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Abstract 
 

Error free digital wireless communication system is the ultimate goal to be 
achieved by communication engineers. In pursing such quest, tremendous efforts 
are being made by researchers to reduce the effect of channel noises. Presence of 
channel noises increase Bit Error Rate (BER) and degrade the performance of the 
communication systems considerably. Broadly, channel noises may be divided 
into two groups: random bit errors and burst errors. Random errors have no 
relation between one another whereas in burst errors a group of consecutive bits 
become erroneous. Researchers have developed various error correcting 
mechanisms to reduce the effect of such errors. Error Correcting Codes (ECC) 
designed for random errors are not effective for burst errors and vice versa. In 
most practical systems, both random and burst errors may exist together. Usually, 
techniques to overcome burst error are applied before ECC in order to ensure data 
fidelity from both types of errors. Interleaving technique is traditionally used to 
enhance the quality of digital transmission over a bursty channel. Interleaving is a 
process to rearrange code symbols so as to spread burst of errors into random like 
errors and can be handled by ECCs. Convolutional and block are the most 
popular types of interleavers being deployed in majority of the modern day 
communication systems to protect data against burst error. 

Interleavers help to preserve data integrity during transmission over noisy 
channel against burst errors. The advantage is encompassed with drawbacks like 
additional memory requirement, system complexity and increased delay. 
Improved design of interleavers and efficient use of resources of the 
implementation platform make the interleaver a good choice to protect data from 
error bursts.  In case of convolution interleaver being used in DAB applications, 
memory wastage in the incremental shift registers is an issue to be addressed in 
design and implementation along with the operating speed of the circuit. The 
permutation steps as prescribed in the standard documents for block interleavers 
of various OFDM based Broadband Wireless Access (BWA) applications like 
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WLAN, WiMAX, MIMO WLAN and LTE/LTE-A involves complex mathematical 
functions like floor, modulus and square. Implementation of these functions on 
hardware platform is very difficult due to the absence of direct digital hardware. 
Conventionally, Look-up Table (LUT) based approach is used which suffers from 
the drawbacks like slower speed of operation and large resource (especially 
memory) occupancy. Therefore, resource efficient and low latency block 
interleaver design for the aforesaid applications is an important research area to 
work and contribute.   

In line with the formulation of research problem, efforts have been made to 
resolve the bottlenecks by proposing novel algorithms / efficient designs of the 
interleavers. MATLAB programmes are developed to verify the correctness of the 
novel algorithms. The proposed algorithms / designs are then transformed into 
digital hardware. VHDL models of these hardware have been prepared by 
judicious use of embedded resources available inside the reconfigurable target 
platform i.e. FPGA. Such efforts have clearly resulted in reduction of FPGA 
resources requirement with important achievement of improved speed 
performance. Consumption of lower power by the proposed designs is another 
important outcome to be reported. Timing simulations of the interleaver address 
generators / interleavers have been extensively carried out to verify functionality 
of the proposed hardware designs.  

In the work to design efficient convolutional interleaver for DAB 
application, FPGA’s embedded Shift registers (SRLC16) are used to model the 
incremental memory. This modelling lowers the hardware resource occupancy of 
FPGA in addition to reduction in memory wastage over existing 
implementations. In the issue of  block interleaver design for IEEE 802.11 a/g 
based WLAN transceiver, two approaches namely improved LUT based and 
Finite State Machine (FSM) based have been proposed. The former technique 
demonstrates reduction in resource utilization like slices, flip flop and LUTs over 
conventional LUT based approach with improved operating speed of the 
Interleaver. Similar results are also obtained for FSM based implementation with 
further faster performance.  
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WiMAX is based on IEEE 802.16 d/e standard which employs special type 
of block interleaver.  In this work, improved LUT based technique has been 
designed to generate de-interleaver addresses. The improvement in terms of 
memory saving and faster circuit operation over the conventional LUT based 
approach could be achieved. In addition, the author designed FSM based 
interleaver for the WiMAX application. Finally, a low-complexity and novel 
technique is proposed to efficiently implement the address generation circuitry of 
the 2-D de-interleaver used in the WiMAX transceiver. All these approaches result 
in resource efficient and high speed interleaver/de-interleaver implementations 
on FPGA platform. Transceiver used in MIMO WLAN employs multi stream 
block interleaver. In this work, hardware efficient model of MIMO WLAN 
interleaver eliminating the need for floor and modulus functions has been 
designed. To improve the performance of the address generator, embedded DSP 
blocks have been utilized. The work is also extended to model the interleaver 
memory using FPGA’s embedded memory and thus provides complete hardware 
interleaver solution. The proposed work shows noticeable improvement in terms 
of maximum frequency and power consumption over the existing works. In the 
final phase, hardware efficient Quadratic Permutation Polynomial (QPP) 
interleaver address generator for LTE/LTE-A communication system is 
demonstrated. The address generator involves a quadratic equation and modulus 
function which do not have direct digital circuitry. A novel algorithm has been 
proposed to eliminate the need of squarer and modulus function. The algorithm is 
converted into efficient digital hardware and is implemented on FPGA platform 
with improved test results over conventional implementations. 
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Introduction 

  Outline of this Chapter 
1.1    Background 
1.2 Interleaver and its Significance in Communication System 
1.3 Historical Background of Interleaver 
1.4 Applications of Interleaver 
1.5 VHDL Modeling and FPGA 
1.6 Literature Survey 
1.7 Motivation Behind the Work 
1.8 Objective of the Research  
1.9 Challenges Faced During the Work 
1.10 Major Contribution in Wireless Communication Systems 
1.11 Methodology 
1.12 Organization of Thesis 

 
The basic idea behind this Chapter is to provide description about a chronological 
evolution of communication systems starting from the age of Samuel Morse to 
modern technologies like LTE and LTE-A. It introduces and highlights the 
important aspects of several communication techniques including OFDM in 
regards to high spectral efficiency, low ICI, and ISI. Importance of interleavers 
used in various communication systems along with its working principle has also 
been elaborated. In addition, historical background, types and applications of 
interleavers have been incorporated. A brief discussion on VHDL and FPGA have 
been placed to provide basic idea to the reader. This discussion is carried forward 
in the next chapter more elaborately. Challenges faced during the design and 
implementation of interleavers for different OFDM based wireless standards like 
DAB, DVB, WLAN, WIMAX, MIMO WLAN and LTE / LTE-A are discussed. 
Major contributions of this doctoral research work in the field of communication 
systems have been highlighted. The chapter thereafter presents the report of 
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extensive literature survey that has been carried out throughout this work. Finally, 
the chapter is concluded with discussion on methodology adopted in the research 
work along with organization of the thesis. 

1.1 Background 
1.1.1 Communication System 

Communication systems have become an integral part of present day human life. It 
becomes almost impossible to think about survival of human being without using some or 
other type of communication systems [1]. Telegraph system [2] is considered to be one of 
the successful oldest communication systems. The idea of sending electrical signal 
through wire was conceptualized in France around 1798 [3], much earlier than the 
invention of Telegraph system. The Telegraph system developed by Samuel Morse [4] in 
the year 1832, became gradually popular due to the use of Morse coding technique [5] and 
was widely accepted by the international community.   

Telephony [6] is another popular communication system which has wide spread 
impact in human life. Telephone was invented by Alexander Graham Bell in the year 1876 
while trying to invent a talking Telegraph system [7]. “Mr. Watson, come here, I want 
you.” was the first experimental voice signal transmitted by Bell over the telephone to call 
his assistant Thomas Watson. Since then, Telephony has evolved through many 
generations to arrive at the present shape. In 1877-78, the first telephone exchange had 
been made operational. These types of exchanges were termed manual exchanges [8] 
wherein an operator manually connected calls with cord pairs in the telephone 
switchboard [9]. Automatic exchanges came into existence around in the early 1900s. 
They did not require manual intervention, rather followed step by step method for 
switching and were named after their inventor, A.B. Strowger [10]. Exchanges based on 
crossbar technology [11] were the next to follow in which the electromechanical telephone 
switchboards were arranged in matrix fashion. The first 100 line Crossbar exchange was 
demonstrated by the designers in 1913 at London [12]. Later in 1938, AT & T 
Laboratories in US introduced the crossbar-switching system commercially. Crossbar 
exchanges offered advantages like faster switching time and improved pulse rate. Due to 
the advancement in semiconductor research and invention of transistors, electronic switch 
based exchanges started to replace the crossbar exchanges gradually. The electronic 
switches are controlled by a computer through a Stored Program Control (SPC) [13]. The 
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electronic exchanges started their operation since 1960s. Initial electronic exchanges were 
analog type. After the invention of microprocessors in 1971, switching control mostly 
relies on digital techniques leading to the introduction digital electronic exchanges [14]. 
Electronic exchanges offer advantages like lesser and easy maintenance, compact design, 
supporting additional features at reduced cost over its predecessor. Likewise, the 
telephone set, which is used to make call has also evolved through many changes right 
from analog rotary type dial to modern Dual Tone Multi Frequency (DTMF) type [15].        

Radio and Television are some of the popular broadcasting communication systems. 
Radio broadcasting was experimented in 1905-06 but commercial broadcasting started 
from 1920-21 [16]. In 1927, first demonstration of Television transmission was done by J. 
L. Baird in UK and C. F. Jenkins in USA [17]. Rapid development in TV transmission 
took place due to the inventions of Cathode Ray Tube (CRT) and Picture Tube which 
were used both in the video camera and in the TV receiver set. 

The fundamental blocks of a typical communication system [18] are shown in Fig. 
1.1. 

 
Fig. 1.1 Fundamental blocks of a Communication System 

Sources of Information 
There can be variety of information sources like audio signal, 
video signal, data etc. which the user wants to send to the 
destination. Suitable transducer is used to convert the signal to 
be transmitted before feeding to the transmitter. 

Transmitter A transmitter receives the information to be transmitted from 
a source, converts it into suitable format for transmission over 
the channel. 

Channel Media, wire or wireless, through which signal travels from 
transmitter to the receiver. 

Noise 
Unwanted disturbance may be superimposed on the signal 
while transmission occurs over the channel. 
 

Sources of 
Information Transmitter Channel Receiver Destination of 

Information 

Noise 



Chapter 1: Introduction  

   4 

Receiver 
The receiver receives the signal with noise from channel, 
removes noise to the extent possible, separates the signal from 
its carrier and forwards the information to the intended 
destination. 

Destination of 
Information 

Destination information may be a loud speaker, a CRT/Picture 
Tube, a Printer and so on which reproduces the original 
information. 

1.1.2 Wireless Communication System 
Wireless communication is the most exciting area of communication engineering 

today [19], [20]. Wireless communication system may be treated to be operational from 
the era when Marconi had demonstrated transmission of three-dot Morse code for the 
letter ‘S’ over a distance of three kilometres using electromagnetic waves signal [21]. 
Contribution of Sir J. C. Bose in early days of wireless communication for small 
wavelength (6 mm) millimetre wave signal generator is being recognized worldwide [22]. 
Early wireless communication systems were analog type. Today, most of the wireless 
communication systems transmit digital signal as a sequence of ones and zeros [23].  

Wireless communication system is becoming more and more popular as it supports 
mobility of the user [24], [25]. Advancement in other associated fields like Very Large 
Scale Integration (VLSI) technology has provided small area, low power consuming 
hardware to act as catalyst for further popularity of the wireless communication system 
[26]. The VLSI designer is now empowered with multiple options in selecting supply 
voltages and transistor threshold due to technology scaling [27]. In addition, other circuit 
design techniques like use of dynamic power management meaning selective shut-off or 
slow-down of system components that are idle or underutilized though complicated, 
enables the designer to achieve the objectives of lower power and area efficient design of 
VLSI chips with throughput and latency constraints, targeted for wireless communication 
applications [28]. Use of Electronic Design Automation (EDA) tools assist the designer in 
modeling and characterizing the hardware architectures that are described using various 
levels of design abstraction and hence permit the designer to apply design optimizations 
and explore the behaviour of alternative hardware architectures [29], [30].  

Mobile telephony probably is the most popular type of wireless communication 
system that mankind has been gifted with. Its journey started in 1947 from Bell laboratory 
[31]. In the immediate next year, the concept of cellular telephone service was designed to 
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cater the increasing demand of mobile telephony. But due to lack of implementation 
technology, it could not become reality until 1983 when an AT&T subsidiary, Advanced 
Mobile Phone Service Inc. (AMPS) [32], was granted commercial license by Federal 
Communications Commission (FCC).  AMPS was an early analog mobile phone system 
based on Frequency Division Multiple Access (FDMA) [33] with frequency reuse concept 
[34] and is known as first generation (1G) mobile telephony. Second generation (2G) was 
introduced in early 90s and was based on digital access technology such as Time Division 
Multiple Access (TDMA) and Code Division Multiple Access (CDMA). It offered text 
messaging popularly known as Short Message Service (SMS). 2G communication is 
generally associated with Global System for Mobile (GSM) services for unified single 
standard and employs TDMA technology [35].  In order to respond to the increasing 
demand for internet access on mobile phone, General Packet Radio Service (GPRS), a 
packet oriented mobile data service has been incorporated in the 2G system and thereby 
introducing 2.5G mobile service. Enhanced Data for Global Evolution (EDGE) also 
known as Enhanced GPRS or EGPRS [36] is a data system used on top of GSM networks. 
It provides nearly three times faster speeds than the GPRS system. IS-95 is another 2G 
mobile telephony system which uses CDMA access technology and has become popular 
with the brand name of CDMA One.   

Third generation (3G) wireless technology represents the convergence of various 2G 
wireless telecommunications systems into a single global system [35], [37]. It is 
comprised of three air interface modes: Wideband CDMA (W-CDMA), CDMA2000 and 
Universal Wireless Communication (UWC-136). W-CDMA is backward compatible with 
2G GSM and CDMA2000 with IS-95 based 2G [38].  UWC-136 is TDMA based and is 
backward compatible with IS-136 TDMA digital cellular phone system defined by the 
ANSI-136 and IS-41 standards. 

Recently, tremendous growth in wireless data networks has been witnessed [39]. 
Fundamentally there are two types of internet access technologies for accessing data: 
narrowband and broadband [40]. Narrowband refers to technologies that deliver data at up 
to 128 Kbps [41]. Dial up telephone connection, leased circuit using modem, Integrated 
Services Digital Network (ISDN) etc. are examples of narrowband internet access 
technologies.  

On the contrary, broadband generally refers to technologies that offer high data 
rates, but the exact boundary between broadband and narrowband is blurry. Many suggest 
that broadband technologies deliver more than 1 Mbps but this is not always the case, and 
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may mean any speed higher than dialup [41]. Examples of broadband wireless access 
technologies are: Digital Subscriber Line (DSL), Cable modem, Hybrid Fibre Coax (HFC) 
and Wireless access [41].  

DSL access technology has been used to provide high speed data communication 
services to the subscribers over a telephone line through exchange [42]. Asymmetric DSL 
(ADSL) is the most widely used variant of DSL. Cable modem access technology [43] has 
already utilized the available wiring of cable television.  HFC system uses a combination 
of optical fibers and coaxial cables. Fiber is used for the central facilities which demands 
highest bandwidth and coaxial cable is used for connections to individual subscribers 
requiring lesser bandwidth. 

Presently popularity of Broadband Wireless Access (BWA) has been increased 
tremendously as it supports user mobility [44]. Wireless Local Area Network (WLAN) is 
the one of the oldest BWA which was originally intended to allow wireless connection to 
their base Local Area Network (LAN) [45]. It provides network connectivity in areas 
where wiring/cabling is neither cost effective nor feasible. They provide connectivity for 
slow mobility with high throughput for both indoor and outdoor environments.  In 1997, 
IEEE has defined the 802.11 standard for WLAN [44]. The components of WLANs 
consist of a wireless network interface card, known as station (STA), and a wireless 
router/bridge, referred to as an Access Point (AP) [46]. The AP interfaces the wireless 
network with the wired network. In an outdoor environment, network coverage of 100m is 
typically available. The most widely used WLANs use the license free Industrial, 
Scientific and Medical (ISM) frequency band around 2.4 GHz [47]. 

Wireless Metropolitan Area Network (WMAN) is a wireless network deployed for 
network coverage in a wider area, targeted for covering both urban and remote areas [48]. 
IEEE 802.16, which defines the WMAN standards to provide cost-effective, spectrally 
efficient connectivity for neighbourhoods, villages, and cities. Worldwide Interoperability 
for Microwave Access (WiMAX) [49] [50], [51], is a WMAN technology developed by 
an industrial working group, with an aim to promote deployment of BWA networks by 
using global standards and also to provide the means for certifying interoperability of 
products and technologies from various vendors and Original Equipment Manufacturers 
(OEMs). WiMAX provides broadband connectivity over a much wider area than WLAN 
and may or may not require a line-of-sight path between the subscriber terminal and the 
APs. It claims to provide a theoretical data rate of up to 70Mbps with a range up to a 
maximum of 50 km. IEEE 802.16d, now known as, IEEE 802.16-2004 [52] defines fixed 
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BWA (FBWA) in the frequency band of 2 to 11GHz. Amended IEEE 802.16e [53] adds 
the mobility support to IEEE 802.16 and defines standard for mobile BWA (MBWA) in 
the frequency band 2 to 6 GHz. Typical data rate in IEEE 802.16e is 5 Mbps with 
bandwidth 1.25 to 20 MHz. Both IEEE 802.16d and IEEE 802.16e permit Non Line of 
Sight (NLOS) connectivity.  

OFDM may be combined with multiple antennas at both the access point and 
mobile terminal to increase the diversity gain and/or enhance system capacity on a time-
varying multipath fading channel, resulting in a Multiple Input Multiple Output (MIMO) 
OFDM wireless system [54]. The MIMO technology is introduced in the IEEE 802.11n 
protocol and brings the WLAN technology into a multi-antenna era. MIMO WLAN 
utilizes the MIMO-OFDM transmission techniques to enable high speed data 
communication with maximum throughput of 600 Mbps [55].  

 Long Term Evolution (LTE), or Evolved Universal Terrestrial Access Network 
(E-UTRAN), popularly marketed as 4G LTE, is a standard for wireless communication of 
high-speed data for mobile phones and data terminals [56], [57]. It is based on the 
GSM/EDGE and Universal Mobile Telecommunication System (UMTS)/High Speed 
Packet Access (HSPA) network technologies, increasing the capacity and speed using a 
different radio interface together with core network improvements. Long Term Evolution -
Advanced (LTE-A) [58], [59], [60] aims at even higher data rate than LTE with peak data 
rate- downlink 3 Gbps and uplink 1.5 Gbps [61]. LTE-A is called true 4G as it actually 
meets the International Telecommunication Union’s (ITU’s) specifications for 4th 
generation wireless systems [62]. 

 Satellite communication is another type popular wireless communication system 
having deployed in many applications like point to point communication, satellite 
television/radio, satellite phone, remote sensing, imaging etc. [63], [64]. It has spread its 
impact relatively in shorter period of time, starting with Sputnik in 1957 to sophisticated 
and modern present day satellite.  A satellite is a self-contained system for communication 
which receives signal from the earth and retransmit the signals back to the earth with the 
help of a transponder.  
1.1.3 Orthogonal Frequency Division Multiplexing Technique 

Orthogonal Frequency Division Multiplexing (OFDM) [65] is becoming a popular 
solution for transmission of signal over a wireless channel. The basic principle of the 
OFDM system is to decompose the high rate data stream (bandwidth = W) into N lower 
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rate data streams [66]. These data streams thereafter are transmitted simultaneously over a 
large number of subcarriers [67]. When the value of N is chosen to be sufficiently large, 
the individual bandwidth (W/N) of subcarriers becomes narrower than the coherence 
bandwidth (Bc) of the channel. In wireless channels, multiple copies of the same signal 
arrive in the receiver with certain time delay due to multipath propagation which is also 
known as delay spread. This delay spread in frequency domain shows a range of 
frequency having approximately flat magnitude response and is termed as coherence 
bandwidth (Bc) of the channel. If the bandwidth of a signal being transmitted through the 
wireless channel is less than the Bc, there will be no distortion in the output and the 
channel is known as flat fading channel. On the contrary, if signal bandwidth is larger than 
that of the Bc of the channel, the signal undergoes distortion which is termed as frequency 
selective fading. By definition, fading is the term used to refer variation in the received 
signal power whereas variation in the amount of fading with radio frequency is known as 
frequency selective fading [68]. 

Fundamentally, orthogonality between two signals xi(t) and xj(t) may be defined as: 
( ) ( ) =  1,          =

0,         ≠          (1.1) 
The individual subcarriers are selected to be orthogonal to each other, which allow 

the overlapping between them. Due to the orthogonality feature, separation of subcarriers 
at the receiver end is ensured. OFDM results in a better spectral efficiency than that of 
FDMA systems, where no spectral overlap of carriers is permitted. Fig. 1.2 shows the 
spectral efficiency of OFDM pictorially. It explains the difference between the 
conventional non-overlapping multicarrier technique such as Frequency Division Multiple 
Access (FDMA) and the overlapping multicarrier modulation technique (e.g. OFDM). 
From the fig. it is clear that OFDM requires =  against BW=2R of FDMA for 
N number of sub carriers. 

The term orthogonal refers a precise mathematical relationship between 
frequencies of subcarriers in the OFDM-based system. In a normal FDM system, many 
carriers are spaced apart using guard band in such a way that the signals can be received 
using conventional filters in the receiver. Use of guard band between carriers (to avoid 
adjacent carrier interference), results in reduction of the spectrum efficiency. In an OFDM 
system, it is possible to arrange the carriers such that the sidebands of the individual 
subcarriers overlap and the signals are still received without adjacent carrier interference. 
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To make OFDM robust against Inter Channel Interference (ICI), and Inter Symbol 
Interference (ISI), Cyclic Prefix (CP) is used [70].   

 

 
Fig. 1.2 OFDM and FDMA spectrum [69] 

 
OFDM has been adopted by many standards, such as Digital Audio Broadcasting 

(DAB) [71], Digital Video Broadcasting for Terrestrial television (DVB-T) [72], Digital 
Video Broadcasting for Handheld terminals (DVB-H) [73], IEEE 802.11 based Wireless 
Local Area Networks (WLANs) [74] and IEEE 802.16 based fixed [52] and mobile [53] 
Broadband Wireless Access (BWA). Apart from these, OFDM is also used in latest 
standards like MIMO-WLAN [75], LTE [76] and LTE-A [77].   
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1.2 Interleaver and its significance in OFDM System 
In an OFDM system, the data is divided into multiple parallel sub-streams at a 

reduced data rate, and each is modulated and transmitted on a separate orthogonal 
subcarrier. This increases symbol duration and improves system robustness. Most of the 
advanced high speed communication systems employ OFDM modulation along with 
interleaver to protect data from burst errors [78]. Error Correction Codes (ECCs) [79] play 
vital role in reducing the effect of random errors in communication channel. In doing so, 
redundancy is added that helps to identify the erroneous bit(s) in the receiver. Error bursts 
[80] may be defined as a group of consecutive error bits that may occur in the channel due 
to deep fading. ECCs do not prove to be effective during error burst.  A powerful ECC 
however may correct the burst error but the overhead of using such ECC is very high and 
it may be a waste in case there is no such error. In most practical systems, both random 
and burst errors may exist. So, usually techniques to overcome burst error are applied 
before ECC in order to ensure data fidelity from both types of errors [81].  

Interleaving technique is traditionally used to enhance the quality of digital 
transmission over a bursty channel. The principal idea behind interleaving is to mix up the 
code symbols from different code-words so that when the code-words are reconstructed 
(de-interleaved) at the receiving end error bursts encountered in the transmission are 
spread across multiple code words [82]. Consequently, the errors occurred within one 
code-word may be small enough to be corrected by using a simple random ECC. Thus 
interleaving is a process to rearrange code symbols to spread burst of errors into random 
like errors [81].  Interleaving is achieved when adjacent code symbols are separated by 
more than the average duration of an error burst. It improves the performance of digital 
transmission at the cost of increased memory requirement, system complexity, and delay. 
Fig. 1.3(a) and (b) explains the basic interleaving technique. In the example of Fig. 1.3(a), 
eight un-interleaved code words A-H, each with eight code symbols has been shown. Let, 
the ECC can correct one bit of error within a code word.  Fig. 1.3(b) shows the interleaved 
code words in which one code symbol from each of the un-interleaved code word is 
present. These code words are allowed to travel through the channel wherein noise may 
superimpose. Let a burst error of eight code word length as shown in Fig. 1.3(b) occurs in 
the interleaved code words 1 and 2. After de-interleaving, as shown in Fig. 1.3(c), the 
original code words A-H with one code symbol erroneous each are obtained in the 
receiver. The one code symbol error can be corrected with the help of the ECC.   
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This simple example demonstrates the effectiveness of interleaving technique in 

combating bursts of errors, i.e., how the interleaving spreads code symbols over multiple 
code words so as to convert a burst of errors occurred in the interleaved array into 
random-like errors in the de-interleaved array. In other words, the pair of interleaving and 
de-interleaving can equivalently convert a bursty channel into a random-like channel. 
Consequently, random error correction codes can be used efficiently to correct bursts of 
errors. 
1.3 Historical Background of Interleaver 

Interleavers are broadly classified into two categories [83], [84], [85]: periodic 
interleavers and pseudo-random interleaver [86]. In a periodic interleaver, symbols of a 
code word are scrambled as a periodic function of time. The period, T determines length 
of the error burst that can be effectively spread out into single bit error after de-
interleaving. A pseudo-random interleaver scrambles the code word symbols in random 
fashion but at a distance greater than S, the separation threshold [87]. A pseudo-random 
sequence is generated for scrambling the code word which is to be transmitted to the 
receiver side for de-interleaving. Block and convolutional interleaving are the two main 

A0 A1 A2 A3 A4 A5 A6 A7 B0 B1 B2 B3 B4 B5 B6 B7 C0 C1 C2 C3 C4 C5 C6 C7 D0 D1 D2 D3 D4 D5 D6 D7 
Code Word A Code Word B Code Word C Code Word D 

(a) 
E0 E1 E2 E3 E4 E5 E6 E7 F0 F1 F2 F3 F4 F5 F6 F7 G0 G1 G2 G3 G4 G5 G6 G7 H0 H1 H2 H3 H4 H5 H6 H7 

Code Word E Code Word F Code Word G Code Word H 

A0 A1 A2 A3 A4 A5 A6 A7 B0 B1 B2 B3 B4 B5 B6 B7 C0 C1 C2 C3 C4 C5 C6 C7 D0 D1 D2 D3 D4 D5 D6 D7 
Code Word A Code Word B Code Word C Code Word D 

(c) 
E0 E1 E2 E3 E4 E5 E6 E7 F0 F1 F2 F3 F4 F5 F6 F7 G0 G1 G2 G3 G4 G5 G6 G7 H0 H1 H2 H3 H4 H5 H6 H7 

Code Word E Code Word F Code Word G Code Word H 

Interleaved Code 0 Interleaved Code 1 

(b)  

Error Burst 
A0 B0 C0 D0 E0 F0 G0 H0 A1 B1 C1 D1 E1 F1 G1 H1 A2 B2 C2 D2 E2 F2 G2 H2 A3 B3 C3 D3 E3 F3 G3 H3 

Interleaved Code 2 Interleaved Code 3 

A4 B4 C4 D4 E4 F4 G4 H4 A5 B5 C5 D5 E5 F5 G5 H5 A6 B6 C6 D6 E6 F6 G6 H6 A7 B7 C7 D7 E7 F7 G7 H7 
Interleaved Code 4 Interleaved Code 5 Interleaved Code 6 Interleaved Code 7 

Fig. 1.3 Code words (a) Un-interleaved (b) interleaved (c) de-interleaved 
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types of periodic interleaving techniques [88]. In block interleaver, data enters the 
memory in row wise manner and read out in column wise fashion.  To achieve more 
spreading of erroneous symbols in block interleavers, certain permutation patterns are 
prescribed instead of simple row column combination for some applications.  Similarly, 
based on the application, variation in the structure of convolutional interleaver is available 
in the literature. Table 1.1 shows important features and applications of periodic and 
pseudo-random interleavers. 

 
Table 1.1: Some Features and Applications of Interleavers 

Category of 
Interleavers 

Name of the 
Interleaver Important features Principal applications 

Periodic 
Block Memory requirement:mr* = 2MN 

Delay incurred tee = (2MN – 2M + 2) 
WLAN, WiMAX, MIMO WLAN, 

LTE/LTE-A 
Convolutional mr= M(N-1) 

tee = M(N-1) DAB, DVB 
Pseudo-random S-Random | − | ≤     | ( ) − ( )| > $ CDMA2000, WCDMA@ 

 
* M and N represents row and column numbers of interleaver memory respectively.  
$ i and j are any two positions and s denotes the spread. Π(x) represents interleaved 
symbols. 
@ Wide Band CDMA 

 Interleavers help to preserve data integrity during transmission over noisy channel 
against burst errors. The advantage is encompassed with drawbacks like additional 
memory requirement and increased delay. Improved design of interleaver and efficient use 
of resources on the implementation platform make the interleaver a good choice to protect 
data from error burst.  In case of convolution interleaver, memory wastage in the 
incremental shift registers is an issue to be addressed in design and implementation along 
with the operating speed of the circuit. The permutation steps as prescribed in the standard 
documents for block interleavers of various applications like WLAN, WiMAX, MIMO 
WLAN, LTE/LTE-A [89] involves complex mathematical functions like modulus and 
floor. Implementation of these functions on hardware platform is the important issue to be 
addressed in the realization of block interleavers.   
1.4 Applications of Interleaver 

Interleavers are widely used in wireless communication system with principal 
objective to reduce the effect of fading in the channel. Concatenation of random ECC with 
interleavers is used in some of the communication systems to make the system more 
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robust against both random and burst types of error. For example, DAB [90] transmitter 
use a convolutional interleaver between the inner (convolutional code) and outer (Reed 
Solomon code) encoder to achieve low Bit Error Rate (BER). In the receiver side, RS 
decoder is placed first followed by the convolutional de-interleaver and finally the Viterbi 
decoder. Convolutional code helps to reduce the random error whereas interleaver along 
with Reed Solomon code ensures least possible effect of burst error [91]. DVB systems 
also use convolutional interleaver with different parameters [72], [73]. On the other hand 
block interleavers are widely used in applications like WLAN [74], WiMAX [52], [53], 
MIMO-WLAN [75], LTE [76] and LTE-A [77]. These block interleavers generate the 
interleaved code words based on certain permutation patterns as prescribed in their 
standard document. The permutation patterns ensure separation between subsequent data 
symbols to achieve maximum performance out of the interleaver.  Some of these 
interleavers are relatively simple to implement whereas some other have complex 
structure.    

1.5 VHDL Modeling and FPGA 
VHDL stands for Very High Speed Integrated Circuit - Hardware Description 

Language [92]. It is used to model digital electronic circuits / systems and is intended for 
circuit synthesis as well as circuit simulation. The VHDL modeling of the digital system 
can be done at different levels of abstraction: from algorithm to gate. 

New or improved algorithms to be tested on hardware platform need to be 
converted into a Hardware Description Language (HDL) model. VHDL is usually chosen 
as one of the preferred alternative for such modelling. Once such model is prepared, it can 
be simulated to test its functionality and verify its working using test benches. On 
successful simulation, the model can be downloaded into reconfigurable hardware 
platforms like FPGA for its hardware testing. Any discrepancy noticed at any stage may 
be quickly rectified by making suitable changes in the VHDL model.  

Field Programmable Gate Arrays (FPGAs) [93] are semiconductor devices that are 
based around a matrix of configurable logic blocks (CLBs) connected via programmable 
interconnects. FPGAs can be reprogrammed to desired application or functionality 
requirements after manufacturing. This feature distinguishes FPGAs from Application 
Specific Integrated Circuits (ASICs), which are custom manufactured for specific design 
tasks. FPGAs are available in both versions: One-Time Programmable (OTP) and Static 
Random Access Memory (SRAM) based which can be reprogrammed as the design 
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evolves. The latter is more popular and widely acceptable for product design. Following 
paragraphs present brief overview about three FPGAs being used in experimentation 
during the course of the research pursued by the author.   

Spartan 3 [94] is one of the low cost Xilinx FPGA produced on the 90nm process 
technology whose design methodologies, tools, and architecture is aimed to address high-
density consumer oriented applications. It contains abundance of logic gates (up to 
5000K) inside it to house fairly large digital circuits. Apart from Look-up Tables (LUTs), 
Spartan 3 devices contain on chip dedicated 18x18 multipliers to enhance the performance 
of computing operation. It also includes on chip memory called Block RAM and Digital 
Clock Manager (DCM) to improve the performance of logic circuits implemented using 
them.    

