)

6.8 Discussion
This chapter demonstrates the design and implementation of novel interleaver

hardware on FPGA platform to be used in OFDM based MIMO WLAN applications. New
algorithm has been proposed for the address generator of the interleaver eliminating the
requirement of floor function and is supported by mathematical foundation with general
validity. The algorithm is transformed into digital circuit and is modeled using VHDL
software. Simulation results verify the functionality of the proposed algorithm. Hardware
implementation of the VHDL model using Xilinx ISE has also been done as well as tested
on Xilinx Spartan 6 FPGA. Efficient design and use of FPGA’s embedded resources
during the implementation enables betterment over few recent similar works and
conventional design in terms of multiple FPGA parameters. This work motivates the
author to design the QPP interleaver used in latest wireless broadband technology-
LTE/LTE-A and is presented in the next chapter.

Chapter 7

Implementation of QPP
interleaver

 Outline of this Chapter
7.1 Introduction
7.2 Interleaving in LTE/LTE-A
7.3 Proposed Algorithm for QPP interleaver
7.4 Hardware Realization
7.5 Simulation Results for QPP Interleaver
7.6 FPGA Implementation Result and Analysis
7.7 Discussion

After detailed discussion on the design and implementation of resource efficient
and high speed interleavers / de-interleavers in the previous chapters, this chapter
incorporates QPP interleaver implementation on Xilinx Spartan 6 FPGA. The
address generator of the interleaver contains a quadratic expression having square
and modulus function whose direct digital hardware is not yet available in the
literature. A novel algorithm has now been proposed which can provide low
complexity hardware solution to implement the interleaver address generator. This
chapter describes VHDL model and timing simulation of the proposed address
generator using ModelSim XE-III software. Due to absence of implementation
results in the literature, comparison of this work is made by implementing
conventional LUT based technique on the same FPGA. Such comparison shows
better FPGA resource utilization and improved operating speed in favour of the
novel proposed technique.

Chapter 7: Implementation of QPP Interleaver

 130

7.1. Introduction
The demand for ubiquitous mobile internet services requires high bandwidth

connectivity. To cater this demand, new technologies like the LTE of 3rd Generation
Partnership Project (3GPP) standards [76] have been developed. LTE is rapidly becoming
the dominant global standard for fourth generation cellular networks [56]. It has brought
together many technological innovations from different areas of research such as digital
signal processing, internet protocols, network architecture and security, and is also poised
to dramatically change the way we use the world wide mobile network in future. LTE-A
[77] is the project name of the evolved version of LTE that is being developed by 3GPP
[166]. LTE-A will meet or exceed the requirements of the International
Telecommunication Union (ITU) for the fourth generation (4G) radio communication
standard known as International Mobile Telecommunication (IMT)-Advanced [167].
 LTE / LTE-A uses Turbo coding as channel coding scheme. Turbo encoder and
decoder are one of the major blocks in a LTE wireless transceiver. Turbo encoder/decoder
employs interleaver to reduce the effect of burst error in the channel. Turbo decoders
provide best performance but suffer from high decoding latency due to the iterative
decoding process [168]. This is due to the forward–backward recursion in the maximum a
posteriori (MAP) decoding algorithm and the interleaving /de- interleaving between the
iterations [124].

The QPP interleaver is defined in the new 3GPP LTE standard. The function of the
QPP interleaver is to take a block of N-bit data and produce a permutation of the input
data block. From the coding theory perspective, the performance of a Turbo code depends
critically on the interleaver structure. The structure of the QPP interleaver differs from
previous 3G interleavers in sense that it is based on algebraic constructions via
permutation polynomials over integer rings. It is known that permutation polynomials
generate contention-free interleavers.
 In this Chapter, we propose an efficient algorithm to model the interleaver address
generator used in LTE/LTE-A. The address generator of QPP interleaver involves a
quadratic expression having square and modulus function whose corresponding digital
hardware is not available. In our approach, the said expression is divided into two parts.
The first part generates raw addresses which is described by a novel algorithm. The
second part computes modulus on these raw addresses and employs a modified technique
over [169]. Both algorithms are transformed into digital circuits for efficient FPGA

Chapter 7: Implementation of QPP Interleaver

 131

implementation. VHDL model has been prepared to implement the hardware in Xilinx
Spartan 6 FPGA. Functionality of the interleaver address generator is verified through
timing simulation using ModelSim XE-III software. In spite of best possible effort in
literature survey, the author could not find similar works implemented on FPGA platform
having implementation results. Consequently, comparison could not be drawn with
existing works implemented on CMOS and other platforms. As a result, for the sake of
comparison, the author implemented the conventional LUT based technique with
improved memory modeling on the same FPGA. Comparative analysis of our proposed
work with improved LUT based technique in terms FPGA resource utilization (Block
RAM) and operating speed shows betterment by 71.16% and 82.26% respectively at the
negligible cost of FPGA slice requirement.

7.2. Interleaving in LTE/LTE-A
Turbo coding is employed in many standards for forward error correction

techniques due to its impressive performance [167]. The interleavers are used in turbo
coding / decoding to improve the error performance. In order to increase the throughput,
parallel MAP decoding technique is adopted in Turbo code decoder of LTE/LTE-A
transceiver [170]. As a result, more than one MAP processor may store their outputs in the
same memory block of the interleaver simultaneously, if the interleaver is not designed
properly. In that case a contention of memory access [171] occurs and additional circuit
with decoding latency will be required to resolve the contention. The 3GPP LTE and LTE-
A standards incorporate the use of the QPP interleaver [172]. Such interleaver poses
contention free property and allows parallel decoders to decode one codeword with
improved throughput [173].

The interleaving operation in a QPP interleaver defined for LTE/LTE-A may be
expressed as

П(i) = (f1*i + f2*i2) mod K (7.1)

where i stands for the original address, and П(x) is the interleaved address. The parameters
f1 and f2 is related to the block size K and is defined in [76]. In the 3GPP LTE/LTE-A
standard, there are 188 different block sizes ranging from 40 to 6144, and each size has its
different interleaver parameters f1 and f2.

Chapter 7: Implementation of QPP Interleaver

 132

7.3. Proposed Algorithm for QPP interleaver
This section describes the formulation of the proposed algorithm for the address

generator of interleaver used in LTE/LTE-A. Firstly, a MATLAB program has been
developed using (7.1) to determine sequence of addresses to be generated against each
value of K, f1 and f2 parameters. Table 7.1 shows certain portion of such address sequences
obtained for three instances with (a) K = 40, (b) K = 1008 and (c) K = 6144.

Table 7.1(a) Address Sequences with K = 40, f1=3, f2=10
13 6 19 12 25 18 31 24 37 30 3 36
9 2 15 8 21 14 27 20 33 26 39 32

…
21 14 27 20 33 26 39 32 5 38 11 4

 Table 7.1(b) Address Sequences with K = 1008, f1 = 171, f2 = 204

375 150 333 924 915 306 105 312 927 942 357 180
411 42 81 528 375 630 285 348 819 690 969 648

…
423 438 861 684 915 546 585 24 879 126 789 852

 Table 7.1 (c) Address Sequences with K = 6144, f1 = 263, f2 = 480

743 2446 5109 2588 1027 426 785 2104 4383 1478 5677 4692
4667 5602 1353 4208 1879 510 101 652 2163 4634 1921 168

…
951 5726 5317 5868 1235 3706 993 5384 4591 4758 5885 1828

 Due to non-availability of corresponding hardware to implement (7.1), we propose
a novel algorithm which leads to low complexity implementation of the address generator.
In our approach, (7.1) is divided into two sub-parts out of which the first part computes
the raw addresses. These raw addresses pass through the mod function in the second part.
Both parts are described by (7.2) and (7.3) respectively. Accordingly, previous MATLAB
program is partially modified to generate the raw addresses without the mod function, i.e.
implementation of (7.2). The raw addresses so generated for the same three cases of Table
7.1 are shown in Table 7.2(a)-(c).

 y(i) = (f1*i + f2*i2) (7.2)
П(i) = y(i) mod K (7.3)

Chapter 7: Implementation of QPP Interleaver

 133

 Table 7.2(a) Raw Address Sequences with K = 40, f1=3, f2=10
13 46 99 172 265 378 511 664 837 1030 1243 1476

1729 2002 2295 2608 2941 3294 3667 4060 4473 4906 5359 5832
…

320947 324540 328153 331786 335439 339112 342805 346518 350251 354004 350251 354004

 Table 7.2(b) Raw Address Sequences with K = 1008, f1 = 171, f2 = 204
375 1158 2349 3948 5955 8370 11193 14424 18063 22110 26565 31428

36699 42378 48465 54960 61863 69174 85020 93555 102498 111849 121608 131775
…

6421383 6493974 6566973 6640380 6714195 6788418 6863049 6938088 7013535 7089390 7165653 7242324

 Table 7.2(c) Raw Address Sequences with K = 6144, f1 = 263, f2 = 480
743 2446 5109 8732 13315 18858 25361 32824 41247 50630 60973 72276

84539 97762 111945 127088 143191 160254 178277 197260 217203 238106 259969 282792
…

1508447
1

1525513
4

1542675
7

1559934
0

1577288
3

1594738
6

1612284
9

1629927
2

1647665
5

1665499
8

1683430
1

1701456
4

Careful examination of the sequence of raw addresses in Table 7.2(a)-(c) shows certain
correlation between them which may be expressed by the following novel algorithm for
address generator of LTE/LTE-A interleaver:

Define:
F = f1 + f2;
Fixed Increment: INC = 2*f2
Initial condition: PA = PI = F
Subsequent address: Previous address (PA) + {previous increment (PI) + INC}
e.g. (a) for K = 40, f1 = 3, f2 = 10
Initial Conditions:
PA = PI = F = 13, INC = 20,
Subsequent addresses: 13 + (13+20) = 46; 46 + (33+20) = 99; 99 + (53+20) = 172 and
so on.
(b) For K = 1008, f1 = 171, f2 = 204
Initial Conditions:
PA = PI = F = 375, INC = 408,
Subsequent addresses: 375 + (375+408) = 1158; 1158 + (783+408) = 99; 99 +
(1191+20) = 1290 and so on.
(c) For K = 6144, f1 = 263, f2 = 480

Chapter 7: Implementation of QPP Interleaver

 134

Initial Conditions:
PA = PI = F = 743, INC = 960,
Subsequent addresses: 743+ (743+960) = 2446; 2446 + (1703 + 960) = 5109; 5109 +
(2663+960) = 8732 and so on.
The proposed algorithm computes the raw addresses recursively without involving
multiplier and squarer circuit thus ensuring low complexity implementation.

Implementation of (7.3), i.e. computation of modulus on raw addresses is done by
suitably modifying the algorithm proposed by Butler & Sasao [169]. This algorithm
computes x mod z as a modulo reduction process, where at each stage, the magnitude of x
is reduced, but the residue remains the same which is continued until only the residue
remains. As the interleaver block size K (divisor) has 188 different values ranging from 40
to 6144, the second method of Butler & Sasao [169] where the divisor is an independent
variable is adopted. In the proposed case, as shown in Table 7.2(c), the maximum value
whose modulus is to be computed is 17014564 which in binary requires 25-bits
representation. As a result value of i = 25 in computation of Ɵ = z*2i where i-1 represents
number of comparison stages, z represents the divisor (= K) and Ɵ is defined to be the first
value to be subtracted from the dividend, X. Subsequent values of Ɵ are computed by
dividing present value of Ɵ by 2. In our work, division is accomplished by right shift
which is more resource efficient than direct division technique.

7.4. Hardware Realization
In order to test the functionality of the proposed algorithm, corresponding digital

hardware is designed. Top level view of the hardware is presented in Fig. 7.1 The first
block is Raw Address Generator, implementing (7.1), receives initiation pulse (INIT),
Clock signal (CLK) and a memory pointer (I) to retrieve the corresponding values of K, f1
and f2 stored in an LUT [76]. The raw addresses (X), and K values are passed on to the
MOD circuit which finally generates the desired interleaver addresses.
 The Raw Address Generator as shown in Fig. 7.2 comprises of two subsidiary
units namely, an LUT (a), a START signal generator (b) along with the main unit (c). The
LUT stores the values of K, f1 and f2 and has 32-bit width. The organization of data in the
LUT is described in Table 7.3. A desired combination of the block size K, f1 and f2 is read
from the LUT by supplying appropriate address of LUT in I. An adder is used to generate
F = f1 + f2. A START signal is generated by the hardware shown in Fig. 7.2(b) either at the
beginning of the operation or after completion of one period of generating 188 interleaver

Chapter 7: Implementation of QPP Interleaver

 135

addresses. INIT pulse is responsible for generating the START signal at the beginning
whereas an active reset signal generates the subsequent START signal on completion of
each addressing cycles. The main circuit responsible for raw address generation receives
signal F, f2 and START from other two ancillary units and the system CLK. Active START
pulse causes M1 = F, M2 = INC = 2* f2, M3 = F and M4 = 0 representing the initial
condition of the circuit. Registers R1 and R2 store the output of A1 and M3 respectively.
 Fig. 7.3 describes the modified hardware used to compute X mod K. In this
application, i = 25 and z is a 13-bit number resulting in Ɵ to be a 38-bit number. This
consequents 25-bit X to be converted into a 38-bit number by appending 13 zeros in the
MSBs so that X and Ɵ may be compared. In order to make our design resource efficient
we computed Ɵ by appending 25 number of zeros in the LSB of Z instead of using a
multiplier directly. The left most comparator (C24) as shown in Fig. 7.3 compares A24 (38-
bit version of X) with Ɵ24. If A24 ≥ θ24, the select input of the multiplexer (M24) receives a
0, thus routing Ɵ24 to the output (= B24). The subtractor (S24) performs first stage reduction
by computing A23 = A24 - B24. In case, A24 ≱ θ24, M24 receives B24 = 0, the stage performs
pass through operation. Similar operation is carried out in 23 subsequent stages as shown
in Fig. 7.3 till A0 is computed which is converted into 13-bit number, Y removing 25 zeros
from MSBs before sending it as output of the address generator. Subsequent Ɵs (i.e. Ɵ23,
Ɵ22, …,Ɵ1) are computed from previous Ɵ values dividing by 2. Instead of using a divisor,
the author employed shifter to perform ÷2 operation thereby making design more resource
efficient.