Spartan 3AN [95] is another FPGA developed by Xilinx with certain additional 
features like in-system flash memory for configuration and non-volatile data storage than 
its predecessor, i.e. Spartan 3. It is suitable for applications where non-volatile, system 
integration, security, large user flash are required and is ideal for space-critical or secure 
applications as well as low cost embedded controllers. Some of the applications where this 
FPGA is used are automotive, infotainment, telematics, GPS etc.  

Spartan 6 [96] is one of the latest FPGA developed by Xilinx with aim to deliver 
high logic densities and reduced power consumption. It is built on 45 nm low-power 
technology. Some of the improved features are increased Block RAM, DSP blocks, 
memory controllers, enhanced clock management blocks, power optimized high-speed 
serial transceiver blocks etc. 

1.6 Literature Survey 
There are few works available in the literature addressing hardware design issues 

of convolutional interleaver. Yang, Zhong and Yang [97] have developed a FPGA based 
Forward Error Correction (FEC) decoder for Advanced Television System Committee 
(ATSC) digital TV. This work includes the design and implementation of convolutional 
de-interleaver in external dual port memory due to implementation difficulty of shift 
registers inside the FPGA. The authors have used Finite State Machine (FSM) based 
address generator for accessing the memory as convolutional de-interleaver. However, 
FPGA implementation results are not available for comparison to fellow researchers.  
Kim, Lim and Lee [98] have proposed a design for DAB transceiver for implementation 
on FPGA platform. The authors have modelled the convolutional interleaver in external 
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memory due to insufficiency of flip-flops in FPGA. Due to incremental memory 
requirement in each subsequent row, a portion of the interleaver memory to the tune of 
14% remains unutilized. In their work, the authors have worked for reduction of the 
memory wastage.  

Hardware design of convolutional interleaver for DVB application has been 
proposed by Asghar & Liu in [99]. This work demonstrates unified architecture for block 
and convolutional interleaver supporting WiMAX and DVB applications. As per the 
authors, the implementation of convolutional interleaver or de-interleaver using First-In-
First-Out (FIFO) register cells would be hardware inefficient due to large consumption of 
silicon area. Consequently, a RAM based implementation by partitioning memory with 
appropriate read / write logic has been employed. To keep track about the addresses of 
next memory location, cyclic pointers are used instead of FIFO shift registers. For each 
branch of the convolutional interleaver write address is provided by the concerned pointer 
register and the next address is computed by using an addition and a comparison with the 
branch boundaries. The authors used on the fly computation technique for branch 
boundaries using an adder and a multiplier in association with a branch counter. Due this 
approach, the authors claim to implement a hardware efficient design on ASIC using 
0.12µm standard CMOS technology.  

Unnikuttan et. al [100] have reported a work of designing convolutional 
interleaver using Verilog HDL in ModelSim software. In addition, this work includes 
design of a ½ code rate convolutional encoder with constraint length, K = 8 with the aim 
to meet the specification of DVB application. In order to test the design, the authors have 
made a ‘test_wrap’ model combining interleaver and de-interleaver blocks together. 
Simulation results obtained using the ModelSim software are incorporated in the paper. 
However, exact design procedure of convolutional interleaver used in this work has not 
been reported by the authors.   

In addition, literature review shows some works on software platform too. One of 
such work as reported by Gaetzi and Hawksford [101] describes about a Simulink-
MATLAB simulation model implementing complete DAB system involving the 
convolutional interleaver. Result analysis in respect of BER performance of the DAB 
system has been reported with and without involving interleaver.  This analysis 
recommends the involvement of convolutional interleaver in the DAB transmitter.      
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In regard to the design and implementation of block interleaver for WLAN with 
IEEE 802.11 a/g standard, Tell and Liu [102] propose a modified LUT based architecture 
in which the memory is used as a special matrix. As per the authors, intra row permutation 
is carried out externally before writing data in the memory. The desired intra column 
permutation takes place externally after reading data bits out of the memory.  Due to 
simultaneous writing and reading of the interleaver memory, the proposed technique can 
work relatively faster. In addition power consumption of the modified technique is also 
claimed to be lower than the conventional LUT based implementation. The only drawback 
reported by the authors is the minor loss of generality. The paper also states about de-
interleaver implementation adopting the modified LUT based approach. In order to 
facilitate comparison, the authors has implemented conventional LUT based technique on 
the same 130 nm standard cell library of ASIC.  

Sghaier et. al [103] have presented a full FPGA implementation of the WLAN 
OFDM transmitter based on IEEE 802.11a through VHDL modeling. In this work, the 
authors have used the LUT based approach to model the interleaver address generator, 
which otherwise require huge multiplexer along with memory. In IEEE 802.11a based 
WLAN interleaver, four interleaver depths are permitted posing the requirement of four 
LUTs. The authors have modelled the LUTs in the internal ROM available within the 
FPGA. Details of memory modeling technique used to house these LUTs are not provided. 
The design is implemented on Xilinx Virtex-II Pro FPGA occupying approximately 25% 
of the total available FPGA fabric. 

Another work describing design of a FPGA-based OFDM modulator for IEEE 
802.11a is available in literature [104]. As per the authors, block interleaver used in IEEE 
802.11a based WLAN has been implemented on FPGA platform, including other blocks 
like mapper, IFFT and prefix adding module required in the transceiver. However, this 
paper does not explain about the implementation technique adopted while designing or 
implementing the block interleaver. In this work, FPGA implementation platform has been 
preferred by the authors due to the flexibility of re-configuration feature over ASIC. The 
paper has reported operating speed of 92MHz for the WLAN transceiver, when 
implemented on Xilinx Virtex-2 FPGA.  

Limited numbers of works are available in the literature describing hardware 
implementation of block interleaver used in IEEE 802.16d/e based WiMAX transceiver. A 
technique for converting 1-dimensional interleaver equations into 2-dimension is proposed 
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by Asghar and Liu [105]. This is due to the fact that direct implementation of interleaver 
function in WiMAX is not hardware efficient as it contains complex functions like floor 
and modulus. In addition, the conventional method i.e. using memories for storing the 
permutation tables is silicon consuming. Due to the mathematical translation of interleaver 
equations from 1-dimension to 2-dimension, the authors claim to avoid the 
implementation difficulty of these complex functions appearing in the interleaver 
equations thereby facilitating low complexity hardware implementation. This design has 
the capability to compute the interleaver addresses on the fly. However, the derivations in 
[105], do not clearly explain the design issues for all modulation schemes and code rates. 
The authors used 0.12µm CMOS technology as their implementation platform for the 
experimentation on which operating speed of 200MHz for the interleaver design has been 
reported.  

Khater et. al [106] have described a VHDL based implementation of interleaver 
address generation circuitry for IEEE 802.16e interleaver with ½ code rate. The proposed 
technique is basically revolved around certain patterns that evolve during the address 
computation of the interleaver. In order to draw comparison, the authors claim to 
implement FSM based and direct method of designing WiMAX interleaver. As per the 
authors, these two implementation techniques have consumed huge hardware resources of 
the target platform. The patterns that evolved in the proposed technique of this paper is 
basically implemented mostly using multiplexers along with few counters and registers.  
FPGA implementation of the proposed technique is also reported on Altera Cyclone chip 
with part number EP2C5Q208C. This paper claim to simulate the interleaver design using 
Mentor Graphics ModelSim simulation tool through a test bench with 100 OFDMA 
symbols, but no such results have been incorporated in the paper permitting to draw 
comparison by fellow researchers. 

In continuation to the work described in [104], the authors have reported another 
work related to design of an FPGA based OFDM modulator for IEEE 802.16-2004 [107]. 
During the implementation of the modulator, the authors have implemented the block 
interleaver along with other associated blocks required in Fixed WiMAX transceiver. The 
work is reported to be implemented on Xilinx Virtex-2 FPGA without mention about 
detailed design approach. The design is claim to work with 98.376 MHz operating 
frequency. During the work, MATLAB-Simulink compatibility with Xilinx System 
Generator has been exploited to simulate the model. 
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Ahmadi et. al [108] presented a work on design and implementation of a bit 
interleaver for MIMO OFDM system based on IEEE 802.22 standard. IEEE 802.22 is 
defined for Wireless Regional Area Network (WRAN) which involves a block interleaver. 
The permutation steps of the interleaver includes floor and mod function similar to 
WiMAX interleaver. The authors claim to implement the address generator of the 
interleaver using two techniques viz. fully combinational and combinational-sequential. 
For verification purpose test data has been generated by the authors using a MATLAB 
program which is given as input to the VHDL program of the interleaver. Based on the 
simulation results, the authors conclude that the combinational-sequential technique 
performs better over the other technique in terms of power and area while both methods 
meet the IEEE 802.22 standard timing requirements. However, implementation details of 
the floor and mod functions are not provided in the paper.      

Apart from hardware implementation, a software model implementation of the 
WiMAX transceiver prepared on MATLAB-Simulink has been reported by Khan and 
Ghauri [109]. The model implements block interleaver as prescribed in the literature 
supporting all modulation schemes and code rate along with other blocks of the 
transceiver. The performance of the design has been evaluated through BER versus SNR 
logarithmic plot, time scatter plot and Signal-to-Noise Ratios plot using extensive 
simulation inputs. These test results are presented in the paper with inference that the 
model works well on SNR above 20dB. 

Literature survey related to interleaver/de-interleaver design for MIMO OFDM 
based system results in some works in recent past having special reference to IEEE 802.16 
application. Chang [110] proposed a divided memory bank architecture for the 
implementation of the IEEE 802.16e based de-interleaver. In addition, he proposed a dual 
mode architecture incorporating convolutional de-interleaver within the same design. 
Zafar et al. [111] have demonstrated performance analysis and design of channel encoder 
followed by interleaver for IEEE 802.16-2009 based 2x2 MIMO OFDM system. The 
authors used four different architectures of FEC mechanism involving convolutional 
encoder and interleaver which were simulated in MATLAB and Simulink environment 
[112]. Finally, the design is implemented on FPGA with reduced memory requirement and 
initial delay.  

A recent work on the design and hardware implementation of MIMO OFDM system 
receiver including interleaver is available in the literature [113]. During the 
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implementation of the receiver, the authors have used Intellectual Property (IP) core 
offered by Altera for various modules. As a result top level views of the different blocks 
of the receiver are only available in the paper without further implementation details. As 
per the authors it has some advantages of occupying less hardware resources, fast running 
with good stability, but not supported by any implementation result. 

Another recent work [114] on the design of reconfigurable address generation 
circuitry for Interleaver to support multiple standards systems based on IEEE 802.11a/g 
and IEEE 802.16e has been reported. This work demonstrates a similar approach as done 
in [115] to obtain efficiency in the use of FPGA resources. This work is implemented on 
Xilinx Spartan 3 FPGA with necessary implementation results through Verilog HDL 
modeling. Software simulation results obtained using Xilinx ISE are presented by the 
authors to verify the design.  

In the context of MIMO WLAN transceiver implementation on hardware platform, 
the literature review unveils some research. A work as reported in [116], demonstrated the 
development of a prototype transceiver for IEEE 802.11a and then upgraded to 1x4 
MIMO WLAN.  The authors claim to implement the transceiver on Xilinx FPGA Virtex 
V. Setiawan et al. [117] have demonstrated prototyping of 2x2 MIMO WLAN system 
using register transfer level (RTL) design. The authors use model-based design process for 
developing the RTL design of the transceiver and implemented on Altera FPGA Stratix-II. 
ASIC implementations of MIMO-OFDM / IEEE 802.11n transceiver are described by 
some researchers in [118], [119]. However, the implementations of [116], [117], [118], 
[119] are not focused to interleaver/de-interleaver and don’t contain detailed 
implementation results.  

In [120], Zhang et. al have presented a de-interleaver address generator 
implementation on 0.13µm CMOS platform. This paper does not explain the details about 
transition from de-interleaver expressions prescribed in IEEE 802.11n standard into the 
hardware architecture. The authors claim that the implementation is also done on FPGA 
platform but without any implementation result. 2-D translation with recursion of the 
interleaver equations for hardware simplicity is proposed by Asghar and Liu [121]. Due to 
this translation, alternative way to implement the complex functions as available in 
literature becomes possible. The final expressions derived are very complex and do not 
clearly explain about the hardware design issues especially for 64-QAM. The 
implementation platform of this work is reported to be 65nm CMOS technology. Another 
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recent work [122] reported by the authors of [120] claim betterment over their previous 
work in terms of reduction in complexity and improvement in maximum operating 
frequency keeping the same implementation platform. The improvement claimed by the 
authors is due to exchanging steps between interleaver and de-interleaver. 

In connection with the design of address generator for QPP interleaver used in 
LTE / LTE-A transceiver, literature survey shows limited number of works. A unified 
approach of Turbo decoder design suitable for mobile WiMAX and 3GPP-LTE 
applications has been proposed by Kim and Park [123]. The authors have considered dual 
mode approach of designing Almost Regular Permutation (ARP) and QPP interleavers to 
avoid huge area overhead caused by separate RAM based interleavers. This work includes 
design of QPP interleaver with the support of radix-4 single-binary turbo decoding. The 
authors claim to use retiming approach to reduce the critical path delay at the cost of 
increased hardware requirement to enhance the operating frequency of the circuit. Unlike 
RAM based approach, it facilitates on the fly address generation feature. The work is 
claimed to be implemented on 0.13μm CMOS technology. However, separate 
implementation result of QPP interleaver is not available in the paper.  

Sun and Cavallaro [124] proposes a low complexity QPP interleaver of LTE / 
LTE-A and implemented using 65nm CMOS technology. This work includes algebraic 
description of the QPP interleaver leading to listing of three algebraic properties which is 
supposed to ease the interleaver design process. Recursive method of interleaver address 
computation is implemented by manipulating the underlying equations of the interleaver 
as proposed in the literature. As per the authors, this approach is adopted to make the 
design to consume lesser hardware resources. In addition, this approach require some 
parameters to be pre-computed and to be stored in LUTs. Also, the design has the 
capability to compute interleaver addresses in descending order for backward address 
generation with the overhead of re-computation of parameters stored in LUTs. One of the 
drawback of the work is that it lacks clarity about the design of circuitry to compute 
modulus function. The authors extended the work to design Turbo code decoder to be used 
in 3GPP LTE / LTE-A.  

Recursive approach of QPP interleaver design for 3GPP-LTE parallel turbo code 
decoder has also been adopted in [125]. The authors have implemented a memory based 
architecture of the interleaver supporting the bandwidth required by LTE. In addition, a 
general architecture of the QPP interleaver design approach for contention free 
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applications has been proposed. Like the work in [123], this work also uses radix-4 Soft 
Input Soft Output (SISO) approach to design the Turbo code decoder for prototyping in 
ASIC. As per the authors, the QPP interleaver design proposed by them supports the 
radix-4 architecture.  

Another work of designing QPP interleaver for high throughput HSPA/LTE Multi-
Standard turbo decoder is proposed in [126] by the same group of researchers of [124]. 
The work shows improved LUT based approach where inter row and inter column 
parameters are pre-computed and stored in memory. Based on the input parameter, and the 
inputs received from various intermediate pre-processing units, desired interleaver 
addresses are generated. The work is reported to be implemented on 45nm CMOS 
technology.  

1.7 Motivation Behind the Work 
As discussed in Section 1.2, interleavers play an important role in reducing the 

effect of channel noise especially burst noise. The performance of interleaver depends on 
many factors like type of interleaver and their specifications. As an example, improvement 
to the tune of 2 dB due to use of block interleaving over no interleaving is recorded by the 
authors in WLAN application [127].  

Different communication standards use different interleavers. As a result, design of 
interleaver hardware for different standards like DAB, DVB, WLAN, WIMAX, MIMO-
WLAN and LTE / LTE-A is not a unique approach. Moreover, operating speed of 
hardware interleavers is a critical issue and need to be carefully dealt with during the 
design process. FPGA is one of the most preferred platforms for testing and prototyping 
digital hardware due to its re-configurability feature and shorter design time. Looking at 
the importance of interleavers in digital communication systems, and popularity of the 
FPGA platform to design and test newer algorithms, the author is motivated to the design 
and implement of different types of interleavers especially the address generators by 
proposing novel and improved approach. Such approaches are expected to deliver low 
latency and resource efficient hardware design of the different interleavers on FPGA 
platform.  
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1.8 Objective of the Research 
Importance of interleaver to preserve data integrity from burst error encountered in 

the channel has been discussed in previous sections. Protection from such error become 
more significant in the context of OFDM based high data rate wireless communication 
system. To cater such demand, efficient design of interleaver is an important issue to be 
addressed. Detailed literature review as discussed in section 1.6, suggests that not much 
work so far has been carried out in the issue of efficient hardware design of interleaver for 
implementation on FPGA platform. The main bottleneck in designing convolutional 
interleaver for DAB / DVB or other similar communication systems is to have low latency 
and memory efficient model. One of the objectives of this work is to remove such 
deficiency from convolutional interleaver. The block interleavers employed in 
applications like WLAN, WiMAX, MIMO WLAN, LTE/LTE-A can be divided into two 
parts: address generator and interleaver memory. Working principle of the address 
generator is guided by certain permutation patterns as prescribed in the literature. 
Resource efficient design of the interleaver address generator for FPGA implementation 
with improved speed performance is an important objective to be fulfilled through this 
research work. Alongside, judicious use of embedded memory blocks of FPGA while 
designing interleaver memory module is another important objective to be satisfied. Such 
objective if fulfilled properly, reduces the memory requirement which may be utilized by 
other sub-blocks of the transceiver, thereby providing opportunity for System on Chip 
(SOC) implementation of the BWA transceiver on the same FPGA.    

1.9 Challenges Faced During the Research Work  
Increasing use of multimedia services and growth of graphics based internet 

related contents lead to rising demand of high speed broadband wireless systems. Newer 
standards are being proposed to cater this demand. There are many issues related to the 
implementation of these standards. Software platforms like MATLAB [128] etc. are 
convenient for implementation but the desired performance may not be achieved due to 
the constraints like maximum processor clock frequency etc. In addition, the processor 
architectures are usually meant for general applications and may not yield the desired 
performance for certain high speed applications. For such high speed applications, 
hardware platforms are most practical solution. Presently FPGA has been considered to be 
the most preferred hardware platform for testing and implementation of such standards 
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due to its shorter Turn Around Time (TAT), ease of future up-gradation, obsolescence free 
design etc.  

An interleaver / de-interleaver comprises of two sub-sections namely address 
generator and interleaver memory. Design of digital hardware of the interleaver address 
generator used in OFDM based wireless standards like DAB, DVB, WLAN, WIMAX, 
MIMO-OFDM based WLAN and LTE are challenging due to the presence of complex 
functions like floor and modulus. These complex functions do not have any corresponding 
digital hardware for implementation. In addition, VHDL doesn’t support such functions 
directly. As a result, challenges are faced in preparing the VHDL model of the interleaver 
/ de-interleaver circuitry due to unavailability of such functions. Conventional LUT based 
approaches are found to be consuming large amount of logic resources apart from 
slowness in operation. This leads to low speed design with inefficient use of resources. 
For example, the LUT based address generator for WiMAX de-interleaver consumes 
approximately 80% more logic resources and works at half of speed than an improved 
technique proposed in [115]. During literature survey it has been noticed that not much 
work so far has been carried out in designing hardware efficient digital circuit for 
implementation of the interleavers especially the address generator on reconfigurable 
platform like FPGA. Efficient implementation on FPGA platform offers advantages like 
reduced logic circuit requirement, better operating speed than the conventional 
approaches.  Taking the opportunity, the author during his investigation, has designed 
several hardware efficient interleavers including the address generator for the aforesaid 
applications on FPGA platform. The efficiency has been established by reducing the logic 
circuit requirement and slowness in operation.   

 
1.10 Major Contributions in Wireless Communication Systems 
 

The principal focus of the work is to design hardware efficient interleaver for 
various OFDM based high speed wireless communication systems. In this thesis work, 
efficient hardware implementations of both types of interleavers, i.e. convolutional and 
block, have been carried out. Firstly, block level representation of the designs is prepared. 
Each block is decomposed into most suitable digital circuits which thereafter are 
converted into appropriate VHDL models using Xilinx Integrated Software Environment 
(ISE) for FPGA implementation. 
The contributions made by the author as embodied in the thesis are highlighted as follows.   
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 In one of the works, much effort has been given to design efficient 
convolutional interleaver for DAB applications. The proposed design 
utilizes FPGA’s embedded Shift registers (SRLC16) to model the 
incremental memory. This modelling provides significant improvement in 
the operating speed of the convolutional interleaver followed by lower 
power consumption, requirement of lesser hardware resources and memory 
wastage compared to existing implementations.  
 

 Two approaches have been followed by the author in designing the 
hardware for the IEEE 802.11 a/g based WLAN interleaver namely 
improved LUT based and FSM based. The former technique demonstrates 
significant reduction in resource utilization like slices, flip-flop and LUTs 
over the conventional LUT based approach. Similar results are also 
obtained for FSM based implementation. In addition, the FSM based 
technique offers further fast performance over the conventional LUT based 
method.  

 
 WiMAX is another BWA based on IEEE 802.16 d/e standard which uses 

special type of block interleaver. Conventionally, LUTs are used to 
generate the interleaver addresses. The author has proposed improved LUT 
based technique to generate de-interleaver addresses. The improvement in 
terms of saving above 81% of memory blocks and 30% faster circuit 
operation than the conventional LUT based approach have been achieved. 
The author has also proposed FSM based interleaver address generator for 
WiMAX system. The work has been carried forward to design the 
complete FSM based interleaver (with memory) for the WiMAX 
application. Finally a low-complexity and novel technique is proposed to 
efficiently implement the address generation circuitry of the 2-D de-
interleaver used in the WiMAX transceiver using the Xilinx FPGA with 
significantly lesser amount of hardware resources followed by higher speed 
improvement for different modulations and code rates. 

 
 In the work related to speed power improved hardware design of 

interleaver address generator for use in MIMO WLAN, significant 
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contributions have been made for the design of hardware efficient model of 
MIMO WLAN interleaver eliminating the need for floor and modulus 
functions for various higher order modulations and code rates. The 
fundamental aspect behind the development of such efficient hardware lies 
in the removal of these two functions during implementation phase. The 
work is also extended to model the interleaver memory using FPGA’s 
embedded memory and thus provides complete hardware interleaver 
solution. The proposed design when compared with recent works shows 
noticeable betterment in terms of maximum operating frequency, power 
consumption and hardware resources. 

 
 Finally the work related to the design of hardware efficient Quadratic 

Permutation Polynomial (QPP) interleaver address generator for LTE / 
LTE-A communication system is taken up. A novel algorithm has been 
proposed to eliminate the need of squarer and modulus functions. The 
algorithm is converted into digital hardware which is implemented on a 
reconfigurable platform with improved test results in terms of FPGA 
resource utilization including lesser requirement of BRAM and speed of 
operation in comparison with conventional implementations. 

1.11 Methodology 
 

The principal focus of the works carried out in this research is to design low 
complexity; hardware efficient models of interleavers deployed in OFDM based BWA. 
The algorithms used in interleaving processes have been reviewed. Conventional 
approaches like LUT based and others have been surveyed. The algorithms have been re-
designed to obtain efficiency in structure. Proposed hardware structures were modelled 
into VHDL employing Xilinx ISE. While designing VHDL model, effort was given to use 
the target FPGA’s embedded resources like shift register, memory, multiplier etc. to make 
the design faster and more resource efficient.  

The proposed designs were primarily implemented and tested on three FPGA 
platforms namely Spartan 3, Spartan 3AN and Spartan 6, all from Xilinx Inc. Software 
simulation of the works were carried out using ModelSim software. MATLAB has been 
used for initial testing of the proposed algorithms on software platform.   
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1.12 Organization of Thesis 
 

This thesis is divided into eight Chapters. Chapter 2 gets started with brief 
historical background of VHDL followed by its advantages. Similarly evolution of 
hardware implementation platforms of digital circuits right from discrete ICs to SPLDs, to 
CPLDs and finally to FPGA has been narrated. It gives idea about components of a VHDL 
model and describes about different methodology used while preparing VHDL a model. 
Next FPGA fundamentals, its architecture with details has been presented. Finally,   brief 
overviews of Xilinx Spartan 3, Spartan 3AN and Spartan 6 FPGA used in the research 
work have been reported.      

Chapter 3 describes about design and implementation of convolutional interleaver 
and de-interleaver for DAB application. Interleaving operation of convolutional 
interleaver with necessary diagrams has been presented elaborately. The chapter provides 
brief introduction about embedded shift register of FPGA used to model the incremental 
memory of the interleaver. Use of such shift register has reduced hardware resource 
requirement of FPGA in addition to reduction in memory wastage. VHDL model of the 
proposed interleaver and de-interleaver pair along with simulation result in the form of 
timing diagram have been presented.  

Chapter 4 introduces WLAN fundamentals along with the block interleaver used in 
the transceiver. It describes technique of modeling distributed and block RAM available 
inside Xilinx FPGA. In this work, two approaches namely improved LUT based and FSM 
based have been followed in designing the hardware for the IEEE 802.11 a/g based 
WLAN interleaver. Both design approaches along with their hardware models, simulation 
diagrams have been presented. Modeling of interleaver memory in FPGA using block 
RAM and critical analysis of FPGA implementation results of the two techniques have 
also been described.  

Design and efficient implementation issues of WiMAX block interleaver has been 
described in Chapter 5. Overview of WiMAX transceiver along with interleaver / de-
interleaver background has been discussed. In this chapter, three works related to design 
of WiMAX hardware interleaver and de-interleaver are presented. The first work is all 
about the design of a novel FSM based multimode, high speed and hardware efficient 
technique to implement the address generation circuitry of WiMAX interleaver based on 
IEEE 802.16e standard on FPGA platform. An LUT based de-interleaver design approach 
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is presented next. In this approach, the conventional LUT based technique for address 
generation has been re-designed to use the FPGA memory blocks efficiently. The third 
technique is about design of a low complexity and resource efficient hardware de-
interleaver for use in IEEE 802.16e based WiMAX. Transformation of address generator 
algorithms into digital circuits, based on mathematical formulations and the relevant 
simulation results have also been described in this chapter. Comparative study of 
implementation results with previous researcher / conventional techniques has been 
incorporated for each of the approaches.   

Chapter 6 reports about efficient design and implementation of MIMO WLAN 
interleaver on Xilinx Spartan 6 FPGA. It presents back ground information about MIMO 
WLAN followed by brief description on MIMO WLAN transceiver employing multi 
stream block interleaver. Interleaving operation along with its detailed specification has 
been discussed next. Novel algorithm for the address generator of the interleaver including 
its mathematical formulation, transformation into digital hardware is presented. Like 
previous investigations, timing simulation and FPGA implementation results have been 
discussed at length.    

The concluding research work of this doctoral thesis have been carried out on the 
design of hardware efficient QPP interleaver address generator for LTE/LTE-A 
communication system and has been described in Chapter 7. Working principle followed 
by proposed algorithm of the interleaver has been discussed. Hardware realization along 
with software simulation has been presented next. FPGA implementation result along with 
comparative analysis with conventional technique is described to demonstrate supremacy 
of the proposed design.   

Finally a conclusive remark has been drawn for incorporation in the Conclusion 
section of the thesis work with a direction to future work in the areas of interleaver design 
for dual mode operation between MIMO WLAN - LTE/LTE-A, speech signal processing, 
advanced image transmission, 5G MIMO, Optical/Quantum Wireless systems and 
Massive MIMO Signal Processing applications. An exhaustive Bibliography has also been 
included. 



 



 
 
 

Chapter 2 
VHDL & FPGA Fundamentals 

  Outline of this Chapter 
2.1     Introduction 
2.2      Components of a VHDL Model 
2.3 FPGA Fundamentals 
2.4 FPGA Platform used in Experimentation 
2.5 Discussion 

  
The core objective of this chapter is to disseminate fundamental concepts of 
VHDL and FPGA owing to their ever increasing importance as design platform in 
general and also in this particular research work. The chapter begins with 
introductory remarks on VHDL and FPGA in continuation with Chapter 1. In the 
first part of the chapter, it discusses fundamental elements of a VHDL model. In 
addition, it presents various types description that are usually employed while 
preparing the VHDL model of a given digital circuit. The later part of the chapter 
deals with the discussion on general architecture of FPGA. The three essential 
blocks of the architecture i.e. Programmable Logic Block, I/O Block and 
Programmable Interconnect Block have been described with supporting figures. 
The chapter ends with brief overview of three different latest Xilinx FPGAs used 
in the research work.  
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2.1. Introduction 
VHDL is the language for describing digital electronic systems [92]. It arose out of the 
United States Government’s Very High Speed Integrated Circuits (VHSIC) program, 
initiated in 1980. During the course of this program, it became clear that there was a 
definite need for a standard language for describing the structure and function of 
integrated circuits (ICs). As a consequence, the VHDL was developed, and 
subsequently adopted as a standard by the Institute of Electrical and Electronic 
Engineers (IEEE) in the US.  

VHDL is designed to fill a number of needs required in the design process. Firstly, 
it allows description of the structure of a design i.e. how it is decomposed into sub-designs 
[129], and how those sub-designs are interconnected. Secondly, it allows the specification 
of the function of designs using popular programming language forms. Thirdly, as a result, 
it allows a design to be simulated before being manufactured, so that designers can 
quickly compare possible alternatives and test for correctness without the delay thereby 
reducing the expense of hardware prototyping as well as design turn around time [130].    

In the beginning, digital circuits were designed with 74XX series ICs. Designing 
moderately large circuit with these ICs was not an efficient way due to numerous reasons 
like larger real estate occupancy of the circuit board, increased power consumption, lack 
of compactness etc.  Programmable Logic Devices (PLDs) [131] were introduced to solve 
the problem. A PLD is supplied to the user with no logic function programmed in it. It is 
up to the designer to make the PLD to perform whatever way a design requires. Only the 
resources required by the design are utilized. Since several functions can usually be 
combined in the design and programmed on to a single chip, the chips count, real estate 
occupancy of PCB and power consumption, all are reduced considerably. Being 
reprogrammable, any change required during the design can be incorporated, often 
without removing it from the circuit.  

PLDs such as PROM, PLA and PAL, also known as Simple Programmable Logic 
Devices (SPLDs) [132] have limited number of inputs, product terms, and outputs, which 
are insufficient to implement fairly complex logic circuits. A new sophisticated type chips, 
called Complex Programmable Logic Devices (CPLDs) [132] were developed to cater the 
increasing requirement. CPLDs consist of multiple SPLD like blocks connected together 
by a programmable switching matrix housed altogether inside a single chip. Though 
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CPLDs provide logic capacity which is higher than 50 typical SPLD devices, but 
increasing the logic density of CPLD further becomes difficult due to interconnection 
complexity. To increase the logic density and to add more functionality in a single 
programmable device, alternative architecture have been developed which are known as 
Field Programmable Gate Arrays (FPGAs). FPGAs comprise of an array of unconnected 
circuit elements and interconnect resources which are utilized for the implementation of 
logic functions by end user through programming. 

2.2. Components of a VHDL Model 
The purpose of VHDL descriptions is to provide a model for digital circuits and 
systems. This abstract view of the real physical circuit is referred to as entity [133]. An 
entity normally consists of five basic elements, or design units, as shown in Fig. 2.1 
below. In VHDL, one generally distinguishes between the external view of a module 
and its internal description. The external view is reflected in entity declaration which 
represents an interface description of a ‘black box’. The important part of this interface 
description consists of signals over which the individual modules communicate with 
each other. Fig. 2.2 explain the format of entity declaration with an example of 4 to 1 
multiplexer. 

 
Fig. 2.1   Basic Elements of A VHDL Model. 

The internal view of a module and, therefore its functionality is described in the 
architecture body. This can be achieved in various ways. One possibility is given by 

PACKAGE 
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coding of a behavioral description with a set of concurrent or sequential statements.   
Another possibility is a structural description which serves as a base for the 
hierarchically designed circuit architectures. Fig. 2.3 explains the two types of 
architectures with the example of full adder. Naturally these two kinds of architectures 
can also be combined. The lowest hierarchy level however must consist of behavioral 
descriptions. 