Fig. 7.1 Top level view of the QPP interleaver address generator

Table 7.3 Organization of LUT

I (9 bit) K (13 bit) f1 (9 bit) f2 (10 bit)
000H 01400C0AH
001H 01801C0CH
002H 01C04C2AH

… …
05BH 01F80DC54H

… …
0BBH C0041DE0H

Y
CLK Raw Address

Generator MOD Circuit I
INIT

X
K

Chapter 7: Implementation of QPP Interleaver

 136

Fig. 7.2 Proposed Hardware of Raw Address Generator

(a) LUT (b) START signal Generator (c) Main Unit

Fig. 7.3 Modified MOD circuit to compute X mod Z

7.5. Simulation Results for QPP Interleaver
The simulation results in the form of timing diagram obtained using ModelSim

Xilinx Edition-III for i = 1(K=40), 91 (K=1008) and 188 (K=6144), are shown in Fig.
7.4(a), (b) and (c) respectively. The captured portion show the interleaver addresses
generated for the first few cases and are identical with Table 7.1(a), (b) and (c)
respectively. The circuit fetches K=40, f1=3 and f2=10 from the LUT of Fig. 7.2(a) when
supplied with i=1. As shown in Fig. 7.4(a)-(c), init = 1 in the beginning for one clock
pulse to enable hardware of Fig. 7.2(b) to generate START pulse. On completion of an
iteration of address generation, the START pulse for subsequent iterations is generated by
the reset signal. Based on the values received against the signals START, F and f2, the
main unit of the address generator as shown in Fig. 7.2(c) computes the desired addresses
and are made available at the output as y in Fig. 7.4(a)-(c). The author has generated and

AD2

f2

INC

F

START
0

CLK

0
1 R1

R2 0
1

 0
 1

 0 1

0

F
START

START

25 10

12
2

f2

8
Counter

Comparator
reset

CLK

188
8

START
INIT

CLK LUT I

K
f1

F
(a)

(b) (c)

M1

M2

M3

M4

AD1 X

S1 S23 S24

θ24

C24 C1 C23

38

X

Z

13 A0

2i
13

A1 A22 A23

B24
M24

0

38 25
A24

A24 ≥ θ24
0 1

A24 - B24

Shifter

B24
M23

0

A23 ≥ θ23
0 1

A23 – B23

Shifter

B1
M0

0

A1 ≥ θ1
0 1

A1 – B1

25

Y

38

Comparator

Chapter 7: Implementation of QPP Interleaver

 137

verified addresses for all values of i, however to avoid clumsiness other results are not
included.

 Fig. 7.4(a) Timing simulation showing initial addresses for i=1 (K = 40, f1=3, f2=10)

 Fig. 7.4(b) Timing simulation showing initial addresses for i=91
(K = 1008, f1 = 171, f2 = 204)

Fig. 7.4(c) Timing simulation showing initial addresses for i=188

(K= 6144, f1 = 263, f2 = 480)

Chapter 7: Implementation of QPP Interleaver

 138

7.6. FPGA Implementation Result and Analysis
The proposed hardware structure of LTE / LTE-A interleaver address generator is

transformed into VHDL model using Xilinx Integrated Software Environment (ISE 12.1)
and has been implemented on Xilinx Spartan 6 FPGA. Table 7.4 shows the HDL synthesis
report for the implementation. The adder of Fig. 7.2(a) is realized by the 10-bit adder. The
13-bit and 38-bit subtractors are used in the mod circuit to determine the Y and Ax-1=Ax-
Bx. AD1 and AD2 adders of Fig. 7.2(c) are implemented through two 25-bit adders. The
input applied through I is converted into LUT address with the help of the 9-bit subtractor
to access the content of LUT described by Table 7.3. An 8-bit up-counter is used to
implement the counter of Fig. 7.2(b). The 1-bit, 25-bit registers are used to implement
reset signal, R1 and R2 register respectively. Fig. 7.2(b) uses the 8-bit greater than
comparator to generate the reset pulse whereas the 24 numbers of 38-bit less than equal to
comparators are used in the mod circuit to implement C24, C23, C22 …..,C1. Similarly the mod
circuit of Fig. 7.3 also uses 24 number of 38-bit 2-to-1 multiplexers (M24, M23, M22
…..,M1). The 25-bit 2-to-1 multiplexers implements M1-M4 of Fig. 7.2(c)

Table 7.4 HDL Synthesis Report

Logic Circuits Used Quantity Logic Circuits Used Quantity

10-bit adder 1 1-bit register 1
13-bit subtractor 1 25-bit registers 2
25-bit adder 2 8-bit comparator greater 1
38-bit subtractor 24 38-bit comparator less equal 24
9-bit subtractor 1 25-bit 2-to-1 multiplexer 4

8-bit up counter 1 38-bit 2-to-1 multiplexer 24
 Direct comparison of our proposed work with the existing works in [124], [123],

[126] is not possible due to dissimilarity in implementation platform and non-availability
of implementation result for interleaver alone. However, in order to compare the
implementation results, we have modelled and implemented the conventional LUT based
technique in the same Spartan 6 FPGA platform. As per [76], there are 188 permissible
block sizes leading to 188 memory blocks required to house the address LUTs. Such
requirement cannot be catered by the target FPGA which only possess 52 BRAM blocks.
To solve the problem, the author partitioned the available memory blocks which in turn
helped to reduce memory wastage as well. Implementation results of both the techniques
have been shown in Table 7.5. Pictorial representation of Table 7.5 is also incorporated in
Fig. 7.8 for quick comparison and analysis of the implementation results. Our proposed
technique shows significant reduction in Block RAM requirement by 71.16% in

Chapter 7: Implementation of QPP Interleaver

 139

comparison with improved LUT based technique. Similarly our proposed design shows
significant improvement by 82.26% in terms of maximum operating frequency. This
improvements are at the cost of minor increase in FPGA Slice LUT requirement.

Table 7.5 Comparative Device Utilization Summary

FPGA Resources /

Parameters
This work Improved LUT based implementation

Remarks Utilization in
Number Utilization in % Utilization in

Number
Utilization in

%
Number of Slice

Registers 59 out of 30064 0.19 63 out of 30064 0.21 Reduction by 0.02%
Number of Slice

LUTs
1128 out of

15032 7.50 433 out of 15032 2.88 Increase by 4.62%
Number of Bonded

IOBs 23 out of 240 9.58 23 out of 240 9.58 No change
Number of Block

RAM 1 out of 52 1.92 38 out of 52 73.08 Reduction by
71.16%

Maximum clock speed 260.92MHz 143.16MHz Speed improvement by 82.26%

Fig. 7.8 Bar Chart Representation of FPGA Device Utilization Summary

7.7. Discussion
This work describes a novel and efficient algorithm to model the interleaver

address generator used in LTE/LTE-A. The algorithm exploits the correlation between the
consecutive addresses of the address generator of QPP interleaver to efficiently model and
implement on reconfigurable hardware. The algorithm is converted into digital hardware

0
50

100
150
200
250
300

No. of Slice
Registers (in %)

No. of Slice
LUTs (in %)

Number of
Boned IOBs

(in %)
Number of

BRAM (in %)
Maximum
Opertaing
frequency
(in MHz)

0.19 7.5 9.58 1.92

260.92

0.21 2.88 9.58

73.08

143.16

Uti
liza

tion
 Pe

rce
nta

ge
/ O

per
atin

g F
req

uen
cy

FPGA Resources / Parameters

Comparative Device Utilization Summary
Our Proposed technique Improved LUT based technique

Chapter 7: Implementation of QPP Interleaver

 140

and implemented on Xilinx Spartan 6 FPGA using Xilinx ISE 12.1. Functionality of the
address generator has been tested through timing simulation using ModelSim XE-III
software. The proposed work when compared with conventional LUT based work shows
significant improvement in terms of embedded memory utilization and operating speed.
Next chapter summarises the complete work done during this doctoral research activity
including potential areas for future research in continuation to this work.

Chapter 8
Conclusion and Future Works

Chapter 8: Conclusion and Future Works

 142

8.1 Conclusive Remarks
In digital communication systems, interleavers play an important role in reducing

the effect of burst error encountered in the channel during transmission. Design of digital
hardware for the interleaver address generator used in OFDM based wireless standards
like DAB, DVB, WLAN, WiMAX, MIMO-WLAN and LTE/ LTE-A are highly
challenging due to the presence of complex functions like floor, modulus and square.
The principal aim of this research work was to design hardware efficient interleaver for
various OFDM based high speed wireless communication systems. FPGAs are most
preferred reconfigurable hardware platform for implementation of newer algorithms due to
advantages like shorter turnaround time, ease of future upgradation, obsolescence free
design and direct linkage of MATLAB with software tools for HDL designs like Xilinx
Integrated Software Environment (ISE). In this work, efficient hardware implementations
of both types of interleavers, i.e. convolutional and block, involving all permissible code
rates and modulation types have been carried out. MATLAB programs have been
developed to generate the desired interleaver addresses. At first, block level representation
of the designs is prepared. Novel algorithms have been proposed to model these blocks.
Verification of the proposed algorithms has been accomplished through MATLAB
programs. Each block is decomposed into most suitable digital circuits which thereafter
are converted into appropriate VHDL models using Xilinx ISE. Finally, the VHDL
models are implemented on Xilinx FPGAs like Spartan 3, 3AN and 6. Timing simulations
of the interleaver address generators / interleavers have been extensively carried out to
verify functionality of the proposed designs.