 
Fig. 2.2 (a) Block Diagram of a 4 to 1 Multiplexer (MUX) (b) Its Entity Declaration 

One of the major VHDL features is the capability to deal with multiple 
different architectural bodies belonging to the same entity declaration. In this case, it is 
necessary to bind one of the architectures to the entity in order to have a unique 
hierarchy for simulation or synthesis. Being able to investigate different architectural 
alternatives, the development of the systems could be done in an efficient top-down 
manner. The ease of switching between different architectures has another advantage, 
namely quick testing. This also includes switching between behavioral descriptions 
based on the different algorithms, as well as switching to gate level net lists, for 
example, after a partial synthesis is performed. Which architecture should be used for 
simulation or synthesis in conjunction with a given entity is specified in the 
configuration section. If the architecture body consists of structural description, then 
the binding architecture and entities of the instantiated sub modules, the so called 
components, can also be fixed by the configuration statement. 

The package is the last element mentioned here. It contains declarations of 
frequently used data types, components, functions and so on. The package consists of a 
package declaration and a package body. The declaration is used, like the name 

MUX 
I0 
I1 
I2 
I3 

S0 S1 

Y 

entity MUX is 
-- (After a double minus sign (-) the 
rest of the line is  
-- treated as a comment) 

(a) (b) 
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implies, for declaring the above mentioned objects. This means, they become visible to 
other design units. In the package body, the definition of these objects can be carried 
out, for example the definitions of functions or the assignments of a value to a 
constant. Packages are language elements which can be compared with header files 
and the belonging codes, or objects files, found in programming language C. The 
portioning of a package into its declaration and body provides advantages in compiling 
the model descriptors.   

 
Fig. 2.3 VHDL Modeling of a Full Adder in (a) Behavioral (b) Structural 

 
 
 
 

library IEEE;  
use IEEE.std_logic_1164.all;  
 
entity full_adder is  
    port(in1, in2, c_in: in std_logic;  
    sum, c_out: out std_logic);  
end full_adder;   
architecture structural of full_adder is  
 component half_adder is  
   port (x,y: in std_logic;  
   sum, carry: out std_logic);  end component;  
 component or_2 is  
   port (x,y: in std_logic;  
   z: out std_logic);  end component;  
 
signal s1, s2, s3: std_logic;  
 
begin  
 H1: half_adder port map(x=>in1, y=>in2, sum=>s1, 
carry=>s3);  
 H2: half_adder port map(x=>s1, y=>c_in, 
sum=>sum, carry=>s2);  
 O1: or_2 port map(x=>s2, y=>s3, z=>c_out);  
 
end structural; 

(a) (b) 

library IEEE;  
use IEEE.std_logic_1164.all;  
  entity full_adder is  
    port(in1, in2, c_in: in std_logic;  
    sum, c_out: out std_logic);  
end full_adder;  
  
architecture behavioural of full_adder is  
  
begin     process(in1, in2, c_in)  
        begin              if (in1=’0’ and in2=’0’ and c_in=’0’) then 
 sum <= ‘0’;  c_out <=’0’;          elsif (in1=’0’ and in2=’0’ and c_in=’1’) then 
 sum <= ‘1’;  c_out <=’0’; 
             elsif (in1=’0’ and in2=’1’ and c_in=’0’) then 
 sum <= ‘1’;  

c_out <=’0’; 
             elsif (in1=’0’ and in2=’1’ and c_in=’1’) then 
 sum <= ‘0’;  

c_out <=’1’; 
             elsif (in1=’1’ and in2=’0’ and c_in=’0’) then 
 sum <= ‘1’;  

c_out <=’0’; 
             elsif (in1=’1’ and in2=’0’ and c_in=’1’) then 
 sum <= ‘0’;  c_out <=’1’; 
             elsif (in1=’1’ and in2=’1’ and c_in=’0’) then 
 sum <= ‘0’;  c_out <=’1’; 
             else  sum <= ‘1’;  

c_out <=’1’; 
             end if; 
        end process; 
end behavioural; 
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2.3 FPGA Fundamentals 
Fig. 2.4 shows the typical FPGA architecture [93].  There are three key parts of its 

structure: Programmable Logic Blocks, I/O Blocks, and Programmable Interconnect. The 
I/O Blocks form a ring around the outer edge of the part. Each of these provides 
individually selectable input, output, or bi-directional access to one of the general-purpose 
I/O pins on the exterior of the FPGA package. Inside the ring of I/O Blocks lies a 
rectangular array of logic blocks. Programmable interconnect steers the output of one 
logic block to the input of another logic block or I/O Blocks to logic blocks and vice 
versa. The logic blocks within an FPGA can be as small and simple as the macrocells in a 
PLD called Fine Grained or larger and more complex called Coarse Grained [134]. 
However, they are never as large as an entire PLD, as the logic blocks of a CPLD are.  

 
 
 
 
 
 
 
 
 
 

 Fig. 2.4  General Architecture of FPGA. 
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2.3.1 Programmable Logic Block 
 
 
 
 
 
 

 
 

Fig. 2.5 Simplified Diagram of a Typical Programmable Logic Block 
A typical Programmable Logic Block of FPGA is shown in Fig. 2.5. The Logic 

Block consists of a 4-input Look Up Table (LUT), a register, a clock signal and a user 
programmable multiplexer (MUX) [135].  The 4-input LUT is basically used as function 
generator which is capable of realizing any arbitrarily defined Boolean function of four 
inputs. Next paragraph will discuss about a 4-input LUT in detail. Each register could be 
configured to initialize with logic 0 or logic 1 and also to act as a flip-flop or latch. If the 
flip-flop option is selected, the register can further be configured to be triggered by 
positive edge or negative edge of the clock. The MUX feeding the flip-flop can be 
configured to accept the output from the LUT or a separate input to the logic block. All 
these programming can be done by configuring the SRAM cell or the EEPROM cell or the 
antifuse whatever technology is implemented. Most of the FPGAs available in the market 
are SRAM based.  Combinatorial output is available at y whereas registered output is at q.  

Fig. 2.6. shows internal structure of a 4-input LUT. It shows implementation of the 
four input Boolean function, ( , , , ) = ∑ 1, 5,6,8,11,14,15 . The truth table 
representation of the Boolean function is to be implemented in the LUT is provided. As 
shown in Fig. 2.6, 15 numbers of 2-input multiplexers are required to implement the LUT. 
Inputs of the first level multiplexers are set or reset as per the output to be generated and 
should be identical with the output Y.  For example, Y = 1, for a=1, b=0, c=0 and d=0. 
This implementation in the LUT has been shown with a free hand solid line.  
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Fig. 2.6 internal structure of a 4-input LUT implementing 

 ( , , , ) = ∑ 1, 5,6,8,11,14,15  
 
 

2.3.2 Input - Output Block 
The Input Output Block (I/O Block) provides a programmable bi-directional 

interface between an I/O pin and FPGA’s internal logic.  Fig. 2.7 shows the simplified 
block diagram of I/O Block. There are three signal paths available in the I/O Block: Input 
path, Output path and Control path. The Input path carries data from the I/O pin to 
FPGA’s internal logic through Buffer. Data from FPGA’s internal logic to the I/O pin is 
carried by the output path. The Control path determines when the output driver would 
function in natural mode or in high impedance state. When it is in high impedance state 
(Control = Low) the I/O pin works as input line otherwise the pin works as output line. It 
is evident from Fig. 2.7 that output is active low.  

 
 

Boolean Function to be implemented: ( , , , ) = ∑ 1, 5,6,8,11,14,15  
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Fig. 2.7   Simplified Block Diagram of I/O Block. 
2.3.3 Programmable Interconnect 

 
In addition to its logic, an important feature that distinguishes individual FPGAs is 

the Programmable Interconnect structure. As shown in Fig. 2.8, the Programmable 
Interconnect structure is basically horizontal and vertical routing channels [136], [137]. 
Each channel contains short wire segments (singles) that span a single Logic Block (LB) 
[138] and longer segments spans two LBs (doubles). In addition, there are some very long 
segments (not shown in Fig. 2.8) that span’s the entire FPGA length or width [139].  

 
 
 

 
 
 
 
 
 
 

 
Fig. 2.8   Detailed view of interconnection routing between Logic Blocks. 

Programmable Switch Matrix is used to connect LB’s inputs and outputs to the 
wire segments or to connect one wire segment with the other. Inside the Switch Matrix, 
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each wire can connect the other three wires as shown in Fig. 2.9. Fig. 2.10 shows an 
interconnect point implemented using SRAM based technology fuse [134]. In this 
technique, an SRAM cell controls the ON/OFF status of the transistor. During 
programming of the FPGA, the desired SRAM through which connection is to be 
established, receives a ‘1’ whereas others will receive ‘0’.  

 
 
 
 
 
 
 

Fig. 2.9   Detailed view of Programmable Switch Matrix Interconnection of FPGA 

 
Fig. 2.10 Detailed view of Switch Matrix Interconnect Point implemented using SRAM 

Technology 
2.4 FPGA platform used in the experimentation of Interleaver 

This section describes some of important features of Xilinx FPGAs used in relevant 
experimentations during the research studies.  
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2.4.1 Spartan 3  
The Spartan-3 is one of the low cost FPGAs produced on the 90nm process 

technology [94] whose design methodologies, tools, and architecture are aimed at 
addressing high-density consumer oriented applications such as Set Top Box (STB), MP3 
based personnel digital player, vending machine etc. The eight-member family offers 
densities ranging from 50,000 to five million system gates, as shown in Table 2.1. Fig. 
2.11 shows one of the package marking of Xilinx Spartan 3 FPGA with part number 
XC3S400-4PQ208C. 

Table 2.1: Summary of Spartan-3 FPGA Attributes 

Attributes XC3S 
50 

XC3S 
200 

XC3S 
400* 

XC3S 
1000 

XC3S 
1500 

XC3S 
2000 

XC3S 
4000 

XC3S 
5000 

System Gates 50K 200K 400K 1M 1.5M 2M 4M 5M 

Logic Cells (LC) 1,728 4,320 8,064 17,280 29,952 46,080 62,208 74,480 

CLBs 192 480 896 1,920 3,328 5,120 6,912 8,320 

Dedicated Multipliers 4 12 16 24 32 40 96 104 

Block RAM Bits 72K 216K 288K 432K 576K 720K 1,728
K 

1,872
K 

Distributed RAM 12K 30K 56K 120K 208K 320K 432K 520K 
Digital Clock Manager 

(DCM) 2 4 4 4 4 4 4 4 

Maximum User I/O 124 173 264 391 487 565 712 784 
 * The author has used FPGA kit in the Laboratory based on XC3S400 device of Spartan-3 Family. 

A Logic Cell (LC) as shown in Fig. 2.5, also known as LB contains RAM based 4-
input Look-Up Table (LUT) and a D flip flop. Configurable Logic Blocks (CLBs) 
comprises of eight such LCs to implement logic and storage elements that can be used as 
flip-flops or latches. CLBs can be programmed to perform a wide variety of logical 
functions as well as to store data.  

Spartan 3 devices supports on chip dedicated 18x18 multipliers to enhance the 
performance of computing operation. Use of dedicated multiplier improves the 
performance of a FPGA based design by reducing interconnection delay in the CLBs and 
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makes the design resource efficient by permitting CLBs to use by other circuitry.  In 
addition to basic multiplication functions, the embedded multiplier block can be used as a 
shifter or to generate magnitude or two’s-complement return of a value. The multipliers 
can be cascaded with each other or CLB logic for larger or more complex functions. 

 

 
Fig. 2.11 Package marking of Xilinx Spartan 3 FPGA with part number XC3S400-

4PQ208C (Courtesy Xilinx Inc.) 
 
 
 
 
 
 
 
 

 
Fig. 2.12 Single port and dual port data transfer of BRAM 

 
In order to support requirement of large, on-chip memories for various 

applications, Spartan-3 Generation FPGAs provides memory blocks namely Block RAM. 
Using various configuration options [94], these embedded memory blocks can be used to 
utilize the Block RAM fully as RAM, ROM, FIFOs, large look-up tables, data width 
converters, circular buffers, and shift registers. The Block RAMs support dual port feature 
as well. Fig. 2.12 shows the internal structure of a dual port BRAM permitting 
independent access to common RAM block which has maximum capacity of 18KB or 
16KB when no parity lines are used. Each port has its own dedicated set of data, control 
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and clock line for synchronous read and write operations.  The BRAM of Spartan-3 
supports the features of dual-port memory as well as all data flow operations 
simultaneously. The four possible schemes (Fig. 2.12) of data transfer to/from the BRAM 
[94] are as follows: 
a) Port A behaves as an independent single-port RAM supporting simultaneous read 

and write operations using a single set of address lines. 
b) Port B behaves as an independent single-port RAM supporting simultaneous read 

and write operations using a single set of address lines. 
c) Port A is the write port with a separate write address and Port B is the read port 

with a separate read address. The data widths for port A and Port B need not be 
same also. 

d) Port B is the write port with a separate write address and Port A is the read port 
with a separate read address. The data widths for port A and Port B need not be 
same also. 
 
CLBs of Spartan 3 FPGA contain up to 64 bits of single-port RAM or 32 bits of 

dual-port RAM. This RAM is distributed throughout the FPGA and is commonly called 
“distributed RAM” to distinguish it from block RAM. Distributed RAM is fast, localized, 
and ideal for small data buffers, FIFOs, or register files. 

Digital Clock Managers (DCMs) provide advanced clocking capabilities to 
Spartan-3 FPGA applications. DCMs optionally multiply or divide the incoming clock 
frequency to synthesize a new clock frequency. DCMs also eliminate clock skew, thereby 
improving system performance. Similarly, a DCM optionally phase shifts the clock output 
to delay the incoming clock by a fraction of the clock period.  

Input / Output Blocks (IOBs) control the flow of data between the I/O pins and the 
internal logic of the device. Each IOB supports bidirectional data flow with 3-state 
operation. Double Data-Rate (DDR) registers are included. The Digitally Controlled 
Impedance (DCI) feature provides automatic on-chip terminations, simplifying board 
designs.  
2.4.2 Spartan 3AN 

Spartan 3AN is the family of Xilinx FPGA which combines all the features of the 
Spartan-3A FPGA family with additional features like in-system flash memory for 
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configuration and non-volatile data storage. It provides up to 11MB of flash memory 
which can be used for both device configuration as well as a valuable system resource. It 
is suitable for applications like automotive, infotainment, telematics, GPS etc. It contains 
five devices with the attributes listed in Table 2.2 

 
Table 2.2 Summary of Spartan-3AN FPGA Attributes 

Attributes XC3S 
50AN 

XC3S 
200AN 

XC3S 
400AN 

XC3S 
700AN 

XC3S 
1400AN* 

System Gates 50K 200K 400K 700K 1400K 
Logic Cells (LC) 1,584 4,032 8,064 13,284 25,344 

CLBs 176 448 896 1,472 2,816 
Dedicated Multipliers 3 16 20 20 32 

Block RAM Bits 54K 288K 360K 360K 576K 
Distributed RAM 11K 28K 56K 92K 176K 

Digital Clock Manager (DCM) 2 4 4 8 8 
Maximum User I/O 108 195 311 372 502 

 * The author has also used FPGA kit in the Laboratory based on XC3S1400AN device of Spartan-3AN 
Family. 
2.4.2 Spartan 6 

The Spartan-6 is a thirteen-member family of FPGA that aims to delivers 
expanded densities ranging from 3,840 to 147,443 logic cells, with half the power 
consumption of previous Spartan families, and faster, more comprehensive connectivity. It 
is built on 45 nm low-power copper process technology. The Spartan-6 family offers a 
new, more efficient, dual-register 6-input LUT logic and a rich selection of built-in 
system-level blocks. These include 18 Kb (2 x 9 Kb) block RAMs, second generation 
DSP48A1 slices, SDRAM memory controllers, enhanced mixed-mode clock management 
blocks, power optimized high-speed serial transceiver blocks etc. These features provide a 
low cost programmable alternative to custom ASIC products with relatively ease of use. 
Spartan-6 FPGAs offer the better solution for high-volume logic designs, consumer-
oriented DSP designs, and cost-sensitive embedded applications. Some of the important 
attributes of Spartan 6 FPGA family is listed in Table 2.3. 

Spartan 6 FPGAs contain up to six number of Clock Management Tile (CMT). A 
CMT is consisting of two Digital Clock Managers (DCMs) and one Phase Locked Loop 
(PLL), which can be used individually or cascaded. The PLL can serve as a frequency 



Chapter 2: VHDL & FPGA Fundamentals  

   42 

synthesizer for a wider range of frequencies and as a jitter filter for incoming clocks in 
conjunction with the DCMs. 
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* The author has also used FPGA kit in the Laboratory based on XC6SLX25 device of Spartan-6 Family. 
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Most Spartan-6 devices include dedicated memory controller blocks (MCBs), each 
targeting a single-chip DRAM (either DDR, DDR2, DDR3, or LPDDR), and supporting 
access rates of up to 800 Mb/s. The MCB has dedicated routing to predefined FPGA I/Os. 
If the MCB is not used, these I/Os are available as general purpose FPGA I/Os. 
 DSP applications use many binary multipliers and accumulators, best implemented 
in dedicated DSP slices. All Spartan-6 FPGAs have many dedicated, full-custom, low-
power DSP slices, combining high speed with small size, while retaining system design 
flexibility. Each DSP48A1 slice consists of a dedicated 18 × 18 bit two's complement 
multiplier and a 48-bit accumulator, both capable of operating at up to 390 MHz. The 
DSP48A1 slice provides extensive pipelining and extension capabilities that enhance 
speed and efficiency of many applications, even beyond digital signal processing, such as 
wide dynamic bus shifters, memory address generators, wide bus multiplexers, and 
memory-mapped I/O register files. The accumulator can also be used as a synchronous 
up/down counter. The multiplier can perform barrel shifting. 

2.5  Discussion 
VHDL has proven to be a standard language describing structure and function of 

Digital ICs. It offers multiple advantages like ability to decompose a design into sub-
designs with their interconnections, provision for simulation of a design before being 
manufactured, thus reducing the hardware prototype expenses, capability to deal with 
multiple different architectural bodies belonging to the same entity declaration etc. 
Elaborate discussion on these aspects has been carried out in the first part of the chapter. 
Fundamental architecture of FPGA with its three key parts namely Programmable Logic 
Blocks, I/O Blocks, and Programmable Interconnect have been discussed in second part of 
the chapter. Attributes of latest Xilinx Spartan 3, Spartan 3AN and Spartan 6 which are 
used as implementation platform during this research work have been discussed in detail.  
Subsequent chapters will refer to these discussions while developing the VHDL models of 
different interleavers including the convolutional one and their efficient FPGA 
implementations.  
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Design and implementation of convolutional interleaver for DAB application using 
VHDL/FPGA has been discussed in this chapter. Working principle of convolutional 
interleaver with progressively increasing delay units has thoroughly been explained. 
In continuation with the discussion made in Chapter 2, brief introduction to embedded 
shift register of Xilinx FPGA has been incorporated.  The work utilizes FPGA’s 
embedded Shift registers (SRLC16) to model the incremental memory of the 
interleaver. Such approach helps to reduce the hardware resource requirement of 
FPGA in addition to reduction of memory wastage over the existing implementation. 
Exhaustive simulations have been carried out to verify the functionality of the 
convolutional interleaver. Simulations results have critically been observed and 
analysed. 
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3.1. Introduction  
ECCs play very important role in modern digital communication systems. BER of the 

transmitted data can be minimized using a good ECC, of course at the cost of redundancy 
[80]. Interleaving technique is traditionally used to enhance the quality of digital 
transmission over a bursty channel [81]. Interleaving is a process to rearrange code symbols 
so as to spread burst of errors into random like errors and thereafter ECC can be applied to 
correct them. Interleaving improves [140] the performance of digital transmission at the cost 
of increased memory requirement, system complexity, and delay. In most of the applications 
increased memory requirement and system complexity can be accommodated with 
advancement in technology. However, the increased delay as a result of increased memory 
requirement may make interleaving a non-practical solution in some applications. So, an 
interleaver with low delay is a practical way to deal with the error burst.  

DAB is an audio broadcasting system in which analog audio signal is converted into 
a digital signal and transmitted in the assigned Amplitude Modulation (AM) / Frequency 
Modulation (FM) frequency band. DAB offers compact disc (CD) quality audio on the FM. 
It is very well suited for mobile reception and provides very high robustness against 
multipath reception [90]. The working principle of DAB is completely different from that 
of conventional broadcast system. The fundamental blocks of a DAB transmitter may be 
described by Fig. 3.1. 

 
Fig. 3.1 Basic blocks of a DAB transmitter 

 
DAB system uses Moving Pictures Experts Group (MPEG) Audio Layer II encoding. 

The encoder receives input audio signal in Pulse Coded Modulation (PCM) format, sampled 
at 48 kHz or 24 kHz, and produces the compressed audio bit stream of different bit rates 
ranging from 8 kbps to 384 kbps [141]. The next block, scrambler permits the signal to be 
made available only to the authorized users by incorporating Conditional Access (CA) 
feature. Punctured convolutional codes with different code rates are used to provide 
protection against the channel noise. Interleavers are used to save the data frame from error 
burst arising out of deep fade in the channel. The performance of convolutional code gets 
improved working in association with interleavers. DAB system uses convolutional 
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interleaver with progressive delay elements as shown in Fig. 3.2. Convolutional interleaver 
offers dual advantage over block interleaver such as reduced latency and lesser memory 
requirement. The mapper block converts the interleaved code words into QPSK symbols. 
The final block is responsible for the generation of OFDM symbols involving the processes 
of Differential Quadrature Phase Shift Keying (D-QPSK), frequency interleaving, and D-
QPSK symbols frequency multiplexing.  

The work presented in this chapter is directed towards the efficient FPGA 
implementation of the convolutional interleaver being used in the DAB application by 
utilizing embedded FPGA resources. The convolutional interleaver requires progressively 
increasing memory units to model the delay unit. The author used embedded shift register 
(SRL16) of Xilinx Spartan 3 FPGA to model the delay unit of the interleaver. Such approach 
has resulted in two noticeable improvements over external memory based approach [98]: 
reduction in wastages of memory being used in the delay unit and higher operating speed 
due to reduced interconnection delay. Initially, 8-bit and 32-bit versions of general purpose 
convolutional interleavers have been modeled in VHDL and implemented on FPGA using 
SRL16. Comparison in terms of FPGA slice utilization by these implementations and that 
without use of SRL16 shows noticeable saving in favour of the former.     

3.2. Convolutional Interleaver 
A convolutional interleaver [140], [142] consists of N rows of shift registers, with 

different delay in each row. In general, each successive row has a delay which is J symbols 
duration higher than the previous row as shown in Fig. 3.2. The zeroth row has no delay 
elements. The code word symbol from the encoder is fed into the array of shift registers, 
one code symbol to each row. With each new code word symbol the commutator switches 
to a new register and the new code symbol is shifted out to the channel. The i-th (1 ≤ i  ≤ N-
1) shift register has a length of  (i-1)J stages where J = M/N and the last row has M-1 
numbers of delay elements.    

The convolutional de-interleaver performs the inverse operation of the interleaver and 
differs in structure of the arrangement of delay elements. Zeroth row of interleaver becomes 
the N-1 row in the de-interleaver. First row of the former becomes N-2 row of latter and so 
on. Minimum end to end delay (tee) and memory requirement (mr) due to the convolutional 
interleaver and de-interleaver pair are 
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          tee = M(N-1) code symbol                                               (3.1) 
and 

                       mr = M(N-1)  symbols                                         (3.2) 
 

 
(a)       (b) 

Fig. 3.2 Generic structure of a) Convolutional interleaver b) Convolutional de-interleaver 

3.3. Hardware Description of FPGA 
In our experimentation, Spartan-3 (device XC3S 400) with 400K gate count FPGA 

has been used [94]. It has total 896 numbers of configurable logic blocks (CLBs) arranged 
in 32 x 28 matrix fashion. Each CLB has four slices and two of them are named as SLICEM 
and rest two as SLICEL. Each of these slices is having logic function generator, flip-flop, 
multiplexer carry logic and arithmetic gates. Besides these, SLICEM supports two 
additional functions: storing data using distributed RAM (DRAM) and 16-bit shift register 
(SRL16). So, total 896 x 2 = 1792 numbers of SRL16 (embedded shift register) are available 
in addition to other logic resources. DAB application requires a convolutional interleaver of 
array size [98] of 17 x j (j = 0, 1, …, 11)  = 1122 numbers of delay elements. Numbers of 
SRL16 required to implement the interleaver is 77 which is only 4.3% of available SRL16. 
Because of our efficient FPGA implementation technique, sufficient FPGA resources are 
made available for implementing other circuitry of the transmitter/receiver.   

An SRLC16 [143] which is cascadable version of SRL16 is constructed from a 4-bit 
LUT of Xilinx Spartan 3 FPGA. The internal structure of SRLC16 is presented in Fig. 3.3 
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which is basically a 16-bit shift register but its length can be dynamically varied by changing 
value in MUX select input (i.e. ADDR). Our proposed design of convolutional interleaver / 
de-interleaver utilizes the SRLC16 to implement a progressive delay elements of Fig. 3.2(a) 
and (b). 

 
Fig. 3.3 Internal structure of SRLC16. 

3.4. Proposed Model of Convolutional Interleaver 

 
Fig. 3.4 Block diagram of proposed 8-bit convolutional interleaver. 

The proposed model of an 8-bit convolutional interleaver with J = 1 is presented in 
Fig. 3.4. The code word symbols (Draw) received in serial form from an encoder is converted 
into an 8-bit parallel code word by a Serial Input Parallel Output (SIPO) register. The 8-bit 
code word is then supplied to a delay unit through a buffer register. The SIPO output 
changes its value with each clock which is not desirable at the input of the delay unit. The 
buffer unit delivers a word to the delay unit after every 8 clock cycles. The delay unit is 
comprised of eight rows and is having the structure as narrated in Fig. 3.2(a). Embedded 
shift registers with casacdable feature, viz. SRLC16, available in Xilinx Spartan 3 FPGA 
(as described in Section 3.3) have been utilized to model the memory elements with 
progressively increasing delay unit of the convolutional interleaver. Approaches which do 
not use such feature (i.e. without SRLC16) require more FPGA slices to model the delay 
unit. This is because, each slice contains a flip-flop as shown in Fig. 2.5. If the flip-flop of 
a slice is used, the rest of the resources of that particular slice cannot be used again for some 
other purpose. Each code symbols of the 8-bit code word is applied to the respective row of 
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the delay unit. The code word gets scrambled with every clocking events (Tx) as it 
progresses through the delay unit. Table 3.1 shows the scrambling operation of the delay 
unit where the input code word applied is 111111112 before any clock is applied. The 
subsequent code words are assumed to be 000000002 for clarity. The scrambled code word 
then applied to the input of an 8 line to 1 line multiplexer (MUX) which converts it into 
stream of serial data (Dint). The interleaver circuit requires a clock signal to drive the SIPO 
register, a clock circuit and a 3-bit counter. The clock circuit basically divides the system 
clock frequency by 8 which is used to drive the buffer and delay unit. The 3-bit counter 
generates the select input for the MUX.  

 
Table 3.1 Scrambling Operation in Delay Unit of Convolutional Interleaver 

Inputs to Delay Unit Outputs of Delay Unit 
Clock event D7D6D5D4D3D2D1D0 O7O6O5O4O3O2O1O0 
Before T1 11111111 1xxxxxxx 
After T1 00000000 01xxxxxx 
After T2 00000000 001xxxxx 
After T3 00000000 0001xxxx 
After T4 00000000 00001xxx 
After T5 00000000 000001xx 
After T6 00000000 0000001x 
After T7 00000000 00000001 

 
The block diagram representation of the de-interleaver is exactly similar to Fig. 3.4 

except the use of delay unit of Fig. 3.2(b) in place of Fig. 3.2(a). The functional description 
of interleaver and de-interleaver can easily be extended to higher number of bits with or 
without higher values of J.  

3.5.  VHDL Modeling 
This section describes the VHDL modeling [92] of an 8-bit interleaver, de-interleaver 

and the interleaver & de-interleaver pair together using Xilinx ISE software [144] and is 
presented in the form of flow charts. 
3.5.1 Interleaver 

In Fig. 3.5, the entity of the interleaver model contains D_IN (input code word stream) 
and CLK (clock) as input signal and D_OUT (scrambled code word stream) as output signal. 
The input code word stream enters the SIPO_I block one bit at a time in synchronization 
with clock. The CLK signal is also read by two VHDL programs; one for generating CLK8 
(= CLK÷8) synchronization signal and the other for generating COUNT3BIT, functions as 
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select input signal to MUX. BUFFER_I is another VHDL program to implement the 8-bit 
buffer register and is synchronized by CLK÷8 signal. The output from the BUFFER_I block 
is supplied to DEL_UNIT_I block, a VHDL program to realize the delay unit required in 
the interleaver. This is the heart of the interleaver. It consists of seven VHDL program 
internally to implement the variable length shift registers. SRLC16s have been utilized to 
model the variable length shift register. It is synchronized by CLK8 signal. The output of 
the DEL_UNIT_I block is supplied to the VHDL program to implement 8:1 MUX 
(MUX_8x1) which converts the 8-bit scrambled code word into serial stream of code 
symbols and is finally taken out from D_OUT line. 

 

 
Fig. 3.5 Flow chart of 8-bit Convolutional Interleaver 

 
3.5.2 De-interleaver 

Externally the VHDL model of the 8-bit convolutional de-interleaver is identical to 
that of the interleaver. But internally the two models differ in the structure of the delay unit 
(for de-interleaver it is DEL_UNIT_D). The shift register for row N-1 in DEL_UNIT_I is 
used in zeroth row of the DEL_UNIT_D. Similarly shift register of N-2 row in 
DEL_UNIT_I is connected to 1st row of the DEL_UNIT_D and so on. The delay unit of 
proposed de-interleaver model also utilizes SRLC16 owing to its advantage in saving FPGA 
slices in a similar manner as done for the proposed convolutional interleaver.   
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3.5.3 Interleaver – De-interleaver pair 
This section describes about a VHDL model prepared by combining the proposed 

convolutional interleaver and de-interleaver described in previous two sections. The 
objective of such combination is to verify the functionality of proposed interleaver and de-
interleaver models. As the two constituents of this combined model utilize SRLC16, the 
advantage of lesser resource utilization of FPGA is also available in the combined model 
too. The combined VHDL model is designated as INTERLEAVER_DEINTERLEAVER 
and is presented in the form of flowchart in Fig. 3.6.    INTERLEAVER and 
DEINTERLEAVER are the designations used to refer our proposed interleaver and de-
interleaver in Fig. 3.6.  The INTERLEAVER block receives raw data from input source 
which get spread out when progressing through it.  The scrambled code words from the 
output of the INTERLEAVER are then applied as input to the DEINTERLEAVER block 
along with CLK as synchronization signal. It has been observed that the scrambled code 
word is converted into its original (raw) form at the output of the DEINTERLEAVER block 
thus verifying the functionality of the proposed convolutional interleaver and de-interleaver. 
Simulation results in Section 3.6 present such verification.  The author has repeated the 
entire design of proposed convolutional INTERLEAVER, DEINTERLEAVER and the 
INTERLEAVER_DEINTERLEAVER pair using SRLC16 as discussed in this section 
(Section 3.5) with 32-bit word length whose FPGA implementation results are used in 
Section 3.7 for the purpose of comparison.   

 

 
Fig. 3.6 VHDL model of 8-bit Convolutional INTERLEAVER_DEINTERLEAVER pair. 
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3.6 Simulation Result 
This section verify the functionality of the proposed convolutional interleaver and de-

interleaver (8-bit) using timing simulation obtained from ModelSim Xilinx Edition-III, 
version 6.0a shown in Fig. 3.7(a) and (b). The system clock frequency applied to the model 
is 5 MHz for simulation. Input set up time and output valid delay time are chosen to be 10ns 
each. The 8-bit (=111111112) input signal is applied at data_in input of the interleaver as 
shown in Fig. 3.7(a). This data word when passes through the interleaver gets scrambled 
and can be observed in Fig. 3.7(a) at d_out. This clearly verify the interleaver operation 
taking place in the convolutional interleaver. In addition, the timing diagram verify the 
operation of convolutional de-interleaver as well. The interleaved code word as available at 
the output of interleaver (at d_out) is applied as input to the de-interleaver which rearranges 
them in such a way that the original code word is generated at its output (data_out). Figure 
3.7(b) further endorses the working of convolutional interleaver and de-interleaver with 
input code word = 111011112. 