At the outset, design and implementation of convolutional interleaver for DAB
application has been considered. The work utilizes FPGA’s embedded shift registers
SRLC16 to model the incremental memory of the interleaver. This modeling lowers the
hardware resource occupancy of FPGA by 81% over implementation without
embedded shift registers. The power consumption of the convolution interleaver
hardware is found to be as low as 125mW. Due to the use of SRLC16, interconnection
delay inside the FPGA is reduced thereby improving the operating speed of the
convolutional interleaver. Reduction in memory wastage by 30% over an existing
implementation is another important contribution of the work.

Conventionally Look-up Table (LUT) based technique is employed in designing
the block interleaver used in IEEE 802.11 a/g based WLAN transceiver. Two approaches

Chapter 8: Conclusion and Future Works

 143

namely improved LUT based and Finite State Machine (FSM) based have been adopted
by the author in designing the hardware for the interleaver. The former technique
demonstrates reduction in resource utilization like slices, flip-flop and LUTs by 43%,
34% and 50% respectively over the conventional LUT based approach. Similar
results have also been obtained for FSM based implementation. In addition, the FSM
based technique offers 25% faster performance over the conventional LUT based
method.

WiMAX is another BWA based on IEEE 802.16 d/e standard which uses special
type of block interleaver. Conventionally, LUTs are used to generate the interleaver
addresses. The author has proposed improved LUT based technique to generate de-
interleaver addresses. The improvement in terms of memory saving above 81% of
memory blocks and 30% faster circuit operation over the conventional LUT based
approach have been achieved. Next, FSM based interleaver address generator for
WiMAX system has been proposed. The work has been carry forward to design the
complete FSM based interleaver (with memory) for the WiMAX application. This work
too shows approximately 30% improvement in terms of maximum operating clock
frequency, approximately 46% improvement in FPGA flip- flop used with negligible
(less than 3%) loss in terms of LCs used over the existing implementation. Finally
design of a low complexity and resource efficient hardware for de-interleaver has been
proposed. It includes a novel algorithm for the de-interleaver with user-friendly
mathematical representation followed by general validity. Use of FPGA’s embedded
multiplier and sharing of resources among the QPSK, 16-QAM and 64-QAM blocks
exhibit significant reduction in occupancy of FPGA slices (by 80.24%), flip-flops (by
35.9%) and 4 input LUTs (by 80.47%) along with 95% faster operation than LUT
based approach.

Another important work related to speed power improved hardware design of
interleaver address generator for use in MIMO WLAN has been carried out. This work
contributes hardware efficient model of MIMO WLAN interleaver completely eliminating
the need for floor and modulus functions. The work is also extended to model the
interleaver memory using FPGA’s embedded memory and thus provides complete
hardware interleaver solution. The proposed design when compared with recent works
shows noticeable betterment in terms of maximum operating frequency by 12.56%
and power consumption by 65.64%.

Chapter 8: Conclusion and Future Works

 144

Finally the work related to the design of hardware efficient Quadratic Permutation
Polynomial (QPP) interleaver address generator for LTE / advanced LTE communication
system has been taken up. The address generator involves a quadratic equation and
modulus function which do not have corresponding digital hardware. A novel algorithm
has been proposed to eliminate the need of squarer and modulus functions. The algorithm
is converted into digital hardware which is also implemented on a reconfigurable platform.
This approach shows significant reduction in Block RAM requirement by 71.16% in
comparison with improved LUT based technique along with the significant
improvement of maximum operating frequency by 82.26%.

A summary of wireless applications for which various interleaver designs have been
carried out along with the implementation platforms used against them in the entire
doctoral research work is presented in Table 8.1. This table also highlights the embedded
resources of the target FPGAs used in the work.

Table 8.1 Summary of Interleaver Applications and FPGA Implementation

Platforms used in this Research Work

Application Xilinx FPGA Generations Devices Embedded Resources used

Convolutional Interleaver for
DAB Spartan-3 XC3S 400 SRLC16 (Embedded Shift Register)

Block Interleaver for WLAN Spartan-3 XC3S 400 Block RAM, Distributed RAM

Block Interleaver for WiMAX Spartan-3, Spartan-3AN XC3S 400,
XC3S1400AN

Block RAM,
MULT18X18 (Embedded Multiplier)

Block Interleaver for
MIMO WLAN Spartan-6 XC6SLX25 Block RAM, DSP48A1s (DSP Block)

QPP Interleaver for LTE/LTE-A Spartan-6 XC6SLX25 Block RAM

8.2 Prospective Future Work
Like “space never ends”, research never ends either. Though the works

incorporated in this thesis provide efficient solution to interleaver design and
implementation issues on FPGA platform through VHDL modeling, following points may
be considered as potential candidate for future development in continuation to this work.

Chapter 8: Conclusion and Future Works

 145

 Development of FPGA based Dual mode ARP and QPP block interleavers
supporting MIMO WLAN as well as LTE/LTE-A standard simultaneously.

 Implementation of convolutional interleaver for advanced Speech Signal
Processing.

 Design and implementation of Multi-Dimensional Interleavers for advanced
image transmission.

 Interleavers for high speed successful data transmission over severe burst
error communication channel.

 Advanced Interleavers for Multi-functional MIMO systems in 5G Wireless
Communication.

 Application of the knowledge of interleavers in RF Wireless system for
corresponding transformation to Optical/Quantum Wireless systems.

 Massive MIMO Signal Processing techniques utilizing the principles of the
interleavers incorporated in this thesis for Optical Wireless Communication.

Bibliography

Bibliography

 147

[1] J. G. Proakis, Digital Communications, 3rd ed. New York: McGraw-Hill, 1995.
[2] F. B. Samuel and LL. D, Morse, “Examination of the Telegraphic Apparatus and

the Processes in Telegraphy”, Philp & Solomons, Washington, 1869, pp. 7-36.
[3] http://www.elon.edu/e-web/predictions/150/1830.xhtml
[4] L. Coe, “The Telegraph: A History of Morse’s Invention and its Predecessors in

the United States”, McFarland & Co., 1993.
[5] A. Odlyzko, “The history of communications and its implications for the Internet”

available at http://dspace.mit.edu / bitstream / handle / 1721.1/1525/
history_communications2.pdf.

[6] C. S. Fischer, “America Calling: A Social History of the Telephone to 1940”,
University of California Press, USA, 1948, pp. 1-32.

[7] Alexander Graham Bell Family Papers at the Library of Congress available at
http:// www.loc.gov/ collections/ alexander-graham-bell-papers/ articles-and-
essays/ telephone-and- multiple - telegraph/

[8] LRF. Harris and J. Martin “Evolution of switching system architecture” The Post
Office Electrical Engineers' Journal, vol. 74, Oct. 1971, pp.187-193.

[9] C. Breen and C. A. Dahlbom, “Signalling Systems for Control of Telephone
Switching”, B.S.T.J. 39, no.9, pp. 1381-1444.

[10] J. E. Flood (ed.) “Telecommunication Networks”, IEE, 2nd Edition, Chapter 1.
[11] S. F. Smith,. “Telephony and Telegraphy: An Introduction to Instruments and

Switching Systems”, Oxford University, 1978.
[12] http://www.thg.org.uk/index.php/component/content/article?id=115.
[13] F. Redmill and A. R. Valdar, “SPC Digital Exchanges”, Peter Peregrinus

Publisher, 1994.
[14] T. Viswanathan, “Telecommunication Switching Systems and Networks”, PHI

Publication, 2006, Chapter 1.
[15] http://en.wikipedia.org/wiki/Invention_of_the_telephone
[16] G. Kennedy and B. Davis, “Electronic Communication System”, Tata Mcgraw

Hill Edition, New Delhi, 1999, pp 2-5.
[17] R. R. Gulati, “Monochrome and Color Television” Wiley Eastern Limited, 2nd

Edition, Chapter 1.

Bibliography

 148

[18] R. P. Singh and S. D. Sapre, “Communication Systems: Analog & Digital”,
McGraw-Hill Publisher, New Delhi, 2007.

[19] A. Goldsmith, “Wireless Communications”, Cambridge University Press, New
York, USA, 2005.

[20] T. S. Rappaport, “Wireless Communications: Principles and Practice”, Prentice-
Hall, Englewood Cliffs, NJ, 1996

[21] W. Stalling, “Wireless Communications and Networks”, Pearson Publication,
New Delhi, India, 2005

[22] V. T. Yadugiri, “Jagadish Chandra Bose”, Current Science, vol. 98, no. 7, April,
2010, pp. 975-77.

[23] A. S. Molisch, “Wireless Communication”, John Wiley and Sons Publication, UK,
2005

[24] K. L. Du and M. N. S. Swamy, “Wireless Communication Systems: From RF
Subsystems to 4G Enabling Technologies”, Cambridge University Press, UK,
2010.

[25] T. L. Singhal, “Wireless Communications”, Tata McGraw Hill Publication, New
Delhi, 2010.

[26] B. Leung, “VLSI for Wireless Communication”, 2nd Edition, Springer, USA 2011.
[27] D. Markovic´, B. Nikolic´, and R. W. Brodersen, “Power and area efficient VLSI

architectures for communication signal processing,” in Proc. Int. Conf.
Communications, Jun. 2006.

[28] D. Markovic, B. Nikolic, and R.W. Brodersen, “Power and area minimization for
multidimensional signal processing,” IEEE J. Solid-State Circuits, vol. 42, no. 4,
April 2007, pp. 922–934.

[29] A. P. Chandrakasan, M. Potkonjak, J. Rabaey, and R. W. Brodersen, “HYPER-
LP: a system for power minimization using architectural transformations,” in
Computer-Aided Design, 1992. ICCAD-92. Digest of Technical Papers, 1992
IEEE/ACM International Conference on, Santa Clara, CA, Nov. 1992, pp. 300–
303.

[30] P. Banerjee, M. Haldar, A. Nayak, V. Kim, V. Saxena, S. Parkes, D. Bagchi, S.
Pal, N. Tripathi, D. Zaretsky, R. Anderson, and J. Uribe, “Overview of a compiler
for synthesizing MATLAB programs onto FPGAs,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 12, no. 3, Mar. 2004, pp. 312–324.

Bibliography

 149

[31] http://www.corp.att.com/attlabs/reputation/timeline/46mobile.html
[32] W. R. Young, “Introduction, Background and Objectives”, Bell Systems

Technical Journal, vol. 58, January, 1979, pp. 1–14.
[33] T. R. Anderson, T. U. Daim, and J. Kim, “Technology forecasting for wireless

communication” Technovation, 28(9), 2008, pp. 602–614.
[34] V. H. McDonald, “The Cellular Concept”, Bell Systems Technical Journal, vol.

58, January,1979, pp. 15–49.
[35] A. Jamalipour, T. Wada, T. Yamazato, “A Tutorial on Multiple Access

Technologies for Beyond 3G Mobile Networks”, IEEE Communication
Magazine, vol. 43, February, 2005.

[36] A. Furaskär, S. Mazur, F. Müller, and H. Olofsson, “Edge: Enhanced data rates
for GSM and TDMA/136 evolution,” IEEE Personal Commun., vol. 6, June 1999,
pp. 56–66.

[37] I. S. Misra, “Wireless Communications and Networks: 3G and Beyond”, McGraw
Hill (India) Publication, New Delhi, 2013

[38] Third Generation (3G) Wireless White Paper, Trillium Digital System, March
2000.

[39] P. Bender, P. Black, M. Grob, R. Padovani, N. Sindhushayana, and A. Viterbi,
“QUALCOMMCDMA/HDR: A Bandwidth-Efficient High-Speed Wireless Data
Service for Nomadic Users”, IEEE Communication Magazine, July, 2000.

[40] D. Tse, and P. Biswanath, “Fundamentals of Wireless Communications”,
Cambridge University Press, UK, 2005.

[41] D. E. Comer, “Computer Networks and Internet”, 5e, Upper Saddle River, NJ:
Prentice Hall, Chapter 12.

[42] G. Ginis, and J. M. Cioffi, “Vectored Transmission for Digital Subscriber Line
Systems”, IEEE Journal on selected areas in Communications, vol. 20, no. 5, June
2002, pp. 1085-1104.

[43] J. A. Hausman, J. G. Sidak and H. J. Singer “Cable Modems and DSL: Broadband
Internet Access for Residential Customers, American Economic Review”, vol. 91
no. 2, 2001, pp. 302-307.

[44] M. S. Kuran and T. Tugcu, “A Survey on Emerging Broadband Wireless Access
Technologies,” Computer Networks, vol. 51, no. 11, Aug. 2007, pp. 3013–3046.

Bibliography

 150

[45] P. Roshan and J. Leary, “802.11 Wireless LAN Fundamentals” CISCO Press,
USA, 2004.

[46] Q. Ni, L. Romdhani, and T. Turletti, “A Survey of QoS Enhancements for IEEE
802.11 Wireless LAN”, Journal of Wireless Communications and Mobile
Computing, Wiley, vol. 4, issue 5, 2004, pp. 547-566.

[47] "Radio Regulations, Edition of 2012". ITU-R. Retrieved 2014-11-10.
[48] C. Eklund, R. B. Marks, K. L. Stanwood and S. Wang, “IEEE Standard 802.16: A

Technical Overview of the WirelessMAN™ Air Interface for Broadband Wireless
Access”, IEEE Communication Magazine, June, 2002, pp. 98-107.

[49] A. Ghosh, D. R. Wolter, J. G. Andrews, R. Chen, “Broadband Wireless Access
with WiMAX/802.16: Current Performance Benchmarks and Future Potential”,
IEEE Communication Magazine, vol. 43, February, 2005, pp. 129-136.

[50] L. Nuaymi, “WiMAX: Technology for Broadband Access”, John Wiley and Sons
Publication, UK, 2007

[51] K. C. Chen and J. R. B. D. Marca (eds.), “Mobile WiMAX”, John Wiley and Sons
Publication, UK, 2008

[52] IEEE 802.16-2004, Local and Metropolitan Networks — Part 16: Air Interface for
Fixed Broadband Wireless Access Systems, 2004.

[53] IEEE 802.16e-2005, IEEE standard for local and metropolitan area networks—
part 16: air interface for fixed Broadband Wireless Access Systems—Amendment
2, 2005.

[54] E. Biglieri, R. Calderbank, A. Constantinides, A. Goldsmith, A. Paulraj and H. V.
Poor, “MIMO Wireless Communication”, Cambridge University Press, UK, 2007.

[55] A. Ashtaiar, “MIMO-Based Wireless Local Area Networks”, Lambert Academic
Publishing, Germany, 2010.

[56] A. Ghosh, J. Zhang, J. G. Andrews, and R. Muhamed, “Fundamentals of LTE”,
Prentice-Hall, 2010.

[57] S. Parkvall, E. Dahlman, A. Furuskar, Y. Jading, M. Olsson, S. Wanstedt, and K.
Zangi, “LTE-advanced Evolving LTE towards IMT-advanced”, Proc. 68th IEEE
Vehicular Technology Conference, Sep. 2008.