       

 (a) 

 
(b) 

Fig. 3.7 Simulation result with (a) input code word = 111111112 and (b) input code 
word = 111101112 
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3.7  Analysis of FPGA Implementation Results 
The VHDL model of Convolutional interleaver-de-interleaver pairs (both 8-bit and 

32-bit) are implemented and tested into Xilinx Spartan-3 (Device: XC3S400) FPGA 
platform in the laboratory. The FPGA implementation of the convolutional interleaver-de-
interleaver pair without SRLC16 feature is a very hardware-intensive application in 
comparison with SRLC16. Implementation without SRLC16 involves slice flip-flop to 
model the delay unit of the interleaver/de-interleaver. As shown in Fig. 2.5, when the flip-
flop of a slice is used, the 4-input LUT of the slice remain unutilised leading to wastage of 
FPGA resources.   Table 3.2 shows a comparative analysis of the FPGA resource 
requirement in the delay units of interleaver and de-interleaver taken together for the two 
implementations - with and without SRLC16 for both 8-bit and 32-bit versions. 

Table 3.2 Comparative Analysis between Various Implementations 
Interleaver word 

length 
1-bit delay units 
required 

FPGA slices required Slice saving in 
% without 

SRLC16 
with 

SRLC16# 
8-bit 8 x 7 = 56 56 ÷ 2 = 

28 14 50.00 % 
32-bit 32 x 31 = 

992 
992  ÷ 2 

= 496 92 81.45 % 
 

# Proposed technique. 
 
Table 3.2 clearly signifies that our proposed implementation technique of 

convolutional interleaver and de-interleaver pair with SRLC16 saves 50 % and above 81 % 
of FPGA resources compared to the flip-flop based technique without SRLC16 for 8-bit and 
32-bit cases respectively. Use of lesser slices leads to reduced delay in the interconnection 
network inside the FPGA. This further implies reduction in power consumption too. 

Table 3.3 makes comparison of our proposed technique with Kim et. al [98] in the 
issue of reduction in memory wastage for interleaver implementation. Pictorial 
representation of Table 3.3 is provided through a bar chart in Fig. 3.8 including comparison 
between General Structure [98], Kim et. al and our proposed technique highlighting row 
wise wastage of memory bits. Our proposed work shows significant reduction in memory 
wastage issue over the general structure in all most all rows. This technique results in 
significant saving of memory bits in row no. 1 and 2 in comparison with [98]. In other rows, 
work in [98] has performed better mostly due to merging of rows which may lead to more 
complexity in addressing of the memory. However, our proposed technique reduces overall 
memory wastage by 30.38 % for DAB application over [98]. As shown in Table 3.3, Row 
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no. 1 requires 17-bit delay units which is modeled using two 16-bit SRLC16 leading to non-
utilization of 15-bits of the 2nd SRLC16. Similarly, to model the 34-bit delay units for Row 
no. 2, three numbers of SRLC16 are required. In this case, 14-bits of 3rd SRLC16 remain 
utilized. In similar line, with increase in row nos., the number of unutilized bits get 
progressively reduced.     

Another bar chart comparison between the three techniques with respect to memory 
wastage factor is shown in Fig. 3.9. The latter chart is normalized against our proposed 
technique. It is evident from Fig. 3.9 that our proposed technique is most efficient as far as 
overall memory wastage is concerned. In addition, obviously the access time of embedded 
shift register is lower than that of external memory used in [98]. 

 
Table 3.3 Comparative analysis with respect to memory wastage 

row 
no. 

1-bit 
delay 
units 

required 

using Kim et. al. technique our proposed 
technique 

RAM size wasted 
memory 

no. of 
SRLC16 
required 

wasted 
memory 

1 17 128 (R1+R3) 60 2 15 
2 34 256 (R2+R8) 86 3 14 
3 51 merged with R1 --- 4 13 
4 68 256 (R4+R11) 1 5 12 
5 85 256 (R5+R10) 1 6 11 
6 102 256 (R6+R9) 1 7 10 
7 119 128  9 8 9 
8 136 merged with R2 --- 9 8 
9 153 merged with R6 --- 10 7 

10 170 merged with R5 --- 11 6 
11 187 merged with R4 --- 12 5 

Total wastage  158  110  

 
Fig. 3.8. Bar chart showing row wise memory wastage of the three implementation 

techniques 
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Fig. 3.9 Memory wastage factors of the three implementation techniques 

 
The HDL Synthesis Report and Device utilization summary generated using XST 

(Xilinx Synthesis Technology), version G. 35, a Xilinx tool that synthesizes HDL designs 
for the VHDL models (both 8-bit and 32-bit) are given in Table 3.4 and 3.5 respectively. 
The 32-bit design needs two 5-bit adders in the 5-bit counters of interleaver and de-
interleaver each. As evident from Table 3.4 that 8-bit and 32-bit interleaver and de-
interleaver pair needs 14 and 92 numbers of SRLC16, which matches with Table 3.2. Other 
registers are required for constructing SIPOs, internal storage in counters and in clock 
circuits. 

 
Table 3.4 HDL synthesis report 
For 8-bit For 32-bit  

# Adder/Subtractor 2 # Adder/Subtractor 2 
3-bit adder 2 5-bit adder 2 
# Registers 28 # Registers 80 

1-bit register 24 1-bit register 76 
8-bit register 2 32-bit register 2 
3-bit register 2 5-bit register 2 

# Shift Registers 14 # Shifter Register 92 
SRLC16_1 14 SRLC16_1 92 

# Multiplexer 2 # Multiplexer 2 
 8-to-1 multiplexer 2  32-to-1 multiplexer 2 

 
The Device Utilization Summary shows that the Convolutional interleaver and de-

interleaver pair uses very few FPGA resources thus making room for other associated 
circuitry to be implemented on the same FPGA chip. The estimated power consumption of 
the 32-bit model is found to be 125mW (using Xilinx XPower SoftwareVersion:G.35) 
making the circuit suitable for battery powered applications also. 
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Table 3.5 Device utilization summary 
Selected Device : 3s400pq208-5 

FPGA Resources For 8-bit For 32-bit 
Number of Slices: 31 out of 3584     

(0.86%) 
133 out of 3584     

(3.71%) 
Number of Slice Flip 

Flops: 
46 out of 7168     

(0.64%) 
151 out of 7168     

(2.11%) 
Number of 4 input 

LUTs:                 
34 out of 7168     

(0.47%) 
146 out of 7168     

(2.04%) 
Number of bonded 

IOBs:   
3 out of 141       

(2.12%) 
3 out of 141          

(2.12%) 
Number of GCLKs:                        1 out of 8         

(12.5%) 
1 out of 8           
(12.5%) 

3.8   Discussion 
This chapter emphasized the use of convolutional interleaving techniques to maintain 

data fidelity against burst errors in digital communication. An efficient design of 
convolutional interleaver and de-interleaver utilising SRLC16 of Xilinx FPGA has been 
proposed. VHDL model of the proposed design is prepared using Xilinx ISE and is 
implemented on Spartan 3 FPGA. Simulation results in the form of timing diagram obtained 
using ModelSim software is presented which verify the functionality of the proposed 
interleaver design. Reduction in FPGA resource utilization up to 81 % compared to other 
implementation technique has been recorded due to our efficient design utilising SRLC16. 
Lesser power consumption and reduced FPGA interconnection delay are the obvious 
implications of this technique. It also lowers the overall memory wastage by 30 % compared 
to a popular implementation technique for DAB application. Encouraged with the results 
obtained while implementing convolutional interleaver, the researcher undertook the design 
of block interleaver for WLAN application using the same FPGA platform. The design 
issues for the block interleaver are presented in the next chapter.   
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After successful implementation of convolutional interleaver with embedded shift 
register SRLC16 on FPGA platform providing better results in terms of lesser 
memory wastage and lesser hardware resources, effort has now been made to 
develop improved design and efficient implementation of block interleaver used in 
IEEE 802.11 a/g based WLAN. This chapter initially describes the necessary 
background of the block interleaver used in WLAN transceiver. In this thesis work 
two approaches namely improved LUT based and Finite State Machine based have 
been followed in designing the hardware for the block interleaver. The former 
technique demonstrates reduction in resource utilization like slices, flip-flop and 
LUTs over the conventional LUT based approach. Similar results are also obtained 
for FSM based implementation but with  faster performance.  
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4.1. Introduction 
BWA is the most challenging segment of the wireless revolution since it has 

demonstrated a viable alternative to the cable modem and digital subscriber line in the last 
mile access environment [145]. High processing speed, design flexibility and fast design 
TAT are the important requirements of BWA to meet the challenges poised to it. These 
requirements force the designers to choose reconfigurable hardware platform like FPGA. 
A product implemented on FPGA can easily be upgraded by making necessary changes in 
the HDL code and thus becomes obsolescence free. In addition, the TAT of FPGA based 
circuits is almost instantaneous meaning prototyping and physical validation of a digital 
design in real world conditions, when compared to the weeks-long wait required to 
manufacture the design as ASIC [146].  

A WLAN interconnects two or more communicating devices using some wireless 
distribution method and usually provides a connection through an AP [44] to the wider 
internet. During the past few years, the IEEE 802.11 WLAN has emerged as a prevailing 
broadband indoor wireless networking technology [145]. IEEE 802.11a [74] and IEEE 
802.11g [147] based WLAN use OFDM [67] PHY layer that greatly increases the overall 
throughput at the AP. OFDM technique is gaining popularity due to its high transmission 
capability and also for alleviating the adverse effects of ISI and ICI.  

In many communication channels, two types of errors namely random and burst 
occur. Random errors are dealt with FEC codes like Convolutional, Turbo etc. A burst 
error or error burst is a contiguous sequence of bits or symbols, received in erroneous 
condition over a data transmission channel. Burst error causes performance degradation of 
the communication system with increased value of BER. Re-transmission of erroneous 
frames using conventional techniques like Automatic Repeat Request (ARQ) may be 
employed but may not be suitable in many applications as it demands duplex channel 
[148]. The effect of burst error is more efficiently mitigated by interleaving technique 
[24]. Interleaving [80] plays a vital role in improving the performance of FEC codes in 
terms of BER. Interleaving is a process to rearrange code symbols so as to spread the burst 
of errors into random like errors. Hence FEC techniques could be applied to correct them. 
Block interleaving [19] is one of the widely used techniques in which the bits received 
from the encoder are stored row wise in the interleaver’s own memory and read column 
wise. WLAN based on IEEE 802.11a and IEEE 802.11g uses special type of block 
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interleaver [102] of various specifications depending on the modulation type to combat 
error burst.  

In this chapter, we describe two techniques involving LUT and FSM to model 
multimode interleaver for OFDM based WLAN. As per IEEE 802.11a and IEEE 802.11g 
standard, ½, ⅔ and ¾ are the allowed code rates whereas BPSK, QPSK, 16-QAM and 64-
QAM are the permitted modulation schemes. Our work includes multimode interleaver 
design on Xilinx Spartan 3 FPGA with all possible modulation scheme permitted as per 
[44],[74]. The address generator of the interleaver is governed by two equations which 
includes complex functions like modulus and floor. Due to the absence of corresponding 
digital hardware for these functions, hardware design of the interleaver is more 
challenging. Moreover, VHDL does not support such functions directly as well.  
Consequently, the LUT based technique is conventionally used in which the ‘address 
LUTs’ are usually housed in external memory. Use of external memory makes the design 
slower due to long memory access time. Our work describes improved LUT based 
technique employing FPGA’s internal memory to house the addressing LUTs. Memory 
partitioning is employed to reduce the memory wastage.  As a result, the proposed LUT 
based technique shows better performance in terms of operating frequency with efficient 
resource utilization. On the contrary, the FSM based technique shows two different 
approaches involving BRAM and DRAM of FPGA to model the interleaver memory. 
Critical analysis of the results of FPGA implementation including software simulation of 
both approaches has been made.  

4.2. Interleaving in WLAN 
IEEE 802.11a and IEEE 802.11g based WLAN uses identical interleaving 

technique in which a special type of block interleaver [102] is used. Specification of a 
block interleaver is referred as it interleaver depth, computed by multiplying number of 
rows with number of columns of the memory block used as the block interleaver. The 
interleaver depth varies with modulation scheme. The interleaver action can be expressed 
in terms two sets of equations which ensures the following two design rules: 

i) The adjacent coded bits are mapped into non-adjacent subcarriers.  
ii) Adjacent coded bits are mapped alternately into less and more significant bits of 
the  constellation to avoid long run of lowly reliable bits.  
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Let Ncbps is the block size corresponding to the number of coded bits per allocated 
sub-channels per OFDM, d represents number of columns of the block interleaver which 
is typically chosen to be 16 [44]. mk is the output after first level of permutation and k 
varies from 0 to Ncbps-1. s is a parameter defined as s=max{1, Ncpc/2}, where  Ncpc is the 
number of coded bits per sub-carrier as shown in Table 4.1. 
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where % and    signify modulo and floor functions respectively.  

Table 4.1 Specifications of IEEE 802.11a and IEEE 802.11g based WLAN Interleaver 
Modulation 

Scheme Ncpc s Ncbps No. of Rows in 
interleaver memory 

BPSK 1 1 48 3 
QPSK 2 1 96 6 

16-QAM 4 2 192 12 
64-QAM 6 3 288 18 

4.3 Modeling Memory in FPGA 
SRAM based FPGAs [149] offer internal (embedded) storage for potential 

applications like local storage, FIFO, data buffers, stack, large LUT etc. Xilinx offers two 
types of such internal storage called Distributed RAM (DRAM) and Block RAM (BRAM) 
in its FPGAs [94],[150].  
4.3.1 Distributed RAM 
 In our experimentation we have used Xilinx Spartan-3 FPGA (device XC3S400) 
[94] having 896 CLBs. Each CLB contains four slices and each slice contains two LCs. 
Each LC contains a 4-input LUT. The LUT performs any possible logic function of its 
four inputs and forms the basis of the Spartan-3 logic architecture. Two slices of a CLB 
are termed as SLICEM and the other two as SLICEL as shown in Fig. 4.1. The two LCs of 
a SLICEM slice contain storage elements and can be utilized as two 16 x 1 bit DRAM in 
addition to using it as 16-bit shift register (SRL16) or only as logic generator.  The LCs of 
slice, SLICEL can be used as ROM/logic generator. Each 16 x 1 RAM can be cascaded 
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for deeper and wider memory applications. Spartan-3, Device XC3S400 FPGA offers 
56Kbits of DRAM. 

 
Fig. 4.1 Internal structure of a CLB in Spartan 3 FPGA 

4.3.2 Block RAM 
The Block RAM available in Spartan 3 FPGA can be configured to work as single 

port or dual port memory. Single port memory can be either be read or written depending 
on the control signal but not simultaneously. Dual port BRAM has the advantage of 
performing both read as well as write operation on a single memory block simultaneously 
using two different ports as shown in Fig. 4.2. Table 4.2 lists all the interface signals of a 
dual port BRAM, their direction and the port to which they are associated with. Pictorial 
view and interface signals of single port BRAM are implied from Fig 4.2. In our 
experimentation we have used Xilinx Spartan-3 FPGA (device XC3S400) [94] having 16 
nos. of 18KB (16KB data and 2KB parity) memory size each. The memory blocks can be 
organized in various ways as shown in Table 4.3 using VHDL programming. The 
proposed design uses single port memory with 1K x 16-bit organization to store 
interleaver addresses whereas interleaver memory is modeled using a dual port BRAM 
with 16K x 1-bit organization.  
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Fig. 4.2 Dual port BRAM in Xilinx FPGA 

 
Table 4.2 Dual port BRAM interface signal 

 
Signal Function Port A Port B Direction Brief description 
Data Input Bus DIA DIB Input The memory block receives input data to be written in the selected 

location of Port A / Port B through these lines. 
Parity Data Input 

Bus DIPA DIPB Input The memory block receives parity data input to be written in the 
selected location of Port A / Port B through these lines. 

Data Output Bus DOA DOB Output The memory block transmits data from a selected location of Port 
A / Port B through these lines. 

Parity Data Output DOPA DOPB Output The memory block transmits parity data from a selected location of Port A / Port B through these lines. 
Address Bus ADDRA ADDRB Input Through these lines, a memory location is addressed for either 

read or write operation of Port A / Port B. 
Write Enable WEA WEB Input This signal when made active (logic 1) permits the data write 

operation in a selected memory location of Port A / Port B. 
Clock Enable ENA ENB Input This signal when made active (logic 1) enables the memory block. 

This signal can be treated as master control of the memory block.   

Synchronous Set/Rest SSRA SSRB Input 

The synchronous set/reset input, SSR, forces the data output 
latches to the value specified by the SRVAL attribute. When SSR 
and the enable signal, EN, are High, the data output latches for the DO and DOP outputs are synchronously set to a ‘0’ or ‘1’ 
according to the 
SRVAL parameter. 

Clock CLKA CLKB Input This signal clocks Port A / Port B for all synchronous operations. Clock polarity is configurable and is rising edge triggered by 
default. 

 

Table 4.3 Organization of BRAM in Spartan 3 FPGA 
Total RAM bits, including parity  18,432 (16K data + 2K parity) 

Memory Organizations  
 

16Kx1 
8Kx2 
4Kx4 
2Kx8 (no parity) 
2Kx9 (x8 + parity) 
1Kx16 (no parity) 
1Kx18 (x16 + 2 parity) 512x32 (no parity) 
512x36 (x32 + 4 parity) 
256x72 (single-port only) 
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4.4. Hardware Models of Interleaver 
The proposed hardware models of OFDM based WLAN interleaver consist of two 

sections: address generator and interleaver memory as shown in Fig. 4.3. The address 
generator is basically the simultaneous implementation of (4.1) and (4.2) which is the 
write address along with provision for generation of read address for interleaver memory. 
Block interleaver uses two memory blocks out of which one memory block is written and 
the other is read based on the value of select (sel) signal. In this work, two different 
interleaver design approaches namely LUT and FSM based for IEEE 802.11a and IEEE 
802.11g WLAN have been proposed. In both approaches, a MATLAB program is 
developed implementing (4.1) and (4.2) to generate the interleaver write addresses. Part of 
such addresses (first 32) with four different modulation schemes are shown in Table 4.4. 

 
Fig. 4.3 Top level view of interleaver 

 

Table 4.4 First 32-Write Addresses for Four Modulation Schemes and Their Encoding 
 

Ncbps=48 bits, 
BPSK  

(mod_typ =00) 

0 3 6 9 12 15 18 21 
24 27 30 33 36 39 42 45 
1 4 7 10 13 16 19 22 

25 28 31 34 37 40 43 46 
Ncbps=96 bits, 

QPSK 
(mod_typ =01) 

0 6 12 18 24 30 36 42 
48 54 60 66 72 78 84 90 
1 7 13 19 25 31 37 43 

49 55 61 67 73 79 85 91 
Ncbps=192 bits,    

16-QAM 
(mod_typ =10) 

0 13 24 37 48 61 72 85 
96 109 120 133 144 157 168 181 
1 12 25 36 49 60 73 84 

97 108 121 132 145 156 169 180 
Ncbps=288 bits, 

64-QAM (mod_typ =11) 

0 20 37 54 74 91 108 128 
145 162 182 199 216 236 253 270 
1 18 38 55 72 92 109 126 

146 163 180 200 217 234 254 271 

4.4.1  LUT based Interleaver 
In this approach of interleaver design, the write addresses are pre-computed 

implementing (4.1) and (4.2) through the MATLAB program described in the form of 
flow chart in Fig. 4.4 and stored in LUTs. The program accepts Ncbps, s, k and d (defined 
in Section 4.2) as inputs, computes one set of values of b, c, g, mk, a, e, h, f, i and jk in 

raw data 

interleaved data 
sel 

write address 
read address 

 Address 
Generator 

 Interleaver 
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every iteration till k < Ncbps as described in Fig. 4.4. The values of jk obtained in every 
iteration represents the interleaver addresses which are to be stored in respective LUTs.    
As shown in Table 4.1, WLAN supports four different interleaver depths one for each 
modulation scheme with the dimension described there.  Conventionally, four separate 
memory modules are required to house these four LUTs. In this work, the author has used 
embedded single and dual port BRAM memory available in the target FPGA. One of such 
single port BRAM module having dimension 1K x 16-bit is partitioned as shown in Fig. 
4.4 to model these LUTs. The first partition having the address range 0-02FH holds the 
interleaver addresses with depth Ncbps = 48-bits. Similarly, the interleaver addresses with 
Ncbps = 96-bits are also stored in memory locations with address ranges 030H-08FH and so 
on.  An up-counter is used to read these addresses from the appropriate LUT, based on the 
value of Ncbps stored in the variable MOD_TYP as shown in Table 4.5. Partitioning of the 
memory eliminates the need of four different memory blocks to model the four LUTs. 
Table 4.5 shows the complete range of addresses of each LUT inside a single port BRAM.   

 Fig. 4.4 Flow chart of MATLAB program used to pre-compute WLAN interleaver 
addresses 
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Start 
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  The memory requirement of block interleaver has been modelled using a dual port 
BRAM of FPGA in the proposed work. The use of memory is optimized in the sense that 
one dual port memory have been utilized to model the two memory blocks required in 
OFDM based WLAN block interleaver. As shown in Fig. 4.6, the memory block is 
configured in such a manner that when one port is in write mode the other is in read mode 
and vice versa. The first memory module occupies 0-287 bit locations whereas the other 
module is placed from 512 to 799 bit location in the 16K x 1 dual port BRAM.  

 
Fig. 4.5 Modeling of LUT in FPGA’s internal memory 

 

Table 4.5 Address Ranges of Various LUT Inside BRAM 
 

Interleaver Depth (Ncbps) 
Modulation type (MOD_TYP) Address Range (10 bit) Memory Size in bit 

48 BPSK (00B) 000h-02FH 48x16 
96 QPSK(01B) 030h-08FH 96x16 

192 16-QAM (10B) 090h-14FH 192x16 
288 64-QAM (11B) 150h-26FH 288x16 

 
The interleaver action can be described in terms of a local FSM as shown in Fig. 

4.7. This FSM enters in the START state on reset. Based on the value of modulation type 
(mod_typ) the counter is initialized to a preset value (e.g. for mod_typ = 01B, 
counter_preset  = 030H; for mod_typ = 11B, counter_preset  = 150H etc.). The FSM 
thereafter allows the counter to progress through its natural count sequence till the 
terminal value. On reaching the terminal value the FSM alters the state of rw_sel signal 
causing the read and write mode of two memory blocks to swap. The counter gets auto 
initialized to its respective preset value and then starts counting up again. 
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Fig. 4.6 Modeling of interleaver memory using dual port BRAM in FPGA 

 

 
Fig. 4.7 State diagram representation view of proposed interleaver 

 
Fig. 4.8 shows the detailed picture of the proposed interleaver. The Address 

Generator Block (AGB) is responsible for generating two types of addresses, one for 
writing and the other for reading the interleaver memory in Interleaver Memory Block 
(IMB). The read addresses (rd_address) are obtained from a 10 bit counter. In order to 
generate the write addresses the appropriate LUT for a mod_typ is to be read as per Table 
4.5. The 10-bit counter output is added with a preset value in the adder A1. The 
appropriate preset value is selected by a multiplexer (M1) based on the value of mod_typ 
as shown in Fig. 4.7. For example, with mod_type = 01B, preset = 030H which is the 
starting address of the LUT with interleaver  depth  96-bits. The  counter  gets  reset  
signal with the help of a comparator after the last address of the said LUT is read. With 
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mod_typ = 01B, the multiplexer (M2) attached to the comparator select the input value 
05FH. The comparator generates a high reset pulse when the counter output reaches 05FH.  

 
Fig. 4.8 Detailed view of proposed LUT based interleaver 

 The lower 10-bit of the output received from the single port BRAM is used as the 
write address of the interleaver. The multiplexers (M3 and M4) attached to the dual port 
BRAM with rw_sel input sends the read and write addresses to the appropriate ports. For 
example, when rw_sel = 1, Port A receives write address where as Port B gets the read 
address.  When writing/reading of Port A/Port B is over, status of rw_sel gets changed to 
0. As a result Port A now receives read address and Port B receives write address. This 
phenomenon has been explained with the help of timing diagram in Fig. 4.9. In this 
manner every time when rw_sel status gets changed, the read/write operation between Port 
A and Port B gets swapped. A toggle flip-flop is used to generate the rw_sel signal and is 
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synchronized to the reset input of the counter. As shown in Fig. 4.6, the two memory 
blocks required for interleaver memory are housed in a single dual port BRAM of Spartan 
3  FPGA with a capacity of 1K x 16-bit. The first memory block is placed through Port A 
within the address space of 0-287. A bias value of 200H needs to be added to the 
read/write address of Port B as the second memory block is placed in the address space of 
512-800 with starting address 200H. The multiplexer (M5) attached to the dual port 
BRAM output sends the interleaved data bit out from the memory block being read. 

 
Fig. 4.9 Timing diagram showing swapping of read/write operation between   
                         Port A and Port B using rw_sel 

 

4.4.2  FSM based Interleaver 
This section describes FSM based hardware interleaver especially the address 

generator design for IEEE 802.11a and IEEE 802.11g based WLAN. Careful examination 
of the write addresses in Table 4.4 reveals that the subsequent addresses are not equally 
spaced for all the cases. Within a particular modulation scheme, the increment values 
follow a fixed type of pattern. In case of BPSK and QPSK (with s = 1) the increments are 
linear having the values 3 and 6 respectively. 16-QAM and 64-QAM have nonlinear 
increments e.g. 13, 11 and 20, 17, 17 respectively.   

Our proposed design of address generator block is described in the form of 
schematic diagram in Fig. 4.10. Bulk of the circuitry is used for the generation of write 
address. It contains three multiplexers (muxs): mux-1 and mux-2 implement the unequal 
increments required in 16-QAM and 64-QAM whereas mux-3 routes the outputs received 
from mux-1 and mux-2 along with equal increments of BPSK and QPSK. The select input 
of mux-1 is driven by a T flip-flop named qam16_sel whereas that of mux-2 is controlled 
by a mod-3 counter, qam64_sel. The two lines of mod_typ (modulation type) are used as 
select input of mux-3.  The 6-bit output from the mux-3 acts as one input of the 9-bit adder 
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after zero padding. The other input of the adder comes from accumulator, which holds the 
previous address. After addition a new address is written in the accumulator. 

 
Fig. 4.10 Schematic diagram of address generator 

The preset logic is a hierarchical FSM whose principal function is to generate the 
correct beginning addresses for all subsequent iterations and is shown in the form of state 
diagram in Fig. 4.11.  This block contains a 4-bit counter keeping track of end of states 
during the iteration. The FSM enters into the first state (SF) with clr = 1. Based on the 
value in mod_typ it makes transition to one of the four possible next states (SMT0, SMT1, 
SMT2 or SMT3). Each state in this level represents one of the possible modulation schemes. 
The FSM thereafter makes transition to the next level of states (e.g. S000, S001 and so on) 
based on the value in the accumulator. When the FSM at this level reaches to the terminal 
value of that iteration (e.g. 45 in SMT0), it makes transition to a state (e.g. S000) in which it 
loads the accumulator with the initial value (e.g. preset=1) of the next iteration. This 
process continues till all the interleaver addresses are generated for the selected mod_typ. 
If no changes take place in the values of mod_typ, the FSM will follow the same route of 
transition and the same set of interleaver addresses will be continually be generated.  Any 
change in mod_typ value causes the interleaver to follow a different path. In order to 
facilitate the address generator with on the fly address computation feature, we have made 
the circuit to respond to clr input followed by mod_typ inputs at any stage of the FSM. 
With clr=1 it comes back to SF state irrespective of its current position and there after 
transits to the desired states in response of new value in mod_typ.  

The read addresses are linear in nature and are generated using a 9-bit up counter 
as shown in Fig. 4.10. The counter is reset whenever it reaches to the terminal count for a 

clr 

9 

9 

9 
6 

9 

clr clk 

clk 

 preset logic 

  

acc
um

ula
tor 

mu
x-1

 
mu

x-2
 

mu
x-3

 

add
er 

clr 

clk 
qam16_sel 

2 
clk qam64_sel 

13 
11 

20 
17 
17 

3 
6 

3 (MSB) 

write address 

9 bit up counter 
clk clr 

read 
address 

sel generator 
clk 

sel 
mod_typ 

2 



Chapter 4: Interleaving in WLAN  

   70 

desired modulation scheme. For example, in case of 16-QAM, the counter counts from 0 
to 191 and then repeats. The sel generator is basically a T flip-flop used to generate the 
select (sel) signal and is initialized to zero using clr input.  

 
Fig. 4.11 State diagram of preset logic 

4.4.2.1  Interleaver Memory 
The interleaver memory block comprises of two memory modules (RAM-1 and 

RAM-2), three muxs and an inverter as shown in Fig. 4.12. In block interleaving when one 
memory block is being written the other one is read and vice-versa. Each memory module 
receives either write address or read address with the help of the mux connected to their 
address inputs (A) and sel line. RAM-1 at the beginning receives the read address and 
RAM-2 gets the write address with write enable (WE) signal of RAM-2 active. After a 
particular memory block is read / written up to the desired location, the status of sel 
changes and the operation is reversed. The mux at the output of the memory modules 
routes the interleaved data stream from the read memory block to the output.  

 
Fig. 4.12 Schematic view of FSM based Interleaver Memory block 
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The maximum memory required for OFDM based WLAN interleaver is 288 bits. 
Two identical memory blocks each of capacity 288-bits are required for the 
implementation of block interleaver. To model this memory in FPGA we have followed 
two techniques: one using DRAM and the other using BRAM. To model 288-bits memory 
we require four 64 x 1-bit and one 32 x 1-bit DRAM as shown in Fig. 4.13. The write 
enable (WE) logic is designed with the help of a 3 to 5 decoder as shown Fig. 4.14. Table 
4.6 shows the conditions in which the WE signals for various DRAM blocks are 
generated. Modeling the interleaver memory using BRAM is relatively simpler than 
DRAM approach. BRAM of 16K x 1 bit has been utilized to model the memory.  

Both approaches have their own merits and demerits. The DRAM technique makes 
the embedded memory free for other requirement in the system. In this technique exact 
amount of memory requirement can be modeled. DRAM is available at the cost of slices 
which otherwise used to implement digital logic. As a result FPGA resources available to 
implement other logic functions, if required are crunched. However, this drawback can be 
mitigated with modern day FPGAs which contains abundance of logic resources due to 
advancement in VLSI Technology. On the contrary, the BRAM technique uses dedicated 
memory leaving slices free to implement digital logic. It does not require logic circuit like 
that of Fig. 4.14 for WE. Moreover BRAM based interleaver can operate at higher 
frequency than its DRAM counterpart. The only drawback is that out of 16Kbits only 288-
bits are used keeping rest unutilized. 

 
Fig. 4.13 Organization of 288 bit DRAM 

 
Fig. 4.14 Write Enable signal generation for various DRAM blocks 
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Table 4.6 Condition for Generation of Write Enable Signals 
 
 
 
 

4.5 Simulation Results  
Simulation results of the proposed LUT and FSM based interleavers for OFDM 

based WLAN are presented in the form of timing diagram in Fig. 4.15 (a)-(d) and Fig. 
4.16 (a)-(d) respectively.  In both cases, the diagrams are obtained using ModelSim Xilinx 
Edition-III, version 6.0a. In these figures, 4.15(a) is identical with 4.16(a) as both displays 
interleaver output for BPSK (mod_typ = 00). Similarly, Fig. 4.15(b) and 4.16(b) are 
identical as both the simulation results are obtained with mod_typ = 01 (i.e. QPSK) and so 
on. In all the figures of 4.15 and 4.16, first 16-bits of raw data input (data_in) are held 
high. The effect of interleaver is visible as the consecutive 1’s are dispersed by certain bit 
positions in the data output (data_out) line. In case of BPSK, the spread is uniform and by 
three positions. For QPSK, the bits are spread by six positions uniformly. On the contrary, 
16-QAM and 64-QAM show non-uniform spread by 13/11 and 20/17/17 respectively. 
This is because the write address sequences in BPSK and QPSK modulation schemes are 
uniformly distributed whereas, for 16-QAM and 64-QAM they are non-uniform as 
highlighted in Table 4.4. The CLR signal is used to reset ( = 1 ) the interleaver at the 
beginning of an operation.  

 
 

 
Fig. 4.15(a) Simulation result for BPSK (mod_typ = 00) in LUT based interleaver 
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Fig. 4.15(b) Simulation result for QPSK (mod_typ = 01) in LUT based interleaver 

 

 
Fig. 4.15(c) Simulation result for 16-QAM (mod_typ = 10) in LUT based interleaver 

 

 
Fig. 4.15(d) Simulation result for 64-QAM (mod_typ = 11) in LUT based interleaver 

 

 
Fig. 4.16(a) Simulation result for BPSK (mod_typ = 00) in FSM based interleaver 
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Fig. 4.16(b) Simulation result for QPSK (mod_typ = 01) in FSM based interleaver 

 

 
Fig. 4.16(c) Simulation result for 16-QAM (mod_typ = 10) in FSM based interleaver 

 

 
Fig. 4.16(d) Simulation result for 64-QAM (mod_typ = 11) in FSM based interleaver 

  

4.6 Critical Analysis of FPGA Implementation  
This section describes FPGA implementation results and their analysis for the 

proposed two techniques of interleaver design. 
4.6.1 FPGA Implementation of LUT based Interleaver 

The proposed VHDL model of the LUT based interleaver is prepared using Xilinx 
ISE and is implemented on Xilinx Spartan-3 FPGA. Table 4.8 shows the HDL synthesis 
report for the implementation. The M1 of Fig. 4.8 has been modeled in a ROM of size 4 x 
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10-bit. Three adders are being used by the circuit, two as A1 and A2 and the third in the 
counter. A2 is 14-bit while other two are 10-bit. Three 10-bit registers are used to hold the 
read address, rd address and the count value in counter respectively in addition to one d 
flip-flop as rw_sel. The 10-bit 4-to-1 multiplexer models the M2 mux. Device utilization 
summary of this implementation on Xilinx Spartan-3 FPGA (XC3S400) has been 
described in Table 4.8. As seen, the proposed technique utilizes only 1.53% of available 
slices, 0.42% of available slice flip-flop, and 1.42% of available 4 input LUTs. The 
estimated power consumption of the implementation is found to be as low as 56mW.  

Table 4.7 HDL Sythesis Report of LUT based WLAN Interleaver 
Logic Circuit used Quantity 

4x10-bit ROM 1 
10-bit adder 2 
14-bit adder 1 

10-bit register 3 
1-bit register 1 

10-bit 4-to-1 multiplexer 1 
 

Table 4.8 Device Utilization Summary of LUT based WLAN Interleaver 
FPGA Resources Utilization in Number Utilization in % 

Number of Slices 55 out of   3584 1.53 
Number of Slice Flip-flops 30  out of   7168 0.42 
Number of 4 input LUTs 102 out of   7168 1.42 
Number of Bonded IOBs 06  out of    141 3.55 

Number of BRAMs 2 out of 16 12.50 
Number of GCLKs 1 out of 8 12.50 

 
4.6.2 FPGA Implementation of FSM based Interleaver 

The proposed VHDL model of the FSM based interleaver has been developed 
using Xilinx ISE and has also been implemented on Xilinx Spartan-3 FPGA. Two 
versions of the memory model, (i.e. BRAM and DRAM) along with FSM based common 
address generator have been implemented. Table 4.9 shows the HDL synthesis report of 
both the implementations. It is evident that except the use of embedded memory, logic 
circuit requirement is lesser in case of the technique using BRAM. The DRAM technique 
uses two ROM, some register/latches in excess compared to the technique using BRAM. 
The write enable logic for the two sets of memory module of Fig. 4.13 are modelled by the 
two 4 x 1-bit ROM. The 2-bit adder is used in the 2-bit counter, qam64_sel whereas the 9-
bit adder is used to generate the write address of interleaver as shown in Fig. 4.10. The 4-
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bit up counter in preset logic keeps track of the end of iteration. Read addresses for the 
interleaver are generated by the 9-bit up counter. The accumulator is implemented by the 
9-bit register whereas the other registers are required for qam64_sel and qam16_sel. The 
latches are used to store some internal signals. The mux-3 of Fig. 4.10 is implemented 
using the 5-bit 4-to-1 mux whereas 9-bit 4-to-1 mux is required in preset logic and the 1-
bit 4-to-1 mux implements the switch over condition between reading and writing of RAM 
blocks.  

Device utilization summary of both the implementations has been described in 
Table 4.10. As seen the DRAM technique utilizes 37.27% excess slices, 32.81% excess 
slice flip-flops and 47.39% excess 4 input LUTs in comparison with BRAM technique. 
Out of the 206 nos. of 4 input LUTs, 170 nos. (82.52%) are used in the logic circuits of the 
entire interleaver and rest 36 nos. (17.48%) are used to model the two numbers of 288-bit 
RAM modules. The BRAM technique uses 2 out of available 16nos. of BRAM leaving 
rest 14 blocks for other uses if required in the associated circuits. The BRAM technique 
can operate at a maximum frequency of 154.879 MHz (propagation delay of 6.457ns) 
whereas that of DRAM technique is 116.21 MHz (propagation delay of 8.605ns). The 
former technique provides 24.97% faster performance over the later. As far as estimated 
power consumption is concerned both the techniques show similar results and each 
consumes 56mW of power. Low power consumption is an important advantage for the 
equipments used in wireless communication as they are being run by battery power. 

 

Table 4.9 HDL Sythesis Report of FSM based WLAN Interleaver 
WITH BRAM WITH DRAM 

      2-bit adder                     : 1 
      9-bit adder                     : 1 

       4x1-bit ROM                 : 2 

       2-bit adder                     : 1 
       9-bit adder                     : 1 

      4-bit up counter              : 1 
      9-bit up counter              : 1       4-bit up counter              : 1 

      9-bit up counter              : 1 
      1-bit register                   : 1 
      2-bit register                   : 1 
      9-bit register                   : 1 

      1-bit register                   : 1 
      2-bit register                   : 1 
      9-bit register                   : 1 

      1-bit latch                     : 1 
       9-bit latch                    : 1 

      1-bit latch                          : 3 
      9-bit latch                          : 1 

      1-bit 4-to-1 mux             : 1 
      5-bit 4-to-1 mux             : 1 
      9-bit 4-to-1 mux             : 1 

      1-bit 4-to-1 mux             : 1 
      5-bit 4-to-1 mux             : 1 
      9-bit 4-to-1 mux             : 1  
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Table 4.10 Device Utilization Summary of FSM based WLAN Interleaver 
WITH BRAM WITH DRAM 
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Number of Slices 61  out of   
3584 1.70 Number of Slices 97  out of   

3584 2.71 37.27 
Number of Slice 

Flip-flops 
31  out of   

7168 0.43 Number of Slice 
Flip-flops 

46  out of   
7168 0.64 32.81 

Number of 4 input LUTs 108  out of   7168 1.51 Number of 4 input LUTs 206  out of   7168 2.87 47.39 

Number of 
bonded IOBs 

6  out of    
141 4.26 

Number used as 
logic 

170 out of 
206 82.52 -- 

Number used as 
RAM 

36 out of 
206 17.48 -- 

Number of BRAMs 2  out of     16 12.50 Number of bonded IOBs 6  out of    141 4.26 nil 
Number of GCLKs 1  out of      8 12.50 Number of GCLKs 1  out of      8 12.50 nil 

 

Comparative study of the proposed implementations in terms of FPGA resources 
and operating speed is shown in Table 4.11. The LUT and BRAM based techniques show 
better performance over the DRAM technique in terms of FPGA resources along with the 
operating frequency.  Comparison between LUT and BRAM techniques shows very 
competitive result in all parameters with some betterment in favour of the BRAM 
technique. The improvement obtained is due to optimization in BRAM requirement and 
hence eliminating the associated logic circuits. The BRAM technique shows marginal 
betterment in terms of operating speed by a factor of 8.56%. In BRAM technique the 
address generator is implemented using logic circuits whereas in LUT based 
implementation the address generator is LUT based implemented in FPGA’s internal 
memory. DRAM technique does not require any BRAM. 

Efforts have been made by the author to compare the FPGA implementation 
results of our proposed work with that of other researchers. Direct comparison with [103] 
is not possible as the author describes the FPGA implementation of the complete OFDM 
transmitter for IEEE 802.11a based WLAN. However, in [103] interleaver address 
generation is done by modeling LUT using FPGA based single port DRAM. The DRAM 
based technique consumes larger FPGA resources with single advantage that it does not 
use the dedicated FPGA memory (BRAM). 
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Table 4.11 Comparison Between Various Implementations 
FPGA 

parameter 
Performance of 
LUT technique 

Performance of BRAM 
technique 

Performance of DRAM 
technique 

Slices 1.53% used 1.70% used 2.71% used 
Flip-flop 0.42% used 0.43% used 0.64% used 

LUT 1.42% used 1.51% used 2.87% used 
BRAM 12.5% used 12.5% used nil 

Operating 
frequency 141.63 MHz 154.88 MHz 116.21 MHz 

 

4.7 Discussion 
In this chapter two novel LUT and FSM based techniques have been proposed to 

model the block interleavers used in IEEE 802.11a and IEEE 802.11g based WLAN. The 
proposed hardware models of the interleaver are completely implemented in Spartan-3 
FPGA. Unlike the conventional technique which uses external memory, the LUT based 
technique uses FPGA’s own internal memory to house the addressing sequences. Single 
memory module is partitioned to eliminate the requirement of four memory blocks. Due to 
this partitioning, the proposed technique shows better result in terms of operating 
frequency and hardware resources. In the FSM based approach, two different techniques 
to model the required memory in the interleaver using internal resources of FPGA have 
been shown. Critical analysis of implementation results of both approaches has been made 
to ease the decision making of a system designer regarding the technique to adopt in 
WLAN applications. Both the techniques make efficient use of FPGA’s internal resources. 
Finally, all the approaches have been compared and concluded that BRAM-FSM based 
technique shows better result among them. Methodology adopted in this work is extended 
further to develop improved design and implementation of WiMAX interleavers  on 
reconfigurable platform.  
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5.2 System Description 
5.3 Interleaving / De-interleaving in WiMAX System 
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This chapter presents in depth the analysis of various issues related to the design 
and implementation of WiMAX interleaver / de-interleaver on FPGA platform in 
maintaining logical extension of the similar work on WLAN as reported in the 
previous chapter. Multiple designs supported with algorithmic and mathematical 
background have been proposed. Importance of WiMAX with brief technical 
specifications, system overview and interleaver specifications have also been 
incorporated. Detailed discussion on the proposed FSM based interleaver, 
improved LUT based de-interleaver and low complexity de-interleaver along with 
their hardware models, simulation waveforms and FGPA implementation results 
have been made. This discussion includes design of address generator of the 
interleaver / de-interleaver. Noticeable performance improvement in terms of 
FPGA resource utilization and operating speed in comparison with existing 
implementation available in literature have been recorded.  
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5.1. Introduction 
Tremendous increase in the use of internet in the last decade has put the quest of 

BWA. It is increasingly gaining popularity as an alternative solution to DSL or cable 
modem for internet access. BWA has stringent requirements like high processing speed, 
flexibility and fast design TAT. These requirements make the choice of the reconfigurable 
hardware platform like FPGA as the obvious option. Moreover, any new technology like 
WiMAX needs some time to mature. Thus a product implemented on FPGA can easily be 
upgraded by making necessary changes in the HD code only and thus becomes 
obsolescence free. In addition, the TAT of FPGA based circuits is much shorter compared 
to ASIC based design. Design flexibility is another important advantage of FPGA based 
implementations. The proposed system could have also been implemented using software. 
The principal drawback of such approach is that a powerful computer is to be used to run 
the program for achieving high processing speed which is a prerequisite for WiMAX 
system. Employing such powerful computer may be a costly solution which may be 
detrimental to the popularity of WiMAX. 

WiMAX is based on the IEEE 802.16 standard for BWA system. IEEE 802.16d, 
now known as, IEEE 802.16-2004 defines fixed WiMAX in the frequency band of 2 to 
11GHz [49]. Amended IEEE 802.16e adds mobility support to IEEE 802.16 and defines 
standard for mobile WiMAX in the frequency band 2-6 GHz. Typical data rate in IEEE 
802.16e is 5Mbps with bandwidth 1.25 to 20 MHz up to 2048 sub-carriers, as opposed to 
the OFDM version with 256 sub-carriers (of which 200 are used) in 802.16-2004. Both 
IEEE 802.16-2004 and IEEE 802.16e permit NLOS connectivity [67]. The WiMAX air 
interface adopts Orthogonal Frequency Division Multiple Access (OFDMA) for improved 
multi-path performance. Scalable OFDMA (SOFDMA) [151] is introduced in the IEEE 
802.16e amendment to support scalable channel bandwidths from 1.25 to 20 MHz. 

OFDM [67] technique offers promising solution that has gained tremendous 
research interest in recent years due to its high transmission capability and alleviating the 
adverse effects of ISI and ICI. In an OFDM system, the data is divided into multiple 
parallel sub-streams at a reduced data rate, and each is modulated and transmitted on a 
separate orthogonal subcarrier. This increases symbol duration and thereby improves 
system robustness. OFDM is achieved by providing multiplexing on users’ data streams 
on both uplink and downlink transmissions. OFDM is the fundamental building block of 
the IEEE 802.16 standard.    
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In digital communication systems, presence of interleavers improve the 
performance of FEC codes in terms of bit error rate. Interleaving process basically 
changes the arrangement of an input code symbol into a new one so that occurrences of 
burst errors will be spread out and FEC techniques of random error correction become 
effective.  Block interleaving is one of the popular techniques to counter burst error in the 
channel and are being employed in many modern day wireless communication system 
applications. In a block interleaver, input bit streams are stored row wise in the interleaver 
memory and read column wise and vice versa. WiMAX uses a special type of block 
interleaver in which the interleaver depth and pattern vary depending on the code rate and 
modulation type.  

In this chapter, three works related to the design of WiMAX hardware interleaver 
and de-interleaver are being presented. The interleaver / de-interleaver contains complex 
functions like modulus and floor due to which the design is challenging. These complex 
functions do not have any corresponding digital hardware for implementation. In addition, 
VHDL doesn’t support such functions directly. Consequently, challenges are faced in 
preparing the VHDL model of the interleaver / de-interleaver circuitry due to 
unavailability of such functions. Conventional LUT based approaches are found to be 
consuming large amount of logic resources apart from slowness in operation. This leads to 
low speed design with inefficient use of resources. The first work is all about the design of 
a novel FSM based multimode, high speed and hardware efficient technique to implement 
the address generation circuitry of WiMAX interleaver based on IEEE 802.16e standard 
on FPGA platform. An LUT based de-interleaver design approach is presented next. In 
this approach, the conventional LUT based technique for address generation has been re-
designed to use the FPGA memory blocks efficiently. The third technique is about design 
of a low complexity and resource efficient hardware de-interleaver for use in IEEE 
802.16e based WiMAX. This work includes design of a novel algorithm for the de-
interleaver with user-friendly mathematical representation and its general validity.  Use of 
FPGA’s embedded multiplier provides performance improvement by reducing 
interconnection delay, efficient resource utilization and lesser power consumption 
compared to CLB based multiplier. This work shows betterment over LUT technique in 
terms of maximum operating frequency. 

 
 



Chapter 5: Interleaving in WiMAX  

   82 

5.2 System Description 
The system level overview of IEEE 802.16e based WiMAX system is described in Fig. 
5.1. In this system, the input binary data stream obtained from a source is randomized to 
prevent a long sequence of 1s and 0s, which will cause timing recovery problem at the 
receiver. The randomized data bits are thereafter encoded using Reed Solomon (RS) 
encoder followed by Convolutional Coder (CC).  The former is suitable for correction of 
burst type of errors [152] whereas the latter is for random errors [153]. After RS-CC 
encoding, all encoded data bits are to be interleaved by a special type block interleaver. In 
the block interleaver of WiMAX system, data is written in a random manner based on 
certain permutation in the memory and read sequentially [154]. Thereafter data passes 
through the mapper block in which modulation takes place. The resulting data symbols are 
used to construct one OFDM symbol by performing Inverse Fast Fourier Transform 
(IFFT). CP is used to reduce ISI and ICI [67]. The receiver section as shown in Fig. 5.1 
works exactly in reverse order. 
 

 
Fig. 5.1 Overview of WiMAX system 

5.3 Interleaving / De-interleaving in WiMAX System 

The block interleaver used in WiMAX system has different interleaving patterns 
for different code rates and modulation schemes. Different Interleaver Depths (IDs) are 
required to incorporate various code rates and modulation schemes. Table 5.1 describes 
permitted interleaver depths in IEEE 802.16e [52]. Bits in WiMAX are interleaved in two 
steps. The first step ensures that the adjacent coded bits are mapped onto nonadjacent 
subcarriers, which provides frequency diversity and improves the performance of the 
decoder. The second step ensures that the adjacent bits are alternately mapped to less and 
more significant bits of the modulation constellations to avoid long run of lowly reliable 
bits.    
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Let Ncbps is the block size corresponding to the number of coded bits per allocated 
sub-channels per OFDM, d represents number of columns of the block interleaver which 
is typically chosen to be 16 for WiMAX [155]. mk is the output after first level of 
permutation and k varies from 0 to Ncbps -1. s is a parameter defined as s = Ncpc/2, where  
Ncpc is the number of coded bits per sub-carrier, i.e., 2, 4 or 6 for QPSK, 16-QAM or 64-
QAM respectively [154]. Thus for QPSK, s=1, for 16-QAM, s = 2 and for 64-QAM, s = 3.  
The first and second levels of permutation are given by (5.1) and (5.2) respectively are as 
follows: 
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                           (5.2) 

where % and    signify modulo and floor functions respectively.  
The de-interleaver, which performs the inverse operation, is also defined by two 

permutations. Within a received block of Ncbps bits, let j be the index of received bits 
before the first permutation; mj be the index of that bit after the first and before the second 
permutation; and let kj be the index of that bit after the second permutation, just prior to 
delivering the block to the decoder. Equation (5.3) and (5.4) define the first and second 
level of permutations for de-interleaver. 

= . + + . %                                                     (5.3) 

= . − − 1 . .                                                    (5.4) 
As per [52], (5.3) and (5.4) performs inverse operation of (5.2) and (5.1) respectively.  

Table 5.1 Permitted interleaver/de-interleaver depths in IEEE 802.16e for all code rates 
and modulation schemes 

 
Modulation 

Scheme QPSK (s=1) 16-QAM (s=2) 64-QAM (s=3) 

Code Rate ½ ¾ ½ ¾ ½ ⅔ ¾ 

Interleaver 
Depth Ncbps 

in bits 

96 144 192 288 288 384 432 
192 288 384 576 576 - - 
288 432 576 - - - - 
384 576 - - - - - 
480 - - - - - - 
576 - - - - - - 
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5.4 Hardware Modeling of FSM based Address Generator 
The address generation circuit of the block interleaver for WiMAX system is 

basically the simultaneous implementation of (1) and (2). A MATLAB program has been 
developed implementing (1) and (2) for pre-computation of the interleaver address 
sequences and is being described by an algorithm shown in Fig. 5.2. Execution of this 
program with permissible values of Ncbps for different modulations, we find all the values 
of interleaver memory addresses, designated by jk, out of which first 32 of each category 
are only listed in Table 5.2. Careful examination of the values of jk, confirms that the 
subsequent values are not equally spaced for all cases. Within a modulation scheme, the 
increment values follow a fixed type of pattern irrespective of coding rate. Encoding of 
ID, Modulation Type (MOD_TYP) and increment values from implementation point of 
view are presented in Table 5.3. 

 
 
 
 
 
 
 

Fig. 5.2 Algorithm of MATLAB program used to pre-compute WiMAX 
interleaver addresses 

 
Table 5.2 First 32-permutation sample addresses for three code rates and 

modulation schemes  
Ncbps=96 bits,  ½ 
code rate, QPSK 

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 
1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 

Ncbps=288 bits, ¾ 
code rate, 16-QAM 

0 19 36 55 72 91 108 127 144 163 180 199 216 235 252 271 
1 18 37 54 73 90 109 126 145 162 181 198 217 234 253 270 

Ncbps=384 bits, ⅔ 
code rate, 64-QAM 

0 26 49 72 98 121 144 170 193 216 242 265 288 314 337 360 
1 24 50 73 96 122 145 168 194 217 240 266 289 312 338 361 

 

Input Ncbps, s and d.  
Initialize k=0 

Rep:      Compute k=k+1 
b=k/d 
c=mod (k, d) 
g=floor (b) mk= (Ncbps/d)*c + g 
a=floor (mk/S) 
e= (d*mk)/Ncbps h=floor (e) 
f=mk+ Ncbps-h 
i=mod (f, s) 
jk=s*a + i 

Print 
jk 

If k< Ncbps then go to Rep 
Else End 
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The address generation concept of the proposed block interleaver is described in 
the form of schematic diagram as shown in Fig. 5.3. Unlike [106], our design includes all 
possible code rates and modulation type permitted under IEEE 802.16e. As shown in Fig. 
5.3, the design concept contains three levels of multiplexer (MUX). The first level MUXs 
implement the unequal increments required in 16-QAM and 64-QAM. The four-
interleaver depths of 16-QAM as shown in Table 5.3 are implemented by the first four 
MUXs from the top in level 1. The select inputs of these four MUXs are tied together and 
are driven by a T flip-flop named QAM16_SEL. Similarly, the last four MUXs are for 64-
QAM modulation. The select inputs are driven by a mod-3 counter, QAM64_SEL. The 
second level MUXs basically pick up one inputs based on the values of ID. The topmost 
MUX in level 2 implements the eight interleaver depths of QPSK modulation scheme 
available by concatenation of sub-channels [52]. The second and third MUXs in level 2 
are for 16-QAM and 64-QAM respectively. The outputs from level 2 MUXs are routed to 
the next section by level 3 MUX based on MOD_TYP value. The 7-bit output from the 
level 3 MUX acts as one input to the 10-bit adder circuit after zero padding. The other 
input of the adder comes from Accumulator, which holds the previous address. After 
addition a new address is written in the Accumulator. The preset logic is a FSM whose 
principal function is to generate the correct beginning addresses for all subsequent 
iterations and is described at length in the next section. 

Table 5.3 Increment values for various interleaver depths and modulation schemes with 
their encoding 

Modulation  MOD_TYP Interleaver 
Depth ID* Increment 

values 
Whether equally 

spaced 

QPSK 00 

96 000 6 Yes 
144 001 9 Yes 
192 010 12 Yes 
288 011 18 Yes 
384 100 24 Yes 
432 101 27 Yes 
480 110 30 Yes 
576 111 36 Yes 

16-QAM 01 
192 X00 13,12 No 
288 X01 19,17 No 
384 X10 25,23 No 
576 X11 37,35 No 

64-QAM 1X 
288 X00 20,17,17 No 
384 X01 26,23,23 No 
432 X10 29,26,26 No 
576 X11 38,35,35 No 

 * Also referred as CODE_RATE. 
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As a case study the algorithm for modeling of QPSK MUX in VHDL is described 
below.  

If ID = 0 then MUX_OUT <= 6 
else if ID = 1 then MUX_OUT <= 
9 
else if ID = 2 then MUX_OUT <= 
12 
… 
else MUX_OUT <= 36.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.3 FSM based Address Generation scheme 
5.4.1 Preset Logic as Finite State Machine 

The Preset Logic block of Fig. 5.3 is the heart of the Address Generator of 
WiMAX interleaver. It is basically a hierarchical FSM and the state diagram is shown in 
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Fig. 5.4.  This block contains a 4-bit counter which keeps track of end states during an 
iteration. The FSM enters into the first state (SF) with CLR=1. Based on the value in 
MOD_TYP it makes transition to one of the three possible next states (SMT0, SMT1 or 
SMT2). Each state in this level represents one of the possible modulation schemes. The 
FSM thereafter makes transition to one of the next level states (SID0 to SID7 from SMT0, SID0 
to SID3 from SMT1 or SMT2) based on the value in ID. The various states of this level signify 
one of the interleaver depths. From these states it branches to the next level of states based 
on the value in the accumulator. When the FSM at this level reaches to the terminal value 
of that iteration (e.g. 90 in SID0 of SMT0), it makes transition to a state (e.g. S000) in which it 
loads the accumulator with the initial value (e.g. Preset=1) of the next iteration. This 
process continues till all the interleaver addresses are generated for the selected ID and 
MOD_TYP. If no changes take place in the values of ID and MOD_TYP, the FSM will 
follow the same route of transition and  the  same  set  of  interleaver  addresses  will  be  
continually  generated.  Any change in ID and MOD_TYP value causes the interleaver to 
follow a different path. In order to facilitate the address generator with on the fly address 
computation feature, the designed circuit responds to CLR followed by ID and 
MOD_TYP inputs at any stage of the FSM. With CLR = 1 it comes back to SF state 
irrespective of its current position and there after transits to desired states in response to 
new values in  ID and MOD_TYP. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.4 States in preset logic 
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5.5 Modeling Memory in FPGA 
Modern FPGAs are equipped with different types of embedded resources to support 

efficient implementation of circuitry related to various applications like local storage, 
FIFO, data buffers, stack, large LUT etc. One of such internal resource offered in Xilinx 
FPGAs is BRAM [150]. Table 5.4 and Fig. 5.5 list all the interface signals of a single port 
BRAM and their directions. In our experimentation, Xilinx Spartan-3/Spartan-3AN FPGA 
(device XC3S1400AN) [94] having 16/32 nos. of 18KB (16KB data and 2KB parity) 
single port BRAM block is used. Out of these, 3 BRAM blocks are used to store the 
address LUTs for three different modulation schemes of WiMAX de-interleaver address 
generator.  

 
Fig. 5.5 Single Port BRAM in Xilinx Spartan-3AN FPGA 

Table 5.4 Single Port BRAM Interface Signal 
 

Signal Description Port Name Direction Brief Description 
Data Input Bus DI Input The memory block receives input data to be 

written in the selected location through these lines. 
Parity Data Input Bus DIP Input The memory block receives parity data input to be 

written in the selected location through these lines. 
Data Output Bus DO Output The memory block transmits data from a selected 

location through these lines. 
Parity Data Output DOP Output The memory block transmits parity data from a 

selected location through these lines. 
Address Bus ADDR Input Through these lines, a memory location is 

addressed for either read or write operation. 
Write Enable WE Input This signal when made active (logic 1) permits the data write operation in a selected memory location. 
Clock Enable EN Input 

This signal when made active (logic 1) enables the 
memory block. This signal can be treated as master 
control of the memory block.   

Synchronous Set/Rest SSR Input 

The synchronous set/reset input, SSR, forces the 
data output latches to the value specified by the 
SRVAL attribute. When SSR and the enable signal, EN, are High, the data output latches for the 
DO and DOP outputs are synchronously set to a 
‘0’ or ‘1’ according to the SRVAL parameter. 

Clock CLK Input 
This signal clocks for all synchronous operations. 
Clock polarity is configurable and is rising edge 
triggered by default. 
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5.6   Hardware Model of LUT based De-interleaver 
5.6.1 Methodology of proposed design 

In general, the design methodology of hardware interleaver / de-interleaver is 
classified into two categories, LUT based and incremental address generation based FSM. 
The former technique is relatively simple but consumes large logic resources, particularly 
memory, whereas the latter involves complex design methodology but requires relatively 
less logic resources. In this work, the author proposes an improved design methodology to 
implement the LUT based address generator for WiMAX de-interleaver on reconfigurable 
platform. As per IEEE 802.16e standard [53], ½, ⅔ and ¾ are the allowed code rates 
where as QPSK, 16-QAM and 64-QAM are the permitted modulation schemes. 
Accordingly, there are eight, four and four interleaver depths in QPSK, 16-QAM and 64-
QAM modulation schemes respectively [155] to implement all the permissible code rates 
and modulation schemes. In conventional LUT based approach, to implement the de-
interleaver address generator, 16 numbers of memory blocks of varying size are required 
to house all the interleaver addresses. During this work, a relationship between the de-
interleaver memory addresses of various Ncbps within a modulation scheme is identified. It 
has been found that, the memory addresses of a larger Ncbps encompass the same of smaller 
Ncbps. This relationship between the address LUTs is exploited to propose a memory 
efficient LUT based address generator for WiMAX de-interleaver. Using our proposed 
design, the number of memory blocks used has been reduced to 3 only ensuring saving of 
81.25% critical resource.  

A MATLAB program is developed using (5.3) and (5.4) of to determine the write 
addresses of the de-interleaver for all code rates and modulation schemes. Flow chart 
representation of the program is presented in Fig. 5.6. Among these addresses, first 5 rows 
for each modulation schemes with Ncbps = 576-bits are presented in Table 5.5(a)-(c). The 
first 6 columns in Table 5.5(a), describe the memory addresses of first 5 rows with Ncbps = 
96-bits and QPSK modulation scheme. Similarly, the first 5 rows of interleaver memory 
addresses with Ncbps = 144-bits and QPSK modulation scheme are represented by the first 
9 columns in Table 5.5(a). Likewise, the addresses for other Ncbps with QPSK modulation 
scheme can be determined from the same Table where the number of columns is defined 
as Ncbps/d (d = 16). A similar approach can be applied in Table 5.5(b) and (c) to determine 
the memory addresses with various interleaver depths for 16-QAM and 64-QAM 
modulation schemes respectively. Pictorial representation of this relationship of memory 
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addresses between various interleaver depths are given in Fig. 5.7(a)-(c). For example, all 
the 32 numbers of columns in Table 5.7(a) are represented by the entire cylinder of Fig. 
5.7(a). First six columns in Table 5.7(a) represents the sample de-interleaver addresses for 
Ncbps = 96-bits and are marked with pink colour. Similarly, the first section of the cylinder 
in Fig. 5.7(a) also being marked with pink colour to signify the representation the same 
de-interleaver addresses. Likewise, next three columns in Table 5.7(a) are marked with 
black colour, which represents the sample de-interleaver addresses for Ncbps = 144-bits 
along with the first six pink coloured columns. As seen in Fig. 5.7(a), next portion of the 
cylinder is also painted with black colour. It is evident from Fig. 5.7(a) that the pink 
followed by black coloured cylinder actually signify the first nine columns of Table 5.7(a) 
representing the de-interleaver addresses for Ncbps = 144-bits. This discussion can be 
extended further to explain the relationship between remaining part of the Fig. 5.7(a)-(c) 
with rest part Table 5.7(a)-(c). 