[58] A. Ghosh, R. Ratasuk, B. Mondal, N. Mangalvedhe, and T. Thomas, “LTE-
Advanced: Next-Generation Wireless Broadband Technology”, IEEE Wireless
Communication Magazine, June, 2010, pp. 10-22.

Bibliography

 151

[59] E. Dahlman, S. Parkvall and J. Skold. “4G: LTE/LTE-Advanced for Mobile
Broadband”, Academy Press, UK, 2014

[60] A. Ghosh and R. Ratasuk, “Essentials of LTE and LTE-A”, Cambridge University
Press, UK, 2011

[61] C. Cox, “An Introduction to LTE”, John Wiley Publication, UK, 2012.
[62] M. Sauter, “From GSM to LTE: An Introduction to Mobile Networks and Mobile

Broadband”, John Wiley and Sons Publication, UK, 2011
[63] M. O. Kolawole, “Satellite Communication Engineering”, Chapter 1, Marcel

Dekkar Publication.
[64] K. N. R. Rao, “Satellite Communication: Concept and Applications”, PHI

Publication, New Delhi, 2013.
[65] R. Prasad, "OFDM for wireless communications systems," Artech House

Publishers, Boston, 2004.
[66] T. Hwang, C. Yang, G. Wu and G. Y. Li, “OFDM and Its Wireless Applications:

A Survey”, IEEE Transaction on Vehicular Technology, vol. 58, no. 4, May, 2009,
pp. 1673-1694.

[67] U. S. Jha and R. Prasad, “OFDM Towards Fixed and Mobile Broadband Wireless
Access” Artech House Publisher, London, 2007.

[68] G. M. Babler, “A Study of Frequency Selective Fading for Microwave Line of
Sight Narrow Band Radio Channel” B. S. T. J. 51 no. 3 (March 1972), pp. 731-57.

[69] A. Labouebe and Y. Gouville, “60 GHz Wireless Communication Characteristics,
system performance and hardware requirements” Masters Thesis, Chalmers
University of Technology, CTH, Sweden.

[70] T. D. Chiueh and P. Y. Tsai, OFDM Baseband Receiver Design for Wireless
Communications. Hoboken, NJ: Wiley, 2007.

[71] Digital Audio Broadcasting (DAB); Data Broadcasting – MPEG-2 TS Streaming,
ETSI TS 102 427 (V1.1.1) (2005-07).

[72] Digital Video Broadcasting (DVB); Framing structure, channel coding and
modulation for digital terrestrial television, ETSI TS 300 744 (V.1.6.1) (2009-01).

[73] Digital Video Broadcasting (DVB); Transmission System for Handheld Terminals
(DVB-H), ETSI EN 302 304 (V.1.1.1) (2004-11).

Bibliography

 152

[74] IEEE std. 802.11a-1999, “Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) specifications: High Speed Physical Layer in the 5 GHz
Band,” July 1999.

[75] IEEE 802.11n-2009: ‘Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) specifications: enhancements for higher throughput,’ The
IEEE Standards Association, New York, NY, USA, 2009.

[76] “3rd Generation Partnership Project; Technical Specification Group Services and
System Aspects; 3GPP System Architecture Evolution: GPRS Enhancements for
LTE Access; Release 8”, 3GPP, 3GPP TS 23.401.

[77] 3GPP TR 136.912, “LTE; Feasibility study for Further Advancements for E-
UTRA (LTE-Advanced),” V10.0.0, 2011; http://www.etsi.org/

[78] H. Rohling (ed.), “OFDM: Concept for Future Communication Systems”,
Springer, Heidelberg, Germany, 2011.

[79] R. W. Hamming, “Error Detecting and Error Correcting Codes”, B. S. T. J. vol 29,
no. 2 (March 1950), pp. 147-60.

[80] S.B. Wicker, “Error Control System for Digital Communication and Storage”,
Englewood Cliffs, NJ: Prentice-Hall, Inc, 1995.

[81] Yun Q. Shi, Xi Min Zhang, Zhi-Cheng Ni, and Nirwan Ansari, “Interleaving for
Combating Bursts of Errors”, IEEE Circuits and System magazine, first quarter,
2004, pp. 29-42.

[82] B. Sklar, Digital Communications: Fundamental and Applications, 2/e, Pearson
Education, New Delhi, 2001.

[83] S. A. Hanna, ‘Convolutional interleaving for digital radio communications’,
Second IEEE International Conference on Personal Communications: Gateway to
the 21st Century, vol.: 1, pp. 443-447, 1993.

[84] S. Nag, S. Shenoy and B. U. Chandrashekar, “Hardware Implementation of a
Combined Interleaver and DeInterleaver”, Design and Re-use, IPSOC, 2006.

[85] G. C. Clark Jr. and J. B. Cain, “Error-Correction Coding for Digital
Communications” Springer, 1981

[86] Seagate Technology Llc, “Low complexity pseudo-random interleaver” US
Patent, US7395461, July 2008.

[87] Divsalar and Pollara, “Turbo code for PCS applications”, in Proc. of ICC 1995,
Seattle, WA, June, 1995, pp. 54-59.

Bibliography

 153

[88] T. Richter and G. Fettweis, “Parallel Interleaving on Parallel DSP Architectures,”
Proc. 2002 Workshop on Signal Processing Systems (SiPS ’02), Oct. 2002, pp.
195–200.

[89] L. Hanzo, J. Akhtman, L. Wang, and M. Jiang, “MIMO-OFDM for LTE, WIFI and
WIMAX: Coherent Versus non-Coherent and Cooperative Turbo-Transceivers”,
Chichester, U.K.: Wiley/IEEE Press, 2010.

[90] W. Hoeg and T. Lauterbach, “Digital Audio Broadcasting: Principles and
Applications of DAB + and DMB”, John Wiley Publication, UK, 2009.

[91] D. J. MacKay, “Good Error-Correcting Codes Based on Very Sparse Matrices”,
IEEE Transaction on Information Theory, vol. 45, no. 2, Mar. 1999, pp. 399–431.

[92] Douglas L. Perry, “VHDL: Programming by Example”, Tata McGraw-Hill, New
Delhi, 2002.

[93] J. Rose, R. J. Francis, D. Lewis and P. Chow, “Architecture of Field-
Programmable Gate Arrays: The Effect of Logic Block Functionality on Area
Efficiency,” IEEE J. Solid-State Circuits, vol. 25, no. 5, Oct. 1990, pp. 1217-1225.

[94] Xilinx ‘Spartan-3 Date sheet’ available at www.xilinx.com
[95] Xilinx ‘Spartan-3AN Date sheet’ available at www.xilinx.com
[96] Xilinx ‘Spartan-6 Date sheet’ available at www.xilinx.com
[97] H. Yang, Y. Zhong, and L. Yang, “An FPGA Prototype of a Forward Error

correction (FEC) Decoder for ATSC Digital TV”, IEEE Transaction on Consumer
Electronics, vol. 45, no. 2, 1999, pp. 387-395.

[98] J. B. Kim, Y. J. Lim, and M. H. Lee, “A Low Complexity FEC Design for DAB”,
IEEE ISCAS, Sydney, Australia, 2001, pp. 522-525.

[99] R. Asghar and D. Liu, “Low Complexity Multi Mode Interleaver Core for WiMAX
with Support for Convolutional Interleaving”, International Journal of Electrical,
Computer, Energetic, Electronic and Communication Engineering vol.3, no.4,
2009, pp. 935-944.

[100] A. Unnikuttan, M. Rathna, P. R. Rekha, and R. Nandakumar, “Design of
Convolutional Interleaver”, International Journal of Innovative Research in
Information Security, vol. 1, issue 4, Nov., 2014, pp. 33-39.

[101] L. M. Gaetzi and M. O. J. Hawksford, “Performance prediction of DAB
modulation and transmission using Matlab modeling”, Proceedings of IEEE
International Symposium on Consumer Electronics, 2004, pp. 272-277.

Bibliography

 154

[102] E. Tell, and D. Liu, “A hardware architecture for a multimode block interleaver”,
ICCSC, Moscow, Russia, June 2004.

[103] A. Sghaier, S. Ariebi, and B. Dony, “A pipelined implementation of OFDM
transmission on reconfigurable platforms”, CCECE08 Conference, 2008, pp. 801-
804.

[104] J. Garcia and R. Cumplido, “On the design of an FPGA-Based OFDM modulator
for IEEE 802.11a”, 2nd International Conference on Electrical and Electronics
Engineering (ICEEE) and XI Conference on Electrical Engineering (CIE 2005),
Mexico, 2005, pp. 114-117.

[105] R. Asghar, and D. Liu, “2D realization of WiMAX channel interleaver for efficient
hardware implementation” in Proc. World Academy of Sc. Engineering and
Technology, vol 51., Hong Kong, 2009, pp. 25-29.

[106] A. A. Khater, M.M. Khairy and S. E.-D. Habib, “Efficient FPGA Implementation
for the IEEE 802.16e Interleaver”, International Conference on Microelectronics,
Morocco, 2009, pp. 181-184.

[107] J. Garcia and R. Cumplido, “On the design of an FPGA-Based OFDM modulator
for IEEE 802.16-2004”, Proceedings of the 2005 International Conference on
Reconfigurable Computing and FPGAs (ReConFig 2005), 2005.

[108] M. Ahmadi, A. Azarpeyvand and S. M. Fakhraie, “Hardware Implementation of
Bit Interleaver for the IEEE 802.22 Standard”, 20th Iranian Conference on
Electrical Engineering (ICEE), 2012, pp. 1228-1231.

[109] M. N. Khan and S. Ghauri. “The WiMAX 802.16e Physical Layer Model”, IET
International Conference in Wireless, Mobile and Multimedia Networks, 2008, pp.
117 –120.

[110] Y.–N. Chang, “A low-cost dual-mode deinterleaver design”, IEEE Trans. Cons.
Electr., vol. 54, no. 2, 2008, pp. 326-332.

[111] Z. Iqbal, S. Nooshabadi and H.–N. Loo, “Analysis and design of coding and
interleaving in a MIMO-OFDM system”, IEEE Trans. Cons. Electr., vol. 58, no.
3, 2012, pp. 758-766.

[112] Z. Iqbal and S. Nooshabadi, “Effects of channel coding and interleaving in MIMO-
OFDM systems,” IEEE Int. Midwest Symp. on Circuit and Syst., Seoul, 2011, pp.
1-4.

Bibliography

 155

[113] J. Yang, H. Li, Q. Han and W. Li, “The Design and Hardware Implementation of
OFDM System Receiver based on FPGA”, International Conference on Chemical,
Material and Food Engineering (CMFE-2015), 2015, Yunnan, China, pp. 819-821.

[114] N.K. Venkatachalam, L. Gopalakrishnan and M. Sellathurai, “Low complexity and
area efficient reconfigurable multimode interleaver address generator for
multistandard radios”, IET Computers & Digital Techniques, available online
September, 2015.

[115] B. K. Upadhyaya and S. K. Sanyal, “Efficient FPGA Implementation of Address
Generator for WiMAX De-interleaver”, IEEE Transactions on Circuits and
Systems – II, vol. 60, issue 8, USA, August, 2013, pp. 492-496.

[116] R. Eickhoff, K. Tittelbach-Helmrich, M. Wickert, et. al “Physical layer
amendments for MIMO features in 802.11a”, Conf. on Future Network & Mobile
Summit, 2011, pp.1-8.

[117] H.Setiawan, Y. Nagao, M. Kurosaki and H. Ochi, “IEEE 802.11n Physical Layer
Implementation on Field Programmable Gate Array”, TELKOMNIKA Indonesian
J. Electri. Engg., 2011, vol. 10, no. 1, pp. 67-74.

[118] D. Perels, S. Haene, P. Luethi, et. al “ASIC implementation of a MIMO-OFDM
transceiver for 192 mbps WLANs”, 31st European Solid State Conf., France, 2005,
pp. 215-218.

[119] T.H. Tran, Y. Nagao, M. Kurosaki, B. Sai and H. Ochi “ASIC design of 600 Mbps
4 × 4 MIMO wireless LAN system” 14th IEEE Int. Conf. on Advan. Commu.
Tech., PyeongChang, 2012, pp. 360–363.

[120] Z.-D. Zhang, B. Wu, Y.-X. Zhu, and Y.-M. Zhou, “Design and implementation of
a multi-mode interleaver/deinterleaver for MIMO OFDM systems,” in
Proceedings of the 8th IEEE International Conference on ASIC (ASICON ’09),
Changsha, China, pp. 513–516.

[121] R. Asghar and D. Liu, “Low complexity hardware interleaver for MIMO-OFDM
based wireless LAN,” in Proc. 2009 Intl. IEEE Symp. on Circuits and Systems
(ISCAS), pp.1747-1750.

[122] Z. Zhang B. Wu, Y. Zhou and X. Zhang, “Low-Complexity Hardware Interleaver
/ Deinterleaver for IEEE 802.11a/g/n WLAN” VLSI Design, Hindwai Publisher,
2012, Article ID 948957, pp. 1-7.

[123] J.-H. Kim and I.-C. Park, “A unified parallel radix-4 turbo decoder for mobile
WiMAX and 3GPP-LTE,” in Proc. CICC, San Jose, CA, USA, Sep. 2009, pp. 487–
490.

Bibliography

 156

[124] Y. Sun, J. R. Cavallaro, “Efficient hardware implementation of a highly-parallel
3GPP LTE/LTE-advance turbo decoder”, Integration, the VLSI Journal, Elsevier,
2011, pp. 305-315.

[125] C. Studer, C. Benkeser, S. Belfanti, and Q. Huang, “Design and Implementation of
a Parallel Turbo-Decoder ASIC for 3GPP-LTE”, IEEE Journal of Solid-State
Circuits, vol. 46, no. 1, Jan, 2011, pp. 1-10.

[126] G. Wang, H. Shen, Y. Sun, J. R. Cavallaro, A. Vosoughi, and Y. Guo, “Parallel
Interleaver Design for a High Throughput HSPA /LTE Multi-Standard Turbo
Decoder”, IEEE Transactions on Circuits and Systems—I: Regular Papers, vol. 61,
no. 5, May 2014, pp. 1376-1389.

[127] H Nakase, H Oguma and S Kameda, “Improvement of bit error rate using channel
interleaving for channel binding WLAN prototype” IEEE 19th International
Symposium on Personal, Indoor and Mobile Radio Communications, 2008, Canes,
2008, pp. 1-5.

[128] S. J. Chapman, “MATLAB Programming for Engineers”, Thomson Publisher,
2012.

[129] J. Bhaskar, “A VHDL Primer”, Pearson Education, New Delhi, 2003
[130] D. G. Bailey, “Design for Embedded Image Processing on FPGAs”, Wiley-

Blackwell Publisher, Singapore, 2011.
[131] R. S. Sandige, “Modern Digital Design” New York, McGraw-Hill, 1990
[132] M. Ferdjallah, “Introduction to Digital Systems: Modeling, Synthesis, and

Simulation Using VHDL”, John Wiley & Sons, USA, 2011
[133] G. Richard and B. Slavek, “VHDL Manual”, University of Ulm, Department of

Microelectronics, 1998.
[134] Clive “Max” Maxfield, “Design Warrior’s Guide to FPGAs: Devices Tools and

Flows”, Elsevier Publication, Oxford, U. K., 2004.
[135] V. Betz and J. Rose, “How Much Logic Should Go in an FPGA Logic Block?,”

IEEE Design & Test of Computers, January-March 1998, pp. 10-15.
[136] J. S. Rose and S. Brown, “Flexibility of Interconnection Structures for Field-

Programmable Gate Arrays,” IEEE J. Solid-State Circuits, vol. 26, no. 3, Mar.
1991, pp. 277-282.