 
Fig. 5.6 Flow chart of MATLAB program used to determine WiMAX de-interleaver 

addresses 

Yes 

Start 

Define Ncbps, s and d. Initialize j=0 

j=j+1 

b=d*j 
c=floor (b, Ncbps) e=j+c f=mod(e, s) 

g=s*floor(j, s) 
mj= g+f 
h=d*mj 

l=floor(h, Ncbps) 
n=( Ncbps – 1)*l 

kj=d*mj - n 

Print kj 

Is 
j< Ncbps 

 

Stop 
No 
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Table 5.5(a) First Five Rows of Addresses for Ncbps = 576, ¾ Code Rate, QPSK 
0 16  32  48  64  80  96 1 12 12 8 14 4 160 176 1 92 2 08 224 2 40 2 56 27 2 28 8 30 4 32 0 336 35 2 3 68 3 84 400 4 16 43 2 44 8 46 4 48 0 49 6 512 5 28 5 44 560 
1 17  33  49  65  81  97 1 13 12 9 14 5 161 177 1 93 2 09 225 2 41 2 57 27 3 28 9 30 5 32 1 337 35 3 3 69 3 85 401 4 17 43 3 44 9 46 5 48 1 49 7 513 5 29 5 45 561 
2 18  34  50  66  82  98 1 14 13 0 14 6 162 178 1 94 2 10 226 2 42 2 58 27 4 29 0 30 6 32 2 338 35 4 3 70 3 86 402 4 18 43 4 45 0 46 6 48 2 49 8 514 5 30 5 46 562 
3 19  35  51  67  83  99 1 15 13 1 14 7 163 179 1 95 2 11 227 2 43 2 59 27 5 29 1 30 7 32 3 339 35 5 3 71 3 87 403 4 19 43 5 45 1 46 7 48 3 49 9 515 5 31 5 47 563 
4 20  36  52  68  84  1 00 1 16 13 2 14 8 164 180 1 96 2 12 228 2 44 2 60 27 6 29 2 30 8 32 4 340 35 6 3 72 3 88 404 4 20 43 6 45 2 46 8 48 4 50 0 516 5 32 5 48 564 

 

Table 5.5(b) First Five Rows of Addresses for Ncbps = 576, ¾ Code Rate, 16-QAM 
0 16 3 2 4 8 64 80 9 6 1 12 128 1 44 1 60 1 76 1 92 2 08 2 24 2 40 25 6 27 2 28 8 30 4 32 0 33 6 35 2 36 8 384 40 0 41 6 432 448 4 64 4 80 496 5 12 5 28 544 5 60 
1 7 1 4 9 3 3 81 65 1 13 9 7 145 1 29 1 77 1 61 2 09 1 93 2 41 2 25 27 3 25 7 30 5 28 9 33 7 32 1 36 9 35 3 401 38 5 43 3 417 465 4 49 4 97 481 5 29 5 13 561 5 45 
2 18 3 4 5 0 66 82 9 8 1 14 130 1 46 1 62 1 78 1 94 2 10 2 26 2 42 25 8 27 4 29 0 30 6 32 2 33 8 35 4 37 0 386 40 2 41 8 434 450 4 66 4 82 498 5 14 5 30 546 5 62 
1 9 3 5 1 3 5 83 67 1 15 9 9 147 1 31 1 79 1 63 2 11 1 95 2 43 2 27 25 9 27 5 30 7 29 1 33 9 32 3 37 1 35 5 387 40 3 43 5 419 467 4 51 4 99 483 5 15 5 31 563 5 47 
4 20 3 6 5 2 68 84 1 00 1 16 132 1 48 1 64 1 80 1 96 2 12 2 28 2 44 26 0 27 6 29 2 30 8 32 4 34 0 35 6 37 2 388 40 4 42 0 436 452 4 68 4 84 500 5 16 5 32 548 5 64 

 
Table 5.5(c) First Five Rows of Addresses for Ncbps = 576, ½ Code rate, 64-QAM 

0 16 3 2 4 8 64 80 9 6 11 2 128 14 4 16 0 1 76 1 92 2 08 2 24 2 40 2 56 2 72 2 88 3 04 3 20 33 6 35 2 36 8 384 40 0 41 6 432 448 46 4 48 0 496 5 12 5 28 544 5 60 
1 7 33 1 6 5 81 49 11 3 12 9 97 16 1 17 7 1 45 2 09 2 25 1 93 2 57 2 73 2 41 3 05 3 21 2 89 35 3 36 9 33 7 401 41 7 38 5 449 465 43 3 49 7 513 4 81 5 45 561 5 29 
3 4 2 1 8 8 2 50 66 13 0 9 8 114 17 8 14 6 1 62 2 26 1 94 2 10 2 74 2 42 2 58 3 22 2 90 3 06 37 0 33 8 35 4 418 38 6 40 2 466 434 45 0 51 4 482 4 98 5 62 530 5 46 
3 19 3 5 5 1 67 83 9 9 11 5 131 14 7 16 3 1 79 1 95 2 11 2 27 2 43 2 59 2 75 2 91 3 07 3 23 33 9 35 5 37 1 387 40 3 41 9 435 451 46 7 48 3 499 5 15 5 31 547 5 63 

2 0 36 4 6 8 84 52 11 6 13 2 100 16 4 18 0 1 48 2 12 2 28 1 96 2 60 2 76 2 44 3 08 3 24 2 92 35 6 37 2 34 0 404 42 0 38 8 452 468 43 6 50 0 516 4 84 5 48 564 5 32 
 

 
(a) 

 
(b) 

N=96 

N=144 

N=192 

N=288 

N=384 

N=432 

N=480 

N=576 

N=192 

N=288 

N=384 

N=576 
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(c) 

Fig. 5.7 Relationship between de-interleaver memory address with various Ncbps (= N) and 
(a) QPSK modulation scheme (b) 16-QAM modulation scheme (c) 64-QAM modulation 

scheme 
5.6.2 Proposed hardware for the address generator 

The hardware structure of the proposed LUT based address generator for WiMAX 
de-interleaver is shown in Fig. 5.8. The complete hardware is divided into two parts: LUT 
address generator block and LUT block. The former consists of ROMs, multiplexers and 
an up counter responsible for generating the memory address (icount) required to read the 
address LUTs. The ROMs store the terminal values of each row as input and the starting 
values of the next row as the output. The column counter counts up to the desired column 
and then gets reloaded with another preset value representing the starting memory address 
of the next row from the appropriate ROM selected by mod typ and code rate signals. The 
content of ROMs used to implement Ncbps = 96 of QPSK (ROM_00_000) and Ncbps = 192 
of 16-QAM (ROM_01_X00) are presented in Table 5.6 (a) and (b). Similar contents are 
available in other ROMs.     

The latter block contains the three address LUTs storing the de-interleaver 
addresses for the three modulation schemes. The multiplexer arrangement along with 
values in the mod typ ensures selection of proper address LUT for a particular modulation 
scheme. The selected address LUT is read using icount and the de-interleaver addresses 
are made available at the address output line. 

N=288 

N=384 

N=432 

N=576 
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 Fig. 5.8 Detailed hardware structure of proposed address generator 

 

Table 5.6 (a) Content of ROM_00_000 
 

 
 
 

 
Table 5.6 (b) Content of ROM_01_x00 

 
 

 
 

 
 

Input Output Input Output 
5 36 293 324 

41 72 329 360 
77 108 365 396 
113 144 401 432 
149 180 437 468 
185 216 473 504 
221 252 509 540 
257 288 545 0 

Input Output Input Output 
11 36 299 324 
47 72 335 360 
83 108 371 396 
119 144 407 432 
155 180 443 468 
191 216 479 504 
227 252 515 540 
263 288 551 0 

ROM_00_011 

 0 1 3 4 5 6 2 
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Counter 

preset 
icount clk 
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ROM_00_100 
ROM_00_101 
ROM_00_110 
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ROM_00_000 

 0 1 2 
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 0 1 2 
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ROM_10_x00 

 0 1 2 
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5.7 Proposed Algorithm for Low complexity De-interleaver   
In this section, the proposed algorithm for Address Generator of WiMAX de-

interleaver along with its mathematical background has been described. The MATLAB 
program as done in LUT based approach and also as described by Fig. 5.6 is used to get 
the de-interleaver addresses for all modulation schemes and code rates. Due to the 
presence of floor function in (5.3) and (5.4), direct implementation of them on FPGA chip 
is not feasible. Table 5.7 shows the de-interleaver addresses for first 4 rows and 5 columns 
of each modulation type. As d =16 [155] is chosen, the number of rows are fixed (=d) for 
all Ncbps whereas the number of columns are given by Ncbps/d. 

Close examination of the addresses in Table 5.7 reveals that the co-relation 
between them follows the manner as shown in Table 5.8. The mathematical foundation of 
the co-relation between the addresses, as derived in this work is represented by (5.5)-(5.7). 

kn,QPSK =  ∗ +              for  ∀  and ∀                                   (5.5) 

kn,16-Q AM=
∗ +    for %2 = 0 and for ∀ 

∗ + 1 +   for %2 = 1 and for %2 = 0
∗ − 1 +   for %2 = 1 and for %2 = 1 

                      (5.6) 

kn,64-Q AM=
∗ +    for %3 = 0 and for ∀ 

∗ − 2 +   for %3 = 1 and for %3 = 2
∗ + 1 +   for %3 = 1 and for %3 ≠ 2
∗ + 2 +   for %3 = 2 and for %3 = 0
∗ − 1 +   for %3 = 2 and for %3 ≠ 0

                       (5.7) 

where j = 0,1,…d-1 and i = 0,1,…, -1 represent the row and column numbers 
respectively of Table 5.8. Also, kn represents the de-interleaver addresses.  

General validity of (5.5)-(5.7) to represent the co-relation between the addresses of 
Table 5.8 has formally been proved using the algebraic analysis in [155] which lacks the 
involvement of (5.5)-(5.7). The outcome of this analysis using (5.5)-(5.7) provides the 
same result as shown in Table 5.8. Thus (5.5)-(5.7) play the pivotal role in establishing 
formal mathematical foundation of our proposed algorithm. 

From Table 5.8 and mathematical representation by (5.5)-(5.7), following three 
algorithms for the three modulation schemes are proposed. These algorithms eliminate the 
requirement of floor function while generating write addresses and have also been tested 
on MATLAB. Results obtained are verified with the previous MATLAB program for all 
code rates and modulation schemes of WiMAX de-interleaver.  
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Table 5.7 First 4-rows and 5-columns of De-interleaver Sample Addresses for Three Code 

Rates and Modulation Types 
Ncbps, code rate and 
modulation type  De-interleaver addresses 
Ncbps = 96-bits,    ½ code rate, 

QPSK 

0 16 32 48 64 
1 17 33 49 65 
2 18 34 50 66 
3 19 35 51 67 

Ncbps = 192-bits,  
½ code rate,  

16-QAM 

0 16 32 48 64 
17 1 49 33 81 
2 18 34 50 66 

19 3 51 35 83 
Ncbps = 576-bits,  ¾ 

code rate,  
64-QAM 

0 16 32 48 64 
17 33 1 65 81 
34 2 18 82 50 
3 19 35 51 67 

 
Table 5.8 Determination of Co-relation between Addresses 

Row no.(j) Column no. (i)  0 1 2 3 4 
0 Ncbps = 96-bits, ½ code 

rate, 
QPSK 

d.0+0=0 d.1+0=16 d.2+0=32 d.3+0=48 d.4+0=64 
1 d.0+1=1 d.1+1=17 d.2+1=33 d.3+1=49 d.4+1=65 
2 d.0+2=2 d.1+2=18 d.2+2=34 d.3+2=50 d.4+2=66 
3 d.0+3=3 d.1+3=19 d.2+3=35 d.3+3=51 d.4+3=67 
0 Ncbps = 192-

bits,  
½ code rate, 

16-QAM 

d.0+0=0 d.1+0=16 d.2+0=32 d.3+0=48 d.4+0=64 
1 d.1+1=17 d.0+1=1 d.3+1=49 d.2+1=33 d.5+1=81 
2 d.0+2=2 d.1+2=18 d.2+2=34 d.3+2=50 d.4+2=66 
3 d.1+3=19 d.0+3=3 d.3+3=51 d.2+3=35 d.5+3=83 
0 Ncbps = 576-

bits, ¾ code rate,  
64-QAM 

d.0+0=0 d.1+0=16 d.2+0=32 d.3+0=48 d.4+0=64 
1 d.1+1=17 d.2+1=33 d.0+1=1 d.4+1=65 d.5+1=81 
2 d.2+2=34 d.0+2=2 d.1+2=18 d.5+2=82 d.3+2=50 
3 d.0+3=3 d.1+3=19 d.2+3=35 d.3+3=51 d.4+3=67 

 
 
QPSK 

initialize Ncbps and d 
for j = 0 to d-1, j++ 

for i = 0 to (Ncbps/d) – 1, i++ 
 kn = d * i + j   

end for 
end for 
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16-QAM 
initialize Ncbps and d 
for j = 0 to d-1, j++ 

   for i = 0 to (Ncbps/d) – 1, i++ 
if ( j mod 2  = 0) 

  kn = d * i + j    
else 

  if (i mod 2  = 0) 
kn = d * (i+1) + j   

  else 
kn = d * (i-1) + j   

  end if 
end if 

    end for 
end for 
 

64-QAM 
initialize Ncbps and d 
for j = 0 to d-1, j++ 

for i = 0 to (Ncbps/d) – 1, i++  
if (j mod 3= 0) 

  kn = d * i + j    
         elseif(j mod 3= 1) 

if (i mod 3 = 2) 
kn = d * (i-2) + j   

  else 
        kn = d * (i+1) + j   

   end if 
          else 
    if (i mod 3 = 0) 
         kn = d * (i+2) + j   
    else 
         kn = d * (i-1) + j   
    end if 
           end if 
             end for 

        end for 
 

5.7.1 Transformation into Circuit 
In order to test the proposed algorithms for Address Generator of WiMAX de-

interleaver with all modulation schemes, transformation of these algorithms into digital 
circuits are made and are shown in Fig. 5.9(a)-(c). The QPSK hardware shown in Fig. 
5.9(a), has a row counter (RWC0) to generate row numbers between 0 to d-1. A column 
counter (CLC0) with multiplexer (M0) and comparator (C0) generate the variable column 
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numbers to implement permissible Ncbps. A multiplier (ML0) and an adder (A0) perform 
the desired operations to implement (5.5). The Address Generator for 16-QAM follows 
similar structure, like that of QPSK with few additional modules. These modules are 
designed with an incrementer, a decrementer, two modulo-2 blocks and two multiplexers 
as shown in Fig. 5.9(b). As per Table 5.7, in 64-QAM modulation scheme, the Address 
Generator has to implement three different progressive patterns for the column numbers. 
The design procedure used in 16-QAM is extended in 64-QAM to meet this requirement 
with the use of additional hardware and is shown in Fig. 5.9(c). A simple up counter 
generates the read addresses for the 2D-de-interleaver.    

The top-level structure of the de-interleaver Address Generator is shown in Fig. 
5.10. Logic circuits shown inside the dashed line in Fig. 5.9(a)-(c) are presented here as 
QPSK block, 16-QAM block and 64-QAM block. Our design is optimized in the sense 
that common logic circuits like multiplier, adder, row counter and column counter are 
shared while generating addresses for any modulation type. In addition, the design also 
shares the incrementer and decrementer required in 16-QAM and 64-QAM blocks. 

 

 
Fig. 5.9(a) Hardware structure of Address Generator for QPSK 

 
Fig. 5.9(b) Hardware structure of Address Generator for 16-QAM 
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Fig. 5.9(c) Hardware structure of Address Generator for 64-QAM 

 

 
Fig. 5.10 Top level view of complete de-interleaver Address Generator 

 

5.8 Simulation Results 
5.8.1 FSM based Address Generator of Interleaver 

The simulation results are obtained in the form of timing diagram using ModelSim 
Xilinx Edition-III version 6.0a software. In order to have a clear picture of the proposed 
technique the simulation result of the address generator and the complete interleaver have 
been presented separately.  
5.8.1.1 Address Generator 

Simulation results of address generator are described in Fig. 5.11(a), (b) and (c). 
Fig. 5.11(a) is for MOD_TYP = 00 and ID = 000 i.e. QPSK with Ncbps = 96 as described 
in Table 5.3. In Fig. 5.11(b) simulation result of 16-QAM with Ncbps = 288 (MOD_TYP = 
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01 and ID=001) is presented. Similarly address generation for 64-QAM with Ncbps = 384 
(MOD_TYP = 10 and ID=001) is shown in Fig. 5.11(c).   In all the figures, initially CLR 
= 1 to ensure that the counter in preset logic and accumulator are reset. In order to 
maintain clarity, only first two iterations for the three situations have been presented. 
Addresses generated in Fig. 5.11(a), (b) and (c) clearly conform to Table 5.2. The author 
has simulated and tested the address generation circuitry for all other values of ID and 
MOD_TYP, however to avoid repetition other situations are not shown. 
5.8.1.2 Complete Interleaver 

Fig. 5.12(a), (b) and (c) explain the interleaving operation of the proposed 
interleaver for WiMAX system. In these figures the modulation types and interleaver 
depths chosen are identical with Fig. 5.11(a), (b) and (c) respectively. The raw data input 
(data_in) into the interleaver in Fig. 5.12(a), (b) and (c) are held high for first 16 
consecutive bit duration and made low thereafter to have clear view of the interleaving 
operation. As seen in figures these consecutive bits are dispersed by a predefined interval 
which is 6 in Fig. 5.12(a), 19, 17 in Fig. 5.12(b) and 26, 23, 23 in Fig. 5.12(c) and 
conforms to Table 5.7. 

 

 
Fig. 5.11(a) Generation of first 32 write addresses with MOD_TYP = 00, ID = 000 

 
Fig. 5.11(b) Generation of first 32 write addresses with MOD_TYP = 01, ID = 001 
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Fig. 5.11(c) Generation of first 32 write addresses with MOD_TYP = 10, ID = 001 

 
Fig. 5.12(a) Interleaving operation with MOD_TYP = 00, ID = 000 

 

Fig. 5.12(b) Interleaving operation with MOD_TYP = 01, ID = 001 
 

  

Fig. 5.12(c) Interleaving operation with MOD_TYP = 10, ID = 001 
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5.8.2 LUT based Address Generator of De-interleaver 
The simulation results in the form of timing diagram obtained using ModelSim 

Xilinx Edition-III, version 6.0a of LUT based address generator of WiMAX de-interleaver 
are shown in Fig. 5.13(a)-(c). In Fig. 5.13(a), MOD_TYP = 0 (002) and CODE_RATE = 0 
(0002). The sequence of addresses generated are 0, 16, 32, 48, 64, 80, 1, 17, 33, 49, 65, 81, 
2 …. which clearly conform to Ncbps = 96 with QPSK modulation and ½ code rate. 
Similarly, Fig. 5.13(b) and (c) show generation of de-interleaver address sequence for 
Ncbps = 192 with QPSK modulation, ½ code rate (MOD_TYP = 00, CODE_RATE = 010) 
and Ncbps = 288 with QPSK modulation, ¾ code rate (MOD_TYP = 00, CODE_RATE = 
011) respectively.     

The author has simulated and tested the address generation circuitry for all other 
values of CODE_RATE, MOD_TYP, however in order to avoid repetition, other 
situations are not shown. 

 
(a) 

 
(b) 
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(c) 
Fig.5.13 Simulation result of LUT based De-interleaver Address Generator with  

(a) MOD_TYP = 00, CODE_RATE = 000 (b) MOD_TYP = 00, CODE_RATE = 010 and  
(c) MOD_TYP = 00, CODE_RATE = 011 

5.8.3 Low Complexity Address Generator of De-interleaver 
The proposed hardware of the low complexity address generator is converted into 

a VHDL program using Xilinx ISE. Simulation results are obtained for all permissible 
modulation types and code rates using ModelSim XE-III and a part of the same for Ncbps = 
576-bits, ¾ code rate, 64-QAM has been presented in Fig. 5.14. The initial portion of Fig. 
5.14 shows the last part of addresses for first row (j=1) and the later part (from ruler) 
shows the addresses for second row (j=2). The simulation results are verified with the 
output obtained from the MATLAB program described in Table 5.2. 

 

 
Fig. 5.14 Simulation result showing the addresses of last part of first row (j=1) and first 

portion of second row (j=2) for Ncbps = 576-bits, ¾ code rate, 64-QAM 
5.9 Critical Analysis of FPGA implementation Results 
5.9.1 FSM based Address Generator of Interleaver 

The proposed hardware model of FSM based WiMAX interleaver is implemented 
and tested on Xilinx Spartan-3 (Device: XC3S400) FPGA platform in the laboratory. The 
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FPGA implementation of the interleaver is carried out in two phases; firstly the address 
generator and thereafter the complete interleaver and presented accordingly.   
5.9.1.1 Address Generator 

A VHDL model of the proposed FSM based address generation hardware is 
prepared using Xilinx ISE 8.1i and thereafter implemented in the said FPGA. In order to 
make comparative analysis we have also designed and implemented address generator 
circuitry for the interleaver depths listed in [106] and result is presented in Table 5.9. Our 
approach shows approximately 30% improvement in terms of maximum operating clock 
frequency, approximately 46% improvement in FPGA flip-flop used with negligible (less 
than 3%) loss in terms of Logic Cells (LCs) used. Careful design of the preset logic 
provides this improvement. Table 5.10 and 5.11 shows the HDL synthesis report and 
device utilization summary corresponding to the implementation of the circuit shown in 
Fig. 5.3. Minimum propagation delay of the circuit is measured to be 5.234ns and 
maximum operating frequency is 191.05MHz. The estimated power consumption of the 
circuit is found to be 56mW using Xilinx XPower I.25.  

The address generator circuit when implemented on recent FPGAs like Virtex 4 
shows further betterment in terms of operating frequency (278.30MHz) but at the cost of 
increased power consumption (224mW). As these FPGAs offer a large number of 
resources the utilization percentage as shown in Table 5.11 further goes down. 
 Fig. 5.15(a), (b) and (c) show the moments captured (second addresses) during the 
progress of address generation circuitry on FPGA platform with ID and MOD_TYP 
shown in Fig. 5.15(a), (b) and (c) respectively. As shown in Fig. 5.15(b), the first toggle 
switch is used as CLR (clear) input, next three implements ID (interleaver depth) and last 
two represents MOD_TYP (modulation type) whose values are described in Table 5.3. 
Similarly, the first 10 LEDs from the left represents the address generated with rightmost 
LED representing the MSB. 
 

Table 5.9 Comparative analysis of similar implementations of address generator 
Implementation Technique Number of LCs used Number of flip-flops used Improvement in flip-flop used Maximum Clock Frequency (MHz) Improvement in Max. Clock Frequency  

Khater et. al. [106] 105 54 
45.95% 

147.9 
29.14% Our 

implementation 108 37 191.05 
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Table 5.10 HDL synthesis report of FSM based address generator 
Logic Circuit used Quantity 

8x7-bit ROM 1 
10-bit adder 2 
2-bit adder 1 

4-bit up counter 1 
Flip-flops 18 

10-bit latch 1 
7-bit latch 1 

7-bit 4-to-1 multiplexer 2 
7-bit 8-to-1 multiplexer 1  Table 5.11 Device utilization summary of FSM based address generator 

FPGA Resources Utilization in Number Utilization in % 
Number of Logic Cell (LC) 242  out of   3584 6.75 
Number of Flip-flops 48  out of   7168 0.67 
Number of Bonded IOBs 17  out of    141 12.06 
Number of GCLKs 2 out of 8 25.00  

Fig. 5.15(a) Photograph with 
ID=000, MOD_TYP=00 

Fig. 5.15(b) Photograph 
with ID=001, 

MOD_TYP=01 
Fig. 5.15(c) Photograph 

with ID=001, 
MOD_TYP=10 

5.9.1.2 Complete Interleaver 
 This section makes the critical analysis of FPGA implementation results of the 
entire interleaver including the proposed FSM based address generator. The HDL 
synthesis report of the complete interleaver is presented in Table 5.12. It shows additional 
requirement of few flip-flops/latches and multiplexers which are used in designing the 
memory module of the interleaver. 

Table 5.12 HDL synthesis report of the complete interleaver 
Logic Circuit used Quantity 

8x7-bit ROM 1 
10-bit adder 2 
2-bit adder 1 

4-bit up counter 1 
Flip-flops 23 

10-bit latch 1 
7-bit latch 3 
1-bit latch 1 

7-bit 4-to-1 multiplexer 2 
7-bit 8-to-1 multiplexer 1 
1-bit 4-to-1 multiplexer 5 

CLR ID MOD_TYP 

0000000110 
0000010011 0000011010 
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Device utilization summary of the complete interleaver implementation is 
described in Table 5.13. The utilization percentage of LCs and flip-flops are marginally 
increased because of the associated circuitry in the memory module of the interleaver. 
Number of Input Output Blocks (IOBs) has been dropped by 8 as because the 10-bit 
address output lines of address generator have been replaced by 2 lines; one carrying raw 
input data and the other sending out the interleaved data. The interleaver utilizes two 
BRAMs which is 12.5% of the available BRAM blocks in Spartan-3 FPGA.  Minimum 
propagation delay and maximum operating frequency of the FPGA based interleaver is 
found to be 7.442ns and 134.381MHz respectively. Due to efficient modeling, the 
interleaver circuitry uses very few FPGA resources thereby making room for other 
associated circuitry like randomizer, encoder etc to be implemented on the same FPGA 
chip.  Because of the presence of floor and mod function in (5.1) and (5.2), direct 
implementation of the address generation circuitry is very complex and consumes large 
amount of logic resources. Instead, our state machine based approach provides a faster and 
resource efficient implementation of WiMAX interleaver on FPGA platform.  

 
Table 5.13 Device Utilization Summary of Complete Interleaver 

FPGA Resources Utilization in Number Utilization in % 
Number of LCs 267  out of   3584 7.45 

Number of Flip-flops 54  out of   7168 0.75 
Number of Bonded IOBs 9  out of    141 12.06 

Number of GCLKs 2 out of 8 25.00 
Number of BRAMs 2 out of 16 12.50 

5.9.2 LUT based Address Generator of Interleaver 
The proposed hardware structure of LUT based de-interleaver address generator is 

transformed into VHDL model using Xilinx Integrated Software Environment (ISE 8.1) 
and is implemented on Xilinx Spartan 3 FPGA (XC3S400). Additionally, the hardware 
structure is also implemented on Xilinx Spartan-3AN FPGA (XC3S1400AN) using ISE 
12.1. Table 5.14 shows the device utilization summary for both implementations. The two 
implementations are almost identical in terms of FPGA resource utilizations, but differ 
significantly in operating frequency and estimated power consumption. It is observed that 
the design implemented on advanced FPGA (Spartan-3AN) works faster by 30% than the 
other, but also consumes double amount of power. The principal advantage of our 
proposed technique is that it requires only 3 BRAMs of capacity 18KB instead of 16, 
saving 81.25% of critical FPGA internal resource. 
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Based on the equivalence drawn between FPGA and ASIC implementations in 
[156] our work is compared with that of [105] by converting the later in FPGA equivalent 
implementation. This comparison shows our implementation on Spartan 3 FPGA is at par 
with [105] in terms of operating frequency. But, the implementation on Spartan 3AN 
shows improvement of almost 30% over [105] as FPGA equivalent maximum frequency 
of the later is found to be 62.5MHz. 

 
Table 5.14 Device Utilization Summary of LUT based Address Generator of WiMAX  

De-interleaver 
 

FPGA Resources / Parameters Resource Utilization / 
Parameters in Spartan 3 

Resource Utilization / 
Parameters in Spartan 

3AN 
Number of slices 633  out of   3584 626 out of   11264 

Number of slice Flip-flops 56  out of   7168 41  out of   22528 
Number of 4 input LUTs 1229  out of   7168 1205 out of   22528 
Number of bonded IOBs 16  out of    141 16  out of    502 

Number of BRAMs 3  out of     16 3 out of 32 
Number of GCLKs 1  out of      8 1 out of 24 

Maximum clock speed 62.5 MHz 88.72 MHz 
Power consumption 32mW 68mW 

5.9.3 Low Complexity Address Generator of Interleaver 
The VHDL program developed for the proposed WiMAX de-interleaver Address 

Generator is downloaded on Xilinx Spartan-3 (Device XC3S400) FPGA [94]. Table 5.15 
shows the HDL synthesis report. The two blocks, MO0 and MO1 of Fig. 5.9(b) are 
implemented using mod 2n function of VHDL. Requirement of i mod 3 (MO2) and j mod 3 
(MO3) functions in 64-QAM circuit of Fig. 5.9(c) are fulfilled by designing two small 
ROMs of dimension 16x3-bit and 64x3-bit respectively as MOD 3 function is not 
supported in VHDL. The use of rest of the logic circuits is obvious in the design.   

As FPGA based implementation of WiMAX de-interleaver Address Generator has 
not been found in the literature, direct comparison of the results of our proposed work 
could not be carried out.  However, implementation of the conventional LUT based 
technique of address generation for WiMAX 2D-de-interleaver on the same FPGA is 
made in the similar manner as proposed in [157]. In the latter case, the LUTs are modeled 
using FPGA’s embedded memory, Block RAM [94], to reduce the memory access time. 
For fairness of comparison, three Block RAMs are used, one for each modulation scheme 
to house the address LUT of various interleaver depths. Efficient use of Block RAMs is 
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made possible by exploring the feature that, within a modulation scheme the address LUT 
of a smaller Ncbps is the subset of the address LUT of larger Ncbps.   

Table 5.16 shows the comparison between the two implementations in respect to 
FPGA resources. In spite of smart use of Block RAM in LUT based approach, the present 
work results in significant reduction in occupancy of FPGA slices (by 80.24%), flip-flops 
(by 35.9%) and 4 input LUTs (by 80.47%). This comparison clearly proves the low 
complexity and hardware efficiency of our design over the conventional technique.  
Further, to make the design more hardware efficient, embedded multiplier of Xilinx 
Spartan-3 FPGA is used to implement the ML3 block of Fig. 5.10. In addition, the Address 
Generator using the proposed technique can work 48.69% faster than the later. 

Further, based on the equivalence drawn between FPGA and ASIC 
implementations in [156], our work is again compared with that of [105], by converting 
the later in FPGA equivalent implementation. This comparison also shows almost 48.69% 
improvement in our work with respect to operating frequency over [105] as FPGA 
equivalent maximum frequency of the later is found to be 62.5MHz. The reasons behind 
these improvements are low complexity, optimized and shared hardware design and use of 
FPGA’s embedded multiplier which in turn reduces interconnection delay inside FPGA. 
Similar comparison with [158] is not useful as this work is not focused on our target 
design only. Both CTC and Long Term Evolution (LTE) interleavers do not use floor 
function for FPGA implementation, while the present work involves use of floor function 
for such realization in an efficient manner. The work in [159] is based on FSM based 
technique for designing Address Generator using FPGA for channel interleaver employed 
in WiMAX transmitter. However, this work involves multiplier based Address Generator 
in FPGA platform for designing channel de-interleaver in WiMAX receiver. The 
conventional LUT based approach and our proposed algorithm, both targeting same 
Address Generator is implemented on the identical FPGA platform and accordingly 
effective comparison as in Table 5.16 becomes possible.   

 
Table 5.15 HDL Synthesis Report of Low Complexity Address Generator 

Logic Circuits Used Quantity Logic Circuits Used Quantity 
16x3-bit ROM 1 4-bit register 1 
64x3-bit ROM 1 6-bit register 1 

10-bit adder 1 4-bit 4-to-1 
 

3 
18-bit adder 2 4-bit 8-to-1 

 
1 

18-bit subtractor 2 6-bit 4-to-1 3 
4-bit adder 1 6-bit 8-to-1 

multiplexer 
1 

6-bit adder 1 
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Table 5.16 Comparison Between Proposed and LUT Based Technique 
FPGA 

Parameters 
Performance 
of proposed 
technique 

Performance 
of LUT based 

technique 

% Reduction / 
improvement in 

resource 
utilization 

Remarks 

Slices 3.49 % 17.66 % -80.24 Significant 
reduction 

Flip-flops 0.50 % 0.78 % -35.90 Reduction 
4 input LUTs 3.35 % 17.15 % -80.47 Significant reduction 

Operating 
frequency  121.82 MHz 62.51 MHz 94.88 Significant 

improvement 
 

5.10 Discussion 
This chapter describes three different techniques of modelling hardware interleaver 

/de-interleaver used in IEEE 802.16e based WiMAX transceiver. An interleaver/de-
interleaver comprises of two sections: Address generator and Memory module. Due to the 
presence of modulo and floor functions implementing the address generator, design of 
hardware module for the same is a difficult task. This is due to the fact that corresponding 
digital hardware for the two complex functions are not available. Conventionally, LUT 
based approach is used in which all the addressing sequences are precomputed and stored 
in external memory. Such approaches consumes external memory blocks and the slow in 
operation.  

In this work, firstly design of a FSM based high speed and hardware efficient 
technique to implement the address generation circuitry of WiMAX interleaver on FPGA 
platform has been demonstrated. Secondly, an improved LUT based de-interleaver address 
generator circuitry is proposed. In this approach, the conventional LUT based technique 
for address generation has been re-designed to use the FPGA memory blocks efficiently. 
Design of a low complexity and resource efficient hardware de-interleaver including a 
novel algorithm for the de-interleaver with user-friendly mathematical representation and 
its general validity is presented thereafter. This work shows significant performance 
improvement over LUT technique in terms of enhanced maximum operating frequency 
and reduced FPGA resource utilization. The low complexity model of interleaver design is 
carried forward in Chapter 6 for the implementation on MIMO WLAN interleaver due to 
its attractive performance. 
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Interleaving in MIMO WLAN 
  Outline of this Chapter 
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6.2 System Description of MIMO WLAN Transceiver 
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6.6 Simulation Results of MIMO WLAN Interleaver 
6.7 FPGA Implementation Results 
6.8 Discussion 
 

The approach described in Chapter 5 while designing low complexity model of 
WiMAX de-interleaver is adopted in this chapter for the design and 
implementation of novel interleaver hardware on FPGA platform to be used in 
OFDM based MIMO WLAN applications. After initial remarks on MIMO WLAN, 
the chapter briefs about the work done with important contribution made through 
this research. Novel algorithm with mathematical formulation for the address 
generator of the interleaver is the key contribution of this chapter. The chapter 
thereafter describes hardware transformation of the novel algorithm, its timing 
simulation and FPGA implementation results using the DSP blocks of FPGA 
unlike the previous implementations. Comparative analysis of the implementation 
results demonstrates superiority of the proposed design in terms of operating 
frequency, throughput and power consumption/resource occupancy.   

  
 



Chapter 6: Interleaving in MIMO WLAN  

   110 

6.1 Introduction 
Increasing use of multimedia services and growth of graphics based internet 

related contents lead to the rising demand of high speed broadband wireless systems. Use 
of more than one antenna at the transmitter and / or at the receiver aims to improve the 
transmission / reception rate substantially. OFDM is becoming a popular technique for 
high data rate wireless transmission [160]. OFDM may be combined with multiple 
antennas at both the access point and mobile terminal to increase the diversity gain and/or 
enhance system capacity on a time-varying multipath fading channel, resulting in a MIMO 
OFDM system [66].  

The IEEE 802.11n, an amendment to IEEE 802.11 standard, is based on MIMO-
OFDM transmission techniques to enable high speed data communication with maximum 
throughput of 600 Mbps [161]. The aim of interleaving [162] is to reorder the incoming 
data and make the adjacent bits non-adjacent by a factor, to cope with the burst errors 
occurring during the high throughput transmission of data over the channel. Such 
rearrangement of data bits helps to improve the performance of FEC techniques. In a 
fading channel, diversity is the technique adopted to improve the performance of a 
communication system. In such cases, interleavers are used to improve the system 
performance by exploiting spatial and frequency diversities. 

In this chapter, novel design of interleaver used in 4 x 4 MIMO WLAN transceiver 
has been described. In general term, an interleaver consists of two parts; address generator 
and interleaver memory. Literature [75] recommends three steps of permutation involving 
floor function for the implementation of the address generator. Conventional approach of 
MIMO WLAN interleaver implementation is LUT based [163] due to the non-availability 
of corresponding digital hardware for floor function.  The LUT based technique is in 
general unattractive [115], as it requires large number of memory blocks to house the 
address LUTs with various modulation schemes, bandwidths (BWs) and spatial streams. 
In addition, large access time of memory results in slower operation of the address 
generator using LUT. In this work, we propose a novel algorithm with necessary 
mathematical background including its general validity for the address generation of 
MIMO WLAN interleaver which eliminates the requirement for floor function. The 
proposed algorithm is also transformed into digital hardware and is modelled in VHDL 
using Xilinx ISE 12.1. The model utilizes embedded Digital Signal Processing (DSP) 
blocks of Xilinx Spartan 6 FPGA [96] to implement the multiplier. The memory 
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requirement of the interleaver is also met by configuring the available embedded memory 
(Block RAM) [96] within the target FPGA. The use of DSP blocks and Block RAM of 
FPGA makes our design novel and highly resource efficient in comparison with other 
similar implementations [121], [120], [122]. Further, LUT based technique of interleaver 
design is modelled and implemented on the same FPGA platform for comparison. In this 
case also, our proposed design shows improvement in terms of operating frequency and 
memory utilization over LUT based technique. Necessary hardware required for read 
address generation is also designed and included in the VHDL model. Simulation results 
in the form of timing diagram for the address generator is obtained using ModelSim XE-
III software and are also verified with the theoretical results. Our design performs better in 
terms of operating frequency, throughput, and power consumption, compared to the few 
recent ASIC implementations [121], [120], [122] when they are converted into equivalent 
FPGA counterparts using [156]. Our proposed design satisfies the maximum throughput 
requirement of MIMO WLAN of IEEE 802.11n.  

6.2 System Description of MIMO WLAN Transceiver 
Essential blocks of an MIMO WLAN transceiver are shown in Fig. 6.1(a)-(b) 

[161], [164]. In the transmitter, input data stream is randomized using a scrambler. The 
scrambled data passes through a convolutional encoder to reduce the effect of random 
error in the channel. A parser [164] routes the consecutive data bits based on the number 
of coded bits per sub-carrier into four (or less) different spatial streams. Every spatial data 
stream uses one block interleaver to reduce the effect of burst error in the channel.  The bit 
stream thereafter are mapped into QAM symbols. A spatial stream dependent Cyclic 
Delay (CD) followed by spatial mapping matrix has been applied to each subcarrier to 
convert Nss spatial stream inputs into Ntx transmitter outputs. To provide transmit Cyclic 
Delay Diversity (CDD) and to prevent undesired beam-forming effects, an additional 
cyclic delay per transmitter can be applied. Each transmitter thereafter applies an IFFT, 
inserts a Guard Interval (GI), up-converts and transmits the signal. In the receiver of 
MIMO WLAN, blocks with reverse function are applied to obtain the original data stream. 
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(a) 

 
(b) 

Fig. 6.1 Block diagram of MIMO WLAN (a) transmitter and (b) receiver 
6.3 Interleaving in IEEE 802.11n  

The encoded data bits received from convolutional encoder and parser are 
interleaved by a special type of block interleaver. Interleaving in 802.11n is a three step 
process in which the first two steps provide spatial interleaving and the final step performs 
frequency interleaving [161]. The interleaving steps are defined in the form of three blocks 
shown in Fig. 6.2. The first step (B1) ensures that adjacent coded bits are mapped onto 
non-adjacent subcarriers, while the second step (B2) is responsible for alternating mapping 
of adjacent coded bits onto less or more significant bits of constellation, thus avoiding 
long runs of lowly reliable bits. If more than one spatial stream exists in the 802.11n 
physical layer, the third step called frequency rotation (B3) would be applied to the 
additional spatial streams.  The frequency rotation ensures that the consecutive carriers 
used across the spatial streams are not highly correlated.  
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Fig. 6.2 Block diagram of steps involved in interleaving process for MIMO WLAN 

Here N is the block size corresponding to number of coded bits per allocated sub-
channels per OFDM symbol. C represents number of columns in the interleaver, whose 
value is 13 and 18 for 20MHz and 40MHz BW [162] respectively. The parameter s is 
defined as s = max (1, NBPSCS), whereas NBPSCS is the number of coded bits per sub-carrier, 
and takes value 1, 2, 4 or 6 for BPSK, QPSK, 16-QAM or 64-QAM respectively. Iss is the 
index of the spatial stream and Nrot is the parameter used for defining different rotation 
with value 13 and 29 for 20MHz and 40MHz BW respectively. The operators % and   , 
represent the modulo and floor functions respectively. 

6.4 Proposed Algorithm for Address Generator of Interleaver  
The permutation steps as described in B1-B3 blocks of Fig. 6.2 involve floor 

function. LUT based technique is conventionally used due to unavailability of appropriate 
logic circuit for floor function. Such technique being memory intensive makes the 
implementation resource inefficient [163]. Also, the interleaver involving LUT based 
address generator may exhibit slower operation due to large memory access time. In this 
work, a novel low complexity algorithm for the address generator of channel interleaver 
used in 4 x 4 MIMO WLAN eliminating the need for floor function has been proposed. 
The algorithm aims at offering efficient hardware design of the address generator on 
FPGA platform with an objective to satisfy the throughput requirement for the application.  

Table 6.1 shows complete interleaver specifications with all permissible values of 
modulation schemes, spatial streams and BWs as per IEEE 802.11n [75], [121]. Initially, a 
MATLAB program has been developed by implementing B1-B3 blocks of Fig. 6.2 to 
determine the interleaver addresses in similar manner as described in previous two 
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chapters. Table 6.2(a)-(c) show such interleaver write addresses for three cases out of the 
entire set of 32, e.g. Nbpscs=1, N=52, iss=4; Nbpscs=4, N=208, iss=2; and Nbpscs=6, N=312, 
iss=3; all with 20MHz BW respectively. Careful examination of these write addresses 
reveals the appropriate correlation among them, which is being utilized to develop new 
algorithms for the purpose of successful implementation of write address generator 
required for MIMO WLAN interleaver as described in Table 6.3(a)-(c). The read 
addresses could be generated in a conventional manner.  

 

Table 6.1 Interleaver specification of IEEE 802.11n based MIMO WLAN 
Modulation Scheme Spatial Stream (iss) BW Interleaver Depth (N) 

BPSK (Nbpscs=1) 1,2,3,4 20MHz  52 
40MHz   108 

QPSK (Nbpscs=2) 1,2,3,4 20MHz  104 
40MHz   216 

16-QAM (Nbpscs=4) 1,2,3,4 20MHz   208 
40MHz   432 

64-QAM (Nbpscs=6) 1,2,3,4 20MHz  312 
40MHz   648 

 
 Table 6.2(a) Interleaver write addresses with Nbpscs=1, N=52, iss=4, BW=20MHz 
 

 Column no(i) 
Row no(j) 0 1 2 … 9 10 11 12 

0 13 17 21 … 49 1 5 9 
1 14 18 22 … 50 2 6 10 
2 15 19 27 … 51 3 7 11 
3 16 20 28 … 0 4 8 12 

 
 Table 6.2(b) Interleaver write addresses with Nbpscs=4, N=208, iss=2, BW=20MHz 
 

 Column no(i) 
Row no(j) 0 1 2 … 6 7 8 … 12 

0 104 121 136 … 200 9 24 … 88 
1 105 120 137 … 201 8 25 … 89 
2 106 123 138 … 202 11 26 … 90 

… … … … … … …  … … 
7 111 126 143 … 207 14 31 … 95 
8 112 129 144 … 0 17 32 … 96 
9 113 128 145 … 1 16 33 … 97 

10 114 131 146 … 2 19 34 … 98 
… … … … … … …  … … 
15 119 134 151 … 7 22 39 … 103 
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Table 6.2(c) Interleaver write addresses with Nbpscs=6, N=312, iss=3, BW=20MHz 
 

 Column no(i) 
Row no(j) 0 1 2 3 4 5 6 … 12 

0 234 260 283 306 20 43 66 … 210 
1 235 258 284 307 18 44 67 … 211 
2 236 259 282 308 19 42 68 … 212 

… … … … … … …  … … 
5 239 262 285 311 22 45 71 … 215 
6 240 266 289 0 26 49 72 … 216 
7 241 264 290 1 24 50 73 … 217 
8 242 265 288 2 25 48 74 … 218 
9 243 269 292 3 29 52 75 … 219 

… … … … … … … … … … 
23 257 280 303 17 40 63 89 … 233 

  
Table 6.3(a) Proposed algorithm for Nbpscs=1/2 (BPSK/QPSK) with all N, iss and BW 

 
Column no. (i)  

 0 1 2 3 … C-4 C-3 C-2 C-1 
Row no. (j) i<(C-I)  i>=(C-I) 

0 
j<(D-J) D*(i+I)+(j+J) … D*{i-(C-I)}+(j+J) 1 

2 
3 

… i<(C-I-1)  i>=(C-I-1) 
D-4 

j>=(D-J) D*(i+I+1)+ {j-(D-J)} … D*{i-(C-I-1)}+{j-(D-J)} D-3 
D-2 
D-1 

  
Table 6.3(b) Proposed algorithm for Nbpscs= 4 (16-QAM) with all N, iss and BW 

 
Column no. (i)  

 
0 1 2 3 … C-4 C-3 C-2 C-1 

  
Row no. (j) {i<(C-I)} &(i%2=0) {i<(C-I)} &(i%2=1)  i>=(C-I) &(i%2=0) i>=(C-I) &(i%2=1) 

0 

 
{j<(D-J)} 
&(j%2=0) 

D*(i+I)+ 
(j+J) 

D*(i+I)+ 
(j+J+1) 

… 
D*{i-(C-I)}+ 

(j+J) 
D*(i-(C-I))+ 

(j+J+1) 1 
2 {j<(D-J)} 

&(j%2=1) 
D*(i+I)+ 

(j+J) 
D*(i+I)+ 
(j+J-1) 

D*(i-(C-I))+ 
(j+J) 

D*(i-(C-I))+ 
(j+J-1) 3 

… i < (C-I-1) 
&( i % 2=0) 

{i < (C-I-1)} 
&( i % 2=1)  i >= (C-I-1) 

&( i % 2=0) 
i >= (C-I-1) 
&( i % 2=1) 

D-4 

 
{j>=(D-J)} 
&(j%2=0) 

D*(i+I+1)+ 
{j-(D-J)} D*(i+I+1)+ 

{j-(D-J-1)} 
… 

D*{i-(C-I-1)}+ 
{j-(D-J)} D*{i-(C-I-1)}+ 

{j-(D-J-1)} D-3 
D-2 {j>=(D-J)} 

&(j%2=1) 
D*(i+I+1)+ 

(j-(D-J)) 
D*(i+I+1)+ 
{j-(D-J+1)} 

D*{i-(C-I-1)}+ 
{j-(D-J)} 

D*{i-(C-I-1)}+ 
{j-(D-J+1)} D-1 
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Table 6.3(c) Proposed algorithm for Nbpscs=6 (64-QAM) with all N, iss and BW 
 

Column no. (i)  
 

0 1 2 3 … C-4 C-3 C-2 C-1 
  

Row no. (j) {i<(C-I)} 
&(i%3=0) 

{i<(C-I)} 
&(i%3=1) 

{i<(C-I)} 
&(i%3=2)  i>=(C-I) 

&(i%3=0) 
i>=(C-I) 

&(i%3=1) 
i>=(C-I) 

&(i%3=2) 
0 

 

{j<(D-J)} 
&(j%3=0) 

D*(i+I)+ 
(j+J) 

D*(i+I)+ 
(j+J+2) 

D*(i+I)+ 
(j+J+1) 

… 

D*{i-(C-I)}+ 
(j+J) 

D*{i-(C-I)}+ 
(j+J+2) 

D*{i-(C-I)}+ 
(j+J+1) 

1 
{j<(D-J)} &(j%3=1) D*(i+I)+ (j+J) D*(i+I)+ (j+J-1) D*(i+I)+ (j+J+1) D*{i-(C-I)}+ (j+J) D*{i-(C-I)}+ (j+J-1) D*{i-(C-I)}+ (j+J+1) 2 
{j<(D-J)} 
&(j%3=2) 

D*(i+I)+ 
(j+J) 

D*(i+I)+ 
(j+J-1) 

D*(i+I)+ 
(j+J-2) 

D*{i-(C-I)}+ 
(j+J) 

D*{i-(C-I)}+ 
(j+J-1) 

D*{i-(C-I)}+ 
(j+J-2) 3 

… i<(C-I-1) 
&(i%3=0) 

{i<(C-I-1)} 
&(i%3=1) 

{i<(C-I-1)} 
&(i%3=2)  i>=(C-I-1) 

&(i%3=0) 
i>=(C-I-1) 
&(i%3=1) 

i>=(C-I-1) 
&(i%3=2) 

D-4 

 

{j>=(D-J)} 
&(j%3=0) 

D*(i+I+1)
+ {j-(D-J)} D*(i+I+1)+ 

{j-(D-J-2)} 
D*(i+I+1)+ 
{j-(D-J-1)} 

… 

D*{i-(C-I-1)}+ 
{j-(D-J)} D*(i-(C-I-1))+ 

(j-(D-J-2)) 
D*(i-(C-I-1))+ 

(j-(D-J-1)) 
D-3 

{j>=(D-J)} 
&(j%3=1) 

D*(i+I+1)
+ (j-(D-J)) 

D*(i+I+1)+ 
(j-(D-J+1)) 

D*(i+I+1)+ 
(j-(D-J-1)) 

D*(i-(C-I-1)+ 
(j-(D-J)) 

D*(i-(C-I-
1))+(j-(D-J+1)) 

D*(i-(C-I-
1))+(j-(D-J-1)) D-2 

{j>=(D-J)} 
&(j%3=2) 

D*(i+I+1)
+(j-(D-J)) 

D*(i+I+1)+ 
(j-(D-J+1)) 

D*(i+I+1)+ 
(j-(D-J+2)) 

D*(i-(C-I-1))+ 
(j-(D-J)) 

D*(i-(C-I-1))+ 
(j-(D-J+1)) 

D*(i-(C-I-1))+ 
(j-(D-J+2)) D-1 

 The mathematical formulation of the proposed algorithms in Table 6.3(a)-(c) 
including all modulation schemes, spatial streams and BWs are represented by (6.2)-(6.4). 

 

kn(QPSK-BPSK) = 
D*(i+I)+(j+J)                     when j < (D-J) and i < (C-I)
D*{i-(C-I)}+(j+J)              when j < (D-J) and i ≥ (C-I) 
D* i+I+1 + j- D-J     when j ≥ (D-J) and i < (C-I-1)
D*{i-(C-I-1)}+{j-(D-J)}  when j ≥ (D-J) and i ≥ (C-I-1)

                               (6.2) 

 
 

 

kn 16-QAM =

D*(i+I)+(j+J)                                                    when {j<(D-J)}&[{i<(C-I)}&(i%2=0)] 
D*(i+I)+(j+J+1)                        when [{j<(D-J)}&(j%2=0)]&[{i<(C-I)}&(i%2=1)]

D*{i-(C-I)}+(j+J)                                              when {j<(D-J)}& [{i ≥(C-I)}&(i%2=0)]
D*(i-(C-I))+(j+J+1)                when [{j<(D-J)}&(j%2=0)]& [{i≥ (C-I)}&(i%2=1)]
D*(i+I)+(j+J-1)                         when [{j<(D-J)}&(j%2=1)]&[{i<(C-I)}&(i %2=1)]
D*(i-(C-I))+(j+J-1)                  when [{j<(D-J)}&(j%2=1)] & [{i≥(C-I)}&(i%2=1)]

D*(i+I+1)+{j-(D-J)}                                  when {j≥ (D-J)} & [{i<(C-I-1)}&(i%2=0)]
D*(i+I+1)+{j-(D-J-1)}       when [{j≥(D-J)}&(j%2=0)] & [{i<(C-I-1)}&(i%2=1)]

D*{i-(C-I-1)}+{j-(D-J)}                            when {j>=(D-J)} & [{i≥(C-I-1)}&(i%2=0)]
D*{i-(C-I-1)}+{j-(D-J-1)}    when [{j≥(D-J)}&(j%2=0)]& [{i≥(C-I-1)}&(i%2=1)]
D*(i+I+1)+{j-(D-J+1)}    when [{j≥(D-J)} &(j%2=1)] & [{i<(C-I-1)}&(i%2=1)]
D*{i-(C-I-1)}+{j-(D-J+1)} when [{j≥(D-J)}&(j%2=1)] & [{i≥(C-I-1)}&(i%2=1)]

    (6.3) 
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kn 64-QAM =

D*(i+I)+(j+J)                                            when {j<(D-J)}&[{i<(C-I)}&(i%3=0)]
D*(i+I)+(j +2)                        when [{j<(D-J)}&(j%3=0)]&[{i<(C-I)}&(i%3=1)]
D*(i+I)+(j+J+1)                     when [{j<(D-J)}&(j%3≠2)]&[{i<(C-I)}&(i%3=2)]
D*{i-(C-I)}+(j+J)                                        when {j<(D-J)}&[{i≥(C-I)}&(i%3=0)]
D*{i-(C-I)}+(j+J+2)               when [{j<(D-J)}&(j%3=0)]&[{i≥ (C-I)}&(i%3=1)]
D*{i-(C-I)}+(j+J+1)               when [{j<(D-J)}&(j%3≠2)]&[{i≥ (C-I)}&(i%3=2)]
D*(i+I)+(j+J-1)                        when [{j<(D-J)}&(j%3≠0)]&[{i<(C-I)}&(i%3=1)]
D*{i-(C-I)}+(j+J-1)               when [{j<(D-J)}&(j%3≠0)]&[{i≥ (C-I)}&(i % 3=1)]
D*(i+I)+(j+J-2)                        when [{j<(D-J)}&(j%3=2)]&[{i<(C-I)}&(i%3=2)]
D*{i-(C-I)}+(j+J-2)                 when [{j<(D-J)}&(j%3=2)]&[{i≥ (C-I)}&(i%3=2)]
D*(i+I+1)+{j-(D-J)}                                when {j≥ (D-J)}&[{i<(C-I-1)}&(i%3=0)]
D*(i+I+1)+{j-(D-J-2)}        when [{j≥ (D-J)}&(j%3=0)]&[{i<(C-I-1)}&(i%3=1)]
D*(i+I+1)+{j-(D-J-1)}        when [{j≥ (D-J)}&(j%3≠2)]&[{i<(C-I-1)}&(i%3=2)]
D*{i-(C-I-1)}+{j-(D-J)}                          when {j≥ (D-J)}&[{i≥ (C-I-1)}&(i%3=0)]
D*{i-(C-I-1)}+{j-(D-J- )}    when [{j≥ (D-J)}&(j%3=0)]&[{i≥ (C-I-1)}&(i%3=1)]
D*{i-(C-I-1)}+{j-(D-J-1)} when [{j≥ (D-J)}&(j%3≠2)]&[{i≥ (C-I-1)}&( i % 3=2)]
D*(i+I+1)+{j-(D-J+1)}      when [{j ≥ (D-J)}&(j%3≠0)]&[{i<(C-I-1)}&(i%3=1)]
D*{i-(C-I-1)}+{j-(D-J+1)}  when [{j≥ (D-J)}&(j%3≠0)]&[{i≥ (C-I-1)}&(i%3=1)]
D*(i+I+1)+ {j-(D-J+2)}     when [{j≥ (D-J)}&(j%3=2)] &[{i<(C-I-1)}&(i%3=2)]
D*{i-(C-I-1)}+{j-(D-J+2)} when [{j≥ (D-J)}&(j%3=2)] &[{i≥ (C-I-1)}&(i%3=2)]

         (6.4) 

The general validity of the proposed mathematical formulation could be established 
with the help of [105]. As far as spatial permutation is concerned, the steps involved in 
IEEE 802.16e [105] and in IEEE 802.11n [75] are identical. Additionally, the spatial 
streams of the latter undergoes frequency rotation using B3 of Fig. 6.2, except the first 
stream. Further, analysis of the 3rd step results that the entire term beyond jk (i.e. Jrot) 
remains constant for a particular spatial stream and can be expressed as [121]  

= − %                                              (6.1) 
where Jrot = − 1 ∗ 2 %3 + 3 ∗ ∗  

As the first stream for all modulation schemes undergoes no frequency rotation, hence  
= − 0 % = % =  

For subsequent streams, the value of Jrot as shown in Table 6.4, differs for each spatial 
streams, modulation schemes and BWs. The expression of jk so derived for all modulation 
schemes in [105] if substituted in (6.1) gives three new equations. The final expressions so 
obtained and the proposed mathematical formulations developed in this work, generate the 
same results which are identical with results obtained through direct implementation of 
B1-B3 steps. 
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Table 6.4 Values of Jrot for all modulation schemes, spatial streams and BWs 
Modulation Scheme 

(Ncbpsc) 
BW=20MHz BW=40MHz 

Iss=1 Iss=2 Iss=3 Iss=4 Iss=1 Iss=2 Iss=3 Iss=4 
BPSK (Ncbpsc=1) 0 26 13 39 0 58 29 87 
QPSK (Ncbpsc=2) 0 52 26 78 0 116 58 174 

16-QAM (Ncbpsc=4) 0 104 52 156 0 232 116 348 
64-QAM (Ncbpsc=6) 0 156 78 234 0 348 174 522 

6.5 Transformation into Hardware  
This section describes the transformation of the proposed algorithm into digital 

hardware for the address generator of block interleaver in connection with IEEE 802.11n 
based WLAN. The top level view of the complete interleaver consisting of proposed 
address generator and memory block is shown in Fig. 6.3(a).  

 

 
Fig. 6.3 a) Top level view of complete interleaver b) arrangement of memory block 

 
6.5.1 Memory Block  

The detailed arrangement of the memory block for one spatial stream having 
similar structure as in [157] is shown in Fig. 6.3(b). The structure is generic and is 
applicable to all spatial streams. It receives three inputs from the address generator block; 
write address (WAx), read address (RAx) and selx. The requirement of two memory blocks 
for block interleaving is accomplished with the help of a dual port memory (with Port A 
and B) where read and write operation can be performed simultaneously. As a result, the 
interleaver memory block design is lesser complex than [111].  As seen in Fig. 6.3(b), the 
first 288H locations are used as Port A and next 288H locations as Port B. An adder is 
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used to insert the bias of 288H while generating addresses for Port B. When one port is 
being written, other one is read and vice versa. Swapping between read/write operations at 
the end of a cycle is performed using the signal selx which is generated using a toggle flip-
flop. 
6.5.2 Address Generator  

The address generator is the heart of the interleaver. The encoding schemes used in 
this work for the two inputs, BW and Ncbpsc of the address generator are described in Table 
6.5. The iss1-iss4 represent the four different spatial streams each consisting of write (WAx), 
read (RAx) addresses and select signal (selx) output. As shown in Fig. 6.4(a), a multiplexer 
is used in the write address generator to route the desired WAx from four possible sources 
based on the value of Ncbpsc for a particular spatial stream, Issx. 

Fig. 6.4(b) and (c) show the hardware used for generation of row count (JCOUNT) 
and column count (ICOUNT) respectively using up-counters and comparators. Circuit 
arrangement for generation of row number, D using BW and Ncbpsc is shown in Fig. 6.5(a). 
Similarly, Fig. 6.5(b) and (c) describe hardware used for generation of ICOUNT<(C-Ix), 
ICOUNT≥(C-Ix), JCOUNT<(D-Jx) and JCOUNT≥(D-Jx) signals. Here Ix and Jy is the 
column and row offset value respectively, used while computing the addresses and is 
defined in Table 6.6. 

 
Table 6.5(a) Encoding of BW 

 
Bandwidth (BW) Encoded bit 

20MHz 0 
40MHz 1 

  
Table 6.5(b) Encoding of Ncbpsc 

 Modulation Scheme 
(Ncbpsc) 

Encoded bits 
BPSK (Ncbpsc=1) 00 

QPSK   (Ncbpsc=2) 01 
16-QAM (Ncbpsc=4) 10 
64-QAM (Ncbpsc=6) 11 
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 (a) 
 

  (b) 

  (c) 
 

Fig. 6.4 Scheme showing generation of (a) write address (b) row count and (c) column 
count 
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 (b) 
 

 (c) 
 Fig. 6.5 Arrangement showing generation of (a) number of rows, (b) ICOUNT<(C-Ix) and 

ICOUNT≥(C-Ix) (c) JCOUNT<(D-Jy) and JCOUNT≥(D-Jy)  
 

Table 6.6 Definition of Ix and Jy for all streams and BW 
Stream BW=20MHz, C=13 BW=40MHz, C=18 

Iss1 I1=0,  J1=0 I1=0,  J1=0 
Iss2 I2=6,  J2=NBPSC*2 I2=8,  J2=NBPSC*2 
Iss3 I3=9,  J3=NBPSC*3 I3=13,  J3=NBPSC 
Iss4 I4=3,  J4=NBPSC I4=3,  J4=NBPSC*3 

 
Hardware required for the generation of read addresses (RAx) is shown in Fig. 6.6. 

Like the write address generator, the structure developed for generation of RAx is also 
generic and is applicable to all the spatial streams. The first and second level multiplexers 
select one of the values of interleaver depth from the inputs with the help of BW and 
mod_typ signal. The rd_count is a 10-bit up counter and generates RAx. While progressing 
through the count values, when the rd_count value equals the output of M1, a reset pulse is 
generated by the comparator and rd_count goes to initial state to start another cycle. 

 

  
Fig. 6.6 Circuit for generation of read address (RAx) 
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Fig. 6.7(a) and (b) show the rest of the circuit details required to generate interleaver 
write addresses with BPSK/QPSK, 16-QAM and 64-QAM modulation schemes. In these 
figures, the adders (A1-A3) receive two inputs; one from the row count part (purple 
coloured) and the other from the column count part (blue coloured) of the circuit. In Fig. 
6.7(a), the JCOUNT+Jy signal is generated by adder (A4) whereas the two subtractors (S1 
and S2) generate the signal JCOUNT-(D-Jy). Based on the value of JCOUNT<(D-Jy) 
signal, the multiplexer (M2) routes one of these signals to the input of the A1. Similar 
hardware structure can be found for generation of signals like ICOUNT+Ix, 
ICOUNT+Ix+1, ICOUNT–(C-Ix) etc. in the column count part. The output of the column 
count part gets multiplied with D in the multiplier (ML1) to generate the second input of 
A1. In Fig. 6.7(b) and (c), the circuit details for generation of signals like ICOUNT+Ix, 
ICOUNT–(C-Ix), JCOUNT+Jy, JCOUNT-(D-Jy) etc. are not shown to avoid repetition and 
clumsiness.  The condition for generation of select inputs (II4, JJ4, II6 and JJ6) for the 
multiplexers of Fig. 6.7(b) and (c) are described and encoded in Table 6.7(a) and (b). 

 
Table 6.7(a) Encryption of signals II4 and JJ4 
Condition II4 Condition JJ4 

ICOUNT<(C-Ix) and iXMOD = 0 00 JCOUNT<(D-Jy) and jXMOD=0 00 
ICOUNT<(C-Ix) and iXMOD = 1 01 JCOUNT<(D-Jy) and jXMOD=1 01 
ICOUNT≥(C-Ix) and iXMOD = 0 10 JCOUNT≥(D-Jy) and jXMOD=0 10 
ICOUNT≥(C-Ix) and iXMOD = 1 11 JCOUNT≥(D-Jy) and jXMOD=1 11 

 Table 6.7(b) Encryption of signals II6 and JJ6 
Condition II6 Condition JJ6 

ICOUNT<(C-Ix) and iXMOD=0 000 JCOUNT<(D-Jy) and jXMOD=0 000 
ICOUNT<(C-Ix) and iXMOD=1 001 JCOUNT<(D-Jy) and jXMOD=1 001 
ICOUNT<(C-Ix) and iXMOD=2 010 JCOUNT<(D-Jy) and jXMOD=2 010 
ICOUNT≥(C-Ix) and iXMOD=0 011 JCOUNT≥(D-Jy) and jXMOD=0 011 
ICOUNT≥(C-Ix) and iXMOD=1 100 JCOUNT≥(D-Jy) and jXMOD=1 100 
ICOUNT≥(C-Ix) and iXMOD=2 101 JCOUNT≥(D-Jy) and jXMOD=2 101 
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  Fig. 6.7 Circuit diagram for the generation of interleaver write addresses with 
 (a) Ncbpsc=1 or 2 (b) Ncbpsc=4 and (c) Ncbpsc=6 
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6.6 Simulation Results of MIMO WLAN Interleaver 
This section describes generation of simulation result in the form of timing diagram 

containing the desired write address sequences of our proposed interleaver address 
generator. The timing simulation so obtained using ModelSim XE-III software, enables 
the author to verify the working of the proposed interleaver address generator with the 
standard document of IEEE 802.11n [75]. The address generation circuitry is tested for all 
BWs, spatial streams and modulation schemes, out of which one such result with Nbpscs = 1 
(BPSK), N = 52, BW = 20MHz (nbpscs = 002, bw = 02,) having all four spatial streams is 
presented in Fig. 6.8(a). The first four signals i.e. clk, reset, bw and nbpscs are input to the 
address generator. All the operations of the circuit are synchronized with respect to the clk 
signal. The last four signals (int_add_1 to int_add_4) of Fig. 6.8(a) are the output of the 
address generator displaying the sequence of write addresses generated for the four 
different spatial streams (iss1-iss4) of the interleaver. Among these, the bottom most signal 
(int_add_4) generates the address sequence with values 13, 17, 21,…, 49, 1, 5, 9, 14, 18, 
22, …, 50, 2, 6, … which is identical with the address sequence of Table 6.2(a). This 
verifies the working of our proposed interleaver as per the standard [75]. Another timing 
simulation with Nbpscs = 6 (16-QAM), N = 648, BW = 40MHz (nbpscs = 112, bw = 12) has 
been presented in Fig. 6.8(b). In this case too, the address sequences displayed at the 
bottom four signals exactly match with the output of the MATLAB program with input 
parameters Nbpscs = 6 (16-QAM), N = 648, BW = 40MHz. Such verifications have been 
carried out exclusively with address sequences for all possible combination of the MIMO 
WLAN interleaver specification as per Table 6.1. However, comparison of these 
simulation results with other works could not be made as timing simulations have not been 
provided by the others.    

 
 

  
 (a) 
 



Chapter 6: Interleaving in MIMO WLAN  

   126 

 (b) 
 

Fig. 6.8 Write addresses (WAx) of interleaver for (a) Nbpscs=1 (BPSK), N=52, 
BW=20MHz (nbpscs=002, bw=02) and (b) Nbpscs=6 (64-QAM), N=648, BW=40MHz 

(nbpscs=112, bw=12)  
6.7 FPGA Implementation Results 

The proposed design of the interleaver is transformed into a VHDL model using 
Xilinx ISE 12.1 and is implemented on Xilinx Spartan-6 FPGA. Table 6.8 shows the 
minimum hardware requirement for the implementation of the proposed design obtained 
by HDL synthesis irrespective of implementation platform e.g. FPGA or ASIC. The two 
ROMs of sizes 64 x 2 bit are used to store initial value of Ix and Jy as per Table 6.6. The 
10-bit adders are used at the final stage of the address generator one at each bit stream for 
addition of row count value with the column count value. For the computation of signals 
like ICOUNT+Ix, ICOUNT+Ix+1, ICOUNT–(C-Ix) etc, the design uses 6-bit adder, 6-bit 
subtractor with borrow input & 6-bit subtractor without borrow input circuits. The design 
models two 6-bit counters for the implementations of Fig. 6.4(b) and (c). Internal storage 
requirement is met up by the 1-bit and 6-bit latches as described in Table 6.8. In order to 
implement the less than and greater than equal to condition as listed in Table 6.7 (a) and 
(b), the design uses the 6-bit less and great-equal circuits. The proposed hardware 
structure of the address generator requires large number of multiplexers of different 
widths. To implement them on FPGA platform, the design requires the multiplexers as 
mentioned in Table 6.8.      