Bibliography

 157

[137] S. Brown, J. Rose, and Z. G. Vranesic, “A Detailed Router for Field-Programmable
Gate Arrays,” IEEE Trans. on Computer-Aided Design, vol. 11, no. 5, May 1992,
pp. 620-628.

[138] S. M. Kang and Y. Leblebici, “CMOS Digital Integrated Circuits, Analysis and
Design”, 3/e, Tata McGraw-Hill, New Delhi, 2003.

[139] S. Trimberger, “Effects of FPGA Architecture on FPGA Routing”, IEEE Conf. on
Design Automation, 1995, pp. 574-578.

[140] G. D. Forney, “Burst-Correcting Codes for the Classic Bursty Channel”, IEEE
Transaction on Communication Technology, vol. COM-19, 1971, pp. 772-781.

[141] Final Draft ETSI EN 300 401 V1.4.1 (2006-01), Radio Broadcasting Systems;
Digital Audio Broadcasting (DAB) to mobile, portable and fixed receivers.

[142] J. L. Ramsey, “Realization of Optimum Interleavers”, IEEE Transaction on
Information Theory, vol. IT-16, no. 3, 1970, pp. 338-345.

[143] Xilinx, “Using Look-Up Tables as Shift Registers (SRL16) in Spartan-3
Generation FPGA-XAPP 465”, 2005 available at www.xilinx.com.

[144] Vi Microsystems, “Xilinx Spartan 3 FPGA Trainer (VVSM-07) User Manual”,
Version –1.0, Chennai, India, 2004.

[145] W. Konhauser, “Broadband wireless access solutions -progressive challenges and
potential value of next generation mobile networks”, Wireless Personal
Communications, vol. 37, May 2006, pp.243–259.

[146] Y. S. Iskander, “Improved abstractions and turnaround time for FPGA design
validation and debug” Ph.D. thesis, Virginia Polytechnic Institute and State
University, Blacksburg, VA, 2012.

[147] IEEE std. 802.11g-2003, “Wireless LAN Medium Access Control (MAC) and
Physical Layer (PHY) specifications, Amendment 4: Further Higher Data Rate
Extension in the 2.4 GHz Band” July 2003.

[148] J. D. Gibson, “The Communications Handbook”, CRC Press, 2002
[149] S. Brown and J. Rose, “FPGA and CPLD Architectures: A Tutorial”, IEEE Design

& Test of Computers, Summer 1996, pp. 42-57.
[150] Xilinx, “Using Block RAM in Spartan 3 FPGAs,” XAPP463, available at

www.xilinx.com.

Bibliography

 158

[151] H. Yagoobi, “Scalable OFDMA Physical Layer in IEEE 802.16 WirelessMAN”,
Intel Technology Journal, vol 08, August 2004.

[152] R. Johannesson and K. S. Zigangirov, “Fundamentals of Convolutional Coding”
IEEE Publication, 2015.

[153] S. B. Wicker and V. K. Bhargava, “Reed-Solomon Codes and Their Applications”
IEEE Press, 1994.

[154] J G. Andrews , A. Ghosh and R. Muhamed, “Fundamentals of WiMAX:
Understanding Broadband Wireless Networking” (Prentice Hall Communications
Engineering and Emerging Technologies Series), Prentice Hall PTR, Upper Saddle
River, NJ, 2007.

[155] R. Asghar, and D. Liu, “Low complexity multimode interleaver core for WiMAX
with support for convolutional interleaving”, International Journal of Electronics,
Communication and Computer Engineering, vol.1, no.1 Paris, 2009, pp. 20-29.

[156] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,” in Proc. of
Int. Symposium on Field Programmable Gate Arrays (FPGA ’06), Monterey,
California, ACM Press, New York, Feb. 22–24, 2006, pp. 21–30.

[157] B. K. Upadhyaya, and S. K. Sanyal, “An improved LUT based reconfigurable
multimode interleaver for WLAN application,” Int. J. Recent Trends in Engneering
and Tech., ACEEE, vol. 6, no. 2, 2011, pp. 183-188.

[158] Y. N. Chang and Y. C. Ding: “A Low-Cost Dual Mode De-interleaver Design,” in
Proc of Int. Conf. on Consumer Electronics, 2007.

[159] B. K. Upadhyaya, I. S. Misra, and S. K. Sanyal, “Novel design of address generator
for WiMAX multimode interleaver using FPGA based finite state machine,” in
Proc. of 13th Int. Conf. Computer and Information Technology, Dhaka, 2010, pp.
153-158.

[160] H. Yang, “A road to future broadband wireless access: MIMO-OFDM-based air
interface”, IEEE Comm. Mag., 2005, vol. 43, no. 1, pp. 53-60.

[161] T. K. Paul and T. Ogunfunmi, “Wireless LAN comes of age: understanding the
IEEE 802.11n amendment” IEEE Circuit and Sys. Mag., 2008, vol. 8, no. 1, pp.
28-54.

[162] H. Niu, X. Ouyang and C. Ngo, “Interleaver design for MIMO OFDM based
wireless LAN”, IEEE Wireless Comm. and Net. Conf., vol. 4, USA, 2006, pp.
1825-1829.

Bibliography

 159

[163] R. Asghar, “Flexible interleaving subsystems for FEC in baseband processors”,
PhD thesis, Linköping University, Sweden, 2010.

[164] R. Van Nee, V. K. Jones, G. Awater, et al. “The 802.11n MIMO-OFDM standard
for Wireless LAN and beyond”, Int. J. of Wireless Personal Communications,
2006, vol. 37, pp. 445-453.

[165] B. K. Upadhyaya, P. K. Goswami and S. K. Sanyal, “Memory efficient LUT based
address generator for OFDM-WiMAX de-interleaver”, Int. J. of Electronics and
Electrical Engineering, vol. 2, no. 1, USA, 2014, pp. 31-35.

[166] Agilent, “Introducing LTE Advanced - Application Note”, available in
http://cp.literature.agilent.com/litweb/pdf/5990-6706EN.pdf

[167] Qualcomm, “LTE Advanced: An evolution built for the long-haul”, October, 2013,
available in https://www.qualcomm.com/documents/lte-advanced-evolution-built-
long-haul

[168] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-
correcting coding and decoding: Turbo Codes”, IEEE Proceedings of the Int. Conf.
on Communications, Geneva, Switzerland, May 1993, pp. 1064-1070.

[169] J. T. Butler and T. Sasao, “Fast hardware computation of x mod z,”18th
Reconfigurable Architectures Workshop (RAW 2011), May 16-17, 2011,
Anchorage, Alaska, USA.

[170] S. G. Lee, C. H. Lee, C. H. Wang and W. H. Sheen, “Architecture Design of QPP
Interleaver for Parallel Turbo Decoding”, Vehicular Technology Conference (VTC
2010- Spring), 2010, pp. 1-5.

[171] O. Y. Takeshita, “On maximum contention-free interleavers and permutation
polynomials over integer rings,” IEEE Trans. Inf. Theory, vol. 52, no. 3, Mar. 2006,
pp. 1249–1253.

[172] C. C. Wong and H. C. Chang, “Reconfigurable Turbo Decoder with Parallel
Architecture for 3GPP LTE System” IEEE Transactions on Circuit and Systems-
II: Express Briefs, vol. 57, no.7 July, 2010

[173] Technical Specification Group Radio Access Network, the 3rd Generation
Partnership Project (3GPP), available at http://www.3gpp.org.