In spite of our exhaustive literature survey, similar implementations on FPGA 
platform have not yet been noticed for the purpose of comparison. As a result, the 
conventional LUT based approach [157], [103], [165] has been redesigned and 
implemented for MIMO WLAN interleaver on the same FPGA platform utilizing BRAM 
to house the address LUTs for the sake of comparison only. Four dual port BRAM 
memory blocks have been used to implement the interleaver memory in both the designs 
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in a manner similar to [115]. Comparative analysis of the two implementations in terms of 
device utilization is made in Table 6.9 wherein betterment of the proposed novel 
technique can be quantified in terms of embedded memory utilization (88.9% memory 
saving) and operating speed (27.43% speed improvement) with approximately 4% overuse 
of slice LUTs. Such marginal overuse occurs as the logic circuit associated with LUT 
based approach is relatively simpler [157] than our proposed technique. As modern 
FPGAs like Spartan 6 contain abundance of such slice LUTs, minor overuse does not 
affect the design in comparison with the use of critical and limited resources like BRAM. 
Significant reduction in BRAM use by our proposed design, enables the designer to meet 
other memory requirement while implementing the complete MIMO WLAN transceiver 
on the same FPGA. Use of DSP blocks as multiplier improves the performance of the 
circuit by reducing the delay. The circuit works at maximum clock speed of 208.7MHz 
with 28.62mW of power consumption. As the design has four parallel spatial streams, the 
throughput of the proposed interleaver may reach upto 834.8Mbps on Spartan 6 FPGA 
thereby capable of delivering 28.14% higher throughput than the maximum requirement 
[75].   

 
Table 6.8 Minimum hardware requirement for the interleaver 

 
Logic Circuits Used Quantity Logic Circuits Used Quantity 

64x2-bit ROM 2 1-bit latch 26 
10-bit adder 4 6-bit comparator great  12 
6-bit adder 22 6-bit comparator less equal 1 

6-bit sub borrow in 4 1-bit 2-to-1 multiplexer 659 
6-bit subtractor 50 6-bit 4-to-1 multiplexer 178 
6-bit up counter 2   

 
 

Table 6.9 Device Utilization Summary 
 

FPGA Resources This work LUT Based technique [157], [103], [165] 
Utilization in Number Utilization in % Utilization in Number Utilization in % 

Number of Slices Registers 30  out of   30064 0.10 35 out of   30064 0.12 
Number of Slices LUTs 864  out of   15032 5.75 201 out of 15032 1.34 

Number of BRAMs 4  out of     52 7.69 36 out of 52 69.23 
Number of DSP48A1s 4  out of     38 10.53 0 out of     38 0 % 

Number of BUFG/BUFGCTRLs 2 out of 16 12.50 2 out of 16 12.50 
 

In addition, comparison with few works has been done based on the equivalence 
drawn between FPGA and ASIC implementations in [156]. The comparative study of the 
proposed implementation in respect of key FPGA parameters shows betterment over other 
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similar recent works and is presented in Table 6.10. The proposed circuit shows 
betterment over [121], [120], [122] and LUT based technique in terms of maximum 
operating frequency.  Our implementation has been found to be the most efficient among 
the designs in references [121], [120], [122] of Table 6.10 in terms of power consumption. 
Similar comparison has been drawn by Zafar et al. [111] with previous work [110] in 
terms of resource requirement while implementing interleaver for 2 x 2 MIMO WiMAX 
system. However, direct comparison between our proposed and work in [110], [111] may 
not be possible, as the interleaver specification for both standards are not identical, 
especially the former involves a third step of permutation called frequency rotation.   

 
Table 6.10 Comparative study between similar works 

 
FPGA Parameters This work [120] [121] [122] LUT Based [157], [103], 

[165] 
Maximum clock frequency 208.7 MHz 

109.38MHz 
(Improvement over [120]: 

47.59%) 

70.31MHz 
(Improvement over [121]: 

66.31%) 

125MHz 
(Improvement over [122]: 

40.1%) 
151.45MHz (Improvement over LUT method: 27.43%) 

Power 
consumption 28.62mW 

111.24mW 
(Reduction over 
[120]: 74.27%) 

48mW (Reduction 
over [121]: 

40.38%) 
Not available 28.62mW (at par with LUT 

based method) 

6.8 Discussion 
This chapter demonstrates the design and implementation of novel interleaver 

hardware on FPGA platform to be used in OFDM based MIMO WLAN applications. New 
algorithm has been proposed for the address generator of the interleaver eliminating the 
requirement of floor function and is supported by mathematical foundation with general 
validity. The algorithm is transformed into digital circuit and is modeled using VHDL 
software. Simulation results verify the functionality of the proposed algorithm. Hardware 
implementation of the VHDL model using Xilinx ISE has also been done as well as tested 
on Xilinx Spartan 6 FPGA. Efficient design and use of FPGA’s embedded resources 
during the implementation enables betterment over few recent similar works and 
conventional design in terms of multiple FPGA parameters. This work motivates the 
author to design the QPP interleaver used in latest wireless broadband technology- 
LTE/LTE-A and is presented in the next chapter.  

  
  



 
Chapter 7 

Implementation of QPP 
interleaver 

  Outline of this Chapter 
7.1 Introduction 
7.2 Interleaving in LTE/LTE-A 
7.3 Proposed Algorithm for QPP interleaver 
7.4 Hardware Realization 
7.5 Simulation Results for QPP Interleaver 
7.6 FPGA Implementation Result and Analysis 
7.7 Discussion 
 

After detailed discussion on the design and implementation of resource efficient 
and high speed interleavers / de-interleavers in the previous chapters, this chapter 
incorporates QPP interleaver implementation on Xilinx Spartan 6 FPGA. The 
address generator of the interleaver contains a quadratic expression having square 
and modulus function whose direct digital hardware is not yet available in the 
literature. A novel algorithm has now been proposed which can provide low 
complexity hardware solution to implement the interleaver address generator.  This 
chapter describes VHDL model and timing simulation of the proposed address 
generator using ModelSim XE-III software. Due to absence of implementation 
results in the literature, comparison of this work is made by implementing 
conventional LUT based technique on the same FPGA. Such comparison shows 
better FPGA resource utilization and improved operating speed in favour of the 
novel proposed technique. 
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7.1. Introduction 
The demand for ubiquitous mobile internet services requires high bandwidth 

connectivity. To cater this demand, new technologies like the LTE of 3rd Generation 
Partnership Project (3GPP) standards [76] have been developed. LTE is rapidly becoming 
the dominant global standard for fourth generation cellular networks [56]. It has brought 
together many technological innovations from different areas of research such as digital 
signal processing, internet protocols, network architecture and security, and is also poised 
to dramatically change the way we use the world wide mobile network in future. LTE-A 
[77] is the project name of the evolved version of LTE that is being developed by 3GPP 
[166]. LTE-A will meet or exceed the requirements of the International 
Telecommunication Union (ITU) for the fourth generation (4G) radio communication 
standard known as International Mobile Telecommunication (IMT)-Advanced [167]. 
 LTE / LTE-A uses Turbo coding as channel coding scheme. Turbo encoder and 
decoder are one of the major blocks in a LTE wireless transceiver. Turbo encoder/decoder 
employs interleaver to reduce the effect of burst error in the channel. Turbo decoders 
provide best performance but suffer from high decoding latency due to the iterative 
decoding process [168]. This is due to the forward–backward recursion in the maximum a 
posteriori (MAP) decoding algorithm and the interleaving /de- interleaving between the 
iterations [124]. 

The QPP interleaver is defined in the new 3GPP LTE standard. The function of the 
QPP interleaver is to take a block of N-bit data and produce a permutation of the input 
data block. From the coding theory perspective, the performance of a Turbo code depends 
critically on the interleaver structure. The structure of the QPP interleaver differs from 
previous 3G interleavers in sense that it is based on algebraic constructions via 
permutation polynomials over integer rings. It is known that permutation polynomials 
generate contention-free interleavers.  
 In this Chapter, we propose an efficient algorithm to model the interleaver address 
generator used in LTE/LTE-A. The address generator of QPP interleaver involves a 
quadratic expression having square and modulus function whose corresponding digital 
hardware is not available. In our approach, the said expression is divided into two parts. 
The first part generates raw addresses which is described by a novel algorithm. The 
second part computes modulus on these raw addresses and employs a modified technique 
over [169]. Both algorithms are transformed into digital circuits for efficient FPGA 
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implementation. VHDL model has been prepared to implement the hardware in Xilinx 
Spartan 6 FPGA. Functionality of the interleaver address generator is verified through 
timing simulation using ModelSim XE-III software. In spite of best possible effort in 
literature survey, the author could not find similar works implemented on FPGA platform 
having implementation results. Consequently, comparison could not be drawn with 
existing works implemented on CMOS and other platforms.   As a result, for the sake of 
comparison, the author implemented the conventional LUT based technique with 
improved memory modeling on the same FPGA. Comparative analysis of our proposed 
work with improved LUT based technique in terms FPGA resource utilization (Block 
RAM) and operating speed shows betterment by 71.16% and 82.26% respectively at the 
negligible cost of FPGA slice requirement. 

7.2. Interleaving in LTE/LTE-A 
Turbo coding is employed in many standards for forward error correction 

techniques due to its impressive performance [167]. The interleavers are used in turbo 
coding / decoding to improve the error performance. In order to increase the throughput, 
parallel MAP decoding technique is adopted in Turbo code decoder of LTE/LTE-A 
transceiver [170]. As a result, more than one MAP processor may store their outputs in the 
same memory block of the interleaver simultaneously, if the interleaver is not designed 
properly. In that case a contention of memory access [171] occurs and additional circuit 
with decoding latency will be required to resolve the contention. The 3GPP LTE and LTE-
A standards incorporate the use of the QPP interleaver [172]. Such interleaver poses 
contention free property and allows parallel decoders to decode one codeword with 
improved throughput [173].  

The interleaving operation in a QPP interleaver defined for LTE/LTE-A may be 
expressed as  
 

П(i) = (f1*i + f2*i2 ) mod K                                              (7.1) 
 

where i stands for the original address, and П(x) is the interleaved address. The parameters 
f1 and f2 is related to the block size K and is defined in [76]. In the 3GPP LTE/LTE-A 
standard, there are 188 different block sizes ranging from 40 to 6144, and each size has its 
different interleaver parameters f1 and f2.   
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7.3. Proposed Algorithm for QPP interleaver 
This section describes the formulation of the proposed algorithm for the address 

generator of interleaver used in LTE/LTE-A. Firstly, a MATLAB program has been 
developed using (7.1) to determine sequence of addresses to be generated against each 
value of K, f1 and f2 parameters. Table 7.1 shows certain portion of such address sequences 
obtained for three instances with (a) K = 40, (b) K = 1008 and (c) K = 6144.  

Table 7.1(a) Address Sequences with K = 40, f1=3, f2=10 
13 6 19 12 25 18 31 24 37 30 3 36 
9 2 15 8 21 14 27 20 33 26 39 32 

… 
21 14 27 20 33 26 39 32 5 38 11 4 

 
    Table 7.1(b) Address Sequences with K = 1008, f1 = 171, f2 = 204 

375 150 333 924 915 306 105 312 927 942 357 180 
411 42 81 528 375 630 285 348 819 690 969 648 

… 
423 438 861 684 915 546 585 24 879 126 789 852 

 
    Table 7.1 (c) Address Sequences with K = 6144, f1 = 263, f2 = 480 

743 2446 5109 2588 1027 426 785 2104 4383 1478 5677 4692 
4667 5602 1353 4208 1879 510 101 652 2163 4634 1921 168 

… 
951 5726 5317 5868 1235 3706 993 5384 4591 4758 5885 1828 

 
     Due to non-availability of corresponding hardware to implement (7.1), we propose 
a novel algorithm which leads to low complexity implementation of the address generator. 
In our approach, (7.1) is divided into two sub-parts out of which the first part computes 
the raw addresses. These raw addresses pass through the mod function in the second part. 
Both parts are described by (7.2) and (7.3) respectively. Accordingly, previous MATLAB 
program is partially modified to generate the raw addresses without the mod function, i.e. 
implementation of (7.2). The raw addresses so generated for the same three cases of Table 
7.1 are shown in Table 7.2(a)-(c).  
 

    y(i) = (f1*i + f2*i2 )                                                          (7.2) 
П(i) = y(i) mod K                                                          (7.3) 
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    Table 7.2(a) Raw Address Sequences with K = 40, f1=3, f2=10 
13 46 99 172 265 378 511 664 837 1030 1243 1476 

1729 2002 2295 2608 2941 3294 3667 4060 4473 4906 5359 5832 
… 

320947 324540 328153 331786 335439 339112 342805 346518 350251 354004 350251 354004 
 

    Table 7.2(b) Raw Address Sequences with K = 1008, f1 = 171, f2 = 204 
375 1158 2349 3948 5955 8370 11193 14424 18063 22110 26565 31428 

36699 42378 48465 54960 61863 69174 85020 93555 102498 111849 121608 131775 
… 

6421383 6493974 6566973 6640380 6714195 6788418 6863049 6938088 7013535 7089390 7165653 7242324 
 

    Table 7.2(c) Raw Address Sequences with K = 6144, f1 = 263, f2 = 480 
743 2446 5109 8732 13315 18858 25361 32824 41247 50630 60973 72276 

84539 97762 111945 127088 143191 160254 178277 197260 217203 238106 259969 282792 
… 

1508447
1 

1525513
4 

1542675
7 

1559934
0 

1577288
3 

1594738
6 

1612284
9 

1629927
2 

1647665
5 

1665499
8 

1683430
1 

1701456
4  

Careful examination of the sequence of raw addresses in Table 7.2(a)-(c) shows certain 
correlation between them which may be expressed by the following novel algorithm for 
address generator of LTE/LTE-A interleaver: 
 
Define:  
F = f1 + f2;  
Fixed Increment: INC = 2*f2 
Initial condition: PA = PI = F 
Subsequent address: Previous address (PA) + {previous increment (PI) + INC}  
e.g. (a) for K = 40, f1 = 3, f2 = 10 
Initial Conditions:  
PA = PI = F = 13, INC = 20, 
Subsequent addresses: 13 + (13+20) = 46; 46 + (33+20) = 99; 99 + (53+20) = 172 and 
so on. 
(b) For K = 1008, f1 = 171, f2 = 204 
Initial Conditions:  
PA = PI = F = 375, INC = 408, 
Subsequent addresses: 375 + (375+408) = 1158; 1158 + (783+408) = 99; 99 + 
(1191+20) = 1290 and so on. 
(c) For K = 6144, f1 = 263, f2 = 480  
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Initial Conditions:  
PA = PI = F = 743, INC = 960, 
Subsequent addresses: 743+ (743+960) = 2446; 2446 + (1703 + 960) = 5109; 5109 + 
(2663+960) = 8732 and so on. 
The proposed algorithm computes the raw addresses recursively without involving 
multiplier and squarer circuit thus ensuring low complexity implementation.  

Implementation of (7.3), i.e. computation of modulus on raw addresses is done by 
suitably modifying the algorithm proposed by Butler & Sasao [169]. This algorithm 
computes x mod z as a modulo reduction process, where at each stage, the magnitude of x 
is reduced, but the residue remains the same which is continued until only the residue 
remains. As the interleaver block size K (divisor) has 188 different values ranging from 40 
to 6144, the second method of Butler & Sasao [169] where the divisor is an independent 
variable is adopted. In the proposed case, as shown in Table 7.2(c), the maximum value 
whose modulus is to be computed is 17014564 which in binary requires 25-bits 
representation. As a result value of i = 25 in computation of Ɵ = z*2i where i-1 represents 
number of comparison stages, z represents the divisor (= K) and Ɵ is defined to be the first 
value to be subtracted from the dividend, X. Subsequent values of Ɵ are computed by 
dividing present value of Ɵ by 2. In our work, division is accomplished by right shift 
which is more resource efficient than direct division technique.   

7.4. Hardware Realization  
In order to test the functionality of the proposed algorithm, corresponding digital 

hardware is designed. Top level view of the hardware is presented in Fig. 7.1 The first 
block is Raw Address Generator, implementing (7.1), receives initiation pulse (INIT),  
Clock signal (CLK) and a memory pointer (I) to retrieve the corresponding values of K, f1 
and f2 stored in an LUT [76]. The raw addresses (X), and K values are passed on to the 
MOD circuit which finally generates the desired interleaver addresses. 
 The Raw Address Generator as shown in Fig. 7.2 comprises of two subsidiary 
units namely, an LUT (a), a START signal generator (b) along with the main unit (c). The 
LUT stores the values of K, f1 and f2 and has 32-bit width. The organization of data in the 
LUT is described in Table 7.3. A desired combination of the block size K, f1 and f2 is read 
from the LUT by supplying appropriate address of LUT in I. An adder is used to generate 
F = f1 + f2. A START signal is generated by the hardware shown in Fig. 7.2(b) either at the 
beginning of the operation or after completion of one period of generating 188 interleaver 
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addresses. INIT pulse is responsible for generating the START signal at the beginning 
whereas an active reset signal generates the subsequent START signal on completion of 
each addressing cycles. The main circuit responsible for raw address generation receives 
signal F, f2 and START from other two ancillary units and the system CLK. Active START 
pulse causes M1 = F, M2 = INC = 2* f2, M3 = F and M4 = 0 representing the initial 
condition of the circuit. Registers R1 and R2 store the output of A1 and M3 respectively.  
 Fig. 7.3 describes the modified hardware used to compute X mod K. In this 
application, i = 25 and z is a 13-bit number resulting in Ɵ to be a 38-bit number.   This 
consequents 25-bit X to be converted into a 38-bit number by appending 13 zeros in the 
MSBs so that X and Ɵ may be compared. In order to make our design resource efficient 
we computed Ɵ by appending 25 number of zeros in the LSB of Z instead of using a 
multiplier directly. The left most comparator (C24) as shown in Fig. 7.3 compares A24 (38-
bit version of X) with Ɵ24. If A24 ≥ θ24, the select input of the multiplexer (M24) receives a 
0, thus routing Ɵ24 to the output (= B24). The subtractor (S24) performs first stage reduction 
by computing A23 = A24 - B24. In case, A24 ≱ θ24, M24 receives B24 = 0, the stage performs 
pass through operation. Similar operation is carried out in 23 subsequent stages as shown 
in Fig. 7.3 till A0 is computed which is converted into 13-bit number, Y removing 25 zeros 
from MSBs before sending it as output of the address generator. Subsequent Ɵs (i.e. Ɵ23, 
Ɵ22, …,Ɵ1) are computed from previous Ɵ values dividing by 2. Instead of using a divisor, 
the author employed shifter to perform ÷2 operation thereby making design more resource 
efficient.  

 
Fig. 7.1 Top level view of the QPP interleaver address generator 

 
Table 7.3 Organization of LUT 

I (9 bit) K (13 bit) f1 (9 bit) f2 (10 bit) 
000H 01400C0AH 
001H 01801C0CH 
002H 01C04C2AH 

… … 
05BH 01F80DC54H 

… … 
0BBH C0041DE0H  

 
 

Y 
CLK Raw Address  

Generator MOD Circuit I 
INIT 

X 
K 
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Fig. 7.2 Proposed Hardware of Raw Address Generator  

(a) LUT (b) START signal Generator (c) Main Unit  
 

 
Fig. 7.3 Modified MOD circuit to compute X mod Z 

7.5. Simulation Results for QPP Interleaver 
The simulation results in the form of timing diagram obtained using ModelSim 

Xilinx Edition-III for i = 1(K=40), 91 (K=1008) and 188 (K=6144), are shown in Fig. 
7.4(a), (b) and (c) respectively. The captured portion show the interleaver addresses 
generated for the first few cases and are identical with Table 7.1(a), (b) and (c) 
respectively. The circuit fetches K=40, f1=3 and f2=10 from the LUT of Fig. 7.2(a) when 
supplied with i=1. As shown in Fig. 7.4(a)-(c), init = 1 in the beginning for one clock 
pulse to enable hardware of Fig. 7.2(b) to generate START pulse. On completion of an 
iteration of address generation, the START pulse for subsequent iterations is generated by 
the reset signal. Based on the values received against the signals START, F and f2, the 
main unit of the address generator as shown in Fig. 7.2(c) computes the desired addresses 
and are made available at the output as y in Fig. 7.4(a)-(c). The author has generated and 
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verified addresses for all values of i, however to avoid clumsiness other results are not 
included. 

  Fig. 7.4(a) Timing simulation showing initial addresses for i=1 (K = 40, f1=3, f2=10) 
 
 

  Fig. 7.4(b) Timing simulation showing initial addresses for i=91  
(K = 1008, f1 = 171, f2 = 204) 

 
 

 
Fig. 7.4(c) Timing simulation showing initial addresses for i=188  

(K= 6144, f1 = 263, f2 = 480) 
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7.6. FPGA Implementation Result and Analysis 
The proposed hardware structure of LTE / LTE-A interleaver address generator is 

transformed into VHDL model using Xilinx Integrated Software Environment (ISE 12.1) 
and has been implemented on Xilinx Spartan 6 FPGA. Table 7.4 shows the HDL synthesis 
report for the implementation. The adder of Fig. 7.2(a) is realized by the 10-bit adder. The 
13-bit and 38-bit subtractors are used in the mod circuit to determine the Y and Ax-1=Ax-
Bx. AD1 and AD2 adders of Fig. 7.2(c) are implemented through two 25-bit adders. The 
input applied through I is converted into LUT address with the help of the 9-bit subtractor 
to access the content of LUT described by Table 7.3. An 8-bit up-counter is used to 
implement the counter of Fig. 7.2(b). The 1-bit, 25-bit registers are used to implement 
reset signal, R1 and R2 register respectively. Fig. 7.2(b) uses the 8-bit greater than 
comparator to generate the reset pulse whereas the 24 numbers of 38-bit less than equal to 
comparators are used in the mod circuit to implement C24, C23, C22 …..,C1. Similarly the mod 
circuit of Fig. 7.3 also uses 24 number of 38-bit 2-to-1 multiplexers (M24, M23, M22 
…..,M1). The 25-bit 2-to-1 multiplexers implements M1-M4 of Fig. 7.2(c)  

 
Table 7.4 HDL Synthesis Report 

 
Logic Circuits Used Quantity Logic Circuits Used Quantity 

10-bit adder 1 1-bit register 1 
13-bit subtractor 1 25-bit registers  2 
25-bit adder 2 8-bit comparator greater 1 
38-bit subtractor 24 38-bit comparator less equal 24 
9-bit subtractor 1 25-bit 2-to-1 multiplexer 4 

8-bit up counter 1 38-bit 2-to-1 multiplexer 24 
 Direct comparison of our proposed work with the existing works in [124], [123], 

[126] is not possible due to dissimilarity in implementation platform and non-availability 
of implementation result for interleaver alone. However, in order to compare the 
implementation results, we have modelled and implemented the conventional LUT based 
technique in the same Spartan 6 FPGA platform. As per [76], there are 188 permissible 
block sizes leading to 188 memory blocks required to house the address LUTs. Such 
requirement cannot be catered by the target FPGA which only possess 52 BRAM blocks. 
To solve the problem, the author partitioned the available memory blocks which in turn 
helped to reduce memory wastage as well. Implementation results of both the techniques 
have been shown in Table 7.5. Pictorial representation of Table 7.5 is also incorporated in 
Fig. 7.8 for quick comparison and analysis of the implementation results. Our proposed 
technique shows significant reduction in Block RAM requirement by 71.16% in 
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comparison with improved LUT based technique. Similarly our proposed design shows 
significant improvement by 82.26% in terms of maximum operating frequency. This 
improvements are at the cost of minor increase in FPGA Slice LUT requirement.  

  
Table 7.5 Comparative Device Utilization Summary 

 
FPGA Resources / 

Parameters 
This work Improved LUT based implementation 

Remarks Utilization in 
Number Utilization in % Utilization in 

Number 
Utilization in 

% 
Number of Slice 

Registers 59  out of  30064 0.19 63  out of  30064 0.21 Reduction by 0.02% 
Number of Slice 

LUTs 
1128  out of  

15032 7.50 433  out of  15032 2.88 Increase by 4.62% 
Number of Bonded 

IOBs 23  out of    240 9.58 23  out of    240 9.58 No change 
Number of Block 

RAM 1  out of    52 1.92 38  out of     52 73.08 Reduction by 
71.16% 

Maximum clock speed 260.92MHz 143.16MHz Speed improvement by 82.26% 
 

  
Fig. 7.8 Bar Chart Representation of FPGA Device Utilization Summary   

7.7. Discussion 
This work describes a novel and efficient algorithm to model the interleaver 

address generator used in LTE/LTE-A. The algorithm exploits the correlation between the 
consecutive addresses of the address generator of QPP interleaver to efficiently model and 
implement on reconfigurable hardware. The algorithm is converted into digital hardware 
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and implemented on Xilinx Spartan 6 FPGA using Xilinx ISE 12.1. Functionality of the 
address generator has been tested through timing simulation using ModelSim XE-III 
software. The proposed work when compared with conventional LUT based work shows 
significant improvement in terms of embedded memory utilization and operating speed. 
Next chapter summarises the complete work done during this doctoral research activity 
including potential areas for future research in continuation to this work.   
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8.1 Conclusive Remarks 
In digital communication systems, interleavers play an important role in reducing 

the effect of burst error encountered in the channel during transmission. Design of digital 
hardware for the interleaver address generator used in OFDM based wireless standards 
like DAB, DVB, WLAN, WiMAX, MIMO-WLAN and LTE/ LTE-A are highly 
challenging due to the presence of complex functions like floor, modulus and square. 
The principal aim of this research work was to design hardware efficient interleaver for 
various OFDM based high speed wireless communication systems. FPGAs are most 
preferred reconfigurable hardware platform for implementation of newer algorithms due to 
advantages like shorter turnaround time, ease of future upgradation, obsolescence free 
design and direct linkage of MATLAB with software tools for HDL designs like Xilinx 
Integrated Software Environment (ISE). In this work, efficient hardware implementations 
of both types of interleavers, i.e. convolutional and block, involving all permissible code 
rates and modulation types have been carried out. MATLAB programs have been 
developed to generate the desired interleaver addresses. At first, block level representation 
of the designs is prepared. Novel algorithms have been proposed to model these blocks. 
Verification of the proposed algorithms has been accomplished through MATLAB 
programs. Each block is decomposed into most suitable digital circuits which thereafter 
are converted into appropriate VHDL models using Xilinx ISE. Finally, the VHDL 
models are implemented on Xilinx FPGAs like Spartan 3, 3AN and 6. Timing simulations 
of the interleaver address generators / interleavers have been extensively carried out to 
verify functionality of the proposed designs.  

At the outset, design and implementation of convolutional interleaver for DAB 
application has been considered. The work utilizes FPGA’s embedded shift registers 
SRLC16 to model the incremental memory of the interleaver. This modeling lowers the 
hardware resource occupancy of FPGA by 81% over implementation without 
embedded shift registers. The power consumption of the convolution interleaver 
hardware is found to be as low as 125mW. Due to the use of SRLC16, interconnection 
delay inside the FPGA is reduced thereby improving the operating speed of the 
convolutional interleaver. Reduction in memory wastage by 30% over an existing 
implementation is another important contribution of the work. 

Conventionally Look-up Table (LUT) based technique is employed in designing 
the block interleaver used in IEEE 802.11 a/g based WLAN transceiver. Two approaches 
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namely improved LUT based and Finite State Machine (FSM) based have been adopted 
by the author in designing the hardware for the interleaver. The former technique 
demonstrates reduction in resource utilization like slices, flip-flop and LUTs by 43%, 
34% and 50% respectively over the conventional LUT based approach. Similar 
results have also been obtained for FSM based implementation. In addition, the FSM 
based technique offers 25% faster performance over the conventional LUT based 
method.  

WiMAX is another BWA based on IEEE 802.16 d/e standard which uses special 
type of block interleaver. Conventionally, LUTs are used to generate the interleaver 
addresses. The author has proposed improved LUT based technique to generate de-
interleaver addresses. The improvement in terms of memory saving above 81% of 
memory blocks and 30% faster circuit operation over the conventional LUT based 
approach have been achieved. Next, FSM based interleaver address generator for 
WiMAX system has been proposed. The work has been carry forward to design the 
complete FSM based interleaver (with memory) for the WiMAX application. This work 
too shows approximately 30% improvement in terms of maximum operating clock 
frequency, approximately 46% improvement in FPGA flip- flop used with negligible 
(less than 3%) loss in terms of LCs used over the existing implementation. Finally 
design of a low complexity and resource efficient hardware for de-interleaver has been 
proposed. It includes a novel algorithm for the de-interleaver with user-friendly 
mathematical representation followed by general validity. Use of FPGA’s embedded 
multiplier and sharing of resources among the QPSK, 16-QAM and 64-QAM blocks 
exhibit significant reduction in occupancy of FPGA slices (by 80.24%), flip-flops (by 
35.9%) and 4 input LUTs (by 80.47%) along with 95% faster operation than LUT 
based approach.  

Another important work related to speed power improved hardware design of 
interleaver address generator for use in MIMO WLAN has been carried out. This work 
contributes hardware efficient model of MIMO WLAN interleaver completely eliminating 
the need for floor and modulus functions. The work is also extended to model the 
interleaver memory using FPGA’s embedded memory and thus provides complete 
hardware interleaver solution. The proposed design when compared with recent works 
shows noticeable betterment in terms of maximum operating frequency by 12.56% 
and power consumption by 65.64%.  



Chapter 8: Conclusion and Future Works  

   144 

Finally the work related to the design of hardware efficient Quadratic Permutation 
Polynomial (QPP) interleaver address generator for LTE / advanced LTE communication 
system has been taken up. The address generator involves a quadratic equation and 
modulus function which do not have corresponding digital hardware. A novel algorithm 
has been proposed to eliminate the need of squarer and modulus functions. The algorithm 
is converted into digital hardware which is also implemented on a reconfigurable platform. 
This approach shows significant reduction in Block RAM requirement by 71.16% in 
comparison with improved LUT based technique along with the significant 
improvement of maximum operating frequency by 82.26%. 

A summary of wireless applications for which various interleaver designs have been 
carried out along with the implementation platforms used against them in the entire 
doctoral research work is presented in Table 8.1. This table also highlights the embedded 
resources of the target FPGAs used in the work.  

 
Table 8.1 Summary of Interleaver Applications and FPGA Implementation 

Platforms used in this Research Work 
 

Application Xilinx FPGA Generations Devices Embedded Resources used 

Convolutional Interleaver for 
DAB Spartan-3 XC3S 400 SRLC16 (Embedded Shift Register) 

Block Interleaver for WLAN Spartan-3 XC3S 400 Block RAM, Distributed RAM 

Block Interleaver for WiMAX Spartan-3, Spartan-3AN XC3S 400, 
XC3S1400AN 

Block RAM,  
MULT18X18 (Embedded Multiplier) 

Block Interleaver for  
MIMO WLAN Spartan-6 XC6SLX25 Block RAM, DSP48A1s (DSP Block) 

QPP Interleaver for  LTE/LTE-A Spartan-6 XC6SLX25 Block RAM 

 

8.2 Prospective Future Work 
Like “space never ends”, research never ends either. Though the works 

incorporated in this thesis provide efficient solution to interleaver design and 
implementation issues on FPGA platform through VHDL modeling, following points may 
be considered as potential candidate for future development in continuation to this work.  
 



Chapter 8: Conclusion and Future Works  

   145 

 Development of FPGA based Dual mode ARP and QPP block interleavers 
supporting MIMO WLAN as well as LTE/LTE-A standard simultaneously. 

 Implementation of convolutional interleaver for advanced Speech Signal 
Processing. 

 Design and implementation of Multi-Dimensional Interleavers for advanced 
image transmission. 

 Interleavers for high speed successful data transmission over severe burst 
error communication channel. 

 Advanced Interleavers for Multi-functional MIMO systems in 5G Wireless 
Communication. 

 Application of the knowledge of interleavers in RF Wireless system for 
corresponding transformation to Optical/Quantum Wireless systems. 

 Massive MIMO Signal Processing techniques utilizing the principles of the 
interleavers incorporated in this thesis for Optical Wireless Communication.  
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